diff options
author | Ben V. Brown <[email protected]> | 2021-05-08 22:00:02 +1000 |
---|---|---|
committer | GitHub <[email protected]> | 2021-05-08 22:00:02 +1000 |
commit | 40087e62817eb1cbe26dd1d4beea72d2dcab0099 (patch) | |
tree | c8cef3e310a23aaf066971e9d52096af649142af | |
parent | a238a7813c7a6e1d30560340f05e7e0cd185e677 (diff) | |
parent | 0887bbe3cf8ecff5422970f5bb6d46596e6acb24 (diff) | |
download | IronOS-40087e62817eb1cbe26dd1d4beea72d2dcab0099.tar.gz IronOS-40087e62817eb1cbe26dd1d4beea72d2dcab0099.zip |
Merge pull request #940 from Ralim/MHP30v2.15
MHP30 Support
117 files changed, 67144 insertions, 743 deletions
diff --git a/.github/workflows/push.yml b/.github/workflows/push.yml index ca2e4abc..aab35999 100644 --- a/.github/workflows/push.yml +++ b/.github/workflows/push.yml @@ -7,7 +7,7 @@ jobs: runs-on: ubuntu-20.04 strategy: matrix: - model: ["TS100", "TS80", "TS80P", "Pinecil"] + model: ["TS100", "TS80", "TS80P", "Pinecil", "MHP30"] fail-fast: true steps: diff --git a/Documentation/Hardware.md b/Documentation/Hardware.md new file mode 100644 index 00000000..15454b31 --- /dev/null +++ b/Documentation/Hardware.md @@ -0,0 +1,8 @@ +## Notes on the various supported hardware + +### MHP30 + +- Accelerometer is the MSA301, this is mounted roughly in the middle of the unit +- USB-PD is using the FUSB302 +- The hardware I2C bus on PB6/7 is used for the MSA301 and FUSB302 +- The OLED is the same SSD1306 as everything else, but its on a bit-banged bus diff --git a/source/Core/BSP/BSP.h b/source/Core/BSP/BSP.h index 08ead36a..82107c73 100644 --- a/source/Core/BSP/BSP.h +++ b/source/Core/BSP/BSP.h @@ -74,6 +74,21 @@ bool getIsPoweredByDCIN(); // Logs the system state to a debug interface if supported
void log_system_state(int32_t PWMWattsx10);
+// Returns true if the tip is disconnected
+bool isTipDisconnected();
+
+// Status LED controls
+
+enum StatusLED {
+ LED_OFF = 0, // Turn off status led
+ LED_STANDBY, // unit is in sleep /standby
+ LED_HEATING, // The unit is heating up to temperature
+ LED_HOT, // The unit is at operating temperature
+ LED_COOLING_STILL_HOT, // The unit is off and cooling but still hot
+ LED_UNKNOWN, //
+};
+void setStatusLED(const enum StatusLED state);
+
#ifdef __cplusplus
}
#endif
diff --git a/source/Core/BSP/BSP_PD.h b/source/Core/BSP/BSP_PD.h index f2c97802..a0dde7c2 100644 --- a/source/Core/BSP/BSP_PD.h +++ b/source/Core/BSP/BSP_PD.h @@ -8,6 +8,5 @@ #ifndef USER_BSP_PD_H_
#define USER_BSP_PD_H_
#include "BSP.h"
-bool getFUS302IRQLow(); // Return true if the IRQ line is still held low
#endif /* USER_BSP_PD_H_ */
diff --git a/source/Core/BSP/Defines.h b/source/Core/BSP/Defines.h index f5a8d841..90359e4c 100644 --- a/source/Core/BSP/Defines.h +++ b/source/Core/BSP/Defines.h @@ -10,8 +10,6 @@ #include "FreeRTOSConfig.h"
enum Orientation { ORIENTATION_LEFT_HAND = 0, ORIENTATION_RIGHT_HAND = 1, ORIENTATION_FLAT = 3 };
-// It is assumed that all hardware implements an 8Hz update period at this time
-#define PID_TIM_HZ (8)
#define TICKS_SECOND configTICK_RATE_HZ
#define TICKS_MIN (60 * TICKS_SECOND)
#define TICKS_100MS (TICKS_SECOND / 10)
diff --git a/source/Core/BSP/MHP30/BSP.cpp b/source/Core/BSP/MHP30/BSP.cpp new file mode 100644 index 00000000..850c1c83 --- /dev/null +++ b/source/Core/BSP/MHP30/BSP.cpp @@ -0,0 +1,462 @@ +// BSP mapping functions
+
+#include "BSP.h"
+#include "I2C_Wrapper.hpp"
+#include "Model_Config.h"
+#include "Pins.h"
+#include "Setup.h"
+#include "TipThermoModel.h"
+#include "Utils.h"
+#include "WS2812.h"
+#include "configuration.h"
+#include "history.hpp"
+#include "main.hpp"
+#include <IRQ.h>
+
+WS2812<GPIOA_BASE, WS2812_Pin, 1> ws2812;
+volatile uint16_t PWMSafetyTimer = 0;
+volatile uint8_t pendingPWM = 0;
+uint16_t totalPWM = 255;
+const uint16_t powerPWM = 255;
+
+history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
+void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
+
+#ifdef TEMP_NTC
+// Lookup table for the NTC
+// Stored as ADCReading,Temp in degC
+static const uint16_t NTCHandleLookup[] = {
+ // ADC Reading , Temp in Cx10
+ 808, 1600, //
+ 832, 1590, //
+ 848, 1580, //
+ 872, 1570, //
+ 888, 1560, //
+ 912, 1550, //
+ 936, 1540, //
+ 960, 1530, //
+ 984, 1520, //
+ 1008, 1510, //
+ 1032, 1500, //
+ 1056, 1490, //
+ 1080, 1480, //
+ 1112, 1470, //
+ 1136, 1460, //
+ 1168, 1450, //
+ 1200, 1440, //
+ 1224, 1430, //
+ 1256, 1420, //
+ 1288, 1410, //
+ 1328, 1400, //
+ 1360, 1390, //
+ 1392, 1380, //
+ 1432, 1370, //
+ 1464, 1360, //
+ 1504, 1350, //
+ 1544, 1340, //
+ 1584, 1330, //
+ 1632, 1320, //
+ 1672, 1310, //
+ 1720, 1300, //
+ 1760, 1290, //
+ 1808, 1280, //
+ 1856, 1270, //
+ 1912, 1260, //
+ 1960, 1250, //
+ 2016, 1240, //
+ 2072, 1230, //
+ 2128, 1220, //
+ 2184, 1210, //
+ 2248, 1200, //
+ 2304, 1190, //
+ 2368, 1180, //
+ 2440, 1170, //
+ 2504, 1160, //
+ 2576, 1150, //
+ 2648, 1140, //
+ 2720, 1130, //
+ 2792, 1120, //
+ 2872, 1110, //
+ 2952, 1100, //
+ 3040, 1090, //
+ 3128, 1080, //
+ 3216, 1070, //
+ 3304, 1060, //
+ 3400, 1050, //
+ 3496, 1040, //
+ 3592, 1030, //
+ 3696, 1020, //
+ 3800, 1010, //
+ 3912, 1000, //
+ 4024, 990, //
+ 4136, 980, //
+ 4256, 970, //
+ 4376, 960, //
+ 4504, 950, //
+ 4632, 940, //
+ 4768, 930, //
+ 4904, 920, //
+ 5048, 910, //
+ 5192, 900, //
+ 5336, 890, //
+ 5488, 880, //
+ 5648, 870, //
+ 5808, 860, //
+ 5976, 850, //
+ 6144, 840, //
+ 6320, 830, //
+ 6504, 820, //
+ 6688, 810, //
+ 6872, 800, //
+ 7072, 790, //
+ 7264, 780, //
+ 7472, 770, //
+ 7680, 760, //
+ 7896, 750, //
+ 8112, 740, //
+ 8336, 730, //
+ 8568, 720, //
+ 8800, 710, //
+ 9040, 700, //
+ 9288, 690, //
+ 9536, 680, //
+ 9792, 670, //
+ 10056, 660, //
+ 10320, 650, //
+ 10592, 640, //
+ 10872, 630, //
+ 11152, 620, //
+ 11440, 610, //
+ 11728, 600, //
+ 12024, 590, //
+ 12320, 580, //
+ 12632, 570, //
+ 12936, 560, //
+ 13248, 550, //
+ 13568, 540, //
+ 13888, 530, //
+ 14216, 520, //
+ 14544, 510, //
+ 14880, 500, //
+ 15216, 490, //
+ 15552, 480, //
+ 15888, 470, //
+ 16232, 460, //
+ 16576, 450, //
+ 16920, 440, //
+ 17272, 430, //
+ 17616, 420, //
+ 17968, 410, //
+ 18320, 400, //
+ 18664, 390, //
+ 19016, 380, //
+ 19368, 370, //
+ 19712, 360, //
+ 20064, 350, //
+ 20408, 340, //
+ 20752, 330, //
+ 21088, 320, //
+ 21432, 310, //
+ 21768, 300, //
+ 22096, 290, //
+ 22424, 280, //
+ 22752, 270, //
+ 23072, 260, //
+ 23392, 250, //
+ 23704, 240, //
+ 24008, 230, //
+ 24312, 220, //
+ 24608, 210, //
+ 24904, 200, //
+ 25192, 190, //
+ 25472, 180, //
+ 25744, 170, //
+ 26016, 160, //
+ 26280, 150, //
+ 26536, 140, //
+ 26784, 130, //
+ 27024, 120, //
+ 27264, 110, //
+ 27496, 100, //
+ 27720, 90, //
+ 27936, 80, //
+ 28144, 70, //
+ 28352, 60, //
+ 28544, 50, //
+ 28736, 40, //
+ 28920, 30, //
+ 29104, 20, //
+ 29272, 10, //
+};
+const int NTCHandleLookupItems = sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t));
+#endif
+
+// These are called by the HAL after the corresponding events from the system
+// timers.
+
+void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
+ // Period has elapsed
+ if (htim->Instance == TIM4) {
+ // STM uses this for internal functions as a counter for timeouts
+ HAL_IncTick();
+ }
+}
+uint16_t getHandleTemperature() {
+ int32_t result = getADC(0);
+ return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems, result);
+}
+
+uint16_t getTipInstantTemperature() { return getADC(2); }
+
+uint16_t getTipRawTemp(uint8_t refresh) {
+ if (refresh) {
+ uint16_t lastSample = getTipInstantTemperature();
+ rawTempFilter.update(lastSample);
+ return lastSample;
+ } else {
+ return rawTempFilter.average();
+ }
+}
+
+uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
+ // ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
+ // Therefore we can divide down from there
+ // Multiplying ADC max by 4 for additional calibration options,
+ // ideal term is 467
+ static uint8_t preFillneeded = 10;
+ static uint32_t samples[BATTFILTERDEPTH];
+ static uint8_t index = 0;
+ if (preFillneeded) {
+ for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
+ samples[i] = getADC(1);
+ preFillneeded--;
+ }
+ if (sample) {
+ samples[index] = getADC(1);
+ index = (index + 1) % BATTFILTERDEPTH;
+ }
+ uint32_t sum = 0;
+
+ for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
+ sum += samples[i];
+
+ sum /= BATTFILTERDEPTH;
+ if (divisor == 0) {
+ divisor = 1;
+ }
+ return sum * 4 / divisor;
+}
+bool tryBetterPWM(uint8_t pwm) {
+ // We dont need this for the MHP30
+ return false;
+}
+void setTipPWM(uint8_t pulse) {
+ // We can just set the timer directly
+ if (htim3.Instance->PSC > 20) {
+ htim3.Instance->CCR1 = 0;
+ } else {
+ htim3.Instance->CCR1 = pulse;
+ }
+}
+
+void unstick_I2C() {
+ GPIO_InitTypeDef GPIO_InitStruct;
+ int timeout = 100;
+ int timeout_cnt = 0;
+
+ // 1. Clear PE bit.
+ hi2c1.Instance->CR1 &= ~(0x0001);
+ /**I2C1 GPIO Configuration
+ PB6 ------> I2C1_SCL
+ PB7 ------> I2C1_SDA
+ */
+ // 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
+ GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
+ GPIO_InitStruct.Pull = GPIO_PULLUP;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
+
+ GPIO_InitStruct.Pin = SCL_Pin;
+ HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
+ HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
+
+ GPIO_InitStruct.Pin = SDA_Pin;
+ HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
+ HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
+
+ while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
+ // Move clock to release I2C
+ HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
+ asm("nop");
+ asm("nop");
+ asm("nop");
+ asm("nop");
+ HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
+
+ timeout_cnt++;
+ if (timeout_cnt > timeout)
+ return;
+ }
+
+ // 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
+ GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
+ GPIO_InitStruct.Pull = GPIO_PULLUP;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
+
+ GPIO_InitStruct.Pin = SCL_Pin;
+ HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
+
+ GPIO_InitStruct.Pin = SDA_Pin;
+ HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
+
+ HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
+ HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
+
+ // 13. Set SWRST bit in I2Cx_CR1 register.
+ hi2c1.Instance->CR1 |= 0x8000;
+
+ asm("nop");
+
+ // 14. Clear SWRST bit in I2Cx_CR1 register.
+ hi2c1.Instance->CR1 &= ~0x8000;
+
+ asm("nop");
+
+ // 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
+ hi2c1.Instance->CR1 |= 0x0001;
+
+ // Call initialization function.
+ HAL_I2C_Init(&hi2c1);
+}
+
+uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
+uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
+
+void BSPInit(void) { ws2812.init(); }
+
+void reboot() { NVIC_SystemReset(); }
+
+void delay_ms(uint16_t count) { HAL_Delay(count); }
+
+void setPlatePullup(bool pullingUp) {
+ GPIO_InitTypeDef GPIO_InitStruct;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
+ GPIO_InitStruct.Pin = PLATE_SENSOR_PULLUP_Pin;
+ GPIO_InitStruct.Pull = GPIO_NOPULL;
+ if (pullingUp) {
+ GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
+ HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_SET);
+ } else {
+ // Hi-z
+ GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
+ HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_RESET);
+ }
+ HAL_GPIO_Init(PLATE_SENSOR_PULLUP_GPIO_Port, &GPIO_InitStruct);
+}
+
+uint16_t tipSenseResistancex10Ohms = 0;
+bool isTipDisconnected() {
+ static bool lastTipDisconnectedState = true;
+ static uint16_t adcReadingPD1Set = 0;
+ static TickType_t lastMeas = 0;
+ // For the MHP30 we want to include a little extra logic in here
+ // As when the tip is first connected we want to measure the ~100 ohm resistor on the base of the tip
+ // And likewise if its removed we want to clear that measurement
+ /*
+ * plate_sensor_res = ((adc5_value_PD1_set - adc5_value_PD1_cleared) / (adc5_value_PD1_cleared + 4096 - adc5_value_PD1_set)) * 1000.0;
+ * */
+
+ bool tipDisconnected = getADC(2) > (4090 * 8);
+ // We have to handle here that this ^ will trip while measuring the gain resistor
+ if (xTaskGetTickCount() - lastMeas < (TICKS_100MS * 2 + (TICKS_100MS / 2))) {
+ tipDisconnected = false;
+ }
+
+ if (tipDisconnected != lastTipDisconnectedState) {
+ if (tipDisconnected) {
+ // Tip is now disconnected
+ tipSenseResistancex10Ohms = 0; // zero out the resistance
+ adcReadingPD1Set = 0;
+ lastMeas = 0;
+ }
+ lastTipDisconnectedState = tipDisconnected;
+ }
+ if (!tipDisconnected) {
+ if (tipSenseResistancex10Ohms == 0) {
+ if (lastMeas == 0) {
+ lastMeas = xTaskGetTickCount();
+ setPlatePullup(true);
+ } else if (xTaskGetTickCount() - lastMeas > (TICKS_100MS)) {
+ lastMeas = xTaskGetTickCount();
+ // We are sensing the resistance
+ if (adcReadingPD1Set == 0) {
+ // We will record the reading for PD1 being set
+ adcReadingPD1Set = getADC(3);
+ setPlatePullup(false);
+ } else {
+ // We have taken reading one
+ uint16_t adcReadingPD1Cleared = getADC(3);
+ uint32_t a = ((int)adcReadingPD1Set - (int)adcReadingPD1Cleared);
+ a *= 10000;
+ uint32_t b = ((int)adcReadingPD1Cleared + (32768 - (int)adcReadingPD1Set));
+ if (b) {
+ tipSenseResistancex10Ohms = a / b;
+ } else {
+ tipSenseResistancex10Ohms = adcReadingPD1Set = lastMeas = 0;
+ }
+ if (tipSenseResistancex10Ohms > 1100 || tipSenseResistancex10Ohms < 900) {
+ tipSenseResistancex10Ohms = 0; // out of range
+ adcReadingPD1Set = 0;
+ lastMeas = 0;
+ }
+ }
+ }
+ return true; // we fake tip being disconnected until this is measured
+ }
+ }
+
+ return tipDisconnected;
+}
+void setBuzzer(bool on) {
+ if (on) {
+ htim3.Instance->CCR2 = 128;
+ htim3.Instance->PSC = 100; // drop down into audible range
+ } else {
+ htim3.Instance->CCR2 = 0;
+ htim3.Instance->PSC = 1; // revert back out of hearing range
+ }
+}
+void setStatusLED(const enum StatusLED state) {
+ static enum StatusLED lastState = LED_UNKNOWN;
+ static TickType_t buzzerEnd = 0;
+
+ if (lastState != state || state == LED_HEATING) {
+ switch (state) {
+ default:
+ case LED_UNKNOWN:
+ case LED_OFF:
+ ws2812.led_set_color(0, 0, 0, 0);
+ break;
+ case LED_STANDBY:
+ ws2812.led_set_color(0, 0, 0xFF, 0); // green
+ break;
+ case LED_HEATING: {
+ ws2812.led_set_color(0, ((HAL_GetTick() / 10) % 192) + 64, 0, 0); // Red fade
+ } break;
+ case LED_HOT:
+ ws2812.led_set_color(0, 0xFF, 0, 0); // red
+ // We have hit the right temp, run buzzer for a short period
+ buzzerEnd = xTaskGetTickCount() + TICKS_SECOND / 3;
+ break;
+ case LED_COOLING_STILL_HOT:
+ ws2812.led_set_color(0, 0xFF, 0x8C, 0x00); // Orange
+ break;
+ }
+ ws2812.led_update();
+ lastState = state;
+ }
+ if (state == LED_HOT && xTaskGetTickCount() < buzzerEnd) {
+ setBuzzer(true);
+ } else {
+ setBuzzer(false);
+ }
+}
diff --git a/source/Core/BSP/MHP30/FreeRTOSConfig.h b/source/Core/BSP/MHP30/FreeRTOSConfig.h new file mode 100644 index 00000000..dd95674e --- /dev/null +++ b/source/Core/BSP/MHP30/FreeRTOSConfig.h @@ -0,0 +1,180 @@ +/*
+ FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ ***************************************************************************
+ >>! NOTE: The modification to the GPL is included to allow you to !<<
+ >>! distribute a combined work that includes FreeRTOS without being !<<
+ >>! obliged to provide the source code for proprietary components !<<
+ >>! outside of the FreeRTOS kernel. !<<
+ ***************************************************************************
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available on the following
+ link: http://www.freertos.org/a00114.html
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that is more than just the market leader, it *
+ * is the industry's de facto standard. *
+ * *
+ * Help yourself get started quickly while simultaneously helping *
+ * to support the FreeRTOS project by purchasing a FreeRTOS *
+ * tutorial book, reference manual, or both: *
+ * http://www.FreeRTOS.org/Documentation *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
+ the FAQ page "My application does not run, what could be wrong?". Have you
+ defined configASSERT()?
+
+ http://www.FreeRTOS.org/support - In return for receiving this top quality
+ embedded software for free we request you assist our global community by
+ participating in the support forum.
+
+ http://www.FreeRTOS.org/training - Investing in training allows your team to
+ be as productive as possible as early as possible. Now you can receive
+ FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+ Ltd, and the world's leading authority on the world's leading RTOS.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+ Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+ Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and commercial middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+ */
+
+#ifndef FREERTOS_CONFIG_H
+#define FREERTOS_CONFIG_H
+
+/*-----------------------------------------------------------
+ * Application specific definitions.
+ *
+ * These definitions should be adjusted for your particular hardware and
+ * application requirements.
+ *
+ * THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION OF THE
+ * FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.
+ *
+ * See http://www.freertos.org/a00110.html.
+ *----------------------------------------------------------*/
+
+/* USER CODE BEGIN Includes */
+#ifdef __cplusplus
+extern "C" {
+#endif
+/* USER CODE END Includes */
+
+/* Ensure stdint is only used by the compiler, and not the assembler. */
+#if defined(__ICCARM__) || defined(__CC_ARM) || defined(__GNUC__)
+#include <stdint.h>
+extern uint32_t SystemCoreClock;
+#endif
+
+#define configUSE_PREEMPTION 1
+#define configSUPPORT_STATIC_ALLOCATION 1
+#define configSUPPORT_DYNAMIC_ALLOCATION 0
+#define configUSE_IDLE_HOOK 1
+#define configUSE_TICK_HOOK 0
+#define configCPU_CLOCK_HZ (SystemCoreClock)
+#define configTICK_RATE_HZ ((TickType_t)1000)
+#define configMAX_PRIORITIES (6)
+#define configMINIMAL_STACK_SIZE ((uint16_t)256)
+#define configTOTAL_HEAP_SIZE ((size_t)1024 * 14) /*Currently use about 9000*/
+#define configMAX_TASK_NAME_LEN (32)
+#define configUSE_16_BIT_TICKS 0
+#define configUSE_MUTEXES 1
+#define configQUEUE_REGISTRY_SIZE 8
+#define configUSE_TIMERS 0
+#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
+#define configCHECK_FOR_STACK_OVERFLOW 2 /*Bump this to 2 during development and bug hunting*/
+
+/* Co-routine definitions. */
+#define configUSE_CO_ROUTINES 0
+#define configMAX_CO_ROUTINE_PRIORITIES (2)
+
+/* Set the following definitions to 1 to include the API function, or zero
+ to exclude the API function. */
+#define INCLUDE_vTaskPrioritySet 1
+#define INCLUDE_uxTaskPriorityGet 0
+#define INCLUDE_vTaskDelete 0
+#define INCLUDE_vTaskCleanUpResources 0
+#define INCLUDE_vTaskSuspend 0
+#define INCLUDE_vTaskDelayUntil 0
+#define INCLUDE_vTaskDelay 1
+#define INCLUDE_xTaskGetSchedulerState 1
+#define INCLUDE_uxTaskGetStackHighWaterMark 1
+
+/* Cortex-M specific definitions. */
+#ifdef __NVIC_PRIO_BITS
+/* __BVIC_PRIO_BITS will be specified when CMSIS is being used. */
+#define configPRIO_BITS __NVIC_PRIO_BITS
+#else
+#define configPRIO_BITS 4
+#endif
+
+/* The lowest interrupt priority that can be used in a call to a "set priority"
+ function. */
+#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY 15
+
+/* The highest interrupt priority that can be used by any interrupt service
+ routine that makes calls to interrupt safe FreeRTOS API functions. DO NOT CALL
+ INTERRUPT SAFE FREERTOS API FUNCTIONS FROM ANY INTERRUPT THAT HAS A HIGHER
+ PRIORITY THAN THIS! (higher priorities are lower numeric values. */
+#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY 5
+
+/* Interrupt priorities used by the kernel port layer itself. These are generic
+ to all Cortex-M ports, and do not rely on any particular library functions. */
+#define configKERNEL_INTERRUPT_PRIORITY (configLIBRARY_LOWEST_INTERRUPT_PRIORITY << (8 - configPRIO_BITS))
+/* !!!! configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to zero !!!!
+ See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. */
+#define configMAX_SYSCALL_INTERRUPT_PRIORITY (configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS))
+
+/* Normal assert() semantics without relying on the provision of an assert.h
+ header file. */
+/* USER CODE BEGIN 1 */
+#define configASSERT(x) \
+ if ((x) == 0) { \
+ taskDISABLE_INTERRUPTS(); \
+ for (;;) \
+ ; \
+ }
+/* USER CODE END 1 */
+
+/* Definitions that map the FreeRTOS port interrupt handlers to their CMSIS
+ standard names. */
+#define vPortSVCHandler SVC_Handler
+#define xPortPendSVHandler PendSV_Handler
+
+#if configUSE_TIMERS
+#define configTIMER_TASK_PRIORITY 2
+#define configTIMER_QUEUE_LENGTH 8
+#define configTIMER_TASK_STACK_DEPTH (512 / 4)
+#endif
+#ifdef __cplusplus
+}
+#endif
+#endif /* FREERTOS_CONFIG_H */
diff --git a/source/Core/BSP/MHP30/I2C_Wrapper.cpp b/source/Core/BSP/MHP30/I2C_Wrapper.cpp new file mode 100644 index 00000000..37d521c1 --- /dev/null +++ b/source/Core/BSP/MHP30/I2C_Wrapper.cpp @@ -0,0 +1,91 @@ +/*
+ * FRToSI2C.cpp
+ *
+ * Created on: 14Apr.,2018
+ * Author: Ralim
+ */
+#include "BSP.h"
+#include "Setup.h"
+#include <I2C_Wrapper.hpp>
+SemaphoreHandle_t FRToSI2C::I2CSemaphore = nullptr;
+StaticSemaphore_t FRToSI2C::xSemaphoreBuffer;
+
+void FRToSI2C::CpltCallback() {
+ hi2c1.State = HAL_I2C_STATE_READY; // Force state reset (even if tx error)
+ if (I2CSemaphore) {
+ xSemaphoreGiveFromISR(I2CSemaphore, NULL);
+ }
+}
+
+bool FRToSI2C::Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData, uint16_t Size) {
+
+ if (!lock())
+ return false;
+ if (HAL_I2C_Mem_Read(&hi2c1, DevAddress, MemAddress, I2C_MEMADD_SIZE_8BIT, pData, Size, 500) != HAL_OK) {
+
+ I2C_Unstick();
+ unlock();
+ return false;
+ }
+
+ unlock();
+ return true;
+}
+bool FRToSI2C::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) { return Mem_Write(address, reg, &data, 1); }
+
+uint8_t FRToSI2C::I2C_RegisterRead(uint8_t add, uint8_t reg) {
+ uint8_t tx_data[1];
+ Mem_Read(add, reg, tx_data, 1);
+ return tx_data[0];
+}
+bool FRToSI2C::Mem_Write(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData, uint16_t Size) {
+
+ if (!lock())
+ return false;
+ if (HAL_I2C_Mem_Write(&hi2c1, DevAddress, MemAddress, I2C_MEMADD_SIZE_8BIT, pData, Size, 500) != HAL_OK) {
+
+ I2C_Unstick();
+ unlock();
+ return false;
+ }
+
+ unlock();
+ return true;
+}
+
+bool FRToSI2C::Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size) {
+ if (!lock())
+ return false;
+ if (HAL_I2C_Master_Transmit_DMA(&hi2c1, DevAddress, pData, Size) != HAL_OK) {
+ I2C_Unstick();
+ unlock();
+ return false;
+ }
+ return true;
+}
+
+bool FRToSI2C::probe(uint16_t DevAddress) {
+ if (!lock())
+ return false;
+ uint8_t buffer[1];
+ bool worked = HAL_I2C_Mem_Read(&hi2c1, DevAddress, 0x0F, I2C_MEMADD_SIZE_8BIT, buffer, 1, 1000) == HAL_OK;
+ unlock();
+ return worked;
+}
+
+void FRToSI2C::I2C_Unstick() { unstick_I2C(); }
+
+void FRToSI2C::unlock() { xSemaphoreGive(I2CSemaphore); }
+
+bool FRToSI2C::lock() { return xSemaphoreTake(I2CSemaphore, (TickType_t)50) == pdTRUE; }
+
+bool FRToSI2C::writeRegistersBulk(const uint8_t address, const I2C_REG *registers, const uint8_t registersLength) {
+ for (int index = 0; index < registersLength; index++) {
+ if (!I2C_RegisterWrite(address, registers[index].reg, registers[index].val)) {
+ return false;
+ }
+ if (registers[index].pause_ms)
+ delay_ms(registers[index].pause_ms);
+ }
+ return true;
+}
diff --git a/source/Core/BSP/MHP30/IRQ.cpp b/source/Core/BSP/MHP30/IRQ.cpp new file mode 100644 index 00000000..70a2eb79 --- /dev/null +++ b/source/Core/BSP/MHP30/IRQ.cpp @@ -0,0 +1,49 @@ +/*
+ * IRQ.c
+ *
+ * Created on: 30 May 2020
+ * Author: Ralim
+ */
+
+#include "IRQ.h"
+#include "Pins.h"
+#include "int_n.h"
+
+/*
+ * Catch the IRQ that says that the conversion is done on the temperature
+ * readings coming in Once these have come in we can unblock the PID so that it
+ * runs again
+ */
+void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) {
+ static uint8_t counter = 0;
+ BaseType_t xHigherPriorityTaskWoken = pdFALSE;
+ if (hadc == &hadc1) {
+ counter++;
+ if (counter % 32 == 0) { // 64 = 128ms, 32 = 64ms
+ if (pidTaskNotification) {
+ vTaskNotifyGiveFromISR(pidTaskNotification, &xHigherPriorityTaskWoken);
+ portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
+ }
+ }
+ }
+}
+void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); }
+void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); }
+void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); }
+void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); }
+void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); }
+void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c __unused) { FRToSI2C::CpltCallback(); }
+
+void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {
+ (void)GPIO_Pin;
+ InterruptHandler::irqCallback();
+}
+
+bool getFUS302IRQLow() {
+#ifdef POW_PD
+ // Return true if the IRQ line is still held low
+ return HAL_GPIO_ReadPin(INT_PD_GPIO_Port, INT_PD_Pin) == GPIO_PIN_RESET;
+#else
+ return false;
+#endif
+}
diff --git a/source/Core/BSP/MHP30/IRQ.h b/source/Core/BSP/MHP30/IRQ.h new file mode 100644 index 00000000..9fe3e4ca --- /dev/null +++ b/source/Core/BSP/MHP30/IRQ.h @@ -0,0 +1,32 @@ +/*
+ * Irqs.h
+ *
+ * Created on: 30 May 2020
+ * Author: Ralim
+ */
+
+#ifndef BSP_MINIWARE_IRQ_H_
+#define BSP_MINIWARE_IRQ_H_
+
+#include "BSP.h"
+#include "I2C_Wrapper.hpp"
+#include "Setup.h"
+#include "main.hpp"
+#include "stm32f1xx_hal.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc);
+void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_GPIO_EXTI_Callback(uint16_t);
+
+#ifdef __cplusplus
+}
+#endif
+#endif /* BSP_MINIWARE_IRQ_H_ */
diff --git a/source/Core/BSP/MHP30/Model_Config.h b/source/Core/BSP/MHP30/Model_Config.h new file mode 100644 index 00000000..ecc0460c --- /dev/null +++ b/source/Core/BSP/MHP30/Model_Config.h @@ -0,0 +1,30 @@ +/*
+ * Model_Config.h
+ *
+ * Created on: 25 Jul 2020
+ * Author: Ralim
+ */
+
+#ifndef BSP_MINIWARE_MODEL_CONFIG_H_
+#define BSP_MINIWARE_MODEL_CONFIG_H_
+/*
+ * Lookup for mapping features <-> Models
+ */
+
+#ifndef MODEL_MHP30
+#error "No model defined!"
+#endif
+
+#ifdef MODEL_MHP30
+#define ACCEL_MSA
+#define POW_PD
+#define TEMP_NTC
+#define I2C_SOFT
+#define BATTFILTERDEPTH 8
+#define OLED_I2CBB
+#define ACCEL_EXITS_ON_MOVEMENT
+#endif
+#ifdef ACCEL_EXITS_ON_MOVEMENT
+#define NO_SLEEP_MODE
+#endif
+#endif /* BSP_MINIWARE_MODEL_CONFIG_H_ */
diff --git a/source/Core/BSP/MHP30/Pins.h b/source/Core/BSP/MHP30/Pins.h new file mode 100644 index 00000000..d649c14b --- /dev/null +++ b/source/Core/BSP/MHP30/Pins.h @@ -0,0 +1,59 @@ +/*
+ * Pins.h
+ *
+ * Created on: 29 May 2020
+ * Author: Ralim
+ */
+
+#ifndef BSP_MINIWARE_PINS_H_
+#define BSP_MINIWARE_PINS_H_
+#include "Model_Config.h"
+
+// MHP30 pin map
+#define KEY_B_Pin GPIO_PIN_0
+#define KEY_B_GPIO_Port GPIOB
+#define TMP36_INPUT_Pin GPIO_PIN_1
+#define TMP36_INPUT_GPIO_Port GPIOB
+#define TMP36_ADC1_CHANNEL ADC_CHANNEL_9
+#define TMP36_ADC2_CHANNEL ADC_CHANNEL_9
+#define TIP_TEMP_Pin GPIO_PIN_2
+#define TIP_TEMP_GPIO_Port GPIOA
+#define TIP_TEMP_ADC1_CHANNEL ADC_CHANNEL_2
+#define TIP_TEMP_ADC2_CHANNEL ADC_CHANNEL_2
+#define VIN_Pin GPIO_PIN_1
+#define VIN_GPIO_Port GPIOA
+#define VIN_ADC1_CHANNEL ADC_CHANNEL_1
+#define VIN_ADC2_CHANNEL ADC_CHANNEL_1
+#define OLED_RESET_Pin GPIO_PIN_4
+#define OLED_RESET_GPIO_Port GPIOB
+#define KEY_A_Pin GPIO_PIN_10
+#define KEY_A_GPIO_Port GPIOA
+#define PWM_Out_Pin GPIO_PIN_6
+#define PWM_Out_GPIO_Port GPIOA
+#define PWM_Out_CHANNEL TIM_CHANNEL_1
+#define BUZZER_Pin GPIO_PIN_7
+#define BUZZER_GPIO_Port GPIOA
+#define BUZZER_CHANNEL TIM_CHANNEL_2
+#define SCL_Pin GPIO_PIN_6
+#define SCL_GPIO_Port GPIOB
+#define SDA_Pin GPIO_PIN_7
+#define SDA_GPIO_Port GPIOB
+#define SCL2_Pin GPIO_PIN_3
+#define SCL2_GPIO_Port GPIOB
+#define SDA2_Pin GPIO_PIN_15
+#define SDA2_GPIO_Port GPIOA
+#define INT_PD_Pin GPIO_PIN_5
+#define INT_PD_GPIO_Port GPIOB
+#define HEAT_EN_Pin GPIO_PIN_3
+#define HEAT_EN_GPIO_Port GPIOA
+#define PLATE_SENSOR_PULLUP_Pin GPIO_PIN_1
+#define PLATE_SENSOR_PULLUP_GPIO_Port GPIOD
+
+#define PLATE_SENSOR_Pin GPIO_PIN_5
+#define PLATE_SENSOR_GPIO_Port GPIOA
+#define PLATE_SENSOR_ADC1_CHANNEL ADC_CHANNEL_5
+#define PLATE_SENSOR_ADC2_CHANNEL ADC_CHANNEL_5
+
+#define WS2812_Pin GPIO_PIN_8
+#define WS2812_GPIO_Port GPIOA
+#endif /* BSP_MINIWARE_PINS_H_ */
diff --git a/source/Core/BSP/MHP30/Power.cpp b/source/Core/BSP/MHP30/Power.cpp new file mode 100644 index 00000000..95dd26e3 --- /dev/null +++ b/source/Core/BSP/MHP30/Power.cpp @@ -0,0 +1,44 @@ +#include "BSP.h" +#include "BSP_Power.h" +#include "Model_Config.h" +#include "Pins.h" +#include "QC3.h" +#include "Settings.h" +#include "fusb_user.h" +#include "fusbpd.h" +#include "int_n.h" +#include "policy_engine.h" +bool FUSB302_present = false; +bool FUSB302_probed = false; + +void power_check() { +#ifdef POW_PD + if (FUSB302_present) { + PolicyEngine::PPSTimerCallback(); + // Cant start QC until either PD works or fails + if (PolicyEngine::setupCompleteOrTimedOut() == false) { + return; + } + if (PolicyEngine::pdHasNegotiated()) { + return; + } + } +#endif +#ifdef POW_QC + QC_resync(); +#endif +} +uint8_t usb_pd_detect() { +#ifdef POW_PD + if (FUSB302_probed) { + return FUSB302_present; + } else { + FUSB302_present = fusb302_detect(); + FUSB302_probed = true; + } + return FUSB302_present; +#endif + return false; +} + +bool getIsPoweredByDCIN() { return false; } diff --git a/source/Core/BSP/MHP30/QC_GPIO.cpp b/source/Core/BSP/MHP30/QC_GPIO.cpp new file mode 100644 index 00000000..b48ba1f3 --- /dev/null +++ b/source/Core/BSP/MHP30/QC_GPIO.cpp @@ -0,0 +1,76 @@ +/*
+ * QC.c
+ *
+ * Created on: 29 May 2020
+ * Author: Ralim
+ */
+#include "BSP.h"
+#include "Model_Config.h"
+#include "Pins.h"
+#include "QC3.h"
+#include "Settings.h"
+#include "stm32f1xx_hal.h"
+#ifdef POW_QC
+void QC_DPlusZero_Six() {
+ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET); // pull down D+
+}
+void QC_DNegZero_Six() {
+ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
+ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
+}
+void QC_DPlusThree_Three() {
+ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET); // pull up D+
+}
+void QC_DNegThree_Three() {
+ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
+ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);
+}
+void QC_DM_PullDown() {
+ GPIO_InitTypeDef GPIO_InitStruct;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
+ GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
+ GPIO_InitStruct.Pull = GPIO_PULLDOWN;
+ GPIO_InitStruct.Pin = GPIO_PIN_11;
+ HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
+}
+void QC_DM_No_PullDown() {
+ GPIO_InitTypeDef GPIO_InitStruct;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
+ GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
+ GPIO_InitStruct.Pull = GPIO_NOPULL;
+ GPIO_InitStruct.Pin = GPIO_PIN_11;
+ HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
+}
+void QC_Init_GPIO() {
+ // Setup any GPIO into the right states for QC
+ GPIO_InitTypeDef GPIO_InitStruct;
+ GPIO_InitStruct.Pin = GPIO_PIN_3;
+ GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
+ HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
+ GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
+ GPIO_InitStruct.Pull = GPIO_NOPULL;
+ GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_10;
+ HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
+ // Turn off output mode on pins that we can
+ GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
+ GPIO_InitStruct.Pull = GPIO_NOPULL;
+ GPIO_InitStruct.Pin = GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_14 | GPIO_PIN_13;
+ HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
+}
+void QC_Post_Probe_En() {
+ GPIO_InitTypeDef GPIO_InitStruct;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
+ GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_10;
+ GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
+ HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
+}
+
+uint8_t QC_DM_PulledDown() { return HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_11) == GPIO_PIN_RESET ? 1 : 0; }
+#endif
+void QC_resync() {
+#ifdef POW_QC
+ seekQC((systemSettings.QCIdealVoltage) ? 120 : 90,
+ systemSettings.voltageDiv); // Run the QC seek again if we have drifted too much
+#endif
+}
diff --git a/source/Core/BSP/MHP30/README.md b/source/Core/BSP/MHP30/README.md new file mode 100644 index 00000000..bb9de245 --- /dev/null +++ b/source/Core/BSP/MHP30/README.md @@ -0,0 +1,12 @@ +# BSP section for STM32F103 based Miniware products
+
+This folder contains the hardware abstractions required for the TS100, TS80 and probably TS80P soldering irons.
+
+## Main abstractions
+
+* Hardware Init
+* -> Should contain all bootstrap to bring the hardware up to an operating point
+* -> Two functions are required, a pre and post FreeRToS call
+* I2C read/write
+* Set PWM for the tip
+* Links between IRQ's on the system and the calls in the rest of the firmware
diff --git a/source/Core/BSP/MHP30/Setup.c b/source/Core/BSP/MHP30/Setup.c new file mode 100644 index 00000000..6e994463 --- /dev/null +++ b/source/Core/BSP/MHP30/Setup.c @@ -0,0 +1,388 @@ +/* + * Setup.c + * + * Created on: 29Aug.,2017 + * Author: Ben V. Brown + */ +#include "Setup.h" +#include "Pins.h" +#include <string.h> +ADC_HandleTypeDef hadc1; +ADC_HandleTypeDef hadc2; +DMA_HandleTypeDef hdma_adc1; + +I2C_HandleTypeDef hi2c1; +DMA_HandleTypeDef hdma_i2c1_rx; +DMA_HandleTypeDef hdma_i2c1_tx; + +IWDG_HandleTypeDef hiwdg; +TIM_HandleTypeDef htim2; +TIM_HandleTypeDef htim3; +#define ADC_CHANNELS 4 +#define ADC_SAMPLES 16 +uint32_t ADCReadings[ADC_SAMPLES * ADC_CHANNELS]; // room for 32 lots of the pair of readings + +// Functions +static void SystemClock_Config(void); +static void MX_ADC1_Init(void); +static void MX_I2C1_Init(void); +static void MX_IWDG_Init(void); +static void MX_TIM3_Init(void); +static void MX_TIM2_Init(void); +static void MX_DMA_Init(void); +static void MX_GPIO_Init(void); +static void MX_ADC2_Init(void); +void Setup_HAL() { + SystemClock_Config(); + + __HAL_AFIO_REMAP_SWJ_NOJTAG(); + + MX_GPIO_Init(); + MX_DMA_Init(); + MX_I2C1_Init(); + MX_ADC1_Init(); + MX_ADC2_Init(); + MX_TIM3_Init(); + MX_TIM2_Init(); + MX_IWDG_Init(); + HAL_ADC_Start(&hadc2); + HAL_ADCEx_MultiModeStart_DMA(&hadc1, ADCReadings, + (ADC_SAMPLES * ADC_CHANNELS)); // start DMA of normal readings + // HAL_ADCEx_InjectedStart(&hadc1); // enable injected readings + // HAL_ADCEx_InjectedStart(&hadc2); // enable injected readings +} + +// channel 0 -> temperature sensor, 1-> VIN, 2-> tip +uint16_t getADC(uint8_t channel) { + uint32_t sum = 0; + for (uint8_t i = 0; i < ADC_SAMPLES; i++) { + uint16_t adc1Sample = ADCReadings[channel + (i * ADC_CHANNELS)]; + uint16_t adc2Sample = ADCReadings[channel + (i * ADC_CHANNELS)] >> 16; + + sum += (adc1Sample + adc2Sample); + } + return sum >> 2; +} + +/** System Clock Configuration + */ +void SystemClock_Config(void) { + RCC_OscInitTypeDef RCC_OscInitStruct; + RCC_ClkInitTypeDef RCC_ClkInitStruct; + RCC_PeriphCLKInitTypeDef PeriphClkInit; + + /**Initializes the CPU, AHB and APB busses clocks + */ + RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSI; + RCC_OscInitStruct.HSIState = RCC_HSI_ON; + RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; + RCC_OscInitStruct.LSIState = RCC_LSI_ON; + RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; + RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; + RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; // 64MHz + HAL_RCC_OscConfig(&RCC_OscInitStruct); + + /**Initializes the CPU, AHB and APB busses clocks + */ + RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; + RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; + RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; + RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; // TIM + // 2,3,4,5,6,7,12,13,14 + RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 64 mhz to some peripherals and adc + + HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); + + PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; + PeriphClkInit.AdcClockSelection = RCC_CFGR_ADCPRE_DIV8; // 6 or 8 are the only non overclocked options + HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); + + /**Configure the Systick interrupt time + */ + HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000); + + /**Configure the Systick + */ + HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); + + /* SysTick_IRQn interrupt configuration */ + HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0); +} + +/* ADC1 init function */ +static void MX_ADC1_Init(void) { + ADC_MultiModeTypeDef multimode; + + ADC_ChannelConfTypeDef sConfig; + /**Common config + */ + hadc1.Instance = ADC1; + hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE; + hadc1.Init.ContinuousConvMode = ENABLE; + hadc1.Init.DiscontinuousConvMode = DISABLE; + hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; + hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; + hadc1.Init.NbrOfConversion = ADC_CHANNELS; + HAL_ADC_Init(&hadc1); + + /**Configure the ADC multi-mode + */ + multimode.Mode = ADC_DUALMODE_REGSIMULT_INJECSIMULT; + HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode); + + /**Configure Regular Channel + */ + sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5; + + sConfig.Channel = TMP36_ADC1_CHANNEL; + sConfig.Rank = ADC_REGULAR_RANK_1; + HAL_ADC_ConfigChannel(&hadc1, &sConfig); + + /**Configure Regular Channel + */ + sConfig.Channel = VIN_ADC1_CHANNEL; + sConfig.Rank = ADC_REGULAR_RANK_2; + HAL_ADC_ConfigChannel(&hadc1, &sConfig); + + sConfig.Channel = TIP_TEMP_ADC1_CHANNEL; + sConfig.Rank = ADC_REGULAR_RANK_3; + HAL_ADC_ConfigChannel(&hadc1, &sConfig); + + sConfig.Channel = PLATE_SENSOR_ADC1_CHANNEL; + sConfig.Rank = ADC_REGULAR_RANK_4; + HAL_ADC_ConfigChannel(&hadc1, &sConfig); + + SET_BIT(hadc1.Instance->CR1, (ADC_CR1_EOSIE)); // Enable end of Normal + // Run ADC internal calibration + while (HAL_ADCEx_Calibration_Start(&hadc1) != HAL_OK) + ; +} + +/* ADC2 init function */ +static void MX_ADC2_Init(void) { + ADC_ChannelConfTypeDef sConfig; + + /**Common config + */ + hadc2.Instance = ADC2; + hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE; + hadc2.Init.ContinuousConvMode = ENABLE; + hadc2.Init.DiscontinuousConvMode = DISABLE; + hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; + hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; + hadc2.Init.NbrOfConversion = ADC_CHANNELS; + HAL_ADC_Init(&hadc2); + sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5; + + /**Configure Regular Channel + */ + sConfig.Channel = TMP36_ADC2_CHANNEL; + sConfig.Rank = ADC_REGULAR_RANK_1; + HAL_ADC_ConfigChannel(&hadc2, &sConfig); + + sConfig.Channel = VIN_ADC2_CHANNEL; + sConfig.Rank = ADC_REGULAR_RANK_2; + HAL_ADC_ConfigChannel(&hadc2, &sConfig); + sConfig.Channel = TIP_TEMP_ADC1_CHANNEL; + sConfig.Rank = ADC_REGULAR_RANK_3; + HAL_ADC_ConfigChannel(&hadc2, &sConfig); + sConfig.Channel = PLATE_SENSOR_ADC2_CHANNEL; + sConfig.Rank = ADC_REGULAR_RANK_4; + HAL_ADC_ConfigChannel(&hadc2, &sConfig); + + // Run ADC internal calibration + while (HAL_ADCEx_Calibration_Start(&hadc2) != HAL_OK) + ; +} +/* I2C1 init function */ +static void MX_I2C1_Init(void) { + hi2c1.Instance = I2C1; + hi2c1.Init.ClockSpeed = 300000; + hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; + hi2c1.Init.OwnAddress1 = 0; + hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; + hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; + hi2c1.Init.OwnAddress2 = 0; + hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; + hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; + HAL_I2C_Init(&hi2c1); +} + +/* IWDG init function */ +static void MX_IWDG_Init(void) { + hiwdg.Instance = IWDG; + hiwdg.Init.Prescaler = IWDG_PRESCALER_256; + hiwdg.Init.Reload = 100; +#ifndef SWD_ENABLE + HAL_IWDG_Init(&hiwdg); +#endif +} + +/* TIM3 init function */ +static void MX_TIM3_Init(void) { + TIM_ClockConfigTypeDef sClockSourceConfig; + TIM_MasterConfigTypeDef sMasterConfig; + TIM_OC_InitTypeDef sConfigOC; + memset(&sClockSourceConfig, 0, sizeof(sClockSourceConfig)); + memset(&sMasterConfig, 0, sizeof(sMasterConfig)); + memset(&sConfigOC, 0, sizeof(sConfigOC)); + htim3.Instance = TIM3; + htim3.Init.Prescaler = 1; + htim3.Init.CounterMode = TIM_COUNTERMODE_UP; + htim3.Init.Period = 255; // + htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 4mhz before div + htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; // Preload the ARR register (though we dont use this) + HAL_TIM_Base_Init(&htim3); + + sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; + HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig); + + HAL_TIM_PWM_Init(&htim3); + + HAL_TIM_OC_Init(&htim3); + + sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; + sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; + HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig); + + sConfigOC.OCMode = TIM_OCMODE_PWM1; + sConfigOC.Pulse = 0; // Output control + sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; + sConfigOC.OCFastMode = TIM_OCFAST_ENABLE; + HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, PWM_Out_CHANNEL); + HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, BUZZER_CHANNEL); + GPIO_InitTypeDef GPIO_InitStruct; + + /**TIM3 GPIO Configuration + PWM_Out_Pin ------> TIM3_CH1 + */ + GPIO_InitStruct.Pin = PWM_Out_Pin | BUZZER_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges + HAL_GPIO_Init(PWM_Out_GPIO_Port, &GPIO_InitStruct); + HAL_TIM_PWM_Start(&htim3, PWM_Out_CHANNEL); + HAL_TIM_PWM_Start(&htim3, BUZZER_CHANNEL); +} +/* TIM3 init function */ +static void MX_TIM2_Init(void) { + + TIM_ClockConfigTypeDef sClockSourceConfig; + TIM_MasterConfigTypeDef sMasterConfig; + TIM_OC_InitTypeDef sConfigOC; + + htim2.Instance = TIM2; + htim2.Init.Prescaler = 200; // 2 MHz timer clock/2000 = 1 kHz tick rate + + // pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage + // These values give a rate of around 3.5 Hz for "fast" mode and 1.84 Hz for "slow" + htim2.Init.CounterMode = TIM_COUNTERMODE_UP; + // dummy value, will be reconfigured by BSPInit() + htim2.Init.Period = 10; + htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 8 MHz (x2 APB1) before divide + htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; + htim2.Init.RepetitionCounter = 0; + HAL_TIM_Base_Init(&htim2); + + sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; + HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig); + + HAL_TIM_PWM_Init(&htim2); + + sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; + sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; + HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig); + + sConfigOC.OCMode = TIM_OCMODE_PWM1; + // dummy value, will be reconfigured by BSPInit() in the BSP.cpp + sConfigOC.Pulse = 5; + sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; + sConfigOC.OCFastMode = TIM_OCFAST_ENABLE; + HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4); + GPIO_InitTypeDef GPIO_InitStruct; + GPIO_InitStruct.Pin = HEAT_EN_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges + HAL_GPIO_Init(HEAT_EN_GPIO_Port, &GPIO_InitStruct); + HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4); +} + +/** + * Enable DMA controller clock + */ +static void MX_DMA_Init(void) { + /* DMA controller clock enable */ + __HAL_RCC_DMA1_CLK_ENABLE(); + + /* DMA interrupt init */ + /* DMA1_Channel1_IRQn interrupt configuration */ + HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 10, 0); + HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); + /* DMA1_Channel6_IRQn interrupt configuration */ + HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0); + HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn); + /* DMA1_Channel7_IRQn interrupt configuration */ + HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0); + HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn); +} + +static void MX_GPIO_Init(void) { + GPIO_InitTypeDef GPIO_InitStruct; + memset(&GPIO_InitStruct, 0, sizeof(GPIO_InitStruct)); + + /* GPIO Ports Clock Enable */ + __HAL_RCC_GPIOD_CLK_ENABLE(); + __HAL_RCC_GPIOA_CLK_ENABLE(); + __HAL_RCC_GPIOB_CLK_ENABLE(); + + /*Configure GPIO pin Output Level */ + HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET); + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + /*Configure GPIO pins : PD0 PD1 */ + GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1; + GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; + HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); + /*Configure peripheral I/O remapping */ + __HAL_AFIO_REMAP_PD01_ENABLE(); + //^ remap XTAL so that pins used + + /* + * Configure All pins as analog by default + */ + GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_10 | GPIO_PIN_15; + GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; + HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); + GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 + | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15; + HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); + + /*Configure GPIO pins : KEY_B_Pin KEY_A_Pin */ + GPIO_InitStruct.Pin = KEY_B_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_INPUT; + GPIO_InitStruct.Pull = GPIO_PULLUP; + HAL_GPIO_Init(KEY_B_GPIO_Port, &GPIO_InitStruct); + GPIO_InitStruct.Pin = KEY_A_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_INPUT; + GPIO_InitStruct.Pull = GPIO_PULLUP; + HAL_GPIO_Init(KEY_A_GPIO_Port, &GPIO_InitStruct); + + /*Configure GPIO pin : OLED_RESET_Pin */ + GPIO_InitStruct.Pin = OLED_RESET_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct); + + GPIO_InitStruct.Pin = WS2812_Pin; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; + HAL_GPIO_Init(WS2812_GPIO_Port, &GPIO_InitStruct); + HAL_GPIO_WritePin(WS2812_GPIO_Port, WS2812_Pin, GPIO_PIN_RESET); + // Pull down LCD reset + HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET); + HAL_Delay(30); + HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_SET); +} + +#ifdef USE_FULL_ASSERT +void assert_failed(uint8_t *file, uint32_t line) { asm("bkpt"); } +#endif diff --git a/source/Core/BSP/MHP30/Setup.h b/source/Core/BSP/MHP30/Setup.h new file mode 100644 index 00000000..045b951c --- /dev/null +++ b/source/Core/BSP/MHP30/Setup.h @@ -0,0 +1,40 @@ +/*
+ * Setup.h
+ *
+ * Created on: 29Aug.,2017
+ * Author: Ben V. Brown
+ */
+
+#ifndef SETUP_H_
+#define SETUP_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "stm32f1xx_hal.h"
+
+extern ADC_HandleTypeDef hadc1;
+extern ADC_HandleTypeDef hadc2;
+extern DMA_HandleTypeDef hdma_adc1;
+
+extern DMA_HandleTypeDef hdma_i2c1_rx;
+extern DMA_HandleTypeDef hdma_i2c1_tx;
+extern I2C_HandleTypeDef hi2c1;
+
+extern IWDG_HandleTypeDef hiwdg;
+
+extern TIM_HandleTypeDef htim1;
+extern DMA_HandleTypeDef hdma_tim1_ch1;
+extern TIM_HandleTypeDef htim2;
+extern TIM_HandleTypeDef htim3;
+void Setup_HAL();
+uint16_t getADC(uint8_t channel);
+
+void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim); // Since the hal header file does not define this one
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* SETUP_H_ */
diff --git a/source/Core/BSP/MHP30/Software_I2C.h b/source/Core/BSP/MHP30/Software_I2C.h new file mode 100644 index 00000000..99f3a2e9 --- /dev/null +++ b/source/Core/BSP/MHP30/Software_I2C.h @@ -0,0 +1,30 @@ +/*
+ * Software_I2C.h
+ *
+ * Created on: 25 Jul 2020
+ * Author: Ralim
+ */
+
+#ifndef BSP_MINIWARE_SOFTWARE_I2C_H_
+#define BSP_MINIWARE_SOFTWARE_I2C_H_
+#include "BSP.h"
+#include "Model_Config.h"
+#include "stm32f1xx_hal.h"
+#ifdef I2C_SOFT
+
+#define SOFT_SCL_HIGH() HAL_GPIO_WritePin(SCL2_GPIO_Port, SCL2_Pin, GPIO_PIN_SET)
+#define SOFT_SCL_LOW() HAL_GPIO_WritePin(SCL2_GPIO_Port, SCL2_Pin, GPIO_PIN_RESET)
+#define SOFT_SDA_HIGH() HAL_GPIO_WritePin(SDA2_GPIO_Port, SDA2_Pin, GPIO_PIN_SET)
+#define SOFT_SDA_LOW() HAL_GPIO_WritePin(SDA2_GPIO_Port, SDA2_Pin, GPIO_PIN_RESET)
+#define SOFT_SDA_READ() (HAL_GPIO_ReadPin(SDA2_GPIO_Port, SDA2_Pin) == GPIO_PIN_SET ? 1 : 0)
+#define SOFT_SCL_READ() (HAL_GPIO_ReadPin(SCL2_GPIO_Port, SCL2_Pin) == GPIO_PIN_SET ? 1 : 0)
+#define SOFT_I2C_DELAY() \
+ { \
+ for (int xx = 0; xx < 20; xx++) { \
+ asm("nop"); \
+ } \
+ }
+
+#endif
+
+#endif /* BSP_MINIWARE_SOFTWARE_I2C_H_ */
diff --git a/source/Core/BSP/MHP30/ThermoModel.cpp b/source/Core/BSP/MHP30/ThermoModel.cpp new file mode 100644 index 00000000..19c0e499 --- /dev/null +++ b/source/Core/BSP/MHP30/ThermoModel.cpp @@ -0,0 +1,22 @@ +/*
+ * ThermoModel.cpp
+ *
+ * Created on: 1 May 2021
+ * Author: Ralim
+ */
+#include "Setup.h"
+#include "TipThermoModel.h"
+#include "Utils.h"
+#include "configuration.h"
+extern uint16_t tipSenseResistancex10Ohms;
+uint32_t TipThermoModel::convertuVToDegC(uint32_t tipuVDelta) {
+ // For the MHP30, we are mimicing the original code and using the resistor fitted to the base of the heater head, this is measured in the isTipDisconnected() function
+ if (tipSenseResistancex10Ohms > 900 && tipSenseResistancex10Ohms <= 1100) {
+ int32_t a = ((tipSenseResistancex10Ohms / 10) + 300) * (3300000 - tipuVDelta);
+ int32_t b = a / 1000000;
+ int32_t c = tipuVDelta - b;
+ int32_t d = c * 243 / 1000;
+ return d / 10;
+ }
+ return 0xFFFF;
+}
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Device/ST/STM32F1xx/Include/stm32f103xb.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Device/ST/STM32F1xx/Include/stm32f103xb.h new file mode 100644 index 00000000..e9f4b623 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Device/ST/STM32F1xx/Include/stm32f103xb.h @@ -0,0 +1,10016 @@ +/**
+ ******************************************************************************
+ * @file stm32f103xb.h
+ * @author MCD Application Team
+ * @brief CMSIS Cortex-M3 Device Peripheral Access Layer Header File.
