aboutsummaryrefslogtreecommitdiffhomepage
path: root/patches/server/0007-ConcurrentUtil.patch
diff options
context:
space:
mode:
Diffstat (limited to 'patches/server/0007-ConcurrentUtil.patch')
-rw-r--r--patches/server/0007-ConcurrentUtil.patch10547
1 files changed, 10547 insertions, 0 deletions
diff --git a/patches/server/0007-ConcurrentUtil.patch b/patches/server/0007-ConcurrentUtil.patch
new file mode 100644
index 0000000000..b285b3c6e3
--- /dev/null
+++ b/patches/server/0007-ConcurrentUtil.patch
@@ -0,0 +1,10547 @@
+From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
+From: Spottedleaf <[email protected]>
+Date: Sun, 23 Jan 2022 22:58:11 -0800
+Subject: [PATCH] ConcurrentUtil
+
+
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/collection/MultiThreadedQueue.java b/src/main/java/ca/spottedleaf/concurrentutil/collection/MultiThreadedQueue.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..f84a622dc29750139ac280f480b7cd132b036287
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/collection/MultiThreadedQueue.java
+@@ -0,0 +1,1421 @@
++package ca.spottedleaf.concurrentutil.collection;
++
++import ca.spottedleaf.concurrentutil.util.ConcurrentUtil;
++import ca.spottedleaf.concurrentutil.util.Validate;
++
++import java.lang.invoke.VarHandle;
++import java.util.ArrayList;
++import java.util.Collection;
++import java.util.Iterator;
++import java.util.List;
++import java.util.NoSuchElementException;
++import java.util.Queue;
++import java.util.Spliterator;
++import java.util.Spliterators;
++import java.util.function.Consumer;
++import java.util.function.IntFunction;
++import java.util.function.Predicate;
++
++/**
++ * MT-Safe linked first in first out ordered queue.
++ *
++ * This queue should out-perform {@link java.util.concurrent.ConcurrentLinkedQueue} in high-contention reads/writes, and is
++ * not any slower in lower contention reads/writes.
++ * <p>
++ * Note that this queue breaks the specification laid out by {@link Collection}, see {@link #preventAdds()} and {@link Collection#add(Object)}.
++ * </p>
++ * <p><b>
++ * This queue will only unlink linked nodes through the {@link #peek()} and {@link #poll()} methods, and this is only if
++ * they are at the head of the queue.
++ * </b></p>
++ * @param <E> Type of element in this queue.
++ */
++public class MultiThreadedQueue<E> implements Queue<E> {
++
++ protected volatile LinkedNode<E> head; /* Always non-null, high chance of being the actual head */
++
++ protected volatile LinkedNode<E> tail; /* Always non-null, high chance of being the actual tail */
++
++ /* Note that it is possible to reach head from tail. */
++
++ /* IMPL NOTE: Leave hashCode and equals to their defaults */
++
++ protected static final VarHandle HEAD_HANDLE = ConcurrentUtil.getVarHandle(MultiThreadedQueue.class, "head", LinkedNode.class);
++ protected static final VarHandle TAIL_HANDLE = ConcurrentUtil.getVarHandle(MultiThreadedQueue.class, "tail", LinkedNode.class);
++
++ /* head */
++
++ protected final void setHeadPlain(final LinkedNode<E> newHead) {
++ HEAD_HANDLE.set(this, newHead);
++ }
++
++ protected final void setHeadOpaque(final LinkedNode<E> newHead) {
++ HEAD_HANDLE.setOpaque(this, newHead);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final LinkedNode<E> getHeadPlain() {
++ return (LinkedNode<E>)HEAD_HANDLE.get(this);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final LinkedNode<E> getHeadOpaque() {
++ return (LinkedNode<E>)HEAD_HANDLE.getOpaque(this);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final LinkedNode<E> getHeadAcquire() {
++ return (LinkedNode<E>)HEAD_HANDLE.getAcquire(this);
++ }
++
++ /* tail */
++
++ protected final void setTailPlain(final LinkedNode<E> newTail) {
++ TAIL_HANDLE.set(this, newTail);
++ }
++
++ protected final void setTailOpaque(final LinkedNode<E> newTail) {
++ TAIL_HANDLE.setOpaque(this, newTail);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final LinkedNode<E> getTailPlain() {
++ return (LinkedNode<E>)TAIL_HANDLE.get(this);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final LinkedNode<E> getTailOpaque() {
++ return (LinkedNode<E>)TAIL_HANDLE.getOpaque(this);
++ }
++
++ /**
++ * Constructs a {@code MultiThreadedQueue}, initially empty.
++ * <p>
++ * The returned object may not be published without synchronization.
++ * </p>
++ */
++ public MultiThreadedQueue() {
++ final LinkedNode<E> value = new LinkedNode<>(null, null);
++ this.setHeadPlain(value);
++ this.setTailPlain(value);
++ }
++
++ /**
++ * Constructs a {@code MultiThreadedQueue}, initially containing all elements in the specified {@code collection}.
++ * <p>
++ * The returned object may not be published without synchronization.
++ * </p>
++ * @param collection The specified collection.
++ * @throws NullPointerException If {@code collection} is {@code null} or contains {@code null} elements.
++ */
++ public MultiThreadedQueue(final Iterable<? extends E> collection) {
++ final Iterator<? extends E> elements = collection.iterator();
++
++ if (!elements.hasNext()) {
++ final LinkedNode<E> value = new LinkedNode<>(null, null);
++ this.setHeadPlain(value);
++ this.setTailPlain(value);
++ return;
++ }
++
++ final LinkedNode<E> head = new LinkedNode<>(Validate.notNull(elements.next(), "Null element"), null);
++ LinkedNode<E> tail = head;
++
++ while (elements.hasNext()) {
++ final LinkedNode<E> next = new LinkedNode<>(Validate.notNull(elements.next(), "Null element"), null);
++ tail.setNextPlain(next);
++ tail = next;
++ }
++
++ this.setHeadPlain(head);
++ this.setTailPlain(tail);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public E remove() throws NoSuchElementException {
++ final E ret = this.poll();
++
++ if (ret == null) {
++ throw new NoSuchElementException();
++ }
++
++ return ret;
++ }
++
++ /**
++ * {@inheritDoc}
++ * <p>
++ * Contrary to the specification of {@link Collection#add}, this method will fail to add the element to this queue
++ * and return {@code false} if this queue is add-blocked.
++ * </p>
++ */
++ @Override
++ public boolean add(final E element) {
++ return this.offer(element);
++ }
++
++ /**
++ * Adds the specified element to the tail of this queue. If this queue is currently add-locked, then the queue is
++ * released from that lock and this element is added. The unlock operation and addition of the specified
++ * element is atomic.
++ * @param element The specified element.
++ * @return {@code true} if this queue previously allowed additions
++ */
++ public boolean forceAdd(final E element) {
++ final LinkedNode<E> node = new LinkedNode<>(element, null);
++
++ return !this.forceAppendList(node, node);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public E element() throws NoSuchElementException {
++ final E ret = this.peek();
++
++ if (ret == null) {
++ throw new NoSuchElementException();
++ }
++
++ return ret;
++ }
++
++ /**
++ * {@inheritDoc}
++ * <p>
++ * This method may also return {@code false} to indicate an element was not added if this queue is add-blocked.
++ * </p>
++ */
++ @Override
++ public boolean offer(final E element) {
++ Validate.notNull(element, "Null element");
++
++ final LinkedNode<E> node = new LinkedNode<>(element, null);
++
++ return this.appendList(node, node);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public E peek() {
++ for (LinkedNode<E> head = this.getHeadOpaque(), curr = head;;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null) {
++ if (this.getHeadOpaque() == head && curr != head) {
++ this.setHeadOpaque(curr);
++ }
++ return element;
++ }
++
++ if (next == null || curr == next) {
++ return null;
++ }
++ curr = next;
++ }
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public E poll() {
++ return this.removeHead();
++ }
++
++ /**
++ * Retrieves and removes the head of this queue if it matches the specified predicate. If this queue is empty
++ * or the head does not match the predicate, this function returns {@code null}.
++ * <p>
++ * The predicate may be invoked multiple or no times in this call.
++ * </p>
++ * @param predicate The specified predicate.
++ * @return The head if it matches the predicate, or {@code null} if it did not or this queue is empty.
++ */
++ public E pollIf(final Predicate<E> predicate) {
++ return this.removeHead(Validate.notNull(predicate, "Null predicate"));
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public void clear() {
++ //noinspection StatementWithEmptyBody
++ while (this.poll() != null);
++ }
++
++ /**
++ * Prevents elements from being added to this queue. Once this is called, any attempt to add to this queue will fail.
++ * <p>
++ * This function is MT-Safe.
++ * </p>
++ * @return {@code true} if the queue was modified to prevent additions, {@code false} if it already prevented additions.
++ */
++ public boolean preventAdds() {
++ final LinkedNode<E> deadEnd = new LinkedNode<>(null, null);
++ deadEnd.setNextPlain(deadEnd);
++
++ if (!this.appendList(deadEnd, deadEnd)) {
++ return false;
++ }
++
++ this.setTailPlain(deadEnd); /* (try to) Ensure tail is set for the following #allowAdds call */
++ return true;
++ }
++
++ /**
++ * Allows elements to be added to this queue once again. Note that this function has undefined behaviour if
++ * {@link #preventAdds()} is not called beforehand. The benefit of this function over {@link #tryAllowAdds()}
++ * is that this function might perform better.
++ * <p>
++ * This function is not MT-Safe.
++ * </p>
++ */
++ public void allowAdds() {
++ LinkedNode<E> tail = this.getTailPlain();
++
++ /* We need to find the tail given the cas on tail isn't atomic (nor volatile) in this.appendList */
++ /* Thus it is possible for an outdated tail to be set */
++ while (tail != (tail = tail.getNextPlain())) {}
++
++ tail.setNextVolatile(null);
++ }
++
++ /**
++ * Tries to allow elements to be added to this queue. Returns {@code true} if the queue was previous add-locked,
++ * {@code false} otherwise.
++ * <p>
++ * This function is MT-Safe, however it should not be used with {@link #allowAdds()}.
++ * </p>
++ * @return {@code true} if the queue was previously add-locked, {@code false} otherwise.
++ */
++ public boolean tryAllowAdds() {
++ LinkedNode<E> tail = this.getTailPlain();
++
++ for (int failures = 0;;) {
++ /* We need to find the tail given the cas on tail isn't atomic (nor volatile) in this.appendList */
++ /* Thus it is possible for an outdated tail to be set */
++ while (tail != (tail = tail.getNextAcquire())) {
++ if (tail == null) {
++ return false;
++ }
++ }
++
++ for (int i = 0; i < failures; ++i) {
++ ConcurrentUtil.backoff();
++ }
++
++ if (tail == (tail = tail.compareExchangeNextVolatile(tail, null))) {
++ return true;
++ }
++
++ if (tail == null) {
++ return false;
++ }
++ ++failures;
++ }
++ }
++
++ /**
++ * Atomically adds the specified element to this queue or allows additions to the queue. If additions
++ * are not allowed, the element is not added.
++ * <p>
++ * This function is MT-Safe.
++ * </p>
++ * @param element The specified element.
++ * @return {@code true} if the queue now allows additions, {@code false} if the element was added.
++ */
++ public boolean addOrAllowAdds(final E element) {
++ Validate.notNull(element, "Null element");
++ int failures = 0;
++
++ final LinkedNode<E> append = new LinkedNode<>(element, null);
++
++ for (LinkedNode<E> currTail = this.getTailOpaque(), curr = currTail;;) {
++ /* It has been experimentally shown that placing the read before the backoff results in significantly greater performance */
++ /* It is likely due to a cache miss caused by another write to the next field */
++ final LinkedNode<E> next = curr.getNextVolatile();
++
++ for (int i = 0; i < failures; ++i) {
++ ConcurrentUtil.backoff();
++ }
++
++ if (next == null) {
++ final LinkedNode<E> compared = curr.compareExchangeNextVolatile(null, append);
++
++ if (compared == null) {
++ /* Added */
++ /* Avoid CASing on tail more than we need to */
++ /* CAS to avoid setting an out-of-date tail */
++ if (this.getTailOpaque() == currTail) {
++ this.setTailOpaque(append);
++ }
++ return false; // we added
++ }
++
++ ++failures;
++ curr = compared;
++ continue;
++ } else if (next == curr) {
++ final LinkedNode<E> compared = curr.compareExchangeNextVolatile(curr, null);
++
++ if (compared == curr) {
++ return true; // we let additions through
++ }
++
++ ++failures;
++
++ if (compared != null) {
++ curr = compared;
++ }
++ continue;
++ }
++
++ if (curr == currTail) {
++ /* Tail is likely not up-to-date */
++ curr = next;
++ } else {
++ /* Try to update to tail */
++ if (currTail == (currTail = this.getTailOpaque())) {
++ curr = next;
++ } else {
++ curr = currTail;
++ }
++ }
++ }
++ }
++
++ /**
++ * Returns whether this queue is currently add-blocked. That is, whether {@link #add(Object)} and friends will return {@code false}.
++ */
++ public boolean isAddBlocked() {
++ for (LinkedNode<E> tail = this.getTailOpaque();;) {
++ LinkedNode<E> next = tail.getNextVolatile();
++ if (next == null) {
++ return false;
++ }
++
++ if (next == tail) {
++ return true;
++ }
++
++ tail = next;
++ }
++ }
++
++ /**
++ * Atomically removes the head from this queue if it exists, otherwise prevents additions to this queue if no
++ * head is removed.
++ * <p>
++ * This function is MT-Safe.
++ * </p>
++ * If the queue is already add-blocked and empty then no operation is performed.
++ * @return {@code null} if the queue is now add-blocked or was previously add-blocked, else returns
++ * an non-null value which was the previous head of queue.
++ */
++ public E pollOrBlockAdds() {
++ int failures = 0;
++ for (LinkedNode<E> head = this.getHeadOpaque(), curr = head;;) {
++ final E currentVal = curr.getElementVolatile();
++ final LinkedNode<E> next = curr.getNextOpaque();
++
++ if (next == curr) {
++ return null; /* Additions are already blocked */
++ }
++
++ for (int i = 0; i < failures; ++i) {
++ ConcurrentUtil.backoff();
++ }
++
++ if (currentVal != null) {
++ if (curr.getAndSetElementVolatile(null) == null) {
++ ++failures;
++ continue;
++ }
++
++ /* "CAS" to avoid setting an out-of-date head */
++ if (this.getHeadOpaque() == head) {
++ this.setHeadOpaque(next != null ? next : curr);
++ }
++
++ return currentVal;
++ }
++
++ if (next == null) {
++ /* Try to update stale head */
++ if (curr != head && this.getHeadOpaque() == head) {
++ this.setHeadOpaque(curr);
++ }
++
++ final LinkedNode<E> compared = curr.compareExchangeNextVolatile(null, curr);
++
++ if (compared != null) {
++ // failed to block additions
++ curr = compared;
++ ++failures;
++ continue;
++ }
++
++ return null; /* We blocked additions */
++ }
++
++ if (head == curr) {
++ /* head is likely not up-to-date */
++ curr = next;
++ } else {
++ /* Try to update to head */
++ if (head == (head = this.getHeadOpaque())) {
++ curr = next;
++ } else {
++ curr = head;
++ }
++ }
++ }
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean remove(final Object object) {
++ Validate.notNull(object, "Null object to remove");
++
++ for (LinkedNode<E> curr = this.getHeadOpaque();;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null) {
++ if ((element == object || element.equals(object)) && curr.getAndSetElementVolatile(null) == element) {
++ return true;
++ }
++ }
++
++ if (next == curr || next == null) {
++ break;
++ }
++ curr = next;
++ }
++
++ return false;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean removeIf(final Predicate<? super E> filter) {
++ Validate.notNull(filter, "Null filter");
++
++ boolean ret = false;
++
++ for (LinkedNode<E> curr = this.getHeadOpaque();;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null) {
++ ret |= filter.test(element) && curr.getAndSetElementVolatile(null) == element;
++ }
++
++ if (next == null || next == curr) {
++ break;
++ }
++ curr = next;
++ }
++
++ return ret;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean removeAll(final Collection<?> collection) {
++ Validate.notNull(collection, "Null collection");
++
++ boolean ret = false;
++
++ /* Volatile is required to synchronize with the write to the first element */
++ for (LinkedNode<E> curr = this.getHeadOpaque();;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null) {
++ ret |= collection.contains(element) && curr.getAndSetElementVolatile(null) == element;
++ }
++
++ if (next == null || next == curr) {
++ break;
++ }
++ curr = next;
++ }
++
++ return ret;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean retainAll(final Collection<?> collection) {
++ Validate.notNull(collection, "Null collection");
++
++ boolean ret = false;
++
++ for (LinkedNode<E> curr = this.getHeadOpaque();;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null) {
++ ret |= !collection.contains(element) && curr.getAndSetElementVolatile(null) == element;
++ }
++
++ if (next == null || next == curr) {
++ break;
++ }
++ curr = next;
++ }
++
++ return ret;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public Object[] toArray() {
++ final List<E> ret = new ArrayList<>();
++
++ for (LinkedNode<E> curr = this.getHeadOpaque();;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null) {
++ ret.add(element);
++ }
++
++ if (next == null || next == curr) {
++ break;
++ }
++ curr = next;
++ }
++
++ return ret.toArray();
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public <T> T[] toArray(final T[] array) {
++ final List<T> ret = new ArrayList<>();
++
++ for (LinkedNode<E> curr = this.getHeadOpaque();;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null) {
++ //noinspection unchecked
++ ret.add((T)element);
++ }
++
++ if (next == null || next == curr) {
++ break;
++ }
++ curr = next;
++ }
++
++ return ret.toArray(array);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public <T> T[] toArray(final IntFunction<T[]> generator) {
++ Validate.notNull(generator, "Null generator");
++
++ final List<T> ret = new ArrayList<>();
++
++ for (LinkedNode<E> curr = this.getHeadOpaque();;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null) {
++ //noinspection unchecked
++ ret.add((T)element);
++ }
++
++ if (next == null || next == curr) {
++ break;
++ }
++ curr = next;
++ }
++
++ return ret.toArray(generator);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public String toString() {
++ final StringBuilder builder = new StringBuilder();
++
++ builder.append("MultiThreadedQueue: {elements: {");
++
++ int deadEntries = 0;
++ int totalEntries = 0;
++ int aliveEntries = 0;
++
++ boolean addLocked = false;
++
++ for (LinkedNode<E> curr = this.getHeadOpaque();; ++totalEntries) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element == null) {
++ ++deadEntries;
++ } else {
++ ++aliveEntries;
++ }
++
++ if (totalEntries != 0) {
++ builder.append(", ");
++ }
++
++ builder.append(totalEntries).append(": \"").append(element).append('"');
++
++ if (next == null) {
++ break;
++ }
++ if (curr == next) {
++ addLocked = true;
++ break;
++ }
++ curr = next;
++ }
++
++ builder.append("}, total_entries: \"").append(totalEntries).append("\", alive_entries: \"").append(aliveEntries)
++ .append("\", dead_entries:").append(deadEntries).append("\", add_locked: \"").append(addLocked)
++ .append("\"}");
++
++ return builder.toString();
++ }
++
++ /**
++ * Adds all elements from the specified collection to this queue. The addition is atomic.
++ * @param collection The specified collection.
++ * @return {@code true} if all elements were added successfully, or {@code false} if this queue is add-blocked, or
++ * {@code false} if the specified collection contains no elements.
++ */
++ @Override
++ public boolean addAll(final Collection<? extends E> collection) {
++ return this.addAll((Iterable<? extends E>)collection);
++ }
++
++ /**
++ * Adds all elements from the specified iterable object to this queue. The addition is atomic.
++ * @param iterable The specified iterable object.
++ * @return {@code true} if all elements were added successfully, or {@code false} if this queue is add-blocked, or
++ * {@code false} if the specified iterable contains no elements.
++ */
++ public boolean addAll(final Iterable<? extends E> iterable) {
++ Validate.notNull(iterable, "Null iterable");
++
++ final Iterator<? extends E> elements = iterable.iterator();
++ if (!elements.hasNext()) {
++ return false;
++ }
++
++ /* Build a list of nodes to append */
++ /* This is an much faster due to the fact that zero additional synchronization is performed */
++
++ final LinkedNode<E> head = new LinkedNode<>(Validate.notNull(elements.next(), "Null element"), null);
++ LinkedNode<E> tail = head;
++
++ while (elements.hasNext()) {
++ final LinkedNode<E> next = new LinkedNode<>(Validate.notNull(elements.next(), "Null element"), null);
++ tail.setNextPlain(next);
++ tail = next;
++ }
++
++ return this.appendList(head, tail);
++ }
++
++ /**
++ * Adds all of the elements from the specified array to this queue.
++ * @param items The specified array.
++ * @return {@code true} if all elements were added successfully, or {@code false} if this queue is add-blocked, or
++ * {@code false} if the specified array has a length of 0.
++ */
++ public boolean addAll(final E[] items) {
++ return this.addAll(items, 0, items.length);
++ }
++
++ /**
++ * Adds all of the elements from the specified array to this queue.
++ * @param items The specified array.
++ * @param off The offset in the array.
++ * @param len The number of items.
++ * @return {@code true} if all elements were added successfully, or {@code false} if this queue is add-blocked, or
++ * {@code false} if the specified array has a length of 0.
++ */
++ public boolean addAll(final E[] items, final int off, final int len) {
++ Validate.notNull(items, "Items may not be null");
++ Validate.arrayBounds(off, len, items.length, "Items array indices out of bounds");
++
++ if (len == 0) {
++ return false;
++ }
++
++ final LinkedNode<E> head = new LinkedNode<>(Validate.notNull(items[off], "Null element"), null);
++ LinkedNode<E> tail = head;
++
++ for (int i = 1; i < len; ++i) {
++ final LinkedNode<E> next = new LinkedNode<>(Validate.notNull(items[off + i], "Null element"), null);
++ tail.setNextPlain(next);
++ tail = next;
++ }
++
++ return this.appendList(head, tail);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean containsAll(final Collection<?> collection) {
++ Validate.notNull(collection, "Null collection");
++
++ for (final Object element : collection) {
++ if (!this.contains(element)) {
++ return false;
++ }
++ }
++ return false;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public Iterator<E> iterator() {
++ return new LinkedIterator<>(this.getHeadOpaque());
++ }
++
++ /**
++ * {@inheritDoc}
++ * <p>
++ * Note that this function is computed non-atomically and in O(n) time. The value returned may not be representative of
++ * the queue in its current state.
++ * </p>
++ */
++ @Override
++ public int size() {
++ int size = 0;
++
++ /* Volatile is required to synchronize with the write to the first element */
++ for (LinkedNode<E> curr = this.getHeadOpaque();;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null) {
++ ++size;
++ }
++
++ if (next == null || next == curr) {
++ break;
++ }
++ curr = next;
++ }
++
++ return size;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean isEmpty() {
++ return this.peek() == null;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean contains(final Object object) {
++ Validate.notNull(object, "Null object");
++
++ for (LinkedNode<E> curr = this.getHeadOpaque();;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null && (element == object || element.equals(object))) {
++ return true;
++ }
++
++ if (next == null || next == curr) {
++ break;
++ }
++ curr = next;
++ }
++
++ return false;
++ }
++
++ /**
++ * Finds the first element in this queue that matches the predicate.
++ * @param predicate The predicate to test elements against.
++ * @return The first element that matched the predicate, {@code null} if none matched.
++ */
++ public E find(final Predicate<E> predicate) {
++ Validate.notNull(predicate, "Null predicate");
++
++ for (LinkedNode<E> curr = this.getHeadOpaque();;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null && predicate.test(element)) {
++ return element;
++ }
++
++ if (next == null || next == curr) {
++ break;
++ }
++ curr = next;
++ }
++
++ return null;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public void forEach(final Consumer<? super E> action) {
++ Validate.notNull(action, "Null action");
++
++ for (LinkedNode<E> curr = this.getHeadOpaque();;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E element = curr.getElementPlain(); /* Likely in sync */
++
++ if (element != null) {
++ action.accept(element);
++ }
++
++ if (next == null || next == curr) {
++ break;
++ }
++ curr = next;
++ }
++ }
++
++ // return true if normal addition, false if the queue previously disallowed additions
++ protected final boolean forceAppendList(final LinkedNode<E> head, final LinkedNode<E> tail) {
++ int failures = 0;
++
++ for (LinkedNode<E> currTail = this.getTailOpaque(), curr = currTail;;) {
++ /* It has been experimentally shown that placing the read before the backoff results in significantly greater performance */
++ /* It is likely due to a cache miss caused by another write to the next field */
++ final LinkedNode<E> next = curr.getNextVolatile();
++
++ for (int i = 0; i < failures; ++i) {
++ ConcurrentUtil.backoff();
++ }
++
++ if (next == null || next == curr) {
++ final LinkedNode<E> compared = curr.compareExchangeNextVolatile(next, head);
++
++ if (compared == next) {
++ /* Added */
++ /* Avoid CASing on tail more than we need to */
++ /* "CAS" to avoid setting an out-of-date tail */
++ if (this.getTailOpaque() == currTail) {
++ this.setTailOpaque(tail);
++ }
++ return next != curr;
++ }
++
++ ++failures;
++ curr = compared;
++ continue;
++ }
++
++ if (curr == currTail) {
++ /* Tail is likely not up-to-date */
++ curr = next;
++ } else {
++ /* Try to update to tail */
++ if (currTail == (currTail = this.getTailOpaque())) {
++ curr = next;
++ } else {
++ curr = currTail;
++ }
++ }
++ }
++ }
++
++ // return true if successful, false otherwise
++ protected final boolean appendList(final LinkedNode<E> head, final LinkedNode<E> tail) {
++ int failures = 0;
++
++ for (LinkedNode<E> currTail = this.getTailOpaque(), curr = currTail;;) {
++ /* It has been experimentally shown that placing the read before the backoff results in significantly greater performance */
++ /* It is likely due to a cache miss caused by another write to the next field */
++ final LinkedNode<E> next = curr.getNextVolatile();
++
++ if (next == curr) {
++ /* Additions are stopped */
++ return false;
++ }
++
++ for (int i = 0; i < failures; ++i) {
++ ConcurrentUtil.backoff();
++ }
++
++ if (next == null) {
++ final LinkedNode<E> compared = curr.compareExchangeNextVolatile(null, head);
++
++ if (compared == null) {
++ /* Added */
++ /* Avoid CASing on tail more than we need to */
++ /* CAS to avoid setting an out-of-date tail */
++ if (this.getTailOpaque() == currTail) {
++ this.setTailOpaque(tail);
++ }
++ return true;
++ }
++
++ ++failures;
++ curr = compared;
++ continue;
++ }
++
++ if (curr == currTail) {
++ /* Tail is likely not up-to-date */
++ curr = next;
++ } else {
++ /* Try to update to tail */
++ if (currTail == (currTail = this.getTailOpaque())) {
++ curr = next;
++ } else {
++ curr = currTail;
++ }
++ }
++ }
++ }
++
++ protected final E removeHead(final Predicate<E> predicate) {
++ int failures = 0;
++ for (LinkedNode<E> head = this.getHeadOpaque(), curr = head;;) {
++ // volatile here synchronizes-with writes to element
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E currentVal = curr.getElementPlain();
++
++ for (int i = 0; i < failures; ++i) {
++ ConcurrentUtil.backoff();
++ }
++
++ if (currentVal != null) {
++ if (!predicate.test(currentVal)) {
++ /* Try to update stale head */
++ if (curr != head && this.getHeadOpaque() == head) {
++ this.setHeadOpaque(curr);
++ }
++ return null;
++ }
++ if (curr.getAndSetElementVolatile(null) == null) {
++ /* Failed to get head */
++ if (curr == (curr = next) || next == null) {
++ return null;
++ }
++ ++failures;
++ continue;
++ }
++
++ /* "CAS" to avoid setting an out-of-date head */
++ if (this.getHeadOpaque() == head) {
++ this.setHeadOpaque(next != null ? next : curr);
++ }
++
++ return currentVal;
++ }
++
++ if (curr == next || next == null) {
++ /* Try to update stale head */
++ if (curr != head && this.getHeadOpaque() == head) {
++ this.setHeadOpaque(curr);
++ }
++ return null; /* End of queue */
++ }
++
++ if (head == curr) {
++ /* head is likely not up-to-date */
++ curr = next;
++ } else {
++ /* Try to update to head */
++ if (head == (head = this.getHeadOpaque())) {
++ curr = next;
++ } else {
++ curr = head;
++ }
++ }
++ }
++ }
++
++ protected final E removeHead() {
++ int failures = 0;
++ for (LinkedNode<E> head = this.getHeadOpaque(), curr = head;;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++ final E currentVal = curr.getElementPlain();
++
++ for (int i = 0; i < failures; ++i) {
++ ConcurrentUtil.backoff();
++ }
++
++ if (currentVal != null) {
++ if (curr.getAndSetElementVolatile(null) == null) {
++ /* Failed to get head */
++ if (curr == (curr = next) || next == null) {
++ return null;
++ }
++ ++failures;
++ continue;
++ }
++
++ /* "CAS" to avoid setting an out-of-date head */
++ if (this.getHeadOpaque() == head) {
++ this.setHeadOpaque(next != null ? next : curr);
++ }
++
++ return currentVal;
++ }
++
++ if (curr == next || next == null) {
++ /* Try to update stale head */
++ if (curr != head && this.getHeadOpaque() == head) {
++ this.setHeadOpaque(curr);
++ }
++ return null; /* End of queue */
++ }
++
++ if (head == curr) {
++ /* head is likely not up-to-date */
++ curr = next;
++ } else {
++ /* Try to update to head */
++ if (head == (head = this.getHeadOpaque())) {
++ curr = next;
++ } else {
++ curr = head;
++ }
++ }
++ }
++ }
++
++ /**
++ * Empties the queue into the specified consumer. This function is optimized for single-threaded reads, and should
++ * be faster than a loop on {@link #poll()}.
++ * <p>
++ * This function is not MT-Safe. This function cannot be called with other read operations ({@link #peek()}, {@link #poll()},
++ * {@link #clear()}, etc).
++ * Write operations are safe to be called concurrently.
++ * </p>
++ * @param consumer The consumer to accept the elements.
++ * @return The total number of elements drained.
++ */
++ public int drain(final Consumer<E> consumer) {
++ return this.drain(consumer, false, ConcurrentUtil::rethrow);
++ }
++
++ /**
++ * Empties the queue into the specified consumer. This function is optimized for single-threaded reads, and should
++ * be faster than a loop on {@link #poll()}.
++ * <p>
++ * If {@code preventAdds} is {@code true}, then after this function returns the queue is guaranteed to be empty and
++ * additions to the queue will fail.
++ * </p>
++ * <p>
++ * This function is not MT-Safe. This function cannot be called with other read operations ({@link #peek()}, {@link #poll()},
++ * {@link #clear()}, etc).
++ * Write operations are safe to be called concurrently.
++ * </p>
++ * @param consumer The consumer to accept the elements.
++ * @param preventAdds Whether to prevent additions to this queue after draining.
++ * @return The total number of elements drained.
++ */
++ public int drain(final Consumer<E> consumer, final boolean preventAdds) {
++ return this.drain(consumer, preventAdds, ConcurrentUtil::rethrow);
++ }
++
++ /**
++ * Empties the queue into the specified consumer. This function is optimized for single-threaded reads, and should
++ * be faster than a loop on {@link #poll()}.
++ * <p>
++ * If {@code preventAdds} is {@code true}, then after this function returns the queue is guaranteed to be empty and
++ * additions to the queue will fail.
++ * </p>
++ * <p>
++ * This function is not MT-Safe. This function cannot be called with other read operations ({@link #peek()}, {@link #poll()},
++ * {@link #clear()}, {@link #remove(Object)} etc).
++ * Only write operations are safe to be called concurrently.
++ * </p>
++ * @param consumer The consumer to accept the elements.
++ * @param preventAdds Whether to prevent additions to this queue after draining.
++ * @param exceptionHandler Invoked when the consumer raises an exception.
++ * @return The total number of elements drained.
++ */
++ public int drain(final Consumer<E> consumer, final boolean preventAdds, final Consumer<Throwable> exceptionHandler) {
++ Validate.notNull(consumer, "Null consumer");
++ Validate.notNull(exceptionHandler, "Null exception handler");
++
++ /* This function assumes proper synchronization is made to ensure drain and no other read function are called concurrently */
++ /* This allows plain write usages instead of opaque or higher */
++ int total = 0;
++
++ final LinkedNode<E> head = this.getHeadAcquire(); /* Required to synchronize with the write to the first element field */
++ LinkedNode<E> curr = head;
++
++ for (;;) {
++ /* Volatile acquires with the write to the element field */
++ final E currentVal = curr.getElementPlain();
++ LinkedNode<E> next = curr.getNextVolatile();
++
++ if (next == curr) {
++ /* Add-locked nodes always have a null value */
++ break;
++ }
++
++ if (currentVal == null) {
++ if (next == null) {
++ if (preventAdds && (next = curr.compareExchangeNextVolatile(null, curr)) != null) {
++ // failed to prevent adds, continue
++ curr = next;
++ continue;
++ } else {
++ // we're done here
++ break;
++ }
++ }
++ curr = next;
++ continue;
++ }
++
++ try {
++ consumer.accept(currentVal);
++ } catch (final Exception ex) {
++ this.setHeadOpaque(next != null ? next : curr); /* Avoid perf penalty (of reiterating) if the exception handler decides to re-throw */
++ curr.setElementOpaque(null); /* set here, we might re-throw */
++
++ exceptionHandler.accept(ex);
++ }
++
++ curr.setElementOpaque(null);
++
++ ++total;
++
++ if (next == null) {
++ if (preventAdds && (next = curr.compareExchangeNextVolatile(null, curr)) != null) {
++ /* Retry with next value */
++ curr = next;
++ continue;
++ }
++ break;
++ }
++
++ curr = next;
++ }
++ if (curr != head) {
++ this.setHeadOpaque(curr); /* While this may be a plain write, eventually publish it for methods such as find. */
++ }
++ return total;
++ }
++
++ @Override
++ public Spliterator<E> spliterator() { // TODO implement
++ return Spliterators.spliterator(this, Spliterator.CONCURRENT |
++ Spliterator.NONNULL | Spliterator.ORDERED);
++ }
++
++ protected static final class LinkedNode<E> {
++
++ protected volatile Object element;
++ protected volatile LinkedNode<E> next;
++
++ protected static final VarHandle ELEMENT_HANDLE = ConcurrentUtil.getVarHandle(LinkedNode.class, "element", Object.class);
++ protected static final VarHandle NEXT_HANDLE = ConcurrentUtil.getVarHandle(LinkedNode.class, "next", LinkedNode.class);
++
++ protected LinkedNode(final Object element, final LinkedNode<E> next) {
++ ELEMENT_HANDLE.set(this, element);
++ NEXT_HANDLE.set(this, next);
++ }
++
++ /* element */
++
++ @SuppressWarnings("unchecked")
++ protected final E getElementPlain() {
++ return (E)ELEMENT_HANDLE.get(this);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final E getElementVolatile() {
++ return (E)ELEMENT_HANDLE.getVolatile(this);
++ }
++
++ protected final void setElementPlain(final E update) {
++ ELEMENT_HANDLE.set(this, (Object)update);
++ }
++
++ protected final void setElementOpaque(final E update) {
++ ELEMENT_HANDLE.setOpaque(this, (Object)update);
++ }
++
++ protected final void setElementVolatile(final E update) {
++ ELEMENT_HANDLE.setVolatile(this, (Object)update);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final E getAndSetElementVolatile(final E update) {
++ return (E)ELEMENT_HANDLE.getAndSet(this, update);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final E compareExchangeElementVolatile(final E expect, final E update) {
++ return (E)ELEMENT_HANDLE.compareAndExchange(this, expect, update);
++ }
++
++ /* next */
++
++ @SuppressWarnings("unchecked")
++ protected final LinkedNode<E> getNextPlain() {
++ return (LinkedNode<E>)NEXT_HANDLE.get(this);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final LinkedNode<E> getNextOpaque() {
++ return (LinkedNode<E>)NEXT_HANDLE.getOpaque(this);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final LinkedNode<E> getNextAcquire() {
++ return (LinkedNode<E>)NEXT_HANDLE.getAcquire(this);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final LinkedNode<E> getNextVolatile() {
++ return (LinkedNode<E>)NEXT_HANDLE.getVolatile(this);
++ }
++
++ protected final void setNextPlain(final LinkedNode<E> next) {
++ NEXT_HANDLE.set(this, next);
++ }
++
++ protected final void setNextVolatile(final LinkedNode<E> next) {
++ NEXT_HANDLE.setVolatile(this, next);
++ }
++
++ @SuppressWarnings("unchecked")
++ protected final LinkedNode<E> compareExchangeNextVolatile(final LinkedNode<E> expect, final LinkedNode<E> set) {
++ return (LinkedNode<E>)NEXT_HANDLE.compareAndExchange(this, expect, set);
++ }
++ }
++
++ protected static final class LinkedIterator<E> implements Iterator<E> {
++
++ protected LinkedNode<E> curr; /* last returned by next() */
++ protected LinkedNode<E> next; /* next to return from next() */
++ protected E nextElement; /* cached to avoid a race condition with removing or polling */
++
++ protected LinkedIterator(final LinkedNode<E> start) {
++ /* setup nextElement and next */
++ for (LinkedNode<E> curr = start;;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++
++ final E element = curr.getElementPlain();
++
++ if (element != null) {
++ this.nextElement = element;
++ this.next = curr;
++ break;
++ }
++
++ if (next == null || next == curr) {
++ break;
++ }
++ curr = next;
++ }
++ }
++
++ protected final void findNext() {
++ /* only called if this.nextElement != null, which means this.next != null */
++ for (LinkedNode<E> curr = this.next;;) {
++ final LinkedNode<E> next = curr.getNextVolatile();
++
++ if (next == null || next == curr) {
++ break;
++ }
++
++ final E element = next.getElementPlain();
++
++ if (element != null) {
++ this.nextElement = element;
++ this.curr = this.next; /* this.next will be the value returned from next(), set this.curr for remove() */
++ this.next = next;
++ return;
++ }
++ curr = next;
++ }
++
++ /* out of nodes to iterate */
++ /* keep curr for remove() calls */
++ this.next = null;
++ this.nextElement = null;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean hasNext() {
++ return this.nextElement != null;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public E next() {
++ final E element = this.nextElement;
++
++ if (element == null) {
++ throw new NoSuchElementException();
++ }
++
++ this.findNext();
++
++ return element;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public void remove() {
++ if (this.curr == null) {
++ throw new IllegalStateException();
++ }
++
++ this.curr.setElementVolatile(null);
++ this.curr = null;
++ }
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/completable/CallbackCompletable.java b/src/main/java/ca/spottedleaf/concurrentutil/completable/CallbackCompletable.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..6bad6f8ecc0944d2f406924c7de7e227ff1e70fa
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/completable/CallbackCompletable.java
+@@ -0,0 +1,110 @@
++package ca.spottedleaf.concurrentutil.completable;
++
++import ca.spottedleaf.concurrentutil.collection.MultiThreadedQueue;
++import ca.spottedleaf.concurrentutil.executor.Cancellable;
++import ca.spottedleaf.concurrentutil.util.ConcurrentUtil;
++import org.slf4j.Logger;
++import org.slf4j.LoggerFactory;
++import java.util.function.BiConsumer;
++
++public final class CallbackCompletable<T> {
++
++ private static final Logger LOGGER = LoggerFactory.getLogger(CallbackCompletable.class);
++
++ private final MultiThreadedQueue<BiConsumer<T, Throwable>> waiters = new MultiThreadedQueue<>();
++ private T result;
++ private Throwable throwable;
++ private volatile boolean completed;
++
++ public boolean isCompleted() {
++ return this.completed;
++ }
++
++ /**
++ * Note: Can only use after calling {@link #addAsynchronousWaiter(BiConsumer)}, as this function performs zero
++ * synchronisation
++ */
++ public T getResult() {
++ return this.result;
++ }
++
++ /**
++ * Note: Can only use after calling {@link #addAsynchronousWaiter(BiConsumer)}, as this function performs zero
++ * synchronisation
++ */
++ public Throwable getThrowable() {
++ return this.throwable;
++ }
++
++ /**
++ * Adds a waiter that should only be completed asynchronously by the complete() calls. If complete()
++ * has already been called, returns {@code null} and does not invoke the specified consumer.