+ * This file contains all the peripheral register's definitions, bits
+ * definitions and memory mapping for STM32F1xx devices.
+ *
+ * This file contains:
+ * - Data structures and the address mapping for all peripherals
+ * - Peripheral's registers declarations and bits definition
+ * - Macros to access peripheral�s registers hardware
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/** @addtogroup CMSIS
+ * @{
+ */
+
+/** @addtogroup stm32f103xb
+ * @{
+ */
+
+#ifndef __STM32F103xB_H
+#define __STM32F103xB_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** @addtogroup Configuration_section_for_CMSIS
+ * @{
+ */
+/**
+ * @brief Configuration of the Cortex-M3 Processor and Core Peripherals
+ */
+#define __CM3_REV 0x0200U /*!< Core Revision r2p0 */
+#define __MPU_PRESENT 0U /*!< Other STM32 devices does not provide an MPU */
+#define __NVIC_PRIO_BITS 4U /*!< STM32 uses 4 Bits for the Priority Levels */
+#define __Vendor_SysTickConfig 0U /*!< Set to 1 if different SysTick Config is used */
+
+/**
+ * @}
+ */
+
+/** @addtogroup Peripheral_interrupt_number_definition
+ * @{
+ */
+
+/**
+ * @brief STM32F10x Interrupt Number Definition, according to the selected device
+ * in @ref Library_configuration_section
+ */
+
+/*!< Interrupt Number Definition */
+typedef enum {
+ /****** Cortex-M3 Processor Exceptions Numbers ***************************************************/
+ NonMaskableInt_IRQn = -14, /*!< 2 Non Maskable Interrupt */
+ HardFault_IRQn = -13, /*!< 3 Cortex-M3 Hard Fault Interrupt */
+ MemoryManagement_IRQn = -12, /*!< 4 Cortex-M3 Memory Management Interrupt */
+ BusFault_IRQn = -11, /*!< 5 Cortex-M3 Bus Fault Interrupt */
+ UsageFault_IRQn = -10, /*!< 6 Cortex-M3 Usage Fault Interrupt */
+ SVCall_IRQn = -5, /*!< 11 Cortex-M3 SV Call Interrupt */
+ DebugMonitor_IRQn = -4, /*!< 12 Cortex-M3 Debug Monitor Interrupt */
+ PendSV_IRQn = -2, /*!< 14 Cortex-M3 Pend SV Interrupt */
+ SysTick_IRQn = -1, /*!< 15 Cortex-M3 System Tick Interrupt */
+
+ /****** STM32 specific Interrupt Numbers *********************************************************/
+ WWDG_IRQn = 0, /*!< Window WatchDog Interrupt */
+ PVD_IRQn = 1, /*!< PVD through EXTI Line detection Interrupt */
+ TAMPER_IRQn = 2, /*!< Tamper Interrupt */
+ RTC_IRQn = 3, /*!< RTC global Interrupt */
+ FLASH_IRQn = 4, /*!< FLASH global Interrupt */
+ RCC_IRQn = 5, /*!< RCC global Interrupt */
+ EXTI0_IRQn = 6, /*!< EXTI Line0 Interrupt */
+ EXTI1_IRQn = 7, /*!< EXTI Line1 Interrupt */
+ EXTI2_IRQn = 8, /*!< EXTI Line2 Interrupt */
+ EXTI3_IRQn = 9, /*!< EXTI Line3 Interrupt */
+ EXTI4_IRQn = 10, /*!< EXTI Line4 Interrupt */
+ DMA1_Channel1_IRQn = 11, /*!< DMA1 Channel 1 global Interrupt */
+ DMA1_Channel2_IRQn = 12, /*!< DMA1 Channel 2 global Interrupt */
+ DMA1_Channel3_IRQn = 13, /*!< DMA1 Channel 3 global Interrupt */
+ DMA1_Channel4_IRQn = 14, /*!< DMA1 Channel 4 global Interrupt */
+ DMA1_Channel5_IRQn = 15, /*!< DMA1 Channel 5 global Interrupt */
+ DMA1_Channel6_IRQn = 16, /*!< DMA1 Channel 6 global Interrupt */
+ DMA1_Channel7_IRQn = 17, /*!< DMA1 Channel 7 global Interrupt */
+ ADC1_2_IRQn = 18, /*!< ADC1 and ADC2 global Interrupt */
+ USB_HP_CAN1_TX_IRQn = 19, /*!< USB Device High Priority or CAN1 TX Interrupts */
+ USB_LP_CAN1_RX0_IRQn = 20, /*!< USB Device Low Priority or CAN1 RX0 Interrupts */
+ CAN1_RX1_IRQn = 21, /*!< CAN1 RX1 Interrupt */
+ CAN1_SCE_IRQn = 22, /*!< CAN1 SCE Interrupt */
+ EXTI9_5_IRQn = 23, /*!< External Line[9:5] Interrupts */
+ TIM1_BRK_IRQn = 24, /*!< TIM1 Break Interrupt */
+ TIM1_UP_IRQn = 25, /*!< TIM1 Update Interrupt */
+ TIM1_TRG_COM_IRQn = 26, /*!< TIM1 Trigger and Commutation Interrupt */
+ TIM1_CC_IRQn = 27, /*!< TIM1 Capture Compare Interrupt */
+ TIM2_IRQn = 28, /*!< TIM2 global Interrupt */
+ TIM3_IRQn = 29, /*!< TIM3 global Interrupt */
+ TIM4_IRQn = 30, /*!< TIM4 global Interrupt */
+ I2C1_EV_IRQn = 31, /*!< I2C1 Event Interrupt */
+ I2C1_ER_IRQn = 32, /*!< I2C1 Error Interrupt */
+ I2C2_EV_IRQn = 33, /*!< I2C2 Event Interrupt */
+ I2C2_ER_IRQn = 34, /*!< I2C2 Error Interrupt */
+ SPI1_IRQn = 35, /*!< SPI1 global Interrupt */
+ SPI2_IRQn = 36, /*!< SPI2 global Interrupt */
+ USART1_IRQn = 37, /*!< USART1 global Interrupt */
+ USART2_IRQn = 38, /*!< USART2 global Interrupt */
+ USART3_IRQn = 39, /*!< USART3 global Interrupt */
+ EXTI15_10_IRQn = 40, /*!< External Line[15:10] Interrupts */
+ RTC_Alarm_IRQn = 41, /*!< RTC Alarm through EXTI Line Interrupt */
+ USBWakeUp_IRQn = 42, /*!< USB Device WakeUp from suspend through EXTI Line Interrupt */
+} IRQn_Type;
+
+/**
+ * @}
+ */
+
+#include "core_cm3.h"
+#include "system_stm32f1xx.h"
+#include <stdint.h>
+
+/** @addtogroup Peripheral_registers_structures
+ * @{
+ */
+
+/**
+ * @brief Analog to Digital Converter
+ */
+
+typedef struct {
+ __IO uint32_t SR;
+ __IO uint32_t CR1;
+ __IO uint32_t CR2;
+ __IO uint32_t SMPR1;
+ __IO uint32_t SMPR2;
+ __IO uint32_t JOFR1;
+ __IO uint32_t JOFR2;
+ __IO uint32_t JOFR3;
+ __IO uint32_t JOFR4;
+ __IO uint32_t HTR;
+ __IO uint32_t LTR;
+ __IO uint32_t SQR1;
+ __IO uint32_t SQR2;
+ __IO uint32_t SQR3;
+ __IO uint32_t JSQR;
+ __IO uint32_t JDR1;
+ __IO uint32_t JDR2;
+ __IO uint32_t JDR3;
+ __IO uint32_t JDR4;
+ __IO uint32_t DR;
+} ADC_TypeDef;
+
+typedef struct {
+ __IO uint32_t SR; /*!< ADC status register, used for ADC multimode (bits common to several ADC instances). Address offset: ADC1 base address */
+ __IO uint32_t CR1; /*!< ADC control register 1, used for ADC multimode (bits common to several ADC instances). Address offset: ADC1 base address + 0x04 */
+ __IO uint32_t CR2; /*!< ADC control register 2, used for ADC multimode (bits common to several ADC instances). Address offset: ADC1 base address + 0x08 */
+ uint32_t RESERVED[16];
+ __IO uint32_t DR; /*!< ADC data register, used for ADC multimode (bits common to several ADC instances). Address offset: ADC1 base address + 0x4C */
+} ADC_Common_TypeDef;
+
+/**
+ * @brief Backup Registers
+ */
+
+typedef struct {
+ uint32_t RESERVED0;
+ __IO uint32_t DR1;
+ __IO uint32_t DR2;
+ __IO uint32_t DR3;
+ __IO uint32_t DR4;
+ __IO uint32_t DR5;
+ __IO uint32_t DR6;
+ __IO uint32_t DR7;
+ __IO uint32_t DR8;
+ __IO uint32_t DR9;
+ __IO uint32_t DR10;
+ __IO uint32_t RTCCR;
+ __IO uint32_t CR;
+ __IO uint32_t CSR;
+} BKP_TypeDef;
+
+/**
+ * @brief Controller Area Network TxMailBox
+ */
+
+typedef struct {
+ __IO uint32_t TIR;
+ __IO uint32_t TDTR;
+ __IO uint32_t TDLR;
+ __IO uint32_t TDHR;
+} CAN_TxMailBox_TypeDef;
+
+/**
+ * @brief Controller Area Network FIFOMailBox
+ */
+
+typedef struct {
+ __IO uint32_t RIR;
+ __IO uint32_t RDTR;
+ __IO uint32_t RDLR;
+ __IO uint32_t RDHR;
+} CAN_FIFOMailBox_TypeDef;
+
+/**
+ * @brief Controller Area Network FilterRegister
+ */
+
+typedef struct {
+ __IO uint32_t FR1;
+ __IO uint32_t FR2;
+} CAN_FilterRegister_TypeDef;
+
+/**
+ * @brief Controller Area Network
+ */
+
+typedef struct {
+ __IO uint32_t MCR;
+ __IO uint32_t MSR;
+ __IO uint32_t TSR;
+ __IO uint32_t RF0R;
+ __IO uint32_t RF1R;
+ __IO uint32_t IER;
+ __IO uint32_t ESR;
+ __IO uint32_t BTR;
+ uint32_t RESERVED0[88];
+ CAN_TxMailBox_TypeDef sTxMailBox[3];
+ CAN_FIFOMailBox_TypeDef sFIFOMailBox[2];
+ uint32_t RESERVED1[12];
+ __IO uint32_t FMR;
+ __IO uint32_t FM1R;
+ uint32_t RESERVED2;
+ __IO uint32_t FS1R;
+ uint32_t RESERVED3;
+ __IO uint32_t FFA1R;
+ uint32_t RESERVED4;
+ __IO uint32_t FA1R;
+ uint32_t RESERVED5[8];
+ CAN_FilterRegister_TypeDef sFilterRegister[14];
+} CAN_TypeDef;
+
+/**
+ * @brief CRC calculation unit
+ */
+
+typedef struct {
+ __IO uint32_t DR; /*!< CRC Data register, Address offset: 0x00 */
+ __IO uint8_t IDR; /*!< CRC Independent data register, Address offset: 0x04 */
+ uint8_t RESERVED0; /*!< Reserved, Address offset: 0x05 */
+ uint16_t RESERVED1; /*!< Reserved, Address offset: 0x06 */
+ __IO uint32_t CR; /*!< CRC Control register, Address offset: 0x08 */
+} CRC_TypeDef;
+
+/**
+ * @brief Debug MCU
+ */
+
+typedef struct {
+ __IO uint32_t IDCODE;
+ __IO uint32_t CR;
+} DBGMCU_TypeDef;
+
+/**
+ * @brief DMA Controller
+ */
+
+typedef struct {
+ __IO uint32_t CCR;
+ __IO uint32_t CNDTR;
+ __IO uint32_t CPAR;
+ __IO uint32_t CMAR;
+} DMA_Channel_TypeDef;
+
+typedef struct {
+ __IO uint32_t ISR;
+ __IO uint32_t IFCR;
+} DMA_TypeDef;
+
+/**
+ * @brief External Interrupt/Event Controller
+ */
+
+typedef struct {
+ __IO uint32_t IMR;
+ __IO uint32_t EMR;
+ __IO uint32_t RTSR;
+ __IO uint32_t FTSR;
+ __IO uint32_t SWIER;
+ __IO uint32_t PR;
+} EXTI_TypeDef;
+
+/**
+ * @brief FLASH Registers
+ */
+
+typedef struct {
+ __IO uint32_t ACR;
+ __IO uint32_t KEYR;
+ __IO uint32_t OPTKEYR;
+ __IO uint32_t SR;
+ __IO uint32_t CR;
+ __IO uint32_t AR;
+ __IO uint32_t RESERVED;
+ __IO uint32_t OBR;
+ __IO uint32_t WRPR;
+} FLASH_TypeDef;
+
+/**
+ * @brief Option Bytes Registers
+ */
+
+typedef struct {
+ __IO uint16_t RDP;
+ __IO uint16_t USER;
+ __IO uint16_t Data0;
+ __IO uint16_t Data1;
+ __IO uint16_t WRP0;
+ __IO uint16_t WRP1;
+ __IO uint16_t WRP2;
+ __IO uint16_t WRP3;
+} OB_TypeDef;
+
+/**
+ * @brief General Purpose I/O
+ */
+
+typedef struct {
+ __IO uint32_t CRL;
+ __IO uint32_t CRH;
+ __IO uint32_t IDR;
+ __IO uint32_t ODR;
+ __IO uint32_t BSRR;
+ __IO uint32_t BRR;
+ __IO uint32_t LCKR;
+} GPIO_TypeDef;
+
+/**
+ * @brief Alternate Function I/O
+ */
+
+typedef struct {
+ __IO uint32_t EVCR;
+ __IO uint32_t MAPR;
+ __IO uint32_t EXTICR[4];
+ uint32_t RESERVED0;
+ __IO uint32_t MAPR2;
+} AFIO_TypeDef;
+/**
+ * @brief Inter Integrated Circuit Interface
+ */
+
+typedef struct {
+ __IO uint32_t CR1;
+ __IO uint32_t CR2;
+ __IO uint32_t OAR1;
+ __IO uint32_t OAR2;
+ __IO uint32_t DR;
+ __IO uint32_t SR1;
+ __IO uint32_t SR2;
+ __IO uint32_t CCR;
+ __IO uint32_t TRISE;
+} I2C_TypeDef;
+
+/**
+ * @brief Independent WATCHDOG
+ */
+
+typedef struct {
+ __IO uint32_t KR; /*!< Key register, Address offset: 0x00 */
+ __IO uint32_t PR; /*!< Prescaler register, Address offset: 0x04 */
+ __IO uint32_t RLR; /*!< Reload register, Address offset: 0x08 */
+ __IO uint32_t SR; /*!< Status register, Address offset: 0x0C */
+} IWDG_TypeDef;
+
+/**
+ * @brief Power Control
+ */
+
+typedef struct {
+ __IO uint32_t CR;
+ __IO uint32_t CSR;
+} PWR_TypeDef;
+
+/**
+ * @brief Reset and Clock Control
+ */
+
+typedef struct {
+ __IO uint32_t CR;
+ __IO uint32_t CFGR;
+ __IO uint32_t CIR;
+ __IO uint32_t APB2RSTR;
+ __IO uint32_t APB1RSTR;
+ __IO uint32_t AHBENR;
+ __IO uint32_t APB2ENR;
+ __IO uint32_t APB1ENR;
+ __IO uint32_t BDCR;
+ __IO uint32_t CSR;
+
+} RCC_TypeDef;
+
+/**
+ * @brief Real-Time Clock
+ */
+
+typedef struct {
+ __IO uint32_t CRH;
+ __IO uint32_t CRL;
+ __IO uint32_t PRLH;
+ __IO uint32_t PRLL;
+ __IO uint32_t DIVH;
+ __IO uint32_t DIVL;
+ __IO uint32_t CNTH;
+ __IO uint32_t CNTL;
+ __IO uint32_t ALRH;
+ __IO uint32_t ALRL;
+} RTC_TypeDef;
+
+/**
+ * @brief Serial Peripheral Interface
+ */
+
+typedef struct {
+ __IO uint32_t CR1;
+ __IO uint32_t CR2;
+ __IO uint32_t SR;
+ __IO uint32_t DR;
+ __IO uint32_t CRCPR;
+ __IO uint32_t RXCRCR;
+ __IO uint32_t TXCRCR;
+ __IO uint32_t I2SCFGR;
+} SPI_TypeDef;
+
+/**
+ * @brief TIM Timers
+ */
+typedef struct {
+ __IO uint32_t CR1; /*!< TIM control register 1, Address offset: 0x00 */
+ __IO uint32_t CR2; /*!< TIM control register 2, Address offset: 0x04 */
+ __IO uint32_t SMCR; /*!< TIM slave Mode Control register, Address offset: 0x08 */
+ __IO uint32_t DIER; /*!< TIM DMA/interrupt enable register, Address offset: 0x0C */
+ __IO uint32_t SR; /*!< TIM status register, Address offset: 0x10 */
+ __IO uint32_t EGR; /*!< TIM event generation register, Address offset: 0x14 */
+ __IO uint32_t CCMR1; /*!< TIM capture/compare mode register 1, Address offset: 0x18 */
+ __IO uint32_t CCMR2; /*!< TIM capture/compare mode register 2, Address offset: 0x1C */
+ __IO uint32_t CCER; /*!< TIM capture/compare enable register, Address offset: 0x20 */
+ __IO uint32_t CNT; /*!< TIM counter register, Address offset: 0x24 */
+ __IO uint32_t PSC; /*!< TIM prescaler register, Address offset: 0x28 */
+ __IO uint32_t ARR; /*!< TIM auto-reload register, Address offset: 0x2C */
+ __IO uint32_t RCR; /*!< TIM repetition counter register, Address offset: 0x30 */
+ __IO uint32_t CCR1; /*!< TIM capture/compare register 1, Address offset: 0x34 */
+ __IO uint32_t CCR2; /*!< TIM capture/compare register 2, Address offset: 0x38 */
+ __IO uint32_t CCR3; /*!< TIM capture/compare register 3, Address offset: 0x3C */
+ __IO uint32_t CCR4; /*!< TIM capture/compare register 4, Address offset: 0x40 */
+ __IO uint32_t BDTR; /*!< TIM break and dead-time register, Address offset: 0x44 */
+ __IO uint32_t DCR; /*!< TIM DMA control register, Address offset: 0x48 */
+ __IO uint32_t DMAR; /*!< TIM DMA address for full transfer register, Address offset: 0x4C */
+ __IO uint32_t OR; /*!< TIM option register, Address offset: 0x50 */
+} TIM_TypeDef;
+
+/**
+ * @brief Universal Synchronous Asynchronous Receiver Transmitter
+ */
+
+typedef struct {
+ __IO uint32_t SR; /*!< USART Status register, Address offset: 0x00 */
+ __IO uint32_t DR; /*!< USART Data register, Address offset: 0x04 */
+ __IO uint32_t BRR; /*!< USART Baud rate register, Address offset: 0x08 */
+ __IO uint32_t CR1; /*!< USART Control register 1, Address offset: 0x0C */
+ __IO uint32_t CR2; /*!< USART Control register 2, Address offset: 0x10 */
+ __IO uint32_t CR3; /*!< USART Control register 3, Address offset: 0x14 */
+ __IO uint32_t GTPR; /*!< USART Guard time and prescaler register, Address offset: 0x18 */
+} USART_TypeDef;
+
+/**
+ * @brief Universal Serial Bus Full Speed Device
+ */
+
+typedef struct {
+ __IO uint16_t EP0R; /*!< USB Endpoint 0 register, Address offset: 0x00 */
+ __IO uint16_t RESERVED0; /*!< Reserved */
+ __IO uint16_t EP1R; /*!< USB Endpoint 1 register, Address offset: 0x04 */
+ __IO uint16_t RESERVED1; /*!< Reserved */
+ __IO uint16_t EP2R; /*!< USB Endpoint 2 register, Address offset: 0x08 */
+ __IO uint16_t RESERVED2; /*!< Reserved */
+ __IO uint16_t EP3R; /*!< USB Endpoint 3 register, Address offset: 0x0C */
+ __IO uint16_t RESERVED3; /*!< Reserved */
+ __IO uint16_t EP4R; /*!< USB Endpoint 4 register, Address offset: 0x10 */
+ __IO uint16_t RESERVED4; /*!< Reserved */
+ __IO uint16_t EP5R; /*!< USB Endpoint 5 register, Address offset: 0x14 */
+ __IO uint16_t RESERVED5; /*!< Reserved */
+ __IO uint16_t EP6R; /*!< USB Endpoint 6 register, Address offset: 0x18 */
+ __IO uint16_t RESERVED6; /*!< Reserved */
+ __IO uint16_t EP7R; /*!< USB Endpoint 7 register, Address offset: 0x1C */
+ __IO uint16_t RESERVED7[17]; /*!< Reserved */
+ __IO uint16_t CNTR; /*!< Control register, Address offset: 0x40 */
+ __IO uint16_t RESERVED8; /*!< Reserved */
+ __IO uint16_t ISTR; /*!< Interrupt status register, Address offset: 0x44 */
+ __IO uint16_t RESERVED9; /*!< Reserved */
+ __IO uint16_t FNR; /*!< Frame number register, Address offset: 0x48 */
+ __IO uint16_t RESERVEDA; /*!< Reserved */
+ __IO uint16_t DADDR; /*!< Device address register, Address offset: 0x4C */
+ __IO uint16_t RESERVEDB; /*!< Reserved */
+ __IO uint16_t BTABLE; /*!< Buffer Table address register, Address offset: 0x50 */
+ __IO uint16_t RESERVEDC; /*!< Reserved */
+} USB_TypeDef;
+
+/**
+ * @brief Window WATCHDOG
+ */
+
+typedef struct {
+ __IO uint32_t CR; /*!< WWDG Control register, Address offset: 0x00 */
+ __IO uint32_t CFR; /*!< WWDG Configuration register, Address offset: 0x04 */
+ __IO uint32_t SR; /*!< WWDG Status register, Address offset: 0x08 */
+} WWDG_TypeDef;
+
+/**
+ * @}
+ */
+
+/** @addtogroup Peripheral_memory_map
+ * @{
+ */
+
+#define FLASH_BASE 0x08000000UL /*!< FLASH base address in the alias region */
+#define FLASH_BANK1_END 0x0801FFFFUL /*!< FLASH END address of bank1 */
+#define SRAM_BASE 0x20000000UL /*!< SRAM base address in the alias region */
+#define PERIPH_BASE 0x40000000UL /*!< Peripheral base address in the alias region */
+
+#define SRAM_BB_BASE 0x22000000UL /*!< SRAM base address in the bit-band region */
+#define PERIPH_BB_BASE 0x42000000UL /*!< Peripheral base address in the bit-band region */
+
+/*!< Peripheral memory map */
+#define APB1PERIPH_BASE PERIPH_BASE
+#define APB2PERIPH_BASE (PERIPH_BASE + 0x00010000UL)
+#define AHBPERIPH_BASE (PERIPH_BASE + 0x00020000UL)
+
+#define TIM2_BASE (APB1PERIPH_BASE + 0x00000000UL)
+#define TIM3_BASE (APB1PERIPH_BASE + 0x00000400UL)
+#define TIM4_BASE (APB1PERIPH_BASE + 0x00000800UL)
+#define RTC_BASE (APB1PERIPH_BASE + 0x00002800UL)
+#define WWDG_BASE (APB1PERIPH_BASE + 0x00002C00UL)
+#define IWDG_BASE (APB1PERIPH_BASE + 0x00003000UL)
+#define SPI2_BASE (APB1PERIPH_BASE + 0x00003800UL)
+#define USART2_BASE (APB1PERIPH_BASE + 0x00004400UL)
+#define USART3_BASE (APB1PERIPH_BASE + 0x00004800UL)
+#define I2C1_BASE (APB1PERIPH_BASE + 0x00005400UL)
+#define I2C2_BASE (APB1PERIPH_BASE + 0x00005800UL)
+#define CAN1_BASE (APB1PERIPH_BASE + 0x00006400UL)
+#define BKP_BASE (APB1PERIPH_BASE + 0x00006C00UL)
+#define PWR_BASE (APB1PERIPH_BASE + 0x00007000UL)
+#define AFIO_BASE (APB2PERIPH_BASE + 0x00000000UL)
+#define EXTI_BASE (APB2PERIPH_BASE + 0x00000400UL)
+#define GPIOA_BASE (APB2PERIPH_BASE + 0x00000800UL)
+#define GPIOB_BASE (APB2PERIPH_BASE + 0x00000C00UL)
+#define GPIOC_BASE (APB2PERIPH_BASE + 0x00001000UL)
+#define GPIOD_BASE (APB2PERIPH_BASE + 0x00001400UL)
+#define GPIOE_BASE (APB2PERIPH_BASE + 0x00001800UL)
+#define ADC1_BASE (APB2PERIPH_BASE + 0x00002400UL)
+#define ADC2_BASE (APB2PERIPH_BASE + 0x00002800UL)
+#define TIM1_BASE (APB2PERIPH_BASE + 0x00002C00UL)
+#define SPI1_BASE (APB2PERIPH_BASE + 0x00003000UL)
+#define USART1_BASE (APB2PERIPH_BASE + 0x00003800UL)
+
+#define DMA1_BASE (AHBPERIPH_BASE + 0x00000000UL)
+#define DMA1_Channel1_BASE (AHBPERIPH_BASE + 0x00000008UL)
+#define DMA1_Channel2_BASE (AHBPERIPH_BASE + 0x0000001CUL)
+#define DMA1_Channel3_BASE (AHBPERIPH_BASE + 0x00000030UL)
+#define DMA1_Channel4_BASE (AHBPERIPH_BASE + 0x00000044UL)
+#define DMA1_Channel5_BASE (AHBPERIPH_BASE + 0x00000058UL)
+#define DMA1_Channel6_BASE (AHBPERIPH_BASE + 0x0000006CUL)
+#define DMA1_Channel7_BASE (AHBPERIPH_BASE + 0x00000080UL)
+#define RCC_BASE (AHBPERIPH_BASE + 0x00001000UL)
+#define CRC_BASE (AHBPERIPH_BASE + 0x00003000UL)
+
+#define FLASH_R_BASE (AHBPERIPH_BASE + 0x00002000UL) /*!< Flash registers base address */
+#define FLASHSIZE_BASE 0x1FFFF7E0UL /*!< FLASH Size register base address */
+#define UID_BASE 0x1FFFF7E8UL /*!< Unique device ID register base address */
+#define OB_BASE 0x1FFFF800UL /*!< Flash Option Bytes base address */
+
+#define DBGMCU_BASE 0xE0042000UL /*!< Debug MCU registers base address */
+
+/* USB device FS */
+#define USB_BASE (APB1PERIPH_BASE + 0x00005C00UL) /*!< USB_IP Peripheral Registers base address */
+#define USB_PMAADDR (APB1PERIPH_BASE + 0x00006000UL) /*!< USB_IP Packet Memory Area base address */
+
+/**
+ * @}
+ */
+
+/** @addtogroup Peripheral_declaration
+ * @{
+ */
+
+#define TIM2 ((TIM_TypeDef *)TIM2_BASE)
+#define TIM3 ((TIM_TypeDef *)TIM3_BASE)
+#define TIM4 ((TIM_TypeDef *)TIM4_BASE)
+#define RTC ((RTC_TypeDef *)RTC_BASE)
+#define WWDG ((WWDG_TypeDef *)WWDG_BASE)
+#define IWDG ((IWDG_TypeDef *)IWDG_BASE)
+#define SPI2 ((SPI_TypeDef *)SPI2_BASE)
+#define USART2 ((USART_TypeDef *)USART2_BASE)
+#define USART3 ((USART_TypeDef *)USART3_BASE)
+#define I2C1 ((I2C_TypeDef *)I2C1_BASE)
+#define I2C2 ((I2C_TypeDef *)I2C2_BASE)
+#define USB ((USB_TypeDef *)USB_BASE)
+#define CAN1 ((CAN_TypeDef *)CAN1_BASE)
+#define BKP ((BKP_TypeDef *)BKP_BASE)
+#define PWR ((PWR_TypeDef *)PWR_BASE)
+#define AFIO ((AFIO_TypeDef *)AFIO_BASE)
+#define EXTI ((EXTI_TypeDef *)EXTI_BASE)
+#define GPIOA ((GPIO_TypeDef *)GPIOA_BASE)
+#define GPIOB ((GPIO_TypeDef *)GPIOB_BASE)
+#define GPIOC ((GPIO_TypeDef *)GPIOC_BASE)
+#define GPIOD ((GPIO_TypeDef *)GPIOD_BASE)
+#define GPIOE ((GPIO_TypeDef *)GPIOE_BASE)
+#define ADC1 ((ADC_TypeDef *)ADC1_BASE)
+#define ADC2 ((ADC_TypeDef *)ADC2_BASE)
+#define ADC12_COMMON ((ADC_Common_TypeDef *)ADC1_BASE)
+#define TIM1 ((TIM_TypeDef *)TIM1_BASE)
+#define SPI1 ((SPI_TypeDef *)SPI1_BASE)
+#define USART1 ((USART_TypeDef *)USART1_BASE)
+#define DMA1 ((DMA_TypeDef *)DMA1_BASE)
+#define DMA1_Channel1 ((DMA_Channel_TypeDef *)DMA1_Channel1_BASE)
+#define DMA1_Channel2 ((DMA_Channel_TypeDef *)DMA1_Channel2_BASE)
+#define DMA1_Channel3 ((DMA_Channel_TypeDef *)DMA1_Channel3_BASE)
+#define DMA1_Channel4 ((DMA_Channel_TypeDef *)DMA1_Channel4_BASE)
+#define DMA1_Channel5 ((DMA_Channel_TypeDef *)DMA1_Channel5_BASE)
+#define DMA1_Channel6 ((DMA_Channel_TypeDef *)DMA1_Channel6_BASE)
+#define DMA1_Channel7 ((DMA_Channel_TypeDef *)DMA1_Channel7_BASE)
+#define RCC ((RCC_TypeDef *)RCC_BASE)
+#define CRC ((CRC_TypeDef *)CRC_BASE)
+#define FLASH ((FLASH_TypeDef *)FLASH_R_BASE)
+#define OB ((OB_TypeDef *)OB_BASE)
+#define DBGMCU ((DBGMCU_TypeDef *)DBGMCU_BASE)
+
+/**
+ * @}
+ */
+
+/** @addtogroup Exported_constants
+ * @{
+ */
+
+/** @addtogroup Peripheral_Registers_Bits_Definition
+ * @{
+ */
+
+/******************************************************************************/
+/* Peripheral Registers_Bits_Definition */
+/******************************************************************************/
+
+/******************************************************************************/
+/* */
+/* CRC calculation unit (CRC) */
+/* */
+/******************************************************************************/
+
+/******************* Bit definition for CRC_DR register *********************/
+#define CRC_DR_DR_Pos (0U)
+#define CRC_DR_DR_Msk (0xFFFFFFFFUL << CRC_DR_DR_Pos) /*!< 0xFFFFFFFF */
+#define CRC_DR_DR CRC_DR_DR_Msk /*!< Data register bits */
+
+/******************* Bit definition for CRC_IDR register ********************/
+#define CRC_IDR_IDR_Pos (0U)
+#define CRC_IDR_IDR_Msk (0xFFUL << CRC_IDR_IDR_Pos) /*!< 0x000000FF */
+#define CRC_IDR_IDR CRC_IDR_IDR_Msk /*!< General-purpose 8-bit data register bits */
+
+/******************** Bit definition for CRC_CR register ********************/
+#define CRC_CR_RESET_Pos (0U)
+#define CRC_CR_RESET_Msk (0x1UL << CRC_CR_RESET_Pos) /*!< 0x00000001 */
+#define CRC_CR_RESET CRC_CR_RESET_Msk /*!< RESET bit */
+
+/******************************************************************************/
+/* */
+/* Power Control */
+/* */
+/******************************************************************************/
+
+/******************** Bit definition for PWR_CR register ********************/
+#define PWR_CR_LPDS_Pos (0U)
+#define PWR_CR_LPDS_Msk (0x1UL << PWR_CR_LPDS_Pos) /*!< 0x00000001 */
+#define PWR_CR_LPDS PWR_CR_LPDS_Msk /*!< Low-Power Deepsleep */
+#define PWR_CR_PDDS_Pos (1U)
+#define PWR_CR_PDDS_Msk (0x1UL << PWR_CR_PDDS_Pos) /*!< 0x00000002 */
+#define PWR_CR_PDDS PWR_CR_PDDS_Msk /*!< Power Down Deepsleep */
+#define PWR_CR_CWUF_Pos (2U)
+#define PWR_CR_CWUF_Msk (0x1UL << PWR_CR_CWUF_Pos) /*!< 0x00000004 */
+#define PWR_CR_CWUF PWR_CR_CWUF_Msk /*!< Clear Wakeup Flag */
+#define PWR_CR_CSBF_Pos (3U)
+#define PWR_CR_CSBF_Msk (0x1UL << PWR_CR_CSBF_Pos) /*!< 0x00000008 */
+#define PWR_CR_CSBF PWR_CR_CSBF_Msk /*!< Clear Standby Flag */
+#define PWR_CR_PVDE_Pos (4U)
+#define PWR_CR_PVDE_Msk (0x1UL << PWR_CR_PVDE_Pos) /*!< 0x00000010 */
+#define PWR_CR_PVDE PWR_CR_PVDE_Msk /*!< Power Voltage Detector Enable */
+
+#define PWR_CR_PLS_Pos (5U)
+#define PWR_CR_PLS_Msk (0x7UL << PWR_CR_PLS_Pos) /*!< 0x000000E0 */
+#define PWR_CR_PLS PWR_CR_PLS_Msk /*!< PLS[2:0] bits (PVD Level Selection) */
+#define PWR_CR_PLS_0 (0x1UL << PWR_CR_PLS_Pos) /*!< 0x00000020 */
+#define PWR_CR_PLS_1 (0x2UL << PWR_CR_PLS_Pos) /*!< 0x00000040 */
+#define PWR_CR_PLS_2 (0x4UL << PWR_CR_PLS_Pos) /*!< 0x00000080 */
+
+/*!< PVD level configuration */
+#define PWR_CR_PLS_LEV0 0x00000000U /*!< PVD level 2.2V */
+#define PWR_CR_PLS_LEV1 0x00000020U /*!< PVD level 2.3V */
+#define PWR_CR_PLS_LEV2 0x00000040U /*!< PVD level 2.4V */
+#define PWR_CR_PLS_LEV3 0x00000060U /*!< PVD level 2.5V */
+#define PWR_CR_PLS_LEV4 0x00000080U /*!< PVD level 2.6V */
+#define PWR_CR_PLS_LEV5 0x000000A0U /*!< PVD level 2.7V */
+#define PWR_CR_PLS_LEV6 0x000000C0U /*!< PVD level 2.8V */
+#define PWR_CR_PLS_LEV7 0x000000E0U /*!< PVD level 2.9V */
+
+/* Legacy defines */
+#define PWR_CR_PLS_2V2 PWR_CR_PLS_LEV0
+#define PWR_CR_PLS_2V3 PWR_CR_PLS_LEV1
+#define PWR_CR_PLS_2V4 PWR_CR_PLS_LEV2
+#define PWR_CR_PLS_2V5 PWR_CR_PLS_LEV3
+#define PWR_CR_PLS_2V6 PWR_CR_PLS_LEV4
+#define PWR_CR_PLS_2V7 PWR_CR_PLS_LEV5
+#define PWR_CR_PLS_2V8 PWR_CR_PLS_LEV6
+#define PWR_CR_PLS_2V9 PWR_CR_PLS_LEV7
+
+#define PWR_CR_DBP_Pos (8U)
+#define PWR_CR_DBP_Msk (0x1UL << PWR_CR_DBP_Pos) /*!< 0x00000100 */
+#define PWR_CR_DBP PWR_CR_DBP_Msk /*!< Disable Backup Domain write protection */
+
+/******************* Bit definition for PWR_CSR register ********************/
+#define PWR_CSR_WUF_Pos (0U)
+#define PWR_CSR_WUF_Msk (0x1UL << PWR_CSR_WUF_Pos) /*!< 0x00000001 */
+#define PWR_CSR_WUF PWR_CSR_WUF_Msk /*!< Wakeup Flag */
+#define PWR_CSR_SBF_Pos (1U)
+#define PWR_CSR_SBF_Msk (0x1UL << PWR_CSR_SBF_Pos) /*!< 0x00000002 */
+#define PWR_CSR_SBF PWR_CSR_SBF_Msk /*!< Standby Flag */
+#define PWR_CSR_PVDO_Pos (2U)
+#define PWR_CSR_PVDO_Msk (0x1UL << PWR_CSR_PVDO_Pos) /*!< 0x00000004 */
+#define PWR_CSR_PVDO PWR_CSR_PVDO_Msk /*!< PVD Output */
+#define PWR_CSR_EWUP_Pos (8U)
+#define PWR_CSR_EWUP_Msk (0x1UL << PWR_CSR_EWUP_Pos) /*!< 0x00000100 */
+#define PWR_CSR_EWUP PWR_CSR_EWUP_Msk /*!< Enable WKUP pin */
+
+/******************************************************************************/
+/* */
+/* Backup registers */
+/* */
+/******************************************************************************/
+
+/******************* Bit definition for BKP_DR1 register ********************/
+#define BKP_DR1_D_Pos (0U)
+#define BKP_DR1_D_Msk (0xFFFFUL << BKP_DR1_D_Pos) /*!< 0x0000FFFF */
+#define BKP_DR1_D BKP_DR1_D_Msk /*!< Backup data */
+
+/******************* Bit definition for BKP_DR2 register ********************/
+#define BKP_DR2_D_Pos (0U)
+#define BKP_DR2_D_Msk (0xFFFFUL << BKP_DR2_D_Pos) /*!< 0x0000FFFF */
+#define BKP_DR2_D BKP_DR2_D_Msk /*!< Backup data */
+
+/******************* Bit definition for BKP_DR3 register ********************/
+#define BKP_DR3_D_Pos (0U)
+#define BKP_DR3_D_Msk (0xFFFFUL << BKP_DR3_D_Pos) /*!< 0x0000FFFF */
+#define BKP_DR3_D BKP_DR3_D_Msk /*!< Backup data */
+
+/******************* Bit definition for BKP_DR4 register ********************/
+#define BKP_DR4_D_Pos (0U)
+#define BKP_DR4_D_Msk (0xFFFFUL << BKP_DR4_D_Pos) /*!< 0x0000FFFF */
+#define BKP_DR4_D BKP_DR4_D_Msk /*!< Backup data */
+
+/******************* Bit definition for BKP_DR5 register ********************/
+#define BKP_DR5_D_Pos (0U)
+#define BKP_DR5_D_Msk (0xFFFFUL << BKP_DR5_D_Pos) /*!< 0x0000FFFF */
+#define BKP_DR5_D BKP_DR5_D_Msk /*!< Backup data */
+
+/******************* Bit definition for BKP_DR6 register ********************/
+#define BKP_DR6_D_Pos (0U)
+#define BKP_DR6_D_Msk (0xFFFFUL << BKP_DR6_D_Pos) /*!< 0x0000FFFF */
+#define BKP_DR6_D BKP_DR6_D_Msk /*!< Backup data */
+
+/******************* Bit definition for BKP_DR7 register ********************/
+#define BKP_DR7_D_Pos (0U)
+#define BKP_DR7_D_Msk (0xFFFFUL << BKP_DR7_D_Pos) /*!< 0x0000FFFF */
+#define BKP_DR7_D BKP_DR7_D_Msk /*!< Backup data */
+
+/******************* Bit definition for BKP_DR8 register ********************/
+#define BKP_DR8_D_Pos (0U)
+#define BKP_DR8_D_Msk (0xFFFFUL << BKP_DR8_D_Pos) /*!< 0x0000FFFF */
+#define BKP_DR8_D BKP_DR8_D_Msk /*!< Backup data */
+
+/******************* Bit definition for BKP_DR9 register ********************/
+#define BKP_DR9_D_Pos (0U)
+#define BKP_DR9_D_Msk (0xFFFFUL << BKP_DR9_D_Pos) /*!< 0x0000FFFF */
+#define BKP_DR9_D BKP_DR9_D_Msk /*!< Backup data */
+
+/******************* Bit definition for BKP_DR10 register *******************/
+#define BKP_DR10_D_Pos (0U)
+#define BKP_DR10_D_Msk (0xFFFFUL << BKP_DR10_D_Pos) /*!< 0x0000FFFF */
+#define BKP_DR10_D BKP_DR10_D_Msk /*!< Backup data */
+
+#define RTC_BKP_NUMBER 10
+
+/****************** Bit definition for BKP_RTCCR register *******************/
+#define BKP_RTCCR_CAL_Pos (0U)
+#define BKP_RTCCR_CAL_Msk (0x7FUL << BKP_RTCCR_CAL_Pos) /*!< 0x0000007F */
+#define BKP_RTCCR_CAL BKP_RTCCR_CAL_Msk /*!< Calibration value */
+#define BKP_RTCCR_CCO_Pos (7U)
+#define BKP_RTCCR_CCO_Msk (0x1UL << BKP_RTCCR_CCO_Pos) /*!< 0x00000080 */
+#define BKP_RTCCR_CCO BKP_RTCCR_CCO_Msk /*!< Calibration Clock Output */
+#define BKP_RTCCR_ASOE_Pos (8U)
+#define BKP_RTCCR_ASOE_Msk (0x1UL << BKP_RTCCR_ASOE_Pos) /*!< 0x00000100 */
+#define BKP_RTCCR_ASOE BKP_RTCCR_ASOE_Msk /*!< Alarm or Second Output Enable */
+#define BKP_RTCCR_ASOS_Pos (9U)
+#define BKP_RTCCR_ASOS_Msk (0x1UL << BKP_RTCCR_ASOS_Pos) /*!< 0x00000200 */
+#define BKP_RTCCR_ASOS BKP_RTCCR_ASOS_Msk /*!< Alarm or Second Output Selection */
+
+/******************** Bit definition for BKP_CR register ********************/
+#define BKP_CR_TPE_Pos (0U)
+#define BKP_CR_TPE_Msk (0x1UL << BKP_CR_TPE_Pos) /*!< 0x00000001 */
+#define BKP_CR_TPE BKP_CR_TPE_Msk /*!< TAMPER pin enable */
+#define BKP_CR_TPAL_Pos (1U)
+#define BKP_CR_TPAL_Msk (0x1UL << BKP_CR_TPAL_Pos) /*!< 0x00000002 */
+#define BKP_CR_TPAL BKP_CR_TPAL_Msk /*!< TAMPER pin active level */
+
+/******************* Bit definition for BKP_CSR register ********************/
+#define BKP_CSR_CTE_Pos (0U)
+#define BKP_CSR_CTE_Msk (0x1UL << BKP_CSR_CTE_Pos) /*!< 0x00000001 */
+#define BKP_CSR_CTE BKP_CSR_CTE_Msk /*!< Clear Tamper event */
+#define BKP_CSR_CTI_Pos (1U)
+#define BKP_CSR_CTI_Msk (0x1UL << BKP_CSR_CTI_Pos) /*!< 0x00000002 */
+#define BKP_CSR_CTI BKP_CSR_CTI_Msk /*!< Clear Tamper Interrupt */
+#define BKP_CSR_TPIE_Pos (2U)
+#define BKP_CSR_TPIE_Msk (0x1UL << BKP_CSR_TPIE_Pos) /*!< 0x00000004 */
+#define BKP_CSR_TPIE BKP_CSR_TPIE_Msk /*!< TAMPER Pin interrupt enable */
+#define BKP_CSR_TEF_Pos (8U)
+#define BKP_CSR_TEF_Msk (0x1UL << BKP_CSR_TEF_Pos) /*!< 0x00000100 */
+#define BKP_CSR_TEF BKP_CSR_TEF_Msk /*!< Tamper Event Flag */
+#define BKP_CSR_TIF_Pos (9U)
+#define BKP_CSR_TIF_Msk (0x1UL << BKP_CSR_TIF_Pos) /*!< 0x00000200 */
+#define BKP_CSR_TIF BKP_CSR_TIF_Msk /*!< Tamper Interrupt Flag */
+
+/******************************************************************************/
+/* */
+/* Reset and Clock Control */
+/* */
+/******************************************************************************/
+
+/******************** Bit definition for RCC_CR register ********************/
+#define RCC_CR_HSION_Pos (0U)
+#define RCC_CR_HSION_Msk (0x1UL << RCC_CR_HSION_Pos) /*!< 0x00000001 */
+#define RCC_CR_HSION RCC_CR_HSION_Msk /*!< Internal High Speed clock enable */
+#define RCC_CR_HSIRDY_Pos (1U)
+#define RCC_CR_HSIRDY_Msk (0x1UL << RCC_CR_HSIRDY_Pos) /*!< 0x00000002 */
+#define RCC_CR_HSIRDY RCC_CR_HSIRDY_Msk /*!< Internal High Speed clock ready flag */
+#define RCC_CR_HSITRIM_Pos (3U)
+#define RCC_CR_HSITRIM_Msk (0x1FUL << RCC_CR_HSITRIM_Pos) /*!< 0x000000F8 */
+#define RCC_CR_HSITRIM RCC_CR_HSITRIM_Msk /*!< Internal High Speed clock trimming */
+#define RCC_CR_HSICAL_Pos (8U)
+#define RCC_CR_HSICAL_Msk (0xFFUL << RCC_CR_HSICAL_Pos) /*!< 0x0000FF00 */
+#define RCC_CR_HSICAL RCC_CR_HSICAL_Msk /*!< Internal High Speed clock Calibration */
+#define RCC_CR_HSEON_Pos (16U)
+#define RCC_CR_HSEON_Msk (0x1UL << RCC_CR_HSEON_Pos) /*!< 0x00010000 */
+#define RCC_CR_HSEON RCC_CR_HSEON_Msk /*!< External High Speed clock enable */
+#define RCC_CR_HSERDY_Pos (17U)
+#define RCC_CR_HSERDY_Msk (0x1UL << RCC_CR_HSERDY_Pos) /*!< 0x00020000 */
+#define RCC_CR_HSERDY RCC_CR_HSERDY_Msk /*!< External High Speed clock ready flag */
+#define RCC_CR_HSEBYP_Pos (18U)
+#define RCC_CR_HSEBYP_Msk (0x1UL << RCC_CR_HSEBYP_Pos) /*!< 0x00040000 */
+#define RCC_CR_HSEBYP RCC_CR_HSEBYP_Msk /*!< External High Speed clock Bypass */
+#define RCC_CR_CSSON_Pos (19U)
+#define RCC_CR_CSSON_Msk (0x1UL << RCC_CR_CSSON_Pos) /*!< 0x00080000 */
+#define RCC_CR_CSSON RCC_CR_CSSON_Msk /*!< Clock Security System enable */
+#define RCC_CR_PLLON_Pos (24U)
+#define RCC_CR_PLLON_Msk (0x1UL << RCC_CR_PLLON_Pos) /*!< 0x01000000 */
+#define RCC_CR_PLLON RCC_CR_PLLON_Msk /*!< PLL enable */
+#define RCC_CR_PLLRDY_Pos (25U)
+#define RCC_CR_PLLRDY_Msk (0x1UL << RCC_CR_PLLRDY_Pos) /*!< 0x02000000 */
+#define RCC_CR_PLLRDY RCC_CR_PLLRDY_Msk /*!< PLL clock ready flag */
+
+/******************* Bit definition for RCC_CFGR register *******************/
+/*!< SW configuration */
+#define RCC_CFGR_SW_Pos (0U)
+#define RCC_CFGR_SW_Msk (0x3UL << RCC_CFGR_SW_Pos) /*!< 0x00000003 */
+#define RCC_CFGR_SW RCC_CFGR_SW_Msk /*!< SW[1:0] bits (System clock Switch) */
+#define RCC_CFGR_SW_0 (0x1UL << RCC_CFGR_SW_Pos) /*!< 0x00000001 */
+#define RCC_CFGR_SW_1 (0x2UL << RCC_CFGR_SW_Pos) /*!< 0x00000002 */
+
+#define RCC_CFGR_SW_HSI 0x00000000U /*!< HSI selected as system clock */
+#define RCC_CFGR_SW_HSE 0x00000001U /*!< HSE selected as system clock */
+#define RCC_CFGR_SW_PLL 0x00000002U /*!< PLL selected as system clock */
+
+/*!< SWS configuration */
+#define RCC_CFGR_SWS_Pos (2U)
+#define RCC_CFGR_SWS_Msk (0x3UL << RCC_CFGR_SWS_Pos) /*!< 0x0000000C */
+#define RCC_CFGR_SWS RCC_CFGR_SWS_Msk /*!< SWS[1:0] bits (System Clock Switch Status) */
+#define RCC_CFGR_SWS_0 (0x1UL << RCC_CFGR_SWS_Pos) /*!< 0x00000004 */
+#define RCC_CFGR_SWS_1 (0x2UL << RCC_CFGR_SWS_Pos) /*!< 0x00000008 */
+
+#define RCC_CFGR_SWS_HSI 0x00000000U /*!< HSI oscillator used as system clock */
+#define RCC_CFGR_SWS_HSE 0x00000004U /*!< HSE oscillator used as system clock */
+#define RCC_CFGR_SWS_PLL 0x00000008U /*!< PLL used as system clock */
+
+/*!< HPRE configuration */
+#define RCC_CFGR_HPRE_Pos (4U)
+#define RCC_CFGR_HPRE_Msk (0xFUL << RCC_CFGR_HPRE_Pos) /*!< 0x000000F0 */
+#define RCC_CFGR_HPRE RCC_CFGR_HPRE_Msk /*!< HPRE[3:0] bits (AHB prescaler) */
+#define RCC_CFGR_HPRE_0 (0x1UL << RCC_CFGR_HPRE_Pos) /*!< 0x00000010 */
+#define RCC_CFGR_HPRE_1 (0x2UL << RCC_CFGR_HPRE_Pos) /*!< 0x00000020 */
+#define RCC_CFGR_HPRE_2 (0x4UL << RCC_CFGR_HPRE_Pos) /*!< 0x00000040 */
+#define RCC_CFGR_HPRE_3 (0x8UL << RCC_CFGR_HPRE_Pos) /*!< 0x00000080 */
+
+#define RCC_CFGR_HPRE_DIV1 0x00000000U /*!< SYSCLK not divided */
+#define RCC_CFGR_HPRE_DIV2 0x00000080U /*!< SYSCLK divided by 2 */
+#define RCC_CFGR_HPRE_DIV4 0x00000090U /*!< SYSCLK divided by 4 */
+#define RCC_CFGR_HPRE_DIV8 0x000000A0U /*!< SYSCLK divided by 8 */
+#define RCC_CFGR_HPRE_DIV16 0x000000B0U /*!< SYSCLK divided by 16 */
+#define RCC_CFGR_HPRE_DIV64 0x000000C0U /*!< SYSCLK divided by 64 */
+#define RCC_CFGR_HPRE_DIV128 0x000000D0U /*!< SYSCLK divided by 128 */
+#define RCC_CFGR_HPRE_DIV256 0x000000E0U /*!< SYSCLK divided by 256 */
+#define RCC_CFGR_HPRE_DIV512 0x000000F0U /*!< SYSCLK divided by 512 */
+
+/*!< PPRE1 configuration */
+#define RCC_CFGR_PPRE1_Pos (8U)
+#define RCC_CFGR_PPRE1_Msk (0x7UL << RCC_CFGR_PPRE1_Pos) /*!< 0x00000700 */
+#define RCC_CFGR_PPRE1 RCC_CFGR_PPRE1_Msk /*!< PRE1[2:0] bits (APB1 prescaler) */
+#define RCC_CFGR_PPRE1_0 (0x1UL << RCC_CFGR_PPRE1_Pos) /*!< 0x00000100 */
+#define RCC_CFGR_PPRE1_1 (0x2UL << RCC_CFGR_PPRE1_Pos) /*!< 0x00000200 */
+#define RCC_CFGR_PPRE1_2 (0x4UL << RCC_CFGR_PPRE1_Pos) /*!< 0x00000400 */
+
+#define RCC_CFGR_PPRE1_DIV1 0x00000000U /*!< HCLK not divided */
+#define RCC_CFGR_PPRE1_DIV2 0x00000400U /*!< HCLK divided by 2 */
+#define RCC_CFGR_PPRE1_DIV4 0x00000500U /*!< HCLK divided by 4 */
+#define RCC_CFGR_PPRE1_DIV8 0x00000600U /*!< HCLK divided by 8 */
+#define RCC_CFGR_PPRE1_DIV16 0x00000700U /*!< HCLK divided by 16 */
+
+/*!< PPRE2 configuration */
+#define RCC_CFGR_PPRE2_Pos (11U)
+#define RCC_CFGR_PPRE2_Msk (0x7UL << RCC_CFGR_PPRE2_Pos) /*!< 0x00003800 */
+#define RCC_CFGR_PPRE2 RCC_CFGR_PPRE2_Msk /*!< PRE2[2:0] bits (APB2 prescaler) */
+#define RCC_CFGR_PPRE2_0 (0x1UL << RCC_CFGR_PPRE2_Pos) /*!< 0x00000800 */
+#define RCC_CFGR_PPRE2_1 (0x2UL << RCC_CFGR_PPRE2_Pos) /*!< 0x00001000 */
+#define RCC_CFGR_PPRE2_2 (0x4UL << RCC_CFGR_PPRE2_Pos) /*!< 0x00002000 */
+
+#define RCC_CFGR_PPRE2_DIV1 0x00000000U /*!< HCLK not divided */
+#define RCC_CFGR_PPRE2_DIV2 0x00002000U /*!< HCLK divided by 2 */
+#define RCC_CFGR_PPRE2_DIV4 0x00002800U /*!< HCLK divided by 4 */
+#define RCC_CFGR_PPRE2_DIV8 0x00003000U /*!< HCLK divided by 8 */
+#define RCC_CFGR_PPRE2_DIV16 0x00003800U /*!< HCLK divided by 16 */
+
+/*!< ADCPPRE configuration */
+#define RCC_CFGR_ADCPRE_Pos (14U)
+#define RCC_CFGR_ADCPRE_Msk (0x3UL << RCC_CFGR_ADCPRE_Pos) /*!< 0x0000C000 */
+#define RCC_CFGR_ADCPRE RCC_CFGR_ADCPRE_Msk /*!< ADCPRE[1:0] bits (ADC prescaler) */
+#define RCC_CFGR_ADCPRE_0 (0x1UL << RCC_CFGR_ADCPRE_Pos) /*!< 0x00004000 */
+#define RCC_CFGR_ADCPRE_1 (0x2UL << RCC_CFGR_ADCPRE_Pos) /*!< 0x00008000 */
+
+#define RCC_CFGR_ADCPRE_DIV2 0x00000000U /*!< PCLK2 divided by 2 */
+#define RCC_CFGR_ADCPRE_DIV4 0x00004000U /*!< PCLK2 divided by 4 */
+#define RCC_CFGR_ADCPRE_DIV6 0x00008000U /*!< PCLK2 divided by 6 */
+#define RCC_CFGR_ADCPRE_DIV8 0x0000C000U /*!< PCLK2 divided by 8 */
+
+#define RCC_CFGR_PLLSRC_Pos (16U)
+#define RCC_CFGR_PLLSRC_Msk (0x1UL << RCC_CFGR_PLLSRC_Pos) /*!< 0x00010000 */
+#define RCC_CFGR_PLLSRC RCC_CFGR_PLLSRC_Msk /*!< PLL entry clock source */
+
+#define RCC_CFGR_PLLXTPRE_Pos (17U)
+#define RCC_CFGR_PLLXTPRE_Msk (0x1UL << RCC_CFGR_PLLXTPRE_Pos) /*!< 0x00020000 */
+#define RCC_CFGR_PLLXTPRE RCC_CFGR_PLLXTPRE_Msk /*!< HSE divider for PLL entry */
+
+/*!< PLLMUL configuration */
+#define RCC_CFGR_PLLMULL_Pos (18U)
+#define RCC_CFGR_PLLMULL_Msk (0xFUL << RCC_CFGR_PLLMULL_Pos) /*!< 0x003C0000 */
+#define RCC_CFGR_PLLMULL RCC_CFGR_PLLMULL_Msk /*!< PLLMUL[3:0] bits (PLL multiplication factor) */
+#define RCC_CFGR_PLLMULL_0 (0x1UL << RCC_CFGR_PLLMULL_Pos) /*!< 0x00040000 */
+#define RCC_CFGR_PLLMULL_1 (0x2UL << RCC_CFGR_PLLMULL_Pos) /*!< 0x00080000 */
+#define RCC_CFGR_PLLMULL_2 (0x4UL << RCC_CFGR_PLLMULL_Pos) /*!< 0x00100000 */
+#define RCC_CFGR_PLLMULL_3 (0x8UL << RCC_CFGR_PLLMULL_Pos) /*!< 0x00200000 */
+
+#define RCC_CFGR_PLLXTPRE_HSE 0x00000000U /*!< HSE clock not divided for PLL entry */
+#define RCC_CFGR_PLLXTPRE_HSE_DIV2 0x00020000U /*!< HSE clock divided by 2 for PLL entry */
+
+#define RCC_CFGR_PLLMULL2 0x00000000U /*!< PLL input clock*2 */
+#define RCC_CFGR_PLLMULL3_Pos (18U)
+#define RCC_CFGR_PLLMULL3_Msk (0x1UL << RCC_CFGR_PLLMULL3_Pos) /*!< 0x00040000 */
+#define RCC_CFGR_PLLMULL3 RCC_CFGR_PLLMULL3_Msk /*!< PLL input clock*3 */
+#define RCC_CFGR_PLLMULL4_Pos (19U)
+#define RCC_CFGR_PLLMULL4_Msk (0x1UL << RCC_CFGR_PLLMULL4_Pos) /*!< 0x00080000 */
+#define RCC_CFGR_PLLMULL4 RCC_CFGR_PLLMULL4_Msk /*!< PLL input clock*4 */
+#define RCC_CFGR_PLLMULL5_Pos (18U)
+#define RCC_CFGR_PLLMULL5_Msk (0x3UL << RCC_CFGR_PLLMULL5_Pos) /*!< 0x000C0000 */
+#define RCC_CFGR_PLLMULL5 RCC_CFGR_PLLMULL5_Msk /*!< PLL input clock*5 */
+#define RCC_CFGR_PLLMULL6_Pos (20U)
+#define RCC_CFGR_PLLMULL6_Msk (0x1UL << RCC_CFGR_PLLMULL6_Pos) /*!< 0x00100000 */
+#define RCC_CFGR_PLLMULL6 RCC_CFGR_PLLMULL6_Msk /*!< PLL input clock*6 */
+#define RCC_CFGR_PLLMULL7_Pos (18U)
+#define RCC_CFGR_PLLMULL7_Msk (0x5UL << RCC_CFGR_PLLMULL7_Pos) /*!< 0x00140000 */
+#define RCC_CFGR_PLLMULL7 RCC_CFGR_PLLMULL7_Msk /*!< PLL input clock*7 */
+#define RCC_CFGR_PLLMULL8_Pos (19U)
+#define RCC_CFGR_PLLMULL8_Msk (0x3UL << RCC_CFGR_PLLMULL8_Pos) /*!< 0x00180000 */
+#define RCC_CFGR_PLLMULL8 RCC_CFGR_PLLMULL8_Msk /*!< PLL input clock*8 */
+#define RCC_CFGR_PLLMULL9_Pos (18U)
+#define RCC_CFGR_PLLMULL9_Msk (0x7UL << RCC_CFGR_PLLMULL9_Pos) /*!< 0x001C0000 */
+#define RCC_CFGR_PLLMULL9 RCC_CFGR_PLLMULL9_Msk /*!< PLL input clock*9 */
+#define RCC_CFGR_PLLMULL10_Pos (21U)
+#define RCC_CFGR_PLLMULL10_Msk (0x1UL << RCC_CFGR_PLLMULL10_Pos) /*!< 0x00200000 */
+#define RCC_CFGR_PLLMULL10 RCC_CFGR_PLLMULL10_Msk /*!< PLL input clock10 */
+#define RCC_CFGR_PLLMULL11_Pos (18U)
+#define RCC_CFGR_PLLMULL11_Msk (0x9UL << RCC_CFGR_PLLMULL11_Pos) /*!< 0x00240000 */
+#define RCC_CFGR_PLLMULL11 RCC_CFGR_PLLMULL11_Msk /*!< PLL input clock*11 */
+#define RCC_CFGR_PLLMULL12_Pos (19U)
+#define RCC_CFGR_PLLMULL12_Msk (0x5UL << RCC_CFGR_PLLMULL12_Pos) /*!< 0x00280000 */
+#define RCC_CFGR_PLLMULL12 RCC_CFGR_PLLMULL12_Msk /*!< PLL input clock*12 */
+#define RCC_CFGR_PLLMULL13_Pos (18U)
+#define RCC_CFGR_PLLMULL13_Msk (0xBUL << RCC_CFGR_PLLMULL13_Pos) /*!< 0x002C0000 */
+#define RCC_CFGR_PLLMULL13 RCC_CFGR_PLLMULL13_Msk /*!< PLL input clock*13 */
+#define RCC_CFGR_PLLMULL14_Pos (20U)
+#define RCC_CFGR_PLLMULL14_Msk (0x3UL << RCC_CFGR_PLLMULL14_Pos) /*!< 0x00300000 */
+#define RCC_CFGR_PLLMULL14 RCC_CFGR_PLLMULL14_Msk /*!< PLL input clock*14 */
+#define RCC_CFGR_PLLMULL15_Pos (18U)
+#define RCC_CFGR_PLLMULL15_Msk (0xDUL << RCC_CFGR_PLLMULL15_Pos) /*!< 0x00340000 */
+#define RCC_CFGR_PLLMULL15 RCC_CFGR_PLLMULL15_Msk /*!< PLL input clock*15 */
+#define RCC_CFGR_PLLMULL16_Pos (19U)
+#define RCC_CFGR_PLLMULL16_Msk (0x7UL << RCC_CFGR_PLLMULL16_Pos) /*!< 0x00380000 */
+#define RCC_CFGR_PLLMULL16 RCC_CFGR_PLLMULL16_Msk /*!< PLL input clock*16 */
+#define RCC_CFGR_USBPRE_Pos (22U)
+#define RCC_CFGR_USBPRE_Msk (0x1UL << RCC_CFGR_USBPRE_Pos) /*!< 0x00400000 */
+#define RCC_CFGR_USBPRE RCC_CFGR_USBPRE_Msk /*!< USB Device prescaler */
+
+/*!< MCO configuration */
+#define RCC_CFGR_MCO_Pos (24U)
+#define RCC_CFGR_MCO_Msk (0x7UL << RCC_CFGR_MCO_Pos) /*!< 0x07000000 */
+#define RCC_CFGR_MCO RCC_CFGR_MCO_Msk /*!< MCO[2:0] bits (Microcontroller Clock Output) */
+#define RCC_CFGR_MCO_0 (0x1UL << RCC_CFGR_MCO_Pos) /*!< 0x01000000 */
+#define RCC_CFGR_MCO_1 (0x2UL << RCC_CFGR_MCO_Pos) /*!< 0x02000000 */
+#define RCC_CFGR_MCO_2 (0x4UL << RCC_CFGR_MCO_Pos) /*!< 0x04000000 */
+
+#define RCC_CFGR_MCO_NOCLOCK 0x00000000U /*!< No clock */
+#define RCC_CFGR_MCO_SYSCLK 0x04000000U /*!< System clock selected as MCO source */
+#define RCC_CFGR_MCO_HSI 0x05000000U /*!< HSI clock selected as MCO source */
+#define RCC_CFGR_MCO_HSE 0x06000000U /*!< HSE clock selected as MCO source */
+#define RCC_CFGR_MCO_PLLCLK_DIV2 0x07000000U /*!< PLL clock divided by 2 selected as MCO source */
+
+/* Reference defines */
+#define RCC_CFGR_MCOSEL RCC_CFGR_MCO
+#define RCC_CFGR_MCOSEL_0 RCC_CFGR_MCO_0
+#define RCC_CFGR_MCOSEL_1 RCC_CFGR_MCO_1
+#define RCC_CFGR_MCOSEL_2 RCC_CFGR_MCO_2
+#define RCC_CFGR_MCOSEL_NOCLOCK RCC_CFGR_MCO_NOCLOCK
+#define RCC_CFGR_MCOSEL_SYSCLK RCC_CFGR_MCO_SYSCLK
+#define RCC_CFGR_MCOSEL_HSI RCC_CFGR_MCO_HSI
+#define RCC_CFGR_MCOSEL_HSE RCC_CFGR_MCO_HSE
+#define RCC_CFGR_MCOSEL_PLL_DIV2 RCC_CFGR_MCO_PLLCLK_DIV2
+
+/*!<****************** Bit definition for RCC_CIR register ********************/
+#define RCC_CIR_LSIRDYF_Pos (0U)
+#define RCC_CIR_LSIRDYF_Msk (0x1UL << RCC_CIR_LSIRDYF_Pos) /*!< 0x00000001 */
+#define RCC_CIR_LSIRDYF RCC_CIR_LSIRDYF_Msk /*!< LSI Ready Interrupt flag */
+#define RCC_CIR_LSERDYF_Pos (1U)
+#define RCC_CIR_LSERDYF_Msk (0x1UL << RCC_CIR_LSERDYF_Pos) /*!< 0x00000002 */
+#define RCC_CIR_LSERDYF RCC_CIR_LSERDYF_Msk /*!< LSE Ready Interrupt flag */
+#define RCC_CIR_HSIRDYF_Pos (2U)
+#define RCC_CIR_HSIRDYF_Msk (0x1UL << RCC_CIR_HSIRDYF_Pos) /*!< 0x00000004 */
+#define RCC_CIR_HSIRDYF RCC_CIR_HSIRDYF_Msk /*!< HSI Ready Interrupt flag */
+#define RCC_CIR_HSERDYF_Pos (3U)
+#define RCC_CIR_HSERDYF_Msk (0x1UL << RCC_CIR_HSERDYF_Pos) /*!< 0x00000008 */
+#define RCC_CIR_HSERDYF RCC_CIR_HSERDYF_Msk /*!< HSE Ready Interrupt flag */
+#define RCC_CIR_PLLRDYF_Pos (4U)
+#define RCC_CIR_PLLRDYF_Msk (0x1UL << RCC_CIR_PLLRDYF_Pos) /*!< 0x00000010 */
+#define RCC_CIR_PLLRDYF RCC_CIR_PLLRDYF_Msk /*!< PLL Ready Interrupt flag */
+#define RCC_CIR_CSSF_Pos (7U)
+#define RCC_CIR_CSSF_Msk (0x1UL << RCC_CIR_CSSF_Pos) /*!< 0x00000080 */
+#define RCC_CIR_CSSF RCC_CIR_CSSF_Msk /*!< Clock Security System Interrupt flag */
+#define RCC_CIR_LSIRDYIE_Pos (8U)
+#define RCC_CIR_LSIRDYIE_Msk (0x1UL << RCC_CIR_LSIRDYIE_Pos) /*!< 0x00000100 */
+#define RCC_CIR_LSIRDYIE RCC_CIR_LSIRDYIE_Msk /*!< LSI Ready Interrupt Enable */
+#define RCC_CIR_LSERDYIE_Pos (9U)
+#define RCC_CIR_LSERDYIE_Msk (0x1UL << RCC_CIR_LSERDYIE_Pos) /*!< 0x00000200 */
+#define RCC_CIR_LSERDYIE RCC_CIR_LSERDYIE_Msk /*!< LSE Ready Interrupt Enable */
+#define RCC_CIR_HSIRDYIE_Pos (10U)
+#define RCC_CIR_HSIRDYIE_Msk (0x1UL << RCC_CIR_HSIRDYIE_Pos) /*!< 0x00000400 */
+#define RCC_CIR_HSIRDYIE RCC_CIR_HSIRDYIE_Msk /*!< HSI Ready Interrupt Enable */
+#define RCC_CIR_HSERDYIE_Pos (11U)
+#define RCC_CIR_HSERDYIE_Msk (0x1UL << RCC_CIR_HSERDYIE_Pos) /*!< 0x00000800 */
+#define RCC_CIR_HSERDYIE RCC_CIR_HSERDYIE_Msk /*!< HSE Ready Interrupt Enable */
+#define RCC_CIR_PLLRDYIE_Pos (12U)
+#define RCC_CIR_PLLRDYIE_Msk (0x1UL << RCC_CIR_PLLRDYIE_Pos) /*!< 0x00001000 */
+#define RCC_CIR_PLLRDYIE RCC_CIR_PLLRDYIE_Msk /*!< PLL Ready Interrupt Enable */
+#define RCC_CIR_LSIRDYC_Pos (16U)
+#define RCC_CIR_LSIRDYC_Msk (0x1UL << RCC_CIR_LSIRDYC_Pos) /*!< 0x00010000 */
+#define RCC_CIR_LSIRDYC RCC_CIR_LSIRDYC_Msk /*!< LSI Ready Interrupt Clear */
+#define RCC_CIR_LSERDYC_Pos (17U)
+#define RCC_CIR_LSERDYC_Msk (0x1UL << RCC_CIR_LSERDYC_Pos) /*!< 0x00020000 */
+#define RCC_CIR_LSERDYC RCC_CIR_LSERDYC_Msk /*!< LSE Ready Interrupt Clear */
+#define RCC_CIR_HSIRDYC_Pos (18U)
+#define RCC_CIR_HSIRDYC_Msk (0x1UL << RCC_CIR_HSIRDYC_Pos) /*!< 0x00040000 */
+#define RCC_CIR_HSIRDYC RCC_CIR_HSIRDYC_Msk /*!< HSI Ready Interrupt Clear */
+#define RCC_CIR_HSERDYC_Pos (19U)
+#define RCC_CIR_HSERDYC_Msk (0x1UL << RCC_CIR_HSERDYC_Pos) /*!< 0x00080000 */
+#define RCC_CIR_HSERDYC RCC_CIR_HSERDYC_Msk /*!< HSE Ready Interrupt Clear */
+#define RCC_CIR_PLLRDYC_Pos (20U)
+#define RCC_CIR_PLLRDYC_Msk (0x1UL << RCC_CIR_PLLRDYC_Pos) /*!< 0x00100000 */
+#define RCC_CIR_PLLRDYC RCC_CIR_PLLRDYC_Msk /*!< PLL Ready Interrupt Clear */
+#define RCC_CIR_CSSC_Pos (23U)
+#define RCC_CIR_CSSC_Msk (0x1UL << RCC_CIR_CSSC_Pos) /*!< 0x00800000 */
+#define RCC_CIR_CSSC RCC_CIR_CSSC_Msk /*!< Clock Security System Interrupt Clear */
+
+/***************** Bit definition for RCC_APB2RSTR register *****************/
+#define RCC_APB2RSTR_AFIORST_Pos (0U)
+#define RCC_APB2RSTR_AFIORST_Msk (0x1UL << RCC_APB2RSTR_AFIORST_Pos) /*!< 0x00000001 */
+#define RCC_APB2RSTR_AFIORST RCC_APB2RSTR_AFIORST_Msk /*!< Alternate Function I/O reset */
+#define RCC_APB2RSTR_IOPARST_Pos (2U)
+#define RCC_APB2RSTR_IOPARST_Msk (0x1UL << RCC_APB2RSTR_IOPARST_Pos) /*!< 0x00000004 */
+#define RCC_APB2RSTR_IOPARST RCC_APB2RSTR_IOPARST_Msk /*!< I/O port A reset */
+#define RCC_APB2RSTR_IOPBRST_Pos (3U)
+#define RCC_APB2RSTR_IOPBRST_Msk (0x1UL << RCC_APB2RSTR_IOPBRST_Pos) /*!< 0x00000008 */
+#define RCC_APB2RSTR_IOPBRST RCC_APB2RSTR_IOPBRST_Msk /*!< I/O port B reset */
+#define RCC_APB2RSTR_IOPCRST_Pos (4U)
+#define RCC_APB2RSTR_IOPCRST_Msk (0x1UL << RCC_APB2RSTR_IOPCRST_Pos) /*!< 0x00000010 */
+#define RCC_APB2RSTR_IOPCRST RCC_APB2RSTR_IOPCRST_Msk /*!< I/O port C reset */
+#define RCC_APB2RSTR_IOPDRST_Pos (5U)
+#define RCC_APB2RSTR_IOPDRST_Msk (0x1UL << RCC_APB2RSTR_IOPDRST_Pos) /*!< 0x00000020 */
+#define RCC_APB2RSTR_IOPDRST RCC_APB2RSTR_IOPDRST_Msk /*!< I/O port D reset */
+#define RCC_APB2RSTR_ADC1RST_Pos (9U)
+#define RCC_APB2RSTR_ADC1RST_Msk (0x1UL << RCC_APB2RSTR_ADC1RST_Pos) /*!< 0x00000200 */
+#define RCC_APB2RSTR_ADC1RST RCC_APB2RSTR_ADC1RST_Msk /*!< ADC 1 interface reset */
+
+#define RCC_APB2RSTR_ADC2RST_Pos (10U)
+#define RCC_APB2RSTR_ADC2RST_Msk (0x1UL << RCC_APB2RSTR_ADC2RST_Pos) /*!< 0x00000400 */
+#define RCC_APB2RSTR_ADC2RST RCC_APB2RSTR_ADC2RST_Msk /*!< ADC 2 interface reset */
+
+#define RCC_APB2RSTR_TIM1RST_Pos (11U)
+#define RCC_APB2RSTR_TIM1RST_Msk (0x1UL << RCC_APB2RSTR_TIM1RST_Pos) /*!< 0x00000800 */
+#define RCC_APB2RSTR_TIM1RST RCC_APB2RSTR_TIM1RST_Msk /*!< TIM1 Timer reset */
+#define RCC_APB2RSTR_SPI1RST_Pos (12U)
+#define RCC_APB2RSTR_SPI1RST_Msk (0x1UL << RCC_APB2RSTR_SPI1RST_Pos) /*!< 0x00001000 */
+#define RCC_APB2RSTR_SPI1RST RCC_APB2RSTR_SPI1RST_Msk /*!< SPI 1 reset */
+#define RCC_APB2RSTR_USART1RST_Pos (14U)
+#define RCC_APB2RSTR_USART1RST_Msk (0x1UL << RCC_APB2RSTR_USART1RST_Pos) /*!< 0x00004000 */
+#define RCC_APB2RSTR_USART1RST RCC_APB2RSTR_USART1RST_Msk /*!< USART1 reset */
+
+#define RCC_APB2RSTR_IOPERST_Pos (6U)
+#define RCC_APB2RSTR_IOPERST_Msk (0x1UL << RCC_APB2RSTR_IOPERST_Pos) /*!< 0x00000040 */
+#define RCC_APB2RSTR_IOPERST RCC_APB2RSTR_IOPERST_Msk /*!< I/O port E reset */
+
+/***************** Bit definition for RCC_APB1RSTR register *****************/
+#define RCC_APB1RSTR_TIM2RST_Pos (0U)
+#define RCC_APB1RSTR_TIM2RST_Msk (0x1UL << RCC_APB1RSTR_TIM2RST_Pos) /*!< 0x00000001 */
+#define RCC_APB1RSTR_TIM2RST RCC_APB1RSTR_TIM2RST_Msk /*!< Timer 2 reset */
+#define RCC_APB1RSTR_TIM3RST_Pos (1U)
+#define RCC_APB1RSTR_TIM3RST_Msk (0x1UL << RCC_APB1RSTR_TIM3RST_Pos) /*!< 0x00000002 */
+#define RCC_APB1RSTR_TIM3RST RCC_APB1RSTR_TIM3RST_Msk /*!< Timer 3 reset */
+#define RCC_APB1RSTR_WWDGRST_Pos (11U)
+#define RCC_APB1RSTR_WWDGRST_Msk (0x1UL << RCC_APB1RSTR_WWDGRST_Pos) /*!< 0x00000800 */
+#define RCC_APB1RSTR_WWDGRST RCC_APB1RSTR_WWDGRST_Msk /*!< Window Watchdog reset */
+#define RCC_APB1RSTR_USART2RST_Pos (17U)
+#define RCC_APB1RSTR_USART2RST_Msk (0x1UL << RCC_APB1RSTR_USART2RST_Pos) /*!< 0x00020000 */
+#define RCC_APB1RSTR_USART2RST RCC_APB1RSTR_USART2RST_Msk /*!< USART 2 reset */
+#define RCC_APB1RSTR_I2C1RST_Pos (21U)
+#define RCC_APB1RSTR_I2C1RST_Msk (0x1UL << RCC_APB1RSTR_I2C1RST_Pos) /*!< 0x00200000 */
+#define RCC_APB1RSTR_I2C1RST RCC_APB1RSTR_I2C1RST_Msk /*!< I2C 1 reset */
+
+#define RCC_APB1RSTR_CAN1RST_Pos (25U)
+#define RCC_APB1RSTR_CAN1RST_Msk (0x1UL << RCC_APB1RSTR_CAN1RST_Pos) /*!< 0x02000000 */
+#define RCC_APB1RSTR_CAN1RST RCC_APB1RSTR_CAN1RST_Msk /*!< CAN1 reset */
+
+#define RCC_APB1RSTR_BKPRST_Pos (27U)
+#define RCC_APB1RSTR_BKPRST_Msk (0x1UL << RCC_APB1RSTR_BKPRST_Pos) /*!< 0x08000000 */
+#define RCC_APB1RSTR_BKPRST RCC_APB1RSTR_BKPRST_Msk /*!< Backup interface reset */
+#define RCC_APB1RSTR_PWRRST_Pos (28U)
+#define RCC_APB1RSTR_PWRRST_Msk (0x1UL << RCC_APB1RSTR_PWRRST_Pos) /*!< 0x10000000 */
+#define RCC_APB1RSTR_PWRRST RCC_APB1RSTR_PWRRST_Msk /*!< Power interface reset */
+
+#define RCC_APB1RSTR_TIM4RST_Pos (2U)
+#define RCC_APB1RSTR_TIM4RST_Msk (0x1UL << RCC_APB1RSTR_TIM4RST_Pos) /*!< 0x00000004 */
+#define RCC_APB1RSTR_TIM4RST RCC_APB1RSTR_TIM4RST_Msk /*!< Timer 4 reset */
+#define RCC_APB1RSTR_SPI2RST_Pos (14U)
+#define RCC_APB1RSTR_SPI2RST_Msk (0x1UL << RCC_APB1RSTR_SPI2RST_Pos) /*!< 0x00004000 */
+#define RCC_APB1RSTR_SPI2RST RCC_APB1RSTR_SPI2RST_Msk /*!< SPI 2 reset */
+#define RCC_APB1RSTR_USART3RST_Pos (18U)
+#define RCC_APB1RSTR_USART3RST_Msk (0x1UL << RCC_APB1RSTR_USART3RST_Pos) /*!< 0x00040000 */
+#define RCC_APB1RSTR_USART3RST RCC_APB1RSTR_USART3RST_Msk /*!< USART 3 reset */
+#define RCC_APB1RSTR_I2C2RST_Pos (22U)
+#define RCC_APB1RSTR_I2C2RST_Msk (0x1UL << RCC_APB1RSTR_I2C2RST_Pos) /*!< 0x00400000 */
+#define RCC_APB1RSTR_I2C2RST RCC_APB1RSTR_I2C2RST_Msk /*!< I2C 2 reset */
+
+#define RCC_APB1RSTR_USBRST_Pos (23U)
+#define RCC_APB1RSTR_USBRST_Msk (0x1UL << RCC_APB1RSTR_USBRST_Pos) /*!< 0x00800000 */
+#define RCC_APB1RSTR_USBRST RCC_APB1RSTR_USBRST_Msk /*!< USB Device reset */
+
+/****************** Bit definition for RCC_AHBENR register ******************/
+#define RCC_AHBENR_DMA1EN_Pos (0U)
+#define RCC_AHBENR_DMA1EN_Msk (0x1UL << RCC_AHBENR_DMA1EN_Pos) /*!< 0x00000001 */
+#define RCC_AHBENR_DMA1EN RCC_AHBENR_DMA1EN_Msk /*!< DMA1 clock enable */
+#define RCC_AHBENR_SRAMEN_Pos (2U)
+#define RCC_AHBENR_SRAMEN_Msk (0x1UL << RCC_AHBENR_SRAMEN_Pos) /*!< 0x00000004 */
+#define RCC_AHBENR_SRAMEN RCC_AHBENR_SRAMEN_Msk /*!< SRAM interface clock enable */
+#define RCC_AHBENR_FLITFEN_Pos (4U)
+#define RCC_AHBENR_FLITFEN_Msk (0x1UL << RCC_AHBENR_FLITFEN_Pos) /*!< 0x00000010 */
+#define RCC_AHBENR_FLITFEN RCC_AHBENR_FLITFEN_Msk /*!< FLITF clock enable */
+#define RCC_AHBENR_CRCEN_Pos (6U)
+#define RCC_AHBENR_CRCEN_Msk (0x1UL << RCC_AHBENR_CRCEN_Pos) /*!< 0x00000040 */
+#define RCC_AHBENR_CRCEN RCC_AHBENR_CRCEN_Msk /*!< CRC clock enable */
+
+/****************** Bit definition for RCC_APB2ENR register *****************/
+#define RCC_APB2ENR_AFIOEN_Pos (0U)
+#define RCC_APB2ENR_AFIOEN_Msk (0x1UL << RCC_APB2ENR_AFIOEN_Pos) /*!< 0x00000001 */
+#define RCC_APB2ENR_AFIOEN RCC_APB2ENR_AFIOEN_Msk /*!< Alternate Function I/O clock enable */
+#define RCC_APB2ENR_IOPAEN_Pos (2U)
+#define RCC_APB2ENR_IOPAEN_Msk (0x1UL << RCC_APB2ENR_IOPAEN_Pos) /*!< 0x00000004 */
+#define RCC_APB2ENR_IOPAEN RCC_APB2ENR_IOPAEN_Msk /*!< I/O port A clock enable */
+#define RCC_APB2ENR_IOPBEN_Pos (3U)
+#define RCC_APB2ENR_IOPBEN_Msk (0x1UL << RCC_APB2ENR_IOPBEN_Pos) /*!< 0x00000008 */
+#define RCC_APB2ENR_IOPBEN RCC_APB2ENR_IOPBEN_Msk /*!< I/O port B clock enable */
+#define RCC_APB2ENR_IOPCEN_Pos (4U)
+#define RCC_APB2ENR_IOPCEN_Msk (0x1UL << RCC_APB2ENR_IOPCEN_Pos) /*!< 0x00000010 */
+#define RCC_APB2ENR_IOPCEN RCC_APB2ENR_IOPCEN_Msk /*!< I/O port C clock enable */
+#define RCC_APB2ENR_IOPDEN_Pos (5U)
+#define RCC_APB2ENR_IOPDEN_Msk (0x1UL << RCC_APB2ENR_IOPDEN_Pos) /*!< 0x00000020 */
+#define RCC_APB2ENR_IOPDEN RCC_APB2ENR_IOPDEN_Msk /*!< I/O port D clock enable */
+#define RCC_APB2ENR_ADC1EN_Pos (9U)
+#define RCC_APB2ENR_ADC1EN_Msk (0x1UL << RCC_APB2ENR_ADC1EN_Pos) /*!< 0x00000200 */
+#define RCC_APB2ENR_ADC1EN RCC_APB2ENR_ADC1EN_Msk /*!< ADC 1 interface clock enable */
+
+#define RCC_APB2ENR_ADC2EN_Pos (10U)
+#define RCC_APB2ENR_ADC2EN_Msk (0x1UL << RCC_APB2ENR_ADC2EN_Pos) /*!< 0x00000400 */
+#define RCC_APB2ENR_ADC2EN RCC_APB2ENR_ADC2EN_Msk /*!< ADC 2 interface clock enable */
+
+#define RCC_APB2ENR_TIM1EN_Pos (11U)
+#define RCC_APB2ENR_TIM1EN_Msk (0x1UL << RCC_APB2ENR_TIM1EN_Pos) /*!< 0x00000800 */
+#define RCC_APB2ENR_TIM1EN RCC_APB2ENR_TIM1EN_Msk /*!< TIM1 Timer clock enable */
+#define RCC_APB2ENR_SPI1EN_Pos (12U)
+#define RCC_APB2ENR_SPI1EN_Msk (0x1UL << RCC_APB2ENR_SPI1EN_Pos) /*!< 0x00001000 */
+#define RCC_APB2ENR_SPI1EN RCC_APB2ENR_SPI1EN_Msk /*!< SPI 1 clock enable */
+#define RCC_APB2ENR_USART1EN_Pos (14U)
+#define RCC_APB2ENR_USART1EN_Msk (0x1UL << RCC_APB2ENR_USART1EN_Pos) /*!< 0x00004000 */
+#define RCC_APB2ENR_USART1EN RCC_APB2ENR_USART1EN_Msk /*!< USART1 clock enable */
+
+#define RCC_APB2ENR_IOPEEN_Pos (6U)
+#define RCC_APB2ENR_IOPEEN_Msk (0x1UL << RCC_APB2ENR_IOPEEN_Pos) /*!< 0x00000040 */
+#define RCC_APB2ENR_IOPEEN RCC_APB2ENR_IOPEEN_Msk /*!< I/O port E clock enable */
+
+/***************** Bit definition for RCC_APB1ENR register ******************/
+#define RCC_APB1ENR_TIM2EN_Pos (0U)
+#define RCC_APB1ENR_TIM2EN_Msk (0x1UL << RCC_APB1ENR_TIM2EN_Pos) /*!< 0x00000001 */
+#define RCC_APB1ENR_TIM2EN RCC_APB1ENR_TIM2EN_Msk /*!< Timer 2 clock enabled*/
+#define RCC_APB1ENR_TIM3EN_Pos (1U)
+#define RCC_APB1ENR_TIM3EN_Msk (0x1UL << RCC_APB1ENR_TIM3EN_Pos) /*!< 0x00000002 */
+#define RCC_APB1ENR_TIM3EN RCC_APB1ENR_TIM3EN_Msk /*!< Timer 3 clock enable */
+#define RCC_APB1ENR_WWDGEN_Pos (11U)
+#define RCC_APB1ENR_WWDGEN_Msk (0x1UL << RCC_APB1ENR_WWDGEN_Pos) /*!< 0x00000800 */
+#define RCC_APB1ENR_WWDGEN RCC_APB1ENR_WWDGEN_Msk /*!< Window Watchdog clock enable */
+#define RCC_APB1ENR_USART2EN_Pos (17U)
+#define RCC_APB1ENR_USART2EN_Msk (0x1UL << RCC_APB1ENR_USART2EN_Pos) /*!< 0x00020000 */
+#define RCC_APB1ENR_USART2EN RCC_APB1ENR_USART2EN_Msk /*!< USART 2 clock enable */
+#define RCC_APB1ENR_I2C1EN_Pos (21U)
+#define RCC_APB1ENR_I2C1EN_Msk (0x1UL << RCC_APB1ENR_I2C1EN_Pos) /*!< 0x00200000 */
+#define RCC_APB1ENR_I2C1EN RCC_APB1ENR_I2C1EN_Msk /*!< I2C 1 clock enable */
+
+#define RCC_APB1ENR_CAN1EN_Pos (25U)
+#define RCC_APB1ENR_CAN1EN_Msk (0x1UL << RCC_APB1ENR_CAN1EN_Pos) /*!< 0x02000000 */
+#define RCC_APB1ENR_CAN1EN RCC_APB1ENR_CAN1EN_Msk /*!< CAN1 clock enable */
+
+#define RCC_APB1ENR_BKPEN_Pos (27U)
+#define RCC_APB1ENR_BKPEN_Msk (0x1UL << RCC_APB1ENR_BKPEN_Pos) /*!< 0x08000000 */
+#define RCC_APB1ENR_BKPEN RCC_APB1ENR_BKPEN_Msk /*!< Backup interface clock enable */
+#define RCC_APB1ENR_PWREN_Pos (28U)
+#define RCC_APB1ENR_PWREN_Msk (0x1UL << RCC_APB1ENR_PWREN_Pos) /*!< 0x10000000 */
+#define RCC_APB1ENR_PWREN RCC_APB1ENR_PWREN_Msk /*!< Power interface clock enable */
+
+#define RCC_APB1ENR_TIM4EN_Pos (2U)
+#define RCC_APB1ENR_TIM4EN_Msk (0x1UL << RCC_APB1ENR_TIM4EN_Pos) /*!< 0x00000004 */
+#define RCC_APB1ENR_TIM4EN RCC_APB1ENR_TIM4EN_Msk /*!< Timer 4 clock enable */
+#define RCC_APB1ENR_SPI2EN_Pos (14U)
+#define RCC_APB1ENR_SPI2EN_Msk (0x1UL << RCC_APB1ENR_SPI2EN_Pos) /*!< 0x00004000 */
+#define RCC_APB1ENR_SPI2EN RCC_APB1ENR_SPI2EN_Msk /*!< SPI 2 clock enable */
+#define RCC_APB1ENR_USART3EN_Pos (18U)
+#define RCC_APB1ENR_USART3EN_Msk (0x1UL << RCC_APB1ENR_USART3EN_Pos) /*!< 0x00040000 */
+#define RCC_APB1ENR_USART3EN RCC_APB1ENR_USART3EN_Msk /*!< USART 3 clock enable */
+#define RCC_APB1ENR_I2C2EN_Pos (22U)
+#define RCC_APB1ENR_I2C2EN_Msk (0x1UL << RCC_APB1ENR_I2C2EN_Pos) /*!< 0x00400000 */
+#define RCC_APB1ENR_I2C2EN RCC_APB1ENR_I2C2EN_Msk /*!< I2C 2 clock enable */
+
+#define RCC_APB1ENR_USBEN_Pos (23U)
+#define RCC_APB1ENR_USBEN_Msk (0x1UL << RCC_APB1ENR_USBEN_Pos) /*!< 0x00800000 */
+#define RCC_APB1ENR_USBEN RCC_APB1ENR_USBEN_Msk /*!< USB Device clock enable */
+
+/******************* Bit definition for RCC_BDCR register *******************/
+#define RCC_BDCR_LSEON_Pos (0U)
+#define RCC_BDCR_LSEON_Msk (0x1UL << RCC_BDCR_LSEON_Pos) /*!< 0x00000001 */
+#define RCC_BDCR_LSEON RCC_BDCR_LSEON_Msk /*!< External Low Speed oscillator enable */
+#define RCC_BDCR_LSERDY_Pos (1U)
+#define RCC_BDCR_LSERDY_Msk (0x1UL << RCC_BDCR_LSERDY_Pos) /*!< 0x00000002 */
+#define RCC_BDCR_LSERDY RCC_BDCR_LSERDY_Msk /*!< External Low Speed oscillator Ready */
+#define RCC_BDCR_LSEBYP_Pos (2U)
+#define RCC_BDCR_LSEBYP_Msk (0x1UL << RCC_BDCR_LSEBYP_Pos) /*!< 0x00000004 */
+#define RCC_BDCR_LSEBYP RCC_BDCR_LSEBYP_Msk /*!< External Low Speed oscillator Bypass */
+
+#define RCC_BDCR_RTCSEL_Pos (8U)
+#define RCC_BDCR_RTCSEL_Msk (0x3UL << RCC_BDCR_RTCSEL_Pos) /*!< 0x00000300 */
+#define RCC_BDCR_RTCSEL RCC_BDCR_RTCSEL_Msk /*!< RTCSEL[1:0] bits (RTC clock source selection) */
+#define RCC_BDCR_RTCSEL_0 (0x1UL << RCC_BDCR_RTCSEL_Pos) /*!< 0x00000100 */
+#define RCC_BDCR_RTCSEL_1 (0x2UL << RCC_BDCR_RTCSEL_Pos) /*!< 0x00000200 */
+
+/*!< RTC congiguration */
+#define RCC_BDCR_RTCSEL_NOCLOCK 0x00000000U /*!< No clock */
+#define RCC_BDCR_RTCSEL_LSE 0x00000100U /*!< LSE oscillator clock used as RTC clock */
+#define RCC_BDCR_RTCSEL_LSI 0x00000200U /*!< LSI oscillator clock used as RTC clock */
+#define RCC_BDCR_RTCSEL_HSE 0x00000300U /*!< HSE oscillator clock divided by 128 used as RTC clock */
+
+#define RCC_BDCR_RTCEN_Pos (15U)
+#define RCC_BDCR_RTCEN_Msk (0x1UL << RCC_BDCR_RTCEN_Pos) /*!< 0x00008000 */
+#define RCC_BDCR_RTCEN RCC_BDCR_RTCEN_Msk /*!< RTC clock enable */
+#define RCC_BDCR_BDRST_Pos (16U)
+#define RCC_BDCR_BDRST_Msk (0x1UL << RCC_BDCR_BDRST_Pos) /*!< 0x00010000 */
+#define RCC_BDCR_BDRST RCC_BDCR_BDRST_Msk /*!< Backup domain software reset */
+
+/******************* Bit definition for RCC_CSR register ********************/
+#define RCC_CSR_LSION_Pos (0U)
+#define RCC_CSR_LSION_Msk (0x1UL << RCC_CSR_LSION_Pos) /*!< 0x00000001 */
+#define RCC_CSR_LSION RCC_CSR_LSION_Msk /*!< Internal Low Speed oscillator enable */
+#define RCC_CSR_LSIRDY_Pos (1U)
+#define RCC_CSR_LSIRDY_Msk (0x1UL << RCC_CSR_LSIRDY_Pos) /*!< 0x00000002 */
+#define RCC_CSR_LSIRDY RCC_CSR_LSIRDY_Msk /*!< Internal Low Speed oscillator Ready */
+#define RCC_CSR_RMVF_Pos (24U)
+#define RCC_CSR_RMVF_Msk (0x1UL << RCC_CSR_RMVF_Pos) /*!< 0x01000000 */
+#define RCC_CSR_RMVF RCC_CSR_RMVF_Msk /*!< Remove reset flag */
+#define RCC_CSR_PINRSTF_Pos (26U)
+#define RCC_CSR_PINRSTF_Msk (0x1UL << RCC_CSR_PINRSTF_Pos) /*!< 0x04000000 */
+#define RCC_CSR_PINRSTF RCC_CSR_PINRSTF_Msk /*!< PIN reset flag */
+#define RCC_CSR_PORRSTF_Pos (27U)
+#define RCC_CSR_PORRSTF_Msk (0x1UL << RCC_CSR_PORRSTF_Pos) /*!< 0x08000000 */
+#define RCC_CSR_PORRSTF RCC_CSR_PORRSTF_Msk /*!< POR/PDR reset flag */
+#define RCC_CSR_SFTRSTF_Pos (28U)
+#define RCC_CSR_SFTRSTF_Msk (0x1UL << RCC_CSR_SFTRSTF_Pos) /*!< 0x10000000 */
+#define RCC_CSR_SFTRSTF RCC_CSR_SFTRSTF_Msk /*!< Software Reset flag */
+#define RCC_CSR_IWDGRSTF_Pos (29U)
+#define RCC_CSR_IWDGRSTF_Msk (0x1UL << RCC_CSR_IWDGRSTF_Pos) /*!< 0x20000000 */
+#define RCC_CSR_IWDGRSTF RCC_CSR_IWDGRSTF_Msk /*!< Independent Watchdog reset flag */
+#define RCC_CSR_WWDGRSTF_Pos (30U)
+#define RCC_CSR_WWDGRSTF_Msk (0x1UL << RCC_CSR_WWDGRSTF_Pos) /*!< 0x40000000 */
+#define RCC_CSR_WWDGRSTF RCC_CSR_WWDGRSTF_Msk /*!< Window watchdog reset flag */
+#define RCC_CSR_LPWRRSTF_Pos (31U)
+#define RCC_CSR_LPWRRSTF_Msk (0x1UL << RCC_CSR_LPWRRSTF_Pos) /*!< 0x80000000 */
+#define RCC_CSR_LPWRRSTF RCC_CSR_LPWRRSTF_Msk /*!< Low-Power reset flag */
+
+/******************************************************************************/
+/* */
+/* General Purpose and Alternate Function I/O */
+/* */
+/******************************************************************************/
+
+/******************* Bit definition for GPIO_CRL register *******************/
+#define GPIO_CRL_MODE_Pos (0U)
+#define GPIO_CRL_MODE_Msk (0x33333333UL << GPIO_CRL_MODE_Pos) /*!< 0x33333333 */
+#define GPIO_CRL_MODE GPIO_CRL_MODE_Msk /*!< Port x mode bits */
+
+#define GPIO_CRL_MODE0_Pos (0U)
+#define GPIO_CRL_MODE0_Msk (0x3UL << GPIO_CRL_MODE0_Pos) /*!< 0x00000003 */
+#define GPIO_CRL_MODE0 GPIO_CRL_MODE0_Msk /*!< MODE0[1:0] bits (Port x mode bits, pin 0) */
+#define GPIO_CRL_MODE0_0 (0x1UL << GPIO_CRL_MODE0_Pos) /*!< 0x00000001 */
+#define GPIO_CRL_MODE0_1 (0x2UL << GPIO_CRL_MODE0_Pos) /*!< 0x00000002 */
+
+#define GPIO_CRL_MODE1_Pos (4U)
+#define GPIO_CRL_MODE1_Msk (0x3UL << GPIO_CRL_MODE1_Pos) /*!< 0x00000030 */
+#define GPIO_CRL_MODE1 GPIO_CRL_MODE1_Msk /*!< MODE1[1:0] bits (Port x mode bits, pin 1) */
+#define GPIO_CRL_MODE1_0 (0x1UL << GPIO_CRL_MODE1_Pos) /*!< 0x00000010 */
+#define GPIO_CRL_MODE1_1 (0x2UL << GPIO_CRL_MODE1_Pos) /*!< 0x00000020 */
+
+#define GPIO_CRL_MODE2_Pos (8U)
+#define GPIO_CRL_MODE2_Msk (0x3UL << GPIO_CRL_MODE2_Pos) /*!< 0x00000300 */
+#define GPIO_CRL_MODE2 GPIO_CRL_MODE2_Msk /*!< MODE2[1:0] bits (Port x mode bits, pin 2) */
+#define GPIO_CRL_MODE2_0 (0x1UL << GPIO_CRL_MODE2_Pos) /*!< 0x00000100 */
+#define GPIO_CRL_MODE2_1 (0x2UL << GPIO_CRL_MODE2_Pos) /*!< 0x00000200 */
+
+#define GPIO_CRL_MODE3_Pos (12U)
+#define GPIO_CRL_MODE3_Msk (0x3UL << GPIO_CRL_MODE3_Pos) /*!< 0x00003000 */
+#define GPIO_CRL_MODE3 GPIO_CRL_MODE3_Msk /*!< MODE3[1:0] bits (Port x mode bits, pin 3) */
+#define GPIO_CRL_MODE3_0 (0x1UL << GPIO_CRL_MODE3_Pos) /*!< 0x00001000 */
+#define GPIO_CRL_MODE3_1 (0x2UL << GPIO_CRL_MODE3_Pos) /*!< 0x00002000 */
+
+#define GPIO_CRL_MODE4_Pos (16U)
+#define GPIO_CRL_MODE4_Msk (0x3UL << GPIO_CRL_MODE4_Pos) /*!< 0x00030000 */
+#define GPIO_CRL_MODE4 GPIO_CRL_MODE4_Msk /*!< MODE4[1:0] bits (Port x mode bits, pin 4) */
+#define GPIO_CRL_MODE4_0 (0x1UL << GPIO_CRL_MODE4_Pos) /*!< 0x00010000 */
+#define GPIO_CRL_MODE4_1 (0x2UL << GPIO_CRL_MODE4_Pos) /*!< 0x00020000 */
+
+#define GPIO_CRL_MODE5_Pos (20U)
+#define GPIO_CRL_MODE5_Msk (0x3UL << GPIO_CRL_MODE5_Pos) /*!< 0x00300000 */
+#define GPIO_CRL_MODE5 GPIO_CRL_MODE5_Msk /*!< MODE5[1:0] bits (Port x mode bits, pin 5) */
+#define GPIO_CRL_MODE5_0 (0x1UL << GPIO_CRL_MODE5_Pos) /*!< 0x00100000 */
+#define GPIO_CRL_MODE5_1 (0x2UL << GPIO_CRL_MODE5_Pos) /*!< 0x00200000 */