++ * @param consumer Consumer to be executed on completion
++ * @throws NullPointerException If consumer is null
++ * @return A cancellable which will control the execution of the specified consumer
++ */
++ public Cancellable addAsynchronousWaiter(final BiConsumer<T, Throwable> consumer) {
++ if (this.waiters.add(consumer)) {
++ return new CancellableImpl(consumer);
++ }
++ return null;
++ }
++
++ private void completeAllWaiters(final T result, final Throwable throwable) {
++ this.completed = true;
++ BiConsumer<T, Throwable> waiter;
++ while ((waiter = this.waiters.pollOrBlockAdds()) != null) {
++ this.completeWaiter(waiter, result, throwable);
++ }
++ }
++
++ private void completeWaiter(final BiConsumer<T, Throwable> consumer, final T result, final Throwable throwable) {
++ try {
++ consumer.accept(result, throwable);
++ } catch (final Throwable throwable2) {
++ LOGGER.error("Failed to complete callback " + ConcurrentUtil.genericToString(consumer), throwable2);
++ }
++ }
++
++ /**
++ * Adds a waiter that will be completed asynchronously by the complete() calls. If complete()
++ * has already been called, then invokes the consumer synchronously with the completed result.
++ * @param consumer Consumer to be executed on completion
++ * @throws NullPointerException If consumer is null
++ * @return A cancellable which will control the execution of the specified consumer
++ */
++ public Cancellable addWaiter(final BiConsumer<T, Throwable> consumer) {
++ if (this.waiters.add(consumer)) {
++ return new CancellableImpl(consumer);
++ }
++ this.completeWaiter(consumer, this.result, this.throwable);
++ return new CancellableImpl(consumer);
++ }
++
++ public void complete(final T result) {
++ this.result = result;
++ this.completeAllWaiters(result, null);
++ }
++
++ public void completeWithThrowable(final Throwable throwable) {
++ if (throwable == null) {
++ throw new NullPointerException("Throwable cannot be null");
++ }
++ this.throwable = throwable;
++ this.completeAllWaiters(null, throwable);
++ }
++
++ private final class CancellableImpl implements Cancellable {
++
++ private final BiConsumer<T, Throwable> waiter;
++
++ private CancellableImpl(final BiConsumer<T, Throwable> waiter) {
++ this.waiter = waiter;
++ }
++
++ @Override
++ public boolean cancel() {
++ return CallbackCompletable.this.waiters.remove(this.waiter);
++ }
++ }
++}
+\ No newline at end of file
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/completable/Completable.java b/src/main/java/ca/spottedleaf/concurrentutil/completable/Completable.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..365616439fa079017d648ed7f6ddf6950a691adf
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/completable/Completable.java
+@@ -0,0 +1,737 @@
++package ca.spottedleaf.concurrentutil.completable;
++
++import ca.spottedleaf.concurrentutil.util.ConcurrentUtil;
++import ca.spottedleaf.concurrentutil.util.Validate;
++import org.slf4j.Logger;
++import org.slf4j.LoggerFactory;
++import java.lang.invoke.VarHandle;
++import java.util.concurrent.CompletableFuture;
++import java.util.concurrent.CompletionException;
++import java.util.concurrent.CompletionStage;
++import java.util.concurrent.Executor;
++import java.util.concurrent.ForkJoinPool;
++import java.util.concurrent.locks.LockSupport;
++import java.util.function.BiConsumer;
++import java.util.function.BiFunction;
++import java.util.function.Consumer;
++import java.util.function.Function;
++import java.util.function.Supplier;
++
++public final class Completable<T> {
++
++ private static final Logger LOGGER = LoggerFactory.getLogger(Completable.class);
++ private static final Function<? super Throwable, ? extends Throwable> DEFAULT_EXCEPTION_HANDLER = (final Throwable thr) -> {
++ LOGGER.error("Unhandled exception during Completable operation", thr);
++ return thr;
++ };
++
++ public static Executor getDefaultExecutor() {
++ return ForkJoinPool.commonPool();
++ }
++
++ private static final Transform<?, ?> COMPLETED_STACK = new Transform<>(null, null, null, null) {
++ @Override
++ public void run() {}
++ };
++ private volatile Transform<?, T> completeStack;
++ private static final VarHandle COMPLETE_STACK_HANDLE = ConcurrentUtil.getVarHandle(Completable.class, "completeStack", Transform.class);
++
++ private static final Object NULL_MASK = new Object();
++ private volatile Object result;
++ private static final VarHandle RESULT_HANDLE = ConcurrentUtil.getVarHandle(Completable.class, "result", Object.class);
++
++ private Object getResultPlain() {
++ return (Object)RESULT_HANDLE.get(this);
++ }
++
++ private Object getResultVolatile() {
++ return (Object)RESULT_HANDLE.getVolatile(this);
++ }
++
++ private void pushStackOrRun(final Transform<?, T> push) {
++ int failures = 0;
++ for (Transform<?, T> curr = (Transform<?, T>)COMPLETE_STACK_HANDLE.getVolatile(this);;) {
++ if (curr == COMPLETED_STACK) {
++ push.execute();
++ return;
++ }
++
++ push.next = curr;
++
++ for (int i = 0; i < failures; ++i) {
++ ConcurrentUtil.backoff();
++ }
++
++ if (curr == (curr = (Transform<?, T>)COMPLETE_STACK_HANDLE.compareAndExchange(this, curr, push))) {
++ return;
++ }
++ push.next = null;
++ ++failures;
++ }
++ }
++
++ private void propagateStack() {
++ Transform<?, T> topStack = (Transform<?, T>)COMPLETE_STACK_HANDLE.getAndSet(this, COMPLETED_STACK);
++ while (topStack != null) {
++ topStack.execute();
++ topStack = topStack.next;
++ }
++ }
++
++ private static Object maskNull(final Object res) {
++ return res == null ? NULL_MASK : res;
++ }
++
++ private static Object unmaskNull(final Object res) {
++ return res == NULL_MASK ? null : res;
++ }
++
++ private static Executor checkExecutor(final Executor executor) {
++ return Validate.notNull(executor, "Executor may not be null");
++ }
++
++ public Completable() {}
++
++ private Completable(final Object complete) {
++ COMPLETE_STACK_HANDLE.set(this, COMPLETED_STACK);
++ RESULT_HANDLE.setRelease(this, complete);
++ }
++
++ public static <T> Completable<T> completed(final T value) {
++ return new Completable<>(maskNull(value));
++ }
++
++ public static <T> Completable<T> failed(final Throwable ex) {
++ Validate.notNull(ex, "Exception may not be null");
++
++ return new Completable<>(new ExceptionResult(ex));
++ }
++
++ public static <T> Completable<T> supplied(final Supplier<T> supplier) {
++ return supplied(supplier, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public static <T> Completable<T> supplied(final Supplier<T> supplier, final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ try {
++ return completed(supplier.get());
++ } catch (final Throwable throwable) {
++ Throwable complete;
++ try {
++ complete = exceptionHandler.apply(throwable);
++ } catch (final Throwable thr2) {
++ throwable.addSuppressed(thr2);
++ complete = throwable;
++ }
++ return failed(complete);
++ }
++ }
++
++ public static <T> Completable<T> suppliedAsync(final Supplier<T> supplier, final Executor executor) {
++ return suppliedAsync(supplier, executor, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public static <T> Completable<T> suppliedAsync(final Supplier<T> supplier, final Executor executor, final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ final Completable<T> ret = new Completable<>();
++
++ class AsyncSuppliedCompletable implements Runnable, CompletableFuture.AsynchronousCompletionTask {
++ @Override
++ public void run() {
++ try {
++ ret.complete(supplier.get());
++ } catch (final Throwable throwable) {
++ Throwable complete;
++ try {
++ complete = exceptionHandler.apply(throwable);
++ } catch (final Throwable thr2) {
++ throwable.addSuppressed(thr2);
++ complete = throwable;
++ }
++ ret.completeExceptionally(complete);
++ }
++ }
++ }
++
++ try {
++ executor.execute(new AsyncSuppliedCompletable());
++ } catch (final Throwable throwable) {
++ Throwable complete;
++ try {
++ complete = exceptionHandler.apply(throwable);
++ } catch (final Throwable thr2) {
++ throwable.addSuppressed(thr2);
++ complete = throwable;
++ }
++ ret.completeExceptionally(complete);
++ }
++
++ return ret;
++ }
++
++ private boolean completeRaw(final Object value) {
++ if ((Object)RESULT_HANDLE.getVolatile(this) != null || !(boolean)RESULT_HANDLE.compareAndSet(this, (Object)null, value)) {
++ return false;
++ }
++
++ this.propagateStack();
++ return true;
++ }
++
++ public boolean complete(final T result) {
++ return this.completeRaw(maskNull(result));
++ }
++
++ public boolean completeExceptionally(final Throwable exception) {
++ Validate.notNull(exception, "Exception may not be null");
++
++ return this.completeRaw(new ExceptionResult(exception));
++ }
++
++ public boolean isDone() {
++ return this.getResultVolatile() != null;
++ }
++
++ public boolean isNormallyComplete() {
++ return this.getResultVolatile() != null && !(this.getResultVolatile() instanceof ExceptionResult);
++ }
++
++ public boolean isExceptionallyComplete() {
++ return this.getResultVolatile() instanceof ExceptionResult;
++ }
++
++ public Throwable getException() {
++ final Object res = this.getResultVolatile();
++ if (res == null) {
++ return null;
++ }
++
++ if (!(res instanceof ExceptionResult exRes)) {
++ throw new IllegalStateException("Not completed exceptionally");
++ }
++
++ return exRes.ex;
++ }
++
++ public T getNow(final T dfl) throws CompletionException {
++ final Object res = this.getResultVolatile();
++ if (res == null) {
++ return dfl;
++ }
++
++ if (res instanceof ExceptionResult exRes) {
++ throw new CompletionException(exRes.ex);
++ }
++
++ return (T)unmaskNull(res);
++ }
++
++ public T join() throws CompletionException {
++ if (this.isDone()) {
++ return this.getNow(null);
++ }
++
++ final UnparkTransform<T> unparkTransform = new UnparkTransform<>(this, Thread.currentThread());
++
++ this.pushStackOrRun(unparkTransform);
++
++ boolean interuptted = false;
++ while (!unparkTransform.isReleasable()) {
++ try {
++ ForkJoinPool.managedBlock(unparkTransform);
++ } catch (final InterruptedException ex) {
++ interuptted = true;
++ }
++ }
++
++ if (interuptted) {
++ Thread.currentThread().interrupt();
++ }
++
++ return this.getNow(null);
++ }
++
++ public CompletableFuture<T> toFuture() {
++ final Object rawResult = this.getResultVolatile();
++ if (rawResult != null) {
++ if (rawResult instanceof ExceptionResult exRes) {
++ return CompletableFuture.failedFuture(exRes.ex);
++ } else {
++ return CompletableFuture.completedFuture((T)unmaskNull(rawResult));
++ }
++ }
++
++ final CompletableFuture<T> ret = new CompletableFuture<>();
++
++ class ToFuture implements BiConsumer<T, Throwable> {
++
++ @Override
++ public void accept(final T res, final Throwable ex) {
++ if (ex != null) {
++ ret.completeExceptionally(ex);
++ } else {
++ ret.complete(res);
++ }
++ }
++ }
++
++ this.whenComplete(new ToFuture());
++
++ return ret;
++ }
++
++ public static <T> Completable<T> fromFuture(final CompletionStage<T> stage) {
++ final Completable<T> ret = new Completable<>();
++
++ class FromFuture implements BiConsumer<T, Throwable> {
++ @Override
++ public void accept(final T res, final Throwable ex) {
++ if (ex != null) {
++ ret.completeExceptionally(ex);
++ } else {
++ ret.complete(res);
++ }
++ }
++ }
++
++ stage.whenComplete(new FromFuture());
++
++ return ret;
++ }
++
++
++ public <U> Completable<U> thenApply(final Function<? super T, ? extends U> function) {
++ return this.thenApply(function, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public <U> Completable<U> thenApply(final Function<? super T, ? extends U> function, final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(function, "Function may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<U> ret = new Completable<>();
++ this.pushStackOrRun(new ApplyTransform<>(null, this, ret, exceptionHandler, function));
++ return ret;
++ }
++
++ public <U> Completable<U> thenApplyAsync(final Function<? super T, ? extends U> function) {
++ return this.thenApplyAsync(function, getDefaultExecutor(), DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public <U> Completable<U> thenApplyAsync(final Function<? super T, ? extends U> function, final Executor executor) {
++ return this.thenApplyAsync(function, executor, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public <U> Completable<U> thenApplyAsync(final Function<? super T, ? extends U> function, final Executor executor, final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(function, "Function may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<U> ret = new Completable<>();
++ this.pushStackOrRun(new ApplyTransform<>(checkExecutor(executor), this, ret, exceptionHandler, function));
++ return ret;
++ }
++
++
++ public Completable<Void> thenAccept(final Consumer<? super T> consumer) {
++ return this.thenAccept(consumer, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<Void> thenAccept(final Consumer<? super T> consumer, final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(consumer, "Consumer may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<Void> ret = new Completable<>();
++ this.pushStackOrRun(new AcceptTransform<>(null, this, ret, exceptionHandler, consumer));
++ return ret;
++ }
++
++ public Completable<Void> thenAcceptAsync(final Consumer<? super T> consumer) {
++ return this.thenAcceptAsync(consumer, getDefaultExecutor(), DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<Void> thenAcceptAsync(final Consumer<? super T> consumer, final Executor executor) {
++ return this.thenAcceptAsync(consumer, executor, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<Void> thenAcceptAsync(final Consumer<? super T> consumer, final Executor executor, final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(consumer, "Consumer may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<Void> ret = new Completable<>();
++ this.pushStackOrRun(new AcceptTransform<>(checkExecutor(executor), this, ret, exceptionHandler, consumer));
++ return ret;
++ }
++
++
++ public Completable<Void> thenRun(final Runnable run) {
++ return this.thenRun(run, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<Void> thenRun(final Runnable run, final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(run, "Run may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<Void> ret = new Completable<>();
++ this.pushStackOrRun(new RunTransform<>(null, this, ret, exceptionHandler, run));
++ return ret;
++ }
++
++ public Completable<Void> thenRunAsync(final Runnable run) {
++ return this.thenRunAsync(run, getDefaultExecutor(), DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<Void> thenRunAsync(final Runnable run, final Executor executor) {
++ return this.thenRunAsync(run, executor, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<Void> thenRunAsync(final Runnable run, final Executor executor, final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(run, "Run may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<Void> ret = new Completable<>();
++ this.pushStackOrRun(new RunTransform<>(checkExecutor(executor), this, ret, exceptionHandler, run));
++ return ret;
++ }
++
++
++ public <U> Completable<U> handle(final BiFunction<? super T, ? super Throwable, ? extends U> function) {
++ return this.handle(function, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public <U> Completable<U> handle(final BiFunction<? super T, ? super Throwable, ? extends U> function,
++ final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(function, "Function may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<U> ret = new Completable<>();
++ this.pushStackOrRun(new HandleTransform<>(null, this, ret, exceptionHandler, function));
++ return ret;
++ }
++
++ public <U> Completable<U> handleAsync(final BiFunction<? super T, ? super Throwable, ? extends U> function) {
++ return this.handleAsync(function, getDefaultExecutor(), DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public <U> Completable<U> handleAsync(final BiFunction<? super T, ? super Throwable, ? extends U> function,
++ final Executor executor) {
++ return this.handleAsync(function, executor, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public <U> Completable<U> handleAsync(final BiFunction<? super T, ? super Throwable, ? extends U> function,
++ final Executor executor,
++ final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(function, "Function may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<U> ret = new Completable<>();
++ this.pushStackOrRun(new HandleTransform<>(checkExecutor(executor), this, ret, exceptionHandler, function));
++ return ret;
++ }
++
++
++ public Completable<T> whenComplete(final BiConsumer<? super T, ? super Throwable> consumer) {
++ return this.whenComplete(consumer, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<T> whenComplete(final BiConsumer<? super T, ? super Throwable> consumer, final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(consumer, "Consumer may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<T> ret = new Completable<>();
++ this.pushStackOrRun(new WhenTransform<>(null, this, ret, exceptionHandler, consumer));
++ return ret;
++ }
++
++ public Completable<T> whenCompleteAsync(final BiConsumer<? super T, ? super Throwable> consumer) {
++ return this.whenCompleteAsync(consumer, getDefaultExecutor(), DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<T> whenCompleteAsync(final BiConsumer<? super T, ? super Throwable> consumer, final Executor executor) {
++ return this.whenCompleteAsync(consumer, executor, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<T> whenCompleteAsync(final BiConsumer<? super T, ? super Throwable> consumer, final Executor executor,
++ final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(consumer, "Consumer may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<T> ret = new Completable<>();
++ this.pushStackOrRun(new WhenTransform<>(checkExecutor(executor), this, ret, exceptionHandler, consumer));
++ return ret;
++ }
++
++
++ public Completable<T> exceptionally(final Function<Throwable, ? extends T> function) {
++ return this.exceptionally(function, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<T> exceptionally(final Function<Throwable, ? extends T> function, final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(function, "Function may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<T> ret = new Completable<>();
++ this.pushStackOrRun(new ExceptionallyTransform<>(null, this, ret, exceptionHandler, function));
++ return ret;
++ }
++
++ public Completable<T> exceptionallyAsync(final Function<Throwable, ? extends T> function) {
++ return this.exceptionallyAsync(function, getDefaultExecutor(), DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<T> exceptionallyAsync(final Function<Throwable, ? extends T> function, final Executor executor) {
++ return this.exceptionallyAsync(function, executor, DEFAULT_EXCEPTION_HANDLER);
++ }
++
++ public Completable<T> exceptionallyAsync(final Function<Throwable, ? extends T> function, final Executor executor,
++ final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ Validate.notNull(function, "Function may not be null");
++ Validate.notNull(exceptionHandler, "Exception handler may not be null");
++
++ final Completable<T> ret = new Completable<>();
++ this.pushStackOrRun(new ExceptionallyTransform<>(checkExecutor(executor), this, ret, exceptionHandler, function));
++ return ret;
++ }
++
++ private static final class ExceptionResult {
++ public final Throwable ex;
++
++ public ExceptionResult(final Throwable ex) {
++ this.ex = ex;
++ }
++ }
++
++ private static abstract class Transform<U, T> implements Runnable, CompletableFuture.AsynchronousCompletionTask {
++
++ private Transform<?, T> next;
++
++ private final Executor executor;
++ protected final Completable<T> from;
++ protected final Completable<U> to;
++ protected final Function<? super Throwable, ? extends Throwable> exceptionHandler;
++
++ protected Transform(final Executor executor, final Completable<T> from, final Completable<U> to,
++ final Function<? super Throwable, ? extends Throwable> exceptionHandler) {
++ this.executor = executor;
++ this.from = from;
++ this.to = to;
++ this.exceptionHandler = exceptionHandler;
++ }
++
++ // force interface call to become virtual call
++ @Override
++ public abstract void run();
++
++ protected void failed(final Throwable throwable) {
++ Throwable complete;
++ try {
++ complete = this.exceptionHandler.apply(throwable);
++ } catch (final Throwable thr2) {
++ throwable.addSuppressed(thr2);
++ complete = throwable;
++ }
++ this.to.completeExceptionally(complete);
++ }
++
++ public void execute() {
++ if (this.executor == null) {
++ this.run();
++ return;
++ }
++
++ try {
++ this.executor.execute(this);
++ } catch (final Throwable throwable) {
++ this.failed(throwable);
++ }
++ }
++ }
++
++ private static final class ApplyTransform<U, T> extends Transform<U, T> {
++
++ private final Function<? super T, ? extends U> function;
++
++ public ApplyTransform(final Executor executor, final Completable<T> from, final Completable<U> to,
++ final Function<? super Throwable, ? extends Throwable> exceptionHandler,
++ final Function<? super T, ? extends U> function) {
++ super(executor, from, to, exceptionHandler);
++ this.function = function;
++ }
++
++ @Override
++ public void run() {
++ final Object result = this.from.getResultPlain();
++ try {
++ if (result instanceof ExceptionResult exRes) {
++ this.to.completeExceptionally(exRes.ex);
++ } else {
++ this.to.complete(this.function.apply((T)unmaskNull(result)));
++ }
++ } catch (final Throwable throwable) {
++ this.failed(throwable);
++ }
++ }
++ }
++
++ private static final class AcceptTransform<T> extends Transform<Void, T> {
++ private final Consumer<? super T> consumer;
++
++ public AcceptTransform(final Executor executor, final Completable<T> from, final Completable<Void> to,
++ final Function<? super Throwable, ? extends Throwable> exceptionHandler,
++ final Consumer<? super T> consumer) {
++ super(executor, from, to, exceptionHandler);
++ this.consumer = consumer;
++ }
++
++ @Override
++ public void run() {
++ final Object result = this.from.getResultPlain();
++ try {
++ if (result instanceof ExceptionResult exRes) {
++ this.to.completeExceptionally(exRes.ex);
++ } else {
++ this.consumer.accept((T)unmaskNull(result));
++ this.to.complete(null);
++ }
++ } catch (final Throwable throwable) {
++ this.failed(throwable);
++ }
++ }
++ }
++
++ private static final class RunTransform<T> extends Transform<Void, T> {
++ private final Runnable run;
++
++ public RunTransform(final Executor executor, final Completable<T> from, final Completable<Void> to,
++ final Function<? super Throwable, ? extends Throwable> exceptionHandler,
++ final Runnable run) {
++ super(executor, from, to, exceptionHandler);
++ this.run = run;
++ }
++
++ @Override
++ public void run() {
++ final Object result = this.from.getResultPlain();
++ try {
++ if (result instanceof ExceptionResult exRes) {
++ this.to.completeExceptionally(exRes.ex);
++ } else {
++ this.run.run();
++ this.to.complete(null);
++ }
++ } catch (final Throwable throwable) {
++ this.failed(throwable);
++ }
++ }
++ }
++
++ private static final class HandleTransform<U, T> extends Transform<U, T> {
++
++ private final BiFunction<? super T, ? super Throwable, ? extends U> function;
++
++ public HandleTransform(final Executor executor, final Completable<T> from, final Completable<U> to,
++ final Function<? super Throwable, ? extends Throwable> exceptionHandler,
++ final BiFunction<? super T, ? super Throwable, ? extends U> function) {
++ super(executor, from, to, exceptionHandler);
++ this.function = function;
++ }
++
++ @Override
++ public void run() {
++ final Object result = this.from.getResultPlain();
++ try {
++ if (result instanceof ExceptionResult exRes) {
++ this.to.complete(this.function.apply(null, exRes.ex));
++ } else {
++ this.to.complete(this.function.apply((T)unmaskNull(result), null));
++ }
++ } catch (final Throwable throwable) {
++ this.failed(throwable);
++ }
++ }
++ }
++
++ private static final class WhenTransform<T> extends Transform<T, T> {
++
++ private final BiConsumer<? super T, ? super Throwable> consumer;
++
++ public WhenTransform(final Executor executor, final Completable<T> from, final Completable<T> to,
++ final Function<? super Throwable, ? extends Throwable> exceptionHandler,
++ final BiConsumer<? super T, ? super Throwable> consumer) {
++ super(executor, from, to, exceptionHandler);
++ this.consumer = consumer;
++ }
++
++ @Override
++ public void run() {
++ final Object result = this.from.getResultPlain();
++ try {
++ if (result instanceof ExceptionResult exRes) {
++ this.consumer.accept(null, exRes.ex);
++ this.to.completeExceptionally(exRes.ex);
++ } else {
++ final T unmasked = (T)unmaskNull(result);
++ this.consumer.accept(unmasked, null);
++ this.to.complete(unmasked);
++ }
++ } catch (final Throwable throwable) {
++ this.failed(throwable);
++ }
++ }
++ }
++
++ private static final class ExceptionallyTransform<T> extends Transform<T, T> {
++ private final Function<Throwable, ? extends T> function;
++
++ public ExceptionallyTransform(final Executor executor, final Completable<T> from, final Completable<T> to,
++ final Function<? super Throwable, ? extends Throwable> exceptionHandler,
++ final Function<Throwable, ? extends T> function) {
++ super(executor, from, to, exceptionHandler);
++ this.function = function;
++ }
++
++ @Override
++ public void run() {
++ final Object result = this.from.getResultPlain();
++ try {
++ if (result instanceof ExceptionResult exRes) {
++ this.to.complete(this.function.apply(exRes.ex));
++ } else {
++ this.to.complete((T)unmaskNull(result));
++ }
++ } catch (final Throwable throwable) {
++ this.failed(throwable);
++ }
++ }
++ }
++
++ private static final class UnparkTransform<T> extends Transform<Void, T> implements ForkJoinPool.ManagedBlocker {
++
++ private volatile Thread thread;
++
++ public UnparkTransform(final Completable<T> from, final Thread target) {
++ super(null, from, null, null);
++ this.thread = target;
++ }
++
++ @Override
++ public void run() {
++ final Thread t = this.thread;
++ this.thread = null;
++ LockSupport.unpark(t);
++ }
++
++ @Override
++ public boolean block() throws InterruptedException {
++ while (!this.isReleasable()) {
++ if (Thread.interrupted()) {
++ throw new InterruptedException();
++ }
++ LockSupport.park(this);
++ }
++
++ return true;
++ }
++
++ @Override
++ public boolean isReleasable() {
++ return this.thread == null;
++ }
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/executor/Cancellable.java b/src/main/java/ca/spottedleaf/concurrentutil/executor/Cancellable.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..11449056361bb6c5a055f543cdd135c4113757c6
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/executor/Cancellable.java
+@@ -0,0 +1,14 @@
++package ca.spottedleaf.concurrentutil.executor;
++
++/**
++ * Interface specifying that something can be cancelled.
++ */
++public interface Cancellable {
++
++ /**
++ * Tries to cancel this task. If the task is in a stage that is too late to be cancelled, then this function
++ * will return {@code false}. If the task is already cancelled, then this function returns {@code false}. Only
++ * when this function successfully stops this task from being completed will it return {@code true}.
++ */
++ public boolean cancel();
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/executor/PrioritisedExecutor.java b/src/main/java/ca/spottedleaf/concurrentutil/executor/PrioritisedExecutor.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..17cbaee1e89bd3f6d905e640d20d0119ab0570a0
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/executor/PrioritisedExecutor.java
+@@ -0,0 +1,271 @@
++package ca.spottedleaf.concurrentutil.executor;
++
++import ca.spottedleaf.concurrentutil.util.Priority;
++
++public interface PrioritisedExecutor {
++
++ /**
++ * Returns the number of tasks that have been scheduled are pending to be scheduled.
++ */
++ public long getTotalTasksScheduled();
++
++ /**
++ * Returns the number of tasks that have been executed.
++ */
++ public long getTotalTasksExecuted();
++
++ /**
++ * Generates the next suborder id.
++ * @return The next suborder id.
++ */
++ public long generateNextSubOrder();
++
++ /**
++ * Executes the next available task.
++ * <p>
++ * If there is a task with priority {@link Priority#BLOCKING} available, then that such task is executed.
++ * </p>
++ * <p>
++ * If there is a task with priority {@link Priority#IDLE} available then that task is only executed
++ * when there are no other tasks available with a higher priority.
++ * </p>
++ * <p>
++ * If there are no tasks that have priority {@link Priority#BLOCKING} or {@link Priority#IDLE}, then
++ * this function will be biased to execute tasks that have higher priorities.
++ * </p>
++ *
++ * @return {@code true} if a task was executed, {@code false} otherwise
++ * @throws IllegalStateException If the current thread is not allowed to execute a task
++ */
++ public boolean executeTask() throws IllegalStateException;
++
++ /**
++ * Prevent further additions to this executor. Attempts to add after this call has completed (potentially during) will
++ * result in {@link IllegalStateException} being thrown.
++ * <p>
++ * This operation is atomic with respect to other shutdown calls
++ * </p>
++ * <p>
++ * After this call has completed, regardless of return value, this executor will be shutdown.
++ * </p>
++ *
++ * @return {@code true} if the executor was shutdown, {@code false} if it has shut down already
++ * @see #isShutdown()
++ */
++ public boolean shutdown();
++
++ /**
++ * Returns whether this executor has shut down. Effectively, returns whether new tasks will be rejected.
++ * This method does not indicate whether all the tasks scheduled have been executed.
++ * @return Returns whether this executor has shut down.
++ */
++ public boolean isShutdown();
++
++ /**
++ * Queues or executes a task at {@link Priority#NORMAL} priority.
++ * @param task The task to run.
++ *
++ * @throws IllegalStateException If this executor has shutdown.
++ * @throws NullPointerException If the task is null
++ * @return {@code null} if the current thread immediately executed the task, else returns the prioritised task
++ * associated with the parameter
++ */
++ public PrioritisedTask queueTask(final Runnable task);
++
++ /**
++ * Queues or executes a task.
++ *
++ * @param task The task to run.
++ * @param priority The priority for the task.
++ *
++ * @throws IllegalStateException If this executor has shutdown.
++ * @throws NullPointerException If the task is null
++ * @throws IllegalArgumentException If the priority is invalid.
++ * @return {@code null} if the current thread immediately executed the task, else returns the prioritised task
++ * associated with the parameter
++ */
++ public PrioritisedTask queueTask(final Runnable task, final Priority priority);
++
++ /**
++ * Queues or executes a task.
++ *
++ * @param task The task to run.
++ * @param priority The priority for the task.
++ * @param subOrder The task's suborder.
++ *
++ * @throws IllegalStateException If this executor has shutdown.
++ * @throws NullPointerException If the task is null
++ * @throws IllegalArgumentException If the priority is invalid.
++ * @return {@code null} if the current thread immediately executed the task, else returns the prioritised task
++ * associated with the parameter
++ */
++ public PrioritisedTask queueTask(final Runnable task, final Priority priority, final long subOrder);
++
++ /**
++ * Creates, but does not queue or execute, a task at {@link Priority#NORMAL} priority.
++ * @param task The task to run.
++ *
++ * @throws NullPointerException If the task is null
++ * @return {@code null} if the current thread immediately executed the task, else returns the prioritised task
++ * associated with the parameter
++ */
++ public PrioritisedTask createTask(final Runnable task);
++
++ /**
++ * Creates, but does not queue or execute, a task at {@link Priority#NORMAL} priority.
++ *
++ * @param task The task to run.
++ * @param priority The priority for the task.
++ *
++ * @throws NullPointerException If the task is null
++ * @throws IllegalArgumentException If the priority is invalid.
++ * @return {@code null} if the current thread immediately executed the task, else returns the prioritised task
++ * associated with the parameter
++ */
++ public PrioritisedTask createTask(final Runnable task, final Priority priority);
++
++ /**
++ * Creates, but does not queue or execute, a task at {@link Priority#NORMAL} priority.
++ *
++ * @param task The task to run.
++ * @param priority The priority for the task.
++ * @param subOrder The task's suborder.
++ *
++ * @throws NullPointerException If the task is null
++ * @throws IllegalArgumentException If the priority is invalid.
++ * @return {@code null} if the current thread immediately executed the task, else returns the prioritised task
++ * associated with the parameter
++ */
++ public PrioritisedTask createTask(final Runnable task, final Priority priority, final long subOrder);
++
++ public static interface PrioritisedTask extends Cancellable {
++
++ /**
++ * Returns the executor associated with this task.
++ * @return The executor associated with this task.
++ */
++ public PrioritisedExecutor getExecutor();
++
++ /**
++ * Causes a lazily queued task to become queued or executed
++ *
++ * @throws IllegalStateException If the backing executor has shutdown
++ * @return {@code true} If the task was queued, {@code false} if the task was already queued/cancelled/executed
++ */
++ public boolean queue();
++
++ /**
++ * Returns whether this task has been queued and is not completing.
++ * @return {@code true} If the task has been queued, {@code false} if the task has not been queued or is marked
++ * as completing.
++ */
++ public boolean isQueued();
++
++ /**
++ * Forces this task to be marked as completed.
++ *
++ * @return {@code true} if the task was cancelled, {@code false} if the task has already completed
++ * or is being completed.
++ */
++ @Override
++ public boolean cancel();
++
++ /**
++ * Executes this task. This will also mark the task as completing.
++ * <p>
++ * Exceptions thrown from the runnable will be rethrown.
++ * </p>
++ *
++ * @return {@code true} if this task was executed, {@code false} if it was already marked as completed.
++ */
++ public boolean execute();
++
++ /**
++ * Returns the current priority. Note that {@link Priority#COMPLETING} will be returned
++ * if this task is completing or has completed.
++ */
++ public Priority getPriority();
++
++ /**
++ * Attempts to set this task's priority level to the level specified.
++ *
++ * @param priority Specified priority level.
++ *
++ * @throws IllegalArgumentException If the priority is invalid
++ * @return {@code true} if successful, {@code false} if this task is completing or has completed or the queue
++ * this task was scheduled on was shutdown, or if the priority was already at the specified level.
++ */
++ public boolean setPriority(final Priority priority);
++
++ /**
++ * Attempts to raise the priority to the priority level specified.
++ *
++ * @param priority Priority specified
++ *
++ * @throws IllegalArgumentException If the priority is invalid
++ * @return {@code false} if the current task is completing, {@code true} if the priority was raised to the
++ * specified level or was already at the specified level or higher.
++ */
++ public boolean raisePriority(final Priority priority);
++
++ /**
++ * Attempts to lower the priority to the priority level specified.
++ *
++ * @param priority Priority specified
++ *
++ * @throws IllegalArgumentException If the priority is invalid
++ * @return {@code false} if the current task is completing, {@code true} if the priority was lowered to the
++ * specified level or was already at the specified level or lower.
++ */
++ public boolean lowerPriority(final Priority priority);
++
++ /**
++ * Returns the suborder id associated with this task.
++ * @return The suborder id associated with this task.
++ */
++ public long getSubOrder();
++
++ /**
++ * Sets the suborder id associated with this task. Ths function has no effect when this task
++ * is completing or is completed.
++ *
++ * @param subOrder Specified new sub order.
++ *
++ * @return {@code true} if successful, {@code false} if this task is completing or has completed or the queue
++ * this task was scheduled on was shutdown, or if the current suborder is the same as the new sub order.
++ */
++ public boolean setSubOrder(final long subOrder);
++
++ /**
++ * Attempts to raise the suborder to the suborder specified.
++ *
++ * @param subOrder Specified new sub order.
++ *
++ * @return {@code false} if the current task is completing, {@code true} if the suborder was raised to the
++ * specified suborder or was already at the specified suborder or higher.
++ */
++ public boolean raiseSubOrder(final long subOrder);
++
++ /**
++ * Attempts to lower the suborder to the suborder specified.
++ *
++ * @param subOrder Specified new sub order.
++ *
++ * @return {@code false} if the current task is completing, {@code true} if the suborder was lowered to the
++ * specified suborder or was already at the specified suborder or lower.
++ */
++ public boolean lowerSubOrder(final long subOrder);
++
++ /**
++ * Sets the priority and suborder id associated with this task. Ths function has no effect when this task
++ * is completing or is completed.
++ *
++ * @param priority Priority specified
++ * @param subOrder Specified new sub order.
++ * @return {@code true} if successful, {@code false} if this task is completing or has completed or the queue
++ * this task was scheduled on was shutdown, or if the current priority and suborder are the same as
++ * the parameters.