+
+#define GPIO_CRL_MODE6_Pos (24U)
+#define GPIO_CRL_MODE6_Msk (0x3UL << GPIO_CRL_MODE6_Pos) /*!< 0x03000000 */
+#define GPIO_CRL_MODE6 GPIO_CRL_MODE6_Msk /*!< MODE6[1:0] bits (Port x mode bits, pin 6) */
+#define GPIO_CRL_MODE6_0 (0x1UL << GPIO_CRL_MODE6_Pos) /*!< 0x01000000 */
+#define GPIO_CRL_MODE6_1 (0x2UL << GPIO_CRL_MODE6_Pos) /*!< 0x02000000 */
+
+#define GPIO_CRL_MODE7_Pos (28U)
+#define GPIO_CRL_MODE7_Msk (0x3UL << GPIO_CRL_MODE7_Pos) /*!< 0x30000000 */
+#define GPIO_CRL_MODE7 GPIO_CRL_MODE7_Msk /*!< MODE7[1:0] bits (Port x mode bits, pin 7) */
+#define GPIO_CRL_MODE7_0 (0x1UL << GPIO_CRL_MODE7_Pos) /*!< 0x10000000 */
+#define GPIO_CRL_MODE7_1 (0x2UL << GPIO_CRL_MODE7_Pos) /*!< 0x20000000 */
+
+#define GPIO_CRL_CNF_Pos (2U)
+#define GPIO_CRL_CNF_Msk (0x33333333UL << GPIO_CRL_CNF_Pos) /*!< 0xCCCCCCCC */
+#define GPIO_CRL_CNF GPIO_CRL_CNF_Msk /*!< Port x configuration bits */
+
+#define GPIO_CRL_CNF0_Pos (2U)
+#define GPIO_CRL_CNF0_Msk (0x3UL << GPIO_CRL_CNF0_Pos) /*!< 0x0000000C */
+#define GPIO_CRL_CNF0 GPIO_CRL_CNF0_Msk /*!< CNF0[1:0] bits (Port x configuration bits, pin 0) */
+#define GPIO_CRL_CNF0_0 (0x1UL << GPIO_CRL_CNF0_Pos) /*!< 0x00000004 */
+#define GPIO_CRL_CNF0_1 (0x2UL << GPIO_CRL_CNF0_Pos) /*!< 0x00000008 */
+
+#define GPIO_CRL_CNF1_Pos (6U)
+#define GPIO_CRL_CNF1_Msk (0x3UL << GPIO_CRL_CNF1_Pos) /*!< 0x000000C0 */
+#define GPIO_CRL_CNF1 GPIO_CRL_CNF1_Msk /*!< CNF1[1:0] bits (Port x configuration bits, pin 1) */
+#define GPIO_CRL_CNF1_0 (0x1UL << GPIO_CRL_CNF1_Pos) /*!< 0x00000040 */
+#define GPIO_CRL_CNF1_1 (0x2UL << GPIO_CRL_CNF1_Pos) /*!< 0x00000080 */
+
+#define GPIO_CRL_CNF2_Pos (10U)
+#define GPIO_CRL_CNF2_Msk (0x3UL << GPIO_CRL_CNF2_Pos) /*!< 0x00000C00 */
+#define GPIO_CRL_CNF2 GPIO_CRL_CNF2_Msk /*!< CNF2[1:0] bits (Port x configuration bits, pin 2) */
+#define GPIO_CRL_CNF2_0 (0x1UL << GPIO_CRL_CNF2_Pos) /*!< 0x00000400 */
+#define GPIO_CRL_CNF2_1 (0x2UL << GPIO_CRL_CNF2_Pos) /*!< 0x00000800 */
+
+#define GPIO_CRL_CNF3_Pos (14U)
+#define GPIO_CRL_CNF3_Msk (0x3UL << GPIO_CRL_CNF3_Pos) /*!< 0x0000C000 */
+#define GPIO_CRL_CNF3 GPIO_CRL_CNF3_Msk /*!< CNF3[1:0] bits (Port x configuration bits, pin 3) */
+#define GPIO_CRL_CNF3_0 (0x1UL << GPIO_CRL_CNF3_Pos) /*!< 0x00004000 */
+#define GPIO_CRL_CNF3_1 (0x2UL << GPIO_CRL_CNF3_Pos) /*!< 0x00008000 */
+
+#define GPIO_CRL_CNF4_Pos (18U)
+#define GPIO_CRL_CNF4_Msk (0x3UL << GPIO_CRL_CNF4_Pos) /*!< 0x000C0000 */
+#define GPIO_CRL_CNF4 GPIO_CRL_CNF4_Msk /*!< CNF4[1:0] bits (Port x configuration bits, pin 4) */
+#define GPIO_CRL_CNF4_0 (0x1UL << GPIO_CRL_CNF4_Pos) /*!< 0x00040000 */
+#define GPIO_CRL_CNF4_1 (0x2UL << GPIO_CRL_CNF4_Pos) /*!< 0x00080000 */
+
+#define GPIO_CRL_CNF5_Pos (22U)
+#define GPIO_CRL_CNF5_Msk (0x3UL << GPIO_CRL_CNF5_Pos) /*!< 0x00C00000 */
+#define GPIO_CRL_CNF5 GPIO_CRL_CNF5_Msk /*!< CNF5[1:0] bits (Port x configuration bits, pin 5) */
+#define GPIO_CRL_CNF5_0 (0x1UL << GPIO_CRL_CNF5_Pos) /*!< 0x00400000 */
+#define GPIO_CRL_CNF5_1 (0x2UL << GPIO_CRL_CNF5_Pos) /*!< 0x00800000 */
+
+#define GPIO_CRL_CNF6_Pos (26U)
+#define GPIO_CRL_CNF6_Msk (0x3UL << GPIO_CRL_CNF6_Pos) /*!< 0x0C000000 */
+#define GPIO_CRL_CNF6 GPIO_CRL_CNF6_Msk /*!< CNF6[1:0] bits (Port x configuration bits, pin 6) */
+#define GPIO_CRL_CNF6_0 (0x1UL << GPIO_CRL_CNF6_Pos) /*!< 0x04000000 */
+#define GPIO_CRL_CNF6_1 (0x2UL << GPIO_CRL_CNF6_Pos) /*!< 0x08000000 */
+
+#define GPIO_CRL_CNF7_Pos (30U)
+#define GPIO_CRL_CNF7_Msk (0x3UL << GPIO_CRL_CNF7_Pos) /*!< 0xC0000000 */
+#define GPIO_CRL_CNF7 GPIO_CRL_CNF7_Msk /*!< CNF7[1:0] bits (Port x configuration bits, pin 7) */
+#define GPIO_CRL_CNF7_0 (0x1UL << GPIO_CRL_CNF7_Pos) /*!< 0x40000000 */
+#define GPIO_CRL_CNF7_1 (0x2UL << GPIO_CRL_CNF7_Pos) /*!< 0x80000000 */
+
+/******************* Bit definition for GPIO_CRH register *******************/
+#define GPIO_CRH_MODE_Pos (0U)
+#define GPIO_CRH_MODE_Msk (0x33333333UL << GPIO_CRH_MODE_Pos) /*!< 0x33333333 */
+#define GPIO_CRH_MODE GPIO_CRH_MODE_Msk /*!< Port x mode bits */
+
+#define GPIO_CRH_MODE8_Pos (0U)
+#define GPIO_CRH_MODE8_Msk (0x3UL << GPIO_CRH_MODE8_Pos) /*!< 0x00000003 */
+#define GPIO_CRH_MODE8 GPIO_CRH_MODE8_Msk /*!< MODE8[1:0] bits (Port x mode bits, pin 8) */
+#define GPIO_CRH_MODE8_0 (0x1UL << GPIO_CRH_MODE8_Pos) /*!< 0x00000001 */
+#define GPIO_CRH_MODE8_1 (0x2UL << GPIO_CRH_MODE8_Pos) /*!< 0x00000002 */
+
+#define GPIO_CRH_MODE9_Pos (4U)
+#define GPIO_CRH_MODE9_Msk (0x3UL << GPIO_CRH_MODE9_Pos) /*!< 0x00000030 */
+#define GPIO_CRH_MODE9 GPIO_CRH_MODE9_Msk /*!< MODE9[1:0] bits (Port x mode bits, pin 9) */
+#define GPIO_CRH_MODE9_0 (0x1UL << GPIO_CRH_MODE9_Pos) /*!< 0x00000010 */
+#define GPIO_CRH_MODE9_1 (0x2UL << GPIO_CRH_MODE9_Pos) /*!< 0x00000020 */
+
+#define GPIO_CRH_MODE10_Pos (8U)
+#define GPIO_CRH_MODE10_Msk (0x3UL << GPIO_CRH_MODE10_Pos) /*!< 0x00000300 */
+#define GPIO_CRH_MODE10 GPIO_CRH_MODE10_Msk /*!< MODE10[1:0] bits (Port x mode bits, pin 10) */
+#define GPIO_CRH_MODE10_0 (0x1UL << GPIO_CRH_MODE10_Pos) /*!< 0x00000100 */
+#define GPIO_CRH_MODE10_1 (0x2UL << GPIO_CRH_MODE10_Pos) /*!< 0x00000200 */
+
+#define GPIO_CRH_MODE11_Pos (12U)
+#define GPIO_CRH_MODE11_Msk (0x3UL << GPIO_CRH_MODE11_Pos) /*!< 0x00003000 */
+#define GPIO_CRH_MODE11 GPIO_CRH_MODE11_Msk /*!< MODE11[1:0] bits (Port x mode bits, pin 11) */
+#define GPIO_CRH_MODE11_0 (0x1UL << GPIO_CRH_MODE11_Pos) /*!< 0x00001000 */
+#define GPIO_CRH_MODE11_1 (0x2UL << GPIO_CRH_MODE11_Pos) /*!< 0x00002000 */
+
+#define GPIO_CRH_MODE12_Pos (16U)
+#define GPIO_CRH_MODE12_Msk (0x3UL << GPIO_CRH_MODE12_Pos) /*!< 0x00030000 */
+#define GPIO_CRH_MODE12 GPIO_CRH_MODE12_Msk /*!< MODE12[1:0] bits (Port x mode bits, pin 12) */
+#define GPIO_CRH_MODE12_0 (0x1UL << GPIO_CRH_MODE12_Pos) /*!< 0x00010000 */
+#define GPIO_CRH_MODE12_1 (0x2UL << GPIO_CRH_MODE12_Pos) /*!< 0x00020000 */
+
+#define GPIO_CRH_MODE13_Pos (20U)
+#define GPIO_CRH_MODE13_Msk (0x3UL << GPIO_CRH_MODE13_Pos) /*!< 0x00300000 */
+#define GPIO_CRH_MODE13 GPIO_CRH_MODE13_Msk /*!< MODE13[1:0] bits (Port x mode bits, pin 13) */
+#define GPIO_CRH_MODE13_0 (0x1UL << GPIO_CRH_MODE13_Pos) /*!< 0x00100000 */
+#define GPIO_CRH_MODE13_1 (0x2UL << GPIO_CRH_MODE13_Pos) /*!< 0x00200000 */
+
+#define GPIO_CRH_MODE14_Pos (24U)
+#define GPIO_CRH_MODE14_Msk (0x3UL << GPIO_CRH_MODE14_Pos) /*!< 0x03000000 */
+#define GPIO_CRH_MODE14 GPIO_CRH_MODE14_Msk /*!< MODE14[1:0] bits (Port x mode bits, pin 14) */
+#define GPIO_CRH_MODE14_0 (0x1UL << GPIO_CRH_MODE14_Pos) /*!< 0x01000000 */
+#define GPIO_CRH_MODE14_1 (0x2UL << GPIO_CRH_MODE14_Pos) /*!< 0x02000000 */
+
+#define GPIO_CRH_MODE15_Pos (28U)
+#define GPIO_CRH_MODE15_Msk (0x3UL << GPIO_CRH_MODE15_Pos) /*!< 0x30000000 */
+#define GPIO_CRH_MODE15 GPIO_CRH_MODE15_Msk /*!< MODE15[1:0] bits (Port x mode bits, pin 15) */
+#define GPIO_CRH_MODE15_0 (0x1UL << GPIO_CRH_MODE15_Pos) /*!< 0x10000000 */
+#define GPIO_CRH_MODE15_1 (0x2UL << GPIO_CRH_MODE15_Pos) /*!< 0x20000000 */
+
+#define GPIO_CRH_CNF_Pos (2U)
+#define GPIO_CRH_CNF_Msk (0x33333333UL << GPIO_CRH_CNF_Pos) /*!< 0xCCCCCCCC */
+#define GPIO_CRH_CNF GPIO_CRH_CNF_Msk /*!< Port x configuration bits */
+
+#define GPIO_CRH_CNF8_Pos (2U)
+#define GPIO_CRH_CNF8_Msk (0x3UL << GPIO_CRH_CNF8_Pos) /*!< 0x0000000C */
+#define GPIO_CRH_CNF8 GPIO_CRH_CNF8_Msk /*!< CNF8[1:0] bits (Port x configuration bits, pin 8) */
+#define GPIO_CRH_CNF8_0 (0x1UL << GPIO_CRH_CNF8_Pos) /*!< 0x00000004 */
+#define GPIO_CRH_CNF8_1 (0x2UL << GPIO_CRH_CNF8_Pos) /*!< 0x00000008 */
+
+#define GPIO_CRH_CNF9_Pos (6U)
+#define GPIO_CRH_CNF9_Msk (0x3UL << GPIO_CRH_CNF9_Pos) /*!< 0x000000C0 */
+#define GPIO_CRH_CNF9 GPIO_CRH_CNF9_Msk /*!< CNF9[1:0] bits (Port x configuration bits, pin 9) */
+#define GPIO_CRH_CNF9_0 (0x1UL << GPIO_CRH_CNF9_Pos) /*!< 0x00000040 */
+#define GPIO_CRH_CNF9_1 (0x2UL << GPIO_CRH_CNF9_Pos) /*!< 0x00000080 */
+
+#define GPIO_CRH_CNF10_Pos (10U)
+#define GPIO_CRH_CNF10_Msk (0x3UL << GPIO_CRH_CNF10_Pos) /*!< 0x00000C00 */
+#define GPIO_CRH_CNF10 GPIO_CRH_CNF10_Msk /*!< CNF10[1:0] bits (Port x configuration bits, pin 10) */
+#define GPIO_CRH_CNF10_0 (0x1UL << GPIO_CRH_CNF10_Pos) /*!< 0x00000400 */
+#define GPIO_CRH_CNF10_1 (0x2UL << GPIO_CRH_CNF10_Pos) /*!< 0x00000800 */
+
+#define GPIO_CRH_CNF11_Pos (14U)
+#define GPIO_CRH_CNF11_Msk (0x3UL << GPIO_CRH_CNF11_Pos) /*!< 0x0000C000 */
+#define GPIO_CRH_CNF11 GPIO_CRH_CNF11_Msk /*!< CNF11[1:0] bits (Port x configuration bits, pin 11) */
+#define GPIO_CRH_CNF11_0 (0x1UL << GPIO_CRH_CNF11_Pos) /*!< 0x00004000 */
+#define GPIO_CRH_CNF11_1 (0x2UL << GPIO_CRH_CNF11_Pos) /*!< 0x00008000 */
+
+#define GPIO_CRH_CNF12_Pos (18U)
+#define GPIO_CRH_CNF12_Msk (0x3UL << GPIO_CRH_CNF12_Pos) /*!< 0x000C0000 */
+#define GPIO_CRH_CNF12 GPIO_CRH_CNF12_Msk /*!< CNF12[1:0] bits (Port x configuration bits, pin 12) */
+#define GPIO_CRH_CNF12_0 (0x1UL << GPIO_CRH_CNF12_Pos) /*!< 0x00040000 */
+#define GPIO_CRH_CNF12_1 (0x2UL << GPIO_CRH_CNF12_Pos) /*!< 0x00080000 */
+
+#define GPIO_CRH_CNF13_Pos (22U)
+#define GPIO_CRH_CNF13_Msk (0x3UL << GPIO_CRH_CNF13_Pos) /*!< 0x00C00000 */
+#define GPIO_CRH_CNF13 GPIO_CRH_CNF13_Msk /*!< CNF13[1:0] bits (Port x configuration bits, pin 13) */
+#define GPIO_CRH_CNF13_0 (0x1UL << GPIO_CRH_CNF13_Pos) /*!< 0x00400000 */
+#define GPIO_CRH_CNF13_1 (0x2UL << GPIO_CRH_CNF13_Pos) /*!< 0x00800000 */
+
+#define GPIO_CRH_CNF14_Pos (26U)
+#define GPIO_CRH_CNF14_Msk (0x3UL << GPIO_CRH_CNF14_Pos) /*!< 0x0C000000 */
+#define GPIO_CRH_CNF14 GPIO_CRH_CNF14_Msk /*!< CNF14[1:0] bits (Port x configuration bits, pin 14) */
+#define GPIO_CRH_CNF14_0 (0x1UL << GPIO_CRH_CNF14_Pos) /*!< 0x04000000 */
+#define GPIO_CRH_CNF14_1 (0x2UL << GPIO_CRH_CNF14_Pos) /*!< 0x08000000 */
+
+#define GPIO_CRH_CNF15_Pos (30U)
+#define GPIO_CRH_CNF15_Msk (0x3UL << GPIO_CRH_CNF15_Pos) /*!< 0xC0000000 */
+#define GPIO_CRH_CNF15 GPIO_CRH_CNF15_Msk /*!< CNF15[1:0] bits (Port x configuration bits, pin 15) */
+#define GPIO_CRH_CNF15_0 (0x1UL << GPIO_CRH_CNF15_Pos) /*!< 0x40000000 */
+#define GPIO_CRH_CNF15_1 (0x2UL << GPIO_CRH_CNF15_Pos) /*!< 0x80000000 */
+
+/*!<****************** Bit definition for GPIO_IDR register *******************/
+#define GPIO_IDR_IDR0_Pos (0U)
+#define GPIO_IDR_IDR0_Msk (0x1UL << GPIO_IDR_IDR0_Pos) /*!< 0x00000001 */
+#define GPIO_IDR_IDR0 GPIO_IDR_IDR0_Msk /*!< Port input data, bit 0 */
+#define GPIO_IDR_IDR1_Pos (1U)
+#define GPIO_IDR_IDR1_Msk (0x1UL << GPIO_IDR_IDR1_Pos) /*!< 0x00000002 */
+#define GPIO_IDR_IDR1 GPIO_IDR_IDR1_Msk /*!< Port input data, bit 1 */
+#define GPIO_IDR_IDR2_Pos (2U)
+#define GPIO_IDR_IDR2_Msk (0x1UL << GPIO_IDR_IDR2_Pos) /*!< 0x00000004 */
+#define GPIO_IDR_IDR2 GPIO_IDR_IDR2_Msk /*!< Port input data, bit 2 */
+#define GPIO_IDR_IDR3_Pos (3U)
+#define GPIO_IDR_IDR3_Msk (0x1UL << GPIO_IDR_IDR3_Pos) /*!< 0x00000008 */
+#define GPIO_IDR_IDR3 GPIO_IDR_IDR3_Msk /*!< Port input data, bit 3 */
+#define GPIO_IDR_IDR4_Pos (4U)
+#define GPIO_IDR_IDR4_Msk (0x1UL << GPIO_IDR_IDR4_Pos) /*!< 0x00000010 */
+#define GPIO_IDR_IDR4 GPIO_IDR_IDR4_Msk /*!< Port input data, bit 4 */
+#define GPIO_IDR_IDR5_Pos (5U)
+#define GPIO_IDR_IDR5_Msk (0x1UL << GPIO_IDR_IDR5_Pos) /*!< 0x00000020 */
+#define GPIO_IDR_IDR5 GPIO_IDR_IDR5_Msk /*!< Port input data, bit 5 */
+#define GPIO_IDR_IDR6_Pos (6U)
+#define GPIO_IDR_IDR6_Msk (0x1UL << GPIO_IDR_IDR6_Pos) /*!< 0x00000040 */
+#define GPIO_IDR_IDR6 GPIO_IDR_IDR6_Msk /*!< Port input data, bit 6 */
+#define GPIO_IDR_IDR7_Pos (7U)
+#define GPIO_IDR_IDR7_Msk (0x1UL << GPIO_IDR_IDR7_Pos) /*!< 0x00000080 */
+#define GPIO_IDR_IDR7 GPIO_IDR_IDR7_Msk /*!< Port input data, bit 7 */
+#define GPIO_IDR_IDR8_Pos (8U)
+#define GPIO_IDR_IDR8_Msk (0x1UL << GPIO_IDR_IDR8_Pos) /*!< 0x00000100 */
+#define GPIO_IDR_IDR8 GPIO_IDR_IDR8_Msk /*!< Port input data, bit 8 */
+#define GPIO_IDR_IDR9_Pos (9U)
+#define GPIO_IDR_IDR9_Msk (0x1UL << GPIO_IDR_IDR9_Pos) /*!< 0x00000200 */
+#define GPIO_IDR_IDR9 GPIO_IDR_IDR9_Msk /*!< Port input data, bit 9 */
+#define GPIO_IDR_IDR10_Pos (10U)
+#define GPIO_IDR_IDR10_Msk (0x1UL << GPIO_IDR_IDR10_Pos) /*!< 0x00000400 */
+#define GPIO_IDR_IDR10 GPIO_IDR_IDR10_Msk /*!< Port input data, bit 10 */
+#define GPIO_IDR_IDR11_Pos (11U)
+#define GPIO_IDR_IDR11_Msk (0x1UL << GPIO_IDR_IDR11_Pos) /*!< 0x00000800 */
+#define GPIO_IDR_IDR11 GPIO_IDR_IDR11_Msk /*!< Port input data, bit 11 */
+#define GPIO_IDR_IDR12_Pos (12U)
+#define GPIO_IDR_IDR12_Msk (0x1UL << GPIO_IDR_IDR12_Pos) /*!< 0x00001000 */
+#define GPIO_IDR_IDR12 GPIO_IDR_IDR12_Msk /*!< Port input data, bit 12 */
+#define GPIO_IDR_IDR13_Pos (13U)
+#define GPIO_IDR_IDR13_Msk (0x1UL << GPIO_IDR_IDR13_Pos) /*!< 0x00002000 */
+#define GPIO_IDR_IDR13 GPIO_IDR_IDR13_Msk /*!< Port input data, bit 13 */
+#define GPIO_IDR_IDR14_Pos (14U)
+#define GPIO_IDR_IDR14_Msk (0x1UL << GPIO_IDR_IDR14_Pos) /*!< 0x00004000 */
+#define GPIO_IDR_IDR14 GPIO_IDR_IDR14_Msk /*!< Port input data, bit 14 */
+#define GPIO_IDR_IDR15_Pos (15U)
+#define GPIO_IDR_IDR15_Msk (0x1UL << GPIO_IDR_IDR15_Pos) /*!< 0x00008000 */
+#define GPIO_IDR_IDR15 GPIO_IDR_IDR15_Msk /*!< Port input data, bit 15 */
+
+/******************* Bit definition for GPIO_ODR register *******************/
+#define GPIO_ODR_ODR0_Pos (0U)
+#define GPIO_ODR_ODR0_Msk (0x1UL << GPIO_ODR_ODR0_Pos) /*!< 0x00000001 */
+#define GPIO_ODR_ODR0 GPIO_ODR_ODR0_Msk /*!< Port output data, bit 0 */
+#define GPIO_ODR_ODR1_Pos (1U)
+#define GPIO_ODR_ODR1_Msk (0x1UL << GPIO_ODR_ODR1_Pos) /*!< 0x00000002 */
+#define GPIO_ODR_ODR1 GPIO_ODR_ODR1_Msk /*!< Port output data, bit 1 */
+#define GPIO_ODR_ODR2_Pos (2U)
+#define GPIO_ODR_ODR2_Msk (0x1UL << GPIO_ODR_ODR2_Pos) /*!< 0x00000004 */
+#define GPIO_ODR_ODR2 GPIO_ODR_ODR2_Msk /*!< Port output data, bit 2 */
+#define GPIO_ODR_ODR3_Pos (3U)
+#define GPIO_ODR_ODR3_Msk (0x1UL << GPIO_ODR_ODR3_Pos) /*!< 0x00000008 */
+#define GPIO_ODR_ODR3 GPIO_ODR_ODR3_Msk /*!< Port output data, bit 3 */
+#define GPIO_ODR_ODR4_Pos (4U)
+#define GPIO_ODR_ODR4_Msk (0x1UL << GPIO_ODR_ODR4_Pos) /*!< 0x00000010 */
+#define GPIO_ODR_ODR4 GPIO_ODR_ODR4_Msk /*!< Port output data, bit 4 */
+#define GPIO_ODR_ODR5_Pos (5U)
+#define GPIO_ODR_ODR5_Msk (0x1UL << GPIO_ODR_ODR5_Pos) /*!< 0x00000020 */
+#define GPIO_ODR_ODR5 GPIO_ODR_ODR5_Msk /*!< Port output data, bit 5 */
+#define GPIO_ODR_ODR6_Pos (6U)
+#define GPIO_ODR_ODR6_Msk (0x1UL << GPIO_ODR_ODR6_Pos) /*!< 0x00000040 */
+#define GPIO_ODR_ODR6 GPIO_ODR_ODR6_Msk /*!< Port output data, bit 6 */
+#define GPIO_ODR_ODR7_Pos (7U)
+#define GPIO_ODR_ODR7_Msk (0x1UL << GPIO_ODR_ODR7_Pos) /*!< 0x00000080 */
+#define GPIO_ODR_ODR7 GPIO_ODR_ODR7_Msk /*!< Port output data, bit 7 */
+#define GPIO_ODR_ODR8_Pos (8U)
+#define GPIO_ODR_ODR8_Msk (0x1UL << GPIO_ODR_ODR8_Pos) /*!< 0x00000100 */
+#define GPIO_ODR_ODR8 GPIO_ODR_ODR8_Msk /*!< Port output data, bit 8 */
+#define GPIO_ODR_ODR9_Pos (9U)
+#define GPIO_ODR_ODR9_Msk (0x1UL << GPIO_ODR_ODR9_Pos) /*!< 0x00000200 */
+#define GPIO_ODR_ODR9 GPIO_ODR_ODR9_Msk /*!< Port output data, bit 9 */
+#define GPIO_ODR_ODR10_Pos (10U)
+#define GPIO_ODR_ODR10_Msk (0x1UL << GPIO_ODR_ODR10_Pos) /*!< 0x00000400 */
+#define GPIO_ODR_ODR10 GPIO_ODR_ODR10_Msk /*!< Port output data, bit 10 */
+#define GPIO_ODR_ODR11_Pos (11U)
+#define GPIO_ODR_ODR11_Msk (0x1UL << GPIO_ODR_ODR11_Pos) /*!< 0x00000800 */
+#define GPIO_ODR_ODR11 GPIO_ODR_ODR11_Msk /*!< Port output data, bit 11 */
+#define GPIO_ODR_ODR12_Pos (12U)
+#define GPIO_ODR_ODR12_Msk (0x1UL << GPIO_ODR_ODR12_Pos) /*!< 0x00001000 */
+#define GPIO_ODR_ODR12 GPIO_ODR_ODR12_Msk /*!< Port output data, bit 12 */
+#define GPIO_ODR_ODR13_Pos (13U)
+#define GPIO_ODR_ODR13_Msk (0x1UL << GPIO_ODR_ODR13_Pos) /*!< 0x00002000 */
+#define GPIO_ODR_ODR13 GPIO_ODR_ODR13_Msk /*!< Port output data, bit 13 */
+#define GPIO_ODR_ODR14_Pos (14U)
+#define GPIO_ODR_ODR14_Msk (0x1UL << GPIO_ODR_ODR14_Pos) /*!< 0x00004000 */
+#define GPIO_ODR_ODR14 GPIO_ODR_ODR14_Msk /*!< Port output data, bit 14 */
+#define GPIO_ODR_ODR15_Pos (15U)
+#define GPIO_ODR_ODR15_Msk (0x1UL << GPIO_ODR_ODR15_Pos) /*!< 0x00008000 */
+#define GPIO_ODR_ODR15 GPIO_ODR_ODR15_Msk /*!< Port output data, bit 15 */
+
+/****************** Bit definition for GPIO_BSRR register *******************/
+#define GPIO_BSRR_BS0_Pos (0U)
+#define GPIO_BSRR_BS0_Msk (0x1UL << GPIO_BSRR_BS0_Pos) /*!< 0x00000001 */
+#define GPIO_BSRR_BS0 GPIO_BSRR_BS0_Msk /*!< Port x Set bit 0 */
+#define GPIO_BSRR_BS1_Pos (1U)
+#define GPIO_BSRR_BS1_Msk (0x1UL << GPIO_BSRR_BS1_Pos) /*!< 0x00000002 */
+#define GPIO_BSRR_BS1 GPIO_BSRR_BS1_Msk /*!< Port x Set bit 1 */
+#define GPIO_BSRR_BS2_Pos (2U)
+#define GPIO_BSRR_BS2_Msk (0x1UL << GPIO_BSRR_BS2_Pos) /*!< 0x00000004 */
+#define GPIO_BSRR_BS2 GPIO_BSRR_BS2_Msk /*!< Port x Set bit 2 */
+#define GPIO_BSRR_BS3_Pos (3U)
+#define GPIO_BSRR_BS3_Msk (0x1UL << GPIO_BSRR_BS3_Pos) /*!< 0x00000008 */
+#define GPIO_BSRR_BS3 GPIO_BSRR_BS3_Msk /*!< Port x Set bit 3 */
+#define GPIO_BSRR_BS4_Pos (4U)
+#define GPIO_BSRR_BS4_Msk (0x1UL << GPIO_BSRR_BS4_Pos) /*!< 0x00000010 */
+#define GPIO_BSRR_BS4 GPIO_BSRR_BS4_Msk /*!< Port x Set bit 4 */
+#define GPIO_BSRR_BS5_Pos (5U)
+#define GPIO_BSRR_BS5_Msk (0x1UL << GPIO_BSRR_BS5_Pos) /*!< 0x00000020 */
+#define GPIO_BSRR_BS5 GPIO_BSRR_BS5_Msk /*!< Port x Set bit 5 */
+#define GPIO_BSRR_BS6_Pos (6U)
+#define GPIO_BSRR_BS6_Msk (0x1UL << GPIO_BSRR_BS6_Pos) /*!< 0x00000040 */
+#define GPIO_BSRR_BS6 GPIO_BSRR_BS6_Msk /*!< Port x Set bit 6 */
+#define GPIO_BSRR_BS7_Pos (7U)
+#define GPIO_BSRR_BS7_Msk (0x1UL << GPIO_BSRR_BS7_Pos) /*!< 0x00000080 */
+#define GPIO_BSRR_BS7 GPIO_BSRR_BS7_Msk /*!< Port x Set bit 7 */
+#define GPIO_BSRR_BS8_Pos (8U)
+#define GPIO_BSRR_BS8_Msk (0x1UL << GPIO_BSRR_BS8_Pos) /*!< 0x00000100 */
+#define GPIO_BSRR_BS8 GPIO_BSRR_BS8_Msk /*!< Port x Set bit 8 */
+#define GPIO_BSRR_BS9_Pos (9U)
+#define GPIO_BSRR_BS9_Msk (0x1UL << GPIO_BSRR_BS9_Pos) /*!< 0x00000200 */
+#define GPIO_BSRR_BS9 GPIO_BSRR_BS9_Msk /*!< Port x Set bit 9 */
+#define GPIO_BSRR_BS10_Pos (10U)
+#define GPIO_BSRR_BS10_Msk (0x1UL << GPIO_BSRR_BS10_Pos) /*!< 0x00000400 */
+#define GPIO_BSRR_BS10 GPIO_BSRR_BS10_Msk /*!< Port x Set bit 10 */
+#define GPIO_BSRR_BS11_Pos (11U)
+#define GPIO_BSRR_BS11_Msk (0x1UL << GPIO_BSRR_BS11_Pos) /*!< 0x00000800 */
+#define GPIO_BSRR_BS11 GPIO_BSRR_BS11_Msk /*!< Port x Set bit 11 */
+#define GPIO_BSRR_BS12_Pos (12U)
+#define GPIO_BSRR_BS12_Msk (0x1UL << GPIO_BSRR_BS12_Pos) /*!< 0x00001000 */
+#define GPIO_BSRR_BS12 GPIO_BSRR_BS12_Msk /*!< Port x Set bit 12 */
+#define GPIO_BSRR_BS13_Pos (13U)
+#define GPIO_BSRR_BS13_Msk (0x1UL << GPIO_BSRR_BS13_Pos) /*!< 0x00002000 */
+#define GPIO_BSRR_BS13 GPIO_BSRR_BS13_Msk /*!< Port x Set bit 13 */
+#define GPIO_BSRR_BS14_Pos (14U)
+#define GPIO_BSRR_BS14_Msk (0x1UL << GPIO_BSRR_BS14_Pos) /*!< 0x00004000 */
+#define GPIO_BSRR_BS14 GPIO_BSRR_BS14_Msk /*!< Port x Set bit 14 */
+#define GPIO_BSRR_BS15_Pos (15U)
+#define GPIO_BSRR_BS15_Msk (0x1UL << GPIO_BSRR_BS15_Pos) /*!< 0x00008000 */
+#define GPIO_BSRR_BS15 GPIO_BSRR_BS15_Msk /*!< Port x Set bit 15 */
+
+#define GPIO_BSRR_BR0_Pos (16U)
+#define GPIO_BSRR_BR0_Msk (0x1UL << GPIO_BSRR_BR0_Pos) /*!< 0x00010000 */
+#define GPIO_BSRR_BR0 GPIO_BSRR_BR0_Msk /*!< Port x Reset bit 0 */
+#define GPIO_BSRR_BR1_Pos (17U)
+#define GPIO_BSRR_BR1_Msk (0x1UL << GPIO_BSRR_BR1_Pos) /*!< 0x00020000 */
+#define GPIO_BSRR_BR1 GPIO_BSRR_BR1_Msk /*!< Port x Reset bit 1 */
+#define GPIO_BSRR_BR2_Pos (18U)
+#define GPIO_BSRR_BR2_Msk (0x1UL << GPIO_BSRR_BR2_Pos) /*!< 0x00040000 */
+#define GPIO_BSRR_BR2 GPIO_BSRR_BR2_Msk /*!< Port x Reset bit 2 */
+#define GPIO_BSRR_BR3_Pos (19U)
+#define GPIO_BSRR_BR3_Msk (0x1UL << GPIO_BSRR_BR3_Pos) /*!< 0x00080000 */
+#define GPIO_BSRR_BR3 GPIO_BSRR_BR3_Msk /*!< Port x Reset bit 3 */
+#define GPIO_BSRR_BR4_Pos (20U)
+#define GPIO_BSRR_BR4_Msk (0x1UL << GPIO_BSRR_BR4_Pos) /*!< 0x00100000 */
+#define GPIO_BSRR_BR4 GPIO_BSRR_BR4_Msk /*!< Port x Reset bit 4 */
+#define GPIO_BSRR_BR5_Pos (21U)
+#define GPIO_BSRR_BR5_Msk (0x1UL << GPIO_BSRR_BR5_Pos) /*!< 0x00200000 */
+#define GPIO_BSRR_BR5 GPIO_BSRR_BR5_Msk /*!< Port x Reset bit 5 */
+#define GPIO_BSRR_BR6_Pos (22U)
+#define GPIO_BSRR_BR6_Msk (0x1UL << GPIO_BSRR_BR6_Pos) /*!< 0x00400000 */
+#define GPIO_BSRR_BR6 GPIO_BSRR_BR6_Msk /*!< Port x Reset bit 6 */
+#define GPIO_BSRR_BR7_Pos (23U)
+#define GPIO_BSRR_BR7_Msk (0x1UL << GPIO_BSRR_BR7_Pos) /*!< 0x00800000 */
+#define GPIO_BSRR_BR7 GPIO_BSRR_BR7_Msk /*!< Port x Reset bit 7 */
+#define GPIO_BSRR_BR8_Pos (24U)
+#define GPIO_BSRR_BR8_Msk (0x1UL << GPIO_BSRR_BR8_Pos) /*!< 0x01000000 */
+#define GPIO_BSRR_BR8 GPIO_BSRR_BR8_Msk /*!< Port x Reset bit 8 */
+#define GPIO_BSRR_BR9_Pos (25U)
+#define GPIO_BSRR_BR9_Msk (0x1UL << GPIO_BSRR_BR9_Pos) /*!< 0x02000000 */
+#define GPIO_BSRR_BR9 GPIO_BSRR_BR9_Msk /*!< Port x Reset bit 9 */
+#define GPIO_BSRR_BR10_Pos (26U)
+#define GPIO_BSRR_BR10_Msk (0x1UL << GPIO_BSRR_BR10_Pos) /*!< 0x04000000 */
+#define GPIO_BSRR_BR10 GPIO_BSRR_BR10_Msk /*!< Port x Reset bit 10 */
+#define GPIO_BSRR_BR11_Pos (27U)
+#define GPIO_BSRR_BR11_Msk (0x1UL << GPIO_BSRR_BR11_Pos) /*!< 0x08000000 */
+#define GPIO_BSRR_BR11 GPIO_BSRR_BR11_Msk /*!< Port x Reset bit 11 */
+#define GPIO_BSRR_BR12_Pos (28U)
+#define GPIO_BSRR_BR12_Msk (0x1UL << GPIO_BSRR_BR12_Pos) /*!< 0x10000000 */
+#define GPIO_BSRR_BR12 GPIO_BSRR_BR12_Msk /*!< Port x Reset bit 12 */
+#define GPIO_BSRR_BR13_Pos (29U)
+#define GPIO_BSRR_BR13_Msk (0x1UL << GPIO_BSRR_BR13_Pos) /*!< 0x20000000 */
+#define GPIO_BSRR_BR13 GPIO_BSRR_BR13_Msk /*!< Port x Reset bit 13 */
+#define GPIO_BSRR_BR14_Pos (30U)
+#define GPIO_BSRR_BR14_Msk (0x1UL << GPIO_BSRR_BR14_Pos) /*!< 0x40000000 */
+#define GPIO_BSRR_BR14 GPIO_BSRR_BR14_Msk /*!< Port x Reset bit 14 */
+#define GPIO_BSRR_BR15_Pos (31U)
+#define GPIO_BSRR_BR15_Msk (0x1UL << GPIO_BSRR_BR15_Pos) /*!< 0x80000000 */
+#define GPIO_BSRR_BR15 GPIO_BSRR_BR15_Msk /*!< Port x Reset bit 15 */
+
+/******************* Bit definition for GPIO_BRR register *******************/
+#define GPIO_BRR_BR0_Pos (0U)
+#define GPIO_BRR_BR0_Msk (0x1UL << GPIO_BRR_BR0_Pos) /*!< 0x00000001 */
+#define GPIO_BRR_BR0 GPIO_BRR_BR0_Msk /*!< Port x Reset bit 0 */
+#define GPIO_BRR_BR1_Pos (1U)
+#define GPIO_BRR_BR1_Msk (0x1UL << GPIO_BRR_BR1_Pos) /*!< 0x00000002 */
+#define GPIO_BRR_BR1 GPIO_BRR_BR1_Msk /*!< Port x Reset bit 1 */
+#define GPIO_BRR_BR2_Pos (2U)
+#define GPIO_BRR_BR2_Msk (0x1UL << GPIO_BRR_BR2_Pos) /*!< 0x00000004 */
+#define GPIO_BRR_BR2 GPIO_BRR_BR2_Msk /*!< Port x Reset bit 2 */
+#define GPIO_BRR_BR3_Pos (3U)
+#define GPIO_BRR_BR3_Msk (0x1UL << GPIO_BRR_BR3_Pos) /*!< 0x00000008 */
+#define GPIO_BRR_BR3 GPIO_BRR_BR3_Msk /*!< Port x Reset bit 3 */
+#define GPIO_BRR_BR4_Pos (4U)
+#define GPIO_BRR_BR4_Msk (0x1UL << GPIO_BRR_BR4_Pos) /*!< 0x00000010 */
+#define GPIO_BRR_BR4 GPIO_BRR_BR4_Msk /*!< Port x Reset bit 4 */
+#define GPIO_BRR_BR5_Pos (5U)
+#define GPIO_BRR_BR5_Msk (0x1UL << GPIO_BRR_BR5_Pos) /*!< 0x00000020 */
+#define GPIO_BRR_BR5 GPIO_BRR_BR5_Msk /*!< Port x Reset bit 5 */
+#define GPIO_BRR_BR6_Pos (6U)
+#define GPIO_BRR_BR6_Msk (0x1UL << GPIO_BRR_BR6_Pos) /*!< 0x00000040 */
+#define GPIO_BRR_BR6 GPIO_BRR_BR6_Msk /*!< Port x Reset bit 6 */
+#define GPIO_BRR_BR7_Pos (7U)
+#define GPIO_BRR_BR7_Msk (0x1UL << GPIO_BRR_BR7_Pos) /*!< 0x00000080 */
+#define GPIO_BRR_BR7 GPIO_BRR_BR7_Msk /*!< Port x Reset bit 7 */
+#define GPIO_BRR_BR8_Pos (8U)
+#define GPIO_BRR_BR8_Msk (0x1UL << GPIO_BRR_BR8_Pos) /*!< 0x00000100 */
+#define GPIO_BRR_BR8 GPIO_BRR_BR8_Msk /*!< Port x Reset bit 8 */
+#define GPIO_BRR_BR9_Pos (9U)
+#define GPIO_BRR_BR9_Msk (0x1UL << GPIO_BRR_BR9_Pos) /*!< 0x00000200 */
+#define GPIO_BRR_BR9 GPIO_BRR_BR9_Msk /*!< Port x Reset bit 9 */
+#define GPIO_BRR_BR10_Pos (10U)
+#define GPIO_BRR_BR10_Msk (0x1UL << GPIO_BRR_BR10_Pos) /*!< 0x00000400 */
+#define GPIO_BRR_BR10 GPIO_BRR_BR10_Msk /*!< Port x Reset bit 10 */
+#define GPIO_BRR_BR11_Pos (11U)
+#define GPIO_BRR_BR11_Msk (0x1UL << GPIO_BRR_BR11_Pos) /*!< 0x00000800 */
+#define GPIO_BRR_BR11 GPIO_BRR_BR11_Msk /*!< Port x Reset bit 11 */
+#define GPIO_BRR_BR12_Pos (12U)
+#define GPIO_BRR_BR12_Msk (0x1UL << GPIO_BRR_BR12_Pos) /*!< 0x00001000 */
+#define GPIO_BRR_BR12 GPIO_BRR_BR12_Msk /*!< Port x Reset bit 12 */
+#define GPIO_BRR_BR13_Pos (13U)
+#define GPIO_BRR_BR13_Msk (0x1UL << GPIO_BRR_BR13_Pos) /*!< 0x00002000 */
+#define GPIO_BRR_BR13 GPIO_BRR_BR13_Msk /*!< Port x Reset bit 13 */
+#define GPIO_BRR_BR14_Pos (14U)
+#define GPIO_BRR_BR14_Msk (0x1UL << GPIO_BRR_BR14_Pos) /*!< 0x00004000 */
+#define GPIO_BRR_BR14 GPIO_BRR_BR14_Msk /*!< Port x Reset bit 14 */
+#define GPIO_BRR_BR15_Pos (15U)
+#define GPIO_BRR_BR15_Msk (0x1UL << GPIO_BRR_BR15_Pos) /*!< 0x00008000 */
+#define GPIO_BRR_BR15 GPIO_BRR_BR15_Msk /*!< Port x Reset bit 15 */
+
+/****************** Bit definition for GPIO_LCKR register *******************/
+#define GPIO_LCKR_LCK0_Pos (0U)
+#define GPIO_LCKR_LCK0_Msk (0x1UL << GPIO_LCKR_LCK0_Pos) /*!< 0x00000001 */
+#define GPIO_LCKR_LCK0 GPIO_LCKR_LCK0_Msk /*!< Port x Lock bit 0 */
+#define GPIO_LCKR_LCK1_Pos (1U)
+#define GPIO_LCKR_LCK1_Msk (0x1UL << GPIO_LCKR_LCK1_Pos) /*!< 0x00000002 */
+#define GPIO_LCKR_LCK1 GPIO_LCKR_LCK1_Msk /*!< Port x Lock bit 1 */
+#define GPIO_LCKR_LCK2_Pos (2U)
+#define GPIO_LCKR_LCK2_Msk (0x1UL << GPIO_LCKR_LCK2_Pos) /*!< 0x00000004 */
+#define GPIO_LCKR_LCK2 GPIO_LCKR_LCK2_Msk /*!< Port x Lock bit 2 */
+#define GPIO_LCKR_LCK3_Pos (3U)
+#define GPIO_LCKR_LCK3_Msk (0x1UL << GPIO_LCKR_LCK3_Pos) /*!< 0x00000008 */
+#define GPIO_LCKR_LCK3 GPIO_LCKR_LCK3_Msk /*!< Port x Lock bit 3 */
+#define GPIO_LCKR_LCK4_Pos (4U)
+#define GPIO_LCKR_LCK4_Msk (0x1UL << GPIO_LCKR_LCK4_Pos) /*!< 0x00000010 */
+#define GPIO_LCKR_LCK4 GPIO_LCKR_LCK4_Msk /*!< Port x Lock bit 4 */
+#define GPIO_LCKR_LCK5_Pos (5U)
+#define GPIO_LCKR_LCK5_Msk (0x1UL << GPIO_LCKR_LCK5_Pos) /*!< 0x00000020 */
+#define GPIO_LCKR_LCK5 GPIO_LCKR_LCK5_Msk /*!< Port x Lock bit 5 */
+#define GPIO_LCKR_LCK6_Pos (6U)
+#define GPIO_LCKR_LCK6_Msk (0x1UL << GPIO_LCKR_LCK6_Pos) /*!< 0x00000040 */
+#define GPIO_LCKR_LCK6 GPIO_LCKR_LCK6_Msk /*!< Port x Lock bit 6 */
+#define GPIO_LCKR_LCK7_Pos (7U)
+#define GPIO_LCKR_LCK7_Msk (0x1UL << GPIO_LCKR_LCK7_Pos) /*!< 0x00000080 */
+#define GPIO_LCKR_LCK7 GPIO_LCKR_LCK7_Msk /*!< Port x Lock bit 7 */
+#define GPIO_LCKR_LCK8_Pos (8U)
+#define GPIO_LCKR_LCK8_Msk (0x1UL << GPIO_LCKR_LCK8_Pos) /*!< 0x00000100 */
+#define GPIO_LCKR_LCK8 GPIO_LCKR_LCK8_Msk /*!< Port x Lock bit 8 */
+#define GPIO_LCKR_LCK9_Pos (9U)
+#define GPIO_LCKR_LCK9_Msk (0x1UL << GPIO_LCKR_LCK9_Pos) /*!< 0x00000200 */
+#define GPIO_LCKR_LCK9 GPIO_LCKR_LCK9_Msk /*!< Port x Lock bit 9 */
+#define GPIO_LCKR_LCK10_Pos (10U)
+#define GPIO_LCKR_LCK10_Msk (0x1UL << GPIO_LCKR_LCK10_Pos) /*!< 0x00000400 */
+#define GPIO_LCKR_LCK10 GPIO_LCKR_LCK10_Msk /*!< Port x Lock bit 10 */
+#define GPIO_LCKR_LCK11_Pos (11U)
+#define GPIO_LCKR_LCK11_Msk (0x1UL << GPIO_LCKR_LCK11_Pos) /*!< 0x00000800 */
+#define GPIO_LCKR_LCK11 GPIO_LCKR_LCK11_Msk /*!< Port x Lock bit 11 */
+#define GPIO_LCKR_LCK12_Pos (12U)
+#define GPIO_LCKR_LCK12_Msk (0x1UL << GPIO_LCKR_LCK12_Pos) /*!< 0x00001000 */
+#define GPIO_LCKR_LCK12 GPIO_LCKR_LCK12_Msk /*!< Port x Lock bit 12 */
+#define GPIO_LCKR_LCK13_Pos (13U)
+#define GPIO_LCKR_LCK13_Msk (0x1UL << GPIO_LCKR_LCK13_Pos) /*!< 0x00002000 */
+#define GPIO_LCKR_LCK13 GPIO_LCKR_LCK13_Msk /*!< Port x Lock bit 13 */
+#define GPIO_LCKR_LCK14_Pos (14U)
+#define GPIO_LCKR_LCK14_Msk (0x1UL << GPIO_LCKR_LCK14_Pos) /*!< 0x00004000 */
+#define GPIO_LCKR_LCK14 GPIO_LCKR_LCK14_Msk /*!< Port x Lock bit 14 */
+#define GPIO_LCKR_LCK15_Pos (15U)
+#define GPIO_LCKR_LCK15_Msk (0x1UL << GPIO_LCKR_LCK15_Pos) /*!< 0x00008000 */
+#define GPIO_LCKR_LCK15 GPIO_LCKR_LCK15_Msk /*!< Port x Lock bit 15 */
+#define GPIO_LCKR_LCKK_Pos (16U)
+#define GPIO_LCKR_LCKK_Msk (0x1UL << GPIO_LCKR_LCKK_Pos) /*!< 0x00010000 */
+#define GPIO_LCKR_LCKK GPIO_LCKR_LCKK_Msk /*!< Lock key */
+
+/*----------------------------------------------------------------------------*/
+
+/****************** Bit definition for AFIO_EVCR register *******************/
+#define AFIO_EVCR_PIN_Pos (0U)
+#define AFIO_EVCR_PIN_Msk (0xFUL << AFIO_EVCR_PIN_Pos) /*!< 0x0000000F */
+#define AFIO_EVCR_PIN AFIO_EVCR_PIN_Msk /*!< PIN[3:0] bits (Pin selection) */
+#define AFIO_EVCR_PIN_0 (0x1UL << AFIO_EVCR_PIN_Pos) /*!< 0x00000001 */
+#define AFIO_EVCR_PIN_1 (0x2UL << AFIO_EVCR_PIN_Pos) /*!< 0x00000002 */
+#define AFIO_EVCR_PIN_2 (0x4UL << AFIO_EVCR_PIN_Pos) /*!< 0x00000004 */
+#define AFIO_EVCR_PIN_3 (0x8UL << AFIO_EVCR_PIN_Pos) /*!< 0x00000008 */
+
+/*!< PIN configuration */
+#define AFIO_EVCR_PIN_PX0 0x00000000U /*!< Pin 0 selected */
+#define AFIO_EVCR_PIN_PX1_Pos (0U)
+#define AFIO_EVCR_PIN_PX1_Msk (0x1UL << AFIO_EVCR_PIN_PX1_Pos) /*!< 0x00000001 */
+#define AFIO_EVCR_PIN_PX1 AFIO_EVCR_PIN_PX1_Msk /*!< Pin 1 selected */
+#define AFIO_EVCR_PIN_PX2_Pos (1U)
+#define AFIO_EVCR_PIN_PX2_Msk (0x1UL << AFIO_EVCR_PIN_PX2_Pos) /*!< 0x00000002 */
+#define AFIO_EVCR_PIN_PX2 AFIO_EVCR_PIN_PX2_Msk /*!< Pin 2 selected */
+#define AFIO_EVCR_PIN_PX3_Pos (0U)
+#define AFIO_EVCR_PIN_PX3_Msk (0x3UL << AFIO_EVCR_PIN_PX3_Pos) /*!< 0x00000003 */
+#define AFIO_EVCR_PIN_PX3 AFIO_EVCR_PIN_PX3_Msk /*!< Pin 3 selected */
+#define AFIO_EVCR_PIN_PX4_Pos (2U)
+#define AFIO_EVCR_PIN_PX4_Msk (0x1UL << AFIO_EVCR_PIN_PX4_Pos) /*!< 0x00000004 */
+#define AFIO_EVCR_PIN_PX4 AFIO_EVCR_PIN_PX4_Msk /*!< Pin 4 selected */
+#define AFIO_EVCR_PIN_PX5_Pos (0U)
+#define AFIO_EVCR_PIN_PX5_Msk (0x5UL << AFIO_EVCR_PIN_PX5_Pos) /*!< 0x00000005 */
+#define AFIO_EVCR_PIN_PX5 AFIO_EVCR_PIN_PX5_Msk /*!< Pin 5 selected */
+#define AFIO_EVCR_PIN_PX6_Pos (1U)
+#define AFIO_EVCR_PIN_PX6_Msk (0x3UL << AFIO_EVCR_PIN_PX6_Pos) /*!< 0x00000006 */
+#define AFIO_EVCR_PIN_PX6 AFIO_EVCR_PIN_PX6_Msk /*!< Pin 6 selected */
+#define AFIO_EVCR_PIN_PX7_Pos (0U)
+#define AFIO_EVCR_PIN_PX7_Msk (0x7UL << AFIO_EVCR_PIN_PX7_Pos) /*!< 0x00000007 */
+#define AFIO_EVCR_PIN_PX7 AFIO_EVCR_PIN_PX7_Msk /*!< Pin 7 selected */
+#define AFIO_EVCR_PIN_PX8_Pos (3U)
+#define AFIO_EVCR_PIN_PX8_Msk (0x1UL << AFIO_EVCR_PIN_PX8_Pos) /*!< 0x00000008 */
+#define AFIO_EVCR_PIN_PX8 AFIO_EVCR_PIN_PX8_Msk /*!< Pin 8 selected */
+#define AFIO_EVCR_PIN_PX9_Pos (0U)
+#define AFIO_EVCR_PIN_PX9_Msk (0x9UL << AFIO_EVCR_PIN_PX9_Pos) /*!< 0x00000009 */
+#define AFIO_EVCR_PIN_PX9 AFIO_EVCR_PIN_PX9_Msk /*!< Pin 9 selected */
+#define AFIO_EVCR_PIN_PX10_Pos (1U)
+#define AFIO_EVCR_PIN_PX10_Msk (0x5UL << AFIO_EVCR_PIN_PX10_Pos) /*!< 0x0000000A */
+#define AFIO_EVCR_PIN_PX10 AFIO_EVCR_PIN_PX10_Msk /*!< Pin 10 selected */
+#define AFIO_EVCR_PIN_PX11_Pos (0U)
+#define AFIO_EVCR_PIN_PX11_Msk (0xBUL << AFIO_EVCR_PIN_PX11_Pos) /*!< 0x0000000B */
+#define AFIO_EVCR_PIN_PX11 AFIO_EVCR_PIN_PX11_Msk /*!< Pin 11 selected */
+#define AFIO_EVCR_PIN_PX12_Pos (2U)
+#define AFIO_EVCR_PIN_PX12_Msk (0x3UL << AFIO_EVCR_PIN_PX12_Pos) /*!< 0x0000000C */
+#define AFIO_EVCR_PIN_PX12 AFIO_EVCR_PIN_PX12_Msk /*!< Pin 12 selected */
+#define AFIO_EVCR_PIN_PX13_Pos (0U)
+#define AFIO_EVCR_PIN_PX13_Msk (0xDUL << AFIO_EVCR_PIN_PX13_Pos) /*!< 0x0000000D */
+#define AFIO_EVCR_PIN_PX13 AFIO_EVCR_PIN_PX13_Msk /*!< Pin 13 selected */
+#define AFIO_EVCR_PIN_PX14_Pos (1U)
+#define AFIO_EVCR_PIN_PX14_Msk (0x7UL << AFIO_EVCR_PIN_PX14_Pos) /*!< 0x0000000E */
+#define AFIO_EVCR_PIN_PX14 AFIO_EVCR_PIN_PX14_Msk /*!< Pin 14 selected */
+#define AFIO_EVCR_PIN_PX15_Pos (0U)
+#define AFIO_EVCR_PIN_PX15_Msk (0xFUL << AFIO_EVCR_PIN_PX15_Pos) /*!< 0x0000000F */
+#define AFIO_EVCR_PIN_PX15 AFIO_EVCR_PIN_PX15_Msk /*!< Pin 15 selected */
+
+#define AFIO_EVCR_PORT_Pos (4U)
+#define AFIO_EVCR_PORT_Msk (0x7UL << AFIO_EVCR_PORT_Pos) /*!< 0x00000070 */