++ */
++ public boolean setPriorityAndSubOrder(final Priority priority, final long subOrder);
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/executor/queue/PrioritisedTaskQueue.java b/src/main/java/ca/spottedleaf/concurrentutil/executor/queue/PrioritisedTaskQueue.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..edb8c6611bdc9aced2714b963e00bbb7829603d2
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/executor/queue/PrioritisedTaskQueue.java
+@@ -0,0 +1,454 @@
++package ca.spottedleaf.concurrentutil.executor.queue;
++
++import ca.spottedleaf.concurrentutil.executor.PrioritisedExecutor;
++import ca.spottedleaf.concurrentutil.util.ConcurrentUtil;
++import ca.spottedleaf.concurrentutil.util.Priority;
++import java.lang.invoke.VarHandle;
++import java.util.Comparator;
++import java.util.Map;
++import java.util.concurrent.ConcurrentSkipListMap;
++import java.util.concurrent.atomic.AtomicBoolean;
++import java.util.concurrent.atomic.AtomicLong;
++
++public final class PrioritisedTaskQueue implements PrioritisedExecutor {
++
++ /**
++ * Required for tie-breaking in the queue
++ */
++ private final AtomicLong taskIdGenerator = new AtomicLong();
++ private final AtomicLong scheduledTasks = new AtomicLong();
++ private final AtomicLong executedTasks = new AtomicLong();
++ private final AtomicLong subOrderGenerator = new AtomicLong();
++ private final AtomicBoolean shutdown = new AtomicBoolean();
++ private final ConcurrentSkipListMap<PrioritisedQueuedTask.Holder, Boolean> tasks = new ConcurrentSkipListMap<>(PrioritisedQueuedTask.COMPARATOR);
++
++ @Override
++ public long getTotalTasksScheduled() {
++ return this.scheduledTasks.get();
++ }
++
++ @Override
++ public long getTotalTasksExecuted() {
++ return this.executedTasks.get();
++ }
++
++ @Override
++ public long generateNextSubOrder() {
++ return this.subOrderGenerator.getAndIncrement();
++ }
++
++ @Override
++ public boolean shutdown() {
++ return !this.shutdown.getAndSet(true);
++ }
++
++ @Override
++ public boolean isShutdown() {
++ return this.shutdown.get();
++ }
++
++ public PrioritisedTask peekFirst() {
++ final Map.Entry<PrioritisedQueuedTask.Holder, Boolean> firstEntry = this.tasks.firstEntry();
++ return firstEntry == null ? null : firstEntry.getKey().task;
++ }
++
++ public Priority getHighestPriority() {
++ final Map.Entry<PrioritisedQueuedTask.Holder, Boolean> firstEntry = this.tasks.firstEntry();
++ return firstEntry == null ? null : Priority.getPriority(firstEntry.getKey().priority);
++ }
++
++ public boolean hasNoScheduledTasks() {
++ final long executedTasks = this.executedTasks.get();
++ final long scheduledTasks = this.scheduledTasks.get();
++
++ return executedTasks == scheduledTasks;
++ }
++
++ public PrioritySubOrderPair getHighestPrioritySubOrder() {
++ final Map.Entry<PrioritisedQueuedTask.Holder, Boolean> firstEntry = this.tasks.firstEntry();
++ if (firstEntry == null) {
++ return null;
++ }
++
++ final PrioritisedQueuedTask.Holder holder = firstEntry.getKey();
++
++ return new PrioritySubOrderPair(Priority.getPriority(holder.priority), holder.subOrder);
++ }
++
++ public Runnable pollTask() {
++ for (;;) {
++ final Map.Entry<PrioritisedQueuedTask.Holder, Boolean> firstEntry = this.tasks.pollFirstEntry();
++ if (firstEntry != null) {
++ final PrioritisedQueuedTask.Holder task = firstEntry.getKey();
++ task.markRemoved();
++ if (!task.task.cancel()) {
++ continue;
++ }
++ return task.task.execute;
++ }
++
++ return null;
++ }
++ }
++
++ @Override
++ public boolean executeTask() {
++ for (;;) {
++ final Map.Entry<PrioritisedQueuedTask.Holder, Boolean> firstEntry = this.tasks.pollFirstEntry();
++ if (firstEntry != null) {
++ final PrioritisedQueuedTask.Holder task = firstEntry.getKey();
++ task.markRemoved();
++ if (!task.task.execute()) {
++ continue;
++ }
++ return true;
++ }
++
++ return false;
++ }
++ }
++
++ @Override
++ public PrioritisedTask createTask(final Runnable task) {
++ return this.createTask(task, Priority.NORMAL, this.generateNextSubOrder());
++ }
++
++ @Override
++ public PrioritisedTask createTask(final Runnable task, final Priority priority) {
++ return this.createTask(task, priority, this.generateNextSubOrder());
++ }
++
++ @Override
++ public PrioritisedTask createTask(final Runnable task, final Priority priority, final long subOrder) {
++ return new PrioritisedQueuedTask(task, priority, subOrder);
++ }
++
++ @Override
++ public PrioritisedTask queueTask(final Runnable task) {
++ return this.queueTask(task, Priority.NORMAL, this.generateNextSubOrder());
++ }
++
++ @Override
++ public PrioritisedTask queueTask(final Runnable task, final Priority priority) {
++ return this.queueTask(task, priority, this.generateNextSubOrder());
++ }
++
++ @Override
++ public PrioritisedTask queueTask(final Runnable task, final Priority priority, final long subOrder) {
++ final PrioritisedQueuedTask ret = new PrioritisedQueuedTask(task, priority, subOrder);
++
++ ret.queue();
++
++ return ret;
++ }
++
++ private final class PrioritisedQueuedTask implements PrioritisedExecutor.PrioritisedTask {
++ public static final Comparator<PrioritisedQueuedTask.Holder> COMPARATOR = (final PrioritisedQueuedTask.Holder t1, final PrioritisedQueuedTask.Holder t2) -> {
++ final int priorityCompare = t1.priority - t2.priority;
++ if (priorityCompare != 0) {
++ return priorityCompare;
++ }
++
++ final int subOrderCompare = Long.compare(t1.subOrder, t2.subOrder);
++ if (subOrderCompare != 0) {
++ return subOrderCompare;
++ }
++
++ return Long.compare(t1.id, t2.id);
++ };
++
++ private static final class Holder {
++ private final PrioritisedQueuedTask task;
++ private final int priority;
++ private final long subOrder;
++ private final long id;
++
++ private volatile boolean removed;
++ private static final VarHandle REMOVED_HANDLE = ConcurrentUtil.getVarHandle(Holder.class, "removed", boolean.class);
++
++ private Holder(final PrioritisedQueuedTask task, final int priority, final long subOrder,
++ final long id) {
++ this.task = task;
++ this.priority = priority;
++ this.subOrder = subOrder;
++ this.id = id;
++ }
++
++ /**
++ * Returns true if marked as removed
++ */
++ public boolean markRemoved() {
++ return !(boolean)REMOVED_HANDLE.getAndSet((Holder)this, (boolean)true);
++ }
++ }
++
++ private final long id;
++ private final Runnable execute;
++
++ private Priority priority;
++ private long subOrder;
++ private Holder holder;
++
++ public PrioritisedQueuedTask(final Runnable execute, final Priority priority, final long subOrder) {
++ if (!Priority.isValidPriority(priority)) {
++ throw new IllegalArgumentException("Invalid priority " + priority);
++ }
++
++ this.execute = execute;
++ this.priority = priority;
++ this.subOrder = subOrder;
++ this.id = PrioritisedTaskQueue.this.taskIdGenerator.getAndIncrement();
++ }
++
++ @Override
++ public PrioritisedExecutor getExecutor() {
++ return PrioritisedTaskQueue.this;
++ }
++
++ @Override
++ public boolean queue() {
++ synchronized (this) {
++ if (this.holder != null || this.priority == Priority.COMPLETING) {
++ return false;
++ }
++
++ if (PrioritisedTaskQueue.this.isShutdown()) {
++ throw new IllegalStateException("Queue is shutdown");
++ }
++
++ final Holder holder = new Holder(this, this.priority.priority, this.subOrder, this.id);
++ this.holder = holder;
++
++ PrioritisedTaskQueue.this.scheduledTasks.getAndIncrement();
++ PrioritisedTaskQueue.this.tasks.put(holder, Boolean.TRUE);
++ }
++
++ if (PrioritisedTaskQueue.this.isShutdown()) {
++ this.cancel();
++ throw new IllegalStateException("Queue is shutdown");
++ }
++
++
++ return true;
++ }
++
++ @Override
++ public boolean isQueued() {
++ synchronized (this) {
++ return this.holder != null && this.priority != Priority.COMPLETING;
++ }
++ }
++
++ @Override
++ public boolean cancel() {
++ synchronized (this) {
++ if (this.priority == Priority.COMPLETING) {
++ return false;
++ }
++
++ this.priority = Priority.COMPLETING;
++
++ if (this.holder != null) {
++ if (this.holder.markRemoved()) {
++ PrioritisedTaskQueue.this.tasks.remove(this.holder);
++ }
++ PrioritisedTaskQueue.this.executedTasks.getAndIncrement();
++ }
++
++ return true;
++ }
++ }
++
++ @Override
++ public boolean execute() {
++ final boolean increaseExecuted;
++
++ synchronized (this) {
++ if (this.priority == Priority.COMPLETING) {
++ return false;
++ }
++
++ this.priority = Priority.COMPLETING;
++
++ if (increaseExecuted = (this.holder != null)) {
++ if (this.holder.markRemoved()) {
++ PrioritisedTaskQueue.this.tasks.remove(this.holder);
++ }
++ }
++ }
++
++ try {
++ this.execute.run();
++ return true;
++ } finally {
++ if (increaseExecuted) {
++ PrioritisedTaskQueue.this.executedTasks.getAndIncrement();
++ }
++ }
++ }
++
++ @Override
++ public Priority getPriority() {
++ synchronized (this) {
++ return this.priority;
++ }
++ }
++
++ @Override
++ public boolean setPriority(final Priority priority) {
++ synchronized (this) {
++ if (this.priority == Priority.COMPLETING || this.priority == priority) {
++ return false;
++ }
++
++ this.priority = priority;
++
++ if (this.holder != null) {
++ if (this.holder.markRemoved()) {
++ PrioritisedTaskQueue.this.tasks.remove(this.holder);
++ }
++ this.holder = new Holder(this, priority.priority, this.subOrder, this.id);
++ PrioritisedTaskQueue.this.tasks.put(this.holder, Boolean.TRUE);
++ }
++
++ return true;
++ }
++ }
++
++ @Override
++ public boolean raisePriority(final Priority priority) {
++ synchronized (this) {
++ if (this.priority == Priority.COMPLETING || this.priority.isHigherOrEqualPriority(priority)) {
++ return false;
++ }
++
++ this.priority = priority;
++
++ if (this.holder != null) {
++ if (this.holder.markRemoved()) {
++ PrioritisedTaskQueue.this.tasks.remove(this.holder);
++ }
++ this.holder = new Holder(this, priority.priority, this.subOrder, this.id);
++ PrioritisedTaskQueue.this.tasks.put(this.holder, Boolean.TRUE);
++ }
++
++ return true;
++ }
++ }
++
++ @Override
++ public boolean lowerPriority(Priority priority) {
++ synchronized (this) {
++ if (this.priority == Priority.COMPLETING || this.priority.isLowerOrEqualPriority(priority)) {
++ return false;
++ }
++
++ this.priority = priority;
++
++ if (this.holder != null) {
++ if (this.holder.markRemoved()) {
++ PrioritisedTaskQueue.this.tasks.remove(this.holder);
++ }
++ this.holder = new Holder(this, priority.priority, this.subOrder, this.id);
++ PrioritisedTaskQueue.this.tasks.put(this.holder, Boolean.TRUE);
++ }
++
++ return true;
++ }
++ }
++
++ @Override
++ public long getSubOrder() {
++ synchronized (this) {
++ return this.subOrder;
++ }
++ }
++
++ @Override
++ public boolean setSubOrder(final long subOrder) {
++ synchronized (this) {
++ if (this.priority == Priority.COMPLETING || this.subOrder == subOrder) {
++ return false;
++ }
++
++ this.subOrder = subOrder;
++
++ if (this.holder != null) {
++ if (this.holder.markRemoved()) {
++ PrioritisedTaskQueue.this.tasks.remove(this.holder);
++ }
++ this.holder = new Holder(this, priority.priority, this.subOrder, this.id);
++ PrioritisedTaskQueue.this.tasks.put(this.holder, Boolean.TRUE);
++ }
++
++ return true;
++ }
++ }
++
++ @Override
++ public boolean raiseSubOrder(long subOrder) {
++ synchronized (this) {
++ if (this.priority == Priority.COMPLETING || this.subOrder >= subOrder) {
++ return false;
++ }
++
++ this.subOrder = subOrder;
++
++ if (this.holder != null) {
++ if (this.holder.markRemoved()) {
++ PrioritisedTaskQueue.this.tasks.remove(this.holder);
++ }
++ this.holder = new Holder(this, priority.priority, this.subOrder, this.id);
++ PrioritisedTaskQueue.this.tasks.put(this.holder, Boolean.TRUE);
++ }
++
++ return true;
++ }
++ }
++
++ @Override
++ public boolean lowerSubOrder(final long subOrder) {
++ synchronized (this) {
++ if (this.priority == Priority.COMPLETING || this.subOrder <= subOrder) {
++ return false;
++ }
++
++ this.subOrder = subOrder;
++
++ if (this.holder != null) {
++ if (this.holder.markRemoved()) {
++ PrioritisedTaskQueue.this.tasks.remove(this.holder);
++ }
++ this.holder = new Holder(this, priority.priority, this.subOrder, this.id);
++ PrioritisedTaskQueue.this.tasks.put(this.holder, Boolean.TRUE);
++ }
++
++ return true;
++ }
++ }
++
++ @Override
++ public boolean setPriorityAndSubOrder(final Priority priority, final long subOrder) {
++ synchronized (this) {
++ if (this.priority == Priority.COMPLETING || (this.priority == priority && this.subOrder == subOrder)) {
++ return false;
++ }
++
++ this.priority = priority;
++ this.subOrder = subOrder;
++
++ if (this.holder != null) {
++ if (this.holder.markRemoved()) {
++ PrioritisedTaskQueue.this.tasks.remove(this.holder);
++ }
++ this.holder = new Holder(this, priority.priority, this.subOrder, this.id);
++ PrioritisedTaskQueue.this.tasks.put(this.holder, Boolean.TRUE);
++ }
++
++ return true;
++ }
++ }
++ }
++
++ public static record PrioritySubOrderPair(Priority priority, long subOrder) {}
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/executor/thread/PrioritisedQueueExecutorThread.java b/src/main/java/ca/spottedleaf/concurrentutil/executor/thread/PrioritisedQueueExecutorThread.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..f5367a13aaa02f0f929813c00a67e6ac7c8652cb
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/executor/thread/PrioritisedQueueExecutorThread.java
+@@ -0,0 +1,402 @@
++package ca.spottedleaf.concurrentutil.executor.thread;
++
++import ca.spottedleaf.concurrentutil.executor.PrioritisedExecutor;
++import ca.spottedleaf.concurrentutil.util.ConcurrentUtil;
++import ca.spottedleaf.concurrentutil.util.Priority;
++import org.slf4j.Logger;
++import org.slf4j.LoggerFactory;
++import java.lang.invoke.VarHandle;
++import java.util.concurrent.locks.LockSupport;
++
++/**
++ * Thread which will continuously drain from a specified queue.
++ * <p>
++ * Note: When using this thread, queue additions to the underlying {@link #queue} are not sufficient to get this thread
++ * to execute the task. The function {@link #notifyTasks()} must be used after scheduling a task. For expected behaviour
++ * of task scheduling, use the methods provided on this class to schedule tasks.
++ * </p>
++ */
++public class PrioritisedQueueExecutorThread extends Thread implements PrioritisedExecutor {
++
++ private static final Logger LOGGER = LoggerFactory.getLogger(PrioritisedQueueExecutorThread.class);
++
++ protected final PrioritisedExecutor queue;
++
++ protected volatile boolean threadShutdown;
++
++ protected volatile boolean threadParked;
++ protected static final VarHandle THREAD_PARKED_HANDLE = ConcurrentUtil.getVarHandle(PrioritisedQueueExecutorThread.class, "threadParked", boolean.class);
++
++ protected volatile boolean halted;
++
++ protected final long spinWaitTime;
++
++ protected static final long DEFAULT_SPINWAIT_TIME = (long)(0.1e6);// 0.1ms
++
++ public PrioritisedQueueExecutorThread(final PrioritisedExecutor queue) {
++ this(queue, DEFAULT_SPINWAIT_TIME); // 0.1ms
++ }
++
++ public PrioritisedQueueExecutorThread(final PrioritisedExecutor queue, final long spinWaitTime) { // in ns
++ this.queue = queue;
++ this.spinWaitTime = spinWaitTime;
++ }
++
++ @Override
++ public final void run() {
++ try {
++ this.begin();
++ this.doRun();
++ } finally {
++ this.die();
++ }
++ }
++
++ public final void doRun() {
++ final long spinWaitTime = this.spinWaitTime;
++
++ main_loop:
++ for (;;) {
++ this.pollTasks();
++
++ // spinwait
++
++ final long start = System.nanoTime();
++
++ for (;;) {
++ // If we are interrupted for any reason, park() will always return immediately. Clear so that we don't needlessly use cpu in such an event.
++ Thread.interrupted();
++ Thread.yield();
++ LockSupport.parkNanos("Spinwaiting on tasks", 10_000L); // 10us
++
++ if (this.pollTasks()) {
++ // restart loop, found tasks
++ continue main_loop;
++ }
++
++ if (this.handleClose()) {
++ return; // we're done
++ }
++
++ if ((System.nanoTime() - start) >= spinWaitTime) {
++ break;
++ }
++ }
++
++ if (this.handleClose()) {
++ return;
++ }
++
++ this.setThreadParkedVolatile(true);
++
++ // We need to parse here to avoid a race condition where a thread queues a task before we set parked to true
++ // (i.e. it will not notify us)
++ if (this.pollTasks()) {
++ this.setThreadParkedVolatile(false);
++ continue;
++ }
++
++ if (this.handleClose()) {
++ return;
++ }
++
++ // we don't need to check parked before sleeping, but we do need to check parked in a do-while loop
++ // LockSupport.park() can fail for any reason
++ while (this.getThreadParkedVolatile()) {
++ Thread.interrupted();
++ LockSupport.park("Waiting on tasks");
++ }
++ }
++ }
++
++ protected void begin() {}
++
++ protected void die() {}
++
++ /**
++ * Attempts to poll as many tasks as possible, returning when finished.
++ * @return Whether any tasks were executed.
++ */
++ protected boolean pollTasks() {
++ boolean ret = false;
++
++ for (;;) {
++ if (this.halted) {
++ break;
++ }
++ try {
++ if (!this.queue.executeTask()) {
++ break;
++ }
++ ret = true;
++ } catch (final Throwable throwable) {
++ LOGGER.error("Exception thrown from prioritized runnable task in thread '" + this.getName() + "'", throwable);
++ }
++ }
++
++ return ret;
++ }
++
++ protected boolean handleClose() {
++ if (this.threadShutdown) {
++ this.pollTasks(); // this ensures we've emptied the queue
++ return true;
++ }
++ return false;
++ }
++
++ /**
++ * Notify this thread that a task has been added to its queue
++ * @return {@code true} if this thread was waiting for tasks, {@code false} if it is executing tasks
++ */
++ public boolean notifyTasks() {
++ if (this.getThreadParkedVolatile() && this.exchangeThreadParkedVolatile(false)) {
++ LockSupport.unpark(this);
++ return true;
++ }
++ return false;
++ }
++
++ @Override
++ public long getTotalTasksExecuted() {
++ return this.queue.getTotalTasksExecuted();
++ }
++
++ @Override
++ public long getTotalTasksScheduled() {
++ return this.queue.getTotalTasksScheduled();
++ }
++
++ @Override
++ public long generateNextSubOrder() {
++ return this.queue.generateNextSubOrder();
++ }
++
++ @Override
++ public boolean shutdown() {
++ throw new UnsupportedOperationException();
++ }
++
++ @Override
++ public boolean isShutdown() {
++ return false;
++ }
++
++ /**
++ * {@inheritDoc}
++ * @throws IllegalStateException Always
++ */
++ @Override
++ public boolean executeTask() throws IllegalStateException {
++ throw new IllegalStateException();
++ }
++
++ @Override
++ public PrioritisedTask queueTask(final Runnable task) {
++ final PrioritisedTask ret = this.createTask(task);
++
++ ret.queue();
++
++ return ret;
++ }
++
++ @Override
++ public PrioritisedTask queueTask(final Runnable task, final Priority priority) {
++ final PrioritisedTask ret = this.createTask(task, priority);
++
++ ret.queue();
++
++ return ret;
++ }
++
++ @Override
++ public PrioritisedTask queueTask(final Runnable task, final Priority priority, final long subOrder) {
++ final PrioritisedTask ret = this.createTask(task, priority, subOrder);
++
++ ret.queue();
++
++ return ret;
++ }
++
++
++ @Override
++ public PrioritisedTask createTask(Runnable task) {
++ final PrioritisedTask queueTask = this.queue.createTask(task);
++
++ return new WrappedTask(queueTask);
++ }
++
++ @Override
++ public PrioritisedTask createTask(final Runnable task, final Priority priority) {
++ final PrioritisedTask queueTask = this.queue.createTask(task, priority);
++
++ return new WrappedTask(queueTask);
++ }
++
++ @Override
++ public PrioritisedTask createTask(final Runnable task, final Priority priority, final long subOrder) {
++ final PrioritisedTask queueTask = this.queue.createTask(task, priority, subOrder);
++
++ return new WrappedTask(queueTask);
++ }
++
++ /**
++ * Closes this queue executor's queue. Optionally waits for all tasks in queue to be executed if {@code wait} is true.
++ * <p>
++ * This function is MT-Safe.
++ * </p>
++ * @param wait If this call is to wait until this thread shuts down.
++ * @param killQueue Whether to shutdown this thread's queue
++ * @return whether this thread shut down the queue
++ * @see #halt(boolean)
++ */
++ public boolean close(final boolean wait, final boolean killQueue) {
++ final boolean ret = killQueue && this.queue.shutdown();
++ this.threadShutdown = true;
++
++ // force thread to respond to the shutdown
++ this.setThreadParkedVolatile(false);
++ LockSupport.unpark(this);
++
++ if (wait) {
++ boolean interrupted = false;
++ for (;;) {
++ if (this.isAlive()) {
++ if (interrupted) {
++ Thread.currentThread().interrupt();
++ }
++ break;
++ }
++ try {
++ this.join();
++ } catch (final InterruptedException ex) {
++ interrupted = true;
++ }
++ }
++ }
++
++ return ret;
++ }
++
++
++ /**
++ * Causes this thread to exit without draining the queue. To ensure tasks are completed, use {@link #close(boolean, boolean)}.
++ * <p>
++ * This is not safe to call with {@link #close(boolean, boolean)} if <code>wait = true</code>, in which case
++ * the waiting thread may block indefinitely.
++ * </p>
++ * <p>
++ * This function is MT-Safe.
++ * </p>
++ * @param killQueue Whether to shutdown this thread's queue
++ * @see #close(boolean, boolean)
++ */
++ public void halt(final boolean killQueue) {
++ if (killQueue) {
++ this.queue.shutdown();
++ }
++ this.threadShutdown = true;
++ this.halted = true;
++
++ // force thread to respond to the shutdown
++ this.setThreadParkedVolatile(false);
++ LockSupport.unpark(this);
++ }
++
++ protected final boolean getThreadParkedVolatile() {
++ return (boolean)THREAD_PARKED_HANDLE.getVolatile(this);
++ }
++
++ protected final boolean exchangeThreadParkedVolatile(final boolean value) {
++ return (boolean)THREAD_PARKED_HANDLE.getAndSet(this, value);
++ }
++
++ protected final void setThreadParkedVolatile(final boolean value) {
++ THREAD_PARKED_HANDLE.setVolatile(this, value);
++ }
++
++ /**
++ * Required so that queue() can notify (unpark) this thread
++ */
++ private final class WrappedTask implements PrioritisedTask {
++ private final PrioritisedTask queueTask;
++
++ public WrappedTask(final PrioritisedTask queueTask) {
++ this.queueTask = queueTask;
++ }
++
++ @Override
++ public PrioritisedExecutor getExecutor() {
++ return PrioritisedQueueExecutorThread.this;
++ }
++
++ @Override
++ public boolean queue() {
++ final boolean ret = this.queueTask.queue();
++ if (ret) {
++ PrioritisedQueueExecutorThread.this.notifyTasks();
++ }
++ return ret;
++ }
++
++ @Override
++ public boolean isQueued() {
++ return this.queueTask.isQueued();
++ }
++
++ @Override
++ public boolean cancel() {
++ return this.queueTask.cancel();
++ }
++
++ @Override
++ public boolean execute() {
++ return this.queueTask.execute();
++ }
++
++ @Override
++ public Priority getPriority() {
++ return this.queueTask.getPriority();
++ }
++
++ @Override
++ public boolean setPriority(final Priority priority) {
++ return this.queueTask.setPriority(priority);
++ }
++
++ @Override
++ public boolean raisePriority(final Priority priority) {
++ return this.queueTask.raisePriority(priority);
++ }
++
++ @Override
++ public boolean lowerPriority(final Priority priority) {
++ return this.queueTask.lowerPriority(priority);
++ }
++
++ @Override
++ public long getSubOrder() {
++ return this.queueTask.getSubOrder();
++ }
++
++ @Override
++ public boolean setSubOrder(final long subOrder) {
++ return this.queueTask.setSubOrder(subOrder);
++ }
++
++ @Override
++ public boolean raiseSubOrder(final long subOrder) {
++ return this.queueTask.raiseSubOrder(subOrder);
++ }
++
++ @Override
++ public boolean lowerSubOrder(final long subOrder) {
++ return this.queueTask.lowerSubOrder(subOrder);
++ }
++
++ @Override
++ public boolean setPriorityAndSubOrder(final Priority priority, final long subOrder) {
++ return this.queueTask.setPriorityAndSubOrder(priority, subOrder);
++ }
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/executor/thread/PrioritisedThreadPool.java b/src/main/java/ca/spottedleaf/concurrentutil/executor/thread/PrioritisedThreadPool.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..cb9df914a9a6d0d3f58fa58d8c93f4f583416cd1
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/executor/thread/PrioritisedThreadPool.java
+@@ -0,0 +1,741 @@
++package ca.spottedleaf.concurrentutil.executor.thread;
++
++import ca.spottedleaf.concurrentutil.executor.PrioritisedExecutor;
++import ca.spottedleaf.concurrentutil.executor.queue.PrioritisedTaskQueue;
++import ca.spottedleaf.concurrentutil.util.Priority;
++import ca.spottedleaf.concurrentutil.util.TimeUtil;
++import org.slf4j.Logger;
++import org.slf4j.LoggerFactory;
++import java.lang.reflect.Array;
++import java.util.Arrays;
++import java.util.concurrent.atomic.AtomicBoolean;
++import java.util.concurrent.atomic.AtomicLong;
++import java.util.function.Consumer;
++
++public final class PrioritisedThreadPool {
++
++ private static final Logger LOGGER = LoggerFactory.getLogger(PrioritisedThreadPool.class);
++
++ private final Consumer<Thread> threadModifier;
++ private final COWArrayList<ExecutorGroup> executors = new COWArrayList<>(ExecutorGroup.class);
++ private final COWArrayList<PrioritisedThread> threads = new COWArrayList<>(PrioritisedThread.class);
++ private final COWArrayList<PrioritisedThread> aliveThreads = new COWArrayList<>(PrioritisedThread.class);
++
++ private static final Priority HIGH_PRIORITY_NOTIFY_THRESHOLD = Priority.HIGH;
++ private static final Priority QUEUE_SHUTDOWN_PRIORITY = Priority.HIGH;
++
++ private boolean shutdown;
++
++ public PrioritisedThreadPool(final Consumer<Thread> threadModifier) {
++ this.threadModifier = threadModifier;
++
++ if (threadModifier == null) {
++ throw new NullPointerException("Thread factory may not be null");
++ }
++ }
++
++ public Thread[] getAliveThreads() {
++ final PrioritisedThread[] threads = this.aliveThreads.getArray();
++
++ return Arrays.copyOf(threads, threads.length, Thread[].class);
++ }
++
++ public Thread[] getCoreThreads() {
++ final PrioritisedThread[] threads = this.threads.getArray();
++
++ return Arrays.copyOf(threads, threads.length, Thread[].class);
++ }
++
++ /**
++ * Prevents creation of new queues, shutdowns all non-shutdown queues if specified
++ */
++ public void halt(final boolean shutdownQueues) {
++ synchronized (this) {
++ this.shutdown = true;
++ }
++
++ if (shutdownQueues) {
++ for (final ExecutorGroup group : this.executors.getArray()) {
++ for (final ExecutorGroup.ThreadPoolExecutor executor : group.executors.getArray()) {
++ executor.shutdown();
++ }
++ }
++ }
++
++ for (final PrioritisedThread thread : this.threads.getArray()) {
++ thread.halt(false);
++ }
++ }
++
++ /**
++ * Waits until all threads in this pool have shutdown, or until the specified time has passed.
++ * @param msToWait Maximum time to wait.
++ * @return {@code false} if the maximum time passed, {@code true} otherwise.
++ */
++ public boolean join(final long msToWait) {
++ try {
++ return this.join(msToWait, false);
++ } catch (final InterruptedException ex) {
++ throw new IllegalStateException(ex);
++ }
++ }
++
++ /**
++ * Waits until all threads in this pool have shutdown, or until the specified time has passed.
++ * @param msToWait Maximum time to wait.
++ * @return {@code false} if the maximum time passed, {@code true} otherwise.
++ * @throws InterruptedException If this thread is interrupted.
++ */
++ public boolean joinInterruptable(final long msToWait) throws InterruptedException {
++ return this.join(msToWait, true);
++ }
++
++ protected final boolean join(final long msToWait, final boolean interruptable) throws InterruptedException {
++ final long nsToWait = msToWait * (1000 * 1000);
++ final long start = System.nanoTime();
++ final long deadline = start + nsToWait;
++ boolean interrupted = false;
++ try {
++ for (final PrioritisedThread thread : this.aliveThreads.getArray()) {
++ for (;;) {
++ if (!thread.isAlive()) {
++ break;
++ }
++ final long current = System.nanoTime();
++ if (current >= deadline && msToWait > 0L) {
++ return false;
++ }
++
++ try {
++ thread.join(msToWait <= 0L ? 0L : Math.max(1L, (deadline - current) / (1000 * 1000)));
++ } catch (final InterruptedException ex) {
++ if (interruptable) {
++ throw ex;
++ }
++ interrupted = true;
++ }
++ }
++ }
++
++ return true;
++ } finally {
++ if (interrupted) {
++ Thread.currentThread().interrupt();
++ }
++ }
++ }
++
++ /**
++ * Shuts down this thread pool, optionally waiting for all tasks to be executed.
++ * This function will invoke {@link PrioritisedExecutor#shutdown()} on all created executors on this
++ * thread pool.
++ * @param wait Whether to wait for tasks to be executed
++ */
++ public void shutdown(final boolean wait) {
++ synchronized (this) {
++ this.shutdown = true;
++ }
++
++ for (final ExecutorGroup group : this.executors.getArray()) {
++ for (final ExecutorGroup.ThreadPoolExecutor executor : group.executors.getArray()) {
++ executor.shutdown();
++ }
++ }
++
++
++ for (final PrioritisedThread thread : this.threads.getArray()) {
++ // none of these can be true or else NPE
++ thread.close(false, false);
++ }
++
++ if (wait) {
++ this.join(0L);
++ }
++ }
++
++ private void die(final PrioritisedThread thread) {
++ this.aliveThreads.remove(thread);
++ }
++
++ public void adjustThreadCount(final int threads) {
++ synchronized (this) {
++ if (this.shutdown) {
++ return;
++ }
++
++ final PrioritisedThread[] currentThreads = this.threads.getArray();
++ if (threads == currentThreads.length) {
++ // no adjustment needed
++ return;
++ }
++
++ if (threads < currentThreads.length) {
++ // we need to trim threads
++ for (int i = 0, difference = currentThreads.length - threads; i < difference; ++i) {
++ final PrioritisedThread remove = currentThreads[currentThreads.length - i - 1];
++
++ remove.halt(false);
++ this.threads.remove(remove);
++ }
++ } else {
++ // we need to add threads
++ for (int i = 0, difference = threads - currentThreads.length; i < difference; ++i) {
++ final PrioritisedThread thread = new PrioritisedThread();
++
++ this.threadModifier.accept(thread);
++ this.aliveThreads.add(thread);
++ this.threads.add(thread);
++
++ thread.start();
++ }
++ }
++ }
++ }
++
++ private static int compareInsideGroup(final ExecutorGroup.ThreadPoolExecutor src, final Priority srcPriority,
++ final ExecutorGroup.ThreadPoolExecutor dst, final Priority dstPriority) {
++ final int priorityCompare = srcPriority.ordinal() - dstPriority.ordinal();
++ if (priorityCompare != 0) {
++ return priorityCompare;
++ }
++
++ final int parallelismCompare = src.currentParallelism - dst.currentParallelism;
++ if (parallelismCompare != 0) {
++ return parallelismCompare;
++ }
++
++ return TimeUtil.compareTimes(src.lastRetrieved, dst.lastRetrieved);
++ }
++
++ private static int compareOutsideGroup(final ExecutorGroup.ThreadPoolExecutor src, final Priority srcPriority,
++ final ExecutorGroup.ThreadPoolExecutor dst, final Priority dstPriority) {
++ if (src.getGroup().division == dst.getGroup().division) {
++ // can only compare priorities inside the same division
++ final int priorityCompare = srcPriority.ordinal() - dstPriority.ordinal();
++ if (priorityCompare != 0) {
++ return priorityCompare;
++ }
++ }
++
++ final int parallelismCompare = src.getGroup().currentParallelism - dst.getGroup().currentParallelism;
++ if (parallelismCompare != 0) {
++ return parallelismCompare;
++ }
++
++ return TimeUtil.compareTimes(src.lastRetrieved, dst.lastRetrieved);
++ }
++
++ private ExecutorGroup.ThreadPoolExecutor obtainQueue() {
++ final long time = System.nanoTime();
++ synchronized (this) {
++ ExecutorGroup.ThreadPoolExecutor ret = null;
++ Priority retPriority = null;
++
++ for (final ExecutorGroup executorGroup : this.executors.getArray()) {
++ ExecutorGroup.ThreadPoolExecutor highest = null;
++ Priority highestPriority = null;
++ for (final ExecutorGroup.ThreadPoolExecutor executor : executorGroup.executors.getArray()) {
++ final int maxParallelism = executor.maxParallelism;
++ if (maxParallelism > 0 && executor.currentParallelism >= maxParallelism) {
++ continue;
++ }
++
++ final Priority priority = executor.getTargetPriority();
++
++ if (priority == null) {
++ continue;
++ }
++
++ if (highestPriority == null || compareInsideGroup(highest, highestPriority, executor, priority) > 0) {
++ highest = executor;
++ highestPriority = priority;
++ }
++ }
++
++ if (highest == null) {
++ continue;
++ }
++
++ if (ret == null || compareOutsideGroup(ret, retPriority, highest, highestPriority) > 0) {
++ ret = highest;
++ retPriority = highestPriority;
++ }
++ }
++
++ if (ret != null) {
++ ret.lastRetrieved = time;
++ ++ret.currentParallelism;
++ ++ret.getGroup().currentParallelism;
++ return ret;
++ }
++
++ return ret;
++ }
++ }
++
++ private void returnQueue(final ExecutorGroup.ThreadPoolExecutor executor) {
++ synchronized (this) {
++ --executor.currentParallelism;
++ --executor.getGroup().currentParallelism;
++ }
++
++ if (executor.isShutdown() && executor.queue.hasNoScheduledTasks()) {
++ executor.getGroup().executors.remove(executor);
++ }
++ }
++
++ private void notifyAllThreads() {
++ for (final PrioritisedThread thread : this.threads.getArray()) {
++ thread.notifyTasks();
++ }
++ }
++
++ public ExecutorGroup createExecutorGroup(final int division, final int flags) {
++ synchronized (this) {
++ if (this.shutdown) {
++ throw new IllegalStateException("Queue is shutdown: " + this.toString());
++ }
++
++ final ExecutorGroup ret = new ExecutorGroup(division, flags);
++
++ this.executors.add(ret);
++
++ return ret;
++ }
++ }
++
++ private final class PrioritisedThread extends PrioritisedQueueExecutorThread {
++
++ private final AtomicBoolean alertedHighPriority = new AtomicBoolean();
++
++ public PrioritisedThread() {
++ super(null);
++ }
++
++ public boolean alertHighPriorityExecutor() {
++ if (!this.notifyTasks()) {
++ if (!this.alertedHighPriority.get()) {
++ this.alertedHighPriority.set(true);
++ }
++ return false;
++ }
++
++ return true;
++ }
++
++ private boolean isAlertedHighPriority() {
++ return this.alertedHighPriority.get() && this.alertedHighPriority.getAndSet(false);
++ }
++
++ @Override
++ protected void die() {
++ PrioritisedThreadPool.this.die(this);
++ }
++
++ @Override
++ protected boolean pollTasks() {
++ boolean ret = false;
++
++ for (;;) {
++ if (this.halted) {
++ break;
++ }
++
++ final ExecutorGroup.ThreadPoolExecutor executor = PrioritisedThreadPool.this.obtainQueue();
++ if (executor == null) {
++ break;
++ }
++ final long deadline = System.nanoTime() + executor.queueMaxHoldTime;
++ do {
++ try {
++ if (this.halted || executor.halt) {
++ break;
++ }
++ if (!executor.executeTask()) {
++ // no more tasks, try next queue
++ break;
++ }
++ ret = true;
++ } catch (final Throwable throwable) {
++ LOGGER.error("Exception thrown from thread '" + this.getName() + "' in queue '" + executor.toString() + "'", throwable);
++ }
++ } while (!this.isAlertedHighPriority() && System.nanoTime() <= deadline);
++
++ PrioritisedThreadPool.this.returnQueue(executor);
++ }
++
++
++ return ret;
++ }
++ }
++
++ public final class ExecutorGroup {
++
++ private final AtomicLong subOrderGenerator = new AtomicLong();
++ private final COWArrayList<ThreadPoolExecutor> executors = new COWArrayList<>(ThreadPoolExecutor.class);
++
++ private final int division;
++ private int currentParallelism;
++
++ private ExecutorGroup(final int division, final int flags) {
++ this.division = division;
++ }
++
++ public ThreadPoolExecutor[] getAllExecutors() {
++ return this.executors.getArray().clone();
++ }
++
++ private PrioritisedThreadPool getThreadPool() {
++ return PrioritisedThreadPool.this;
++ }
++
++ public ThreadPoolExecutor createExecutor(final int maxParallelism, final long queueMaxHoldTime, final int flags) {
++ synchronized (PrioritisedThreadPool.this) {
++ if (PrioritisedThreadPool.this.shutdown) {
++ throw new IllegalStateException("Queue is shutdown: " + PrioritisedThreadPool.this.toString());
++ }
++
++ final ThreadPoolExecutor ret = new ThreadPoolExecutor(maxParallelism, queueMaxHoldTime, flags);
++
++ this.executors.add(ret);
++
++ return ret;
++ }
++ }
++
++ public final class ThreadPoolExecutor implements PrioritisedExecutor {
++
++ private final PrioritisedTaskQueue queue = new PrioritisedTaskQueue();
++
++ private volatile int maxParallelism;
++ private final long queueMaxHoldTime;
++ private volatile int currentParallelism;
++ private volatile boolean halt;
++ private long lastRetrieved = System.nanoTime();
++
++ private ThreadPoolExecutor(final int maxParallelism, final long queueMaxHoldTime, final int flags) {
++ this.maxParallelism = maxParallelism;
++ this.queueMaxHoldTime = queueMaxHoldTime;
++ }
++
++ private ExecutorGroup getGroup() {
++ return ExecutorGroup.this;
++ }
++
++ private boolean canNotify() {
++ if (this.halt) {
++ return false;
++ }
++
++ final int max = this.maxParallelism;
++ return max < 0 || this.currentParallelism < max;
++ }
++
++ private void notifyHighPriority() {
++ if (!this.canNotify()) {
++ return;
++ }
++ for (final PrioritisedThread thread : this.getGroup().getThreadPool().threads.getArray()) {
++ if (thread.alertHighPriorityExecutor()) {
++ return;
++ }
++ }
++ }
++
++ private void notifyScheduled() {
++ if (!this.canNotify()) {
++ return;
++ }
++ for (final PrioritisedThread thread : this.getGroup().getThreadPool().threads.getArray()) {
++ if (thread.notifyTasks()) {
++ return;
++ }
++ }
++ }
++
++ /**
++ * Removes this queue from the thread pool without shutting the queue down or waiting for queued tasks to be executed
++ */
++ public void halt() {
++ this.halt = true;
++
++ ExecutorGroup.this.executors.remove(this);
++ }
++
++ /**
++ * Returns whether this executor is scheduled to run tasks or is running tasks, otherwise it returns whether
++ * this queue is not halted and not shutdown.