+#define AFIO_EVCR_PORT AFIO_EVCR_PORT_Msk /*!< PORT[2:0] bits (Port selection) */
+#define AFIO_EVCR_PORT_0 (0x1UL << AFIO_EVCR_PORT_Pos) /*!< 0x00000010 */
+#define AFIO_EVCR_PORT_1 (0x2UL << AFIO_EVCR_PORT_Pos) /*!< 0x00000020 */
+#define AFIO_EVCR_PORT_2 (0x4UL << AFIO_EVCR_PORT_Pos) /*!< 0x00000040 */
+
+/*!< PORT configuration */
+#define AFIO_EVCR_PORT_PA 0x00000000 /*!< Port A selected */
+#define AFIO_EVCR_PORT_PB_Pos (4U)
+#define AFIO_EVCR_PORT_PB_Msk (0x1UL << AFIO_EVCR_PORT_PB_Pos) /*!< 0x00000010 */
+#define AFIO_EVCR_PORT_PB AFIO_EVCR_PORT_PB_Msk /*!< Port B selected */
+#define AFIO_EVCR_PORT_PC_Pos (5U)
+#define AFIO_EVCR_PORT_PC_Msk (0x1UL << AFIO_EVCR_PORT_PC_Pos) /*!< 0x00000020 */
+#define AFIO_EVCR_PORT_PC AFIO_EVCR_PORT_PC_Msk /*!< Port C selected */
+#define AFIO_EVCR_PORT_PD_Pos (4U)
+#define AFIO_EVCR_PORT_PD_Msk (0x3UL << AFIO_EVCR_PORT_PD_Pos) /*!< 0x00000030 */
+#define AFIO_EVCR_PORT_PD AFIO_EVCR_PORT_PD_Msk /*!< Port D selected */
+#define AFIO_EVCR_PORT_PE_Pos (6U)
+#define AFIO_EVCR_PORT_PE_Msk (0x1UL << AFIO_EVCR_PORT_PE_Pos) /*!< 0x00000040 */
+#define AFIO_EVCR_PORT_PE AFIO_EVCR_PORT_PE_Msk /*!< Port E selected */
+
+#define AFIO_EVCR_EVOE_Pos (7U)
+#define AFIO_EVCR_EVOE_Msk (0x1UL << AFIO_EVCR_EVOE_Pos) /*!< 0x00000080 */
+#define AFIO_EVCR_EVOE AFIO_EVCR_EVOE_Msk /*!< Event Output Enable */
+
+/****************** Bit definition for AFIO_MAPR register *******************/
+#define AFIO_MAPR_SPI1_REMAP_Pos (0U)
+#define AFIO_MAPR_SPI1_REMAP_Msk (0x1UL << AFIO_MAPR_SPI1_REMAP_Pos) /*!< 0x00000001 */
+#define AFIO_MAPR_SPI1_REMAP AFIO_MAPR_SPI1_REMAP_Msk /*!< SPI1 remapping */
+#define AFIO_MAPR_I2C1_REMAP_Pos (1U)
+#define AFIO_MAPR_I2C1_REMAP_Msk (0x1UL << AFIO_MAPR_I2C1_REMAP_Pos) /*!< 0x00000002 */
+#define AFIO_MAPR_I2C1_REMAP AFIO_MAPR_I2C1_REMAP_Msk /*!< I2C1 remapping */
+#define AFIO_MAPR_USART1_REMAP_Pos (2U)
+#define AFIO_MAPR_USART1_REMAP_Msk (0x1UL << AFIO_MAPR_USART1_REMAP_Pos) /*!< 0x00000004 */
+#define AFIO_MAPR_USART1_REMAP AFIO_MAPR_USART1_REMAP_Msk /*!< USART1 remapping */
+#define AFIO_MAPR_USART2_REMAP_Pos (3U)
+#define AFIO_MAPR_USART2_REMAP_Msk (0x1UL << AFIO_MAPR_USART2_REMAP_Pos) /*!< 0x00000008 */
+#define AFIO_MAPR_USART2_REMAP AFIO_MAPR_USART2_REMAP_Msk /*!< USART2 remapping */
+
+#define AFIO_MAPR_USART3_REMAP_Pos (4U)
+#define AFIO_MAPR_USART3_REMAP_Msk (0x3UL << AFIO_MAPR_USART3_REMAP_Pos) /*!< 0x00000030 */
+#define AFIO_MAPR_USART3_REMAP AFIO_MAPR_USART3_REMAP_Msk /*!< USART3_REMAP[1:0] bits (USART3 remapping) */
+#define AFIO_MAPR_USART3_REMAP_0 (0x1UL << AFIO_MAPR_USART3_REMAP_Pos) /*!< 0x00000010 */
+#define AFIO_MAPR_USART3_REMAP_1 (0x2UL << AFIO_MAPR_USART3_REMAP_Pos) /*!< 0x00000020 */
+
+/* USART3_REMAP configuration */
+#define AFIO_MAPR_USART3_REMAP_NOREMAP 0x00000000U /*!< No remap (TX/PB10, RX/PB11, CK/PB12, CTS/PB13, RTS/PB14) */
+#define AFIO_MAPR_USART3_REMAP_PARTIALREMAP_Pos (4U)
+#define AFIO_MAPR_USART3_REMAP_PARTIALREMAP_Msk (0x1UL << AFIO_MAPR_USART3_REMAP_PARTIALREMAP_Pos) /*!< 0x00000010 */
+#define AFIO_MAPR_USART3_REMAP_PARTIALREMAP AFIO_MAPR_USART3_REMAP_PARTIALREMAP_Msk /*!< Partial remap (TX/PC10, RX/PC11, CK/PC12, CTS/PB13, RTS/PB14) */
+#define AFIO_MAPR_USART3_REMAP_FULLREMAP_Pos (4U)
+#define AFIO_MAPR_USART3_REMAP_FULLREMAP_Msk (0x3UL << AFIO_MAPR_USART3_REMAP_FULLREMAP_Pos) /*!< 0x00000030 */
+#define AFIO_MAPR_USART3_REMAP_FULLREMAP AFIO_MAPR_USART3_REMAP_FULLREMAP_Msk /*!< Full remap (TX/PD8, RX/PD9, CK/PD10, CTS/PD11, RTS/PD12) */
+
+#define AFIO_MAPR_TIM1_REMAP_Pos (6U)
+#define AFIO_MAPR_TIM1_REMAP_Msk (0x3UL << AFIO_MAPR_TIM1_REMAP_Pos) /*!< 0x000000C0 */
+#define AFIO_MAPR_TIM1_REMAP AFIO_MAPR_TIM1_REMAP_Msk /*!< TIM1_REMAP[1:0] bits (TIM1 remapping) */
+#define AFIO_MAPR_TIM1_REMAP_0 (0x1UL << AFIO_MAPR_TIM1_REMAP_Pos) /*!< 0x00000040 */
+#define AFIO_MAPR_TIM1_REMAP_1 (0x2UL << AFIO_MAPR_TIM1_REMAP_Pos) /*!< 0x00000080 */
+
+/*!< TIM1_REMAP configuration */
+#define AFIO_MAPR_TIM1_REMAP_NOREMAP 0x00000000U /*!< No remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PB12, CH1N/PB13, CH2N/PB14, CH3N/PB15) */
+#define AFIO_MAPR_TIM1_REMAP_PARTIALREMAP_Pos (6U)
+#define AFIO_MAPR_TIM1_REMAP_PARTIALREMAP_Msk (0x1UL << AFIO_MAPR_TIM1_REMAP_PARTIALREMAP_Pos) /*!< 0x00000040 */
+#define AFIO_MAPR_TIM1_REMAP_PARTIALREMAP AFIO_MAPR_TIM1_REMAP_PARTIALREMAP_Msk /*!< Partial remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PA6, CH1N/PA7, CH2N/PB0, CH3N/PB1) */
+#define AFIO_MAPR_TIM1_REMAP_FULLREMAP_Pos (6U)
+#define AFIO_MAPR_TIM1_REMAP_FULLREMAP_Msk (0x3UL << AFIO_MAPR_TIM1_REMAP_FULLREMAP_Pos) /*!< 0x000000C0 */
+#define AFIO_MAPR_TIM1_REMAP_FULLREMAP AFIO_MAPR_TIM1_REMAP_FULLREMAP_Msk /*!< Full remap (ETR/PE7, CH1/PE9, CH2/PE11, CH3/PE13, CH4/PE14, BKIN/PE15, CH1N/PE8, CH2N/PE10, CH3N/PE12) */
+
+#define AFIO_MAPR_TIM2_REMAP_Pos (8U)
+#define AFIO_MAPR_TIM2_REMAP_Msk (0x3UL << AFIO_MAPR_TIM2_REMAP_Pos) /*!< 0x00000300 */
+#define AFIO_MAPR_TIM2_REMAP AFIO_MAPR_TIM2_REMAP_Msk /*!< TIM2_REMAP[1:0] bits (TIM2 remapping) */
+#define AFIO_MAPR_TIM2_REMAP_0 (0x1UL << AFIO_MAPR_TIM2_REMAP_Pos) /*!< 0x00000100 */
+#define AFIO_MAPR_TIM2_REMAP_1 (0x2UL << AFIO_MAPR_TIM2_REMAP_Pos) /*!< 0x00000200 */
+
+/*!< TIM2_REMAP configuration */
+#define AFIO_MAPR_TIM2_REMAP_NOREMAP 0x00000000U /*!< No remap (CH1/ETR/PA0, CH2/PA1, CH3/PA2, CH4/PA3) */
+#define AFIO_MAPR_TIM2_REMAP_PARTIALREMAP1_Pos (8U)
+#define AFIO_MAPR_TIM2_REMAP_PARTIALREMAP1_Msk (0x1UL << AFIO_MAPR_TIM2_REMAP_PARTIALREMAP1_Pos) /*!< 0x00000100 */
+#define AFIO_MAPR_TIM2_REMAP_PARTIALREMAP1 AFIO_MAPR_TIM2_REMAP_PARTIALREMAP1_Msk /*!< Partial remap (CH1/ETR/PA15, CH2/PB3, CH3/PA2, CH4/PA3) */
+#define AFIO_MAPR_TIM2_REMAP_PARTIALREMAP2_Pos (9U)
+#define AFIO_MAPR_TIM2_REMAP_PARTIALREMAP2_Msk (0x1UL << AFIO_MAPR_TIM2_REMAP_PARTIALREMAP2_Pos) /*!< 0x00000200 */
+#define AFIO_MAPR_TIM2_REMAP_PARTIALREMAP2 AFIO_MAPR_TIM2_REMAP_PARTIALREMAP2_Msk /*!< Partial remap (CH1/ETR/PA0, CH2/PA1, CH3/PB10, CH4/PB11) */
+#define AFIO_MAPR_TIM2_REMAP_FULLREMAP_Pos (8U)
+#define AFIO_MAPR_TIM2_REMAP_FULLREMAP_Msk (0x3UL << AFIO_MAPR_TIM2_REMAP_FULLREMAP_Pos) /*!< 0x00000300 */
+#define AFIO_MAPR_TIM2_REMAP_FULLREMAP AFIO_MAPR_TIM2_REMAP_FULLREMAP_Msk /*!< Full remap (CH1/ETR/PA15, CH2/PB3, CH3/PB10, CH4/PB11) */
+
+#define AFIO_MAPR_TIM3_REMAP_Pos (10U)
+#define AFIO_MAPR_TIM3_REMAP_Msk (0x3UL << AFIO_MAPR_TIM3_REMAP_Pos) /*!< 0x00000C00 */
+#define AFIO_MAPR_TIM3_REMAP AFIO_MAPR_TIM3_REMAP_Msk /*!< TIM3_REMAP[1:0] bits (TIM3 remapping) */
+#define AFIO_MAPR_TIM3_REMAP_0 (0x1UL << AFIO_MAPR_TIM3_REMAP_Pos) /*!< 0x00000400 */
+#define AFIO_MAPR_TIM3_REMAP_1 (0x2UL << AFIO_MAPR_TIM3_REMAP_Pos) /*!< 0x00000800 */
+
+/*!< TIM3_REMAP configuration */
+#define AFIO_MAPR_TIM3_REMAP_NOREMAP 0x00000000U /*!< No remap (CH1/PA6, CH2/PA7, CH3/PB0, CH4/PB1) */
+#define AFIO_MAPR_TIM3_REMAP_PARTIALREMAP_Pos (11U)
+#define AFIO_MAPR_TIM3_REMAP_PARTIALREMAP_Msk (0x1UL << AFIO_MAPR_TIM3_REMAP_PARTIALREMAP_Pos) /*!< 0x00000800 */
+#define AFIO_MAPR_TIM3_REMAP_PARTIALREMAP AFIO_MAPR_TIM3_REMAP_PARTIALREMAP_Msk /*!< Partial remap (CH1/PB4, CH2/PB5, CH3/PB0, CH4/PB1) */
+#define AFIO_MAPR_TIM3_REMAP_FULLREMAP_Pos (10U)
+#define AFIO_MAPR_TIM3_REMAP_FULLREMAP_Msk (0x3UL << AFIO_MAPR_TIM3_REMAP_FULLREMAP_Pos) /*!< 0x00000C00 */
+#define AFIO_MAPR_TIM3_REMAP_FULLREMAP AFIO_MAPR_TIM3_REMAP_FULLREMAP_Msk /*!< Full remap (CH1/PC6, CH2/PC7, CH3/PC8, CH4/PC9) */
+
+#define AFIO_MAPR_TIM4_REMAP_Pos (12U)
+#define AFIO_MAPR_TIM4_REMAP_Msk (0x1UL << AFIO_MAPR_TIM4_REMAP_Pos) /*!< 0x00001000 */
+#define AFIO_MAPR_TIM4_REMAP AFIO_MAPR_TIM4_REMAP_Msk /*!< TIM4_REMAP bit (TIM4 remapping) */
+
+#define AFIO_MAPR_CAN_REMAP_Pos (13U)
+#define AFIO_MAPR_CAN_REMAP_Msk (0x3UL << AFIO_MAPR_CAN_REMAP_Pos) /*!< 0x00006000 */
+#define AFIO_MAPR_CAN_REMAP AFIO_MAPR_CAN_REMAP_Msk /*!< CAN_REMAP[1:0] bits (CAN Alternate function remapping) */
+#define AFIO_MAPR_CAN_REMAP_0 (0x1UL << AFIO_MAPR_CAN_REMAP_Pos) /*!< 0x00002000 */
+#define AFIO_MAPR_CAN_REMAP_1 (0x2UL << AFIO_MAPR_CAN_REMAP_Pos) /*!< 0x00004000 */
+
+/*!< CAN_REMAP configuration */
+#define AFIO_MAPR_CAN_REMAP_REMAP1 0x00000000U /*!< CANRX mapped to PA11, CANTX mapped to PA12 */
+#define AFIO_MAPR_CAN_REMAP_REMAP2_Pos (14U)
+#define AFIO_MAPR_CAN_REMAP_REMAP2_Msk (0x1UL << AFIO_MAPR_CAN_REMAP_REMAP2_Pos) /*!< 0x00004000 */
+#define AFIO_MAPR_CAN_REMAP_REMAP2 AFIO_MAPR_CAN_REMAP_REMAP2_Msk /*!< CANRX mapped to PB8, CANTX mapped to PB9 */
+#define AFIO_MAPR_CAN_REMAP_REMAP3_Pos (13U)
+#define AFIO_MAPR_CAN_REMAP_REMAP3_Msk (0x3UL << AFIO_MAPR_CAN_REMAP_REMAP3_Pos) /*!< 0x00006000 */
+#define AFIO_MAPR_CAN_REMAP_REMAP3 AFIO_MAPR_CAN_REMAP_REMAP3_Msk /*!< CANRX mapped to PD0, CANTX mapped to PD1 */
+
+#define AFIO_MAPR_PD01_REMAP_Pos (15U)
+#define AFIO_MAPR_PD01_REMAP_Msk (0x1UL << AFIO_MAPR_PD01_REMAP_Pos) /*!< 0x00008000 */
+#define AFIO_MAPR_PD01_REMAP AFIO_MAPR_PD01_REMAP_Msk /*!< Port D0/Port D1 mapping on OSC_IN/OSC_OUT */
+
+/*!< SWJ_CFG configuration */
+#define AFIO_MAPR_SWJ_CFG_Pos (24U)
+#define AFIO_MAPR_SWJ_CFG_Msk (0x7UL << AFIO_MAPR_SWJ_CFG_Pos) /*!< 0x07000000 */
+#define AFIO_MAPR_SWJ_CFG AFIO_MAPR_SWJ_CFG_Msk /*!< SWJ_CFG[2:0] bits (Serial Wire JTAG configuration) */
+#define AFIO_MAPR_SWJ_CFG_0 (0x1UL << AFIO_MAPR_SWJ_CFG_Pos) /*!< 0x01000000 */
+#define AFIO_MAPR_SWJ_CFG_1 (0x2UL << AFIO_MAPR_SWJ_CFG_Pos) /*!< 0x02000000 */
+#define AFIO_MAPR_SWJ_CFG_2 (0x4UL << AFIO_MAPR_SWJ_CFG_Pos) /*!< 0x04000000 */
+
+#define AFIO_MAPR_SWJ_CFG_RESET 0x00000000U /*!< Full SWJ (JTAG-DP + SW-DP) : Reset State */
+#define AFIO_MAPR_SWJ_CFG_NOJNTRST_Pos (24U)
+#define AFIO_MAPR_SWJ_CFG_NOJNTRST_Msk (0x1UL << AFIO_MAPR_SWJ_CFG_NOJNTRST_Pos) /*!< 0x01000000 */
+#define AFIO_MAPR_SWJ_CFG_NOJNTRST AFIO_MAPR_SWJ_CFG_NOJNTRST_Msk /*!< Full SWJ (JTAG-DP + SW-DP) but without JNTRST */
+#define AFIO_MAPR_SWJ_CFG_JTAGDISABLE_Pos (25U)
+#define AFIO_MAPR_SWJ_CFG_JTAGDISABLE_Msk (0x1UL << AFIO_MAPR_SWJ_CFG_JTAGDISABLE_Pos) /*!< 0x02000000 */
+#define AFIO_MAPR_SWJ_CFG_JTAGDISABLE AFIO_MAPR_SWJ_CFG_JTAGDISABLE_Msk /*!< JTAG-DP Disabled and SW-DP Enabled */
+#define AFIO_MAPR_SWJ_CFG_DISABLE_Pos (26U)
+#define AFIO_MAPR_SWJ_CFG_DISABLE_Msk (0x1UL << AFIO_MAPR_SWJ_CFG_DISABLE_Pos) /*!< 0x04000000 */
+#define AFIO_MAPR_SWJ_CFG_DISABLE AFIO_MAPR_SWJ_CFG_DISABLE_Msk /*!< JTAG-DP Disabled and SW-DP Disabled */
+
+/***************** Bit definition for AFIO_EXTICR1 register *****************/
+#define AFIO_EXTICR1_EXTI0_Pos (0U)
+#define AFIO_EXTICR1_EXTI0_Msk (0xFUL << AFIO_EXTICR1_EXTI0_Pos) /*!< 0x0000000F */
+#define AFIO_EXTICR1_EXTI0 AFIO_EXTICR1_EXTI0_Msk /*!< EXTI 0 configuration */
+#define AFIO_EXTICR1_EXTI1_Pos (4U)
+#define AFIO_EXTICR1_EXTI1_Msk (0xFUL << AFIO_EXTICR1_EXTI1_Pos) /*!< 0x000000F0 */
+#define AFIO_EXTICR1_EXTI1 AFIO_EXTICR1_EXTI1_Msk /*!< EXTI 1 configuration */
+#define AFIO_EXTICR1_EXTI2_Pos (8U)
+#define AFIO_EXTICR1_EXTI2_Msk (0xFUL << AFIO_EXTICR1_EXTI2_Pos) /*!< 0x00000F00 */
+#define AFIO_EXTICR1_EXTI2 AFIO_EXTICR1_EXTI2_Msk /*!< EXTI 2 configuration */
+#define AFIO_EXTICR1_EXTI3_Pos (12U)
+#define AFIO_EXTICR1_EXTI3_Msk (0xFUL << AFIO_EXTICR1_EXTI3_Pos) /*!< 0x0000F000 */
+#define AFIO_EXTICR1_EXTI3 AFIO_EXTICR1_EXTI3_Msk /*!< EXTI 3 configuration */
+
+/*!< EXTI0 configuration */
+#define AFIO_EXTICR1_EXTI0_PA 0x00000000U /*!< PA[0] pin */
+#define AFIO_EXTICR1_EXTI0_PB_Pos (0U)
+#define AFIO_EXTICR1_EXTI0_PB_Msk (0x1UL << AFIO_EXTICR1_EXTI0_PB_Pos) /*!< 0x00000001 */
+#define AFIO_EXTICR1_EXTI0_PB AFIO_EXTICR1_EXTI0_PB_Msk /*!< PB[0] pin */
+#define AFIO_EXTICR1_EXTI0_PC_Pos (1U)
+#define AFIO_EXTICR1_EXTI0_PC_Msk (0x1UL << AFIO_EXTICR1_EXTI0_PC_Pos) /*!< 0x00000002 */
+#define AFIO_EXTICR1_EXTI0_PC AFIO_EXTICR1_EXTI0_PC_Msk /*!< PC[0] pin */
+#define AFIO_EXTICR1_EXTI0_PD_Pos (0U)
+#define AFIO_EXTICR1_EXTI0_PD_Msk (0x3UL << AFIO_EXTICR1_EXTI0_PD_Pos) /*!< 0x00000003 */
+#define AFIO_EXTICR1_EXTI0_PD AFIO_EXTICR1_EXTI0_PD_Msk /*!< PD[0] pin */
+#define AFIO_EXTICR1_EXTI0_PE_Pos (2U)
+#define AFIO_EXTICR1_EXTI0_PE_Msk (0x1UL << AFIO_EXTICR1_EXTI0_PE_Pos) /*!< 0x00000004 */
+#define AFIO_EXTICR1_EXTI0_PE AFIO_EXTICR1_EXTI0_PE_Msk /*!< PE[0] pin */
+#define AFIO_EXTICR1_EXTI0_PF_Pos (0U)
+#define AFIO_EXTICR1_EXTI0_PF_Msk (0x5UL << AFIO_EXTICR1_EXTI0_PF_Pos) /*!< 0x00000005 */
+#define AFIO_EXTICR1_EXTI0_PF AFIO_EXTICR1_EXTI0_PF_Msk /*!< PF[0] pin */
+#define AFIO_EXTICR1_EXTI0_PG_Pos (1U)
+#define AFIO_EXTICR1_EXTI0_PG_Msk (0x3UL << AFIO_EXTICR1_EXTI0_PG_Pos) /*!< 0x00000006 */
+#define AFIO_EXTICR1_EXTI0_PG AFIO_EXTICR1_EXTI0_PG_Msk /*!< PG[0] pin */
+
+/*!< EXTI1 configuration */
+#define AFIO_EXTICR1_EXTI1_PA 0x00000000U /*!< PA[1] pin */
+#define AFIO_EXTICR1_EXTI1_PB_Pos (4U)
+#define AFIO_EXTICR1_EXTI1_PB_Msk (0x1UL << AFIO_EXTICR1_EXTI1_PB_Pos) /*!< 0x00000010 */
+#define AFIO_EXTICR1_EXTI1_PB AFIO_EXTICR1_EXTI1_PB_Msk /*!< PB[1] pin */
+#define AFIO_EXTICR1_EXTI1_PC_Pos (5U)
+#define AFIO_EXTICR1_EXTI1_PC_Msk (0x1UL << AFIO_EXTICR1_EXTI1_PC_Pos) /*!< 0x00000020 */
+#define AFIO_EXTICR1_EXTI1_PC AFIO_EXTICR1_EXTI1_PC_Msk /*!< PC[1] pin */
+#define AFIO_EXTICR1_EXTI1_PD_Pos (4U)
+#define AFIO_EXTICR1_EXTI1_PD_Msk (0x3UL << AFIO_EXTICR1_EXTI1_PD_Pos) /*!< 0x00000030 */
+#define AFIO_EXTICR1_EXTI1_PD AFIO_EXTICR1_EXTI1_PD_Msk /*!< PD[1] pin */
+#define AFIO_EXTICR1_EXTI1_PE_Pos (6U)
+#define AFIO_EXTICR1_EXTI1_PE_Msk (0x1UL << AFIO_EXTICR1_EXTI1_PE_Pos) /*!< 0x00000040 */
+#define AFIO_EXTICR1_EXTI1_PE AFIO_EXTICR1_EXTI1_PE_Msk /*!< PE[1] pin */
+#define AFIO_EXTICR1_EXTI1_PF_Pos (4U)
+#define AFIO_EXTICR1_EXTI1_PF_Msk (0x5UL << AFIO_EXTICR1_EXTI1_PF_Pos) /*!< 0x00000050 */
+#define AFIO_EXTICR1_EXTI1_PF AFIO_EXTICR1_EXTI1_PF_Msk /*!< PF[1] pin */
+#define AFIO_EXTICR1_EXTI1_PG_Pos (5U)
+#define AFIO_EXTICR1_EXTI1_PG_Msk (0x3UL << AFIO_EXTICR1_EXTI1_PG_Pos) /*!< 0x00000060 */
+#define AFIO_EXTICR1_EXTI1_PG AFIO_EXTICR1_EXTI1_PG_Msk /*!< PG[1] pin */
+
+/*!< EXTI2 configuration */
+#define AFIO_EXTICR1_EXTI2_PA 0x00000000U /*!< PA[2] pin */
+#define AFIO_EXTICR1_EXTI2_PB_Pos (8U)
+#define AFIO_EXTICR1_EXTI2_PB_Msk (0x1UL << AFIO_EXTICR1_EXTI2_PB_Pos) /*!< 0x00000100 */
+#define AFIO_EXTICR1_EXTI2_PB AFIO_EXTICR1_EXTI2_PB_Msk /*!< PB[2] pin */
+#define AFIO_EXTICR1_EXTI2_PC_Pos (9U)
+#define AFIO_EXTICR1_EXTI2_PC_Msk (0x1UL << AFIO_EXTICR1_EXTI2_PC_Pos) /*!< 0x00000200 */
+#define AFIO_EXTICR1_EXTI2_PC AFIO_EXTICR1_EXTI2_PC_Msk /*!< PC[2] pin */
+#define AFIO_EXTICR1_EXTI2_PD_Pos (8U)
+#define AFIO_EXTICR1_EXTI2_PD_Msk (0x3UL << AFIO_EXTICR1_EXTI2_PD_Pos) /*!< 0x00000300 */
+#define AFIO_EXTICR1_EXTI2_PD AFIO_EXTICR1_EXTI2_PD_Msk /*!< PD[2] pin */
+#define AFIO_EXTICR1_EXTI2_PE_Pos (10U)
+#define AFIO_EXTICR1_EXTI2_PE_Msk (0x1UL << AFIO_EXTICR1_EXTI2_PE_Pos) /*!< 0x00000400 */
+#define AFIO_EXTICR1_EXTI2_PE AFIO_EXTICR1_EXTI2_PE_Msk /*!< PE[2] pin */
+#define AFIO_EXTICR1_EXTI2_PF_Pos (8U)
+#define AFIO_EXTICR1_EXTI2_PF_Msk (0x5UL << AFIO_EXTICR1_EXTI2_PF_Pos) /*!< 0x00000500 */
+#define AFIO_EXTICR1_EXTI2_PF AFIO_EXTICR1_EXTI2_PF_Msk /*!< PF[2] pin */
+#define AFIO_EXTICR1_EXTI2_PG_Pos (9U)
+#define AFIO_EXTICR1_EXTI2_PG_Msk (0x3UL << AFIO_EXTICR1_EXTI2_PG_Pos) /*!< 0x00000600 */
+#define AFIO_EXTICR1_EXTI2_PG AFIO_EXTICR1_EXTI2_PG_Msk /*!< PG[2] pin */
+
+/*!< EXTI3 configuration */
+#define AFIO_EXTICR1_EXTI3_PA 0x00000000U /*!< PA[3] pin */
+#define AFIO_EXTICR1_EXTI3_PB_Pos (12U)
+#define AFIO_EXTICR1_EXTI3_PB_Msk (0x1UL << AFIO_EXTICR1_EXTI3_PB_Pos) /*!< 0x00001000 */
+#define AFIO_EXTICR1_EXTI3_PB AFIO_EXTICR1_EXTI3_PB_Msk /*!< PB[3] pin */
+#define AFIO_EXTICR1_EXTI3_PC_Pos (13U)
+#define AFIO_EXTICR1_EXTI3_PC_Msk (0x1UL << AFIO_EXTICR1_EXTI3_PC_Pos) /*!< 0x00002000 */
+#define AFIO_EXTICR1_EXTI3_PC AFIO_EXTICR1_EXTI3_PC_Msk /*!< PC[3] pin */
+#define AFIO_EXTICR1_EXTI3_PD_Pos (12U)
+#define AFIO_EXTICR1_EXTI3_PD_Msk (0x3UL << AFIO_EXTICR1_EXTI3_PD_Pos) /*!< 0x00003000 */
+#define AFIO_EXTICR1_EXTI3_PD AFIO_EXTICR1_EXTI3_PD_Msk /*!< PD[3] pin */
+#define AFIO_EXTICR1_EXTI3_PE_Pos (14U)
+#define AFIO_EXTICR1_EXTI3_PE_Msk (0x1UL << AFIO_EXTICR1_EXTI3_PE_Pos) /*!< 0x00004000 */
+#define AFIO_EXTICR1_EXTI3_PE AFIO_EXTICR1_EXTI3_PE_Msk /*!< PE[3] pin */
+#define AFIO_EXTICR1_EXTI3_PF_Pos (12U)
+#define AFIO_EXTICR1_EXTI3_PF_Msk (0x5UL << AFIO_EXTICR1_EXTI3_PF_Pos) /*!< 0x00005000 */
+#define AFIO_EXTICR1_EXTI3_PF AFIO_EXTICR1_EXTI3_PF_Msk /*!< PF[3] pin */
+#define AFIO_EXTICR1_EXTI3_PG_Pos (13U)
+#define AFIO_EXTICR1_EXTI3_PG_Msk (0x3UL << AFIO_EXTICR1_EXTI3_PG_Pos) /*!< 0x00006000 */
+#define AFIO_EXTICR1_EXTI3_PG AFIO_EXTICR1_EXTI3_PG_Msk /*!< PG[3] pin */
+
+/***************** Bit definition for AFIO_EXTICR2 register *****************/
+#define AFIO_EXTICR2_EXTI4_Pos (0U)
+#define AFIO_EXTICR2_EXTI4_Msk (0xFUL << AFIO_EXTICR2_EXTI4_Pos) /*!< 0x0000000F */
+#define AFIO_EXTICR2_EXTI4 AFIO_EXTICR2_EXTI4_Msk /*!< EXTI 4 configuration */
+#define AFIO_EXTICR2_EXTI5_Pos (4U)
+#define AFIO_EXTICR2_EXTI5_Msk (0xFUL << AFIO_EXTICR2_EXTI5_Pos) /*!< 0x000000F0 */
+#define AFIO_EXTICR2_EXTI5 AFIO_EXTICR2_EXTI5_Msk /*!< EXTI 5 configuration */
+#define AFIO_EXTICR2_EXTI6_Pos (8U)
+#define AFIO_EXTICR2_EXTI6_Msk (0xFUL << AFIO_EXTICR2_EXTI6_Pos) /*!< 0x00000F00 */
+#define AFIO_EXTICR2_EXTI6 AFIO_EXTICR2_EXTI6_Msk /*!< EXTI 6 configuration */
+#define AFIO_EXTICR2_EXTI7_Pos (12U)
+#define AFIO_EXTICR2_EXTI7_Msk (0xFUL << AFIO_EXTICR2_EXTI7_Pos) /*!< 0x0000F000 */
+#define AFIO_EXTICR2_EXTI7 AFIO_EXTICR2_EXTI7_Msk /*!< EXTI 7 configuration */
+
+/*!< EXTI4 configuration */
+#define AFIO_EXTICR2_EXTI4_PA 0x00000000U /*!< PA[4] pin */
+#define AFIO_EXTICR2_EXTI4_PB_Pos (0U)
+#define AFIO_EXTICR2_EXTI4_PB_Msk (0x1UL << AFIO_EXTICR2_EXTI4_PB_Pos) /*!< 0x00000001 */
+#define AFIO_EXTICR2_EXTI4_PB AFIO_EXTICR2_EXTI4_PB_Msk /*!< PB[4] pin */
+#define AFIO_EXTICR2_EXTI4_PC_Pos (1U)
+#define AFIO_EXTICR2_EXTI4_PC_Msk (0x1UL << AFIO_EXTICR2_EXTI4_PC_Pos) /*!< 0x00000002 */
+#define AFIO_EXTICR2_EXTI4_PC AFIO_EXTICR2_EXTI4_PC_Msk /*!< PC[4] pin */
+#define AFIO_EXTICR2_EXTI4_PD_Pos (0U)
+#define AFIO_EXTICR2_EXTI4_PD_Msk (0x3UL << AFIO_EXTICR2_EXTI4_PD_Pos) /*!< 0x00000003 */
+#define AFIO_EXTICR2_EXTI4_PD AFIO_EXTICR2_EXTI4_PD_Msk /*!< PD[4] pin */
+#define AFIO_EXTICR2_EXTI4_PE_Pos (2U)
+#define AFIO_EXTICR2_EXTI4_PE_Msk (0x1UL << AFIO_EXTICR2_EXTI4_PE_Pos) /*!< 0x00000004 */
+#define AFIO_EXTICR2_EXTI4_PE AFIO_EXTICR2_EXTI4_PE_Msk /*!< PE[4] pin */
+#define AFIO_EXTICR2_EXTI4_PF_Pos (0U)
+#define AFIO_EXTICR2_EXTI4_PF_Msk (0x5UL << AFIO_EXTICR2_EXTI4_PF_Pos) /*!< 0x00000005 */
+#define AFIO_EXTICR2_EXTI4_PF AFIO_EXTICR2_EXTI4_PF_Msk /*!< PF[4] pin */
+#define AFIO_EXTICR2_EXTI4_PG_Pos (1U)
+#define AFIO_EXTICR2_EXTI4_PG_Msk (0x3UL << AFIO_EXTICR2_EXTI4_PG_Pos) /*!< 0x00000006 */
+#define AFIO_EXTICR2_EXTI4_PG AFIO_EXTICR2_EXTI4_PG_Msk /*!< PG[4] pin */
+
+/* EXTI5 configuration */
+#define AFIO_EXTICR2_EXTI5_PA 0x00000000U /*!< PA[5] pin */
+#define AFIO_EXTICR2_EXTI5_PB_Pos (4U)
+#define AFIO_EXTICR2_EXTI5_PB_Msk (0x1UL << AFIO_EXTICR2_EXTI5_PB_Pos) /*!< 0x00000010 */
+#define AFIO_EXTICR2_EXTI5_PB AFIO_EXTICR2_EXTI5_PB_Msk /*!< PB[5] pin */
+#define AFIO_EXTICR2_EXTI5_PC_Pos (5U)
+#define AFIO_EXTICR2_EXTI5_PC_Msk (0x1UL << AFIO_EXTICR2_EXTI5_PC_Pos) /*!< 0x00000020 */
+#define AFIO_EXTICR2_EXTI5_PC AFIO_EXTICR2_EXTI5_PC_Msk /*!< PC[5] pin */
+#define AFIO_EXTICR2_EXTI5_PD_Pos (4U)
+#define AFIO_EXTICR2_EXTI5_PD_Msk (0x3UL << AFIO_EXTICR2_EXTI5_PD_Pos) /*!< 0x00000030 */
+#define AFIO_EXTICR2_EXTI5_PD AFIO_EXTICR2_EXTI5_PD_Msk /*!< PD[5] pin */
+#define AFIO_EXTICR2_EXTI5_PE_Pos (6U)
+#define AFIO_EXTICR2_EXTI5_PE_Msk (0x1UL << AFIO_EXTICR2_EXTI5_PE_Pos) /*!< 0x00000040 */
+#define AFIO_EXTICR2_EXTI5_PE AFIO_EXTICR2_EXTI5_PE_Msk /*!< PE[5] pin */
+#define AFIO_EXTICR2_EXTI5_PF_Pos (4U)
+#define AFIO_EXTICR2_EXTI5_PF_Msk (0x5UL << AFIO_EXTICR2_EXTI5_PF_Pos) /*!< 0x00000050 */
+#define AFIO_EXTICR2_EXTI5_PF AFIO_EXTICR2_EXTI5_PF_Msk /*!< PF[5] pin */
+#define AFIO_EXTICR2_EXTI5_PG_Pos (5U)
+#define AFIO_EXTICR2_EXTI5_PG_Msk (0x3UL << AFIO_EXTICR2_EXTI5_PG_Pos) /*!< 0x00000060 */
+#define AFIO_EXTICR2_EXTI5_PG AFIO_EXTICR2_EXTI5_PG_Msk /*!< PG[5] pin */
+
+/*!< EXTI6 configuration */
+#define AFIO_EXTICR2_EXTI6_PA 0x00000000U /*!< PA[6] pin */
+#define AFIO_EXTICR2_EXTI6_PB_Pos (8U)
+#define AFIO_EXTICR2_EXTI6_PB_Msk (0x1UL << AFIO_EXTICR2_EXTI6_PB_Pos) /*!< 0x00000100 */
+#define AFIO_EXTICR2_EXTI6_PB AFIO_EXTICR2_EXTI6_PB_Msk /*!< PB[6] pin */
+#define AFIO_EXTICR2_EXTI6_PC_Pos (9U)
+#define AFIO_EXTICR2_EXTI6_PC_Msk (0x1UL << AFIO_EXTICR2_EXTI6_PC_Pos) /*!< 0x00000200 */
+#define AFIO_EXTICR2_EXTI6_PC AFIO_EXTICR2_EXTI6_PC_Msk /*!< PC[6] pin */
+#define AFIO_EXTICR2_EXTI6_PD_Pos (8U)
+#define AFIO_EXTICR2_EXTI6_PD_Msk (0x3UL << AFIO_EXTICR2_EXTI6_PD_Pos) /*!< 0x00000300 */
+#define AFIO_EXTICR2_EXTI6_PD AFIO_EXTICR2_EXTI6_PD_Msk /*!< PD[6] pin */
+#define AFIO_EXTICR2_EXTI6_PE_Pos (10U)
+#define AFIO_EXTICR2_EXTI6_PE_Msk (0x1UL << AFIO_EXTICR2_EXTI6_PE_Pos) /*!< 0x00000400 */
+#define AFIO_EXTICR2_EXTI6_PE AFIO_EXTICR2_EXTI6_PE_Msk /*!< PE[6] pin */
+#define AFIO_EXTICR2_EXTI6_PF_Pos (8U)
+#define AFIO_EXTICR2_EXTI6_PF_Msk (0x5UL << AFIO_EXTICR2_EXTI6_PF_Pos) /*!< 0x00000500 */
+#define AFIO_EXTICR2_EXTI6_PF AFIO_EXTICR2_EXTI6_PF_Msk /*!< PF[6] pin */
+#define AFIO_EXTICR2_EXTI6_PG_Pos (9U)
+#define AFIO_EXTICR2_EXTI6_PG_Msk (0x3UL << AFIO_EXTICR2_EXTI6_PG_Pos) /*!< 0x00000600 */
+#define AFIO_EXTICR2_EXTI6_PG AFIO_EXTICR2_EXTI6_PG_Msk /*!< PG[6] pin */
+
+/*!< EXTI7 configuration */
+#define AFIO_EXTICR2_EXTI7_PA 0x00000000U /*!< PA[7] pin */
+#define AFIO_EXTICR2_EXTI7_PB_Pos (12U)
+#define AFIO_EXTICR2_EXTI7_PB_Msk (0x1UL << AFIO_EXTICR2_EXTI7_PB_Pos) /*!< 0x00001000 */
+#define AFIO_EXTICR2_EXTI7_PB AFIO_EXTICR2_EXTI7_PB_Msk /*!< PB[7] pin */
+#define AFIO_EXTICR2_EXTI7_PC_Pos (13U)
+#define AFIO_EXTICR2_EXTI7_PC_Msk (0x1UL << AFIO_EXTICR2_EXTI7_PC_Pos) /*!< 0x00002000 */
+#define AFIO_EXTICR2_EXTI7_PC AFIO_EXTICR2_EXTI7_PC_Msk /*!< PC[7] pin */
+#define AFIO_EXTICR2_EXTI7_PD_Pos (12U)
+#define AFIO_EXTICR2_EXTI7_PD_Msk (0x3UL << AFIO_EXTICR2_EXTI7_PD_Pos) /*!< 0x00003000 */
+#define AFIO_EXTICR2_EXTI7_PD AFIO_EXTICR2_EXTI7_PD_Msk /*!< PD[7] pin */
+#define AFIO_EXTICR2_EXTI7_PE_Pos (14U)
+#define AFIO_EXTICR2_EXTI7_PE_Msk (0x1UL << AFIO_EXTICR2_EXTI7_PE_Pos) /*!< 0x00004000 */
+#define AFIO_EXTICR2_EXTI7_PE AFIO_EXTICR2_EXTI7_PE_Msk /*!< PE[7] pin */
+#define AFIO_EXTICR2_EXTI7_PF_Pos (12U)
+#define AFIO_EXTICR2_EXTI7_PF_Msk (0x5UL << AFIO_EXTICR2_EXTI7_PF_Pos) /*!< 0x00005000 */
+#define AFIO_EXTICR2_EXTI7_PF AFIO_EXTICR2_EXTI7_PF_Msk /*!< PF[7] pin */
+#define AFIO_EXTICR2_EXTI7_PG_Pos (13U)
+#define AFIO_EXTICR2_EXTI7_PG_Msk (0x3UL << AFIO_EXTICR2_EXTI7_PG_Pos) /*!< 0x00006000 */
+#define AFIO_EXTICR2_EXTI7_PG AFIO_EXTICR2_EXTI7_PG_Msk /*!< PG[7] pin */
+
+/***************** Bit definition for AFIO_EXTICR3 register *****************/
+#define AFIO_EXTICR3_EXTI8_Pos (0U)
+#define AFIO_EXTICR3_EXTI8_Msk (0xFUL << AFIO_EXTICR3_EXTI8_Pos) /*!< 0x0000000F */
+#define AFIO_EXTICR3_EXTI8 AFIO_EXTICR3_EXTI8_Msk /*!< EXTI 8 configuration */
+#define AFIO_EXTICR3_EXTI9_Pos (4U)
+#define AFIO_EXTICR3_EXTI9_Msk (0xFUL << AFIO_EXTICR3_EXTI9_Pos) /*!< 0x000000F0 */
+#define AFIO_EXTICR3_EXTI9 AFIO_EXTICR3_EXTI9_Msk /*!< EXTI 9 configuration */
+#define AFIO_EXTICR3_EXTI10_Pos (8U)
+#define AFIO_EXTICR3_EXTI10_Msk (0xFUL << AFIO_EXTICR3_EXTI10_Pos) /*!< 0x00000F00 */
+#define AFIO_EXTICR3_EXTI10 AFIO_EXTICR3_EXTI10_Msk /*!< EXTI 10 configuration */
+#define AFIO_EXTICR3_EXTI11_Pos (12U)
+#define AFIO_EXTICR3_EXTI11_Msk (0xFUL << AFIO_EXTICR3_EXTI11_Pos) /*!< 0x0000F000 */
+#define AFIO_EXTICR3_EXTI11 AFIO_EXTICR3_EXTI11_Msk /*!< EXTI 11 configuration */
+
+/*!< EXTI8 configuration */
+#define AFIO_EXTICR3_EXTI8_PA 0x00000000U /*!< PA[8] pin */
+#define AFIO_EXTICR3_EXTI8_PB_Pos (0U)
+#define AFIO_EXTICR3_EXTI8_PB_Msk (0x1UL << AFIO_EXTICR3_EXTI8_PB_Pos) /*!< 0x00000001 */
+#define AFIO_EXTICR3_EXTI8_PB AFIO_EXTICR3_EXTI8_PB_Msk /*!< PB[8] pin */
+#define AFIO_EXTICR3_EXTI8_PC_Pos (1U)
+#define AFIO_EXTICR3_EXTI8_PC_Msk (0x1UL << AFIO_EXTICR3_EXTI8_PC_Pos) /*!< 0x00000002 */
+#define AFIO_EXTICR3_EXTI8_PC AFIO_EXTICR3_EXTI8_PC_Msk /*!< PC[8] pin */
+#define AFIO_EXTICR3_EXTI8_PD_Pos (0U)
+#define AFIO_EXTICR3_EXTI8_PD_Msk (0x3UL << AFIO_EXTICR3_EXTI8_PD_Pos) /*!< 0x00000003 */
+#define AFIO_EXTICR3_EXTI8_PD AFIO_EXTICR3_EXTI8_PD_Msk /*!< PD[8] pin */
+#define AFIO_EXTICR3_EXTI8_PE_Pos (2U)
+#define AFIO_EXTICR3_EXTI8_PE_Msk (0x1UL << AFIO_EXTICR3_EXTI8_PE_Pos) /*!< 0x00000004 */
+#define AFIO_EXTICR3_EXTI8_PE AFIO_EXTICR3_EXTI8_PE_Msk /*!< PE[8] pin */
+#define AFIO_EXTICR3_EXTI8_PF_Pos (0U)
+#define AFIO_EXTICR3_EXTI8_PF_Msk (0x5UL << AFIO_EXTICR3_EXTI8_PF_Pos) /*!< 0x00000005 */
+#define AFIO_EXTICR3_EXTI8_PF AFIO_EXTICR3_EXTI8_PF_Msk /*!< PF[8] pin */
+#define AFIO_EXTICR3_EXTI8_PG_Pos (1U)
+#define AFIO_EXTICR3_EXTI8_PG_Msk (0x3UL << AFIO_EXTICR3_EXTI8_PG_Pos) /*!< 0x00000006 */
+#define AFIO_EXTICR3_EXTI8_PG AFIO_EXTICR3_EXTI8_PG_Msk /*!< PG[8] pin */
+
+/*!< EXTI9 configuration */
+#define AFIO_EXTICR3_EXTI9_PA 0x00000000U /*!< PA[9] pin */
+#define AFIO_EXTICR3_EXTI9_PB_Pos (4U)
+#define AFIO_EXTICR3_EXTI9_PB_Msk (0x1UL << AFIO_EXTICR3_EXTI9_PB_Pos) /*!< 0x00000010 */
+#define AFIO_EXTICR3_EXTI9_PB AFIO_EXTICR3_EXTI9_PB_Msk /*!< PB[9] pin */
+#define AFIO_EXTICR3_EXTI9_PC_Pos (5U)
+#define AFIO_EXTICR3_EXTI9_PC_Msk (0x1UL << AFIO_EXTICR3_EXTI9_PC_Pos) /*!< 0x00000020 */
+#define AFIO_EXTICR3_EXTI9_PC AFIO_EXTICR3_EXTI9_PC_Msk /*!< PC[9] pin */
+#define AFIO_EXTICR3_EXTI9_PD_Pos (4U)
+#define AFIO_EXTICR3_EXTI9_PD_Msk (0x3UL << AFIO_EXTICR3_EXTI9_PD_Pos) /*!< 0x00000030 */
+#define AFIO_EXTICR3_EXTI9_PD AFIO_EXTICR3_EXTI9_PD_Msk /*!< PD[9] pin */
+#define AFIO_EXTICR3_EXTI9_PE_Pos (6U)
+#define AFIO_EXTICR3_EXTI9_PE_Msk (0x1UL << AFIO_EXTICR3_EXTI9_PE_Pos) /*!< 0x00000040 */
+#define AFIO_EXTICR3_EXTI9_PE AFIO_EXTICR3_EXTI9_PE_Msk /*!< PE[9] pin */
+#define AFIO_EXTICR3_EXTI9_PF_Pos (4U)
+#define AFIO_EXTICR3_EXTI9_PF_Msk (0x5UL << AFIO_EXTICR3_EXTI9_PF_Pos) /*!< 0x00000050 */
+#define AFIO_EXTICR3_EXTI9_PF AFIO_EXTICR3_EXTI9_PF_Msk /*!< PF[9] pin */
+#define AFIO_EXTICR3_EXTI9_PG_Pos (5U)
+#define AFIO_EXTICR3_EXTI9_PG_Msk (0x3UL << AFIO_EXTICR3_EXTI9_PG_Pos) /*!< 0x00000060 */
+#define AFIO_EXTICR3_EXTI9_PG AFIO_EXTICR3_EXTI9_PG_Msk /*!< PG[9] pin */
+
+/*!< EXTI10 configuration */
+#define AFIO_EXTICR3_EXTI10_PA 0x00000000U /*!< PA[10] pin */
+#define AFIO_EXTICR3_EXTI10_PB_Pos (8U)
+#define AFIO_EXTICR3_EXTI10_PB_Msk (0x1UL << AFIO_EXTICR3_EXTI10_PB_Pos) /*!< 0x00000100 */
+#define AFIO_EXTICR3_EXTI10_PB AFIO_EXTICR3_EXTI10_PB_Msk /*!< PB[10] pin */
+#define AFIO_EXTICR3_EXTI10_PC_Pos (9U)
+#define AFIO_EXTICR3_EXTI10_PC_Msk (0x1UL << AFIO_EXTICR3_EXTI10_PC_Pos) /*!< 0x00000200 */
+#define AFIO_EXTICR3_EXTI10_PC AFIO_EXTICR3_EXTI10_PC_Msk /*!< PC[10] pin */
+#define AFIO_EXTICR3_EXTI10_PD_Pos (8U)
+#define AFIO_EXTICR3_EXTI10_PD_Msk (0x3UL << AFIO_EXTICR3_EXTI10_PD_Pos) /*!< 0x00000300 */
+#define AFIO_EXTICR3_EXTI10_PD AFIO_EXTICR3_EXTI10_PD_Msk /*!< PD[10] pin */
+#define AFIO_EXTICR3_EXTI10_PE_Pos (10U)
+#define AFIO_EXTICR3_EXTI10_PE_Msk (0x1UL << AFIO_EXTICR3_EXTI10_PE_Pos) /*!< 0x00000400 */
+#define AFIO_EXTICR3_EXTI10_PE AFIO_EXTICR3_EXTI10_PE_Msk /*!< PE[10] pin */
+#define AFIO_EXTICR3_EXTI10_PF_Pos (8U)
+#define AFIO_EXTICR3_EXTI10_PF_Msk (0x5UL << AFIO_EXTICR3_EXTI10_PF_Pos) /*!< 0x00000500 */
+#define AFIO_EXTICR3_EXTI10_PF AFIO_EXTICR3_EXTI10_PF_Msk /*!< PF[10] pin */
+#define AFIO_EXTICR3_EXTI10_PG_Pos (9U)
+#define AFIO_EXTICR3_EXTI10_PG_Msk (0x3UL << AFIO_EXTICR3_EXTI10_PG_Pos) /*!< 0x00000600 */
+#define AFIO_EXTICR3_EXTI10_PG AFIO_EXTICR3_EXTI10_PG_Msk /*!< PG[10] pin */
+
+/*!< EXTI11 configuration */
+#define AFIO_EXTICR3_EXTI11_PA 0x00000000U /*!< PA[11] pin */
+#define AFIO_EXTICR3_EXTI11_PB_Pos (12U)
+#define AFIO_EXTICR3_EXTI11_PB_Msk (0x1UL << AFIO_EXTICR3_EXTI11_PB_Pos) /*!< 0x00001000 */
+#define AFIO_EXTICR3_EXTI11_PB AFIO_EXTICR3_EXTI11_PB_Msk /*!< PB[11] pin */
+#define AFIO_EXTICR3_EXTI11_PC_Pos (13U)
+#define AFIO_EXTICR3_EXTI11_PC_Msk (0x1UL << AFIO_EXTICR3_EXTI11_PC_Pos) /*!< 0x00002000 */
+#define AFIO_EXTICR3_EXTI11_PC AFIO_EXTICR3_EXTI11_PC_Msk /*!< PC[11] pin */
+#define AFIO_EXTICR3_EXTI11_PD_Pos (12U)
+#define AFIO_EXTICR3_EXTI11_PD_Msk (0x3UL << AFIO_EXTICR3_EXTI11_PD_Pos) /*!< 0x00003000 */
+#define AFIO_EXTICR3_EXTI11_PD AFIO_EXTICR3_EXTI11_PD_Msk /*!< PD[11] pin */
+#define AFIO_EXTICR3_EXTI11_PE_Pos (14U)
+#define AFIO_EXTICR3_EXTI11_PE_Msk (0x1UL << AFIO_EXTICR3_EXTI11_PE_Pos) /*!< 0x00004000 */
+#define AFIO_EXTICR3_EXTI11_PE AFIO_EXTICR3_EXTI11_PE_Msk /*!< PE[11] pin */
+#define AFIO_EXTICR3_EXTI11_PF_Pos (12U)
+#define AFIO_EXTICR3_EXTI11_PF_Msk (0x5UL << AFIO_EXTICR3_EXTI11_PF_Pos) /*!< 0x00005000 */
+#define AFIO_EXTICR3_EXTI11_PF AFIO_EXTICR3_EXTI11_PF_Msk /*!< PF[11] pin */
+#define AFIO_EXTICR3_EXTI11_PG_Pos (13U)
+#define AFIO_EXTICR3_EXTI11_PG_Msk (0x3UL << AFIO_EXTICR3_EXTI11_PG_Pos) /*!< 0x00006000 */
+#define AFIO_EXTICR3_EXTI11_PG AFIO_EXTICR3_EXTI11_PG_Msk /*!< PG[11] pin */
+
+/***************** Bit definition for AFIO_EXTICR4 register *****************/
+#define AFIO_EXTICR4_EXTI12_Pos (0U)
+#define AFIO_EXTICR4_EXTI12_Msk (0xFUL << AFIO_EXTICR4_EXTI12_Pos) /*!< 0x0000000F */
+#define AFIO_EXTICR4_EXTI12 AFIO_EXTICR4_EXTI12_Msk /*!< EXTI 12 configuration */
+#define AFIO_EXTICR4_EXTI13_Pos (4U)
+#define AFIO_EXTICR4_EXTI13_Msk (0xFUL << AFIO_EXTICR4_EXTI13_Pos) /*!< 0x000000F0 */
+#define AFIO_EXTICR4_EXTI13 AFIO_EXTICR4_EXTI13_Msk /*!< EXTI 13 configuration */
+#define AFIO_EXTICR4_EXTI14_Pos (8U)
+#define AFIO_EXTICR4_EXTI14_Msk (0xFUL << AFIO_EXTICR4_EXTI14_Pos) /*!< 0x00000F00 */
+#define AFIO_EXTICR4_EXTI14 AFIO_EXTICR4_EXTI14_Msk /*!< EXTI 14 configuration */
+#define AFIO_EXTICR4_EXTI15_Pos (12U)
+#define AFIO_EXTICR4_EXTI15_Msk (0xFUL << AFIO_EXTICR4_EXTI15_Pos) /*!< 0x0000F000 */
+#define AFIO_EXTICR4_EXTI15 AFIO_EXTICR4_EXTI15_Msk /*!< EXTI 15 configuration */
+
+/* EXTI12 configuration */
+#define AFIO_EXTICR4_EXTI12_PA 0x00000000U /*!< PA[12] pin */
+#define AFIO_EXTICR4_EXTI12_PB_Pos (0U)
+#define AFIO_EXTICR4_EXTI12_PB_Msk (0x1UL << AFIO_EXTICR4_EXTI12_PB_Pos) /*!< 0x00000001 */
+#define AFIO_EXTICR4_EXTI12_PB AFIO_EXTICR4_EXTI12_PB_Msk /*!< PB[12] pin */
+#define AFIO_EXTICR4_EXTI12_PC_Pos (1U)
+#define AFIO_EXTICR4_EXTI12_PC_Msk (0x1UL << AFIO_EXTICR4_EXTI12_PC_Pos) /*!< 0x00000002 */
+#define AFIO_EXTICR4_EXTI12_PC AFIO_EXTICR4_EXTI12_PC_Msk /*!< PC[12] pin */
+#define AFIO_EXTICR4_EXTI12_PD_Pos (0U)
+#define AFIO_EXTICR4_EXTI12_PD_Msk (0x3UL << AFIO_EXTICR4_EXTI12_PD_Pos) /*!< 0x00000003 */
+#define AFIO_EXTICR4_EXTI12_PD AFIO_EXTICR4_EXTI12_PD_Msk /*!< PD[12] pin */
+#define AFIO_EXTICR4_EXTI12_PE_Pos (2U)
+#define AFIO_EXTICR4_EXTI12_PE_Msk (0x1UL << AFIO_EXTICR4_EXTI12_PE_Pos) /*!< 0x00000004 */
+#define AFIO_EXTICR4_EXTI12_PE AFIO_EXTICR4_EXTI12_PE_Msk /*!< PE[12] pin */
+#define AFIO_EXTICR4_EXTI12_PF_Pos (0U)
+#define AFIO_EXTICR4_EXTI12_PF_Msk (0x5UL << AFIO_EXTICR4_EXTI12_PF_Pos) /*!< 0x00000005 */
+#define AFIO_EXTICR4_EXTI12_PF AFIO_EXTICR4_EXTI12_PF_Msk /*!< PF[12] pin */
+#define AFIO_EXTICR4_EXTI12_PG_Pos (1U)
+#define AFIO_EXTICR4_EXTI12_PG_Msk (0x3UL << AFIO_EXTICR4_EXTI12_PG_Pos) /*!< 0x00000006 */
+#define AFIO_EXTICR4_EXTI12_PG AFIO_EXTICR4_EXTI12_PG_Msk /*!< PG[12] pin */
+
+/* EXTI13 configuration */
+#define AFIO_EXTICR4_EXTI13_PA 0x00000000U /*!< PA[13] pin */
+#define AFIO_EXTICR4_EXTI13_PB_Pos (4U)