++ */
++ public boolean isActive() {
++ if (this.halt) {
++ return this.currentParallelism > 0;
++ } else {
++ if (!this.isShutdown()) {
++ return true;
++ }
++
++ return !this.queue.hasNoScheduledTasks();
++ }
++ }
++
++ @Override
++ public boolean shutdown() {
++ if (!this.queue.shutdown()) {
++ return false;
++ }
++
++ if (this.queue.hasNoScheduledTasks()) {
++ ExecutorGroup.this.executors.remove(this);
++ }
++
++ return true;
++ }
++
++ @Override
++ public boolean isShutdown() {
++ return this.queue.isShutdown();
++ }
++
++ public void setMaxParallelism(final int maxParallelism) {
++ this.maxParallelism = maxParallelism;
++ // assume that we could have increased the parallelism
++ if (this.getTargetPriority() != null) {
++ ExecutorGroup.this.getThreadPool().notifyAllThreads();
++ }
++ }
++
++ Priority getTargetPriority() {
++ final Priority ret = this.queue.getHighestPriority();
++ if (!this.isShutdown()) {
++ return ret;
++ }
++
++ return ret == null ? QUEUE_SHUTDOWN_PRIORITY : Priority.max(ret, QUEUE_SHUTDOWN_PRIORITY);
++ }
++
++ @Override
++ public long getTotalTasksScheduled() {
++ return this.queue.getTotalTasksScheduled();
++ }
++
++ @Override
++ public long getTotalTasksExecuted() {
++ return this.queue.getTotalTasksExecuted();
++ }
++
++ @Override
++ public long generateNextSubOrder() {
++ return ExecutorGroup.this.subOrderGenerator.getAndIncrement();
++ }
++
++ @Override
++ public boolean executeTask() {
++ return this.queue.executeTask();
++ }
++
++ @Override
++ public PrioritisedTask queueTask(final Runnable task) {
++ final PrioritisedTask ret = this.createTask(task);
++
++ ret.queue();
++
++ return ret;
++ }
++
++ @Override
++ public PrioritisedTask queueTask(final Runnable task, final Priority priority) {
++ final PrioritisedTask ret = this.createTask(task, priority);
++
++ ret.queue();
++
++ return ret;
++ }
++
++ @Override
++ public PrioritisedTask queueTask(final Runnable task, final Priority priority, final long subOrder) {
++ final PrioritisedTask ret = this.createTask(task, priority, subOrder);
++
++ ret.queue();
++
++ return ret;
++ }
++
++ @Override
++ public PrioritisedTask createTask(final Runnable task) {
++ return this.createTask(task, Priority.NORMAL);
++ }
++
++ @Override
++ public PrioritisedTask createTask(final Runnable task, final Priority priority) {
++ return this.createTask(task, priority, this.generateNextSubOrder());
++ }
++
++ @Override
++ public PrioritisedTask createTask(final Runnable task, final Priority priority, final long subOrder) {
++ return new WrappedTask(this.queue.createTask(task, priority, subOrder));
++ }
++
++ private final class WrappedTask implements PrioritisedTask {
++
++ private final PrioritisedTask wrapped;
++
++ private WrappedTask(final PrioritisedTask wrapped) {
++ this.wrapped = wrapped;
++ }
++
++ @Override
++ public PrioritisedExecutor getExecutor() {
++ return ThreadPoolExecutor.this;
++ }
++
++ @Override
++ public boolean queue() {
++ if (this.wrapped.queue()) {
++ final Priority priority = this.getPriority();
++ if (priority != Priority.COMPLETING) {
++ if (priority.isHigherOrEqualPriority(HIGH_PRIORITY_NOTIFY_THRESHOLD)) {
++ ThreadPoolExecutor.this.notifyHighPriority();
++ } else {
++ ThreadPoolExecutor.this.notifyScheduled();
++ }
++ }
++ return true;
++ }
++
++ return false;
++ }
++
++ @Override
++ public boolean isQueued() {
++ return this.wrapped.isQueued();
++ }
++
++ @Override
++ public boolean cancel() {
++ return this.wrapped.cancel();
++ }
++
++ @Override
++ public boolean execute() {
++ return this.wrapped.execute();
++ }
++
++ @Override
++ public Priority getPriority() {
++ return this.wrapped.getPriority();
++ }
++
++ @Override
++ public boolean setPriority(final Priority priority) {
++ if (this.wrapped.setPriority(priority)) {
++ if (priority.isHigherOrEqualPriority(HIGH_PRIORITY_NOTIFY_THRESHOLD)) {
++ ThreadPoolExecutor.this.notifyHighPriority();
++ }
++ return true;
++ }
++
++ return false;
++ }
++
++ @Override
++ public boolean raisePriority(final Priority priority) {
++ if (this.wrapped.raisePriority(priority)) {
++ if (priority.isHigherOrEqualPriority(HIGH_PRIORITY_NOTIFY_THRESHOLD)) {
++ ThreadPoolExecutor.this.notifyHighPriority();
++ }
++ return true;
++ }
++
++ return false;
++ }
++
++ @Override
++ public boolean lowerPriority(final Priority priority) {
++ return this.wrapped.lowerPriority(priority);
++ }
++
++ @Override
++ public long getSubOrder() {
++ return this.wrapped.getSubOrder();
++ }
++
++ @Override
++ public boolean setSubOrder(final long subOrder) {
++ return this.wrapped.setSubOrder(subOrder);
++ }
++
++ @Override
++ public boolean raiseSubOrder(final long subOrder) {
++ return this.wrapped.raiseSubOrder(subOrder);
++ }
++
++ @Override
++ public boolean lowerSubOrder(final long subOrder) {
++ return this.wrapped.lowerSubOrder(subOrder);
++ }
++
++ @Override
++ public boolean setPriorityAndSubOrder(final Priority priority, final long subOrder) {
++ if (this.wrapped.setPriorityAndSubOrder(priority, subOrder)) {
++ if (priority.isHigherOrEqualPriority(HIGH_PRIORITY_NOTIFY_THRESHOLD)) {
++ ThreadPoolExecutor.this.notifyHighPriority();
++ }
++ return true;
++ }
++
++ return false;
++ }
++ }
++ }
++ }
++
++ private static final class COWArrayList<E> {
++
++ private volatile E[] array;
++
++ public COWArrayList(final Class<E> clazz) {
++ this.array = (E[])Array.newInstance(clazz, 0);
++ }
++
++ public E[] getArray() {
++ return this.array;
++ }
++
++ public void add(final E element) {
++ synchronized (this) {
++ final E[] array = this.array;
++
++ final E[] copy = Arrays.copyOf(array, array.length + 1);
++ copy[array.length] = element;
++
++ this.array = copy;
++ }
++ }
++
++ public boolean remove(final E element) {
++ synchronized (this) {
++ final E[] array = this.array;
++ int index = -1;
++ for (int i = 0, len = array.length; i < len; ++i) {
++ if (array[i] == element) {
++ index = i;
++ break;
++ }
++ }
++
++ if (index == -1) {
++ return false;
++ }
++
++ final E[] copy = (E[])Array.newInstance(array.getClass().getComponentType(), array.length - 1);
++
++ System.arraycopy(array, 0, copy, 0, index);
++ System.arraycopy(array, index + 1, copy, index, (array.length - 1) - index);
++
++ this.array = copy;
++ }
++
++ return true;
++ }
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/function/BiLong1Function.java b/src/main/java/ca/spottedleaf/concurrentutil/function/BiLong1Function.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..94bfd7c56ffcea7d6491e94a7804bc3bd60fe9c3
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/function/BiLong1Function.java
+@@ -0,0 +1,8 @@
++package ca.spottedleaf.concurrentutil.function;
++
++@FunctionalInterface
++public interface BiLong1Function<T, R> {
++
++ public R apply(final long t1, final T t2);
++
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/function/BiLongObjectConsumer.java b/src/main/java/ca/spottedleaf/concurrentutil/function/BiLongObjectConsumer.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..8e7eef07960a18d0593688eba55adfa1c85efadf
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/function/BiLongObjectConsumer.java
+@@ -0,0 +1,8 @@
++package ca.spottedleaf.concurrentutil.function;
++
++@FunctionalInterface
++public interface BiLongObjectConsumer<V> {
++
++ public void accept(final long key, final V value);
++
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/lock/ReentrantAreaLock.java b/src/main/java/ca/spottedleaf/concurrentutil/lock/ReentrantAreaLock.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..7ffe4379b06c03c56abbcbdee3bb720894a10702
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/lock/ReentrantAreaLock.java
+@@ -0,0 +1,350 @@
++package ca.spottedleaf.concurrentutil.lock;
++
++import ca.spottedleaf.concurrentutil.collection.MultiThreadedQueue;
++import ca.spottedleaf.concurrentutil.map.ConcurrentLong2ReferenceChainedHashTable;
++import ca.spottedleaf.concurrentutil.util.IntPairUtil;
++import java.util.Objects;
++import java.util.concurrent.locks.LockSupport;
++
++public final class ReentrantAreaLock {
++
++ public final int coordinateShift;
++
++ // aggressive load factor to reduce contention
++ private final ConcurrentLong2ReferenceChainedHashTable<Node> nodes = ConcurrentLong2ReferenceChainedHashTable.createWithCapacity(128, 0.2f);
++
++ public ReentrantAreaLock(final int coordinateShift) {
++ this.coordinateShift = coordinateShift;
++ }
++
++ public boolean isHeldByCurrentThread(final int x, final int z) {
++ final Thread currThread = Thread.currentThread();
++ final int shift = this.coordinateShift;
++ final int sectionX = x >> shift;
++ final int sectionZ = z >> shift;
++
++ final long coordinate = IntPairUtil.key(sectionX, sectionZ);
++ final Node node = this.nodes.get(coordinate);
++
++ return node != null && node.thread == currThread;
++ }
++
++ public boolean isHeldByCurrentThread(final int centerX, final int centerZ, final int radius) {
++ return this.isHeldByCurrentThread(centerX - radius, centerZ - radius, centerX + radius, centerZ + radius);
++ }
++
++ public boolean isHeldByCurrentThread(final int fromX, final int fromZ, final int toX, final int toZ) {
++ if (fromX > toX || fromZ > toZ) {
++ throw new IllegalArgumentException();
++ }
++
++ final Thread currThread = Thread.currentThread();
++ final int shift = this.coordinateShift;
++ final int fromSectionX = fromX >> shift;
++ final int fromSectionZ = fromZ >> shift;
++ final int toSectionX = toX >> shift;
++ final int toSectionZ = toZ >> shift;
++
++ for (int currZ = fromSectionZ; currZ <= toSectionZ; ++currZ) {
++ for (int currX = fromSectionX; currX <= toSectionX; ++currX) {
++ final long coordinate = IntPairUtil.key(currX, currZ);
++
++ final Node node = this.nodes.get(coordinate);
++
++ if (node == null || node.thread != currThread) {
++ return false;
++ }
++ }
++ }
++
++ return true;
++ }
++
++ public Node tryLock(final int x, final int z) {
++ return this.tryLock(x, z, x, z);
++ }
++
++ public Node tryLock(final int centerX, final int centerZ, final int radius) {
++ return this.tryLock(centerX - radius, centerZ - radius, centerX + radius, centerZ + radius);
++ }
++
++ public Node tryLock(final int fromX, final int fromZ, final int toX, final int toZ) {
++ if (fromX > toX || fromZ > toZ) {
++ throw new IllegalArgumentException();
++ }
++
++ final Thread currThread = Thread.currentThread();
++ final int shift = this.coordinateShift;
++ final int fromSectionX = fromX >> shift;
++ final int fromSectionZ = fromZ >> shift;
++ final int toSectionX = toX >> shift;
++ final int toSectionZ = toZ >> shift;
++
++ final long[] areaAffected = new long[(toSectionX - fromSectionX + 1) * (toSectionZ - fromSectionZ + 1)];
++ int areaAffectedLen = 0;
++
++ final Node ret = new Node(this, areaAffected, currThread);
++
++ boolean failed = false;
++
++ // try to fast acquire area
++ for (int currZ = fromSectionZ; currZ <= toSectionZ; ++currZ) {
++ for (int currX = fromSectionX; currX <= toSectionX; ++currX) {
++ final long coordinate = IntPairUtil.key(currX, currZ);
++
++ final Node prev = this.nodes.putIfAbsent(coordinate, ret);
++
++ if (prev == null) {
++ areaAffected[areaAffectedLen++] = coordinate;
++ continue;
++ }
++
++ if (prev.thread != currThread) {
++ failed = true;
++ break;
++ }
++ }
++ }
++
++ if (!failed) {
++ return ret;
++ }
++
++ // failed, undo logic
++ if (areaAffectedLen != 0) {
++ for (int i = 0; i < areaAffectedLen; ++i) {
++ final long key = areaAffected[i];
++
++ if (this.nodes.remove(key) != ret) {
++ throw new IllegalStateException();
++ }
++ }
++
++ areaAffectedLen = 0;
++
++ // since we inserted, we need to drain waiters
++ Thread unpark;
++ while ((unpark = ret.pollOrBlockAdds()) != null) {
++ LockSupport.unpark(unpark);
++ }
++ }
++
++ return null;
++ }
++
++ public Node lock(final int x, final int z) {
++ final Thread currThread = Thread.currentThread();
++ final int shift = this.coordinateShift;
++ final int sectionX = x >> shift;
++ final int sectionZ = z >> shift;
++
++ final long coordinate = IntPairUtil.key(sectionX, sectionZ);
++ final long[] areaAffected = new long[1];
++ areaAffected[0] = coordinate;
++
++ final Node ret = new Node(this, areaAffected, currThread);
++
++ for (long failures = 0L;;) {
++ final Node park;
++
++ // try to fast acquire area
++ {
++ final Node prev = this.nodes.putIfAbsent(coordinate, ret);
++
++ if (prev == null) {
++ ret.areaAffectedLen = 1;
++ return ret;
++ } else if (prev.thread != currThread) {
++ park = prev;
++ } else {
++ // only one node we would want to acquire, and it's owned by this thread already
++ // areaAffectedLen = 0 already
++ return ret;
++ }
++ }
++
++ ++failures;
++
++ if (failures > 128L && park.add(currThread)) {
++ LockSupport.park();
++ } else {
++ // high contention, spin wait
++ if (failures < 128L) {
++ for (long i = 0; i < failures; ++i) {
++ Thread.onSpinWait();
++ }
++ failures = failures << 1;
++ } else if (failures < 1_200L) {
++ LockSupport.parkNanos(1_000L);
++ failures = failures + 1L;
++ } else { // scale 0.1ms (100us) per failure
++ Thread.yield();
++ LockSupport.parkNanos(100_000L * failures);
++ failures = failures + 1L;
++ }
++ }
++ }
++ }
++
++ public Node lock(final int centerX, final int centerZ, final int radius) {
++ return this.lock(centerX - radius, centerZ - radius, centerX + radius, centerZ + radius);
++ }
++
++ public Node lock(final int fromX, final int fromZ, final int toX, final int toZ) {
++ if (fromX > toX || fromZ > toZ) {
++ throw new IllegalArgumentException();
++ }
++
++ final Thread currThread = Thread.currentThread();
++ final int shift = this.coordinateShift;
++ final int fromSectionX = fromX >> shift;
++ final int fromSectionZ = fromZ >> shift;
++ final int toSectionX = toX >> shift;
++ final int toSectionZ = toZ >> shift;
++
++ if (((fromSectionX ^ toSectionX) | (fromSectionZ ^ toSectionZ)) == 0) {
++ return this.lock(fromX, fromZ);
++ }
++
++ final long[] areaAffected = new long[(toSectionX - fromSectionX + 1) * (toSectionZ - fromSectionZ + 1)];
++ int areaAffectedLen = 0;
++
++ final Node ret = new Node(this, areaAffected, currThread);
++
++ for (long failures = 0L;;) {
++ Node park = null;
++ boolean addedToArea = false;
++ boolean alreadyOwned = false;
++ boolean allOwned = true;
++
++ // try to fast acquire area
++ for (int currZ = fromSectionZ; currZ <= toSectionZ; ++currZ) {
++ for (int currX = fromSectionX; currX <= toSectionX; ++currX) {
++ final long coordinate = IntPairUtil.key(currX, currZ);
++
++ final Node prev = this.nodes.putIfAbsent(coordinate, ret);
++
++ if (prev == null) {
++ addedToArea = true;
++ allOwned = false;
++ areaAffected[areaAffectedLen++] = coordinate;
++ continue;
++ }
++
++ if (prev.thread != currThread) {
++ park = prev;
++ alreadyOwned = true;
++ break;
++ }
++ }
++ }
++
++ // check for failure
++ if ((park != null && addedToArea) || (park == null && alreadyOwned && !allOwned)) {
++ // failure to acquire: added and we need to block, or improper lock usage
++ for (int i = 0; i < areaAffectedLen; ++i) {
++ final long key = areaAffected[i];
++
++ if (this.nodes.remove(key) != ret) {
++ throw new IllegalStateException();
++ }
++ }
++
++ areaAffectedLen = 0;
++
++ // since we inserted, we need to drain waiters
++ Thread unpark;
++ while ((unpark = ret.pollOrBlockAdds()) != null) {
++ LockSupport.unpark(unpark);
++ }
++ }
++
++ if (park == null) {
++ if (alreadyOwned && !allOwned) {
++ throw new IllegalStateException("Improper lock usage: Should never acquire intersecting areas");
++ }
++ ret.areaAffectedLen = areaAffectedLen;
++ return ret;
++ }
++
++ // failed
++
++ ++failures;
++
++ if (failures > 128L && park.add(currThread)) {
++ LockSupport.park(park);
++ } else {
++ // high contention, spin wait
++ if (failures < 128L) {
++ for (long i = 0; i < failures; ++i) {
++ Thread.onSpinWait();
++ }
++ failures = failures << 1;
++ } else if (failures < 1_200L) {
++ LockSupport.parkNanos(1_000L);
++ failures = failures + 1L;
++ } else { // scale 0.1ms (100us) per failure
++ Thread.yield();
++ LockSupport.parkNanos(100_000L * failures);
++ failures = failures + 1L;
++ }
++ }
++
++ if (addedToArea) {
++ // try again, so we need to allow adds so that other threads can properly block on us
++ ret.allowAdds();
++ }
++ }
++ }
++
++ public void unlock(final Node node) {
++ if (node.lock != this) {
++ throw new IllegalStateException("Unlock target lock mismatch");
++ }
++
++ final long[] areaAffected = node.areaAffected;
++ final int areaAffectedLen = node.areaAffectedLen;
++
++ if (areaAffectedLen == 0) {
++ // here we are not in the node map, and so do not need to remove from the node map or unblock any waiters
++ return;
++ }
++
++ Objects.checkFromToIndex(0, areaAffectedLen, areaAffected.length);
++
++ // remove from node map; allowing other threads to lock
++ for (int i = 0; i < areaAffectedLen; ++i) {
++ final long coordinate = areaAffected[i];
++ if (this.nodes.remove(coordinate, node) != node) {
++ throw new IllegalStateException();
++ }
++ }
++
++ Thread unpark;
++ while ((unpark = node.pollOrBlockAdds()) != null) {
++ LockSupport.unpark(unpark);
++ }
++ }
++
++ public static final class Node extends MultiThreadedQueue<Thread> {
++
++ private final ReentrantAreaLock lock;
++ private final long[] areaAffected;
++ private int areaAffectedLen;
++ private final Thread thread;
++
++ private Node(final ReentrantAreaLock lock, final long[] areaAffected, final Thread thread) {
++ this.lock = lock;
++ this.areaAffected = areaAffected;
++ this.thread = thread;
++ }
++
++ @Override
++ public String toString() {
++ return "Node{" +
++ "areaAffected=" + IntPairUtil.toString(this.areaAffected, 0, this.areaAffectedLen) +
++ ", thread=" + this.thread +
++ '}';
++ }
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/map/ConcurrentLong2ReferenceChainedHashTable.java b/src/main/java/ca/spottedleaf/concurrentutil/map/ConcurrentLong2ReferenceChainedHashTable.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..6918f130099e6c19e20a47bfdb54915cdd13732a
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/map/ConcurrentLong2ReferenceChainedHashTable.java
+@@ -0,0 +1,1704 @@
++package ca.spottedleaf.concurrentutil.map;
++
++import ca.spottedleaf.concurrentutil.function.BiLong1Function;
++import ca.spottedleaf.concurrentutil.util.ConcurrentUtil;
++import ca.spottedleaf.concurrentutil.util.HashUtil;
++import ca.spottedleaf.concurrentutil.util.IntegerUtil;
++import ca.spottedleaf.concurrentutil.util.ThrowUtil;
++import ca.spottedleaf.concurrentutil.util.Validate;
++import java.lang.invoke.VarHandle;
++import java.util.Arrays;
++import java.util.Iterator;
++import java.util.NoSuchElementException;
++import java.util.PrimitiveIterator;
++import java.util.concurrent.atomic.LongAdder;
++import java.util.function.BiFunction;
++import java.util.function.Consumer;
++import java.util.function.Function;
++import java.util.function.LongConsumer;
++import java.util.function.LongFunction;
++import java.util.function.Predicate;
++
++/**
++ * Concurrent hashtable implementation supporting mapping arbitrary {@code long} values onto non-null {@code Object}
++ * values with support for multiple writer and multiple reader threads.
++ *
++ * <p><h3>Happens-before relationship</h3></p>
++ * <p>
++ * As with {@link java.util.concurrent.ConcurrentMap}, there is a happens-before relationship between actions in one thread
++ * prior to writing to the map and access to the results of those actions in another thread.
++ * </p>
++ *
++ * <p><h3>Atomicity of functional methods</h3></p>
++ * <p>
++ * Functional methods are functions declared in this class which possibly perform a write (remove, replace, or modify)
++ * to an entry in this map as a result of invoking a function on an input parameter. For example, {@link #compute(long, BiLong1Function)},
++ * {@link #merge(long, Object, BiFunction)} and {@link #removeIf(long, Predicate)} are examples of functional methods.
++ * Functional methods will be performed atomically, that is, the input parameter is guaranteed to only be invoked at most
++ * once per function call. The consequence of this behavior however is that a critical lock for a bin entry is held, which
++ * means that if the input parameter invocation makes additional calls to write into this hash table that the result
++ * is undefined and deadlock-prone.
++ * </p>
++ *
++ * @param <V>
++ * @see java.util.concurrent.ConcurrentMap
++ */
++public class ConcurrentLong2ReferenceChainedHashTable<V> implements Iterable<ConcurrentLong2ReferenceChainedHashTable.TableEntry<V>> {
++
++ protected static final int DEFAULT_CAPACITY = 16;
++ protected static final float DEFAULT_LOAD_FACTOR = 0.75f;
++ protected static final int MAXIMUM_CAPACITY = Integer.MIN_VALUE >>> 1;
++
++ protected final LongAdder size = new LongAdder();
++ protected final float loadFactor;
++
++ protected volatile TableEntry<V>[] table;
++
++ protected static final int THRESHOLD_NO_RESIZE = -1;
++ protected static final int THRESHOLD_RESIZING = -2;
++ protected volatile int threshold;
++ protected static final VarHandle THRESHOLD_HANDLE = ConcurrentUtil.getVarHandle(ConcurrentLong2ReferenceChainedHashTable.class, "threshold", int.class);
++
++ protected final int getThresholdAcquire() {
++ return (int)THRESHOLD_HANDLE.getAcquire(this);
++ }
++
++ protected final int getThresholdVolatile() {
++ return (int)THRESHOLD_HANDLE.getVolatile(this);
++ }
++
++ protected final void setThresholdPlain(final int threshold) {
++ THRESHOLD_HANDLE.set(this, threshold);
++ }
++
++ protected final void setThresholdRelease(final int threshold) {
++ THRESHOLD_HANDLE.setRelease(this, threshold);
++ }
++
++ protected final void setThresholdVolatile(final int threshold) {
++ THRESHOLD_HANDLE.setVolatile(this, threshold);
++ }
++
++ protected final int compareExchangeThresholdVolatile(final int expect, final int update) {
++ return (int)THRESHOLD_HANDLE.compareAndExchange(this, expect, update);
++ }
++
++ public ConcurrentLong2ReferenceChainedHashTable() {
++ this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
++ }
++
++ protected static int getTargetThreshold(final int capacity, final float loadFactor) {
++ final double ret = (double)capacity * (double)loadFactor;
++ if (Double.isInfinite(ret) || ret >= ((double)Integer.MAX_VALUE)) {
++ return THRESHOLD_NO_RESIZE;
++ }
++
++ return (int)Math.ceil(ret);
++ }
++
++ protected static int getCapacityFor(final int capacity) {
++ if (capacity <= 0) {
++ throw new IllegalArgumentException("Invalid capacity: " + capacity);
++ }
++ if (capacity >= MAXIMUM_CAPACITY) {
++ return MAXIMUM_CAPACITY;
++ }
++ return IntegerUtil.roundCeilLog2(capacity);
++ }
++
++ protected ConcurrentLong2ReferenceChainedHashTable(final int capacity, final float loadFactor) {
++ final int tableSize = getCapacityFor(capacity);
++
++ if (loadFactor <= 0.0 || !Float.isFinite(loadFactor)) {
++ throw new IllegalArgumentException("Invalid load factor: " + loadFactor);
++ }
++
++ if (tableSize == MAXIMUM_CAPACITY) {
++ this.setThresholdPlain(THRESHOLD_NO_RESIZE);
++ } else {
++ this.setThresholdPlain(getTargetThreshold(tableSize, loadFactor));
++ }
++
++ this.loadFactor = loadFactor;
++ // noinspection unchecked
++ this.table = (TableEntry<V>[])new TableEntry[tableSize];
++ }
++
++ public static <V> ConcurrentLong2ReferenceChainedHashTable<V> createWithCapacity(final int capacity) {
++ return createWithCapacity(capacity, DEFAULT_LOAD_FACTOR);
++ }
++
++ public static <V> ConcurrentLong2ReferenceChainedHashTable<V> createWithCapacity(final int capacity, final float loadFactor) {
++ return new ConcurrentLong2ReferenceChainedHashTable<>(capacity, loadFactor);
++ }
++
++ public static <V> ConcurrentLong2ReferenceChainedHashTable<V> createWithExpected(final int expected) {
++ return createWithExpected(expected, DEFAULT_LOAD_FACTOR);
++ }
++
++ public static <V> ConcurrentLong2ReferenceChainedHashTable<V> createWithExpected(final int expected, final float loadFactor) {
++ final int capacity = (int)Math.ceil((double)expected / (double)loadFactor);
++
++ return createWithCapacity(capacity, loadFactor);
++ }
++
++ /** must be deterministic given a key */
++ protected static int getHash(final long key) {
++ return (int)HashUtil.mix(key);
++ }
++
++ /**
++ * Returns the load factor associated with this map.
++ */
++ public final float getLoadFactor() {
++ return this.loadFactor;
++ }
++
++ protected static <V> TableEntry<V> getAtIndexVolatile(final TableEntry<V>[] table, final int index) {
++ //noinspection unchecked
++ return (TableEntry<V>)TableEntry.TABLE_ENTRY_ARRAY_HANDLE.getVolatile(table, index);
++ }
++
++ protected static <V> void setAtIndexRelease(final TableEntry<V>[] table, final int index, final TableEntry<V> value) {
++ TableEntry.TABLE_ENTRY_ARRAY_HANDLE.setRelease(table, index, value);
++ }
++
++ protected static <V> void setAtIndexVolatile(final TableEntry<V>[] table, final int index, final TableEntry<V> value) {
++ TableEntry.TABLE_ENTRY_ARRAY_HANDLE.setVolatile(table, index, value);
++ }
++
++ protected static <V> TableEntry<V> compareAndExchangeAtIndexVolatile(final TableEntry<V>[] table, final int index,
++ final TableEntry<V> expect, final TableEntry<V> update) {
++ //noinspection unchecked
++ return (TableEntry<V>)TableEntry.TABLE_ENTRY_ARRAY_HANDLE.compareAndExchange(table, index, expect, update);
++ }
++
++ /**
++ * Returns the possible node associated with the key, or {@code null} if there is no such node. The node
++ * returned may have a {@code null} {@link TableEntry#value}, in which case the node is a placeholder for
++ * a compute/computeIfAbsent call. The placeholder node should not be considered mapped in order to preserve
++ * happens-before relationships between writes and reads in the map.
++ */
++ protected final TableEntry<V> getNode(final long key) {
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ for (;;) {
++ TableEntry<V> node = getAtIndexVolatile(table, hash & (table.length - 1));
++
++ if (node == null) {
++ // node == null
++ return node;
++ }
++
++ if (node.resize) {
++ // noinspection unchecked
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue;
++ }
++
++ for (; node != null; node = node.getNextVolatile()) {
++ if (node.key == key) {
++ return node;
++ }
++ }
++
++ // node == null
++ return node;
++ }
++ }
++
++ /**
++ * Returns the currently mapped value associated with the specified key, or {@code null} if there is none.
++ *
++ * @param key Specified key
++ */
++ public V get(final long key) {
++ final TableEntry<V> node = this.getNode(key);
++ return node == null ? null : node.getValueVolatile();
++ }
++
++ /**
++ * Returns the currently mapped value associated with the specified key, or the specified default value if there is none.
++ *
++ * @param key Specified key
++ * @param defaultValue Specified default value
++ */
++ public V getOrDefault(final long key, final V defaultValue) {
++ final TableEntry<V> node = this.getNode(key);
++ if (node == null) {
++ return defaultValue;
++ }
++
++ final V ret = node.getValueVolatile();
++ if (ret == null) {
++ // ret == null for nodes pre-allocated to compute() and friends
++ return defaultValue;
++ }
++
++ return ret;
++ }
++
++ /**
++ * Returns whether the specified key is mapped to some value.
++ * @param key Specified key
++ */
++ public boolean containsKey(final long key) {
++ // cannot use getNode, as the node may be a placeholder for compute()
++ return this.get(key) != null;
++ }
++
++ /**
++ * Returns whether the specified value has a key mapped to it.
++ * @param value Specified value
++ * @throws NullPointerException If value is null
++ */
++ public boolean containsValue(final V value) {
++ Validate.notNull(value, "Value cannot be null");
++
++ final NodeIterator<V> iterator = new NodeIterator<>(this.table);
++
++ TableEntry<V> node;
++ while ((node = iterator.findNext()) != null) {
++ // need to use acquire here to ensure the happens-before relationship
++ if (node.getValueAcquire() == value) {
++ return true;
++ }
++ }
++
++ return false;
++ }
++
++ /**
++ * Returns the number of mappings in this map.
++ */
++ public int size() {
++ final long ret = this.size.sum();
++
++ if (ret < 0L) {
++ return 0;
++ }
++ if (ret > (long)Integer.MAX_VALUE) {
++ return Integer.MAX_VALUE;
++ }
++
++ return (int)ret;
++ }
++
++ /**
++ * Returns whether this map has no mappings.
++ */
++ public boolean isEmpty() {
++ return this.size.sum() <= 0L;
++ }
++
++ /**
++ * Adds count to size and checks threshold for resizing
++ */
++ protected final void addSize(final long count) {
++ this.size.add(count);
++
++ final int threshold = this.getThresholdAcquire();
++
++ if (threshold < 0L) {
++ // resizing or no resizing allowed, in either cases we do not need to do anything
++ return;
++ }
++
++ final long sum = this.size.sum();
++
++ if (sum < (long)threshold) {
++ return;
++ }
++
++ if (threshold != this.compareExchangeThresholdVolatile(threshold, THRESHOLD_RESIZING)) {
++ // some other thread resized
++ return;
++ }
++
++ // create new table
++ this.resize(sum);
++ }
++
++ /**
++ * Resizes table, only invoke for the thread which has successfully updated threshold to {@link #THRESHOLD_RESIZING}
++ * @param sum Estimate of current mapping count, must be >= old threshold
++ */
++ private void resize(final long sum) {
++ int capacity;
++
++ // add 1.0, as sum may equal threshold (in which case, sum / loadFactor = current capacity)
++ // adding 1.0 should at least raise the size by a factor of two due to usage of roundCeilLog2
++ final double targetD = ((double)sum / (double)this.loadFactor) + 1.0;
++ if (targetD >= (double)MAXIMUM_CAPACITY) {
++ capacity = MAXIMUM_CAPACITY;
++ } else {
++ capacity = (int)Math.ceil(targetD);
++ capacity = IntegerUtil.roundCeilLog2(capacity);
++ if (capacity > MAXIMUM_CAPACITY) {
++ capacity = MAXIMUM_CAPACITY;
++ }
++ }
++
++ // create new table data
++
++ // noinspection unchecked
++ final TableEntry<V>[] newTable = new TableEntry[capacity];
++ // noinspection unchecked
++ final TableEntry<V> resizeNode = new TableEntry<>(0L, (V)newTable, true);
++
++ // transfer nodes from old table
++
++ // does not need to be volatile read, just plain
++ final TableEntry<V>[] oldTable = this.table;
++
++ // when resizing, the old entries at bin i (where i = hash % oldTable.length) are assigned to
++ // bin k in the new table (where k = hash % newTable.length)
++ // since both table lengths are powers of two (specifically, newTable is a multiple of oldTable),
++ // the possible number of locations in the new table to assign any given i is newTable.length/oldTable.length
++
++ // we can build the new linked nodes for the new table by using a work array sized to newTable.length/oldTable.length
++ // which holds the _last_ entry in the chain per bin
++
++ final int capOldShift = IntegerUtil.floorLog2(oldTable.length);
++ final int capDiffShift = IntegerUtil.floorLog2(capacity) - capOldShift;
++
++ if (capDiffShift == 0) {
++ throw new IllegalStateException("Resizing to same size");
++ }
++
++ // noinspection unchecked
++ final TableEntry<V>[] work = new TableEntry[1 << capDiffShift]; // typically, capDiffShift = 1
++
++ for (int i = 0, len = oldTable.length; i < len; ++i) {
++ TableEntry<V> binNode = getAtIndexVolatile(oldTable, i);
++
++ for (;;) {
++ if (binNode == null) {
++ // just need to replace the bin node, do not need to move anything
++ if (null == (binNode = compareAndExchangeAtIndexVolatile(oldTable, i, null, resizeNode))) {
++ break;
++ } // else: binNode != null, fall through
++ }
++
++ // need write lock to block other writers
++ synchronized (binNode) {
++ if (binNode != (binNode = getAtIndexVolatile(oldTable, i))) {
++ continue;
++ }
++
++ // an important detail of resizing is that we do not need to be concerned with synchronisation on
++ // writes to the new table, as no access to any nodes on bin i on oldTable will occur until a thread
++ // sees the resizeNode
++ // specifically, as long as the resizeNode is release written there are no cases where another thread
++ // will see our writes to the new table
++
++ TableEntry<V> next = binNode.getNextPlain();
++
++ if (next == null) {
++ // simple case: do not use work array
++
++ // do not need to create new node, readers only need to see the state of the map at the
++ // beginning of a call, so any additions onto _next_ don't really matter
++ // additionally, the old node is replaced so that writers automatically forward to the new table,
++ // which resolves any issues
++ newTable[getHash(binNode.key) & (capacity - 1)] = binNode;
++ } else {
++ // reset for next usage
++ Arrays.fill(work, null);
++
++ for (TableEntry<V> curr = binNode; curr != null; curr = curr.getNextPlain()) {
++ final int newTableIdx = getHash(curr.key) & (capacity - 1);
++ final int workIdx = newTableIdx >>> capOldShift;
++
++ final TableEntry<V> replace = new TableEntry<>(curr.key, curr.getValuePlain());
++
++ final TableEntry<V> workNode = work[workIdx];
++ work[workIdx] = replace;
++
++ if (workNode == null) {
++ newTable[newTableIdx] = replace;
++ continue;
++ } else {
++ workNode.setNextPlain(replace);
++ continue;
++ }
++ }
++ }
++
++ setAtIndexRelease(oldTable, i, resizeNode);
++ break;
++ }
++ }
++ }
++
++ // calculate new threshold
++ final int newThreshold;
++ if (capacity == MAXIMUM_CAPACITY) {
++ newThreshold = THRESHOLD_NO_RESIZE;
++ } else {
++ newThreshold = getTargetThreshold(capacity, loadFactor);
++ }
++
++ this.table = newTable;
++ // finish resize operation by releasing hold on threshold
++ this.setThresholdVolatile(newThreshold);
++ }
++
++ /**
++ * Subtracts count from size
++ */
++ protected final void subSize(final long count) {
++ this.size.add(-count);
++ }
++
++ /**
++ * Atomically updates the value associated with {@code key} to {@code value}, or inserts a new mapping with {@code key}
++ * mapped to {@code value}.
++ * @param key Specified key
++ * @param value Specified value
++ * @throws NullPointerException If value is null
++ * @return Old value previously associated with key, or {@code null} if none.
++ */
++ public V put(final long key, final V value) {
++ Validate.notNull(value, "Value may not be null");
++
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ table_loop:
++ for (;;) {
++ final int index = hash & (table.length - 1);
++
++ TableEntry<V> node = getAtIndexVolatile(table, index);
++ node_loop:
++ for (;;) {
++ if (node == null) {
++ if (null == (node = compareAndExchangeAtIndexVolatile(table, index, null, new TableEntry<>(key, value)))) {
++ // successfully inserted
++ this.addSize(1L);
++ return null;
++ } // else: node != null, fall through
++ }
++
++ if (node.resize) {
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue table_loop;
++ }
++
++ synchronized (node) {
++ if (node != (node = getAtIndexVolatile(table, index))) {
++ continue node_loop;
++ }
++ // plain reads are fine during synchronised access, as we are the only writer
++ TableEntry<V> prev = null;
++ for (; node != null; prev = node, node = node.getNextPlain()) {
++ if (node.key == key) {
++ final V ret = node.getValuePlain();
++ node.setValueVolatile(value);
++ return ret;
++ }
++ }
++
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ prev.setNextRelease(new TableEntry<>(key, value));
++ }
++
++ this.addSize(1L);
++ return null;
++ }
++ }
++ }
++
++ /**
++ * Atomically inserts a new mapping with {@code key} mapped to {@code value} if and only if {@code key} is not
++ * currently mapped to some value.
++ * @param key Specified key
++ * @param value Specified value
++ * @throws NullPointerException If value is null
++ * @return Value currently associated with key, or {@code null} if none and {@code value} was associated.