+#define AFIO_EXTICR4_EXTI13_PB_Msk (0x1UL << AFIO_EXTICR4_EXTI13_PB_Pos) /*!< 0x00000010 */
+#define AFIO_EXTICR4_EXTI13_PB AFIO_EXTICR4_EXTI13_PB_Msk /*!< PB[13] pin */
+#define AFIO_EXTICR4_EXTI13_PC_Pos (5U)
+#define AFIO_EXTICR4_EXTI13_PC_Msk (0x1UL << AFIO_EXTICR4_EXTI13_PC_Pos) /*!< 0x00000020 */
+#define AFIO_EXTICR4_EXTI13_PC AFIO_EXTICR4_EXTI13_PC_Msk /*!< PC[13] pin */
+#define AFIO_EXTICR4_EXTI13_PD_Pos (4U)
+#define AFIO_EXTICR4_EXTI13_PD_Msk (0x3UL << AFIO_EXTICR4_EXTI13_PD_Pos) /*!< 0x00000030 */
+#define AFIO_EXTICR4_EXTI13_PD AFIO_EXTICR4_EXTI13_PD_Msk /*!< PD[13] pin */
+#define AFIO_EXTICR4_EXTI13_PE_Pos (6U)
+#define AFIO_EXTICR4_EXTI13_PE_Msk (0x1UL << AFIO_EXTICR4_EXTI13_PE_Pos) /*!< 0x00000040 */
+#define AFIO_EXTICR4_EXTI13_PE AFIO_EXTICR4_EXTI13_PE_Msk /*!< PE[13] pin */
+#define AFIO_EXTICR4_EXTI13_PF_Pos (4U)
+#define AFIO_EXTICR4_EXTI13_PF_Msk (0x5UL << AFIO_EXTICR4_EXTI13_PF_Pos) /*!< 0x00000050 */
+#define AFIO_EXTICR4_EXTI13_PF AFIO_EXTICR4_EXTI13_PF_Msk /*!< PF[13] pin */
+#define AFIO_EXTICR4_EXTI13_PG_Pos (5U)
+#define AFIO_EXTICR4_EXTI13_PG_Msk (0x3UL << AFIO_EXTICR4_EXTI13_PG_Pos) /*!< 0x00000060 */
+#define AFIO_EXTICR4_EXTI13_PG AFIO_EXTICR4_EXTI13_PG_Msk /*!< PG[13] pin */
+
+/*!< EXTI14 configuration */
+#define AFIO_EXTICR4_EXTI14_PA 0x00000000U /*!< PA[14] pin */
+#define AFIO_EXTICR4_EXTI14_PB_Pos (8U)
+#define AFIO_EXTICR4_EXTI14_PB_Msk (0x1UL << AFIO_EXTICR4_EXTI14_PB_Pos) /*!< 0x00000100 */
+#define AFIO_EXTICR4_EXTI14_PB AFIO_EXTICR4_EXTI14_PB_Msk /*!< PB[14] pin */
+#define AFIO_EXTICR4_EXTI14_PC_Pos (9U)
+#define AFIO_EXTICR4_EXTI14_PC_Msk (0x1UL << AFIO_EXTICR4_EXTI14_PC_Pos) /*!< 0x00000200 */
+#define AFIO_EXTICR4_EXTI14_PC AFIO_EXTICR4_EXTI14_PC_Msk /*!< PC[14] pin */
+#define AFIO_EXTICR4_EXTI14_PD_Pos (8U)
+#define AFIO_EXTICR4_EXTI14_PD_Msk (0x3UL << AFIO_EXTICR4_EXTI14_PD_Pos) /*!< 0x00000300 */
+#define AFIO_EXTICR4_EXTI14_PD AFIO_EXTICR4_EXTI14_PD_Msk /*!< PD[14] pin */
+#define AFIO_EXTICR4_EXTI14_PE_Pos (10U)
+#define AFIO_EXTICR4_EXTI14_PE_Msk (0x1UL << AFIO_EXTICR4_EXTI14_PE_Pos) /*!< 0x00000400 */
+#define AFIO_EXTICR4_EXTI14_PE AFIO_EXTICR4_EXTI14_PE_Msk /*!< PE[14] pin */
+#define AFIO_EXTICR4_EXTI14_PF_Pos (8U)
+#define AFIO_EXTICR4_EXTI14_PF_Msk (0x5UL << AFIO_EXTICR4_EXTI14_PF_Pos) /*!< 0x00000500 */
+#define AFIO_EXTICR4_EXTI14_PF AFIO_EXTICR4_EXTI14_PF_Msk /*!< PF[14] pin */
+#define AFIO_EXTICR4_EXTI14_PG_Pos (9U)
+#define AFIO_EXTICR4_EXTI14_PG_Msk (0x3UL << AFIO_EXTICR4_EXTI14_PG_Pos) /*!< 0x00000600 */
+#define AFIO_EXTICR4_EXTI14_PG AFIO_EXTICR4_EXTI14_PG_Msk /*!< PG[14] pin */
+
+/*!< EXTI15 configuration */
+#define AFIO_EXTICR4_EXTI15_PA 0x00000000U /*!< PA[15] pin */
+#define AFIO_EXTICR4_EXTI15_PB_Pos (12U)
+#define AFIO_EXTICR4_EXTI15_PB_Msk (0x1UL << AFIO_EXTICR4_EXTI15_PB_Pos) /*!< 0x00001000 */
+#define AFIO_EXTICR4_EXTI15_PB AFIO_EXTICR4_EXTI15_PB_Msk /*!< PB[15] pin */
+#define AFIO_EXTICR4_EXTI15_PC_Pos (13U)
+#define AFIO_EXTICR4_EXTI15_PC_Msk (0x1UL << AFIO_EXTICR4_EXTI15_PC_Pos) /*!< 0x00002000 */
+#define AFIO_EXTICR4_EXTI15_PC AFIO_EXTICR4_EXTI15_PC_Msk /*!< PC[15] pin */
+#define AFIO_EXTICR4_EXTI15_PD_Pos (12U)
+#define AFIO_EXTICR4_EXTI15_PD_Msk (0x3UL << AFIO_EXTICR4_EXTI15_PD_Pos) /*!< 0x00003000 */
+#define AFIO_EXTICR4_EXTI15_PD AFIO_EXTICR4_EXTI15_PD_Msk /*!< PD[15] pin */
+#define AFIO_EXTICR4_EXTI15_PE_Pos (14U)
+#define AFIO_EXTICR4_EXTI15_PE_Msk (0x1UL << AFIO_EXTICR4_EXTI15_PE_Pos) /*!< 0x00004000 */
+#define AFIO_EXTICR4_EXTI15_PE AFIO_EXTICR4_EXTI15_PE_Msk /*!< PE[15] pin */
+#define AFIO_EXTICR4_EXTI15_PF_Pos (12U)
+#define AFIO_EXTICR4_EXTI15_PF_Msk (0x5UL << AFIO_EXTICR4_EXTI15_PF_Pos) /*!< 0x00005000 */
+#define AFIO_EXTICR4_EXTI15_PF AFIO_EXTICR4_EXTI15_PF_Msk /*!< PF[15] pin */
+#define AFIO_EXTICR4_EXTI15_PG_Pos (13U)
+#define AFIO_EXTICR4_EXTI15_PG_Msk (0x3UL << AFIO_EXTICR4_EXTI15_PG_Pos) /*!< 0x00006000 */
+#define AFIO_EXTICR4_EXTI15_PG AFIO_EXTICR4_EXTI15_PG_Msk /*!< PG[15] pin */
+
+/****************** Bit definition for AFIO_MAPR2 register ******************/
+
+/******************************************************************************/
+/* */
+/* External Interrupt/Event Controller */
+/* */
+/******************************************************************************/
+
+/******************* Bit definition for EXTI_IMR register *******************/
+#define EXTI_IMR_MR0_Pos (0U)
+#define EXTI_IMR_MR0_Msk (0x1UL << EXTI_IMR_MR0_Pos) /*!< 0x00000001 */
+#define EXTI_IMR_MR0 EXTI_IMR_MR0_Msk /*!< Interrupt Mask on line 0 */
+#define EXTI_IMR_MR1_Pos (1U)
+#define EXTI_IMR_MR1_Msk (0x1UL << EXTI_IMR_MR1_Pos) /*!< 0x00000002 */
+#define EXTI_IMR_MR1 EXTI_IMR_MR1_Msk /*!< Interrupt Mask on line 1 */
+#define EXTI_IMR_MR2_Pos (2U)
+#define EXTI_IMR_MR2_Msk (0x1UL << EXTI_IMR_MR2_Pos) /*!< 0x00000004 */
+#define EXTI_IMR_MR2 EXTI_IMR_MR2_Msk /*!< Interrupt Mask on line 2 */
+#define EXTI_IMR_MR3_Pos (3U)
+#define EXTI_IMR_MR3_Msk (0x1UL << EXTI_IMR_MR3_Pos) /*!< 0x00000008 */
+#define EXTI_IMR_MR3 EXTI_IMR_MR3_Msk /*!< Interrupt Mask on line 3 */
+#define EXTI_IMR_MR4_Pos (4U)
+#define EXTI_IMR_MR4_Msk (0x1UL << EXTI_IMR_MR4_Pos) /*!< 0x00000010 */
+#define EXTI_IMR_MR4 EXTI_IMR_MR4_Msk /*!< Interrupt Mask on line 4 */
+#define EXTI_IMR_MR5_Pos (5U)
+#define EXTI_IMR_MR5_Msk (0x1UL << EXTI_IMR_MR5_Pos) /*!< 0x00000020 */
+#define EXTI_IMR_MR5 EXTI_IMR_MR5_Msk /*!< Interrupt Mask on line 5 */
+#define EXTI_IMR_MR6_Pos (6U)
+#define EXTI_IMR_MR6_Msk (0x1UL << EXTI_IMR_MR6_Pos) /*!< 0x00000040 */
+#define EXTI_IMR_MR6 EXTI_IMR_MR6_Msk /*!< Interrupt Mask on line 6 */
+#define EXTI_IMR_MR7_Pos (7U)
+#define EXTI_IMR_MR7_Msk (0x1UL << EXTI_IMR_MR7_Pos) /*!< 0x00000080 */
+#define EXTI_IMR_MR7 EXTI_IMR_MR7_Msk /*!< Interrupt Mask on line 7 */
+#define EXTI_IMR_MR8_Pos (8U)
+#define EXTI_IMR_MR8_Msk (0x1UL << EXTI_IMR_MR8_Pos) /*!< 0x00000100 */
+#define EXTI_IMR_MR8 EXTI_IMR_MR8_Msk /*!< Interrupt Mask on line 8 */
+#define EXTI_IMR_MR9_Pos (9U)
+#define EXTI_IMR_MR9_Msk (0x1UL << EXTI_IMR_MR9_Pos) /*!< 0x00000200 */
+#define EXTI_IMR_MR9 EXTI_IMR_MR9_Msk /*!< Interrupt Mask on line 9 */
+#define EXTI_IMR_MR10_Pos (10U)
+#define EXTI_IMR_MR10_Msk (0x1UL << EXTI_IMR_MR10_Pos) /*!< 0x00000400 */
+#define EXTI_IMR_MR10 EXTI_IMR_MR10_Msk /*!< Interrupt Mask on line 10 */
+#define EXTI_IMR_MR11_Pos (11U)
+#define EXTI_IMR_MR11_Msk (0x1UL << EXTI_IMR_MR11_Pos) /*!< 0x00000800 */
+#define EXTI_IMR_MR11 EXTI_IMR_MR11_Msk /*!< Interrupt Mask on line 11 */
+#define EXTI_IMR_MR12_Pos (12U)
+#define EXTI_IMR_MR12_Msk (0x1UL << EXTI_IMR_MR12_Pos) /*!< 0x00001000 */
+#define EXTI_IMR_MR12 EXTI_IMR_MR12_Msk /*!< Interrupt Mask on line 12 */
+#define EXTI_IMR_MR13_Pos (13U)
+#define EXTI_IMR_MR13_Msk (0x1UL << EXTI_IMR_MR13_Pos) /*!< 0x00002000 */
+#define EXTI_IMR_MR13 EXTI_IMR_MR13_Msk /*!< Interrupt Mask on line 13 */
+#define EXTI_IMR_MR14_Pos (14U)
+#define EXTI_IMR_MR14_Msk (0x1UL << EXTI_IMR_MR14_Pos) /*!< 0x00004000 */
+#define EXTI_IMR_MR14 EXTI_IMR_MR14_Msk /*!< Interrupt Mask on line 14 */
+#define EXTI_IMR_MR15_Pos (15U)
+#define EXTI_IMR_MR15_Msk (0x1UL << EXTI_IMR_MR15_Pos) /*!< 0x00008000 */
+#define EXTI_IMR_MR15 EXTI_IMR_MR15_Msk /*!< Interrupt Mask on line 15 */
+#define EXTI_IMR_MR16_Pos (16U)
+#define EXTI_IMR_MR16_Msk (0x1UL << EXTI_IMR_MR16_Pos) /*!< 0x00010000 */
+#define EXTI_IMR_MR16 EXTI_IMR_MR16_Msk /*!< Interrupt Mask on line 16 */
+#define EXTI_IMR_MR17_Pos (17U)
+#define EXTI_IMR_MR17_Msk (0x1UL << EXTI_IMR_MR17_Pos) /*!< 0x00020000 */
+#define EXTI_IMR_MR17 EXTI_IMR_MR17_Msk /*!< Interrupt Mask on line 17 */
+#define EXTI_IMR_MR18_Pos (18U)
+#define EXTI_IMR_MR18_Msk (0x1UL << EXTI_IMR_MR18_Pos) /*!< 0x00040000 */
+#define EXTI_IMR_MR18 EXTI_IMR_MR18_Msk /*!< Interrupt Mask on line 18 */
+
+/* References Defines */
+#define EXTI_IMR_IM0 EXTI_IMR_MR0
+#define EXTI_IMR_IM1 EXTI_IMR_MR1
+#define EXTI_IMR_IM2 EXTI_IMR_MR2
+#define EXTI_IMR_IM3 EXTI_IMR_MR3
+#define EXTI_IMR_IM4 EXTI_IMR_MR4
+#define EXTI_IMR_IM5 EXTI_IMR_MR5
+#define EXTI_IMR_IM6 EXTI_IMR_MR6
+#define EXTI_IMR_IM7 EXTI_IMR_MR7
+#define EXTI_IMR_IM8 EXTI_IMR_MR8
+#define EXTI_IMR_IM9 EXTI_IMR_MR9
+#define EXTI_IMR_IM10 EXTI_IMR_MR10
+#define EXTI_IMR_IM11 EXTI_IMR_MR11
+#define EXTI_IMR_IM12 EXTI_IMR_MR12
+#define EXTI_IMR_IM13 EXTI_IMR_MR13
+#define EXTI_IMR_IM14 EXTI_IMR_MR14
+#define EXTI_IMR_IM15 EXTI_IMR_MR15
+#define EXTI_IMR_IM16 EXTI_IMR_MR16
+#define EXTI_IMR_IM17 EXTI_IMR_MR17
+#define EXTI_IMR_IM18 EXTI_IMR_MR18
+#define EXTI_IMR_IM 0x0007FFFFU /*!< Interrupt Mask All */
+
+/******************* Bit definition for EXTI_EMR register *******************/
+#define EXTI_EMR_MR0_Pos (0U)
+#define EXTI_EMR_MR0_Msk (0x1UL << EXTI_EMR_MR0_Pos) /*!< 0x00000001 */
+#define EXTI_EMR_MR0 EXTI_EMR_MR0_Msk /*!< Event Mask on line 0 */
+#define EXTI_EMR_MR1_Pos (1U)
+#define EXTI_EMR_MR1_Msk (0x1UL << EXTI_EMR_MR1_Pos) /*!< 0x00000002 */
+#define EXTI_EMR_MR1 EXTI_EMR_MR1_Msk /*!< Event Mask on line 1 */
+#define EXTI_EMR_MR2_Pos (2U)
+#define EXTI_EMR_MR2_Msk (0x1UL << EXTI_EMR_MR2_Pos) /*!< 0x00000004 */
+#define EXTI_EMR_MR2 EXTI_EMR_MR2_Msk /*!< Event Mask on line 2 */
+#define EXTI_EMR_MR3_Pos (3U)
+#define EXTI_EMR_MR3_Msk (0x1UL << EXTI_EMR_MR3_Pos) /*!< 0x00000008 */
+#define EXTI_EMR_MR3 EXTI_EMR_MR3_Msk /*!< Event Mask on line 3 */
+#define EXTI_EMR_MR4_Pos (4U)
+#define EXTI_EMR_MR4_Msk (0x1UL << EXTI_EMR_MR4_Pos) /*!< 0x00000010 */
+#define EXTI_EMR_MR4 EXTI_EMR_MR4_Msk /*!< Event Mask on line 4 */
+#define EXTI_EMR_MR5_Pos (5U)
+#define EXTI_EMR_MR5_Msk (0x1UL << EXTI_EMR_MR5_Pos) /*!< 0x00000020 */
+#define EXTI_EMR_MR5 EXTI_EMR_MR5_Msk /*!< Event Mask on line 5 */
+#define EXTI_EMR_MR6_Pos (6U)
+#define EXTI_EMR_MR6_Msk (0x1UL << EXTI_EMR_MR6_Pos) /*!< 0x00000040 */
+#define EXTI_EMR_MR6 EXTI_EMR_MR6_Msk /*!< Event Mask on line 6 */
+#define EXTI_EMR_MR7_Pos (7U)
+#define EXTI_EMR_MR7_Msk (0x1UL << EXTI_EMR_MR7_Pos) /*!< 0x00000080 */
+#define EXTI_EMR_MR7 EXTI_EMR_MR7_Msk /*!< Event Mask on line 7 */
+#define EXTI_EMR_MR8_Pos (8U)
+#define EXTI_EMR_MR8_Msk (0x1UL << EXTI_EMR_MR8_Pos) /*!< 0x00000100 */
+#define EXTI_EMR_MR8 EXTI_EMR_MR8_Msk /*!< Event Mask on line 8 */
+#define EXTI_EMR_MR9_Pos (9U)
+#define EXTI_EMR_MR9_Msk (0x1UL << EXTI_EMR_MR9_Pos) /*!< 0x00000200 */
+#define EXTI_EMR_MR9 EXTI_EMR_MR9_Msk /*!< Event Mask on line 9 */
+#define EXTI_EMR_MR10_Pos (10U)
+#define EXTI_EMR_MR10_Msk (0x1UL << EXTI_EMR_MR10_Pos) /*!< 0x00000400 */
+#define EXTI_EMR_MR10 EXTI_EMR_MR10_Msk /*!< Event Mask on line 10 */
+#define EXTI_EMR_MR11_Pos (11U)
+#define EXTI_EMR_MR11_Msk (0x1UL << EXTI_EMR_MR11_Pos) /*!< 0x00000800 */
+#define EXTI_EMR_MR11 EXTI_EMR_MR11_Msk /*!< Event Mask on line 11 */
+#define EXTI_EMR_MR12_Pos (12U)
+#define EXTI_EMR_MR12_Msk (0x1UL << EXTI_EMR_MR12_Pos) /*!< 0x00001000 */
+#define EXTI_EMR_MR12 EXTI_EMR_MR12_Msk /*!< Event Mask on line 12 */
+#define EXTI_EMR_MR13_Pos (13U)
+#define EXTI_EMR_MR13_Msk (0x1UL << EXTI_EMR_MR13_Pos) /*!< 0x00002000 */
+#define EXTI_EMR_MR13 EXTI_EMR_MR13_Msk /*!< Event Mask on line 13 */
+#define EXTI_EMR_MR14_Pos (14U)
+#define EXTI_EMR_MR14_Msk (0x1UL << EXTI_EMR_MR14_Pos) /*!< 0x00004000 */
+#define EXTI_EMR_MR14 EXTI_EMR_MR14_Msk /*!< Event Mask on line 14 */
+#define EXTI_EMR_MR15_Pos (15U)
+#define EXTI_EMR_MR15_Msk (0x1UL << EXTI_EMR_MR15_Pos) /*!< 0x00008000 */
+#define EXTI_EMR_MR15 EXTI_EMR_MR15_Msk /*!< Event Mask on line 15 */
+#define EXTI_EMR_MR16_Pos (16U)
+#define EXTI_EMR_MR16_Msk (0x1UL << EXTI_EMR_MR16_Pos) /*!< 0x00010000 */
+#define EXTI_EMR_MR16 EXTI_EMR_MR16_Msk /*!< Event Mask on line 16 */
+#define EXTI_EMR_MR17_Pos (17U)
+#define EXTI_EMR_MR17_Msk (0x1UL << EXTI_EMR_MR17_Pos) /*!< 0x00020000 */
+#define EXTI_EMR_MR17 EXTI_EMR_MR17_Msk /*!< Event Mask on line 17 */
+#define EXTI_EMR_MR18_Pos (18U)
+#define EXTI_EMR_MR18_Msk (0x1UL << EXTI_EMR_MR18_Pos) /*!< 0x00040000 */
+#define EXTI_EMR_MR18 EXTI_EMR_MR18_Msk /*!< Event Mask on line 18 */
+
+/* References Defines */
+#define EXTI_EMR_EM0 EXTI_EMR_MR0
+#define EXTI_EMR_EM1 EXTI_EMR_MR1
+#define EXTI_EMR_EM2 EXTI_EMR_MR2
+#define EXTI_EMR_EM3 EXTI_EMR_MR3
+#define EXTI_EMR_EM4 EXTI_EMR_MR4
+#define EXTI_EMR_EM5 EXTI_EMR_MR5
+#define EXTI_EMR_EM6 EXTI_EMR_MR6
+#define EXTI_EMR_EM7 EXTI_EMR_MR7
+#define EXTI_EMR_EM8 EXTI_EMR_MR8
+#define EXTI_EMR_EM9 EXTI_EMR_MR9
+#define EXTI_EMR_EM10 EXTI_EMR_MR10
+#define EXTI_EMR_EM11 EXTI_EMR_MR11
+#define EXTI_EMR_EM12 EXTI_EMR_MR12
+#define EXTI_EMR_EM13 EXTI_EMR_MR13
+#define EXTI_EMR_EM14 EXTI_EMR_MR14
+#define EXTI_EMR_EM15 EXTI_EMR_MR15
+#define EXTI_EMR_EM16 EXTI_EMR_MR16
+#define EXTI_EMR_EM17 EXTI_EMR_MR17
+#define EXTI_EMR_EM18 EXTI_EMR_MR18
+
+/****************** Bit definition for EXTI_RTSR register *******************/
+#define EXTI_RTSR_TR0_Pos (0U)
+#define EXTI_RTSR_TR0_Msk (0x1UL << EXTI_RTSR_TR0_Pos) /*!< 0x00000001 */
+#define EXTI_RTSR_TR0 EXTI_RTSR_TR0_Msk /*!< Rising trigger event configuration bit of line 0 */
+#define EXTI_RTSR_TR1_Pos (1U)
+#define EXTI_RTSR_TR1_Msk (0x1UL << EXTI_RTSR_TR1_Pos) /*!< 0x00000002 */
+#define EXTI_RTSR_TR1 EXTI_RTSR_TR1_Msk /*!< Rising trigger event configuration bit of line 1 */
+#define EXTI_RTSR_TR2_Pos (2U)
+#define EXTI_RTSR_TR2_Msk (0x1UL << EXTI_RTSR_TR2_Pos) /*!< 0x00000004 */
+#define EXTI_RTSR_TR2 EXTI_RTSR_TR2_Msk /*!< Rising trigger event configuration bit of line 2 */
+#define EXTI_RTSR_TR3_Pos (3U)
+#define EXTI_RTSR_TR3_Msk (0x1UL << EXTI_RTSR_TR3_Pos) /*!< 0x00000008 */
+#define EXTI_RTSR_TR3 EXTI_RTSR_TR3_Msk /*!< Rising trigger event configuration bit of line 3 */
+#define EXTI_RTSR_TR4_Pos (4U)
+#define EXTI_RTSR_TR4_Msk (0x1UL << EXTI_RTSR_TR4_Pos) /*!< 0x00000010 */
+#define EXTI_RTSR_TR4 EXTI_RTSR_TR4_Msk /*!< Rising trigger event configuration bit of line 4 */
+#define EXTI_RTSR_TR5_Pos (5U)
+#define EXTI_RTSR_TR5_Msk (0x1UL << EXTI_RTSR_TR5_Pos) /*!< 0x00000020 */
+#define EXTI_RTSR_TR5 EXTI_RTSR_TR5_Msk /*!< Rising trigger event configuration bit of line 5 */
+#define EXTI_RTSR_TR6_Pos (6U)
+#define EXTI_RTSR_TR6_Msk (0x1UL << EXTI_RTSR_TR6_Pos) /*!< 0x00000040 */
+#define EXTI_RTSR_TR6 EXTI_RTSR_TR6_Msk /*!< Rising trigger event configuration bit of line 6 */
+#define EXTI_RTSR_TR7_Pos (7U)
+#define EXTI_RTSR_TR7_Msk (0x1UL << EXTI_RTSR_TR7_Pos) /*!< 0x00000080 */
+#define EXTI_RTSR_TR7 EXTI_RTSR_TR7_Msk /*!< Rising trigger event configuration bit of line 7 */
+#define EXTI_RTSR_TR8_Pos (8U)
+#define EXTI_RTSR_TR8_Msk (0x1UL << EXTI_RTSR_TR8_Pos) /*!< 0x00000100 */
+#define EXTI_RTSR_TR8 EXTI_RTSR_TR8_Msk /*!< Rising trigger event configuration bit of line 8 */
+#define EXTI_RTSR_TR9_Pos (9U)
+#define EXTI_RTSR_TR9_Msk (0x1UL << EXTI_RTSR_TR9_Pos) /*!< 0x00000200 */
+#define EXTI_RTSR_TR9 EXTI_RTSR_TR9_Msk /*!< Rising trigger event configuration bit of line 9 */
+#define EXTI_RTSR_TR10_Pos (10U)
+#define EXTI_RTSR_TR10_Msk (0x1UL << EXTI_RTSR_TR10_Pos) /*!< 0x00000400 */
+#define EXTI_RTSR_TR10 EXTI_RTSR_TR10_Msk /*!< Rising trigger event configuration bit of line 10 */
+#define EXTI_RTSR_TR11_Pos (11U)
+#define EXTI_RTSR_TR11_Msk (0x1UL << EXTI_RTSR_TR11_Pos) /*!< 0x00000800 */
+#define EXTI_RTSR_TR11 EXTI_RTSR_TR11_Msk /*!< Rising trigger event configuration bit of line 11 */
+#define EXTI_RTSR_TR12_Pos (12U)
+#define EXTI_RTSR_TR12_Msk (0x1UL << EXTI_RTSR_TR12_Pos) /*!< 0x00001000 */
+#define EXTI_RTSR_TR12 EXTI_RTSR_TR12_Msk /*!< Rising trigger event configuration bit of line 12 */
+#define EXTI_RTSR_TR13_Pos (13U)
+#define EXTI_RTSR_TR13_Msk (0x1UL << EXTI_RTSR_TR13_Pos) /*!< 0x00002000 */
+#define EXTI_RTSR_TR13 EXTI_RTSR_TR13_Msk /*!< Rising trigger event configuration bit of line 13 */
+#define EXTI_RTSR_TR14_Pos (14U)
+#define EXTI_RTSR_TR14_Msk (0x1UL << EXTI_RTSR_TR14_Pos) /*!< 0x00004000 */
+#define EXTI_RTSR_TR14 EXTI_RTSR_TR14_Msk /*!< Rising trigger event configuration bit of line 14 */
+#define EXTI_RTSR_TR15_Pos (15U)
+#define EXTI_RTSR_TR15_Msk (0x1UL << EXTI_RTSR_TR15_Pos) /*!< 0x00008000 */
+#define EXTI_RTSR_TR15 EXTI_RTSR_TR15_Msk /*!< Rising trigger event configuration bit of line 15 */
+#define EXTI_RTSR_TR16_Pos (16U)
+#define EXTI_RTSR_TR16_Msk (0x1UL << EXTI_RTSR_TR16_Pos) /*!< 0x00010000 */
+#define EXTI_RTSR_TR16 EXTI_RTSR_TR16_Msk /*!< Rising trigger event configuration bit of line 16 */
+#define EXTI_RTSR_TR17_Pos (17U)
+#define EXTI_RTSR_TR17_Msk (0x1UL << EXTI_RTSR_TR17_Pos) /*!< 0x00020000 */
+#define EXTI_RTSR_TR17 EXTI_RTSR_TR17_Msk /*!< Rising trigger event configuration bit of line 17 */
+#define EXTI_RTSR_TR18_Pos (18U)
+#define EXTI_RTSR_TR18_Msk (0x1UL << EXTI_RTSR_TR18_Pos) /*!< 0x00040000 */
+#define EXTI_RTSR_TR18 EXTI_RTSR_TR18_Msk /*!< Rising trigger event configuration bit of line 18 */
+
+/* References Defines */
+#define EXTI_RTSR_RT0 EXTI_RTSR_TR0
+#define EXTI_RTSR_RT1 EXTI_RTSR_TR1
+#define EXTI_RTSR_RT2 EXTI_RTSR_TR2
+#define EXTI_RTSR_RT3 EXTI_RTSR_TR3
+#define EXTI_RTSR_RT4 EXTI_RTSR_TR4
+#define EXTI_RTSR_RT5 EXTI_RTSR_TR5
+#define EXTI_RTSR_RT6 EXTI_RTSR_TR6
+#define EXTI_RTSR_RT7 EXTI_RTSR_TR7
+#define EXTI_RTSR_RT8 EXTI_RTSR_TR8
+#define EXTI_RTSR_RT9 EXTI_RTSR_TR9
+#define EXTI_RTSR_RT10 EXTI_RTSR_TR10
+#define EXTI_RTSR_RT11 EXTI_RTSR_TR11
+#define EXTI_RTSR_RT12 EXTI_RTSR_TR12
+#define EXTI_RTSR_RT13 EXTI_RTSR_TR13
+#define EXTI_RTSR_RT14 EXTI_RTSR_TR14
+#define EXTI_RTSR_RT15 EXTI_RTSR_TR15
+#define EXTI_RTSR_RT16 EXTI_RTSR_TR16
+#define EXTI_RTSR_RT17 EXTI_RTSR_TR17
+#define EXTI_RTSR_RT18 EXTI_RTSR_TR18
+
+/****************** Bit definition for EXTI_FTSR register *******************/
+#define EXTI_FTSR_TR0_Pos (0U)
+#define EXTI_FTSR_TR0_Msk (0x1UL << EXTI_FTSR_TR0_Pos) /*!< 0x00000001 */
+#define EXTI_FTSR_TR0 EXTI_FTSR_TR0_Msk /*!< Falling trigger event configuration bit of line 0 */
+#define EXTI_FTSR_TR1_Pos (1U)
+#define EXTI_FTSR_TR1_Msk (0x1UL << EXTI_FTSR_TR1_Pos) /*!< 0x00000002 */
+#define EXTI_FTSR_TR1 EXTI_FTSR_TR1_Msk /*!< Falling trigger event configuration bit of line 1 */
+#define EXTI_FTSR_TR2_Pos (2U)
+#define EXTI_FTSR_TR2_Msk (0x1UL << EXTI_FTSR_TR2_Pos) /*!< 0x00000004 */
+#define EXTI_FTSR_TR2 EXTI_FTSR_TR2_Msk /*!< Falling trigger event configuration bit of line 2 */
+#define EXTI_FTSR_TR3_Pos (3U)
+#define EXTI_FTSR_TR3_Msk (0x1UL << EXTI_FTSR_TR3_Pos) /*!< 0x00000008 */
+#define EXTI_FTSR_TR3 EXTI_FTSR_TR3_Msk /*!< Falling trigger event configuration bit of line 3 */
+#define EXTI_FTSR_TR4_Pos (4U)
+#define EXTI_FTSR_TR4_Msk (0x1UL << EXTI_FTSR_TR4_Pos) /*!< 0x00000010 */
+#define EXTI_FTSR_TR4 EXTI_FTSR_TR4_Msk /*!< Falling trigger event configuration bit of line 4 */
+#define EXTI_FTSR_TR5_Pos (5U)
+#define EXTI_FTSR_TR5_Msk (0x1UL << EXTI_FTSR_TR5_Pos) /*!< 0x00000020 */
+#define EXTI_FTSR_TR5 EXTI_FTSR_TR5_Msk /*!< Falling trigger event configuration bit of line 5 */
+#define EXTI_FTSR_TR6_Pos (6U)
+#define EXTI_FTSR_TR6_Msk (0x1UL << EXTI_FTSR_TR6_Pos) /*!< 0x00000040 */
+#define EXTI_FTSR_TR6 EXTI_FTSR_TR6_Msk /*!< Falling trigger event configuration bit of line 6 */
+#define EXTI_FTSR_TR7_Pos (7U)
+#define EXTI_FTSR_TR7_Msk (0x1UL << EXTI_FTSR_TR7_Pos) /*!< 0x00000080 */
+#define EXTI_FTSR_TR7 EXTI_FTSR_TR7_Msk /*!< Falling trigger event configuration bit of line 7 */
+#define EXTI_FTSR_TR8_Pos (8U)
+#define EXTI_FTSR_TR8_Msk (0x1UL << EXTI_FTSR_TR8_Pos) /*!< 0x00000100 */
+#define EXTI_FTSR_TR8 EXTI_FTSR_TR8_Msk /*!< Falling trigger event configuration bit of line 8 */
+#define EXTI_FTSR_TR9_Pos (9U)
+#define EXTI_FTSR_TR9_Msk (0x1UL << EXTI_FTSR_TR9_Pos) /*!< 0x00000200 */
+#define EXTI_FTSR_TR9 EXTI_FTSR_TR9_Msk /*!< Falling trigger event configuration bit of line 9 */
+#define EXTI_FTSR_TR10_Pos (10U)
+#define EXTI_FTSR_TR10_Msk (0x1UL << EXTI_FTSR_TR10_Pos) /*!< 0x00000400 */
+#define EXTI_FTSR_TR10 EXTI_FTSR_TR10_Msk /*!< Falling trigger event configuration bit of line 10 */
+#define EXTI_FTSR_TR11_Pos (11U)
+#define EXTI_FTSR_TR11_Msk (0x1UL << EXTI_FTSR_TR11_Pos) /*!< 0x00000800 */
+#define EXTI_FTSR_TR11 EXTI_FTSR_TR11_Msk /*!< Falling trigger event configuration bit of line 11 */
+#define EXTI_FTSR_TR12_Pos (12U)
+#define EXTI_FTSR_TR12_Msk (0x1UL << EXTI_FTSR_TR12_Pos) /*!< 0x00001000 */
+#define EXTI_FTSR_TR12 EXTI_FTSR_TR12_Msk /*!< Falling trigger event configuration bit of line 12 */
+#define EXTI_FTSR_TR13_Pos (13U)
+#define EXTI_FTSR_TR13_Msk (0x1UL << EXTI_FTSR_TR13_Pos) /*!< 0x00002000 */
+#define EXTI_FTSR_TR13 EXTI_FTSR_TR13_Msk /*!< Falling trigger event configuration bit of line 13 */
+#define EXTI_FTSR_TR14_Pos (14U)
+#define EXTI_FTSR_TR14_Msk (0x1UL << EXTI_FTSR_TR14_Pos) /*!< 0x00004000 */
+#define EXTI_FTSR_TR14 EXTI_FTSR_TR14_Msk /*!< Falling trigger event configuration bit of line 14 */
+#define EXTI_FTSR_TR15_Pos (15U)
+#define EXTI_FTSR_TR15_Msk (0x1UL << EXTI_FTSR_TR15_Pos) /*!< 0x00008000 */
+#define EXTI_FTSR_TR15 EXTI_FTSR_TR15_Msk /*!< Falling trigger event configuration bit of line 15 */
+#define EXTI_FTSR_TR16_Pos (16U)
+#define EXTI_FTSR_TR16_Msk (0x1UL << EXTI_FTSR_TR16_Pos) /*!< 0x00010000 */
+#define EXTI_FTSR_TR16 EXTI_FTSR_TR16_Msk /*!< Falling trigger event configuration bit of line 16 */
+#define EXTI_FTSR_TR17_Pos (17U)
+#define EXTI_FTSR_TR17_Msk (0x1UL << EXTI_FTSR_TR17_Pos) /*!< 0x00020000 */
+#define EXTI_FTSR_TR17 EXTI_FTSR_TR17_Msk /*!< Falling trigger event configuration bit of line 17 */
+#define EXTI_FTSR_TR18_Pos (18U)
+#define EXTI_FTSR_TR18_Msk (0x1UL << EXTI_FTSR_TR18_Pos) /*!< 0x00040000 */
+#define EXTI_FTSR_TR18 EXTI_FTSR_TR18_Msk /*!< Falling trigger event configuration bit of line 18 */
+
+/* References Defines */
+#define EXTI_FTSR_FT0 EXTI_FTSR_TR0
+#define EXTI_FTSR_FT1 EXTI_FTSR_TR1
+#define EXTI_FTSR_FT2 EXTI_FTSR_TR2
+#define EXTI_FTSR_FT3 EXTI_FTSR_TR3
+#define EXTI_FTSR_FT4 EXTI_FTSR_TR4
+#define EXTI_FTSR_FT5 EXTI_FTSR_TR5
+#define EXTI_FTSR_FT6 EXTI_FTSR_TR6
+#define EXTI_FTSR_FT7 EXTI_FTSR_TR7
+#define EXTI_FTSR_FT8 EXTI_FTSR_TR8
+#define EXTI_FTSR_FT9 EXTI_FTSR_TR9
+#define EXTI_FTSR_FT10 EXTI_FTSR_TR10
+#define EXTI_FTSR_FT11 EXTI_FTSR_TR11
+#define EXTI_FTSR_FT12 EXTI_FTSR_TR12
+#define EXTI_FTSR_FT13 EXTI_FTSR_TR13
+#define EXTI_FTSR_FT14 EXTI_FTSR_TR14
+#define EXTI_FTSR_FT15 EXTI_FTSR_TR15
+#define EXTI_FTSR_FT16 EXTI_FTSR_TR16
+#define EXTI_FTSR_FT17 EXTI_FTSR_TR17
+#define EXTI_FTSR_FT18 EXTI_FTSR_TR18
+
+/****************** Bit definition for EXTI_SWIER register ******************/
+#define EXTI_SWIER_SWIER0_Pos (0U)
+#define EXTI_SWIER_SWIER0_Msk (0x1UL << EXTI_SWIER_SWIER0_Pos) /*!< 0x00000001 */
+#define EXTI_SWIER_SWIER0 EXTI_SWIER_SWIER0_Msk /*!< Software Interrupt on line 0 */
+#define EXTI_SWIER_SWIER1_Pos (1U)
+#define EXTI_SWIER_SWIER1_Msk (0x1UL << EXTI_SWIER_SWIER1_Pos) /*!< 0x00000002 */
+#define EXTI_SWIER_SWIER1 EXTI_SWIER_SWIER1_Msk /*!< Software Interrupt on line 1 */
+#define EXTI_SWIER_SWIER2_Pos (2U)
+#define EXTI_SWIER_SWIER2_Msk (0x1UL << EXTI_SWIER_SWIER2_Pos) /*!< 0x00000004 */
+#define EXTI_SWIER_SWIER2 EXTI_SWIER_SWIER2_Msk /*!< Software Interrupt on line 2 */
+#define EXTI_SWIER_SWIER3_Pos (3U)
+#define EXTI_SWIER_SWIER3_Msk (0x1UL << EXTI_SWIER_SWIER3_Pos) /*!< 0x00000008 */
+#define EXTI_SWIER_SWIER3 EXTI_SWIER_SWIER3_Msk /*!< Software Interrupt on line 3 */
+#define EXTI_SWIER_SWIER4_Pos (4U)
+#define EXTI_SWIER_SWIER4_Msk (0x1UL << EXTI_SWIER_SWIER4_Pos) /*!< 0x00000010 */
+#define EXTI_SWIER_SWIER4 EXTI_SWIER_SWIER4_Msk /*!< Software Interrupt on line 4 */
+#define EXTI_SWIER_SWIER5_Pos (5U)
+#define EXTI_SWIER_SWIER5_Msk (0x1UL << EXTI_SWIER_SWIER5_Pos) /*!< 0x00000020 */
+#define EXTI_SWIER_SWIER5 EXTI_SWIER_SWIER5_Msk /*!< Software Interrupt on line 5 */
+#define EXTI_SWIER_SWIER6_Pos (6U)
+#define EXTI_SWIER_SWIER6_Msk (0x1UL << EXTI_SWIER_SWIER6_Pos) /*!< 0x00000040 */
+#define EXTI_SWIER_SWIER6 EXTI_SWIER_SWIER6_Msk /*!< Software Interrupt on line 6 */
+#define EXTI_SWIER_SWIER7_Pos (7U)
+#define EXTI_SWIER_SWIER7_Msk (0x1UL << EXTI_SWIER_SWIER7_Pos) /*!< 0x00000080 */
+#define EXTI_SWIER_SWIER7 EXTI_SWIER_SWIER7_Msk /*!< Software Interrupt on line 7 */
+#define EXTI_SWIER_SWIER8_Pos (8U)
+#define EXTI_SWIER_SWIER8_Msk (0x1UL << EXTI_SWIER_SWIER8_Pos) /*!< 0x00000100 */
+#define EXTI_SWIER_SWIER8 EXTI_SWIER_SWIER8_Msk /*!< Software Interrupt on line 8 */
+#define EXTI_SWIER_SWIER9_Pos (9U)
+#define EXTI_SWIER_SWIER9_Msk (0x1UL << EXTI_SWIER_SWIER9_Pos) /*!< 0x00000200 */
+#define EXTI_SWIER_SWIER9 EXTI_SWIER_SWIER9_Msk /*!< Software Interrupt on line 9 */
+#define EXTI_SWIER_SWIER10_Pos (10U)
+#define EXTI_SWIER_SWIER10_Msk (0x1UL << EXTI_SWIER_SWIER10_Pos) /*!< 0x00000400 */
+#define EXTI_SWIER_SWIER10 EXTI_SWIER_SWIER10_Msk /*!< Software Interrupt on line 10 */
+#define EXTI_SWIER_SWIER11_Pos (11U)
+#define EXTI_SWIER_SWIER11_Msk (0x1UL << EXTI_SWIER_SWIER11_Pos) /*!< 0x00000800 */
+#define EXTI_SWIER_SWIER11 EXTI_SWIER_SWIER11_Msk /*!< Software Interrupt on line 11 */
+#define EXTI_SWIER_SWIER12_Pos (12U)
+#define EXTI_SWIER_SWIER12_Msk (0x1UL << EXTI_SWIER_SWIER12_Pos) /*!< 0x00001000 */
+#define EXTI_SWIER_SWIER12 EXTI_SWIER_SWIER12_Msk /*!< Software Interrupt on line 12 */
+#define EXTI_SWIER_SWIER13_Pos (13U)
+#define EXTI_SWIER_SWIER13_Msk (0x1UL << EXTI_SWIER_SWIER13_Pos) /*!< 0x00002000 */
+#define EXTI_SWIER_SWIER13 EXTI_SWIER_SWIER13_Msk /*!< Software Interrupt on line 13 */
+#define EXTI_SWIER_SWIER14_Pos (14U)
+#define EXTI_SWIER_SWIER14_Msk (0x1UL << EXTI_SWIER_SWIER14_Pos) /*!< 0x00004000 */
+#define EXTI_SWIER_SWIER14 EXTI_SWIER_SWIER14_Msk /*!< Software Interrupt on line 14 */
+#define EXTI_SWIER_SWIER15_Pos (15U)
+#define EXTI_SWIER_SWIER15_Msk (0x1UL << EXTI_SWIER_SWIER15_Pos) /*!< 0x00008000 */
+#define EXTI_SWIER_SWIER15 EXTI_SWIER_SWIER15_Msk /*!< Software Interrupt on line 15 */
+#define EXTI_SWIER_SWIER16_Pos (16U)
+#define EXTI_SWIER_SWIER16_Msk (0x1UL << EXTI_SWIER_SWIER16_Pos) /*!< 0x00010000 */
+#define EXTI_SWIER_SWIER16 EXTI_SWIER_SWIER16_Msk /*!< Software Interrupt on line 16 */
+#define EXTI_SWIER_SWIER17_Pos (17U)
+#define EXTI_SWIER_SWIER17_Msk (0x1UL << EXTI_SWIER_SWIER17_Pos) /*!< 0x00020000 */
+#define EXTI_SWIER_SWIER17 EXTI_SWIER_SWIER17_Msk /*!< Software Interrupt on line 17 */
+#define EXTI_SWIER_SWIER18_Pos (18U)
+#define EXTI_SWIER_SWIER18_Msk (0x1UL << EXTI_SWIER_SWIER18_Pos) /*!< 0x00040000 */
+#define EXTI_SWIER_SWIER18 EXTI_SWIER_SWIER18_Msk /*!< Software Interrupt on line 18 */
+
+/* References Defines */
+#define EXTI_SWIER_SWI0 EXTI_SWIER_SWIER0
+#define EXTI_SWIER_SWI1 EXTI_SWIER_SWIER1
+#define EXTI_SWIER_SWI2 EXTI_SWIER_SWIER2
+#define EXTI_SWIER_SWI3 EXTI_SWIER_SWIER3
+#define EXTI_SWIER_SWI4 EXTI_SWIER_SWIER4
+#define EXTI_SWIER_SWI5 EXTI_SWIER_SWIER5
+#define EXTI_SWIER_SWI6 EXTI_SWIER_SWIER6
+#define EXTI_SWIER_SWI7 EXTI_SWIER_SWIER7
+#define EXTI_SWIER_SWI8 EXTI_SWIER_SWIER8
+#define EXTI_SWIER_SWI9 EXTI_SWIER_SWIER9
+#define EXTI_SWIER_SWI10 EXTI_SWIER_SWIER10
+#define EXTI_SWIER_SWI11 EXTI_SWIER_SWIER11
+#define EXTI_SWIER_SWI12 EXTI_SWIER_SWIER12
+#define EXTI_SWIER_SWI13 EXTI_SWIER_SWIER13
+#define EXTI_SWIER_SWI14 EXTI_SWIER_SWIER14
+#define EXTI_SWIER_SWI15 EXTI_SWIER_SWIER15
+#define EXTI_SWIER_SWI16 EXTI_SWIER_SWIER16
+#define EXTI_SWIER_SWI17 EXTI_SWIER_SWIER17
+#define EXTI_SWIER_SWI18 EXTI_SWIER_SWIER18
+
+/******************* Bit definition for EXTI_PR register ********************/
+#define EXTI_PR_PR0_Pos (0U)
+#define EXTI_PR_PR0_Msk (0x1UL << EXTI_PR_PR0_Pos) /*!< 0x00000001 */
+#define EXTI_PR_PR0 EXTI_PR_PR0_Msk /*!< Pending bit for line 0 */
+#define EXTI_PR_PR1_Pos (1U)
+#define EXTI_PR_PR1_Msk (0x1UL << EXTI_PR_PR1_Pos) /*!< 0x00000002 */
+#define EXTI_PR_PR1 EXTI_PR_PR1_Msk /*!< Pending bit for line 1 */
+#define EXTI_PR_PR2_Pos (2U)
+#define EXTI_PR_PR2_Msk (0x1UL << EXTI_PR_PR2_Pos) /*!< 0x00000004 */
+#define EXTI_PR_PR2 EXTI_PR_PR2_Msk /*!< Pending bit for line 2 */
+#define EXTI_PR_PR3_Pos (3U)
+#define EXTI_PR_PR3_Msk (0x1UL << EXTI_PR_PR3_Pos) /*!< 0x00000008 */
+#define EXTI_PR_PR3 EXTI_PR_PR3_Msk /*!< Pending bit for line 3 */
+#define EXTI_PR_PR4_Pos (4U)
+#define EXTI_PR_PR4_Msk (0x1UL << EXTI_PR_PR4_Pos) /*!< 0x00000010 */
+#define EXTI_PR_PR4 EXTI_PR_PR4_Msk /*!< Pending bit for line 4 */
+#define EXTI_PR_PR5_Pos (5U)
+#define EXTI_PR_PR5_Msk (0x1UL << EXTI_PR_PR5_Pos) /*!< 0x00000020 */
+#define EXTI_PR_PR5 EXTI_PR_PR5_Msk /*!< Pending bit for line 5 */
+#define EXTI_PR_PR6_Pos (6U)
+#define EXTI_PR_PR6_Msk (0x1UL << EXTI_PR_PR6_Pos) /*!< 0x00000040 */
+#define EXTI_PR_PR6 EXTI_PR_PR6_Msk /*!< Pending bit for line 6 */
+#define EXTI_PR_PR7_Pos (7U)
+#define EXTI_PR_PR7_Msk (0x1UL << EXTI_PR_PR7_Pos) /*!< 0x00000080 */
+#define EXTI_PR_PR7 EXTI_PR_PR7_Msk /*!< Pending bit for line 7 */
+#define EXTI_PR_PR8_Pos (8U)
+#define EXTI_PR_PR8_Msk (0x1UL << EXTI_PR_PR8_Pos) /*!< 0x00000100 */
+#define EXTI_PR_PR8 EXTI_PR_PR8_Msk /*!< Pending bit for line 8 */
+#define EXTI_PR_PR9_Pos (9U)
+#define EXTI_PR_PR9_Msk (0x1UL << EXTI_PR_PR9_Pos) /*!< 0x00000200 */
+#define EXTI_PR_PR9 EXTI_PR_PR9_Msk /*!< Pending bit for line 9 */
+#define EXTI_PR_PR10_Pos (10U)
+#define EXTI_PR_PR10_Msk (0x1UL << EXTI_PR_PR10_Pos) /*!< 0x00000400 */
+#define EXTI_PR_PR10 EXTI_PR_PR10_Msk /*!< Pending bit for line 10 */
+#define EXTI_PR_PR11_Pos (11U)
+#define EXTI_PR_PR11_Msk (0x1UL << EXTI_PR_PR11_Pos) /*!< 0x00000800 */
+#define EXTI_PR_PR11 EXTI_PR_PR11_Msk /*!< Pending bit for line 11 */
+#define EXTI_PR_PR12_Pos (12U)
+#define EXTI_PR_PR12_Msk (0x1UL << EXTI_PR_PR12_Pos) /*!< 0x00001000 */
+#define EXTI_PR_PR12 EXTI_PR_PR12_Msk /*!< Pending bit for line 12 */
+#define EXTI_PR_PR13_Pos (13U)
+#define EXTI_PR_PR13_Msk (0x1UL << EXTI_PR_PR13_Pos) /*!< 0x00002000 */
+#define EXTI_PR_PR13 EXTI_PR_PR13_Msk /*!< Pending bit for line 13 */
+#define EXTI_PR_PR14_Pos (14U)
+#define EXTI_PR_PR14_Msk (0x1UL << EXTI_PR_PR14_Pos) /*!< 0x00004000 */
+#define EXTI_PR_PR14 EXTI_PR_PR14_Msk /*!< Pending bit for line 14 */
+#define EXTI_PR_PR15_Pos (15U)
+#define EXTI_PR_PR15_Msk (0x1UL << EXTI_PR_PR15_Pos) /*!< 0x00008000 */
+#define EXTI_PR_PR15 EXTI_PR_PR15_Msk /*!< Pending bit for line 15 */
+#define EXTI_PR_PR16_Pos (16U)
+#define EXTI_PR_PR16_Msk (0x1UL << EXTI_PR_PR16_Pos) /*!< 0x00010000 */
+#define EXTI_PR_PR16 EXTI_PR_PR16_Msk /*!< Pending bit for line 16 */
+#define EXTI_PR_PR17_Pos (17U)
+#define EXTI_PR_PR17_Msk (0x1UL << EXTI_PR_PR17_Pos) /*!< 0x00020000 */
+#define EXTI_PR_PR17 EXTI_PR_PR17_Msk /*!< Pending bit for line 17 */
+#define EXTI_PR_PR18_Pos (18U)
+#define EXTI_PR_PR18_Msk (0x1UL << EXTI_PR_PR18_Pos) /*!< 0x00040000 */
+#define EXTI_PR_PR18 EXTI_PR_PR18_Msk /*!< Pending bit for line 18 */
+
+/* References Defines */
+#define EXTI_PR_PIF0 EXTI_PR_PR0
+#define EXTI_PR_PIF1 EXTI_PR_PR1
+#define EXTI_PR_PIF2 EXTI_PR_PR2
+#define EXTI_PR_PIF3 EXTI_PR_PR3
+#define EXTI_PR_PIF4 EXTI_PR_PR4
+#define EXTI_PR_PIF5 EXTI_PR_PR5
+#define EXTI_PR_PIF6 EXTI_PR_PR6
+#define EXTI_PR_PIF7 EXTI_PR_PR7
+#define EXTI_PR_PIF8 EXTI_PR_PR8
+#define EXTI_PR_PIF9 EXTI_PR_PR9
+#define EXTI_PR_PIF10 EXTI_PR_PR10
+#define EXTI_PR_PIF11 EXTI_PR_PR11
+#define EXTI_PR_PIF12 EXTI_PR_PR12
+#define EXTI_PR_PIF13 EXTI_PR_PR13
+#define EXTI_PR_PIF14 EXTI_PR_PR14
+#define EXTI_PR_PIF15 EXTI_PR_PR15
+#define EXTI_PR_PIF16 EXTI_PR_PR16
+#define EXTI_PR_PIF17 EXTI_PR_PR17
+#define EXTI_PR_PIF18 EXTI_PR_PR18
+
+/******************************************************************************/
+/* */
+/* DMA Controller */
+/* */
+/******************************************************************************/
+
+/******************* Bit definition for DMA_ISR register ********************/
+#define DMA_ISR_GIF1_Pos (0U)