++ */
++ public V putIfAbsent(final long key, final V value) {
++ Validate.notNull(value, "Value may not be null");
++
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ table_loop:
++ for (;;) {
++ final int index = hash & (table.length - 1);
++
++ TableEntry<V> node = getAtIndexVolatile(table, index);
++ node_loop:
++ for (;;) {
++ if (node == null) {
++ if (null == (node = compareAndExchangeAtIndexVolatile(table, index, null, new TableEntry<>(key, value)))) {
++ // successfully inserted
++ this.addSize(1L);
++ return null;
++ } // else: node != null, fall through
++ }
++
++ if (node.resize) {
++ // noinspection unchecked
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue table_loop;
++ }
++
++ // optimise ifAbsent calls: check if first node is key before attempting lock acquire
++ if (node.key == key) {
++ final V ret = node.getValueVolatile();
++ if (ret != null) {
++ return ret;
++ } // else: fall back to lock to read the node
++ }
++
++ synchronized (node) {
++ if (node != (node = getAtIndexVolatile(table, index))) {
++ continue node_loop;
++ }
++ // plain reads are fine during synchronised access, as we are the only writer
++ TableEntry<V> prev = null;
++ for (; node != null; prev = node, node = node.getNextPlain()) {
++ if (node.key == key) {
++ return node.getValuePlain();
++ }
++ }
++
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ prev.setNextRelease(new TableEntry<>(key, value));
++ }
++
++ this.addSize(1L);
++ return null;
++ }
++ }
++ }
++
++ /**
++ * Atomically updates the value associated with {@code key} to {@code value}, or does nothing if {@code key} is not
++ * associated with a value.
++ * @param key Specified key
++ * @param value Specified value
++ * @throws NullPointerException If value is null
++ * @return Old value previously associated with key, or {@code null} if none.
++ */
++ public V replace(final long key, final V value) {
++ Validate.notNull(value, "Value may not be null");
++
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ table_loop:
++ for (;;) {
++ final int index = hash & (table.length - 1);
++
++ TableEntry<V> node = getAtIndexVolatile(table, index);
++ node_loop:
++ for (;;) {
++ if (node == null) {
++ return null;
++ }
++
++ if (node.resize) {
++ // noinspection unchecked
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue table_loop;
++ }
++
++ synchronized (node) {
++ if (node != (node = getAtIndexVolatile(table, index))) {
++ continue node_loop;
++ }
++
++ // plain reads are fine during synchronised access, as we are the only writer
++ for (; node != null; node = node.getNextPlain()) {
++ if (node.key == key) {
++ final V ret = node.getValuePlain();
++ node.setValueVolatile(value);
++ return ret;
++ }
++ }
++ }
++
++ return null;
++ }
++ }
++ }
++
++ /**
++ * Atomically updates the value associated with {@code key} to {@code update} if the currently associated
++ * value is reference equal to {@code expect}, otherwise does nothing.
++ * @param key Specified key
++ * @param expect Expected value to check current mapped value with
++ * @param update Update value to replace mapped value with
++ * @throws NullPointerException If value is null
++ * @return If the currently mapped value is not reference equal to {@code expect}, then returns the currently mapped
++ * value. If the key is not mapped to any value, then returns {@code null}. If neither of the two cases are
++ * true, then returns {@code expect}.
++ */
++ public V replace(final long key, final V expect, final V update) {
++ Validate.notNull(expect, "Expect may not be null");
++ Validate.notNull(update, "Update may not be null");
++
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ table_loop:
++ for (;;) {
++ final int index = hash & (table.length - 1);
++
++ TableEntry<V> node = getAtIndexVolatile(table, index);
++ node_loop:
++ for (;;) {
++ if (node == null) {
++ return null;
++ }
++
++ if (node.resize) {
++ // noinspection unchecked
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue table_loop;
++ }
++
++ synchronized (node) {
++ if (node != (node = getAtIndexVolatile(table, index))) {
++ continue node_loop;
++ }
++
++ // plain reads are fine during synchronised access, as we are the only writer
++ for (; node != null; node = node.getNextPlain()) {
++ if (node.key == key) {
++ final V ret = node.getValuePlain();
++
++ if (ret != expect) {
++ return ret;
++ }
++
++ node.setValueVolatile(update);
++ return ret;
++ }
++ }
++ }
++
++ return null;
++ }
++ }
++ }
++
++ /**
++ * Atomically removes the mapping for the specified key and returns the value it was associated with. If the key
++ * is not mapped to a value, then does nothing and returns {@code null}.
++ * @param key Specified key
++ * @return Old value previously associated with key, or {@code null} if none.
++ */
++ public V remove(final long key) {
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ table_loop:
++ for (;;) {
++ final int index = hash & (table.length - 1);
++
++ TableEntry<V> node = getAtIndexVolatile(table, index);
++ node_loop:
++ for (;;) {
++ if (node == null) {
++ return null;
++ }
++
++ if (node.resize) {
++ // noinspection unchecked
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue table_loop;
++ }
++
++ boolean removed = false;
++ V ret = null;
++
++ synchronized (node) {
++ if (node != (node = getAtIndexVolatile(table, index))) {
++ continue node_loop;
++ }
++
++ TableEntry<V> prev = null;
++
++ // plain reads are fine during synchronised access, as we are the only writer
++ for (; node != null; prev = node, node = node.getNextPlain()) {
++ if (node.key == key) {
++ ret = node.getValuePlain();
++ removed = true;
++
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ if (prev == null) {
++ setAtIndexRelease(table, index, node.getNextPlain());
++ } else {
++ prev.setNextRelease(node.getNextPlain());
++ }
++
++ break;
++ }
++ }
++ }
++
++ if (removed) {
++ this.subSize(1L);
++ }
++
++ return ret;
++ }
++ }
++ }
++
++ /**
++ * Atomically removes the mapping for the specified key if it is mapped to {@code expect} and returns {@code expect}. If the key
++ * is not mapped to a value, then does nothing and returns {@code null}. If the key is mapped to a value that is not reference
++ * equal to {@code expect}, then returns that value.
++ * @param key Specified key
++ * @param expect Specified expected value
++ * @return The specified expected value if the key was mapped to {@code expect}. If
++ * the key is not mapped to any value, then returns {@code null}. If neither of those cases are true,
++ * then returns the current (non-null) mapped value for key.
++ */
++ public V remove(final long key, final V expect) {
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ table_loop:
++ for (;;) {
++ final int index = hash & (table.length - 1);
++
++ TableEntry<V> node = getAtIndexVolatile(table, index);
++ node_loop:
++ for (;;) {
++ if (node == null) {
++ return null;
++ }
++
++ if (node.resize) {
++ // noinspection unchecked
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue table_loop;
++ }
++
++ boolean removed = false;
++ V ret = null;
++
++ synchronized (node) {
++ if (node != (node = getAtIndexVolatile(table, index))) {
++ continue node_loop;
++ }
++
++ TableEntry<V> prev = null;
++
++ // plain reads are fine during synchronised access, as we are the only writer
++ for (; node != null; prev = node, node = node.getNextPlain()) {
++ if (node.key == key) {
++ ret = node.getValuePlain();
++ if (ret == expect) {
++ removed = true;
++
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ if (prev == null) {
++ setAtIndexRelease(table, index, node.getNextPlain());
++ } else {
++ prev.setNextRelease(node.getNextPlain());
++ }
++ }
++ break;
++ }
++ }
++ }
++
++ if (removed) {
++ this.subSize(1L);
++ }
++
++ return ret;
++ }
++ }
++ }
++
++ /**
++ * Atomically removes the mapping for the specified key the predicate returns true for its currently mapped value. If the key
++ * is not mapped to a value, then does nothing and returns {@code null}.
++ *
++ * <p>
++ * This function is a "functional methods" as defined by {@link ConcurrentLong2ReferenceChainedHashTable}.
++ * </p>
++ *
++ * @param key Specified key
++ * @param predicate Specified predicate
++ * @throws NullPointerException If predicate is null
++ * @return The specified expected value if the key was mapped to {@code expect}. If
++ * the key is not mapped to any value, then returns {@code null}. If neither of those cases are true,
++ * then returns the current (non-null) mapped value for key.
++ */
++ public V removeIf(final long key, final Predicate<? super V> predicate) {
++ Validate.notNull(predicate, "Predicate may not be null");
++
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ table_loop:
++ for (;;) {
++ final int index = hash & (table.length - 1);
++
++ TableEntry<V> node = getAtIndexVolatile(table, index);
++ node_loop:
++ for (;;) {
++ if (node == null) {
++ return null;
++ }
++
++ if (node.resize) {
++ // noinspection unchecked
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue table_loop;
++ }
++
++ boolean removed = false;
++ V ret = null;
++
++ synchronized (node) {
++ if (node != (node = getAtIndexVolatile(table, index))) {
++ continue node_loop;
++ }
++
++ TableEntry<V> prev = null;
++
++ // plain reads are fine during synchronised access, as we are the only writer
++ for (; node != null; prev = node, node = node.getNextPlain()) {
++ if (node.key == key) {
++ ret = node.getValuePlain();
++ if (predicate.test(ret)) {
++ removed = true;
++
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ if (prev == null) {
++ setAtIndexRelease(table, index, node.getNextPlain());
++ } else {
++ prev.setNextRelease(node.getNextPlain());
++ }
++ }
++ break;
++ }
++ }
++ }
++
++ if (removed) {
++ this.subSize(1L);
++ }
++
++ return ret;
++ }
++ }
++ }
++
++ /**
++ * See {@link java.util.concurrent.ConcurrentMap#compute(Object, BiFunction)}
++ * <p>
++ * This function is a "functional methods" as defined by {@link ConcurrentLong2ReferenceChainedHashTable}.
++ * </p>
++ */
++ public V compute(final long key, final BiLong1Function<? super V, ? extends V> function) {
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ table_loop:
++ for (;;) {
++ final int index = hash & (table.length - 1);
++
++ TableEntry<V> node = getAtIndexVolatile(table, index);
++ node_loop:
++ for (;;) {
++ V ret = null;
++ if (node == null) {
++ final TableEntry<V> insert = new TableEntry<>(key, null);
++
++ boolean added = false;
++
++ synchronized (insert) {
++ if (null == (node = compareAndExchangeAtIndexVolatile(table, index, null, insert))) {
++ try {
++ ret = function.apply(key, null);
++ } catch (final Throwable throwable) {
++ setAtIndexVolatile(table, index, null);
++ ThrowUtil.throwUnchecked(throwable);
++ // unreachable
++ return null;
++ }
++
++ if (ret == null) {
++ setAtIndexVolatile(table, index, null);
++ return ret;
++ } else {
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ insert.setValueRelease(ret);
++ added = true;
++ }
++ } // else: node != null, fall through
++ }
++
++ if (added) {
++ this.addSize(1L);
++ return ret;
++ }
++ }
++
++ if (node.resize) {
++ // noinspection unchecked
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue table_loop;
++ }
++
++ boolean removed = false;
++ boolean added = false;
++
++ synchronized (node) {
++ if (node != (node = getAtIndexVolatile(table, index))) {
++ continue node_loop;
++ }
++ // plain reads are fine during synchronised access, as we are the only writer
++ TableEntry<V> prev = null;
++ for (; node != null; prev = node, node = node.getNextPlain()) {
++ if (node.key == key) {
++ final V old = node.getValuePlain();
++
++ final V computed = function.apply(key, old);
++
++ if (computed != null) {
++ node.setValueVolatile(computed);
++ return computed;
++ }
++
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ if (prev == null) {
++ setAtIndexRelease(table, index, node.getNextPlain());
++ } else {
++ prev.setNextRelease(node.getNextPlain());
++ }
++
++ removed = true;
++ break;
++ }
++ }
++
++ if (!removed) {
++ final V computed = function.apply(key, null);
++ if (computed != null) {
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ prev.setNextRelease(new TableEntry<>(key, computed));
++ ret = computed;
++ added = true;
++ }
++ }
++ }
++
++ if (removed) {
++ this.subSize(1L);
++ }
++ if (added) {
++ this.addSize(1L);
++ }
++
++ return ret;
++ }
++ }
++ }
++
++ /**
++ * See {@link java.util.concurrent.ConcurrentMap#computeIfAbsent(Object, Function)}
++ * <p>
++ * This function is a "functional methods" as defined by {@link ConcurrentLong2ReferenceChainedHashTable}.
++ * </p>
++ */
++ public V computeIfAbsent(final long key, final LongFunction<? extends V> function) {
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ table_loop:
++ for (;;) {
++ final int index = hash & (table.length - 1);
++
++ TableEntry<V> node = getAtIndexVolatile(table, index);
++ node_loop:
++ for (;;) {
++ V ret = null;
++ if (node == null) {
++ final TableEntry<V> insert = new TableEntry<>(key, null);
++
++ boolean added = false;
++
++ synchronized (insert) {
++ if (null == (node = compareAndExchangeAtIndexVolatile(table, index, null, insert))) {
++ try {
++ ret = function.apply(key);
++ } catch (final Throwable throwable) {
++ setAtIndexVolatile(table, index, null);
++ ThrowUtil.throwUnchecked(throwable);
++ // unreachable
++ return null;
++ }
++
++ if (ret == null) {
++ setAtIndexVolatile(table, index, null);
++ return null;
++ } else {
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ insert.setValueRelease(ret);
++ added = true;
++ }
++ } // else: node != null, fall through
++ }
++
++ if (added) {
++ this.addSize(1L);
++ return ret;
++ }
++ }
++
++ if (node.resize) {
++ // noinspection unchecked
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue table_loop;
++ }
++
++ // optimise ifAbsent calls: check if first node is key before attempting lock acquire
++ if (node.key == key) {
++ ret = node.getValueVolatile();
++ if (ret != null) {
++ return ret;
++ } // else: fall back to lock to read the node
++ }
++
++ boolean added = false;
++
++ synchronized (node) {
++ if (node != (node = getAtIndexVolatile(table, index))) {
++ continue node_loop;
++ }
++ // plain reads are fine during synchronised access, as we are the only writer
++ TableEntry<V> prev = null;
++ for (; node != null; prev = node, node = node.getNextPlain()) {
++ if (node.key == key) {
++ ret = node.getValuePlain();
++ return ret;
++ }
++ }
++
++ final V computed = function.apply(key);
++ if (computed != null) {
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ prev.setNextRelease(new TableEntry<>(key, computed));
++ ret = computed;
++ added = true;
++ }
++ }
++
++ if (added) {
++ this.addSize(1L);
++ }
++
++ return ret;
++ }
++ }
++ }
++
++ /**
++ * See {@link java.util.concurrent.ConcurrentMap#computeIfPresent(Object, BiFunction)}
++ * <p>
++ * This function is a "functional methods" as defined by {@link ConcurrentLong2ReferenceChainedHashTable}.
++ * </p>
++ */
++ public V computeIfPresent(final long key, final BiLong1Function<? super V, ? extends V> function) {
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ table_loop:
++ for (;;) {
++ final int index = hash & (table.length - 1);
++
++ TableEntry<V> node = getAtIndexVolatile(table, index);
++ node_loop:
++ for (;;) {
++ if (node == null) {
++ return null;
++ }
++
++ if (node.resize) {
++ // noinspection unchecked
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue table_loop;
++ }
++
++ boolean removed = false;
++
++ synchronized (node) {
++ if (node != (node = getAtIndexVolatile(table, index))) {
++ continue node_loop;
++ }
++ // plain reads are fine during synchronised access, as we are the only writer
++ TableEntry<V> prev = null;
++ for (; node != null; prev = node, node = node.getNextPlain()) {
++ if (node.key == key) {
++ final V old = node.getValuePlain();
++
++ final V computed = function.apply(key, old);
++
++ if (computed != null) {
++ node.setValueVolatile(computed);
++ return computed;
++ }
++
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ if (prev == null) {
++ setAtIndexRelease(table, index, node.getNextPlain());
++ } else {
++ prev.setNextRelease(node.getNextPlain());
++ }
++
++ removed = true;
++ break;
++ }
++ }
++ }
++
++ if (removed) {
++ this.subSize(1L);
++ }
++
++ return null;
++ }
++ }
++ }
++
++ /**
++ * See {@link java.util.concurrent.ConcurrentMap#merge(Object, Object, BiFunction)}
++ * <p>
++ * This function is a "functional methods" as defined by {@link ConcurrentLong2ReferenceChainedHashTable}.
++ * </p>
++ */
++ public V merge(final long key, final V def, final BiFunction<? super V, ? super V, ? extends V> function) {
++ Validate.notNull(def, "Default value may not be null");
++
++ final int hash = getHash(key);
++
++ TableEntry<V>[] table = this.table;
++ table_loop:
++ for (;;) {
++ final int index = hash & (table.length - 1);
++
++ TableEntry<V> node = getAtIndexVolatile(table, index);
++ node_loop:
++ for (;;) {
++ if (node == null) {
++ if (null == (node = compareAndExchangeAtIndexVolatile(table, index, null, new TableEntry<>(key, def)))) {
++ // successfully inserted
++ this.addSize(1L);
++ return def;
++ } // else: node != null, fall through
++ }
++
++ if (node.resize) {
++ // noinspection unchecked
++ table = (TableEntry<V>[])node.getValuePlain();
++ continue table_loop;
++ }
++
++ boolean removed = false;
++ boolean added = false;
++ V ret = null;
++
++ synchronized (node) {
++ if (node != (node = getAtIndexVolatile(table, index))) {
++ continue node_loop;
++ }
++ // plain reads are fine during synchronised access, as we are the only writer
++ TableEntry<V> prev = null;
++ for (; node != null; prev = node, node = node.getNextPlain()) {
++ if (node.key == key) {
++ final V old = node.getValuePlain();
++
++ final V computed = function.apply(old, def);
++
++ if (computed != null) {
++ node.setValueVolatile(computed);
++ return computed;
++ }
++
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ if (prev == null) {
++ setAtIndexRelease(table, index, node.getNextPlain());
++ } else {
++ prev.setNextRelease(node.getNextPlain());
++ }
++
++ removed = true;
++ break;
++ }
++ }
++
++ if (!removed) {
++ // volatile ordering ensured by addSize(), but we need release here
++ // to ensure proper ordering with reads and other writes
++ prev.setNextRelease(new TableEntry<>(key, def));
++ ret = def;
++ added = true;
++ }
++ }
++
++ if (removed) {
++ this.subSize(1L);
++ }
++ if (added) {
++ this.addSize(1L);
++ }
++
++ return ret;
++ }
++ }
++ }
++
++ /**
++ * Removes at least all entries currently mapped at the beginning of this call. May not remove entries added during
++ * this call. As a result, only if this map is not modified during the call, that all entries will be removed by
++ * the end of the call.
++ *
++ * <p>
++ * This function is not atomic.
++ * </p>
++ */
++ public void clear() {
++ // it is possible to optimise this to directly interact with the table,
++ // but we do need to be careful when interacting with resized tables,
++ // and the NodeIterator already does this logic
++ final NodeIterator<V> nodeIterator = new NodeIterator<>(this.table);
++
++ TableEntry<V> node;
++ while ((node = nodeIterator.findNext()) != null) {
++ this.remove(node.key);
++ }
++ }
++
++ /**
++ * Returns an iterator over the entries in this map. The iterator is only guaranteed to see entries that were
++ * added before the beginning of this call, but it may see entries added during.
++ */
++ public Iterator<TableEntry<V>> entryIterator() {
++ return new EntryIterator<>(this);
++ }
++
++ @Override
++ public final Iterator<TableEntry<V>> iterator() {
++ return this.entryIterator();
++ }
++
++ /**
++ * Returns an iterator over the keys in this map. The iterator is only guaranteed to see keys that were
++ * added before the beginning of this call, but it may see keys added during.
++ */
++ public PrimitiveIterator.OfLong keyIterator() {
++ return new KeyIterator<>(this);
++ }
++
++ /**
++ * Returns an iterator over the values in this map. The iterator is only guaranteed to see values that were
++ * added before the beginning of this call, but it may see values added during.
++ */
++ public Iterator<V> valueIterator() {
++ return new ValueIterator<>(this);
++ }
++
++ protected static final class EntryIterator<V> extends BaseIteratorImpl<V, TableEntry<V>> {
++
++ public EntryIterator(final ConcurrentLong2ReferenceChainedHashTable<V> map) {
++ super(map);
++ }
++
++ @Override
++ public TableEntry<V> next() throws NoSuchElementException {
++ return this.nextNode();
++ }
++
++ @Override
++ public void forEachRemaining(final Consumer<? super TableEntry<V>> action) {
++ Validate.notNull(action, "Action may not be null");
++ while (this.hasNext()) {
++ action.accept(this.next());
++ }
++ }
++ }
++
++ protected static final class KeyIterator<V> extends BaseIteratorImpl<V, Long> implements PrimitiveIterator.OfLong {
++
++ public KeyIterator(final ConcurrentLong2ReferenceChainedHashTable<V> map) {
++ super(map);
++ }
++
++ @Override
++ public Long next() throws NoSuchElementException {
++ return Long.valueOf(this.nextNode().key);
++ }
++
++ @Override
++ public long nextLong() {
++ return this.nextNode().key;
++ }
++
++ @Override
++ public void forEachRemaining(final Consumer<? super Long> action) {
++ Validate.notNull(action, "Action may not be null");
++
++ if (action instanceof LongConsumer longConsumer) {
++ this.forEachRemaining(longConsumer);
++ return;
++ }
++
++ while (this.hasNext()) {
++ action.accept(this.next());
++ }
++ }
++
++ @Override
++ public void forEachRemaining(final LongConsumer action) {
++ Validate.notNull(action, "Action may not be null");
++ while (this.hasNext()) {
++ action.accept(this.nextLong());
++ }
++ }
++ }
++
++ protected static final class ValueIterator<V> extends BaseIteratorImpl<V, V> {
++
++ public ValueIterator(final ConcurrentLong2ReferenceChainedHashTable<V> map) {
++ super(map);
++ }
++
++ @Override
++ public V next() throws NoSuchElementException {
++ return this.nextNode().getValueVolatile();
++ }
++
++ @Override
++ public void forEachRemaining(final Consumer<? super V> action) {
++ Validate.notNull(action, "Action may not be null");
++ while (this.hasNext()) {
++ action.accept(this.next());
++ }
++ }
++ }
++
++ protected static abstract class BaseIteratorImpl<V, T> extends NodeIterator<V> implements Iterator<T> {
++
++ protected final ConcurrentLong2ReferenceChainedHashTable<V> map;
++ protected TableEntry<V> lastReturned;
++ protected TableEntry<V> nextToReturn;
++
++ protected BaseIteratorImpl(final ConcurrentLong2ReferenceChainedHashTable<V> map) {
++ super(map.table);
++ this.map = map;
++ }
++
++ @Override
++ public final boolean hasNext() {
++ if (this.nextToReturn != null) {
++ return true;
++ }
++
++ return (this.nextToReturn = this.findNext()) != null;
++ }
++
++ protected final TableEntry<V> nextNode() throws NoSuchElementException {
++ TableEntry<V> ret = this.nextToReturn;
++ if (ret != null) {
++ this.lastReturned = ret;
++ this.nextToReturn = null;
++ return ret;
++ }
++ ret = this.findNext();
++ if (ret != null) {
++ this.lastReturned = ret;
++ return ret;
++ }
++ throw new NoSuchElementException();
++ }
++
++ @Override
++ public final void remove() {
++ final TableEntry<V> lastReturned = this.lastReturned;
++ if (lastReturned == null) {
++ throw new NoSuchElementException();
++ }
++ this.lastReturned = null;
++ this.map.remove(lastReturned.key);
++ }
++
++ @Override
++ public abstract T next() throws NoSuchElementException;
++
++ // overwritten by subclasses to avoid indirection on hasNext() and next()
++ @Override
++ public abstract void forEachRemaining(final Consumer<? super T> action);
++ }
++
++ protected static class NodeIterator<V> {
++
++ protected TableEntry<V>[] currentTable;
++ protected ResizeChain<V> resizeChain;
++ protected TableEntry<V> last;
++ protected int nextBin;
++ protected int increment;
++
++ protected NodeIterator(final TableEntry<V>[] baseTable) {
++ this.currentTable = baseTable;
++ this.increment = 1;
++ }
++
++ private TableEntry<V>[] pullResizeChain(final int index) {
++ final ResizeChain<V> resizeChain = this.resizeChain;
++ if (resizeChain == null) {
++ this.currentTable = null;
++ return null;
++ }
++
++ final ResizeChain<V> prevChain = resizeChain.prev;
++ this.resizeChain = prevChain;
++ if (prevChain == null) {
++ this.currentTable = null;
++ return null;
++ }
++
++ final TableEntry<V>[] newTable = prevChain.table;
++
++ // we recover the original index by modding by the new table length, as the increments applied to the index
++ // are a multiple of the new table's length
++ int newIdx = index & (newTable.length - 1);
++
++ // the increment is always the previous table's length
++ final ResizeChain<V> nextPrevChain = prevChain.prev;
++ final int increment;
++ if (nextPrevChain == null) {
++ increment = 1;
++ } else {
++ increment = nextPrevChain.table.length;
++ }
++
++ // done with the upper table, so we can skip the resize node
++ newIdx += increment;
++
++ this.increment = increment;
++ this.nextBin = newIdx;
++ this.currentTable = newTable;
++
++ return newTable;
++ }
++
++ private TableEntry<V>[] pushResizeChain(final TableEntry<V>[] table, final TableEntry<V> entry) {
++ final ResizeChain<V> chain = this.resizeChain;
++
++ if (chain == null) {
++ // noinspection unchecked
++ final TableEntry<V>[] nextTable = (TableEntry<V>[])entry.getValuePlain();
++
++ final ResizeChain<V> oldChain = new ResizeChain<>(table, null, null);
++ final ResizeChain<V> currChain = new ResizeChain<>(nextTable, oldChain, null);
++ oldChain.next = currChain;
++
++ this.increment = table.length;
++ this.resizeChain = currChain;
++ this.currentTable = nextTable;
++
++ return nextTable;
++ } else {
++ ResizeChain<V> currChain = chain.next;
++ if (currChain == null) {
++ // noinspection unchecked
++ final TableEntry<V>[] ret = (TableEntry<V>[])entry.getValuePlain();
++ currChain = new ResizeChain<>(ret, chain, null);
++ chain.next = currChain;
++
++ this.increment = table.length;
++ this.resizeChain = currChain;
++ this.currentTable = ret;
++
++ return ret;
++ } else {
++ this.increment = table.length;
++ this.resizeChain = currChain;
++ return this.currentTable = currChain.table;
++ }
++ }
++ }
++
++ protected final TableEntry<V> findNext() {
++ for (;;) {
++ final TableEntry<V> last = this.last;
++ if (last != null) {
++ final TableEntry<V> next = last.getNextVolatile();
++ if (next != null) {
++ this.last = next;
++ if (next.getValuePlain() == null) {
++ // compute() node not yet available
++ continue;
++ }
++ return next;
++ }
++ }
++
++ TableEntry<V>[] table = this.currentTable;
++
++ if (table == null) {
++ return null;
++ }
++
++ int idx = this.nextBin;
++ int increment = this.increment;
++ for (;;) {
++ if (idx >= table.length) {
++ table = this.pullResizeChain(idx);
++ idx = this.nextBin;
++ increment = this.increment;
++ if (table != null) {
++ continue;
++ } else {
++ this.last = null;
++ return null;
++ }
++ }
++
++ final TableEntry<V> entry = getAtIndexVolatile(table, idx);
++ if (entry == null) {
++ idx += increment;
++ continue;
++ }
++
++ if (entry.resize) {
++ // push onto resize chain
++ table = this.pushResizeChain(table, entry);
++ increment = this.increment;
++ continue;
++ }
++
++ this.last = entry;
++ this.nextBin = idx + increment;
++ if (entry.getValuePlain() != null) {
++ return entry;
++ } else {
++ // compute() node not yet available
++ break;
++ }
++ }
++ }
++ }
++
++ protected static final class ResizeChain<V> {
++
++ public final TableEntry<V>[] table;
++ public final ResizeChain<V> prev;
++ public ResizeChain<V> next;
++
++ public ResizeChain(final TableEntry<V>[] table, final ResizeChain<V> prev, final ResizeChain<V> next) {
++ this.table = table;
++ this.prev = prev;
++ this.next = next;
++ }
++ }
++ }
++
++ public static final class TableEntry<V> {
++
++ private static final VarHandle TABLE_ENTRY_ARRAY_HANDLE = ConcurrentUtil.getArrayHandle(TableEntry[].class);
++
++ private final boolean resize;
++
++ private final long key;
++
++ private volatile V value;
++ private static final VarHandle VALUE_HANDLE = ConcurrentUtil.getVarHandle(TableEntry.class, "value", Object.class);
++
++ private V getValuePlain() {
++ //noinspection unchecked
++ return (V)VALUE_HANDLE.get(this);
++ }
++
++ private V getValueAcquire() {
++ //noinspection unchecked
++ return (V)VALUE_HANDLE.getAcquire(this);
++ }
++
++ private V getValueVolatile() {
++ //noinspection unchecked
++ return (V)VALUE_HANDLE.getVolatile(this);
++ }
++
++ private void setValuePlain(final V value) {
++ VALUE_HANDLE.set(this, (Object)value);
++ }
++
++ private void setValueRelease(final V value) {
++ VALUE_HANDLE.setRelease(this, (Object)value);
++ }
++
++ private void setValueVolatile(final V value) {
++ VALUE_HANDLE.setVolatile(this, (Object)value);
++ }
++
++ private volatile TableEntry<V> next;
++ private static final VarHandle NEXT_HANDLE = ConcurrentUtil.getVarHandle(TableEntry.class, "next", TableEntry.class);
++
++ private TableEntry<V> getNextPlain() {
++ //noinspection unchecked
++ return (TableEntry<V>)NEXT_HANDLE.get(this);
++ }
++
++ private TableEntry<V> getNextVolatile() {
++ //noinspection unchecked
++ return (TableEntry<V>)NEXT_HANDLE.getVolatile(this);
++ }
++
++ private void setNextPlain(final TableEntry<V> next) {
++ NEXT_HANDLE.set(this, next);
++ }
++
++ private void setNextRelease(final TableEntry<V> next) {
++ NEXT_HANDLE.setRelease(this, next);
++ }
++
++ private void setNextVolatile(final TableEntry<V> next) {
++ NEXT_HANDLE.setVolatile(this, next);
++ }
++
++ public TableEntry(final long key, final V value) {
++ this.resize = false;
++ this.key = key;
++ this.setValuePlain(value);
++ }
++
++ public TableEntry(final long key, final V value, final boolean resize) {
++ this.resize = resize;
++ this.key = key;
++ this.setValuePlain(value);
++ }
++
++ public long getKey() {
++ return this.key;
++ }
++
++ public V getValue() {
++ return this.getValueVolatile();
++ }
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/map/SWMRHashTable.java b/src/main/java/ca/spottedleaf/concurrentutil/map/SWMRHashTable.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..83965350d292ccf42a34520d84dcda3f88146cff
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/map/SWMRHashTable.java
+@@ -0,0 +1,1656 @@
++package ca.spottedleaf.concurrentutil.map;
++
++import ca.spottedleaf.concurrentutil.util.CollectionUtil;
++import ca.spottedleaf.concurrentutil.util.ConcurrentUtil;
++import ca.spottedleaf.concurrentutil.util.HashUtil;
++import ca.spottedleaf.concurrentutil.util.IntegerUtil;
++import ca.spottedleaf.concurrentutil.util.Validate;
++import java.lang.invoke.VarHandle;
++import java.util.ArrayList;
++import java.util.Arrays;
++import java.util.Collection;
++import java.util.Iterator;
++import java.util.List;
++import java.util.Map;
++import java.util.NoSuchElementException;
++import java.util.Set;
++import java.util.Spliterator;
++import java.util.Spliterators;
++import java.util.function.BiConsumer;
++import java.util.function.BiFunction;
++import java.util.function.BiPredicate;
++import java.util.function.Consumer;
++import java.util.function.Function;
++import java.util.function.IntFunction;
++import java.util.function.Predicate;
++
++/**
++ * <p>
++ * Note: Not really tested, use at your own risk.
++ * </p>
++ * This map is safe for reading from multiple threads, however it is only safe to write from a single thread.
++ * {@code null} keys or values are not permitted. Writes to values in this map are guaranteed to be ordered by release semantics,
++ * however immediate visibility to other threads is not guaranteed. However, writes are guaranteed to be made visible eventually.
++ * Reads are ordered by acquire semantics.
++ * <p>
++ * Iterators cannot be modified concurrently, and its backing map cannot be modified concurrently. There is no
++ * fast-fail attempt made by iterators, thus modifying the iterator's backing map while iterating will have undefined
++ * behaviour.
++ * </p>
++ * <p>
++ * Subclasses should override {@link #clone()} to return correct instances of this class.
++ * </p>
++ * @param <K> {@inheritDoc}
++ * @param <V> {@inheritDoc}
++ */
++public class SWMRHashTable<K, V> implements Map<K, V>, Iterable<Map.Entry<K, V>> {
++
++ protected int size;
++
++ protected TableEntry<K, V>[] table;
++
++ protected final float loadFactor;
++
++ protected static final VarHandle SIZE_HANDLE = ConcurrentUtil.getVarHandle(SWMRHashTable.class, "size", int.class);
++ protected static final VarHandle TABLE_HANDLE = ConcurrentUtil.getVarHandle(SWMRHashTable.class, "table", TableEntry[].class);
++
++ /* size */
++
++ protected final int getSizePlain() {
++ return (int)SIZE_HANDLE.get(this);
++ }
++
++ protected final int getSizeOpaque() {
++ return (int)SIZE_HANDLE.getOpaque(this);
++ }
++
++ protected final int getSizeAcquire() {
++ return (int)SIZE_HANDLE.getAcquire(this);
++ }
++
++ protected final void setSizePlain(final int value) {
++ SIZE_HANDLE.set(this, value);
++ }
++
++ protected final void setSizeOpaque(final int value) {
++ SIZE_HANDLE.setOpaque(this, value);
++ }
++
++ protected final void setSizeRelease(final int value) {
++ SIZE_HANDLE.setRelease(this, value);
++ }
++
++ /* table */
++
++ protected final TableEntry<K, V>[] getTablePlain() {
++ //noinspection unchecked
++ return (TableEntry<K, V>[])TABLE_HANDLE.get(this);
++ }
++
++ protected final TableEntry<K, V>[] getTableAcquire() {
++ //noinspection unchecked
++ return (TableEntry<K, V>[])TABLE_HANDLE.getAcquire(this);
++ }
++
++ protected final void setTablePlain(final TableEntry<K, V>[] table) {
++ TABLE_HANDLE.set(this, table);
++ }
++
++ protected final void setTableRelease(final TableEntry<K, V>[] table) {
++ TABLE_HANDLE.setRelease(this, table);
++ }
++
++ protected static final int DEFAULT_CAPACITY = 16;
++ protected static final float DEFAULT_LOAD_FACTOR = 0.75f;
++ protected static final int MAXIMUM_CAPACITY = Integer.MIN_VALUE >>> 1;
++
++ /**
++ * Constructs this map with a capacity of {@code 16} and load factor of {@code 0.75f}.
++ */
++ public SWMRHashTable() {
++ this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
++ }
++
++ /**
++ * Constructs this map with the specified capacity and load factor of {@code 0.75f}.
++ * @param capacity specified initial capacity, > 0
++ */
++ public SWMRHashTable(final int capacity) {
++ this(capacity, DEFAULT_LOAD_FACTOR);
++ }
++
++ /**
++ * Constructs this map with the specified capacity and load factor.
++ * @param capacity specified capacity, > 0
++ * @param loadFactor specified load factor, > 0 && finite
++ */
++ public SWMRHashTable(final int capacity, final float loadFactor) {
++ final int tableSize = getCapacityFor(capacity);
++
++ if (loadFactor <= 0.0 || !Float.isFinite(loadFactor)) {
++ throw new IllegalArgumentException("Invalid load factor: " + loadFactor);
++ }
++
++ //noinspection unchecked
++ final TableEntry<K, V>[] table = new TableEntry[tableSize];
++ this.setTablePlain(table);
++
++ if (tableSize == MAXIMUM_CAPACITY) {
++ this.threshold = -1;
++ } else {
++ this.threshold = getTargetCapacity(tableSize, loadFactor);
++ }
++
++ this.loadFactor = loadFactor;
++ }
++
++ /**
++ * Constructs this map with a capacity of {@code 16} or the specified map's size, whichever is larger, and
++ * with a load factor of {@code 0.75f}.
++ * All of the specified map's entries are copied into this map.
++ * @param other The specified map.
++ */
++ public SWMRHashTable(final Map<K, V> other) {
++ this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, other);
++ }
++
++ /**
++ * Constructs this map with a minimum capacity of the specified capacity or the specified map's size, whichever is larger, and
++ * with a load factor of {@code 0.75f}.
++ * All of the specified map's entries are copied into this map.
++ * @param capacity specified capacity, > 0
++ * @param other The specified map.
++ */
++ public SWMRHashTable(final int capacity, final Map<K, V> other) {
++ this(capacity, DEFAULT_LOAD_FACTOR, other);
++ }
++
++ /**
++ * Constructs this map with a min capacity of the specified capacity or the specified map's size, whichever is larger, and
++ * with the specified load factor.
++ * All of the specified map's entries are copied into this map.
++ * @param capacity specified capacity, > 0
++ * @param loadFactor specified load factor, > 0 && finite
++ * @param other The specified map.
++ */
++ public SWMRHashTable(final int capacity, final float loadFactor, final Map<K, V> other) {
++ this(Math.max(Validate.notNull(other, "Null map").size(), capacity), loadFactor);
++ this.putAll(other);
++ }
++
++ protected static <K, V> TableEntry<K, V> getAtIndexOpaque(final TableEntry<K, V>[] table, final int index) {
++ // noinspection unchecked
++ return (TableEntry<K, V>)TableEntry.TABLE_ENTRY_ARRAY_HANDLE.getOpaque(table, index);
++ }
++
++ protected static <K, V> void setAtIndexRelease(final TableEntry<K, V>[] table, final int index, final TableEntry<K, V> value) {
++ TableEntry.TABLE_ENTRY_ARRAY_HANDLE.setRelease(table, index, value);
++ }
++
++ public final float getLoadFactor() {
++ return this.loadFactor;
++ }
++
++ protected static int getCapacityFor(final int capacity) {
++ if (capacity <= 0) {
++ throw new IllegalArgumentException("Invalid capacity: " + capacity);
++ }
++ if (capacity >= MAXIMUM_CAPACITY) {
++ return MAXIMUM_CAPACITY;
++ }
++ return IntegerUtil.roundCeilLog2(capacity);
++ }
++
++ /** Callers must still use acquire when reading the value of the entry. */
++ protected final TableEntry<K, V> getEntryForOpaque(final K key) {
++ final int hash = SWMRHashTable.getHash(key);
++ final TableEntry<K, V>[] table = this.getTableAcquire();
++
++ for (TableEntry<K, V> curr = getAtIndexOpaque(table, hash & (table.length - 1)); curr != null; curr = curr.getNextOpaque()) {
++ if (hash == curr.hash && (key == curr.key || curr.key.equals(key))) {
++ return curr;
++ }
++ }
++
++ return null;
++ }
++
++ protected final TableEntry<K, V> getEntryForPlain(final K key) {
++ final int hash = SWMRHashTable.getHash(key);
++ final TableEntry<K, V>[] table = this.getTablePlain();
++
++ for (TableEntry<K, V> curr = table[hash & (table.length - 1)]; curr != null; curr = curr.getNextPlain()) {
++ if (hash == curr.hash && (key == curr.key || curr.key.equals(key))) {
++ return curr;
++ }
++ }
++
++ return null;
++ }
++
++ /* MT-Safe */
++
++ /** must be deterministic given a key */
++ private static int getHash(final Object key) {
++ int hash = key == null ? 0 : key.hashCode();
++ return HashUtil.mix(hash);
++ }
++
++ // rets -1 if capacity*loadFactor is too large
++ protected static int getTargetCapacity(final int capacity, final float loadFactor) {
++ final double ret = (double)capacity * (double)loadFactor;
++ if (Double.isInfinite(ret) || ret >= ((double)Integer.MAX_VALUE)) {
++ return -1;
++ }
++
++ return (int)ret;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean equals(final Object obj) {
++ if (this == obj) {
++ return true;
++ }
++ /* Make no attempt to deal with concurrent modifications */
++ if (!(obj instanceof Map<?, ?> other)) {
++ return false;
++ }
++
++ if (this.size() != other.size()) {
++ return false;
++ }
++
++ final TableEntry<K, V>[] table = this.getTableAcquire();
++
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<K, V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ final V value = curr.getValueAcquire();
++
++ final Object otherValue = other.get(curr.key);
++ if (otherValue == null || (value != otherValue && value.equals(otherValue))) {
++ return false;
++ }
++ }
++ }
++
++ return true;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public int hashCode() {
++ /* Make no attempt to deal with concurrent modifications */
++ int hash = 0;
++ final TableEntry<K, V>[] table = this.getTableAcquire();
++
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<K, V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ hash += curr.hashCode();
++ }
++ }
++
++ return hash;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public String toString() {
++ final StringBuilder builder = new StringBuilder(64);
++ builder.append("SWMRHashTable:{");
++
++ this.forEach((final K key, final V value) -> {
++ builder.append("{key: \"").append(key).append("\", value: \"").append(value).append("\"}");
++ });
++
++ return builder.append('}').toString();
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public SWMRHashTable<K, V> clone() {
++ return new SWMRHashTable<>(this.getTableAcquire().length, this.loadFactor, this);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public Iterator<Map.Entry<K, V>> iterator() {
++ return new EntryIterator<>(this.getTableAcquire(), this);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public void forEach(final Consumer<? super Map.Entry<K, V>> action) {
++ Validate.notNull(action, "Null action");
++
++ final TableEntry<K, V>[] table = this.getTableAcquire();
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<K, V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ action.accept(curr);
++ }
++ }
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public void forEach(final BiConsumer<? super K, ? super V> action) {
++ Validate.notNull(action, "Null action");
++
++ final TableEntry<K, V>[] table = this.getTableAcquire();
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<K, V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ final V value = curr.getValueAcquire();
++
++ action.accept(curr.key, value);
++ }
++ }
++ }
++
++ /**
++ * Provides the specified consumer with all keys contained within this map.
++ * @param action The specified consumer.
++ */
++ public void forEachKey(final Consumer<? super K> action) {
++ Validate.notNull(action, "Null action");
++
++ final TableEntry<K, V>[] table = this.getTableAcquire();
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<K, V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ action.accept(curr.key);
++ }
++ }
++ }
++
++ /**
++ * Provides the specified consumer with all values contained within this map. Equivalent to {@code map.values().forEach(Consumer)}.
++ * @param action The specified consumer.
++ */
++ public void forEachValue(final Consumer<? super V> action) {
++ Validate.notNull(action, "Null action");
++
++ final TableEntry<K, V>[] table = this.getTableAcquire();
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<K, V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ final V value = curr.getValueAcquire();
++
++ action.accept(value);
++ }
++ }
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public V get(final Object key) {
++ Validate.notNull(key, "Null key");
++
++ //noinspection unchecked
++ final TableEntry<K, V> entry = this.getEntryForOpaque((K)key);
++ return entry == null ? null : entry.getValueAcquire();
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean containsKey(final Object key) {
++ Validate.notNull(key, "Null key");
++
++ // note: we need to use getValueAcquire, so that the reads from this map are ordered by acquire semantics
++ return this.get(key) != null;
++ }
++
++ /**
++ * Returns {@code true} if this map contains an entry with the specified key and value at some point during this call.
++ * @param key The specified key.
++ * @param value The specified value.
++ * @return {@code true} if this map contains an entry with the specified key and value.
++ */
++ public boolean contains(final Object key, final Object value) {
++ Validate.notNull(key, "Null key");
++
++ //noinspection unchecked
++ final TableEntry<K, V> entry = this.getEntryForOpaque((K)key);
++
++ if (entry == null) {
++ return false;
++ }
++
++ final V entryVal = entry.getValueAcquire();
++ return entryVal == value || entryVal.equals(value);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean containsValue(final Object value) {
++ Validate.notNull(value, "Null value");
++
++ final TableEntry<K, V>[] table = this.getTableAcquire();
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<K, V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ final V currVal = curr.getValueAcquire();
++ if (currVal == value || currVal.equals(value)) {
++ return true;
++ }
++ }
++ }
++
++ return false;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public V getOrDefault(final Object key, final V defaultValue) {
++ Validate.notNull(key, "Null key");
++
++ //noinspection unchecked
++ final TableEntry<K, V> entry = this.getEntryForOpaque((K)key);
++
++ return entry == null ? defaultValue : entry.getValueAcquire();
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public int size() {
++ return this.getSizeAcquire();
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean isEmpty() {
++ return this.getSizeAcquire() == 0;
++ }
++
++ protected KeySet<K, V> keyset;
++ protected ValueCollection<K, V> values;
++ protected EntrySet<K, V> entrySet;
++
++ @Override
++ public Set<K> keySet() {
++ return this.keyset == null ? this.keyset = new KeySet<>(this) : this.keyset;
++ }
++
++ @Override
++ public Collection<V> values() {
++ return this.values == null ? this.values = new ValueCollection<>(this) : this.values;
++ }
++
++ @Override
++ public Set<Map.Entry<K, V>> entrySet() {
++ return this.entrySet == null ? this.entrySet = new EntrySet<>(this) : this.entrySet;
++ }
++
++ /* Non-MT-Safe */
++
++ protected int threshold;
++
++ protected final void checkResize(final int minCapacity) {
++ if (minCapacity <= this.threshold || this.threshold < 0) {
++ return;
++ }
++
++ final TableEntry<K, V>[] table = this.getTablePlain();
++ int newCapacity = minCapacity >= MAXIMUM_CAPACITY ? MAXIMUM_CAPACITY : IntegerUtil.roundCeilLog2(minCapacity);
++ if (newCapacity < 0) {
++ newCapacity = MAXIMUM_CAPACITY;
++ }
++ if (newCapacity <= table.length) {
++ if (newCapacity == MAXIMUM_CAPACITY) {
++ return;
++ }
++ newCapacity = table.length << 1;
++ }
++
++ //noinspection unchecked
++ final TableEntry<K, V>[] newTable = new TableEntry[newCapacity];
++ final int indexMask = newCapacity - 1;
++
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<K, V> entry = table[i]; entry != null; entry = entry.getNextPlain()) {
++ final int hash = entry.hash;
++ final int index = hash & indexMask;
++
++ /* we need to create a new entry since there could be reading threads */
++ final TableEntry<K, V> insert = new TableEntry<>(hash, entry.key, entry.getValuePlain());
++
++ final TableEntry<K, V> prev = newTable[index];
++
++ newTable[index] = insert;
++ insert.setNextPlain(prev);
++ }
++ }
++
++ if (newCapacity == MAXIMUM_CAPACITY) {
++ this.threshold = -1; /* No more resizing */
++ } else {
++ this.threshold = getTargetCapacity(newCapacity, this.loadFactor);
++ }
++ this.setTableRelease(newTable); /* use release to publish entries in table */
++ }
++
++ protected final int addToSize(final int num) {
++ final int newSize = this.getSizePlain() + num;
++
++ this.setSizeOpaque(newSize);
++ this.checkResize(newSize);
++
++ return newSize;
++ }
++
++ protected final int removeFromSize(final int num) {
++ final int newSize = this.getSizePlain() - num;
++
++ this.setSizeOpaque(newSize);
++
++ return newSize;
++ }
++
++ /* Cannot be used to perform downsizing */
++ protected final int removeFromSizePlain(final int num) {
++ final int newSize = this.getSizePlain() - num;
++
++ this.setSizePlain(newSize);
++
++ return newSize;
++ }
++
++ protected final V put(final K key, final V value, final boolean onlyIfAbsent) {
++ final TableEntry<K, V>[] table = this.getTablePlain();
++ final int hash = SWMRHashTable.getHash(key);
++ final int index = hash & (table.length - 1);
++
++ final TableEntry<K, V> head = table[index];
++ if (head == null) {
++ final TableEntry<K, V> insert = new TableEntry<>(hash, key, value);
++ setAtIndexRelease(table, index, insert);
++ this.addToSize(1);
++ return null;
++ }
++
++ for (TableEntry<K, V> curr = head;;) {
++ if (curr.hash == hash && (key == curr.key || curr.key.equals(key))) {
++ if (onlyIfAbsent) {
++ return curr.getValuePlain();
++ }
++
++ final V currVal = curr.getValuePlain();
++ curr.setValueRelease(value);
++ return currVal;
++ }
++
++ final TableEntry<K, V> next = curr.getNextPlain();
++ if (next != null) {
++ curr = next;
++ continue;
++ }
++
++ final TableEntry<K, V> insert = new TableEntry<>(hash, key, value);
++
++ curr.setNextRelease(insert);
++ this.addToSize(1);
++ return null;
++ }
++ }
++
++ /**
++ * Removes a key-value pair from this map if the specified predicate returns true. The specified predicate is
++ * tested with every entry in this map. Returns the number of key-value pairs removed.
++ * @param predicate The predicate to test key-value pairs against.
++ * @return The total number of key-value pairs removed from this map.
++ */
++ public int removeIf(final BiPredicate<K, V> predicate) {
++ Validate.notNull(predicate, "Null predicate");
++
++ int removed = 0;
++
++ final TableEntry<K, V>[] table = this.getTablePlain();
++
++ bin_iteration_loop:
++ for (int i = 0, len = table.length; i < len; ++i) {
++ TableEntry<K, V> curr = table[i];
++ if (curr == null) {
++ continue;
++ }
++
++ /* Handle bin nodes first */
++ while (predicate.test(curr.key, curr.getValuePlain())) {
++ ++removed;
++ this.removeFromSizePlain(1); /* required in case predicate throws an exception */
++
++ setAtIndexRelease(table, i, curr = curr.getNextPlain());
++
++ if (curr == null) {
++ continue bin_iteration_loop;
++ }
++ }
++
++ TableEntry<K, V> prev;
++
++ /* curr at this point is the bin node */
++
++ for (prev = curr, curr = curr.getNextPlain(); curr != null;) {
++ /* If we want to remove, then we should hold prev, as it will be a valid entry to link on */
++ if (predicate.test(curr.key, curr.getValuePlain())) {
++ ++removed;
++ this.removeFromSizePlain(1); /* required in case predicate throws an exception */
++
++ prev.setNextRelease(curr = curr.getNextPlain());
++ } else {
++ prev = curr;
++ curr = curr.getNextPlain();
++ }
++ }
++ }
++
++ return removed;
++ }
++
++ /**
++ * Removes a key-value pair from this map if the specified predicate returns true. The specified predicate is
++ * tested with every entry in this map. Returns the number of key-value pairs removed.
++ * @param predicate The predicate to test key-value pairs against.
++ * @return The total number of key-value pairs removed from this map.
++ */
++ public int removeEntryIf(final Predicate<? super Map.Entry<K, V>> predicate) {
++ Validate.notNull(predicate, "Null predicate");
++
++ int removed = 0;
++
++ final TableEntry<K, V>[] table = this.getTablePlain();
++
++ bin_iteration_loop:
++ for (int i = 0, len = table.length; i < len; ++i) {
++ TableEntry<K, V> curr = table[i];
++ if (curr == null) {
++ continue;
++ }
++
++ /* Handle bin nodes first */
++ while (predicate.test(curr)) {
++ ++removed;
++ this.removeFromSizePlain(1); /* required in case predicate throws an exception */
++
++ setAtIndexRelease(table, i, curr = curr.getNextPlain());
++
++ if (curr == null) {
++ continue bin_iteration_loop;
++ }
++ }
++
++ TableEntry<K, V> prev;
++
++ /* curr at this point is the bin node */
++
++ for (prev = curr, curr = curr.getNextPlain(); curr != null;) {
++ /* If we want to remove, then we should hold prev, as it will be a valid entry to link on */
++ if (predicate.test(curr)) {
++ ++removed;
++ this.removeFromSizePlain(1); /* required in case predicate throws an exception */
++
++ prev.setNextRelease(curr = curr.getNextPlain());
++ } else {
++ prev = curr;
++ curr = curr.getNextPlain();
++ }
++ }
++ }
++
++ return removed;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public V put(final K key, final V value) {
++ Validate.notNull(key, "Null key");
++ Validate.notNull(value, "Null value");
++
++ return this.put(key, value, false);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public V putIfAbsent(final K key, final V value) {
++ Validate.notNull(key, "Null key");
++ Validate.notNull(value, "Null value");
++
++ return this.put(key, value, true);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean remove(final Object key, final Object value) {
++ Validate.notNull(key, "Null key");
++ Validate.notNull(value, "Null value");
++
++ final TableEntry<K, V>[] table = this.getTablePlain();
++ final int hash = SWMRHashTable.getHash(key);
++ final int index = hash & (table.length - 1);
++
++ final TableEntry<K, V> head = table[index];
++ if (head == null) {
++ return false;
++ }
++
++ if (head.hash == hash && (head.key == key || head.key.equals(key))) {
++ final V currVal = head.getValuePlain();
++
++ if (currVal != value && !currVal.equals(value)) {
++ return false;
++ }
++
++ setAtIndexRelease(table, index, head.getNextPlain());
++ this.removeFromSize(1);
++
++ return true;
++ }
++
++ for (TableEntry<K, V> curr = head.getNextPlain(), prev = head; curr != null; prev = curr, curr = curr.getNextPlain()) {
++ if (curr.hash == hash && (curr.key == key || curr.key.equals(key))) {
++ final V currVal = curr.getValuePlain();
++
++ if (currVal != value && !currVal.equals(value)) {
++ return false;
++ }
++
++ prev.setNextRelease(curr.getNextPlain());
++ this.removeFromSize(1);
++
++ return true;
++ }
++ }
++
++ return false;
++ }
++
++ protected final V remove(final Object key, final int hash) {
++ final TableEntry<K, V>[] table = this.getTablePlain();
++ final int index = (table.length - 1) & hash;
++
++ final TableEntry<K, V> head = table[index];
++ if (head == null) {
++ return null;
++ }
++
++ if (hash == head.hash && (head.key == key || head.key.equals(key))) {
++ setAtIndexRelease(table, index, head.getNextPlain());
++ this.removeFromSize(1);
++
++ return head.getValuePlain();
++ }
++
++ for (TableEntry<K, V> curr = head.getNextPlain(), prev = head; curr != null; prev = curr, curr = curr.getNextPlain()) {
++ if (curr.hash == hash && (key == curr.key || curr.key.equals(key))) {
++ prev.setNextRelease(curr.getNextPlain());
++ this.removeFromSize(1);
++
++ return curr.getValuePlain();
++ }
++ }
++
++ return null;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public V remove(final Object key) {
++ Validate.notNull(key, "Null key");
++
++ return this.remove(key, SWMRHashTable.getHash(key));
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean replace(final K key, final V oldValue, final V newValue) {
++ Validate.notNull(key, "Null key");
++ Validate.notNull(oldValue, "Null oldValue");
++ Validate.notNull(newValue, "Null newValue");
++
++ final TableEntry<K, V> entry = this.getEntryForPlain(key);
++ if (entry == null) {
++ return false;
++ }
++
++ final V currValue = entry.getValuePlain();
++ if (currValue == oldValue || currValue.equals(oldValue)) {
++ entry.setValueRelease(newValue);
++ return true;
++ }
++
++ return false;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public V replace(final K key, final V value) {
++ Validate.notNull(key, "Null key");
++ Validate.notNull(value, "Null value");
++
++ final TableEntry<K, V> entry = this.getEntryForPlain(key);
++ if (entry == null) {
++ return null;
++ }
++
++ final V prev = entry.getValuePlain();
++ entry.setValueRelease(value);
++ return prev;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public void replaceAll(final BiFunction<? super K, ? super V, ? extends V> function) {
++ Validate.notNull(function, "Null function");
++
++ final TableEntry<K, V>[] table = this.getTablePlain();
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<K, V> curr = table[i]; curr != null; curr = curr.getNextPlain()) {
++ final V value = curr.getValuePlain();
++
++ final V newValue = function.apply(curr.key, value);
++ if (newValue == null) {
++ throw new NullPointerException();
++ }
++
++ curr.setValueRelease(newValue);
++ }
++ }
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public void putAll(final Map<? extends K, ? extends V> map) {
++ Validate.notNull(map, "Null map");
++
++ final int size = map.size();
++ this.checkResize(Math.max(this.getSizePlain() + size/2, size)); /* preemptively resize */
++ map.forEach(this::put);
++ }
++
++ /**
++ * {@inheritDoc}
++ * <p>
++ * This call is non-atomic and the order that which entries are removed is undefined. The clear operation itself
++ * is release ordered, that is, after the clear operation is performed a release fence is performed.
++ * </p>
++ */
++ @Override
++ public void clear() {
++ Arrays.fill(this.getTablePlain(), null);
++ this.setSizeRelease(0);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public V compute(final K key, final BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
++ Validate.notNull(key, "Null key");
++ Validate.notNull(remappingFunction, "Null remappingFunction");
++
++ final int hash = SWMRHashTable.getHash(key);
++ final TableEntry<K, V>[] table = this.getTablePlain();
++ final int index = hash & (table.length - 1);
++
++ for (TableEntry<K, V> curr = table[index], prev = null;;prev = curr, curr = curr.getNextPlain()) {
++ if (curr == null) {
++ final V newVal = remappingFunction.apply(key ,null);
++
++ if (newVal == null) {
++ return null;
++ }
++
++ final TableEntry<K, V> insert = new TableEntry<>(hash, key, newVal);
++ if (prev == null) {
++ setAtIndexRelease(table, index, insert);
++ } else {
++ prev.setNextRelease(insert);
++ }
++
++ this.addToSize(1);
++
++ return newVal;
++ }
++
++ if (curr.hash == hash && (curr.key == key || curr.key.equals(key))) {
++ final V newVal = remappingFunction.apply(key, curr.getValuePlain());
++
++ if (newVal != null) {
++ curr.setValueRelease(newVal);
++ return newVal;
++ }
++
++ if (prev == null) {
++ setAtIndexRelease(table, index, curr.getNextPlain());
++ } else {
++ prev.setNextRelease(curr.getNextPlain());
++ }
++
++ this.removeFromSize(1);
++
++ return null;
++ }
++ }
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public V computeIfPresent(final K key, final BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
++ Validate.notNull(key, "Null key");
++ Validate.notNull(remappingFunction, "Null remappingFunction");
++
++ final int hash = SWMRHashTable.getHash(key);
++ final TableEntry<K, V>[] table = this.getTablePlain();
++ final int index = hash & (table.length - 1);
++
++ for (TableEntry<K, V> curr = table[index], prev = null; curr != null; prev = curr, curr = curr.getNextPlain()) {
++ if (curr.hash != hash || (curr.key != key && !curr.key.equals(key))) {
++ continue;
++ }
++
++ final V newVal = remappingFunction.apply(key, curr.getValuePlain());
++ if (newVal != null) {
++ curr.setValueRelease(newVal);
++ return newVal;
++ }
++
++ if (prev == null) {
++ setAtIndexRelease(table, index, curr.getNextPlain());
++ } else {
++ prev.setNextRelease(curr.getNextPlain());
++ }
++
++ this.removeFromSize(1);
++
++ return null;
++ }
++
++ return null;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public V computeIfAbsent(final K key, final Function<? super K, ? extends V> mappingFunction) {
++ Validate.notNull(key, "Null key");
++ Validate.notNull(mappingFunction, "Null mappingFunction");
++
++ final int hash = SWMRHashTable.getHash(key);
++ final TableEntry<K, V>[] table = this.getTablePlain();
++ final int index = hash & (table.length - 1);
++
++ for (TableEntry<K, V> curr = table[index], prev = null;;prev = curr, curr = curr.getNextPlain()) {
++ if (curr != null) {
++ if (curr.hash == hash && (curr.key == key || curr.key.equals(key))) {
++ return curr.getValuePlain();
++ }
++ continue;
++ }
++
++ final V newVal = mappingFunction.apply(key);
++
++ if (newVal == null) {
++ return null;
++ }
++
++ final TableEntry<K, V> insert = new TableEntry<>(hash, key, newVal);
++ if (prev == null) {
++ setAtIndexRelease(table, index, insert);
++ } else {
++ prev.setNextRelease(insert);
++ }
++
++ this.addToSize(1);
++
++ return newVal;
++ }
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public V merge(final K key, final V value, final BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
++ Validate.notNull(key, "Null key");
++ Validate.notNull(value, "Null value");
++ Validate.notNull(remappingFunction, "Null remappingFunction");
++
++ final int hash = SWMRHashTable.getHash(key);
++ final TableEntry<K, V>[] table = this.getTablePlain();
++ final int index = hash & (table.length - 1);
++
++ for (TableEntry<K, V> curr = table[index], prev = null;;prev = curr, curr = curr.getNextPlain()) {
++ if (curr == null) {
++ final TableEntry<K, V> insert = new TableEntry<>(hash, key, value);
++ if (prev == null) {
++ setAtIndexRelease(table, index, insert);
++ } else {
++ prev.setNextRelease(insert);
++ }
++
++ this.addToSize(1);
++
++ return value;
++ }
++
++ if (curr.hash == hash && (curr.key == key || curr.key.equals(key))) {
++ final V newVal = remappingFunction.apply(curr.getValuePlain(), value);
++
++ if (newVal != null) {
++ curr.setValueRelease(newVal);
++ return newVal;
++ }
++
++ if (prev == null) {
++ setAtIndexRelease(table, index, curr.getNextPlain());
++ } else {
++ prev.setNextRelease(curr.getNextPlain());
++ }
++
++ this.removeFromSize(1);
++
++ return null;
++ }
++ }
++ }
++
++ protected static final class TableEntry<K, V> implements Map.Entry<K, V> {
++
++ protected static final VarHandle TABLE_ENTRY_ARRAY_HANDLE = ConcurrentUtil.getArrayHandle(TableEntry[].class);
++
++ protected final int hash;
++ protected final K key;
++ protected V value;
++
++ protected TableEntry<K, V> next;
++
++ protected static final VarHandle VALUE_HANDLE = ConcurrentUtil.getVarHandle(TableEntry.class, "value", Object.class);
++ protected static final VarHandle NEXT_HANDLE = ConcurrentUtil.getVarHandle(TableEntry.class, "next", TableEntry.class);
++
++ /* value */
++
++ protected final V getValuePlain() {
++ //noinspection unchecked
++ return (V)VALUE_HANDLE.get(this);
++ }
++
++ protected final V getValueAcquire() {
++ //noinspection unchecked
++ return (V)VALUE_HANDLE.getAcquire(this);
++ }
++
++ protected final void setValueRelease(final V to) {
++ VALUE_HANDLE.setRelease(this, to);
++ }
++
++ /* next */
++
++ protected final TableEntry<K, V> getNextPlain() {
++ //noinspection unchecked
++ return (TableEntry<K, V>)NEXT_HANDLE.get(this);
++ }
++
++ protected final TableEntry<K, V> getNextOpaque() {
++ //noinspection unchecked
++ return (TableEntry<K, V>)NEXT_HANDLE.getOpaque(this);
++ }
++
++ protected final void setNextPlain(final TableEntry<K, V> next) {
++ NEXT_HANDLE.set(this, next);
++ }
++
++ protected final void setNextRelease(final TableEntry<K, V> next) {
++ NEXT_HANDLE.setRelease(this, next);
++ }
++
++ protected TableEntry(final int hash, final K key, final V value) {
++ this.hash = hash;
++ this.key = key;
++ this.value = value;
++ }
++
++ @Override
++ public K getKey() {
++ return this.key;
++ }
++
++ @Override
++ public V getValue() {
++ return this.getValueAcquire();
++ }
++
++ @Override
++ public V setValue(final V value) {
++ throw new UnsupportedOperationException();
++ }
++
++ protected static int hash(final Object key, final Object value) {
++ return key.hashCode() ^ (value == null ? 0 : value.hashCode());
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public int hashCode() {
++ return hash(this.key, this.getValueAcquire());
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean equals(final Object obj) {
++ if (this == obj) {
++ return true;
++ }
++
++ if (!(obj instanceof Map.Entry<?, ?> other)) {
++ return false;
++ }
++ final Object otherKey = other.getKey();
++ final Object otherValue = other.getValue();
++
++ final K thisKey = this.getKey();
++ final V thisVal = this.getValueAcquire();
++ return (thisKey == otherKey || thisKey.equals(otherKey)) &&
++ (thisVal == otherValue || thisVal.equals(otherValue));
++ }
++ }
++
++
++ protected static abstract class TableEntryIterator<K, V, T> implements Iterator<T> {
++
++ protected final TableEntry<K, V>[] table;
++ protected final SWMRHashTable<K, V> map;
++
++ /* bin which our current element resides on */
++ protected int tableIndex;
++
++ protected TableEntry<K, V> currEntry; /* curr entry, null if no more to iterate or if curr was removed or if we've just init'd */
++ protected TableEntry<K, V> nextEntry; /* may not be on the same bin as currEntry */
++
++ protected TableEntryIterator(final TableEntry<K, V>[] table, final SWMRHashTable<K, V> map) {
++ this.table = table;
++ this.map = map;
++ int tableIndex = 0;
++ for (int len = table.length; tableIndex < len; ++tableIndex) {
++ final TableEntry<K, V> entry = getAtIndexOpaque(table, tableIndex);
++ if (entry != null) {
++ this.nextEntry = entry;
++ this.tableIndex = tableIndex + 1;
++ return;
++ }
++ }
++ this.tableIndex = tableIndex;
++ }
++
++ @Override
++ public boolean hasNext() {
++ return this.nextEntry != null;
++ }
++
++ protected final TableEntry<K, V> advanceEntry() {
++ final TableEntry<K, V>[] table = this.table;
++ final int tableLength = table.length;
++ int tableIndex = this.tableIndex;
++ final TableEntry<K, V> curr = this.nextEntry;
++ if (curr == null) {
++ return null;
++ }
++
++ this.currEntry = curr;
++
++ // set up nextEntry
++
++ // find next in chain
++ TableEntry<K, V> next = curr.getNextOpaque();
++
++ if (next != null) {
++ this.nextEntry = next;
++ return curr;
++ }
++
++ // nothing in chain, so find next available bin
++ for (;tableIndex < tableLength; ++tableIndex) {
++ next = getAtIndexOpaque(table, tableIndex);
++ if (next != null) {
++ this.nextEntry = next;
++ this.tableIndex = tableIndex + 1;
++ return curr;
++ }
++ }
++
++ this.nextEntry = null;
++ this.tableIndex = tableIndex;
++ return curr;
++ }
++
++ @Override
++ public void remove() {
++ final TableEntry<K, V> curr = this.currEntry;
++ if (curr == null) {
++ throw new IllegalStateException();
++ }
++
++ this.map.remove(curr.key, curr.hash);
++
++ this.currEntry = null;
++ }
++ }
++
++ protected static final class ValueIterator<K, V> extends TableEntryIterator<K, V, V> {
++
++ protected ValueIterator(final TableEntry<K, V>[] table, final SWMRHashTable<K, V> map) {
++ super(table, map);
++ }
++
++ @Override
++ public V next() {
++ final TableEntry<K, V> entry = this.advanceEntry();
++
++ if (entry == null) {
++ throw new NoSuchElementException();
++ }
++
++ return entry.getValueAcquire();
++ }
++ }
++
++ protected static final class KeyIterator<K, V> extends TableEntryIterator<K, V, K> {
++
++ protected KeyIterator(final TableEntry<K, V>[] table, final SWMRHashTable<K, V> map) {
++ super(table, map);
++ }
++
++ @Override
++ public K next() {
++ final TableEntry<K, V> curr = this.advanceEntry();
++
++ if (curr == null) {
++ throw new NoSuchElementException();
++ }
++
++ return curr.key;
++ }
++ }
++
++ protected static final class EntryIterator<K, V> extends TableEntryIterator<K, V, Map.Entry<K, V>> {
++
++ protected EntryIterator(final TableEntry<K, V>[] table, final SWMRHashTable<K, V> map) {
++ super(table, map);
++ }
++
++ @Override
++ public Map.Entry<K, V> next() {
++ final TableEntry<K, V> curr = this.advanceEntry();
++
++ if (curr == null) {
++ throw new NoSuchElementException();
++ }
++
++ return curr;
++ }
++ }
++
++ protected static abstract class ViewCollection<K, V, T> implements Collection<T> {
++
++ protected final SWMRHashTable<K, V> map;
++
++ protected ViewCollection(final SWMRHashTable<K, V> map) {
++ this.map = map;
++ }
++
++ @Override
++ public boolean add(final T element) {
++ throw new UnsupportedOperationException();
++ }
++
++ @Override
++ public boolean addAll(final Collection<? extends T> collections) {
++ throw new UnsupportedOperationException();
++ }
++
++ @Override
++ public boolean removeAll(final Collection<?> collection) {
++ Validate.notNull(collection, "Null collection");
++
++ boolean modified = false;
++ for (final Object element : collection) {
++ modified |= this.remove(element);
++ }
++ return modified;
++ }
++
++ @Override
++ public int size() {
++ return this.map.size();
++ }
++
++ @Override
++ public boolean isEmpty() {
++ return this.size() == 0;
++ }
++
++ @Override
++ public void clear() {
++ this.map.clear();
++ }
++
++ @Override
++ public boolean containsAll(final Collection<?> collection) {
++ Validate.notNull(collection, "Null collection");
++
++ for (final Object element : collection) {
++ if (!this.contains(element)) {
++ return false;
++ }
++ }
++
++ return true;
++ }
++
++ @Override
++ public Object[] toArray() {
++ final List<T> list = new ArrayList<>(this.size());
++
++ this.forEach(list::add);
++
++ return list.toArray();
++ }
++
++ @Override
++ public <E> E[] toArray(final E[] array) {
++ final List<T> list = new ArrayList<>(this.size());
++
++ this.forEach(list::add);
++
++ return list.toArray(array);
++ }
++
++ @Override
++ public <E> E[] toArray(final IntFunction<E[]> generator) {
++ final List<T> list = new ArrayList<>(this.size());
++
++ this.forEach(list::add);
++
++ return list.toArray(generator);
++ }
++
++ @Override
++ public int hashCode() {
++ int hash = 0;
++ for (final T element : this) {
++ hash += element == null ? 0 : element.hashCode();
++ }
++ return hash;
++ }
++
++ @Override
++ public Spliterator<T> spliterator() { // TODO implement
++ return Spliterators.spliterator(this, Spliterator.NONNULL);
++ }
++ }
++
++ protected static abstract class ViewSet<K, V, T> extends ViewCollection<K, V, T> implements Set<T> {
++
++ protected ViewSet(final SWMRHashTable<K, V> map) {
++ super(map);
++ }
++
++ @Override
++ public boolean equals(final Object obj) {
++ if (this == obj) {
++ return true;
++ }
++
++ if (!(obj instanceof Set)) {
++ return false;
++ }
++
++ final Set<?> other = (Set<?>)obj;
++ if (other.size() != this.size()) {
++ return false;
++ }
++
++ return this.containsAll(other);
++ }
++ }
++
++ protected static final class EntrySet<K, V> extends ViewSet<K, V, Map.Entry<K, V>> implements Set<Map.Entry<K, V>> {
++
++ protected EntrySet(final SWMRHashTable<K, V> map) {
++ super(map);
++ }
++
++ @Override
++ public boolean remove(final Object object) {
++ if (!(object instanceof Map.Entry<?, ?> entry)) {
++ return false;
++ }
++
++ final Object key;
++ final Object value;
++
++ try {
++ key = entry.getKey();
++ value = entry.getValue();
++ } catch (final IllegalStateException ex) {
++ return false;
++ }
++
++ return this.map.remove(key, value);
++ }
++
++ @Override
++ public boolean removeIf(final Predicate<? super Map.Entry<K, V>> filter) {
++ Validate.notNull(filter, "Null filter");
++
++ return this.map.removeEntryIf(filter) != 0;
++ }
++
++ @Override
++ public boolean retainAll(final Collection<?> collection) {
++ Validate.notNull(collection, "Null collection");
++
++ return this.map.removeEntryIf((final Map.Entry<K, V> entry) -> {
++ return !collection.contains(entry);
++ }) != 0;
++ }
++
++ @Override
++ public Iterator<Map.Entry<K, V>> iterator() {
++ return new EntryIterator<>(this.map.getTableAcquire(), this.map);
++ }
++
++ @Override
++ public void forEach(final Consumer<? super Map.Entry<K, V>> action) {
++ this.map.forEach(action);
++ }
++
++ @Override
++ public boolean contains(final Object object) {
++ if (!(object instanceof Map.Entry<?, ?> entry)) {
++ return false;
++ }
++
++ final Object key;
++ final Object value;
++
++ try {
++ key = entry.getKey();
++ value = entry.getValue();
++ } catch (final IllegalStateException ex) {
++ return false;
++ }
++
++ return this.map.contains(key, value);
++ }
++
++ @Override
++ public String toString() {
++ return CollectionUtil.toString(this, "SWMRHashTableEntrySet");
++ }
++ }
++
++ protected static final class KeySet<K, V> extends ViewSet<K, V, K> {
++
++ protected KeySet(final SWMRHashTable<K, V> map) {
++ super(map);
++ }
++
++ @Override
++ public Iterator<K> iterator() {
++ return new KeyIterator<>(this.map.getTableAcquire(), this.map);
++ }
++
++ @Override
++ public void forEach(final Consumer<? super K> action) {
++ Validate.notNull(action, "Null action");
++
++ this.map.forEachKey(action);
++ }
++
++ @Override
++ public boolean contains(final Object key) {
++ Validate.notNull(key, "Null key");
++
++ return this.map.containsKey(key);
++ }
++
++ @Override
++ public boolean remove(final Object key) {
++ Validate.notNull(key, "Null key");
++
++ return this.map.remove(key) != null;
++ }
++
++ @Override
++ public boolean retainAll(final Collection<?> collection) {
++ Validate.notNull(collection, "Null collection");
++
++ return this.map.removeIf((final K key, final V value) -> {
++ return !collection.contains(key);
++ }) != 0;
++ }
++
++ @Override
++ public boolean removeIf(final Predicate<? super K> filter) {
++ Validate.notNull(filter, "Null filter");
++
++ return this.map.removeIf((final K key, final V value) -> {
++ return filter.test(key);
++ }) != 0;
++ }
++
++ @Override
++ public String toString() {
++ return CollectionUtil.toString(this, "SWMRHashTableKeySet");
++ }
++ }
++
++ protected static final class ValueCollection<K, V> extends ViewSet<K, V, V> implements Collection<V> {
++
++ protected ValueCollection(final SWMRHashTable<K, V> map) {
++ super(map);
++ }
++
++ @Override
++ public Iterator<V> iterator() {
++ return new ValueIterator<>(this.map.getTableAcquire(), this.map);
++ }
++
++ @Override
++ public void forEach(final Consumer<? super V> action) {
++ Validate.notNull(action, "Null action");
++
++ this.map.forEachValue(action);
++ }
++
++ @Override
++ public boolean contains(final Object object) {
++ Validate.notNull(object, "Null object");
++
++ return this.map.containsValue(object);
++ }
++
++ @Override
++ public boolean remove(final Object object) {
++ Validate.notNull(object, "Null object");
++
++ final Iterator<V> itr = this.iterator();
++ while (itr.hasNext()) {
++ final V val = itr.next();
++ if (val == object || val.equals(object)) {
++ itr.remove();
++ return true;
++ }
++ }
++
++ return false;
++ }
++
++ @Override
++ public boolean removeIf(final Predicate<? super V> filter) {
++ Validate.notNull(filter, "Null filter");
++
++ return this.map.removeIf((final K key, final V value) -> {
++ return filter.test(value);
++ }) != 0;
++ }
++
++ @Override
++ public boolean retainAll(final Collection<?> collection) {
++ Validate.notNull(collection, "Null collection");
++
++ return this.map.removeIf((final K key, final V value) -> {
++ return !collection.contains(value);
++ }) != 0;
++ }
++
++ @Override
++ public String toString() {
++ return CollectionUtil.toString(this, "SWMRHashTableValues");
++ }
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/map/SWMRLong2ObjectHashTable.java b/src/main/java/ca/spottedleaf/concurrentutil/map/SWMRLong2ObjectHashTable.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..bb301a9f4e3ac919552eef68afc73569d50674db
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/map/SWMRLong2ObjectHashTable.java
+@@ -0,0 +1,674 @@
++package ca.spottedleaf.concurrentutil.map;
++
++import ca.spottedleaf.concurrentutil.function.BiLongObjectConsumer;
++import ca.spottedleaf.concurrentutil.util.ConcurrentUtil;
++import ca.spottedleaf.concurrentutil.util.HashUtil;
++import ca.spottedleaf.concurrentutil.util.IntegerUtil;
++import ca.spottedleaf.concurrentutil.util.Validate;
++import java.lang.invoke.VarHandle;
++import java.util.Arrays;
++import java.util.function.Consumer;
++import java.util.function.LongConsumer;
++
++// trimmed down version of SWMRHashTable
++public class SWMRLong2ObjectHashTable<V> {
++
++ protected int size;
++
++ protected TableEntry<V>[] table;
++
++ protected final float loadFactor;
++
++ protected static final VarHandle SIZE_HANDLE = ConcurrentUtil.getVarHandle(SWMRLong2ObjectHashTable.class, "size", int.class);
++ protected static final VarHandle TABLE_HANDLE = ConcurrentUtil.getVarHandle(SWMRLong2ObjectHashTable.class, "table", TableEntry[].class);
++
++ /* size */
++
++ protected final int getSizePlain() {
++ return (int)SIZE_HANDLE.get(this);
++ }
++
++ protected final int getSizeOpaque() {
++ return (int)SIZE_HANDLE.getOpaque(this);
++ }
++
++ protected final int getSizeAcquire() {
++ return (int)SIZE_HANDLE.getAcquire(this);
++ }
++
++ protected final void setSizePlain(final int value) {
++ SIZE_HANDLE.set(this, value);
++ }
++
++ protected final void setSizeOpaque(final int value) {
++ SIZE_HANDLE.setOpaque(this, value);
++ }
++
++ protected final void setSizeRelease(final int value) {
++ SIZE_HANDLE.setRelease(this, value);
++ }
++
++ /* table */
++
++ protected final TableEntry<V>[] getTablePlain() {
++ //noinspection unchecked
++ return (TableEntry<V>[])TABLE_HANDLE.get(this);
++ }
++
++ protected final TableEntry<V>[] getTableAcquire() {
++ //noinspection unchecked
++ return (TableEntry<V>[])TABLE_HANDLE.getAcquire(this);
++ }
++
++ protected final void setTablePlain(final TableEntry<V>[] table) {
++ TABLE_HANDLE.set(this, table);
++ }
++
++ protected final void setTableRelease(final TableEntry<V>[] table) {
++ TABLE_HANDLE.setRelease(this, table);
++ }
++
++ protected static final int DEFAULT_CAPACITY = 16;
++ protected static final float DEFAULT_LOAD_FACTOR = 0.75f;
++ protected static final int MAXIMUM_CAPACITY = Integer.MIN_VALUE >>> 1;
++
++ /**
++ * Constructs this map with a capacity of {@code 16} and load factor of {@code 0.75f}.