+#define DMA_ISR_GIF1_Msk (0x1UL << DMA_ISR_GIF1_Pos) /*!< 0x00000001 */
+#define DMA_ISR_GIF1 DMA_ISR_GIF1_Msk /*!< Channel 1 Global interrupt flag */
+#define DMA_ISR_TCIF1_Pos (1U)
+#define DMA_ISR_TCIF1_Msk (0x1UL << DMA_ISR_TCIF1_Pos) /*!< 0x00000002 */
+#define DMA_ISR_TCIF1 DMA_ISR_TCIF1_Msk /*!< Channel 1 Transfer Complete flag */
+#define DMA_ISR_HTIF1_Pos (2U)
+#define DMA_ISR_HTIF1_Msk (0x1UL << DMA_ISR_HTIF1_Pos) /*!< 0x00000004 */
+#define DMA_ISR_HTIF1 DMA_ISR_HTIF1_Msk /*!< Channel 1 Half Transfer flag */
+#define DMA_ISR_TEIF1_Pos (3U)
+#define DMA_ISR_TEIF1_Msk (0x1UL << DMA_ISR_TEIF1_Pos) /*!< 0x00000008 */
+#define DMA_ISR_TEIF1 DMA_ISR_TEIF1_Msk /*!< Channel 1 Transfer Error flag */
+#define DMA_ISR_GIF2_Pos (4U)
+#define DMA_ISR_GIF2_Msk (0x1UL << DMA_ISR_GIF2_Pos) /*!< 0x00000010 */
+#define DMA_ISR_GIF2 DMA_ISR_GIF2_Msk /*!< Channel 2 Global interrupt flag */
+#define DMA_ISR_TCIF2_Pos (5U)
+#define DMA_ISR_TCIF2_Msk (0x1UL << DMA_ISR_TCIF2_Pos) /*!< 0x00000020 */
+#define DMA_ISR_TCIF2 DMA_ISR_TCIF2_Msk /*!< Channel 2 Transfer Complete flag */
+#define DMA_ISR_HTIF2_Pos (6U)
+#define DMA_ISR_HTIF2_Msk (0x1UL << DMA_ISR_HTIF2_Pos) /*!< 0x00000040 */
+#define DMA_ISR_HTIF2 DMA_ISR_HTIF2_Msk /*!< Channel 2 Half Transfer flag */
+#define DMA_ISR_TEIF2_Pos (7U)
+#define DMA_ISR_TEIF2_Msk (0x1UL << DMA_ISR_TEIF2_Pos) /*!< 0x00000080 */
+#define DMA_ISR_TEIF2 DMA_ISR_TEIF2_Msk /*!< Channel 2 Transfer Error flag */
+#define DMA_ISR_GIF3_Pos (8U)
+#define DMA_ISR_GIF3_Msk (0x1UL << DMA_ISR_GIF3_Pos) /*!< 0x00000100 */
+#define DMA_ISR_GIF3 DMA_ISR_GIF3_Msk /*!< Channel 3 Global interrupt flag */
+#define DMA_ISR_TCIF3_Pos (9U)
+#define DMA_ISR_TCIF3_Msk (0x1UL << DMA_ISR_TCIF3_Pos) /*!< 0x00000200 */
+#define DMA_ISR_TCIF3 DMA_ISR_TCIF3_Msk /*!< Channel 3 Transfer Complete flag */
+#define DMA_ISR_HTIF3_Pos (10U)
+#define DMA_ISR_HTIF3_Msk (0x1UL << DMA_ISR_HTIF3_Pos) /*!< 0x00000400 */
+#define DMA_ISR_HTIF3 DMA_ISR_HTIF3_Msk /*!< Channel 3 Half Transfer flag */
+#define DMA_ISR_TEIF3_Pos (11U)
+#define DMA_ISR_TEIF3_Msk (0x1UL << DMA_ISR_TEIF3_Pos) /*!< 0x00000800 */
+#define DMA_ISR_TEIF3 DMA_ISR_TEIF3_Msk /*!< Channel 3 Transfer Error flag */
+#define DMA_ISR_GIF4_Pos (12U)
+#define DMA_ISR_GIF4_Msk (0x1UL << DMA_ISR_GIF4_Pos) /*!< 0x00001000 */
+#define DMA_ISR_GIF4 DMA_ISR_GIF4_Msk /*!< Channel 4 Global interrupt flag */
+#define DMA_ISR_TCIF4_Pos (13U)
+#define DMA_ISR_TCIF4_Msk (0x1UL << DMA_ISR_TCIF4_Pos) /*!< 0x00002000 */
+#define DMA_ISR_TCIF4 DMA_ISR_TCIF4_Msk /*!< Channel 4 Transfer Complete flag */
+#define DMA_ISR_HTIF4_Pos (14U)
+#define DMA_ISR_HTIF4_Msk (0x1UL << DMA_ISR_HTIF4_Pos) /*!< 0x00004000 */
+#define DMA_ISR_HTIF4 DMA_ISR_HTIF4_Msk /*!< Channel 4 Half Transfer flag */
+#define DMA_ISR_TEIF4_Pos (15U)
+#define DMA_ISR_TEIF4_Msk (0x1UL << DMA_ISR_TEIF4_Pos) /*!< 0x00008000 */
+#define DMA_ISR_TEIF4 DMA_ISR_TEIF4_Msk /*!< Channel 4 Transfer Error flag */
+#define DMA_ISR_GIF5_Pos (16U)
+#define DMA_ISR_GIF5_Msk (0x1UL << DMA_ISR_GIF5_Pos) /*!< 0x00010000 */
+#define DMA_ISR_GIF5 DMA_ISR_GIF5_Msk /*!< Channel 5 Global interrupt flag */
+#define DMA_ISR_TCIF5_Pos (17U)
+#define DMA_ISR_TCIF5_Msk (0x1UL << DMA_ISR_TCIF5_Pos) /*!< 0x00020000 */
+#define DMA_ISR_TCIF5 DMA_ISR_TCIF5_Msk /*!< Channel 5 Transfer Complete flag */
+#define DMA_ISR_HTIF5_Pos (18U)
+#define DMA_ISR_HTIF5_Msk (0x1UL << DMA_ISR_HTIF5_Pos) /*!< 0x00040000 */
+#define DMA_ISR_HTIF5 DMA_ISR_HTIF5_Msk /*!< Channel 5 Half Transfer flag */
+#define DMA_ISR_TEIF5_Pos (19U)
+#define DMA_ISR_TEIF5_Msk (0x1UL << DMA_ISR_TEIF5_Pos) /*!< 0x00080000 */
+#define DMA_ISR_TEIF5 DMA_ISR_TEIF5_Msk /*!< Channel 5 Transfer Error flag */
+#define DMA_ISR_GIF6_Pos (20U)
+#define DMA_ISR_GIF6_Msk (0x1UL << DMA_ISR_GIF6_Pos) /*!< 0x00100000 */
+#define DMA_ISR_GIF6 DMA_ISR_GIF6_Msk /*!< Channel 6 Global interrupt flag */
+#define DMA_ISR_TCIF6_Pos (21U)
+#define DMA_ISR_TCIF6_Msk (0x1UL << DMA_ISR_TCIF6_Pos) /*!< 0x00200000 */
+#define DMA_ISR_TCIF6 DMA_ISR_TCIF6_Msk /*!< Channel 6 Transfer Complete flag */
+#define DMA_ISR_HTIF6_Pos (22U)
+#define DMA_ISR_HTIF6_Msk (0x1UL << DMA_ISR_HTIF6_Pos) /*!< 0x00400000 */
+#define DMA_ISR_HTIF6 DMA_ISR_HTIF6_Msk /*!< Channel 6 Half Transfer flag */
+#define DMA_ISR_TEIF6_Pos (23U)
+#define DMA_ISR_TEIF6_Msk (0x1UL << DMA_ISR_TEIF6_Pos) /*!< 0x00800000 */
+#define DMA_ISR_TEIF6 DMA_ISR_TEIF6_Msk /*!< Channel 6 Transfer Error flag */
+#define DMA_ISR_GIF7_Pos (24U)
+#define DMA_ISR_GIF7_Msk (0x1UL << DMA_ISR_GIF7_Pos) /*!< 0x01000000 */
+#define DMA_ISR_GIF7 DMA_ISR_GIF7_Msk /*!< Channel 7 Global interrupt flag */
+#define DMA_ISR_TCIF7_Pos (25U)
+#define DMA_ISR_TCIF7_Msk (0x1UL << DMA_ISR_TCIF7_Pos) /*!< 0x02000000 */
+#define DMA_ISR_TCIF7 DMA_ISR_TCIF7_Msk /*!< Channel 7 Transfer Complete flag */
+#define DMA_ISR_HTIF7_Pos (26U)
+#define DMA_ISR_HTIF7_Msk (0x1UL << DMA_ISR_HTIF7_Pos) /*!< 0x04000000 */
+#define DMA_ISR_HTIF7 DMA_ISR_HTIF7_Msk /*!< Channel 7 Half Transfer flag */
+#define DMA_ISR_TEIF7_Pos (27U)
+#define DMA_ISR_TEIF7_Msk (0x1UL << DMA_ISR_TEIF7_Pos) /*!< 0x08000000 */
+#define DMA_ISR_TEIF7 DMA_ISR_TEIF7_Msk /*!< Channel 7 Transfer Error flag */
+
+/******************* Bit definition for DMA_IFCR register *******************/
+#define DMA_IFCR_CGIF1_Pos (0U)
+#define DMA_IFCR_CGIF1_Msk (0x1UL << DMA_IFCR_CGIF1_Pos) /*!< 0x00000001 */
+#define DMA_IFCR_CGIF1 DMA_IFCR_CGIF1_Msk /*!< Channel 1 Global interrupt clear */
+#define DMA_IFCR_CTCIF1_Pos (1U)
+#define DMA_IFCR_CTCIF1_Msk (0x1UL << DMA_IFCR_CTCIF1_Pos) /*!< 0x00000002 */
+#define DMA_IFCR_CTCIF1 DMA_IFCR_CTCIF1_Msk /*!< Channel 1 Transfer Complete clear */
+#define DMA_IFCR_CHTIF1_Pos (2U)
+#define DMA_IFCR_CHTIF1_Msk (0x1UL << DMA_IFCR_CHTIF1_Pos) /*!< 0x00000004 */
+#define DMA_IFCR_CHTIF1 DMA_IFCR_CHTIF1_Msk /*!< Channel 1 Half Transfer clear */
+#define DMA_IFCR_CTEIF1_Pos (3U)
+#define DMA_IFCR_CTEIF1_Msk (0x1UL << DMA_IFCR_CTEIF1_Pos) /*!< 0x00000008 */
+#define DMA_IFCR_CTEIF1 DMA_IFCR_CTEIF1_Msk /*!< Channel 1 Transfer Error clear */
+#define DMA_IFCR_CGIF2_Pos (4U)
+#define DMA_IFCR_CGIF2_Msk (0x1UL << DMA_IFCR_CGIF2_Pos) /*!< 0x00000010 */
+#define DMA_IFCR_CGIF2 DMA_IFCR_CGIF2_Msk /*!< Channel 2 Global interrupt clear */
+#define DMA_IFCR_CTCIF2_Pos (5U)
+#define DMA_IFCR_CTCIF2_Msk (0x1UL << DMA_IFCR_CTCIF2_Pos) /*!< 0x00000020 */
+#define DMA_IFCR_CTCIF2 DMA_IFCR_CTCIF2_Msk /*!< Channel 2 Transfer Complete clear */
+#define DMA_IFCR_CHTIF2_Pos (6U)
+#define DMA_IFCR_CHTIF2_Msk (0x1UL << DMA_IFCR_CHTIF2_Pos) /*!< 0x00000040 */
+#define DMA_IFCR_CHTIF2 DMA_IFCR_CHTIF2_Msk /*!< Channel 2 Half Transfer clear */
+#define DMA_IFCR_CTEIF2_Pos (7U)
+#define DMA_IFCR_CTEIF2_Msk (0x1UL << DMA_IFCR_CTEIF2_Pos) /*!< 0x00000080 */
+#define DMA_IFCR_CTEIF2 DMA_IFCR_CTEIF2_Msk /*!< Channel 2 Transfer Error clear */
+#define DMA_IFCR_CGIF3_Pos (8U)
+#define DMA_IFCR_CGIF3_Msk (0x1UL << DMA_IFCR_CGIF3_Pos) /*!< 0x00000100 */
+#define DMA_IFCR_CGIF3 DMA_IFCR_CGIF3_Msk /*!< Channel 3 Global interrupt clear */
+#define DMA_IFCR_CTCIF3_Pos (9U)
+#define DMA_IFCR_CTCIF3_Msk (0x1UL << DMA_IFCR_CTCIF3_Pos) /*!< 0x00000200 */
+#define DMA_IFCR_CTCIF3 DMA_IFCR_CTCIF3_Msk /*!< Channel 3 Transfer Complete clear */
+#define DMA_IFCR_CHTIF3_Pos (10U)
+#define DMA_IFCR_CHTIF3_Msk (0x1UL << DMA_IFCR_CHTIF3_Pos) /*!< 0x00000400 */
+#define DMA_IFCR_CHTIF3 DMA_IFCR_CHTIF3_Msk /*!< Channel 3 Half Transfer clear */
+#define DMA_IFCR_CTEIF3_Pos (11U)
+#define DMA_IFCR_CTEIF3_Msk (0x1UL << DMA_IFCR_CTEIF3_Pos) /*!< 0x00000800 */
+#define DMA_IFCR_CTEIF3 DMA_IFCR_CTEIF3_Msk /*!< Channel 3 Transfer Error clear */
+#define DMA_IFCR_CGIF4_Pos (12U)
+#define DMA_IFCR_CGIF4_Msk (0x1UL << DMA_IFCR_CGIF4_Pos) /*!< 0x00001000 */
+#define DMA_IFCR_CGIF4 DMA_IFCR_CGIF4_Msk /*!< Channel 4 Global interrupt clear */
+#define DMA_IFCR_CTCIF4_Pos (13U)
+#define DMA_IFCR_CTCIF4_Msk (0x1UL << DMA_IFCR_CTCIF4_Pos) /*!< 0x00002000 */
+#define DMA_IFCR_CTCIF4 DMA_IFCR_CTCIF4_Msk /*!< Channel 4 Transfer Complete clear */
+#define DMA_IFCR_CHTIF4_Pos (14U)
+#define DMA_IFCR_CHTIF4_Msk (0x1UL << DMA_IFCR_CHTIF4_Pos) /*!< 0x00004000 */
+#define DMA_IFCR_CHTIF4 DMA_IFCR_CHTIF4_Msk /*!< Channel 4 Half Transfer clear */
+#define DMA_IFCR_CTEIF4_Pos (15U)
+#define DMA_IFCR_CTEIF4_Msk (0x1UL << DMA_IFCR_CTEIF4_Pos) /*!< 0x00008000 */
+#define DMA_IFCR_CTEIF4 DMA_IFCR_CTEIF4_Msk /*!< Channel 4 Transfer Error clear */
+#define DMA_IFCR_CGIF5_Pos (16U)
+#define DMA_IFCR_CGIF5_Msk (0x1UL << DMA_IFCR_CGIF5_Pos) /*!< 0x00010000 */
+#define DMA_IFCR_CGIF5 DMA_IFCR_CGIF5_Msk /*!< Channel 5 Global interrupt clear */
+#define DMA_IFCR_CTCIF5_Pos (17U)
+#define DMA_IFCR_CTCIF5_Msk (0x1UL << DMA_IFCR_CTCIF5_Pos) /*!< 0x00020000 */
+#define DMA_IFCR_CTCIF5 DMA_IFCR_CTCIF5_Msk /*!< Channel 5 Transfer Complete clear */
+#define DMA_IFCR_CHTIF5_Pos (18U)
+#define DMA_IFCR_CHTIF5_Msk (0x1UL << DMA_IFCR_CHTIF5_Pos) /*!< 0x00040000 */
+#define DMA_IFCR_CHTIF5 DMA_IFCR_CHTIF5_Msk /*!< Channel 5 Half Transfer clear */
+#define DMA_IFCR_CTEIF5_Pos (19U)
+#define DMA_IFCR_CTEIF5_Msk (0x1UL << DMA_IFCR_CTEIF5_Pos) /*!< 0x00080000 */
+#define DMA_IFCR_CTEIF5 DMA_IFCR_CTEIF5_Msk /*!< Channel 5 Transfer Error clear */
+#define DMA_IFCR_CGIF6_Pos (20U)
+#define DMA_IFCR_CGIF6_Msk (0x1UL << DMA_IFCR_CGIF6_Pos) /*!< 0x00100000 */
+#define DMA_IFCR_CGIF6 DMA_IFCR_CGIF6_Msk /*!< Channel 6 Global interrupt clear */
+#define DMA_IFCR_CTCIF6_Pos (21U)
+#define DMA_IFCR_CTCIF6_Msk (0x1UL << DMA_IFCR_CTCIF6_Pos) /*!< 0x00200000 */
+#define DMA_IFCR_CTCIF6 DMA_IFCR_CTCIF6_Msk /*!< Channel 6 Transfer Complete clear */
+#define DMA_IFCR_CHTIF6_Pos (22U)
+#define DMA_IFCR_CHTIF6_Msk (0x1UL << DMA_IFCR_CHTIF6_Pos) /*!< 0x00400000 */
+#define DMA_IFCR_CHTIF6 DMA_IFCR_CHTIF6_Msk /*!< Channel 6 Half Transfer clear */
+#define DMA_IFCR_CTEIF6_Pos (23U)
+#define DMA_IFCR_CTEIF6_Msk (0x1UL << DMA_IFCR_CTEIF6_Pos) /*!< 0x00800000 */
+#define DMA_IFCR_CTEIF6 DMA_IFCR_CTEIF6_Msk /*!< Channel 6 Transfer Error clear */
+#define DMA_IFCR_CGIF7_Pos (24U)
+#define DMA_IFCR_CGIF7_Msk (0x1UL << DMA_IFCR_CGIF7_Pos) /*!< 0x01000000 */
+#define DMA_IFCR_CGIF7 DMA_IFCR_CGIF7_Msk /*!< Channel 7 Global interrupt clear */
+#define DMA_IFCR_CTCIF7_Pos (25U)
+#define DMA_IFCR_CTCIF7_Msk (0x1UL << DMA_IFCR_CTCIF7_Pos) /*!< 0x02000000 */
+#define DMA_IFCR_CTCIF7 DMA_IFCR_CTCIF7_Msk /*!< Channel 7 Transfer Complete clear */
+#define DMA_IFCR_CHTIF7_Pos (26U)
+#define DMA_IFCR_CHTIF7_Msk (0x1UL << DMA_IFCR_CHTIF7_Pos) /*!< 0x04000000 */
+#define DMA_IFCR_CHTIF7 DMA_IFCR_CHTIF7_Msk /*!< Channel 7 Half Transfer clear */
+#define DMA_IFCR_CTEIF7_Pos (27U)
+#define DMA_IFCR_CTEIF7_Msk (0x1UL << DMA_IFCR_CTEIF7_Pos) /*!< 0x08000000 */
+#define DMA_IFCR_CTEIF7 DMA_IFCR_CTEIF7_Msk /*!< Channel 7 Transfer Error clear */
+
+/******************* Bit definition for DMA_CCR register *******************/
+#define DMA_CCR_EN_Pos (0U)
+#define DMA_CCR_EN_Msk (0x1UL << DMA_CCR_EN_Pos) /*!< 0x00000001 */
+#define DMA_CCR_EN DMA_CCR_EN_Msk /*!< Channel enable */
+#define DMA_CCR_TCIE_Pos (1U)
+#define DMA_CCR_TCIE_Msk (0x1UL << DMA_CCR_TCIE_Pos) /*!< 0x00000002 */
+#define DMA_CCR_TCIE DMA_CCR_TCIE_Msk /*!< Transfer complete interrupt enable */
+#define DMA_CCR_HTIE_Pos (2U)
+#define DMA_CCR_HTIE_Msk (0x1UL << DMA_CCR_HTIE_Pos) /*!< 0x00000004 */
+#define DMA_CCR_HTIE DMA_CCR_HTIE_Msk /*!< Half Transfer interrupt enable */
+#define DMA_CCR_TEIE_Pos (3U)
+#define DMA_CCR_TEIE_Msk (0x1UL << DMA_CCR_TEIE_Pos) /*!< 0x00000008 */
+#define DMA_CCR_TEIE DMA_CCR_TEIE_Msk /*!< Transfer error interrupt enable */
+#define DMA_CCR_DIR_Pos (4U)
+#define DMA_CCR_DIR_Msk (0x1UL << DMA_CCR_DIR_Pos) /*!< 0x00000010 */
+#define DMA_CCR_DIR DMA_CCR_DIR_Msk /*!< Data transfer direction */
+#define DMA_CCR_CIRC_Pos (5U)
+#define DMA_CCR_CIRC_Msk (0x1UL << DMA_CCR_CIRC_Pos) /*!< 0x00000020 */
+#define DMA_CCR_CIRC DMA_CCR_CIRC_Msk /*!< Circular mode */
+#define DMA_CCR_PINC_Pos (6U)
+#define DMA_CCR_PINC_Msk (0x1UL << DMA_CCR_PINC_Pos) /*!< 0x00000040 */
+#define DMA_CCR_PINC DMA_CCR_PINC_Msk /*!< Peripheral increment mode */
+#define DMA_CCR_MINC_Pos (7U)
+#define DMA_CCR_MINC_Msk (0x1UL << DMA_CCR_MINC_Pos) /*!< 0x00000080 */
+#define DMA_CCR_MINC DMA_CCR_MINC_Msk /*!< Memory increment mode */
+
+#define DMA_CCR_PSIZE_Pos (8U)
+#define DMA_CCR_PSIZE_Msk (0x3UL << DMA_CCR_PSIZE_Pos) /*!< 0x00000300 */
+#define DMA_CCR_PSIZE DMA_CCR_PSIZE_Msk /*!< PSIZE[1:0] bits (Peripheral size) */
+#define DMA_CCR_PSIZE_0 (0x1UL << DMA_CCR_PSIZE_Pos) /*!< 0x00000100 */
+#define DMA_CCR_PSIZE_1 (0x2UL << DMA_CCR_PSIZE_Pos) /*!< 0x00000200 */
+
+#define DMA_CCR_MSIZE_Pos (10U)
+#define DMA_CCR_MSIZE_Msk (0x3UL << DMA_CCR_MSIZE_Pos) /*!< 0x00000C00 */
+#define DMA_CCR_MSIZE DMA_CCR_MSIZE_Msk /*!< MSIZE[1:0] bits (Memory size) */
+#define DMA_CCR_MSIZE_0 (0x1UL << DMA_CCR_MSIZE_Pos) /*!< 0x00000400 */
+#define DMA_CCR_MSIZE_1 (0x2UL << DMA_CCR_MSIZE_Pos) /*!< 0x00000800 */
+
+#define DMA_CCR_PL_Pos (12U)
+#define DMA_CCR_PL_Msk (0x3UL << DMA_CCR_PL_Pos) /*!< 0x00003000 */
+#define DMA_CCR_PL DMA_CCR_PL_Msk /*!< PL[1:0] bits(Channel Priority level) */
+#define DMA_CCR_PL_0 (0x1UL << DMA_CCR_PL_Pos) /*!< 0x00001000 */
+#define DMA_CCR_PL_1 (0x2UL << DMA_CCR_PL_Pos) /*!< 0x00002000 */
+
+#define DMA_CCR_MEM2MEM_Pos (14U)
+#define DMA_CCR_MEM2MEM_Msk (0x1UL << DMA_CCR_MEM2MEM_Pos) /*!< 0x00004000 */
+#define DMA_CCR_MEM2MEM DMA_CCR_MEM2MEM_Msk /*!< Memory to memory mode */
+
+/****************** Bit definition for DMA_CNDTR register ******************/
+#define DMA_CNDTR_NDT_Pos (0U)
+#define DMA_CNDTR_NDT_Msk (0xFFFFUL << DMA_CNDTR_NDT_Pos) /*!< 0x0000FFFF */
+#define DMA_CNDTR_NDT DMA_CNDTR_NDT_Msk /*!< Number of data to Transfer */
+
+/****************** Bit definition for DMA_CPAR register *******************/
+#define DMA_CPAR_PA_Pos (0U)
+#define DMA_CPAR_PA_Msk (0xFFFFFFFFUL << DMA_CPAR_PA_Pos) /*!< 0xFFFFFFFF */
+#define DMA_CPAR_PA DMA_CPAR_PA_Msk /*!< Peripheral Address */
+
+/****************** Bit definition for DMA_CMAR register *******************/
+#define DMA_CMAR_MA_Pos (0U)
+#define DMA_CMAR_MA_Msk (0xFFFFFFFFUL << DMA_CMAR_MA_Pos) /*!< 0xFFFFFFFF */
+#define DMA_CMAR_MA DMA_CMAR_MA_Msk /*!< Memory Address */
+
+/******************************************************************************/
+/* */
+/* Analog to Digital Converter (ADC) */
+/* */
+/******************************************************************************/
+
+/*
+ * @brief Specific device feature definitions (not present on all devices in the STM32F1 family)
+ */
+#define ADC_MULTIMODE_SUPPORT /*!< ADC feature available only on specific devices: multimode available on devices with several ADC instances */
+
+/******************** Bit definition for ADC_SR register ********************/
+#define ADC_SR_AWD_Pos (0U)
+#define ADC_SR_AWD_Msk (0x1UL << ADC_SR_AWD_Pos) /*!< 0x00000001 */
+#define ADC_SR_AWD ADC_SR_AWD_Msk /*!< ADC analog watchdog 1 flag */
+#define ADC_SR_EOS_Pos (1U)
+#define ADC_SR_EOS_Msk (0x1UL << ADC_SR_EOS_Pos) /*!< 0x00000002 */
+#define ADC_SR_EOS ADC_SR_EOS_Msk /*!< ADC group regular end of sequence conversions flag */
+#define ADC_SR_JEOS_Pos (2U)
+#define ADC_SR_JEOS_Msk (0x1UL << ADC_SR_JEOS_Pos) /*!< 0x00000004 */
+#define ADC_SR_JEOS ADC_SR_JEOS_Msk /*!< ADC group injected end of sequence conversions flag */
+#define ADC_SR_JSTRT_Pos (3U)
+#define ADC_SR_JSTRT_Msk (0x1UL << ADC_SR_JSTRT_Pos) /*!< 0x00000008 */
+#define ADC_SR_JSTRT ADC_SR_JSTRT_Msk /*!< ADC group injected conversion start flag */
+#define ADC_SR_STRT_Pos (4U)
+#define ADC_SR_STRT_Msk (0x1UL << ADC_SR_STRT_Pos) /*!< 0x00000010 */
+#define ADC_SR_STRT ADC_SR_STRT_Msk /*!< ADC group regular conversion start flag */
+
+/* Legacy defines */
+#define ADC_SR_EOC (ADC_SR_EOS)
+#define ADC_SR_JEOC (ADC_SR_JEOS)
+
+/******************* Bit definition for ADC_CR1 register ********************/
+#define ADC_CR1_AWDCH_Pos (0U)
+#define ADC_CR1_AWDCH_Msk (0x1FUL << ADC_CR1_AWDCH_Pos) /*!< 0x0000001F */
+#define ADC_CR1_AWDCH ADC_CR1_AWDCH_Msk /*!< ADC analog watchdog 1 monitored channel selection */
+#define ADC_CR1_AWDCH_0 (0x01UL << ADC_CR1_AWDCH_Pos) /*!< 0x00000001 */
+#define ADC_CR1_AWDCH_1 (0x02UL << ADC_CR1_AWDCH_Pos) /*!< 0x00000002 */
+#define ADC_CR1_AWDCH_2 (0x04UL << ADC_CR1_AWDCH_Pos) /*!< 0x00000004 */
+#define ADC_CR1_AWDCH_3 (0x08UL << ADC_CR1_AWDCH_Pos) /*!< 0x00000008 */
+#define ADC_CR1_AWDCH_4 (0x10UL << ADC_CR1_AWDCH_Pos) /*!< 0x00000010 */
+
+#define ADC_CR1_EOSIE_Pos (5U)
+#define ADC_CR1_EOSIE_Msk (0x1UL << ADC_CR1_EOSIE_Pos) /*!< 0x00000020 */
+#define ADC_CR1_EOSIE ADC_CR1_EOSIE_Msk /*!< ADC group regular end of sequence conversions interrupt */
+#define ADC_CR1_AWDIE_Pos (6U)
+#define ADC_CR1_AWDIE_Msk (0x1UL << ADC_CR1_AWDIE_Pos) /*!< 0x00000040 */
+#define ADC_CR1_AWDIE ADC_CR1_AWDIE_Msk /*!< ADC analog watchdog 1 interrupt */
+#define ADC_CR1_JEOSIE_Pos (7U)
+#define ADC_CR1_JEOSIE_Msk (0x1UL << ADC_CR1_JEOSIE_Pos) /*!< 0x00000080 */
+#define ADC_CR1_JEOSIE ADC_CR1_JEOSIE_Msk /*!< ADC group injected end of sequence conversions interrupt */
+#define ADC_CR1_SCAN_Pos (8U)
+#define ADC_CR1_SCAN_Msk (0x1UL << ADC_CR1_SCAN_Pos) /*!< 0x00000100 */
+#define ADC_CR1_SCAN ADC_CR1_SCAN_Msk /*!< ADC scan mode */
+#define ADC_CR1_AWDSGL_Pos (9U)
+#define ADC_CR1_AWDSGL_Msk (0x1UL << ADC_CR1_AWDSGL_Pos) /*!< 0x00000200 */
+#define ADC_CR1_AWDSGL ADC_CR1_AWDSGL_Msk /*!< ADC analog watchdog 1 monitoring a single channel or all channels */
+#define ADC_CR1_JAUTO_Pos (10U)
+#define ADC_CR1_JAUTO_Msk (0x1UL << ADC_CR1_JAUTO_Pos) /*!< 0x00000400 */
+#define ADC_CR1_JAUTO ADC_CR1_JAUTO_Msk /*!< ADC group injected automatic trigger mode */
+#define ADC_CR1_DISCEN_Pos (11U)
+#define ADC_CR1_DISCEN_Msk (0x1UL << ADC_CR1_DISCEN_Pos) /*!< 0x00000800 */
+#define ADC_CR1_DISCEN ADC_CR1_DISCEN_Msk /*!< ADC group regular sequencer discontinuous mode */
+#define ADC_CR1_JDISCEN_Pos (12U)
+#define ADC_CR1_JDISCEN_Msk (0x1UL << ADC_CR1_JDISCEN_Pos) /*!< 0x00001000 */
+#define ADC_CR1_JDISCEN ADC_CR1_JDISCEN_Msk /*!< ADC group injected sequencer discontinuous mode */
+
+#define ADC_CR1_DISCNUM_Pos (13U)
+#define ADC_CR1_DISCNUM_Msk (0x7UL << ADC_CR1_DISCNUM_Pos) /*!< 0x0000E000 */
+#define ADC_CR1_DISCNUM ADC_CR1_DISCNUM_Msk /*!< ADC group regular sequencer discontinuous number of ranks */
+#define ADC_CR1_DISCNUM_0 (0x1UL << ADC_CR1_DISCNUM_Pos) /*!< 0x00002000 */
+#define ADC_CR1_DISCNUM_1 (0x2UL << ADC_CR1_DISCNUM_Pos) /*!< 0x00004000 */
+#define ADC_CR1_DISCNUM_2 (0x4UL << ADC_CR1_DISCNUM_Pos) /*!< 0x00008000 */
+
+#define ADC_CR1_DUALMOD_Pos (16U)
+#define ADC_CR1_DUALMOD_Msk (0xFUL << ADC_CR1_DUALMOD_Pos) /*!< 0x000F0000 */
+#define ADC_CR1_DUALMOD ADC_CR1_DUALMOD_Msk /*!< ADC multimode mode selection */
+#define ADC_CR1_DUALMOD_0 (0x1UL << ADC_CR1_DUALMOD_Pos) /*!< 0x00010000 */
+#define ADC_CR1_DUALMOD_1 (0x2UL << ADC_CR1_DUALMOD_Pos) /*!< 0x00020000 */
+#define ADC_CR1_DUALMOD_2 (0x4UL << ADC_CR1_DUALMOD_Pos) /*!< 0x00040000 */
+#define ADC_CR1_DUALMOD_3 (0x8UL << ADC_CR1_DUALMOD_Pos) /*!< 0x00080000 */
+
+#define ADC_CR1_JAWDEN_Pos (22U)
+#define ADC_CR1_JAWDEN_Msk (0x1UL << ADC_CR1_JAWDEN_Pos) /*!< 0x00400000 */
+#define ADC_CR1_JAWDEN ADC_CR1_JAWDEN_Msk /*!< ADC analog watchdog 1 enable on scope ADC group injected */
+#define ADC_CR1_AWDEN_Pos (23U)
+#define ADC_CR1_AWDEN_Msk (0x1UL << ADC_CR1_AWDEN_Pos) /*!< 0x00800000 */
+#define ADC_CR1_AWDEN ADC_CR1_AWDEN_Msk /*!< ADC analog watchdog 1 enable on scope ADC group regular */
+
+/* Legacy defines */
+#define ADC_CR1_EOCIE (ADC_CR1_EOSIE)
+#define ADC_CR1_JEOCIE (ADC_CR1_JEOSIE)
+
+/******************* Bit definition for ADC_CR2 register ********************/
+#define ADC_CR2_ADON_Pos (0U)
+#define ADC_CR2_ADON_Msk (0x1UL << ADC_CR2_ADON_Pos) /*!< 0x00000001 */
+#define ADC_CR2_ADON ADC_CR2_ADON_Msk /*!< ADC enable */
+#define ADC_CR2_CONT_Pos (1U)
+#define ADC_CR2_CONT_Msk (0x1UL << ADC_CR2_CONT_Pos) /*!< 0x00000002 */
+#define ADC_CR2_CONT ADC_CR2_CONT_Msk /*!< ADC group regular continuous conversion mode */
+#define ADC_CR2_CAL_Pos (2U)
+#define ADC_CR2_CAL_Msk (0x1UL << ADC_CR2_CAL_Pos) /*!< 0x00000004 */
+#define ADC_CR2_CAL ADC_CR2_CAL_Msk /*!< ADC calibration start */
+#define ADC_CR2_RSTCAL_Pos (3U)
+#define ADC_CR2_RSTCAL_Msk (0x1UL << ADC_CR2_RSTCAL_Pos) /*!< 0x00000008 */
+#define ADC_CR2_RSTCAL ADC_CR2_RSTCAL_Msk /*!< ADC calibration reset */
+#define ADC_CR2_DMA_Pos (8U)
+#define ADC_CR2_DMA_Msk (0x1UL << ADC_CR2_DMA_Pos) /*!< 0x00000100 */
+#define ADC_CR2_DMA ADC_CR2_DMA_Msk /*!< ADC DMA transfer enable */
+#define ADC_CR2_ALIGN_Pos (11U)
+#define ADC_CR2_ALIGN_Msk (0x1UL << ADC_CR2_ALIGN_Pos) /*!< 0x00000800 */
+#define ADC_CR2_ALIGN ADC_CR2_ALIGN_Msk /*!< ADC data alignement */
+
+#define ADC_CR2_JEXTSEL_Pos (12U)
+#define ADC_CR2_JEXTSEL_Msk (0x7UL << ADC_CR2_JEXTSEL_Pos) /*!< 0x00007000 */
+#define ADC_CR2_JEXTSEL ADC_CR2_JEXTSEL_Msk /*!< ADC group injected external trigger source */
+#define ADC_CR2_JEXTSEL_0 (0x1UL << ADC_CR2_JEXTSEL_Pos) /*!< 0x00001000 */
+#define ADC_CR2_JEXTSEL_1 (0x2UL << ADC_CR2_JEXTSEL_Pos) /*!< 0x00002000 */
+#define ADC_CR2_JEXTSEL_2 (0x4UL << ADC_CR2_JEXTSEL_Pos) /*!< 0x00004000 */
+
+#define ADC_CR2_JEXTTRIG_Pos (15U)
+#define ADC_CR2_JEXTTRIG_Msk (0x1UL << ADC_CR2_JEXTTRIG_Pos) /*!< 0x00008000 */
+#define ADC_CR2_JEXTTRIG ADC_CR2_JEXTTRIG_Msk /*!< ADC group injected external trigger enable */
+
+#define ADC_CR2_EXTSEL_Pos (17U)
+#define ADC_CR2_EXTSEL_Msk (0x7UL << ADC_CR2_EXTSEL_Pos) /*!< 0x000E0000 */
+#define ADC_CR2_EXTSEL ADC_CR2_EXTSEL_Msk /*!< ADC group regular external trigger source */
+#define ADC_CR2_EXTSEL_0 (0x1UL << ADC_CR2_EXTSEL_Pos) /*!< 0x00020000 */
+#define ADC_CR2_EXTSEL_1 (0x2UL << ADC_CR2_EXTSEL_Pos) /*!< 0x00040000 */
+#define ADC_CR2_EXTSEL_2 (0x4UL << ADC_CR2_EXTSEL_Pos) /*!< 0x00080000 */
+
+#define ADC_CR2_EXTTRIG_Pos (20U)
+#define ADC_CR2_EXTTRIG_Msk (0x1UL << ADC_CR2_EXTTRIG_Pos) /*!< 0x00100000 */
+#define ADC_CR2_EXTTRIG ADC_CR2_EXTTRIG_Msk /*!< ADC group regular external trigger enable */
+#define ADC_CR2_JSWSTART_Pos (21U)
+#define ADC_CR2_JSWSTART_Msk (0x1UL << ADC_CR2_JSWSTART_Pos) /*!< 0x00200000 */
+#define ADC_CR2_JSWSTART ADC_CR2_JSWSTART_Msk /*!< ADC group injected conversion start */
+#define ADC_CR2_SWSTART_Pos (22U)
+#define ADC_CR2_SWSTART_Msk (0x1UL << ADC_CR2_SWSTART_Pos) /*!< 0x00400000 */
+#define ADC_CR2_SWSTART ADC_CR2_SWSTART_Msk /*!< ADC group regular conversion start */
+#define ADC_CR2_TSVREFE_Pos (23U)
+#define ADC_CR2_TSVREFE_Msk (0x1UL << ADC_CR2_TSVREFE_Pos) /*!< 0x00800000 */
+#define ADC_CR2_TSVREFE ADC_CR2_TSVREFE_Msk /*!< ADC internal path to VrefInt and temperature sensor enable */
+
+/****************** Bit definition for ADC_SMPR1 register *******************/
+#define ADC_SMPR1_SMP10_Pos (0U)
+#define ADC_SMPR1_SMP10_Msk (0x7UL << ADC_SMPR1_SMP10_Pos) /*!< 0x00000007 */
+#define ADC_SMPR1_SMP10 ADC_SMPR1_SMP10_Msk /*!< ADC channel 10 sampling time selection */
+#define ADC_SMPR1_SMP10_0 (0x1UL << ADC_SMPR1_SMP10_Pos) /*!< 0x00000001 */
+#define ADC_SMPR1_SMP10_1 (0x2UL << ADC_SMPR1_SMP10_Pos) /*!< 0x00000002 */
+#define ADC_SMPR1_SMP10_2 (0x4UL << ADC_SMPR1_SMP10_Pos) /*!< 0x00000004 */
+
+#define ADC_SMPR1_SMP11_Pos (3U)
+#define ADC_SMPR1_SMP11_Msk (0x7UL << ADC_SMPR1_SMP11_Pos) /*!< 0x00000038 */
+#define ADC_SMPR1_SMP11 ADC_SMPR1_SMP11_Msk /*!< ADC channel 11 sampling time selection */
+#define ADC_SMPR1_SMP11_0 (0x1UL << ADC_SMPR1_SMP11_Pos) /*!< 0x00000008 */
+#define ADC_SMPR1_SMP11_1 (0x2UL << ADC_SMPR1_SMP11_Pos) /*!< 0x00000010 */
+#define ADC_SMPR1_SMP11_2 (0x4UL << ADC_SMPR1_SMP11_Pos) /*!< 0x00000020 */
+
+#define ADC_SMPR1_SMP12_Pos (6U)
+#define ADC_SMPR1_SMP12_Msk (0x7UL << ADC_SMPR1_SMP12_Pos) /*!< 0x000001C0 */
+#define ADC_SMPR1_SMP12 ADC_SMPR1_SMP12_Msk /*!< ADC channel 12 sampling time selection */
+#define ADC_SMPR1_SMP12_0 (0x1UL << ADC_SMPR1_SMP12_Pos) /*!< 0x00000040 */
+#define ADC_SMPR1_SMP12_1 (0x2UL << ADC_SMPR1_SMP12_Pos) /*!< 0x00000080 */
+#define ADC_SMPR1_SMP12_2 (0x4UL << ADC_SMPR1_SMP12_Pos) /*!< 0x00000100 */
+
+#define ADC_SMPR1_SMP13_Pos (9U)
+#define ADC_SMPR1_SMP13_Msk (0x7UL << ADC_SMPR1_SMP13_Pos) /*!< 0x00000E00 */
+#define ADC_SMPR1_SMP13 ADC_SMPR1_SMP13_Msk /*!< ADC channel 13 sampling time selection */
+#define ADC_SMPR1_SMP13_0 (0x1UL << ADC_SMPR1_SMP13_Pos) /*!< 0x00000200 */
+#define ADC_SMPR1_SMP13_1 (0x2UL << ADC_SMPR1_SMP13_Pos) /*!< 0x00000400 */
+#define ADC_SMPR1_SMP13_2 (0x4UL << ADC_SMPR1_SMP13_Pos) /*!< 0x00000800 */
+
+#define ADC_SMPR1_SMP14_Pos (12U)
+#define ADC_SMPR1_SMP14_Msk (0x7UL << ADC_SMPR1_SMP14_Pos) /*!< 0x00007000 */
+#define ADC_SMPR1_SMP14 ADC_SMPR1_SMP14_Msk /*!< ADC channel 14 sampling time selection */
+#define ADC_SMPR1_SMP14_0 (0x1UL << ADC_SMPR1_SMP14_Pos) /*!< 0x00001000 */
+#define ADC_SMPR1_SMP14_1 (0x2UL << ADC_SMPR1_SMP14_Pos) /*!< 0x00002000 */
+#define ADC_SMPR1_SMP14_2 (0x4UL << ADC_SMPR1_SMP14_Pos) /*!< 0x00004000 */
+
+#define ADC_SMPR1_SMP15_Pos (15U)
+#define ADC_SMPR1_SMP15_Msk (0x7UL << ADC_SMPR1_SMP15_Pos) /*!< 0x00038000 */
+#define ADC_SMPR1_SMP15 ADC_SMPR1_SMP15_Msk /*!< ADC channel 15 sampling time selection */
+#define ADC_SMPR1_SMP15_0 (0x1UL << ADC_SMPR1_SMP15_Pos) /*!< 0x00008000 */
+#define ADC_SMPR1_SMP15_1 (0x2UL << ADC_SMPR1_SMP15_Pos) /*!< 0x00010000 */
+#define ADC_SMPR1_SMP15_2 (0x4UL << ADC_SMPR1_SMP15_Pos) /*!< 0x00020000 */
+
+#define ADC_SMPR1_SMP16_Pos (18U)
+#define ADC_SMPR1_SMP16_Msk (0x7UL << ADC_SMPR1_SMP16_Pos) /*!< 0x001C0000 */
+#define ADC_SMPR1_SMP16 ADC_SMPR1_SMP16_Msk /*!< ADC channel 16 sampling time selection */
+#define ADC_SMPR1_SMP16_0 (0x1UL << ADC_SMPR1_SMP16_Pos) /*!< 0x00040000 */
+#define ADC_SMPR1_SMP16_1 (0x2UL << ADC_SMPR1_SMP16_Pos) /*!< 0x00080000 */
+#define ADC_SMPR1_SMP16_2 (0x4UL << ADC_SMPR1_SMP16_Pos) /*!< 0x00100000 */
+
+#define ADC_SMPR1_SMP17_Pos (21U)
+#define ADC_SMPR1_SMP17_Msk (0x7UL << ADC_SMPR1_SMP17_Pos) /*!< 0x00E00000 */
+#define ADC_SMPR1_SMP17 ADC_SMPR1_SMP17_Msk /*!< ADC channel 17 sampling time selection */
+#define ADC_SMPR1_SMP17_0 (0x1UL << ADC_SMPR1_SMP17_Pos) /*!< 0x00200000 */
+#define ADC_SMPR1_SMP17_1 (0x2UL << ADC_SMPR1_SMP17_Pos) /*!< 0x00400000 */
+#define ADC_SMPR1_SMP17_2 (0x4UL << ADC_SMPR1_SMP17_Pos) /*!< 0x00800000 */
+
+/****************** Bit definition for ADC_SMPR2 register *******************/
+#define ADC_SMPR2_SMP0_Pos (0U)
+#define ADC_SMPR2_SMP0_Msk (0x7UL << ADC_SMPR2_SMP0_Pos) /*!< 0x00000007 */
+#define ADC_SMPR2_SMP0 ADC_SMPR2_SMP0_Msk /*!< ADC channel 0 sampling time selection */
+#define ADC_SMPR2_SMP0_0 (0x1UL << ADC_SMPR2_SMP0_Pos) /*!< 0x00000001 */
+#define ADC_SMPR2_SMP0_1 (0x2UL << ADC_SMPR2_SMP0_Pos) /*!< 0x00000002 */
+#define ADC_SMPR2_SMP0_2 (0x4UL << ADC_SMPR2_SMP0_Pos) /*!< 0x00000004 */
+
+#define ADC_SMPR2_SMP1_Pos (3U)
+#define ADC_SMPR2_SMP1_Msk (0x7UL << ADC_SMPR2_SMP1_Pos) /*!< 0x00000038 */
+#define ADC_SMPR2_SMP1 ADC_SMPR2_SMP1_Msk /*!< ADC channel 1 sampling time selection */
+#define ADC_SMPR2_SMP1_0 (0x1UL << ADC_SMPR2_SMP1_Pos) /*!< 0x00000008 */
+#define ADC_SMPR2_SMP1_1 (0x2UL << ADC_SMPR2_SMP1_Pos) /*!< 0x00000010 */
+#define ADC_SMPR2_SMP1_2 (0x4UL << ADC_SMPR2_SMP1_Pos) /*!< 0x00000020 */
+
+#define ADC_SMPR2_SMP2_Pos (6U)
+#define ADC_SMPR2_SMP2_Msk (0x7UL << ADC_SMPR2_SMP2_Pos) /*!< 0x000001C0 */
+#define ADC_SMPR2_SMP2 ADC_SMPR2_SMP2_Msk /*!< ADC channel 2 sampling time selection */
+#define ADC_SMPR2_SMP2_0 (0x1UL << ADC_SMPR2_SMP2_Pos) /*!< 0x00000040 */
+#define ADC_SMPR2_SMP2_1 (0x2UL << ADC_SMPR2_SMP2_Pos) /*!< 0x00000080 */
+#define ADC_SMPR2_SMP2_2 (0x4UL << ADC_SMPR2_SMP2_Pos) /*!< 0x00000100 */
+
+#define ADC_SMPR2_SMP3_Pos (9U)
+#define ADC_SMPR2_SMP3_Msk (0x7UL << ADC_SMPR2_SMP3_Pos) /*!< 0x00000E00 */
+#define ADC_SMPR2_SMP3 ADC_SMPR2_SMP3_Msk /*!< ADC channel 3 sampling time selection */
+#define ADC_SMPR2_SMP3_0 (0x1UL << ADC_SMPR2_SMP3_Pos) /*!< 0x00000200 */
+#define ADC_SMPR2_SMP3_1 (0x2UL << ADC_SMPR2_SMP3_Pos) /*!< 0x00000400 */
+#define ADC_SMPR2_SMP3_2 (0x4UL << ADC_SMPR2_SMP3_Pos) /*!< 0x00000800 */
+
+#define ADC_SMPR2_SMP4_Pos (12U)
+#define ADC_SMPR2_SMP4_Msk (0x7UL << ADC_SMPR2_SMP4_Pos) /*!< 0x00007000 */
+#define ADC_SMPR2_SMP4 ADC_SMPR2_SMP4_Msk /*!< ADC channel 4 sampling time selection */
+#define ADC_SMPR2_SMP4_0 (0x1UL << ADC_SMPR2_SMP4_Pos) /*!< 0x00001000 */
+#define ADC_SMPR2_SMP4_1 (0x2UL << ADC_SMPR2_SMP4_Pos) /*!< 0x00002000 */
+#define ADC_SMPR2_SMP4_2 (0x4UL << ADC_SMPR2_SMP4_Pos) /*!< 0x00004000 */
+
+#define ADC_SMPR2_SMP5_Pos (15U)
+#define ADC_SMPR2_SMP5_Msk (0x7UL << ADC_SMPR2_SMP5_Pos) /*!< 0x00038000 */
+#define ADC_SMPR2_SMP5 ADC_SMPR2_SMP5_Msk /*!< ADC channel 5 sampling time selection */
+#define ADC_SMPR2_SMP5_0 (0x1UL << ADC_SMPR2_SMP5_Pos) /*!< 0x00008000 */
+#define ADC_SMPR2_SMP5_1 (0x2UL << ADC_SMPR2_SMP5_Pos) /*!< 0x00010000 */
+#define ADC_SMPR2_SMP5_2 (0x4UL << ADC_SMPR2_SMP5_Pos) /*!< 0x00020000 */
+
+#define ADC_SMPR2_SMP6_Pos (18U)
+#define ADC_SMPR2_SMP6_Msk (0x7UL << ADC_SMPR2_SMP6_Pos) /*!< 0x001C0000 */
+#define ADC_SMPR2_SMP6 ADC_SMPR2_SMP6_Msk /*!< ADC channel 6 sampling time selection */
+#define ADC_SMPR2_SMP6_0 (0x1UL << ADC_SMPR2_SMP6_Pos) /*!< 0x00040000 */
+#define ADC_SMPR2_SMP6_1 (0x2UL << ADC_SMPR2_SMP6_Pos) /*!< 0x00080000 */
+#define ADC_SMPR2_SMP6_2 (0x4UL << ADC_SMPR2_SMP6_Pos) /*!< 0x00100000 */
+
+#define ADC_SMPR2_SMP7_Pos (21U)
+#define ADC_SMPR2_SMP7_Msk (0x7UL << ADC_SMPR2_SMP7_Pos) /*!< 0x00E00000 */
+#define ADC_SMPR2_SMP7 ADC_SMPR2_SMP7_Msk /*!< ADC channel 7 sampling time selection */
+#define ADC_SMPR2_SMP7_0 (0x1UL << ADC_SMPR2_SMP7_Pos) /*!< 0x00200000 */
+#define ADC_SMPR2_SMP7_1 (0x2UL << ADC_SMPR2_SMP7_Pos) /*!< 0x00400000 */
+#define ADC_SMPR2_SMP7_2 (0x4UL << ADC_SMPR2_SMP7_Pos) /*!< 0x00800000 */
+
+#define ADC_SMPR2_SMP8_Pos (24U)
+#define ADC_SMPR2_SMP8_Msk (0x7UL << ADC_SMPR2_SMP8_Pos) /*!< 0x07000000 */
+#define ADC_SMPR2_SMP8 ADC_SMPR2_SMP8_Msk /*!< ADC channel 8 sampling time selection */
+#define ADC_SMPR2_SMP8_0 (0x1UL << ADC_SMPR2_SMP8_Pos) /*!< 0x01000000 */
+#define ADC_SMPR2_SMP8_1 (0x2UL << ADC_SMPR2_SMP8_Pos) /*!< 0x02000000 */
+#define ADC_SMPR2_SMP8_2 (0x4UL << ADC_SMPR2_SMP8_Pos) /*!< 0x04000000 */
+
+#define ADC_SMPR2_SMP9_Pos (27U)
+#define ADC_SMPR2_SMP9_Msk (0x7UL << ADC_SMPR2_SMP9_Pos) /*!< 0x38000000 */
+#define ADC_SMPR2_SMP9 ADC_SMPR2_SMP9_Msk /*!< ADC channel 9 sampling time selection */
+#define ADC_SMPR2_SMP9_0 (0x1UL << ADC_SMPR2_SMP9_Pos) /*!< 0x08000000 */
+#define ADC_SMPR2_SMP9_1 (0x2UL << ADC_SMPR2_SMP9_Pos) /*!< 0x10000000 */
+#define ADC_SMPR2_SMP9_2 (0x4UL << ADC_SMPR2_SMP9_Pos) /*!< 0x20000000 */
+
+/****************** Bit definition for ADC_JOFR1 register *******************/
+#define ADC_JOFR1_JOFFSET1_Pos (0U)
+#define ADC_JOFR1_JOFFSET1_Msk (0xFFFUL << ADC_JOFR1_JOFFSET1_Pos) /*!< 0x00000FFF */
+#define ADC_JOFR1_JOFFSET1 ADC_JOFR1_JOFFSET1_Msk /*!< ADC group injected sequencer rank 1 offset value */
+
+/****************** Bit definition for ADC_JOFR2 register *******************/
+#define ADC_JOFR2_JOFFSET2_Pos (0U)
+#define ADC_JOFR2_JOFFSET2_Msk (0xFFFUL << ADC_JOFR2_JOFFSET2_Pos) /*!< 0x00000FFF */
+#define ADC_JOFR2_JOFFSET2 ADC_JOFR2_JOFFSET2_Msk /*!< ADC group injected sequencer rank 2 offset value */
+
+/****************** Bit definition for ADC_JOFR3 register *******************/
+#define ADC_JOFR3_JOFFSET3_Pos (0U)
+#define ADC_JOFR3_JOFFSET3_Msk (0xFFFUL << ADC_JOFR3_JOFFSET3_Pos) /*!< 0x00000FFF */
+#define ADC_JOFR3_JOFFSET3 ADC_JOFR3_JOFFSET3_Msk /*!< ADC group injected sequencer rank 3 offset value */