++ */
++ public SWMRLong2ObjectHashTable() {
++ this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
++ }
++
++ /**
++ * Constructs this map with the specified capacity and load factor of {@code 0.75f}.
++ * @param capacity specified initial capacity, > 0
++ */
++ public SWMRLong2ObjectHashTable(final int capacity) {
++ this(capacity, DEFAULT_LOAD_FACTOR);
++ }
++
++ /**
++ * Constructs this map with the specified capacity and load factor.
++ * @param capacity specified capacity, > 0
++ * @param loadFactor specified load factor, > 0 && finite
++ */
++ public SWMRLong2ObjectHashTable(final int capacity, final float loadFactor) {
++ final int tableSize = getCapacityFor(capacity);
++
++ if (loadFactor <= 0.0 || !Float.isFinite(loadFactor)) {
++ throw new IllegalArgumentException("Invalid load factor: " + loadFactor);
++ }
++
++ //noinspection unchecked
++ final TableEntry<V>[] table = new TableEntry[tableSize];
++ this.setTablePlain(table);
++
++ if (tableSize == MAXIMUM_CAPACITY) {
++ this.threshold = -1;
++ } else {
++ this.threshold = getTargetCapacity(tableSize, loadFactor);
++ }
++
++ this.loadFactor = loadFactor;
++ }
++
++ /**
++ * Constructs this map with a capacity of {@code 16} or the specified map's size, whichever is larger, and
++ * with a load factor of {@code 0.75f}.
++ * All of the specified map's entries are copied into this map.
++ * @param other The specified map.
++ */
++ public SWMRLong2ObjectHashTable(final SWMRLong2ObjectHashTable<V> other) {
++ this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, other);
++ }
++
++ /**
++ * Constructs this map with a minimum capacity of the specified capacity or the specified map's size, whichever is larger, and
++ * with a load factor of {@code 0.75f}.
++ * All of the specified map's entries are copied into this map.
++ * @param capacity specified capacity, > 0
++ * @param other The specified map.
++ */
++ public SWMRLong2ObjectHashTable(final int capacity, final SWMRLong2ObjectHashTable<V> other) {
++ this(capacity, DEFAULT_LOAD_FACTOR, other);
++ }
++
++ /**
++ * Constructs this map with a min capacity of the specified capacity or the specified map's size, whichever is larger, and
++ * with the specified load factor.
++ * All of the specified map's entries are copied into this map.
++ * @param capacity specified capacity, > 0
++ * @param loadFactor specified load factor, > 0 && finite
++ * @param other The specified map.
++ */
++ public SWMRLong2ObjectHashTable(final int capacity, final float loadFactor, final SWMRLong2ObjectHashTable<V> other) {
++ this(Math.max(Validate.notNull(other, "Null map").size(), capacity), loadFactor);
++ this.putAll(other);
++ }
++
++ protected static <V> TableEntry<V> getAtIndexOpaque(final TableEntry<V>[] table, final int index) {
++ // noinspection unchecked
++ return (TableEntry<V>)TableEntry.TABLE_ENTRY_ARRAY_HANDLE.getOpaque(table, index);
++ }
++
++ protected static <V> void setAtIndexRelease(final TableEntry<V>[] table, final int index, final TableEntry<V> value) {
++ TableEntry.TABLE_ENTRY_ARRAY_HANDLE.setRelease(table, index, value);
++ }
++
++ public final float getLoadFactor() {
++ return this.loadFactor;
++ }
++
++ protected static int getCapacityFor(final int capacity) {
++ if (capacity <= 0) {
++ throw new IllegalArgumentException("Invalid capacity: " + capacity);
++ }
++ if (capacity >= MAXIMUM_CAPACITY) {
++ return MAXIMUM_CAPACITY;
++ }
++ return IntegerUtil.roundCeilLog2(capacity);
++ }
++
++ /** Callers must still use acquire when reading the value of the entry. */
++ protected final TableEntry<V> getEntryForOpaque(final long key) {
++ final int hash = SWMRLong2ObjectHashTable.getHash(key);
++ final TableEntry<V>[] table = this.getTableAcquire();
++
++ for (TableEntry<V> curr = getAtIndexOpaque(table, hash & (table.length - 1)); curr != null; curr = curr.getNextOpaque()) {
++ if (key == curr.key) {
++ return curr;
++ }
++ }
++
++ return null;
++ }
++
++ protected final TableEntry<V> getEntryForPlain(final long key) {
++ final int hash = SWMRLong2ObjectHashTable.getHash(key);
++ final TableEntry<V>[] table = this.getTablePlain();
++
++ for (TableEntry<V> curr = table[hash & (table.length - 1)]; curr != null; curr = curr.getNextPlain()) {
++ if (key == curr.key) {
++ return curr;
++ }
++ }
++
++ return null;
++ }
++
++ /* MT-Safe */
++
++ /** must be deterministic given a key */
++ protected static int getHash(final long key) {
++ return (int)HashUtil.mix(key);
++ }
++
++ // rets -1 if capacity*loadFactor is too large
++ protected static int getTargetCapacity(final int capacity, final float loadFactor) {
++ final double ret = (double)capacity * (double)loadFactor;
++ if (Double.isInfinite(ret) || ret >= ((double)Integer.MAX_VALUE)) {
++ return -1;
++ }
++
++ return (int)ret;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public boolean equals(final Object obj) {
++ if (this == obj) {
++ return true;
++ }
++ /* Make no attempt to deal with concurrent modifications */
++ if (!(obj instanceof SWMRLong2ObjectHashTable<?> other)) {
++ return false;
++ }
++
++ if (this.size() != other.size()) {
++ return false;
++ }
++
++ final TableEntry<V>[] table = this.getTableAcquire();
++
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ final V value = curr.getValueAcquire();
++
++ final Object otherValue = other.get(curr.key);
++ if (otherValue == null || (value != otherValue && value.equals(otherValue))) {
++ return false;
++ }
++ }
++ }
++
++ return true;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public int hashCode() {
++ /* Make no attempt to deal with concurrent modifications */
++ int hash = 0;
++ final TableEntry<V>[] table = this.getTableAcquire();
++
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ hash += curr.hashCode();
++ }
++ }
++
++ return hash;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public String toString() {
++ final StringBuilder builder = new StringBuilder(64);
++ builder.append("SingleWriterMultiReaderHashMap:{");
++
++ this.forEach((final long key, final V value) -> {
++ builder.append("{key: \"").append(key).append("\", value: \"").append(value).append("\"}");
++ });
++
++ return builder.append('}').toString();
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ @Override
++ public SWMRLong2ObjectHashTable<V> clone() {
++ return new SWMRLong2ObjectHashTable<>(this.getTableAcquire().length, this.loadFactor, this);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ public void forEach(final Consumer<? super TableEntry<V>> action) {
++ Validate.notNull(action, "Null action");
++
++ final TableEntry<V>[] table = this.getTableAcquire();
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ action.accept(curr);
++ }
++ }
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ public void forEach(final BiLongObjectConsumer<? super V> action) {
++ Validate.notNull(action, "Null action");
++
++ final TableEntry<V>[] table = this.getTableAcquire();
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ final V value = curr.getValueAcquire();
++
++ action.accept(curr.key, value);
++ }
++ }
++ }
++
++ /**
++ * Provides the specified consumer with all keys contained within this map.
++ * @param action The specified consumer.
++ */
++ public void forEachKey(final LongConsumer action) {
++ Validate.notNull(action, "Null action");
++
++ final TableEntry<V>[] table = this.getTableAcquire();
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ action.accept(curr.key);
++ }
++ }
++ }
++
++ /**
++ * Provides the specified consumer with all values contained within this map. Equivalent to {@code map.values().forEach(Consumer)}.
++ * @param action The specified consumer.
++ */
++ public void forEachValue(final Consumer<? super V> action) {
++ Validate.notNull(action, "Null action");
++
++ final TableEntry<V>[] table = this.getTableAcquire();
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<V> curr = getAtIndexOpaque(table, i); curr != null; curr = curr.getNextOpaque()) {
++ final V value = curr.getValueAcquire();
++
++ action.accept(value);
++ }
++ }
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ public V get(final long key) {
++ final TableEntry<V> entry = this.getEntryForOpaque(key);
++ return entry == null ? null : entry.getValueAcquire();
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ public boolean containsKey(final long key) {
++ // note: we need to use getValueAcquire, so that the reads from this map are ordered by acquire semantics
++ return this.get(key) != null;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ public V getOrDefault(final long key, final V defaultValue) {
++ final TableEntry<V> entry = this.getEntryForOpaque(key);
++
++ return entry == null ? defaultValue : entry.getValueAcquire();
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ public int size() {
++ return this.getSizeAcquire();
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ public boolean isEmpty() {
++ return this.getSizeAcquire() == 0;
++ }
++
++ /* Non-MT-Safe */
++
++ protected int threshold;
++
++ protected final void checkResize(final int minCapacity) {
++ if (minCapacity <= this.threshold || this.threshold < 0) {
++ return;
++ }
++
++ final TableEntry<V>[] table = this.getTablePlain();
++ int newCapacity = minCapacity >= MAXIMUM_CAPACITY ? MAXIMUM_CAPACITY : IntegerUtil.roundCeilLog2(minCapacity);
++ if (newCapacity < 0) {
++ newCapacity = MAXIMUM_CAPACITY;
++ }
++ if (newCapacity <= table.length) {
++ if (newCapacity == MAXIMUM_CAPACITY) {
++ return;
++ }
++ newCapacity = table.length << 1;
++ }
++
++ //noinspection unchecked
++ final TableEntry<V>[] newTable = new TableEntry[newCapacity];
++ final int indexMask = newCapacity - 1;
++
++ for (int i = 0, len = table.length; i < len; ++i) {
++ for (TableEntry<V> entry = table[i]; entry != null; entry = entry.getNextPlain()) {
++ final long key = entry.key;
++ final int hash = SWMRLong2ObjectHashTable.getHash(key);
++ final int index = hash & indexMask;
++
++ /* we need to create a new entry since there could be reading threads */
++ final TableEntry<V> insert = new TableEntry<>(key, entry.getValuePlain());
++
++ final TableEntry<V> prev = newTable[index];
++
++ newTable[index] = insert;
++ insert.setNextPlain(prev);
++ }
++ }
++
++ if (newCapacity == MAXIMUM_CAPACITY) {
++ this.threshold = -1; /* No more resizing */
++ } else {
++ this.threshold = getTargetCapacity(newCapacity, this.loadFactor);
++ }
++ this.setTableRelease(newTable); /* use release to publish entries in table */
++ }
++
++ protected final int addToSize(final int num) {
++ final int newSize = this.getSizePlain() + num;
++
++ this.setSizeOpaque(newSize);
++ this.checkResize(newSize);
++
++ return newSize;
++ }
++
++ protected final int removeFromSize(final int num) {
++ final int newSize = this.getSizePlain() - num;
++
++ this.setSizeOpaque(newSize);
++
++ return newSize;
++ }
++
++ protected final V put(final long key, final V value, final boolean onlyIfAbsent) {
++ final TableEntry<V>[] table = this.getTablePlain();
++ final int hash = SWMRLong2ObjectHashTable.getHash(key);
++ final int index = hash & (table.length - 1);
++
++ final TableEntry<V> head = table[index];
++ if (head == null) {
++ final TableEntry<V> insert = new TableEntry<>(key, value);
++ setAtIndexRelease(table, index, insert);
++ this.addToSize(1);
++ return null;
++ }
++
++ for (TableEntry<V> curr = head;;) {
++ if (key == curr.key) {
++ if (onlyIfAbsent) {
++ return curr.getValuePlain();
++ }
++
++ final V currVal = curr.getValuePlain();
++ curr.setValueRelease(value);
++ return currVal;
++ }
++
++ final TableEntry<V> next = curr.getNextPlain();
++ if (next != null) {
++ curr = next;
++ continue;
++ }
++
++ final TableEntry<V> insert = new TableEntry<>(key, value);
++
++ curr.setNextRelease(insert);
++ this.addToSize(1);
++ return null;
++ }
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ public V put(final long key, final V value) {
++ Validate.notNull(value, "Null value");
++
++ return this.put(key, value, false);
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ public V putIfAbsent(final long key, final V value) {
++ Validate.notNull(value, "Null value");
++
++ return this.put(key, value, true);
++ }
++
++ protected final V remove(final long key, final int hash) {
++ final TableEntry<V>[] table = this.getTablePlain();
++ final int index = (table.length - 1) & hash;
++
++ final TableEntry<V> head = table[index];
++ if (head == null) {
++ return null;
++ }
++
++ if (head.key == key) {
++ setAtIndexRelease(table, index, head.getNextPlain());
++ this.removeFromSize(1);
++
++ return head.getValuePlain();
++ }
++
++ for (TableEntry<V> curr = head.getNextPlain(), prev = head; curr != null; prev = curr, curr = curr.getNextPlain()) {
++ if (key == curr.key) {
++ prev.setNextRelease(curr.getNextPlain());
++ this.removeFromSize(1);
++
++ return curr.getValuePlain();
++ }
++ }
++
++ return null;
++ }
++
++ protected final V remove(final long key, final int hash, final V expect) {
++ final TableEntry<V>[] table = this.getTablePlain();
++ final int index = (table.length - 1) & hash;
++
++ final TableEntry<V> head = table[index];
++ if (head == null) {
++ return null;
++ }
++
++ if (head.key == key) {
++ final V val = head.value;
++ if (val == expect || val.equals(expect)) {
++ setAtIndexRelease(table, index, head.getNextPlain());
++ this.removeFromSize(1);
++
++ return head.getValuePlain();
++ } else {
++ return null;
++ }
++ }
++
++ for (TableEntry<V> curr = head.getNextPlain(), prev = head; curr != null; prev = curr, curr = curr.getNextPlain()) {
++ if (key == curr.key) {
++ final V val = curr.value;
++ if (val == expect || val.equals(expect)) {
++ prev.setNextRelease(curr.getNextPlain());
++ this.removeFromSize(1);
++
++ return curr.getValuePlain();
++ } else {
++ return null;
++ }
++ }
++ }
++
++ return null;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ public V remove(final long key) {
++ return this.remove(key, SWMRLong2ObjectHashTable.getHash(key));
++ }
++
++ public boolean remove(final long key, final V expect) {
++ return this.remove(key, SWMRLong2ObjectHashTable.getHash(key), expect) != null;
++ }
++
++ /**
++ * {@inheritDoc}
++ */
++ public void putAll(final SWMRLong2ObjectHashTable<? extends V> map) {
++ Validate.notNull(map, "Null map");
++
++ final int size = map.size();
++ this.checkResize(Math.max(this.getSizePlain() + size/2, size)); /* preemptively resize */
++ map.forEach(this::put);
++ }
++
++ /**
++ * {@inheritDoc}
++ * <p>
++ * This call is non-atomic and the order that which entries are removed is undefined. The clear operation itself
++ * is release ordered, that is, after the clear operation is performed a release fence is performed.
++ * </p>
++ */
++ public void clear() {
++ Arrays.fill(this.getTablePlain(), null);
++ this.setSizeRelease(0);
++ }
++
++ public static final class TableEntry<V> {
++
++ protected static final VarHandle TABLE_ENTRY_ARRAY_HANDLE = ConcurrentUtil.getArrayHandle(TableEntry[].class);
++
++ protected final long key;
++ protected V value;
++
++ protected TableEntry<V> next;
++
++ protected static final VarHandle VALUE_HANDLE = ConcurrentUtil.getVarHandle(TableEntry.class, "value", Object.class);
++ protected static final VarHandle NEXT_HANDLE = ConcurrentUtil.getVarHandle(TableEntry.class, "next", TableEntry.class);
++
++ /* value */
++
++ protected final V getValuePlain() {
++ //noinspection unchecked
++ return (V)VALUE_HANDLE.get(this);
++ }
++
++ protected final V getValueAcquire() {
++ //noinspection unchecked
++ return (V)VALUE_HANDLE.getAcquire(this);
++ }
++
++ protected final void setValueRelease(final V to) {
++ VALUE_HANDLE.setRelease(this, to);
++ }
++
++ /* next */
++
++ protected final TableEntry<V> getNextPlain() {
++ //noinspection unchecked
++ return (TableEntry<V>)NEXT_HANDLE.get(this);
++ }
++
++ protected final TableEntry<V> getNextOpaque() {
++ //noinspection unchecked
++ return (TableEntry<V>)NEXT_HANDLE.getOpaque(this);
++ }
++
++ protected final void setNextPlain(final TableEntry<V> next) {
++ NEXT_HANDLE.set(this, next);
++ }
++
++ protected final void setNextRelease(final TableEntry<V> next) {
++ NEXT_HANDLE.setRelease(this, next);
++ }
++
++ protected TableEntry(final long key, final V value) {
++ this.key = key;
++ this.value = value;
++ }
++
++ public long getKey() {
++ return this.key;
++ }
++
++ public V getValue() {
++ return this.getValueAcquire();
++ }
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/scheduler/SchedulerThreadPool.java b/src/main/java/ca/spottedleaf/concurrentutil/scheduler/SchedulerThreadPool.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..85e6ef636d435a0ee4bf3e0760b0c87422c520a1
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/scheduler/SchedulerThreadPool.java
+@@ -0,0 +1,564 @@
++package ca.spottedleaf.concurrentutil.scheduler;
++
++import ca.spottedleaf.concurrentutil.set.LinkedSortedSet;
++import ca.spottedleaf.concurrentutil.util.ConcurrentUtil;
++import ca.spottedleaf.concurrentutil.util.TimeUtil;
++import java.lang.invoke.VarHandle;
++import java.util.BitSet;
++import java.util.Comparator;
++import java.util.PriorityQueue;
++import java.util.concurrent.ThreadFactory;
++import java.util.concurrent.atomic.AtomicInteger;
++import java.util.concurrent.atomic.AtomicLong;
++import java.util.concurrent.locks.LockSupport;
++import java.util.function.BooleanSupplier;
++
++/**
++ * @deprecated To be replaced
++ */
++@Deprecated
++public class SchedulerThreadPool {
++
++ public static final long DEADLINE_NOT_SET = Long.MIN_VALUE;
++
++ private static final Comparator<SchedulableTick> TICK_COMPARATOR_BY_TIME = (final SchedulableTick t1, final SchedulableTick t2) -> {
++ final int timeCompare = TimeUtil.compareTimes(t1.scheduledStart, t2.scheduledStart);
++ if (timeCompare != 0) {
++ return timeCompare;
++ }
++
++ return Long.compare(t1.id, t2.id);
++ };
++
++ private final TickThreadRunner[] runners;
++ private final Thread[] threads;
++ private final LinkedSortedSet<SchedulableTick> awaiting = new LinkedSortedSet<>(TICK_COMPARATOR_BY_TIME);
++ private final PriorityQueue<SchedulableTick> queued = new PriorityQueue<>(TICK_COMPARATOR_BY_TIME);
++ private final BitSet idleThreads;
++
++ private final Object scheduleLock = new Object();
++
++ private volatile boolean halted;
++
++ /**
++ * Creates, but does not start, a scheduler thread pool with the specified number of threads
++ * created using the specified thread factory.
++ * @param threads Specified number of threads
++ * @param threadFactory Specified thread factory
++ * @see #start()
++ */
++ public SchedulerThreadPool(final int threads, final ThreadFactory threadFactory) {
++ final BitSet idleThreads = new BitSet(threads);
++ for (int i = 0; i < threads; ++i) {
++ idleThreads.set(i);
++ }
++ this.idleThreads = idleThreads;
++
++ final TickThreadRunner[] runners = new TickThreadRunner[threads];
++ final Thread[] t = new Thread[threads];
++ for (int i = 0; i < threads; ++i) {
++ runners[i] = new TickThreadRunner(i, this);
++ t[i] = threadFactory.newThread(runners[i]);
++ }
++
++ this.threads = t;
++ this.runners = runners;
++ }
++
++ /**
++ * Starts the threads in this pool.
++ */
++ public void start() {
++ for (final Thread thread : this.threads) {
++ thread.start();
++ }
++ }
++
++ /**
++ * Attempts to prevent further execution of tasks, optionally waiting for the scheduler threads to die.
++ *
++ * @param sync Whether to wait for the scheduler threads to die.
++ * @param maxWaitNS The maximum time, in ns, to wait for the scheduler threads to die.
++ * @return {@code true} if sync was false, or if sync was true and the scheduler threads died before the timeout.
++ * Otherwise, returns {@code false} if the time elapsed exceeded the maximum wait time.
++ */
++ public boolean halt(final boolean sync, final long maxWaitNS) {
++ this.halted = true;
++ for (final Thread thread : this.threads) {
++ // force response to halt
++ LockSupport.unpark(thread);
++ }
++ final long time = System.nanoTime();
++ if (sync) {
++ // start at 10 * 0.5ms -> 5ms
++ for (long failures = 9L;; failures = ConcurrentUtil.linearLongBackoff(failures, 500_000L, 50_000_000L)) {
++ boolean allDead = true;
++ for (final Thread thread : this.threads) {
++ if (thread.isAlive()) {
++ allDead = false;
++ break;
++ }
++ }
++ if (allDead) {
++ return true;
++ }
++ if ((System.nanoTime() - time) >= maxWaitNS) {
++ return false;
++ }
++ }
++ }
++
++ return true;
++ }
++
++ /**
++ * Returns an array of the underlying scheduling threads.
++ */
++ public Thread[] getThreads() {
++ return this.threads.clone();
++ }
++
++ private void insertFresh(final SchedulableTick task) {
++ final TickThreadRunner[] runners = this.runners;
++
++ final int firstIdleThread = this.idleThreads.nextSetBit(0);
++
++ if (firstIdleThread != -1) {
++ // push to idle thread
++ this.idleThreads.clear(firstIdleThread);
++ final TickThreadRunner runner = runners[firstIdleThread];
++ task.awaitingLink = this.awaiting.addLast(task);
++ runner.acceptTask(task);
++ return;
++ }
++
++ // try to replace the last awaiting task
++ final SchedulableTick last = this.awaiting.last();
++
++ if (last != null && TICK_COMPARATOR_BY_TIME.compare(task, last) < 0) {
++ // need to replace the last task
++ this.awaiting.pollLast();
++ last.awaitingLink = null;
++ task.awaitingLink = this.awaiting.addLast(task);
++ // need to add task to queue to be picked up later
++ this.queued.add(last);
++
++ final TickThreadRunner runner = last.ownedBy;
++ runner.replaceTask(task);
++
++ return;
++ }
++
++ // add to queue, will be picked up later
++ this.queued.add(task);
++ }
++
++ private void takeTask(final TickThreadRunner runner, final SchedulableTick tick) {
++ if (!this.awaiting.remove(tick.awaitingLink)) {
++ throw new IllegalStateException("Task is not in awaiting");
++ }
++ tick.awaitingLink = null;
++ }
++
++ private SchedulableTick returnTask(final TickThreadRunner runner, final SchedulableTick reschedule) {
++ if (reschedule != null) {
++ this.queued.add(reschedule);
++ }
++ final SchedulableTick ret = this.queued.poll();
++ if (ret == null) {
++ this.idleThreads.set(runner.id);
++ } else {
++ ret.awaitingLink = this.awaiting.addLast(ret);
++ }
++
++ return ret;
++ }
++
++ /**
++ * Schedules the specified task to be executed on this thread pool.
++ * @param task Specified task
++ * @throws IllegalStateException If the task is already scheduled
++ * @see SchedulableTick
++ */
++ public void schedule(final SchedulableTick task) {
++ synchronized (this.scheduleLock) {
++ if (!task.tryMarkScheduled()) {
++ throw new IllegalStateException("Task " + task + " is already scheduled or cancelled");
++ }
++
++ task.schedulerOwnedBy = this;
++
++ this.insertFresh(task);
++ }
++ }
++
++ /**
++ * Updates the tasks scheduled start to the maximum of its current scheduled start and the specified
++ * new start. If the task is not scheduled, returns {@code false}. Otherwise, returns whether the
++ * scheduled start was updated. Undefined behavior of the specified task is scheduled in another executor.
++ * @param task Specified task
++ * @param newStart Specified new start
++ */
++ public boolean updateTickStartToMax(final SchedulableTick task, final long newStart) {
++ synchronized (this.scheduleLock) {
++ if (TimeUtil.compareTimes(newStart, task.getScheduledStart()) <= 0) {
++ return false;
++ }
++ if (this.queued.remove(task)) {
++ task.setScheduledStart(newStart);
++ this.queued.add(task);
++ return true;
++ }
++ if (task.awaitingLink != null) {
++ this.awaiting.remove(task.awaitingLink);
++ task.awaitingLink = null;
++
++ // re-queue task
++ task.setScheduledStart(newStart);
++ this.queued.add(task);
++
++ // now we need to replace the task the runner was waiting for
++ final TickThreadRunner runner = task.ownedBy;
++ final SchedulableTick replace = this.queued.poll();
++
++ // replace cannot be null, since we have added a task to queued
++ if (replace != task) {
++ runner.replaceTask(replace);
++ }
++
++ return true;
++ }
++
++ return false;
++ }
++ }
++
++ /**
++ * Returns {@code null} if the task is not scheduled, returns {@code TRUE} if the task was cancelled
++ * and was queued to execute, returns {@code FALSE} if the task was cancelled but was executing.
++ */
++ public Boolean tryRetire(final SchedulableTick task) {
++ if (task.schedulerOwnedBy != this) {
++ return null;
++ }
++
++ synchronized (this.scheduleLock) {
++ if (this.queued.remove(task)) {
++ // cancelled, and no runner owns it - so return
++ return Boolean.TRUE;
++ }
++ if (task.awaitingLink != null) {
++ this.awaiting.remove(task.awaitingLink);
++ task.awaitingLink = null;
++ // here we need to replace the task the runner was waiting for
++ final TickThreadRunner runner = task.ownedBy;
++ final SchedulableTick replace = this.queued.poll();
++
++ if (replace == null) {
++ // nothing to replace with, set to idle
++ this.idleThreads.set(runner.id);
++ runner.forceIdle();
++ } else {
++ runner.replaceTask(replace);
++ }
++
++ return Boolean.TRUE;
++ }
++
++ // could not find it in queue
++ return task.tryMarkCancelled() ? Boolean.FALSE : null;
++ }
++ }
++
++ /**
++ * Indicates that intermediate tasks are available to be executed by the task.
++ * <p>
++ * Note: currently a no-op
++ * </p>
++ * @param task The specified task
++ * @see SchedulableTick
++ */
++ public void notifyTasks(final SchedulableTick task) {
++ // Not implemented
++ }
++
++ /**
++ * Represents a tickable task that can be scheduled into a {@link SchedulerThreadPool}.
++ * <p>
++ * A tickable task is expected to run on a fixed interval, which is determined by
++ * the {@link SchedulerThreadPool}.
++ * </p>
++ * <p>
++ * A tickable task can have intermediate tasks that can be executed before its tick method is ran. Instead of
++ * the {@link SchedulerThreadPool} parking in-between ticks, the scheduler will instead drain
++ * intermediate tasks from scheduled tasks. The parsing of intermediate tasks allows the scheduler to take
++ * advantage of downtime to reduce the intermediate task load from tasks once they begin ticking.
++ * </p>
++ * <p>
++ * It is guaranteed that {@link #runTick()} and {@link #runTasks(BooleanSupplier)} are never
++ * invoked in parallel.
++ * It is required that when intermediate tasks are scheduled, that {@link SchedulerThreadPool#notifyTasks(SchedulableTick)}
++ * is invoked for any scheduled task - otherwise, {@link #runTasks(BooleanSupplier)} may not be invoked to
++ * parse intermediate tasks.
++ * </p>
++ * @deprecated To be replaced
++ */
++ @Deprecated
++ public static abstract class SchedulableTick {
++ private static final AtomicLong ID_GENERATOR = new AtomicLong();
++ public final long id = ID_GENERATOR.getAndIncrement();
++
++ private static final int SCHEDULE_STATE_NOT_SCHEDULED = 0;
++ private static final int SCHEDULE_STATE_SCHEDULED = 1;
++ private static final int SCHEDULE_STATE_CANCELLED = 2;
++
++ private final AtomicInteger scheduled = new AtomicInteger();
++ private SchedulerThreadPool schedulerOwnedBy;
++ private long scheduledStart = DEADLINE_NOT_SET;
++ private TickThreadRunner ownedBy;
++
++ private LinkedSortedSet.Link<SchedulableTick> awaitingLink;
++
++ private boolean tryMarkScheduled() {
++ return this.scheduled.compareAndSet(SCHEDULE_STATE_NOT_SCHEDULED, SCHEDULE_STATE_SCHEDULED);
++ }
++
++ private boolean tryMarkCancelled() {
++ return this.scheduled.compareAndSet(SCHEDULE_STATE_SCHEDULED, SCHEDULE_STATE_CANCELLED);
++ }
++
++ private boolean isScheduled() {
++ return this.scheduled.get() == SCHEDULE_STATE_SCHEDULED;
++ }
++
++ protected final long getScheduledStart() {
++ return this.scheduledStart;
++ }
++
++ /**
++ * If this task is scheduled, then this may only be invoked during {@link #runTick()},
++ * and {@link #runTasks(BooleanSupplier)}
++ */
++ protected final void setScheduledStart(final long value) {
++ this.scheduledStart = value;
++ }
++
++ /**
++ * Executes the tick.
++ * <p>
++ * It is the callee's responsibility to invoke {@link #setScheduledStart(long)} to adjust the start of
++ * the next tick.
++ * </p>
++ * @return {@code true} if the task should continue to be scheduled, {@code false} otherwise.
++ */
++ public abstract boolean runTick();
++
++ /**
++ * Returns whether this task has any intermediate tasks that can be executed.
++ */
++ public abstract boolean hasTasks();
++
++ /**
++ * Returns {@code null} if this task should not be scheduled, otherwise returns
++ * {@code Boolean.TRUE} if there are more intermediate tasks to execute and
++ * {@code Boolean.FALSE} if there are no more intermediate tasks to execute.
++ */
++ public abstract Boolean runTasks(final BooleanSupplier canContinue);
++
++ @Override
++ public String toString() {
++ return "SchedulableTick:{" +
++ "class=" + this.getClass().getName() + "," +
++ "scheduled_state=" + this.scheduled.get() + ","
++ + "}";
++ }
++ }
++
++ private static final class TickThreadRunner implements Runnable {
++
++ /**
++ * There are no tasks in this thread's runqueue, so it is parked.
++ * <p>
++ * stateTarget = null
++ * </p>
++ */
++ private static final int STATE_IDLE = 0;
++
++ /**
++ * The runner is waiting to tick a task, as it has no intermediate tasks to execute.
++ * <p>
++ * stateTarget = the task awaiting tick
++ * </p>
++ */
++ private static final int STATE_AWAITING_TICK = 1;
++
++ /**
++ * The runner is executing a tick for one of the tasks that was in its runqueue.
++ * <p>
++ * stateTarget = the task being ticked
++ * </p>
++ */
++ private static final int STATE_EXECUTING_TICK = 2;
++
++ public final int id;
++ public final SchedulerThreadPool scheduler;
++
++ private volatile Thread thread;
++ private volatile TickThreadRunnerState state = new TickThreadRunnerState(null, STATE_IDLE);
++ private static final VarHandle STATE_HANDLE = ConcurrentUtil.getVarHandle(TickThreadRunner.class, "state", TickThreadRunnerState.class);
++
++ private void setStatePlain(final TickThreadRunnerState state) {
++ STATE_HANDLE.set(this, state);
++ }
++
++ private void setStateOpaque(final TickThreadRunnerState state) {
++ STATE_HANDLE.setOpaque(this, state);
++ }
++
++ private void setStateVolatile(final TickThreadRunnerState state) {
++ STATE_HANDLE.setVolatile(this, state);
++ }
++
++ private static record TickThreadRunnerState(SchedulableTick stateTarget, int state) {}
++
++ public TickThreadRunner(final int id, final SchedulerThreadPool scheduler) {
++ this.id = id;
++ this.scheduler = scheduler;
++ }
++
++ private Thread getRunnerThread() {
++ return this.thread;
++ }
++
++ private void acceptTask(final SchedulableTick task) {
++ if (task.ownedBy != null) {
++ throw new IllegalStateException("Already owned by another runner");
++ }
++ task.ownedBy = this;
++ final TickThreadRunnerState state = this.state;
++ if (state.state != STATE_IDLE) {
++ throw new IllegalStateException("Cannot accept task in state " + state);
++ }
++ this.setStateVolatile(new TickThreadRunnerState(task, STATE_AWAITING_TICK));
++ LockSupport.unpark(this.getRunnerThread());
++ }
++
++ private void replaceTask(final SchedulableTick task) {
++ final TickThreadRunnerState state = this.state;
++ if (state.state != STATE_AWAITING_TICK) {
++ throw new IllegalStateException("Cannot replace task in state " + state);
++ }
++ if (task.ownedBy != null) {
++ throw new IllegalStateException("Already owned by another runner");
++ }
++ task.ownedBy = this;
++
++ state.stateTarget.ownedBy = null;
++
++ this.setStateVolatile(new TickThreadRunnerState(task, STATE_AWAITING_TICK));
++ LockSupport.unpark(this.getRunnerThread());
++ }
++
++ private void forceIdle() {
++ final TickThreadRunnerState state = this.state;
++ if (state.state != STATE_AWAITING_TICK) {
++ throw new IllegalStateException("Cannot replace task in state " + state);
++ }
++ state.stateTarget.ownedBy = null;
++ this.setStateOpaque(new TickThreadRunnerState(null, STATE_IDLE));
++ // no need to unpark
++ }
++
++ private boolean takeTask(final TickThreadRunnerState state, final SchedulableTick task) {
++ synchronized (this.scheduler.scheduleLock) {
++ if (this.state != state) {
++ return false;
++ }
++ this.setStatePlain(new TickThreadRunnerState(task, STATE_EXECUTING_TICK));
++ this.scheduler.takeTask(this, task);
++ return true;
++ }
++ }
++
++ private void returnTask(final SchedulableTick task, final boolean reschedule) {
++ synchronized (this.scheduler.scheduleLock) {
++ task.ownedBy = null;
++
++ final SchedulableTick newWait = this.scheduler.returnTask(this, reschedule && task.isScheduled() ? task : null);
++ if (newWait == null) {
++ this.setStatePlain(new TickThreadRunnerState(null, STATE_IDLE));
++ } else {
++ if (newWait.ownedBy != null) {
++ throw new IllegalStateException("Already owned by another runner");
++ }
++ newWait.ownedBy = this;
++ this.setStatePlain(new TickThreadRunnerState(newWait, STATE_AWAITING_TICK));
++ }
++ }
++ }
++
++ @Override
++ public void run() {
++ this.thread = Thread.currentThread();
++
++ main_state_loop:
++ for (;;) {
++ final TickThreadRunnerState startState = this.state;
++ final int startStateType = startState.state;
++ final SchedulableTick startStateTask = startState.stateTarget;
++
++ if (this.scheduler.halted) {
++ return;
++ }
++
++ switch (startStateType) {
++ case STATE_IDLE: {
++ while (this.state.state == STATE_IDLE) {
++ LockSupport.park();
++ if (this.scheduler.halted) {
++ return;
++ }
++ }
++ continue main_state_loop;
++ }
++
++ case STATE_AWAITING_TICK: {
++ final long deadline = startStateTask.getScheduledStart();
++ for (;;) {
++ if (this.state != startState) {
++ continue main_state_loop;
++ }
++ final long diff = deadline - System.nanoTime();
++ if (diff <= 0L) {
++ break;
++ }
++ LockSupport.parkNanos(startState, diff);
++ if (this.scheduler.halted) {
++ return;
++ }
++ }
++
++ if (!this.takeTask(startState, startStateTask)) {
++ continue main_state_loop;
++ }
++
++ // TODO exception handling
++ final boolean reschedule = startStateTask.runTick();
++
++ this.returnTask(startStateTask, reschedule);
++
++ continue main_state_loop;
++ }
++
++ case STATE_EXECUTING_TICK: {
++ throw new IllegalStateException("Tick execution must be set by runner thread, not by any other thread");
++ }
++
++ default: {
++ throw new IllegalStateException("Unknown state: " + startState);
++ }
++ }
++ }
++ }
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/set/LinkedSortedSet.java b/src/main/java/ca/spottedleaf/concurrentutil/set/LinkedSortedSet.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..82c4c11b0b564c97ac92bd5f54e3754a7ba95184
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/set/LinkedSortedSet.java
+@@ -0,0 +1,270 @@
++package ca.spottedleaf.concurrentutil.set;
++
++import java.util.Comparator;
++import java.util.Iterator;
++import java.util.NoSuchElementException;
++
++public final class LinkedSortedSet<E> implements Iterable<E> {
++
++ public final Comparator<? super E> comparator;
++
++ private Link<E> head;
++ private Link<E> tail;
++
++ public LinkedSortedSet() {
++ this((Comparator)Comparator.naturalOrder());
++ }
++
++ public LinkedSortedSet(final Comparator<? super E> comparator) {
++ this.comparator = comparator;
++ }
++
++ public void clear() {
++ this.head = this.tail = null;
++ }
++
++ public boolean isEmpty() {
++ return this.head == null;
++ }
++
++ public E first() {
++ final Link<E> head = this.head;
++ return head == null ? null : head.element;
++ }
++
++ public E last() {
++ final Link<E> tail = this.tail;
++ return tail == null ? null : tail.element;
++ }
++
++ public boolean containsFirst(final E element) {
++ final Comparator<? super E> comparator = this.comparator;
++ for (Link<E> curr = this.head; curr != null; curr = curr.next) {
++ if (comparator.compare(element, curr.element) == 0) {
++ return true;
++ }
++ }
++ return false;
++ }
++
++ public boolean containsLast(final E element) {
++ final Comparator<? super E> comparator = this.comparator;
++ for (Link<E> curr = this.tail; curr != null; curr = curr.prev) {
++ if (comparator.compare(element, curr.element) == 0) {
++ return true;
++ }
++ }
++ return false;
++ }
++
++ private void removeNode(final Link<E> node) {
++ final Link<E> prev = node.prev;
++ final Link<E> next = node.next;
++
++ // help GC
++ node.element = null;
++ node.prev = null;
++ node.next = null;
++
++ if (prev == null) {
++ this.head = next;
++ } else {
++ prev.next = next;
++ }
++
++ if (next == null) {
++ this.tail = prev;
++ } else {
++ next.prev = prev;
++ }
++ }
++
++ public boolean remove(final Link<E> link) {
++ if (link.element == null) {
++ return false;
++ }
++
++ this.removeNode(link);
++ return true;
++ }
++
++ public boolean removeFirst(final E element) {
++ final Comparator<? super E> comparator = this.comparator;
++ for (Link<E> curr = this.head; curr != null; curr = curr.next) {
++ if (comparator.compare(element, curr.element) == 0) {
++ this.removeNode(curr);
++ return true;
++ }
++ }
++ return false;
++ }
++
++ public boolean removeLast(final E element) {
++ final Comparator<? super E> comparator = this.comparator;
++ for (Link<E> curr = this.tail; curr != null; curr = curr.prev) {
++ if (comparator.compare(element, curr.element) == 0) {
++ this.removeNode(curr);
++ return true;
++ }
++ }
++ return false;
++ }
++
++ @Override
++ public Iterator<E> iterator() {
++ return new Iterator<>() {
++ private Link<E> next = LinkedSortedSet.this.head;
++
++ @Override
++ public boolean hasNext() {
++ return this.next != null;
++ }
++
++ @Override
++ public E next() {
++ final Link<E> next = this.next;
++ if (next == null) {
++ throw new NoSuchElementException();
++ }
++ this.next = next.next;
++ return next.element;
++ }
++ };
++ }
++
++ public E pollFirst() {
++ final Link<E> head = this.head;
++ if (head == null) {
++ return null;
++ }
++
++ final E ret = head.element;
++ final Link<E> next = head.next;
++
++ // unlink head
++ this.head = next;
++ if (next == null) {
++ this.tail = null;
++ } else {
++ next.prev = null;
++ }
++
++ // help GC
++ head.element = null;
++ head.next = null;
++
++ return ret;
++ }
++
++ public E pollLast() {
++ final Link<E> tail = this.tail;
++ if (tail == null) {
++ return null;
++ }
++
++ final E ret = tail.element;
++ final Link<E> prev = tail.prev;
++
++ // unlink tail
++ this.tail = prev;
++ if (prev == null) {
++ this.head = null;
++ } else {
++ prev.next = null;
++ }
++
++ // help GC
++ tail.element = null;
++ tail.prev = null;
++
++ return ret;
++ }
++
++ public Link<E> addLast(final E element) {
++ final Comparator<? super E> comparator = this.comparator;
++
++ Link<E> curr = this.tail;
++ if (curr != null) {
++ int compare;
++
++ while ((compare = comparator.compare(element, curr.element)) < 0) {
++ Link<E> prev = curr;
++ curr = curr.prev;
++ if (curr != null) {
++ continue;
++ }
++ return this.head = prev.prev = new Link<>(element, null, prev);
++ }
++
++ if (compare != 0) {
++ // insert after curr
++ final Link<E> next = curr.next;
++ final Link<E> insert = new Link<>(element, curr, next);
++ curr.next = insert;
++
++ if (next == null) {
++ this.tail = insert;
++ } else {
++ next.prev = insert;
++ }
++ return insert;
++ }
++
++ return null;
++ } else {
++ return this.head = this.tail = new Link<>(element);
++ }
++ }
++
++ public Link<E> addFirst(final E element) {
++ final Comparator<? super E> comparator = this.comparator;
++
++ Link<E> curr = this.head;
++ if (curr != null) {
++ int compare;
++
++ while ((compare = comparator.compare(element, curr.element)) > 0) {
++ Link<E> prev = curr;
++ curr = curr.next;
++ if (curr != null) {
++ continue;
++ }
++ return this.tail = prev.next = new Link<>(element, prev, null);
++ }
++
++ if (compare != 0) {
++ // insert before curr
++ final Link<E> prev = curr.prev;
++ final Link<E> insert = new Link<>(element, prev, curr);
++ curr.prev = insert;
++
++ if (prev == null) {
++ this.head = insert;
++ } else {
++ prev.next = insert;
++ }
++ return insert;
++ }
++
++ return null;
++ } else {
++ return this.head = this.tail = new Link<>(element);
++ }
++ }
++
++ public static final class Link<E> {
++ private E element;
++ private Link<E> prev;
++ private Link<E> next;
++
++ private Link(final E element) {
++ this.element = element;
++ }
++
++ private Link(final E element, final Link<E> prev, final Link<E> next) {
++ this.element = element;
++ this.prev = prev;
++ this.next = next;
++ }
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/set/LinkedUnsortedList.java b/src/main/java/ca/spottedleaf/concurrentutil/set/LinkedUnsortedList.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..bd8eb4f25d1dee00fbf9c05c14b0d94c5c641a55
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/set/LinkedUnsortedList.java
+@@ -0,0 +1,204 @@
++package ca.spottedleaf.concurrentutil.set;
++
++import java.util.Iterator;
++import java.util.NoSuchElementException;
++import java.util.Objects;
++
++public final class LinkedUnsortedList<E> implements Iterable<E> {
++
++ private Link<E> head;
++ private Link<E> tail;
++
++ public LinkedUnsortedList() {}
++
++ public void clear() {
++ this.head = this.tail = null;
++ }
++
++ public boolean isEmpty() {
++ return this.head == null;
++ }
++
++ public E first() {
++ final Link<E> head = this.head;
++ return head == null ? null : head.element;
++ }
++
++ public E last() {
++ final Link<E> tail = this.tail;
++ return tail == null ? null : tail.element;
++ }
++
++ public boolean containsFirst(final E element) {
++ for (Link<E> curr = this.head; curr != null; curr = curr.next) {
++ if (Objects.equals(element, curr.element)) {
++ return true;
++ }
++ }
++ return false;
++ }
++
++ public boolean containsLast(final E element) {
++ for (Link<E> curr = this.tail; curr != null; curr = curr.prev) {
++ if (Objects.equals(element, curr.element)) {
++ return true;
++ }
++ }
++ return false;
++ }
++
++ private void removeNode(final Link<E> node) {
++ final Link<E> prev = node.prev;
++ final Link<E> next = node.next;
++
++ // help GC
++ node.element = null;
++ node.prev = null;
++ node.next = null;
++
++ if (prev == null) {
++ this.head = next;
++ } else {
++ prev.next = next;
++ }
++
++ if (next == null) {
++ this.tail = prev;
++ } else {
++ next.prev = prev;
++ }
++ }
++
++ public boolean remove(final Link<E> link) {
++ if (link.element == null) {
++ return false;
++ }
++
++ this.removeNode(link);
++ return true;
++ }
++
++ public boolean removeFirst(final E element) {
++ for (Link<E> curr = this.head; curr != null; curr = curr.next) {
++ if (Objects.equals(element, curr.element)) {
++ this.removeNode(curr);
++ return true;
++ }
++ }
++ return false;
++ }
++
++ public boolean removeLast(final E element) {
++ for (Link<E> curr = this.tail; curr != null; curr = curr.prev) {
++ if (Objects.equals(element, curr.element)) {
++ this.removeNode(curr);
++ return true;
++ }
++ }
++ return false;
++ }
++
++ @Override
++ public Iterator<E> iterator() {
++ return new Iterator<>() {
++ private Link<E> next = LinkedUnsortedList.this.head;
++
++ @Override
++ public boolean hasNext() {
++ return this.next != null;
++ }
++
++ @Override
++ public E next() {
++ final Link<E> next = this.next;
++ if (next == null) {
++ throw new NoSuchElementException();
++ }
++ this.next = next.next;
++ return next.element;
++ }
++ };
++ }
++
++ public E pollFirst() {
++ final Link<E> head = this.head;
++ if (head == null) {
++ return null;
++ }
++
++ final E ret = head.element;
++ final Link<E> next = head.next;
++
++ // unlink head
++ this.head = next;
++ if (next == null) {
++ this.tail = null;
++ } else {
++ next.prev = null;
++ }
++
++ // help GC
++ head.element = null;
++ head.next = null;
++
++ return ret;
++ }
++
++ public E pollLast() {
++ final Link<E> tail = this.tail;
++ if (tail == null) {
++ return null;
++ }
++
++ final E ret = tail.element;
++ final Link<E> prev = tail.prev;
++
++ // unlink tail
++ this.tail = prev;
++ if (prev == null) {
++ this.head = null;
++ } else {
++ prev.next = null;
++ }
++
++ // help GC
++ tail.element = null;
++ tail.prev = null;
++
++ return ret;
++ }
++
++ public Link<E> addLast(final E element) {
++ final Link<E> curr = this.tail;
++ if (curr != null) {
++ return this.tail = new Link<>(element, curr, null);
++ } else {
++ return this.head = this.tail = new Link<>(element);
++ }
++ }
++
++ public Link<E> addFirst(final E element) {
++ final Link<E> curr = this.head;
++ if (curr != null) {
++ return this.head = new Link<>(element, null, curr);
++ } else {
++ return this.head = this.tail = new Link<>(element);
++ }
++ }
++
++ public static final class Link<E> {
++ private E element;
++ private Link<E> prev;
++ private Link<E> next;
++
++ private Link(final E element) {
++ this.element = element;
++ }
++
++ private Link(final E element, final Link<E> prev, final Link<E> next) {
++ this.element = element;
++ this.prev = prev;
++ this.next = next;
++ }
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/util/CollectionUtil.java b/src/main/java/ca/spottedleaf/concurrentutil/util/CollectionUtil.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..9420b9822de99d3a31224642452835b0c986f7b4
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/util/CollectionUtil.java
+@@ -0,0 +1,31 @@
++package ca.spottedleaf.concurrentutil.util;
++
++import java.util.Collection;
++
++public final class CollectionUtil {
++
++ public static String toString(final Collection<?> collection, final String name) {
++ return CollectionUtil.toString(collection, name, new StringBuilder(name.length() + 128)).toString();
++ }
++
++ public static StringBuilder toString(final Collection<?> collection, final String name, final StringBuilder builder) {
++ builder.append(name).append("{elements={");
++
++ boolean first = true;
++
++ for (final Object element : collection) {
++ if (!first) {
++ builder.append(", ");
++ }
++ first = false;
++
++ builder.append('"').append(element).append('"');
++ }
++
++ return builder.append("}}");
++ }
++
++ private CollectionUtil() {
++ throw new RuntimeException();
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/util/ConcurrentUtil.java b/src/main/java/ca/spottedleaf/concurrentutil/util/ConcurrentUtil.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..23ae82e55696a7e2ff0e0f9609c0df6a48bb8d1d
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/util/ConcurrentUtil.java
+@@ -0,0 +1,166 @@
++package ca.spottedleaf.concurrentutil.util;
++
++import java.lang.invoke.MethodHandles;
++import java.lang.invoke.VarHandle;
++import java.util.concurrent.locks.LockSupport;
++
++public final class ConcurrentUtil {
++
++ public static String genericToString(final Object object) {
++ return object == null ? "null" : object.getClass().getName() + ":" + object.hashCode() + ":" + object.toString();
++ }
++
++ public static void rethrow(Throwable exception) {
++ rethrow0(exception);
++ }
++
++ private static <T extends Throwable> void rethrow0(Throwable thr) throws T {
++ throw (T)thr;
++ }
++
++ public static VarHandle getVarHandle(final Class<?> lookIn, final String fieldName, final Class<?> fieldType) {
++ try {
++ return MethodHandles.privateLookupIn(lookIn, MethodHandles.lookup()).findVarHandle(lookIn, fieldName, fieldType);
++ } catch (final Exception ex) {
++ throw new RuntimeException(ex); // unreachable
++ }
++ }
++
++ public static VarHandle getStaticVarHandle(final Class<?> lookIn, final String fieldName, final Class<?> fieldType) {
++ try {
++ return MethodHandles.privateLookupIn(lookIn, MethodHandles.lookup()).findStaticVarHandle(lookIn, fieldName, fieldType);
++ } catch (final Exception ex) {
++ throw new RuntimeException(ex); // unreachable
++ }
++ }
++
++ /**
++ * Non-exponential backoff algorithm to use in lightly contended areas.
++ * @see ConcurrentUtil#exponentiallyBackoffSimple(long)
++ * @see ConcurrentUtil#exponentiallyBackoffComplex(long)
++ */
++ public static void backoff() {
++ Thread.onSpinWait();
++ }
++
++ /**
++ * Backoff algorithm to use for a short held lock (i.e compareAndExchange operation). Generally this should not be
++ * used when a thread can block another thread. Instead, use {@link ConcurrentUtil#exponentiallyBackoffComplex(long)}.
++ * @param counter The current counter.
++ * @return The counter plus 1.
++ * @see ConcurrentUtil#backoff()
++ * @see ConcurrentUtil#exponentiallyBackoffComplex(long)
++ */
++ public static long exponentiallyBackoffSimple(final long counter) {
++ for (long i = 0; i < counter; ++i) {
++ backoff();
++ }
++ return counter + 1L;
++ }
++
++ /**
++ * Backoff algorithm to use for a lock that can block other threads (i.e if another thread contending with this thread
++ * can be thrown off the scheduler). This lock should not be used for simple locks such as compareAndExchange.
++ * @param counter The current counter.
++ * @return The next (if any) step in the backoff logic.
++ * @see ConcurrentUtil#backoff()
++ * @see ConcurrentUtil#exponentiallyBackoffSimple(long)
++ */
++ public static long exponentiallyBackoffComplex(final long counter) {
++ // TODO experimentally determine counters
++ if (counter < 100L) {
++ return exponentiallyBackoffSimple(counter);
++ }
++ if (counter < 1_200L) {
++ Thread.yield();
++ LockSupport.parkNanos(1_000L);
++ return counter + 1L;
++ }
++ // scale 0.1ms (100us) per failure
++ Thread.yield();
++ LockSupport.parkNanos(100_000L * counter);
++ return counter + 1;
++ }
++
++ /**
++ * Simple exponential backoff that will linearly increase the time per failure, according to the scale.
++ * @param counter The current failure counter.
++ * @param scale Time per failure, in ns.
++ * @param max The maximum time to wait for, in ns.
++ * @return The next counter.
++ */
++ public static long linearLongBackoff(long counter, final long scale, long max) {
++ counter = Math.min(Long.MAX_VALUE, counter + 1); // prevent overflow
++ max = Math.max(0, max);
++
++ if (scale <= 0L) {
++ return counter;
++ }
++
++ long time = scale * counter;
++
++ if (time > max || time / scale != counter) {
++ time = max;
++ }
++
++ boolean interrupted = Thread.interrupted();
++ if (time > 1_000_000L) { // 1ms
++ Thread.yield();
++ }
++ LockSupport.parkNanos(time);
++ if (interrupted) {
++ Thread.currentThread().interrupt();
++ }
++ return counter;
++ }
++
++ /**
++ * Simple exponential backoff that will linearly increase the time per failure, according to the scale.
++ * @param counter The current failure counter.
++ * @param scale Time per failure, in ns.
++ * @param max The maximum time to wait for, in ns.
++ * @param deadline The deadline in ns. Deadline time source: {@link System#nanoTime()}.
++ * @return The next counter.
++ */
++ public static long linearLongBackoffDeadline(long counter, final long scale, long max, long deadline) {
++ counter = Math.min(Long.MAX_VALUE, counter + 1); // prevent overflow
++ max = Math.max(0, max);
++
++ if (scale <= 0L) {
++ return counter;
++ }
++
++ long time = scale * counter;
++
++ // check overflow
++ if (time / scale != counter) {
++ // overflew
++ --counter;
++ time = max;
++ } else if (time > max) {
++ time = max;
++ }
++
++ final long currTime = System.nanoTime();
++ final long diff = deadline - currTime;
++ if (diff <= 0) {
++ return counter;
++ }
++ if (diff <= 1_500_000L) { // 1.5ms
++ time = 100_000L; // 100us
++ } else if (time > 1_000_000L) { // 1ms
++ Thread.yield();
++ }
++
++ boolean interrupted = Thread.interrupted();
++ LockSupport.parkNanos(time);
++ if (interrupted) {
++ Thread.currentThread().interrupt();
++ }
++ return counter;
++ }
++
++ public static VarHandle getArrayHandle(final Class<?> type) {
++ return MethodHandles.arrayElementVarHandle(type);
++ }
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/util/HashUtil.java b/src/main/java/ca/spottedleaf/concurrentutil/util/HashUtil.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..2b9f36211d1cbb4fcf1457c0a83592499e9aa23b
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/util/HashUtil.java
+@@ -0,0 +1,111 @@
++package ca.spottedleaf.concurrentutil.util;
++
++public final class HashUtil {
++
++ // Copied from fastutil HashCommon
++
++ /** 2<sup>32</sup> &middot; &phi;, &phi; = (&#x221A;5 &minus; 1)/2. */
++ private static final int INT_PHI = 0x9E3779B9;
++ /** The reciprocal of {@link #INT_PHI} modulo 2<sup>32</sup>. */
++ private static final int INV_INT_PHI = 0x144cbc89;
++ /** 2<sup>64</sup> &middot; &phi;, &phi; = (&#x221A;5 &minus; 1)/2. */
++ private static final long LONG_PHI = 0x9E3779B97F4A7C15L;
++ /** The reciprocal of {@link #LONG_PHI} modulo 2<sup>64</sup>. */
++ private static final long INV_LONG_PHI = 0xf1de83e19937733dL;
++
++ /** Avalanches the bits of an integer by applying the finalisation step of MurmurHash3.
++ *
++ * <p>This method implements the finalisation step of Austin Appleby's <a href="http://code.google.com/p/smhasher/">MurmurHash3</a>.
++ * Its purpose is to avalanche the bits of the argument to within 0.25% bias.
++ *
++ * @param x an integer.
++ * @return a hash value with good avalanching properties.
++ */
++ // additional note: this function is a bijection onto all integers
++ public static int murmurHash3(int x) {
++ x ^= x >>> 16;
++ x *= 0x85ebca6b;
++ x ^= x >>> 13;
++ x *= 0xc2b2ae35;
++ x ^= x >>> 16;
++ return x;
++ }
++
++
++ /** Avalanches the bits of a long integer by applying the finalisation step of MurmurHash3.
++ *
++ * <p>This method implements the finalisation step of Austin Appleby's <a href="http://code.google.com/p/smhasher/">MurmurHash3</a>.
++ * Its purpose is to avalanche the bits of the argument to within 0.25% bias.
++ *
++ * @param x a long integer.
++ * @return a hash value with good avalanching properties.
++ */
++ // additional note: this function is a bijection onto all longs
++ public static long murmurHash3(long x) {
++ x ^= x >>> 33;
++ x *= 0xff51afd7ed558ccdL;
++ x ^= x >>> 33;
++ x *= 0xc4ceb9fe1a85ec53L;
++ x ^= x >>> 33;
++ return x;
++ }
++
++ /** Quickly mixes the bits of an integer.
++ *
++ * <p>This method mixes the bits of the argument by multiplying by the golden ratio and
++ * xorshifting the result. It is borrowed from <a href="https://github.com/leventov/Koloboke">Koloboke</a>, and
++ * it has slightly worse behaviour than {@link #murmurHash3(int)} (in open-addressing hash tables the average number of probes
++ * is slightly larger), but it's much faster.
++ *
++ * @param x an integer.
++ * @return a hash value obtained by mixing the bits of {@code x}.
++ * @see #invMix(int)
++ */
++ // additional note: this function is a bijection onto all integers
++ public static int mix(final int x) {
++ final int h = x * INT_PHI;
++ return h ^ (h >>> 16);
++ }
++
++ /** The inverse of {@link #mix(int)}. This method is mainly useful to create unit tests.
++ *
++ * @param x an integer.
++ * @return a value that passed through {@link #mix(int)} would give {@code x}.
++ */
++ // additional note: this function is a bijection onto all integers
++ public static int invMix(final int x) {
++ return (x ^ x >>> 16) * INV_INT_PHI;
++ }
++
++ /** Quickly mixes the bits of a long integer.
++ *
++ * <p>This method mixes the bits of the argument by multiplying by the golden ratio and
++ * xorshifting twice the result. It is borrowed from <a href="https://github.com/leventov/Koloboke">Koloboke</a>, and
++ * it has slightly worse behaviour than {@link #murmurHash3(long)} (in open-addressing hash tables the average number of probes
++ * is slightly larger), but it's much faster.
++ *
++ * @param x a long integer.
++ * @return a hash value obtained by mixing the bits of {@code x}.
++ */
++ // additional note: this function is a bijection onto all longs
++ public static long mix(final long x) {
++ long h = x * LONG_PHI;
++ h ^= h >>> 32;
++ return h ^ (h >>> 16);
++ }
++
++ /** The inverse of {@link #mix(long)}. This method is mainly useful to create unit tests.
++ *
++ * @param x a long integer.
++ * @return a value that passed through {@link #mix(long)} would give {@code x}.
++ */
++ // additional note: this function is a bijection onto all longs
++ public static long invMix(long x) {
++ x ^= x >>> 32;
++ x ^= x >>> 16;
++ return (x ^ x >>> 32) * INV_LONG_PHI;
++ }
++
++
++ private HashUtil() {}
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/util/IntPairUtil.java b/src/main/java/ca/spottedleaf/concurrentutil/util/IntPairUtil.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..4e61c477a56e645228d5a2015c26816954d17bf8
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/util/IntPairUtil.java
+@@ -0,0 +1,46 @@
++package ca.spottedleaf.concurrentutil.util;
++
++public final class IntPairUtil {
++
++ /**
++ * Packs the specified integers into one long value.
++ */
++ public static long key(final int left, final int right) {
++ return ((long)right << 32) | (left & 0xFFFFFFFFL);
++ }
++
++ /**
++ * Retrieves the left packed integer from the key
++ */
++ public static int left(final long key) {
++ return (int)key;
++ }
++
++ /**
++ * Retrieves the right packed integer from the key
++ */
++ public static int right(final long key) {
++ return (int)(key >>> 32);
++ }
++
++ public static String toString(final long key) {
++ return "{left:" + left(key) + ", right:" + right(key) + "}";
++ }
++
++ public static String toString(final long[] array, final int from, final int to) {
++ final StringBuilder ret = new StringBuilder();
++ ret.append("[");
++
++ for (int i = from; i < to; ++i) {
++ if (i != from) {
++ ret.append(", ");
++ }
++ ret.append(toString(array[i]));
++ }
++
++ ret.append("]");
++ return ret.toString();
++ }
++
++ private IntPairUtil() {}
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/util/IntegerUtil.java b/src/main/java/ca/spottedleaf/concurrentutil/util/IntegerUtil.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..9d7b9b8158cd01d12adbd7896ff77bee9828e101
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/util/IntegerUtil.java
+@@ -0,0 +1,196 @@
++package ca.spottedleaf.concurrentutil.util;
++
++public final class IntegerUtil {
++
++ public static final int HIGH_BIT_U32 = Integer.MIN_VALUE;
++ public static final long HIGH_BIT_U64 = Long.MIN_VALUE;
++
++ public static int ceilLog2(final int value) {
++ return Integer.SIZE - Integer.numberOfLeadingZeros(value - 1); // see doc of numberOfLeadingZeros
++ }
++
++ public static long ceilLog2(final long value) {
++ return Long.SIZE - Long.numberOfLeadingZeros(value - 1); // see doc of numberOfLeadingZeros
++ }
++
++ public static int floorLog2(final int value) {
++ // xor is optimized subtract for 2^n -1
++ // note that (2^n -1) - k = (2^n -1) ^ k for k <= (2^n - 1)
++ return (Integer.SIZE - 1) ^ Integer.numberOfLeadingZeros(value); // see doc of numberOfLeadingZeros
++ }
++
++ public static int floorLog2(final long value) {
++ // xor is optimized subtract for 2^n -1
++ // note that (2^n -1) - k = (2^n -1) ^ k for k <= (2^n - 1)
++ return (Long.SIZE - 1) ^ Long.numberOfLeadingZeros(value); // see doc of numberOfLeadingZeros
++ }
++
++ public static int roundCeilLog2(final int value) {
++ // optimized variant of 1 << (32 - leading(val - 1))
++ // given
++ // 1 << n = HIGH_BIT_32 >>> (31 - n) for n [0, 32)
++ // 1 << (32 - leading(val - 1)) = HIGH_BIT_32 >>> (31 - (32 - leading(val - 1)))
++ // HIGH_BIT_32 >>> (31 - (32 - leading(val - 1)))
++ // HIGH_BIT_32 >>> (31 - 32 + leading(val - 1))
++ // HIGH_BIT_32 >>> (-1 + leading(val - 1))
++ return HIGH_BIT_U32 >>> (Integer.numberOfLeadingZeros(value - 1) - 1);
++ }
++
++ public static long roundCeilLog2(final long value) {
++ // see logic documented above
++ return HIGH_BIT_U64 >>> (Long.numberOfLeadingZeros(value - 1) - 1);
++ }
++
++ public static int roundFloorLog2(final int value) {
++ // optimized variant of 1 << (31 - leading(val))
++ // given
++ // 1 << n = HIGH_BIT_32 >>> (31 - n) for n [0, 32)
++ // 1 << (31 - leading(val)) = HIGH_BIT_32 >> (31 - (31 - leading(val)))
++ // HIGH_BIT_32 >> (31 - (31 - leading(val)))
++ // HIGH_BIT_32 >> (31 - 31 + leading(val))
++ return HIGH_BIT_U32 >>> Integer.numberOfLeadingZeros(value);
++ }
++
++ public static long roundFloorLog2(final long value) {
++ // see logic documented above
++ return HIGH_BIT_U64 >>> Long.numberOfLeadingZeros(value);
++ }
++
++ public static boolean isPowerOfTwo(final int n) {
++ // 2^n has one bit
++ // note: this rets true for 0 still
++ return IntegerUtil.getTrailingBit(n) == n;
++ }
++
++ public static boolean isPowerOfTwo(final long n) {
++ // 2^n has one bit
++ // note: this rets true for 0 still
++ return IntegerUtil.getTrailingBit(n) == n;
++ }
++
++ public static int getTrailingBit(final int n) {
++ return -n & n;
++ }
++
++ public static long getTrailingBit(final long n) {
++ return -n & n;
++ }
++
++ public static int trailingZeros(final int n) {
++ return Integer.numberOfTrailingZeros(n);
++ }
++
++ public static int trailingZeros(final long n) {
++ return Long.numberOfTrailingZeros(n);
++ }
++
++ // from hacker's delight (signed division magic value)
++ public static int getDivisorMultiple(final long numbers) {
++ return (int)(numbers >>> 32);
++ }
++
++ // from hacker's delight (signed division magic value)
++ public static int getDivisorShift(final long numbers) {
++ return (int)numbers;
++ }
++
++ // copied from hacker's delight (signed division magic value)
++ // http://www.hackersdelight.org/hdcodetxt/magic.c.txt
++ public static long getDivisorNumbers(final int d) {
++ final int ad = branchlessAbs(d);
++
++ if (ad < 2) {
++ throw new IllegalArgumentException("|number| must be in [2, 2^31 -1], not: " + d);
++ }
++
++ final int two31 = 0x80000000;
++ final long mask = 0xFFFFFFFFL; // mask for enforcing unsigned behaviour
++
++ /*
++ Signed usage:
++ int number;
++ long magic = getDivisorNumbers(div);
++ long mul = magic >>> 32;
++ int sign = number >> 31;
++ int result = (int)(((long)number * mul) >>> magic) - sign;
++ */
++ /*
++ Unsigned usage: (note: fails for input > Integer.MAX_VALUE, only use when input < Integer.MAX_VALUE to avoid sign calculation)
++ int number;
++ long magic = getDivisorNumbers(div);
++ long mul = magic >>> 32;
++ int result = (int)(((long)number * mul) >>> magic);
++ */
++
++ int p = 31;
++
++ // all these variables are UNSIGNED!
++ int t = two31 + (d >>> 31);
++ int anc = t - 1 - (int)((t & mask)%ad);
++ int q1 = (int)((two31 & mask)/(anc & mask));
++ int r1 = two31 - q1*anc;
++ int q2 = (int)((two31 & mask)/(ad & mask));
++ int r2 = two31 - q2*ad;
++ int delta;
++
++ do {
++ p = p + 1;
++ q1 = 2*q1; // Update q1 = 2**p/|nc|.
++ r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
++ if ((r1 & mask) >= (anc & mask)) {// (Must be an unsigned comparison here)
++ q1 = q1 + 1;
++ r1 = r1 - anc;
++ }
++ q2 = 2*q2; // Update q2 = 2**p/|d|.
++ r2 = 2*r2; // Update r2 = rem(2**p, |d|).
++ if ((r2 & mask) >= (ad & mask)) {// (Must be an unsigned comparison here)
++ q2 = q2 + 1;
++ r2 = r2 - ad;
++ }
++ delta = ad - r2;
++ } while ((q1 & mask) < (delta & mask) || (q1 == delta && r1 == 0));
++
++ int magicNum = q2 + 1;
++ if (d < 0) {
++ magicNum = -magicNum;
++ }
++ int shift = p;
++ return ((long)magicNum << 32) | shift;
++ }
++
++ public static int branchlessAbs(final int val) {
++ // -n = -1 ^ n + 1
++ final int mask = val >> (Integer.SIZE - 1); // -1 if < 0, 0 if >= 0
++ return (mask ^ val) - mask; // if val < 0, then (0 ^ val) - 0 else (-1 ^ val) + 1
++ }
++
++ public static long branchlessAbs(final long val) {
++ // -n = -1 ^ n + 1
++ final long mask = val >> (Long.SIZE - 1); // -1 if < 0, 0 if >= 0
++ return (mask ^ val) - mask; // if val < 0, then (0 ^ val) - 0 else (-1 ^ val) + 1
++ }
++
++ // https://lemire.me/blog/2019/02/08/faster-remainders-when-the-divisor-is-a-constant-beating-compilers-and-libdivide
++ /**
++ *
++ * Usage:
++ * <pre>
++ * {@code
++ * static final long mult = getSimpleMultiplier(divisor, bits);
++ * long x = ...;
++ * long magic = x * mult;
++ * long divQ = magic >>> bits;
++ * long divR = ((magic & ((1 << bits) - 1)) * divisor) >>> bits;
++ * }
++ * </pre>
++ *
++ * @param bits The number of bits of precision for the returned result
++ */
++ public static long getUnsignedDivisorMagic(final long divisor, final int bits) {
++ return (((1L << bits) - 1L) / divisor) + 1;
++ }
++
++ private IntegerUtil() {
++ throw new RuntimeException();
++ }
++}
+\ No newline at end of file
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/util/Priority.java b/src/main/java/ca/spottedleaf/concurrentutil/util/Priority.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..2919bbaa07b70f182438c3be8f9ebbe0649809b6
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/util/Priority.java
+@@ -0,0 +1,145 @@
++package ca.spottedleaf.concurrentutil.util;
++
++public enum Priority {
++
++ /**
++ * Priority value indicating the task has completed or is being completed.
++ * This priority cannot be used to schedule tasks.
++ */
++ COMPLETING(-1),
++
++ /**
++ * Absolute highest priority, should only be used for when a task is blocking a time-critical thread.
++ */
++ BLOCKING(),
++
++ /**
++ * Should only be used for urgent but not time-critical tasks.
++ */
++ HIGHEST(),
++
++ /**
++ * Two priorities above normal.
++ */
++ HIGHER(),
++
++ /**
++ * One priority above normal.
++ */
++ HIGH(),
++
++ /**
++ * Default priority.
++ */
++ NORMAL(),
++
++ /**
++ * One priority below normal.
++ */
++ LOW(),
++
++ /**
++ * Two priorities below normal.
++ */
++ LOWER(),
++
++ /**
++ * Use for tasks that should eventually execute, but are not needed to.
++ */
++ LOWEST(),
++
++ /**
++ * Use for tasks that can be delayed indefinitely.
++ */
++ IDLE();
++
++ // returns whether the priority can be scheduled
++ public static boolean isValidPriority(final Priority priority) {
++ return priority != null && priority != priority.COMPLETING;
++ }
++
++ // returns the higher priority of the two
++ public static Priority max(final Priority p1, final Priority p2) {
++ return p1.isHigherOrEqualPriority(p2) ? p1 : p2;
++ }
++
++ // returns the lower priroity of the two
++ public static Priority min(final Priority p1, final Priority p2) {
++ return p1.isLowerOrEqualPriority(p2) ? p1 : p2;
++ }
++
++ public boolean isHigherOrEqualPriority(final Priority than) {
++ return this.priority <= than.priority;
++ }
++
++ public boolean isHigherPriority(final Priority than) {
++ return this.priority < than.priority;
++ }
++
++ public boolean isLowerOrEqualPriority(final Priority than) {
++ return this.priority >= than.priority;
++ }
++
++ public boolean isLowerPriority(final Priority than) {
++ return this.priority > than.priority;
++ }
++
++ public boolean isHigherOrEqualPriority(final int than) {
++ return this.priority <= than;
++ }
++
++ public boolean isHigherPriority(final int than) {
++ return this.priority < than;
++ }
++
++ public boolean isLowerOrEqualPriority(final int than) {
++ return this.priority >= than;
++ }
++
++ public boolean isLowerPriority(final int than) {
++ return this.priority > than;
++ }
++
++ public static boolean isHigherOrEqualPriority(final int priority, final int than) {
++ return priority <= than;
++ }
++
++ public static boolean isHigherPriority(final int priority, final int than) {
++ return priority < than;
++ }
++
++ public static boolean isLowerOrEqualPriority(final int priority, final int than) {
++ return priority >= than;
++ }
++
++ public static boolean isLowerPriority(final int priority, final int than) {
++ return priority > than;
++ }
++
++ static final Priority[] PRIORITIES = Priority.values();
++
++ /** includes special priorities */
++ public static final int TOTAL_PRIORITIES = PRIORITIES.length;
++
++ public static final int TOTAL_SCHEDULABLE_PRIORITIES = TOTAL_PRIORITIES - 1;
++
++ public static Priority getPriority(final int priority) {
++ return PRIORITIES[priority + 1];
++ }
++
++ private static int priorityCounter;
++
++ private static int nextCounter() {
++ return priorityCounter++;
++ }
++
++ public final int priority;
++
++ private Priority() {
++ this(nextCounter());
++ }
++
++ private Priority(final int priority) {
++ this.priority = priority;
++ }
++}
+\ No newline at end of file
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/util/ThrowUtil.java b/src/main/java/ca/spottedleaf/concurrentutil/util/ThrowUtil.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..a3a8b5c6795c4d116e094e4c910553416f565b93
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/util/ThrowUtil.java
+@@ -0,0 +1,11 @@
++package ca.spottedleaf.concurrentutil.util;
++
++public final class ThrowUtil {
++
++ private ThrowUtil() {}
++
++ public static <T extends Throwable> void throwUnchecked(final Throwable thr) throws T {
++ throw (T)thr;
++ }
++
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/util/TimeUtil.java b/src/main/java/ca/spottedleaf/concurrentutil/util/TimeUtil.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..63688716244066581d5b505703576e3340e3baf3
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/util/TimeUtil.java
+@@ -0,0 +1,60 @@
++package ca.spottedleaf.concurrentutil.util;
++
++public final class TimeUtil {
++
++ /*
++ * The comparator is not a valid comparator for every long value. To prove where it is valid, see below.
++ *
++ * For reflexivity, we have that x - x = 0. We then have that for any long value x that
++ * compareTimes(x, x) == 0, as expected.
++ *
++ * For symmetry, we have that x - y = -(y - x) except for when y - x = Long.MIN_VALUE.
++ * So, the difference between any times x and y must not be equal to Long.MIN_VALUE.
++ *
++ * As for the transitive relation, consider we have x,y such that x - y = a > 0 and z such that
++ * y - z = b > 0. Then, we will have that the x - z > 0 is equivalent to a + b > 0. For long values,
++ * this holds as long as a + b <= Long.MAX_VALUE.
++ *
++ * Also consider we have x, y such that x - y = a < 0 and z such that y - z = b < 0. Then, we will have
++ * that x - z < 0 is equivalent to a + b < 0. For long values, this holds as long as a + b >= -Long.MAX_VALUE.
++ *
++ * Thus, the comparator is only valid for timestamps such that abs(c - d) <= Long.MAX_VALUE for all timestamps
++ * c and d.
++ */
++
++ /**
++ * This function is appropriate to be used as a {@link java.util.Comparator} between two timestamps, which
++ * indicates whether the timestamps represented by t1, t2 that t1 is before, equal to, or after t2.
++ */
++ public static int compareTimes(final long t1, final long t2) {
++ final long diff = t1 - t2;
++
++ // HD, Section 2-7
++ return (int) ((diff >> 63) | (-diff >>> 63));
++ }
++
++ public static long getGreatestTime(final long t1, final long t2) {
++ final long diff = t1 - t2;
++ return diff < 0L ? t2 : t1;
++ }
++
++ public static long getLeastTime(final long t1, final long t2) {
++ final long diff = t1 - t2;
++ return diff > 0L ? t2 : t1;
++ }
++
++ public static long clampTime(final long value, final long min, final long max) {
++ final long diffMax = value - max;
++ final long diffMin = value - min;
++
++ if (diffMax > 0L) {
++ return max;
++ }
++ if (diffMin < 0L) {
++ return min;
++ }
++ return value;
++ }
++
++ private TimeUtil() {}
++}
+diff --git a/src/main/java/ca/spottedleaf/concurrentutil/util/Validate.java b/src/main/java/ca/spottedleaf/concurrentutil/util/Validate.java
+new file mode 100644
+index 0000000000000000000000000000000000000000..382177d0d162fa3139c9078a873ce2504a2b17b2
+--- /dev/null
++++ b/src/main/java/ca/spottedleaf/concurrentutil/util/Validate.java
+@@ -0,0 +1,28 @@
++package ca.spottedleaf.concurrentutil.util;
++
++public final class Validate {
++
++ public static <T> T notNull(final T obj) {
++ if (obj == null) {
++ throw new NullPointerException();
++ }
++ return obj;
++ }
++
++ public static <T> T notNull(final T obj, final String msgIfNull) {
++ if (obj == null) {
++ throw new NullPointerException(msgIfNull);
++ }
++ return obj;
++ }
++
++ public static void arrayBounds(final int off, final int len, final int arrayLength, final String msgPrefix) {
++ if (off < 0 || len < 0 || (arrayLength - off) < len) {
++ throw new ArrayIndexOutOfBoundsException(msgPrefix + ": off: " + off + ", len: " + len + ", array length: " + arrayLength);
++ }
++ }
++
++ private Validate() {
++ throw new RuntimeException();
++ }
++}