+
+/****************** Bit definition for ADC_JOFR4 register *******************/
+#define ADC_JOFR4_JOFFSET4_Pos (0U)
+#define ADC_JOFR4_JOFFSET4_Msk (0xFFFUL << ADC_JOFR4_JOFFSET4_Pos) /*!< 0x00000FFF */
+#define ADC_JOFR4_JOFFSET4 ADC_JOFR4_JOFFSET4_Msk /*!< ADC group injected sequencer rank 4 offset value */
+
+/******************* Bit definition for ADC_HTR register ********************/
+#define ADC_HTR_HT_Pos (0U)
+#define ADC_HTR_HT_Msk (0xFFFUL << ADC_HTR_HT_Pos) /*!< 0x00000FFF */
+#define ADC_HTR_HT ADC_HTR_HT_Msk /*!< ADC analog watchdog 1 threshold high */
+
+/******************* Bit definition for ADC_LTR register ********************/
+#define ADC_LTR_LT_Pos (0U)
+#define ADC_LTR_LT_Msk (0xFFFUL << ADC_LTR_LT_Pos) /*!< 0x00000FFF */
+#define ADC_LTR_LT ADC_LTR_LT_Msk /*!< ADC analog watchdog 1 threshold low */
+
+/******************* Bit definition for ADC_SQR1 register *******************/
+#define ADC_SQR1_SQ13_Pos (0U)
+#define ADC_SQR1_SQ13_Msk (0x1FUL << ADC_SQR1_SQ13_Pos) /*!< 0x0000001F */
+#define ADC_SQR1_SQ13 ADC_SQR1_SQ13_Msk /*!< ADC group regular sequencer rank 13 */
+#define ADC_SQR1_SQ13_0 (0x01UL << ADC_SQR1_SQ13_Pos) /*!< 0x00000001 */
+#define ADC_SQR1_SQ13_1 (0x02UL << ADC_SQR1_SQ13_Pos) /*!< 0x00000002 */
+#define ADC_SQR1_SQ13_2 (0x04UL << ADC_SQR1_SQ13_Pos) /*!< 0x00000004 */
+#define ADC_SQR1_SQ13_3 (0x08UL << ADC_SQR1_SQ13_Pos) /*!< 0x00000008 */
+#define ADC_SQR1_SQ13_4 (0x10UL << ADC_SQR1_SQ13_Pos) /*!< 0x00000010 */
+
+#define ADC_SQR1_SQ14_Pos (5U)
+#define ADC_SQR1_SQ14_Msk (0x1FUL << ADC_SQR1_SQ14_Pos) /*!< 0x000003E0 */
+#define ADC_SQR1_SQ14 ADC_SQR1_SQ14_Msk /*!< ADC group regular sequencer rank 14 */
+#define ADC_SQR1_SQ14_0 (0x01UL << ADC_SQR1_SQ14_Pos) /*!< 0x00000020 */
+#define ADC_SQR1_SQ14_1 (0x02UL << ADC_SQR1_SQ14_Pos) /*!< 0x00000040 */
+#define ADC_SQR1_SQ14_2 (0x04UL << ADC_SQR1_SQ14_Pos) /*!< 0x00000080 */
+#define ADC_SQR1_SQ14_3 (0x08UL << ADC_SQR1_SQ14_Pos) /*!< 0x00000100 */
+#define ADC_SQR1_SQ14_4 (0x10UL << ADC_SQR1_SQ14_Pos) /*!< 0x00000200 */
+
+#define ADC_SQR1_SQ15_Pos (10U)
+#define ADC_SQR1_SQ15_Msk (0x1FUL << ADC_SQR1_SQ15_Pos) /*!< 0x00007C00 */
+#define ADC_SQR1_SQ15 ADC_SQR1_SQ15_Msk /*!< ADC group regular sequencer rank 15 */
+#define ADC_SQR1_SQ15_0 (0x01UL << ADC_SQR1_SQ15_Pos) /*!< 0x00000400 */
+#define ADC_SQR1_SQ15_1 (0x02UL << ADC_SQR1_SQ15_Pos) /*!< 0x00000800 */
+#define ADC_SQR1_SQ15_2 (0x04UL << ADC_SQR1_SQ15_Pos) /*!< 0x00001000 */
+#define ADC_SQR1_SQ15_3 (0x08UL << ADC_SQR1_SQ15_Pos) /*!< 0x00002000 */
+#define ADC_SQR1_SQ15_4 (0x10UL << ADC_SQR1_SQ15_Pos) /*!< 0x00004000 */
+
+#define ADC_SQR1_SQ16_Pos (15U)
+#define ADC_SQR1_SQ16_Msk (0x1FUL << ADC_SQR1_SQ16_Pos) /*!< 0x000F8000 */
+#define ADC_SQR1_SQ16 ADC_SQR1_SQ16_Msk /*!< ADC group regular sequencer rank 16 */
+#define ADC_SQR1_SQ16_0 (0x01UL << ADC_SQR1_SQ16_Pos) /*!< 0x00008000 */
+#define ADC_SQR1_SQ16_1 (0x02UL << ADC_SQR1_SQ16_Pos) /*!< 0x00010000 */
+#define ADC_SQR1_SQ16_2 (0x04UL << ADC_SQR1_SQ16_Pos) /*!< 0x00020000 */
+#define ADC_SQR1_SQ16_3 (0x08UL << ADC_SQR1_SQ16_Pos) /*!< 0x00040000 */
+#define ADC_SQR1_SQ16_4 (0x10UL << ADC_SQR1_SQ16_Pos) /*!< 0x00080000 */
+
+#define ADC_SQR1_L_Pos (20U)
+#define ADC_SQR1_L_Msk (0xFUL << ADC_SQR1_L_Pos) /*!< 0x00F00000 */
+#define ADC_SQR1_L ADC_SQR1_L_Msk /*!< ADC group regular sequencer scan length */
+#define ADC_SQR1_L_0 (0x1UL << ADC_SQR1_L_Pos) /*!< 0x00100000 */
+#define ADC_SQR1_L_1 (0x2UL << ADC_SQR1_L_Pos) /*!< 0x00200000 */
+#define ADC_SQR1_L_2 (0x4UL << ADC_SQR1_L_Pos) /*!< 0x00400000 */
+#define ADC_SQR1_L_3 (0x8UL << ADC_SQR1_L_Pos) /*!< 0x00800000 */
+
+/******************* Bit definition for ADC_SQR2 register *******************/
+#define ADC_SQR2_SQ7_Pos (0U)
+#define ADC_SQR2_SQ7_Msk (0x1FUL << ADC_SQR2_SQ7_Pos) /*!< 0x0000001F */
+#define ADC_SQR2_SQ7 ADC_SQR2_SQ7_Msk /*!< ADC group regular sequencer rank 7 */
+#define ADC_SQR2_SQ7_0 (0x01UL << ADC_SQR2_SQ7_Pos) /*!< 0x00000001 */
+#define ADC_SQR2_SQ7_1 (0x02UL << ADC_SQR2_SQ7_Pos) /*!< 0x00000002 */
+#define ADC_SQR2_SQ7_2 (0x04UL << ADC_SQR2_SQ7_Pos) /*!< 0x00000004 */
+#define ADC_SQR2_SQ7_3 (0x08UL << ADC_SQR2_SQ7_Pos) /*!< 0x00000008 */
+#define ADC_SQR2_SQ7_4 (0x10UL << ADC_SQR2_SQ7_Pos) /*!< 0x00000010 */
+
+#define ADC_SQR2_SQ8_Pos (5U)
+#define ADC_SQR2_SQ8_Msk (0x1FUL << ADC_SQR2_SQ8_Pos) /*!< 0x000003E0 */
+#define ADC_SQR2_SQ8 ADC_SQR2_SQ8_Msk /*!< ADC group regular sequencer rank 8 */
+#define ADC_SQR2_SQ8_0 (0x01UL << ADC_SQR2_SQ8_Pos) /*!< 0x00000020 */
+#define ADC_SQR2_SQ8_1 (0x02UL << ADC_SQR2_SQ8_Pos) /*!< 0x00000040 */
+#define ADC_SQR2_SQ8_2 (0x04UL << ADC_SQR2_SQ8_Pos) /*!< 0x00000080 */
+#define ADC_SQR2_SQ8_3 (0x08UL << ADC_SQR2_SQ8_Pos) /*!< 0x00000100 */
+#define ADC_SQR2_SQ8_4 (0x10UL << ADC_SQR2_SQ8_Pos) /*!< 0x00000200 */
+
+#define ADC_SQR2_SQ9_Pos (10U)
+#define ADC_SQR2_SQ9_Msk (0x1FUL << ADC_SQR2_SQ9_Pos) /*!< 0x00007C00 */
+#define ADC_SQR2_SQ9 ADC_SQR2_SQ9_Msk /*!< ADC group regular sequencer rank 9 */
+#define ADC_SQR2_SQ9_0 (0x01UL << ADC_SQR2_SQ9_Pos) /*!< 0x00000400 */
+#define ADC_SQR2_SQ9_1 (0x02UL << ADC_SQR2_SQ9_Pos) /*!< 0x00000800 */
+#define ADC_SQR2_SQ9_2 (0x04UL << ADC_SQR2_SQ9_Pos) /*!< 0x00001000 */
+#define ADC_SQR2_SQ9_3 (0x08UL << ADC_SQR2_SQ9_Pos) /*!< 0x00002000 */
+#define ADC_SQR2_SQ9_4 (0x10UL << ADC_SQR2_SQ9_Pos) /*!< 0x00004000 */
+
+#define ADC_SQR2_SQ10_Pos (15U)
+#define ADC_SQR2_SQ10_Msk (0x1FUL << ADC_SQR2_SQ10_Pos) /*!< 0x000F8000 */
+#define ADC_SQR2_SQ10 ADC_SQR2_SQ10_Msk /*!< ADC group regular sequencer rank 10 */
+#define ADC_SQR2_SQ10_0 (0x01UL << ADC_SQR2_SQ10_Pos) /*!< 0x00008000 */
+#define ADC_SQR2_SQ10_1 (0x02UL << ADC_SQR2_SQ10_Pos) /*!< 0x00010000 */
+#define ADC_SQR2_SQ10_2 (0x04UL << ADC_SQR2_SQ10_Pos) /*!< 0x00020000 */
+#define ADC_SQR2_SQ10_3 (0x08UL << ADC_SQR2_SQ10_Pos) /*!< 0x00040000 */
+#define ADC_SQR2_SQ10_4 (0x10UL << ADC_SQR2_SQ10_Pos) /*!< 0x00080000 */
+
+#define ADC_SQR2_SQ11_Pos (20U)
+#define ADC_SQR2_SQ11_Msk (0x1FUL << ADC_SQR2_SQ11_Pos) /*!< 0x01F00000 */
+#define ADC_SQR2_SQ11 ADC_SQR2_SQ11_Msk /*!< ADC group regular sequencer rank 1 */
+#define ADC_SQR2_SQ11_0 (0x01UL << ADC_SQR2_SQ11_Pos) /*!< 0x00100000 */
+#define ADC_SQR2_SQ11_1 (0x02UL << ADC_SQR2_SQ11_Pos) /*!< 0x00200000 */
+#define ADC_SQR2_SQ11_2 (0x04UL << ADC_SQR2_SQ11_Pos) /*!< 0x00400000 */
+#define ADC_SQR2_SQ11_3 (0x08UL << ADC_SQR2_SQ11_Pos) /*!< 0x00800000 */
+#define ADC_SQR2_SQ11_4 (0x10UL << ADC_SQR2_SQ11_Pos) /*!< 0x01000000 */
+
+#define ADC_SQR2_SQ12_Pos (25U)
+#define ADC_SQR2_SQ12_Msk (0x1FUL << ADC_SQR2_SQ12_Pos) /*!< 0x3E000000 */
+#define ADC_SQR2_SQ12 ADC_SQR2_SQ12_Msk /*!< ADC group regular sequencer rank 12 */
+#define ADC_SQR2_SQ12_0 (0x01UL << ADC_SQR2_SQ12_Pos) /*!< 0x02000000 */
+#define ADC_SQR2_SQ12_1 (0x02UL << ADC_SQR2_SQ12_Pos) /*!< 0x04000000 */
+#define ADC_SQR2_SQ12_2 (0x04UL << ADC_SQR2_SQ12_Pos) /*!< 0x08000000 */
+#define ADC_SQR2_SQ12_3 (0x08UL << ADC_SQR2_SQ12_Pos) /*!< 0x10000000 */
+#define ADC_SQR2_SQ12_4 (0x10UL << ADC_SQR2_SQ12_Pos) /*!< 0x20000000 */
+
+/******************* Bit definition for ADC_SQR3 register *******************/
+#define ADC_SQR3_SQ1_Pos (0U)
+#define ADC_SQR3_SQ1_Msk (0x1FUL << ADC_SQR3_SQ1_Pos) /*!< 0x0000001F */
+#define ADC_SQR3_SQ1 ADC_SQR3_SQ1_Msk /*!< ADC group regular sequencer rank 1 */
+#define ADC_SQR3_SQ1_0 (0x01UL << ADC_SQR3_SQ1_Pos) /*!< 0x00000001 */
+#define ADC_SQR3_SQ1_1 (0x02UL << ADC_SQR3_SQ1_Pos) /*!< 0x00000002 */
+#define ADC_SQR3_SQ1_2 (0x04UL << ADC_SQR3_SQ1_Pos) /*!< 0x00000004 */
+#define ADC_SQR3_SQ1_3 (0x08UL << ADC_SQR3_SQ1_Pos) /*!< 0x00000008 */
+#define ADC_SQR3_SQ1_4 (0x10UL << ADC_SQR3_SQ1_Pos) /*!< 0x00000010 */
+
+#define ADC_SQR3_SQ2_Pos (5U)
+#define ADC_SQR3_SQ2_Msk (0x1FUL << ADC_SQR3_SQ2_Pos) /*!< 0x000003E0 */
+#define ADC_SQR3_SQ2 ADC_SQR3_SQ2_Msk /*!< ADC group regular sequencer rank 2 */
+#define ADC_SQR3_SQ2_0 (0x01UL << ADC_SQR3_SQ2_Pos) /*!< 0x00000020 */
+#define ADC_SQR3_SQ2_1 (0x02UL << ADC_SQR3_SQ2_Pos) /*!< 0x00000040 */
+#define ADC_SQR3_SQ2_2 (0x04UL << ADC_SQR3_SQ2_Pos) /*!< 0x00000080 */
+#define ADC_SQR3_SQ2_3 (0x08UL << ADC_SQR3_SQ2_Pos) /*!< 0x00000100 */
+#define ADC_SQR3_SQ2_4 (0x10UL << ADC_SQR3_SQ2_Pos) /*!< 0x00000200 */
+
+#define ADC_SQR3_SQ3_Pos (10U)
+#define ADC_SQR3_SQ3_Msk (0x1FUL << ADC_SQR3_SQ3_Pos) /*!< 0x00007C00 */
+#define ADC_SQR3_SQ3 ADC_SQR3_SQ3_Msk /*!< ADC group regular sequencer rank 3 */
+#define ADC_SQR3_SQ3_0 (0x01UL << ADC_SQR3_SQ3_Pos) /*!< 0x00000400 */
+#define ADC_SQR3_SQ3_1 (0x02UL << ADC_SQR3_SQ3_Pos) /*!< 0x00000800 */
+#define ADC_SQR3_SQ3_2 (0x04UL << ADC_SQR3_SQ3_Pos) /*!< 0x00001000 */
+#define ADC_SQR3_SQ3_3 (0x08UL << ADC_SQR3_SQ3_Pos) /*!< 0x00002000 */
+#define ADC_SQR3_SQ3_4 (0x10UL << ADC_SQR3_SQ3_Pos) /*!< 0x00004000 */
+
+#define ADC_SQR3_SQ4_Pos (15U)
+#define ADC_SQR3_SQ4_Msk (0x1FUL << ADC_SQR3_SQ4_Pos) /*!< 0x000F8000 */
+#define ADC_SQR3_SQ4 ADC_SQR3_SQ4_Msk /*!< ADC group regular sequencer rank 4 */
+#define ADC_SQR3_SQ4_0 (0x01UL << ADC_SQR3_SQ4_Pos) /*!< 0x00008000 */
+#define ADC_SQR3_SQ4_1 (0x02UL << ADC_SQR3_SQ4_Pos) /*!< 0x00010000 */
+#define ADC_SQR3_SQ4_2 (0x04UL << ADC_SQR3_SQ4_Pos) /*!< 0x00020000 */
+#define ADC_SQR3_SQ4_3 (0x08UL << ADC_SQR3_SQ4_Pos) /*!< 0x00040000 */
+#define ADC_SQR3_SQ4_4 (0x10UL << ADC_SQR3_SQ4_Pos) /*!< 0x00080000 */
+
+#define ADC_SQR3_SQ5_Pos (20U)
+#define ADC_SQR3_SQ5_Msk (0x1FUL << ADC_SQR3_SQ5_Pos) /*!< 0x01F00000 */
+#define ADC_SQR3_SQ5 ADC_SQR3_SQ5_Msk /*!< ADC group regular sequencer rank 5 */
+#define ADC_SQR3_SQ5_0 (0x01UL << ADC_SQR3_SQ5_Pos) /*!< 0x00100000 */
+#define ADC_SQR3_SQ5_1 (0x02UL << ADC_SQR3_SQ5_Pos) /*!< 0x00200000 */
+#define ADC_SQR3_SQ5_2 (0x04UL << ADC_SQR3_SQ5_Pos) /*!< 0x00400000 */
+#define ADC_SQR3_SQ5_3 (0x08UL << ADC_SQR3_SQ5_Pos) /*!< 0x00800000 */
+#define ADC_SQR3_SQ5_4 (0x10UL << ADC_SQR3_SQ5_Pos) /*!< 0x01000000 */
+
+#define ADC_SQR3_SQ6_Pos (25U)
+#define ADC_SQR3_SQ6_Msk (0x1FUL << ADC_SQR3_SQ6_Pos) /*!< 0x3E000000 */
+#define ADC_SQR3_SQ6 ADC_SQR3_SQ6_Msk /*!< ADC group regular sequencer rank 6 */
+#define ADC_SQR3_SQ6_0 (0x01UL << ADC_SQR3_SQ6_Pos) /*!< 0x02000000 */
+#define ADC_SQR3_SQ6_1 (0x02UL << ADC_SQR3_SQ6_Pos) /*!< 0x04000000 */
+#define ADC_SQR3_SQ6_2 (0x04UL << ADC_SQR3_SQ6_Pos) /*!< 0x08000000 */
+#define ADC_SQR3_SQ6_3 (0x08UL << ADC_SQR3_SQ6_Pos) /*!< 0x10000000 */
+#define ADC_SQR3_SQ6_4 (0x10UL << ADC_SQR3_SQ6_Pos) /*!< 0x20000000 */
+
+/******************* Bit definition for ADC_JSQR register *******************/
+#define ADC_JSQR_JSQ1_Pos (0U)
+#define ADC_JSQR_JSQ1_Msk (0x1FUL << ADC_JSQR_JSQ1_Pos) /*!< 0x0000001F */
+#define ADC_JSQR_JSQ1 ADC_JSQR_JSQ1_Msk /*!< ADC group injected sequencer rank 1 */
+#define ADC_JSQR_JSQ1_0 (0x01UL << ADC_JSQR_JSQ1_Pos) /*!< 0x00000001 */
+#define ADC_JSQR_JSQ1_1 (0x02UL << ADC_JSQR_JSQ1_Pos) /*!< 0x00000002 */
+#define ADC_JSQR_JSQ1_2 (0x04UL << ADC_JSQR_JSQ1_Pos) /*!< 0x00000004 */
+#define ADC_JSQR_JSQ1_3 (0x08UL << ADC_JSQR_JSQ1_Pos) /*!< 0x00000008 */
+#define ADC_JSQR_JSQ1_4 (0x10UL << ADC_JSQR_JSQ1_Pos) /*!< 0x00000010 */
+
+#define ADC_JSQR_JSQ2_Pos (5U)
+#define ADC_JSQR_JSQ2_Msk (0x1FUL << ADC_JSQR_JSQ2_Pos) /*!< 0x000003E0 */
+#define ADC_JSQR_JSQ2 ADC_JSQR_JSQ2_Msk /*!< ADC group injected sequencer rank 2 */
+#define ADC_JSQR_JSQ2_0 (0x01UL << ADC_JSQR_JSQ2_Pos) /*!< 0x00000020 */
+#define ADC_JSQR_JSQ2_1 (0x02UL << ADC_JSQR_JSQ2_Pos) /*!< 0x00000040 */
+#define ADC_JSQR_JSQ2_2 (0x04UL << ADC_JSQR_JSQ2_Pos) /*!< 0x00000080 */
+#define ADC_JSQR_JSQ2_3 (0x08UL << ADC_JSQR_JSQ2_Pos) /*!< 0x00000100 */
+#define ADC_JSQR_JSQ2_4 (0x10UL << ADC_JSQR_JSQ2_Pos) /*!< 0x00000200 */
+
+#define ADC_JSQR_JSQ3_Pos (10U)
+#define ADC_JSQR_JSQ3_Msk (0x1FUL << ADC_JSQR_JSQ3_Pos) /*!< 0x00007C00 */
+#define ADC_JSQR_JSQ3 ADC_JSQR_JSQ3_Msk /*!< ADC group injected sequencer rank 3 */
+#define ADC_JSQR_JSQ3_0 (0x01UL << ADC_JSQR_JSQ3_Pos) /*!< 0x00000400 */
+#define ADC_JSQR_JSQ3_1 (0x02UL << ADC_JSQR_JSQ3_Pos) /*!< 0x00000800 */
+#define ADC_JSQR_JSQ3_2 (0x04UL << ADC_JSQR_JSQ3_Pos) /*!< 0x00001000 */
+#define ADC_JSQR_JSQ3_3 (0x08UL << ADC_JSQR_JSQ3_Pos) /*!< 0x00002000 */
+#define ADC_JSQR_JSQ3_4 (0x10UL << ADC_JSQR_JSQ3_Pos) /*!< 0x00004000 */
+
+#define ADC_JSQR_JSQ4_Pos (15U)
+#define ADC_JSQR_JSQ4_Msk (0x1FUL << ADC_JSQR_JSQ4_Pos) /*!< 0x000F8000 */
+#define ADC_JSQR_JSQ4 ADC_JSQR_JSQ4_Msk /*!< ADC group injected sequencer rank 4 */
+#define ADC_JSQR_JSQ4_0 (0x01UL << ADC_JSQR_JSQ4_Pos) /*!< 0x00008000 */
+#define ADC_JSQR_JSQ4_1 (0x02UL << ADC_JSQR_JSQ4_Pos) /*!< 0x00010000 */
+#define ADC_JSQR_JSQ4_2 (0x04UL << ADC_JSQR_JSQ4_Pos) /*!< 0x00020000 */
+#define ADC_JSQR_JSQ4_3 (0x08UL << ADC_JSQR_JSQ4_Pos) /*!< 0x00040000 */
+#define ADC_JSQR_JSQ4_4 (0x10UL << ADC_JSQR_JSQ4_Pos) /*!< 0x00080000 */
+
+#define ADC_JSQR_JL_Pos (20U)
+#define ADC_JSQR_JL_Msk (0x3UL << ADC_JSQR_JL_Pos) /*!< 0x00300000 */
+#define ADC_JSQR_JL ADC_JSQR_JL_Msk /*!< ADC group injected sequencer scan length */
+#define ADC_JSQR_JL_0 (0x1UL << ADC_JSQR_JL_Pos) /*!< 0x00100000 */
+#define ADC_JSQR_JL_1 (0x2UL << ADC_JSQR_JL_Pos) /*!< 0x00200000 */
+
+/******************* Bit definition for ADC_JDR1 register *******************/
+#define ADC_JDR1_JDATA_Pos (0U)
+#define ADC_JDR1_JDATA_Msk (0xFFFFUL << ADC_JDR1_JDATA_Pos) /*!< 0x0000FFFF */
+#define ADC_JDR1_JDATA ADC_JDR1_JDATA_Msk /*!< ADC group injected sequencer rank 1 conversion data */
+
+/******************* Bit definition for ADC_JDR2 register *******************/
+#define ADC_JDR2_JDATA_Pos (0U)
+#define ADC_JDR2_JDATA_Msk (0xFFFFUL << ADC_JDR2_JDATA_Pos) /*!< 0x0000FFFF */
+#define ADC_JDR2_JDATA ADC_JDR2_JDATA_Msk /*!< ADC group injected sequencer rank 2 conversion data */
+
+/******************* Bit definition for ADC_JDR3 register *******************/
+#define ADC_JDR3_JDATA_Pos (0U)
+#define ADC_JDR3_JDATA_Msk (0xFFFFUL << ADC_JDR3_JDATA_Pos) /*!< 0x0000FFFF */
+#define ADC_JDR3_JDATA ADC_JDR3_JDATA_Msk /*!< ADC group injected sequencer rank 3 conversion data */
+
+/******************* Bit definition for ADC_JDR4 register *******************/
+#define ADC_JDR4_JDATA_Pos (0U)
+#define ADC_JDR4_JDATA_Msk (0xFFFFUL << ADC_JDR4_JDATA_Pos) /*!< 0x0000FFFF */
+#define ADC_JDR4_JDATA ADC_JDR4_JDATA_Msk /*!< ADC group injected sequencer rank 4 conversion data */
+
+/******************** Bit definition for ADC_DR register ********************/
+#define ADC_DR_DATA_Pos (0U)
+#define ADC_DR_DATA_Msk (0xFFFFUL << ADC_DR_DATA_Pos) /*!< 0x0000FFFF */
+#define ADC_DR_DATA ADC_DR_DATA_Msk /*!< ADC group regular conversion data */
+#define ADC_DR_ADC2DATA_Pos (16U)
+#define ADC_DR_ADC2DATA_Msk (0xFFFFUL << ADC_DR_ADC2DATA_Pos) /*!< 0xFFFF0000 */
+#define ADC_DR_ADC2DATA ADC_DR_ADC2DATA_Msk /*!< ADC group regular conversion data for ADC slave, in multimode */
+
+/*****************************************************************************/
+/* */
+/* Timers (TIM) */
+/* */
+/*****************************************************************************/
+/******************* Bit definition for TIM_CR1 register *******************/
+#define TIM_CR1_CEN_Pos (0U)
+#define TIM_CR1_CEN_Msk (0x1UL << TIM_CR1_CEN_Pos) /*!< 0x00000001 */
+#define TIM_CR1_CEN TIM_CR1_CEN_Msk /*!<Counter enable */
+#define TIM_CR1_UDIS_Pos (1U)
+#define TIM_CR1_UDIS_Msk (0x1UL << TIM_CR1_UDIS_Pos) /*!< 0x00000002 */
+#define TIM_CR1_UDIS TIM_CR1_UDIS_Msk /*!<Update disable */
+#define TIM_CR1_URS_Pos (2U)
+#define TIM_CR1_URS_Msk (0x1UL << TIM_CR1_URS_Pos) /*!< 0x00000004 */
+#define TIM_CR1_URS TIM_CR1_URS_Msk /*!<Update request source */
+#define TIM_CR1_OPM_Pos (3U)
+#define TIM_CR1_OPM_Msk (0x1UL << TIM_CR1_OPM_Pos) /*!< 0x00000008 */
+#define TIM_CR1_OPM TIM_CR1_OPM_Msk /*!<One pulse mode */
+#define TIM_CR1_DIR_Pos (4U)
+#define TIM_CR1_DIR_Msk (0x1UL << TIM_CR1_DIR_Pos) /*!< 0x00000010 */
+#define TIM_CR1_DIR TIM_CR1_DIR_Msk /*!<Direction */
+
+#define TIM_CR1_CMS_Pos (5U)
+#define TIM_CR1_CMS_Msk (0x3UL << TIM_CR1_CMS_Pos) /*!< 0x00000060 */
+#define TIM_CR1_CMS TIM_CR1_CMS_Msk /*!<CMS[1:0] bits (Center-aligned mode selection) */
+#define TIM_CR1_CMS_0 (0x1UL << TIM_CR1_CMS_Pos) /*!< 0x00000020 */
+#define TIM_CR1_CMS_1 (0x2UL << TIM_CR1_CMS_Pos) /*!< 0x00000040 */
+
+#define TIM_CR1_ARPE_Pos (7U)
+#define TIM_CR1_ARPE_Msk (0x1UL << TIM_CR1_ARPE_Pos) /*!< 0x00000080 */
+#define TIM_CR1_ARPE TIM_CR1_ARPE_Msk /*!<Auto-reload preload enable */
+
+#define TIM_CR1_CKD_Pos (8U)
+#define TIM_CR1_CKD_Msk (0x3UL << TIM_CR1_CKD_Pos) /*!< 0x00000300 */
+#define TIM_CR1_CKD TIM_CR1_CKD_Msk /*!<CKD[1:0] bits (clock division) */
+#define TIM_CR1_CKD_0 (0x1UL << TIM_CR1_CKD_Pos) /*!< 0x00000100 */
+#define TIM_CR1_CKD_1 (0x2UL << TIM_CR1_CKD_Pos) /*!< 0x00000200 */
+
+/******************* Bit definition for TIM_CR2 register *******************/
+#define TIM_CR2_CCPC_Pos (0U)
+#define TIM_CR2_CCPC_Msk (0x1UL << TIM_CR2_CCPC_Pos) /*!< 0x00000001 */
+#define TIM_CR2_CCPC TIM_CR2_CCPC_Msk /*!<Capture/Compare Preloaded Control */
+#define TIM_CR2_CCUS_Pos (2U)
+#define TIM_CR2_CCUS_Msk (0x1UL << TIM_CR2_CCUS_Pos) /*!< 0x00000004 */
+#define TIM_CR2_CCUS TIM_CR2_CCUS_Msk /*!<Capture/Compare Control Update Selection */
+#define TIM_CR2_CCDS_Pos (3U)
+#define TIM_CR2_CCDS_Msk (0x1UL << TIM_CR2_CCDS_Pos) /*!< 0x00000008 */
+#define TIM_CR2_CCDS TIM_CR2_CCDS_Msk /*!<Capture/Compare DMA Selection */
+
+#define TIM_CR2_MMS_Pos (4U)
+#define TIM_CR2_MMS_Msk (0x7UL << TIM_CR2_MMS_Pos) /*!< 0x00000070 */
+#define TIM_CR2_MMS TIM_CR2_MMS_Msk /*!<MMS[2:0] bits (Master Mode Selection) */
+#define TIM_CR2_MMS_0 (0x1UL << TIM_CR2_MMS_Pos) /*!< 0x00000010 */
+#define TIM_CR2_MMS_1 (0x2UL << TIM_CR2_MMS_Pos) /*!< 0x00000020 */
+#define TIM_CR2_MMS_2 (0x4UL << TIM_CR2_MMS_Pos) /*!< 0x00000040 */
+
+#define TIM_CR2_TI1S_Pos (7U)
+#define TIM_CR2_TI1S_Msk (0x1UL << TIM_CR2_TI1S_Pos) /*!< 0x00000080 */
+#define TIM_CR2_TI1S TIM_CR2_TI1S_Msk /*!<TI1 Selection */
+#define TIM_CR2_OIS1_Pos (8U)
+#define TIM_CR2_OIS1_Msk (0x1UL << TIM_CR2_OIS1_Pos) /*!< 0x00000100 */
+#define TIM_CR2_OIS1 TIM_CR2_OIS1_Msk /*!<Output Idle state 1 (OC1 output) */
+#define TIM_CR2_OIS1N_Pos (9U)
+#define TIM_CR2_OIS1N_Msk (0x1UL << TIM_CR2_OIS1N_Pos) /*!< 0x00000200 */
+#define TIM_CR2_OIS1N TIM_CR2_OIS1N_Msk /*!<Output Idle state 1 (OC1N output) */
+#define TIM_CR2_OIS2_Pos (10U)
+#define TIM_CR2_OIS2_Msk (0x1UL << TIM_CR2_OIS2_Pos) /*!< 0x00000400 */
+#define TIM_CR2_OIS2 TIM_CR2_OIS2_Msk /*!<Output Idle state 2 (OC2 output) */
+#define TIM_CR2_OIS2N_Pos (11U)
+#define TIM_CR2_OIS2N_Msk (0x1UL << TIM_CR2_OIS2N_Pos) /*!< 0x00000800 */
+#define TIM_CR2_OIS2N TIM_CR2_OIS2N_Msk /*!<Output Idle state 2 (OC2N output) */
+#define TIM_CR2_OIS3_Pos (12U)
+#define TIM_CR2_OIS3_Msk (0x1UL << TIM_CR2_OIS3_Pos) /*!< 0x00001000 */
+#define TIM_CR2_OIS3 TIM_CR2_OIS3_Msk /*!<Output Idle state 3 (OC3 output) */
+#define TIM_CR2_OIS3N_Pos (13U)
+#define TIM_CR2_OIS3N_Msk (0x1UL << TIM_CR2_OIS3N_Pos) /*!< 0x00002000 */
+#define TIM_CR2_OIS3N TIM_CR2_OIS3N_Msk /*!<Output Idle state 3 (OC3N output) */
+#define TIM_CR2_OIS4_Pos (14U)
+#define TIM_CR2_OIS4_Msk (0x1UL << TIM_CR2_OIS4_Pos) /*!< 0x00004000 */
+#define TIM_CR2_OIS4 TIM_CR2_OIS4_Msk /*!<Output Idle state 4 (OC4 output) */
+
+/******************* Bit definition for TIM_SMCR register ******************/
+#define TIM_SMCR_SMS_Pos (0U)
+#define TIM_SMCR_SMS_Msk (0x7UL << TIM_SMCR_SMS_Pos) /*!< 0x00000007 */
+#define TIM_SMCR_SMS TIM_SMCR_SMS_Msk /*!<SMS[2:0] bits (Slave mode selection) */
+#define TIM_SMCR_SMS_0 (0x1UL << TIM_SMCR_SMS_Pos) /*!< 0x00000001 */
+#define TIM_SMCR_SMS_1 (0x2UL << TIM_SMCR_SMS_Pos) /*!< 0x00000002 */
+#define TIM_SMCR_SMS_2 (0x4UL << TIM_SMCR_SMS_Pos) /*!< 0x00000004 */
+
+#define TIM_SMCR_TS_Pos (4U)
+#define TIM_SMCR_TS_Msk (0x7UL << TIM_SMCR_TS_Pos) /*!< 0x00000070 */
+#define TIM_SMCR_TS TIM_SMCR_TS_Msk /*!<TS[2:0] bits (Trigger selection) */
+#define TIM_SMCR_TS_0 (0x1UL << TIM_SMCR_TS_Pos) /*!< 0x00000010 */
+#define TIM_SMCR_TS_1 (0x2UL << TIM_SMCR_TS_Pos) /*!< 0x00000020 */
+#define TIM_SMCR_TS_2 (0x4UL << TIM_SMCR_TS_Pos) /*!< 0x00000040 */
+
+#define TIM_SMCR_MSM_Pos (7U)
+#define TIM_SMCR_MSM_Msk (0x1UL << TIM_SMCR_MSM_Pos) /*!< 0x00000080 */
+#define TIM_SMCR_MSM TIM_SMCR_MSM_Msk /*!<Master/slave mode */
+
+#define TIM_SMCR_ETF_Pos (8U)
+#define TIM_SMCR_ETF_Msk (0xFUL << TIM_SMCR_ETF_Pos) /*!< 0x00000F00 */
+#define TIM_SMCR_ETF TIM_SMCR_ETF_Msk /*!<ETF[3:0] bits (External trigger filter) */
+#define TIM_SMCR_ETF_0 (0x1UL << TIM_SMCR_ETF_Pos) /*!< 0x00000100 */
+#define TIM_SMCR_ETF_1 (0x2UL << TIM_SMCR_ETF_Pos) /*!< 0x00000200 */
+#define TIM_SMCR_ETF_2 (0x4UL << TIM_SMCR_ETF_Pos) /*!< 0x00000400 */
+#define TIM_SMCR_ETF_3 (0x8UL << TIM_SMCR_ETF_Pos) /*!< 0x00000800 */
+
+#define TIM_SMCR_ETPS_Pos (12U)
+#define TIM_SMCR_ETPS_Msk (0x3UL << TIM_SMCR_ETPS_Pos) /*!< 0x00003000 */
+#define TIM_SMCR_ETPS TIM_SMCR_ETPS_Msk /*!<ETPS[1:0] bits (External trigger prescaler) */
+#define TIM_SMCR_ETPS_0 (0x1UL << TIM_SMCR_ETPS_Pos) /*!< 0x00001000 */
+#define TIM_SMCR_ETPS_1 (0x2UL << TIM_SMCR_ETPS_Pos) /*!< 0x00002000 */
+
+#define TIM_SMCR_ECE_Pos (14U)
+#define TIM_SMCR_ECE_Msk (0x1UL << TIM_SMCR_ECE_Pos) /*!< 0x00004000 */
+#define TIM_SMCR_ECE TIM_SMCR_ECE_Msk /*!<External clock enable */
+#define TIM_SMCR_ETP_Pos (15U)
+#define TIM_SMCR_ETP_Msk (0x1UL << TIM_SMCR_ETP_Pos) /*!< 0x00008000 */
+#define TIM_SMCR_ETP TIM_SMCR_ETP_Msk /*!<External trigger polarity */
+
+/******************* Bit definition for TIM_DIER register ******************/
+#define TIM_DIER_UIE_Pos (0U)
+#define TIM_DIER_UIE_Msk (0x1UL << TIM_DIER_UIE_Pos) /*!< 0x00000001 */
+#define TIM_DIER_UIE TIM_DIER_UIE_Msk /*!<Update interrupt enable */
+#define TIM_DIER_CC1IE_Pos (1U)
+#define TIM_DIER_CC1IE_Msk (0x1UL << TIM_DIER_CC1IE_Pos) /*!< 0x00000002 */
+#define TIM_DIER_CC1IE TIM_DIER_CC1IE_Msk /*!<Capture/Compare 1 interrupt enable */
+#define TIM_DIER_CC2IE_Pos (2U)
+#define TIM_DIER_CC2IE_Msk (0x1UL << TIM_DIER_CC2IE_Pos) /*!< 0x00000004 */
+#define TIM_DIER_CC2IE TIM_DIER_CC2IE_Msk /*!<Capture/Compare 2 interrupt enable */
+#define TIM_DIER_CC3IE_Pos (3U)
+#define TIM_DIER_CC3IE_Msk (0x1UL << TIM_DIER_CC3IE_Pos) /*!< 0x00000008 */
+#define TIM_DIER_CC3IE TIM_DIER_CC3IE_Msk /*!<Capture/Compare 3 interrupt enable */
+#define TIM_DIER_CC4IE_Pos (4U)
+#define TIM_DIER_CC4IE_Msk (0x1UL << TIM_DIER_CC4IE_Pos) /*!< 0x00000010 */
+#define TIM_DIER_CC4IE TIM_DIER_CC4IE_Msk /*!<Capture/Compare 4 interrupt enable */
+#define TIM_DIER_COMIE_Pos (5U)
+#define TIM_DIER_COMIE_Msk (0x1UL << TIM_DIER_COMIE_Pos) /*!< 0x00000020 */
+#define TIM_DIER_COMIE TIM_DIER_COMIE_Msk /*!<COM interrupt enable */
+#define TIM_DIER_TIE_Pos (6U)
+#define TIM_DIER_TIE_Msk (0x1UL << TIM_DIER_TIE_Pos) /*!< 0x00000040 */
+#define TIM_DIER_TIE TIM_DIER_TIE_Msk /*!<Trigger interrupt enable */
+#define TIM_DIER_BIE_Pos (7U)
+#define TIM_DIER_BIE_Msk (0x1UL << TIM_DIER_BIE_Pos) /*!< 0x00000080 */
+#define TIM_DIER_BIE TIM_DIER_BIE_Msk /*!<Break interrupt enable */
+#define TIM_DIER_UDE_Pos (8U)
+#define TIM_DIER_UDE_Msk (0x1UL << TIM_DIER_UDE_Pos) /*!< 0x00000100 */
+#define TIM_DIER_UDE TIM_DIER_UDE_Msk /*!<Update DMA request enable */
+#define TIM_DIER_CC1DE_Pos (9U)
+#define TIM_DIER_CC1DE_Msk (0x1UL << TIM_DIER_CC1DE_Pos) /*!< 0x00000200 */
+#define TIM_DIER_CC1DE TIM_DIER_CC1DE_Msk /*!<Capture/Compare 1 DMA request enable */
+#define TIM_DIER_CC2DE_Pos (10U)
+#define TIM_DIER_CC2DE_Msk (0x1UL << TIM_DIER_CC2DE_Pos) /*!< 0x00000400 */
+#define TIM_DIER_CC2DE TIM_DIER_CC2DE_Msk /*!<Capture/Compare 2 DMA request enable */
+#define TIM_DIER_CC3DE_Pos (11U)
+#define TIM_DIER_CC3DE_Msk (0x1UL << TIM_DIER_CC3DE_Pos) /*!< 0x00000800 */
+#define TIM_DIER_CC3DE TIM_DIER_CC3DE_Msk /*!<Capture/Compare 3 DMA request enable */
+#define TIM_DIER_CC4DE_Pos (12U)
+#define TIM_DIER_CC4DE_Msk (0x1UL << TIM_DIER_CC4DE_Pos) /*!< 0x00001000 */
+#define TIM_DIER_CC4DE TIM_DIER_CC4DE_Msk /*!<Capture/Compare 4 DMA request enable */
+#define TIM_DIER_COMDE_Pos (13U)
+#define TIM_DIER_COMDE_Msk (0x1UL << TIM_DIER_COMDE_Pos) /*!< 0x00002000 */
+#define TIM_DIER_COMDE TIM_DIER_COMDE_Msk /*!<COM DMA request enable */
+#define TIM_DIER_TDE_Pos (14U)
+#define TIM_DIER_TDE_Msk (0x1UL << TIM_DIER_TDE_Pos) /*!< 0x00004000 */
+#define TIM_DIER_TDE TIM_DIER_TDE_Msk /*!<Trigger DMA request enable */
+
+/******************** Bit definition for TIM_SR register *******************/
+#define TIM_SR_UIF_Pos (0U)
+#define TIM_SR_UIF_Msk (0x1UL << TIM_SR_UIF_Pos) /*!< 0x00000001 */
+#define TIM_SR_UIF TIM_SR_UIF_Msk /*!<Update interrupt Flag */
+#define TIM_SR_CC1IF_Pos (1U)
+#define TIM_SR_CC1IF_Msk (0x1UL << TIM_SR_CC1IF_Pos) /*!< 0x00000002 */
+#define TIM_SR_CC1IF TIM_SR_CC1IF_Msk /*!<Capture/Compare 1 interrupt Flag */
+#define TIM_SR_CC2IF_Pos (2U)
+#define TIM_SR_CC2IF_Msk (0x1UL << TIM_SR_CC2IF_Pos) /*!< 0x00000004 */
+#define TIM_SR_CC2IF TIM_SR_CC2IF_Msk /*!<Capture/Compare 2 interrupt Flag */
+#define TIM_SR_CC3IF_Pos (3U)
+#define TIM_SR_CC3IF_Msk (0x1UL << TIM_SR_CC3IF_Pos) /*!< 0x00000008 */
+#define TIM_SR_CC3IF TIM_SR_CC3IF_Msk /*!<Capture/Compare 3 interrupt Flag */
+#define TIM_SR_CC4IF_Pos (4U)
+#define TIM_SR_CC4IF_Msk (0x1UL << TIM_SR_CC4IF_Pos) /*!< 0x00000010 */
+#define TIM_SR_CC4IF TIM_SR_CC4IF_Msk /*!<Capture/Compare 4 interrupt Flag */
+#define TIM_SR_COMIF_Pos (5U)
+#define TIM_SR_COMIF_Msk (0x1UL << TIM_SR_COMIF_Pos) /*!< 0x00000020 */
+#define TIM_SR_COMIF TIM_SR_COMIF_Msk /*!<COM interrupt Flag */
+#define TIM_SR_TIF_Pos (6U)
+#define TIM_SR_TIF_Msk (0x1UL << TIM_SR_TIF_Pos) /*!< 0x00000040 */
+#define TIM_SR_TIF TIM_SR_TIF_Msk /*!<Trigger interrupt Flag */
+#define TIM_SR_BIF_Pos (7U)
+#define TIM_SR_BIF_Msk (0x1UL << TIM_SR_BIF_Pos) /*!< 0x00000080 */
+#define TIM_SR_BIF TIM_SR_BIF_Msk /*!<Break interrupt Flag */
+#define TIM_SR_CC1OF_Pos (9U)
+#define TIM_SR_CC1OF_Msk (0x1UL << TIM_SR_CC1OF_Pos) /*!< 0x00000200 */
+#define TIM_SR_CC1OF TIM_SR_CC1OF_Msk /*!<Capture/Compare 1 Overcapture Flag */
+#define TIM_SR_CC2OF_Pos (10U)
+#define TIM_SR_CC2OF_Msk (0x1UL << TIM_SR_CC2OF_Pos) /*!< 0x00000400 */
+#define TIM_SR_CC2OF TIM_SR_CC2OF_Msk /*!<Capture/Compare 2 Overcapture Flag */
+#define TIM_SR_CC3OF_Pos (11U)
+#define TIM_SR_CC3OF_Msk (0x1UL << TIM_SR_CC3OF_Pos) /*!< 0x00000800 */
+#define TIM_SR_CC3OF TIM_SR_CC3OF_Msk /*!<Capture/Compare 3 Overcapture Flag */
+#define TIM_SR_CC4OF_Pos (12U)
+#define TIM_SR_CC4OF_Msk (0x1UL << TIM_SR_CC4OF_Pos) /*!< 0x00001000 */
+#define TIM_SR_CC4OF TIM_SR_CC4OF_Msk /*!<Capture/Compare 4 Overcapture Flag */
+
+/******************* Bit definition for TIM_EGR register *******************/
+#define TIM_EGR_UG_Pos (0U)
+#define TIM_EGR_UG_Msk (0x1UL << TIM_EGR_UG_Pos) /*!< 0x00000001 */
+#define TIM_EGR_UG TIM_EGR_UG_Msk /*!<Update Generation */
+#define TIM_EGR_CC1G_Pos (1U)
+#define TIM_EGR_CC1G_Msk (0x1UL << TIM_EGR_CC1G_Pos) /*!< 0x00000002 */
+#define TIM_EGR_CC1G TIM_EGR_CC1G_Msk /*!<Capture/Compare 1 Generation */
+#define TIM_EGR_CC2G_Pos (2U)
+#define TIM_EGR_CC2G_Msk (0x1UL << TIM_EGR_CC2G_Pos) /*!< 0x00000004 */
+#define TIM_EGR_CC2G TIM_EGR_CC2G_Msk /*!<Capture/Compare 2 Generation */
+#define TIM_EGR_CC3G_Pos (3U)
+#define TIM_EGR_CC3G_Msk (0x1UL << TIM_EGR_CC3G_Pos) /*!< 0x00000008 */
+#define TIM_EGR_CC3G TIM_EGR_CC3G_Msk /*!<Capture/Compare 3 Generation */
+#define TIM_EGR_CC4G_Pos (4U)
+#define TIM_EGR_CC4G_Msk (0x1UL << TIM_EGR_CC4G_Pos) /*!< 0x00000010 */
+#define TIM_EGR_CC4G TIM_EGR_CC4G_Msk /*!<Capture/Compare 4 Generation */
+#define TIM_EGR_COMG_Pos (5U)
+#define TIM_EGR_COMG_Msk (0x1UL << TIM_EGR_COMG_Pos) /*!< 0x00000020 */
+#define TIM_EGR_COMG TIM_EGR_COMG_Msk /*!<Capture/Compare Control Update Generation */
+#define TIM_EGR_TG_Pos (6U)
+#define TIM_EGR_TG_Msk (0x1UL << TIM_EGR_TG_Pos) /*!< 0x00000040 */
+#define TIM_EGR_TG TIM_EGR_TG_Msk /*!<Trigger Generation */
+#define TIM_EGR_BG_Pos (7U)
+#define TIM_EGR_BG_Msk (0x1UL << TIM_EGR_BG_Pos) /*!< 0x00000080 */
+#define TIM_EGR_BG TIM_EGR_BG_Msk /*!<Break Generation */
+
+/****************** Bit definition for TIM_CCMR1 register ******************/
+#define TIM_CCMR1_CC1S_Pos (0U)
+#define TIM_CCMR1_CC1S_Msk (0x3UL << TIM_CCMR1_CC1S_Pos) /*!< 0x00000003 */
+#define TIM_CCMR1_CC1S TIM_CCMR1_CC1S_Msk /*!<CC1S[1:0] bits (Capture/Compare 1 Selection) */
+#define TIM_CCMR1_CC1S_0 (0x1UL << TIM_CCMR1_CC1S_Pos) /*!< 0x00000001 */
+#define TIM_CCMR1_CC1S_1 (0x2UL << TIM_CCMR1_CC1S_Pos) /*!< 0x00000002 */
+
+#define TIM_CCMR1_OC1FE_Pos (2U)
+#define TIM_CCMR1_OC1FE_Msk (0x1UL << TIM_CCMR1_OC1FE_Pos) /*!< 0x00000004 */
+#define TIM_CCMR1_OC1FE TIM_CCMR1_OC1FE_Msk /*!<Output Compare 1 Fast enable */
+#define TIM_CCMR1_OC1PE_Pos (3U)
+#define TIM_CCMR1_OC1PE_Msk (0x1UL << TIM_CCMR1_OC1PE_Pos) /*!< 0x00000008 */
+#define TIM_CCMR1_OC1PE TIM_CCMR1_OC1PE_Msk /*!<Output Compare 1 Preload enable */
+
+#define TIM_CCMR1_OC1M_Pos (4U)
+#define TIM_CCMR1_OC1M_Msk (0x7UL << TIM_CCMR1_OC1M_Pos) /*!< 0x00000070 */
+#define TIM_CCMR1_OC1M TIM_CCMR1_OC1M_Msk /*!<OC1M[2:0] bits (Output Compare 1 Mode) */
+#define TIM_CCMR1_OC1M_0 (0x1UL << TIM_CCMR1_OC1M_Pos) /*!< 0x00000010 */
+#define TIM_CCMR1_OC1M_1 (0x2UL << TIM_CCMR1_OC1M_Pos) /*!< 0x00000020 */
+#define TIM_CCMR1_OC1M_2 (0x4UL << TIM_CCMR1_OC1M_Pos) /*!< 0x00000040 */
+
+#define TIM_CCMR1_OC1CE_Pos (7U)
+#define TIM_CCMR1_OC1CE_Msk (0x1UL << TIM_CCMR1_OC1CE_Pos) /*!< 0x00000080 */
+#define TIM_CCMR1_OC1CE TIM_CCMR1_OC1CE_Msk /*!<Output Compare 1Clear Enable */
+
+#define TIM_CCMR1_CC2S_Pos (8U)
+#define TIM_CCMR1_CC2S_Msk (0x3UL << TIM_CCMR1_CC2S_Pos) /*!< 0x00000300 */
+#define TIM_CCMR1_CC2S TIM_CCMR1_CC2S_Msk /*!<CC2S[1:0] bits (Capture/Compare 2 Selection) */
+#define TIM_CCMR1_CC2S_0 (0x1UL << TIM_CCMR1_CC2S_Pos) /*!< 0x00000100 */
+#define TIM_CCMR1_CC2S_1 (0x2UL << TIM_CCMR1_CC2S_Pos) /*!< 0x00000200 */
+
+#define TIM_CCMR1_OC2FE_Pos (10U)
+#define TIM_CCMR1_OC2FE_Msk (0x1UL << TIM_CCMR1_OC2FE_Pos) /*!< 0x00000400 */
+#define TIM_CCMR1_OC2FE TIM_CCMR1_OC2FE_Msk /*!<Output Compare 2 Fast enable */
+#define TIM_CCMR1_OC2PE_Pos (11U)
+#define TIM_CCMR1_OC2PE_Msk (0x1UL << TIM_CCMR1_OC2PE_Pos) /*!< 0x00000800 */
+#define TIM_CCMR1_OC2PE TIM_CCMR1_OC2PE_Msk /*!<Output Compare 2 Preload enable */
+
+#define TIM_CCMR1_OC2M_Pos (12U)
+#define TIM_CCMR1_OC2M_Msk (0x7UL << TIM_CCMR1_OC2M_Pos) /*!< 0x00007000 */
+#define TIM_CCMR1_OC2M TIM_CCMR1_OC2M_Msk /*!<OC2M[2:0] bits (Output Compare 2 Mode) */
+#define TIM_CCMR1_OC2M_0 (0x1UL << TIM_CCMR1_OC2M_Pos) /*!< 0x00001000 */
+#define TIM_CCMR1_OC2M_1 (0x2UL << TIM_CCMR1_OC2M_Pos) /*!< 0x00002000 */
+#define TIM_CCMR1_OC2M_2 (0x4UL << TIM_CCMR1_OC2M_Pos) /*!< 0x00004000 */
+
+#define TIM_CCMR1_OC2CE_Pos (15U)
+#define TIM_CCMR1_OC2CE_Msk (0x1UL << TIM_CCMR1_OC2CE_Pos) /*!< 0x00008000 */
+#define TIM_CCMR1_OC2CE TIM_CCMR1_OC2CE_Msk /*!<Output Compare 2 Clear Enable */
+
+/*---------------------------------------------------------------------------*/
+
+#define TIM_CCMR1_IC1PSC_Pos (2U)
+#define TIM_CCMR1_IC1PSC_Msk (0x3UL << TIM_CCMR1_IC1PSC_Pos) /*!< 0x0000000C */
+#define TIM_CCMR1_IC1PSC TIM_CCMR1_IC1PSC_Msk /*!<IC1PSC[1:0] bits (Input Capture 1 Prescaler) */
+#define TIM_CCMR1_IC1PSC_0 (0x1UL << TIM_CCMR1_IC1PSC_Pos) /*!< 0x00000004 */
+#define TIM_CCMR1_IC1PSC_1 (0x2UL << TIM_CCMR1_IC1PSC_Pos) /*!< 0x00000008 */
+
+#define TIM_CCMR1_IC1F_Pos (4U)
+#define TIM_CCMR1_IC1F_Msk (0xFUL << TIM_CCMR1_IC1F_Pos) /*!< 0x000000F0 */
+#define TIM_CCMR1_IC1F TIM_CCMR1_IC1F_Msk /*!<IC1F[3:0] bits (Input Capture 1 Filter) */
+#define TIM_CCMR1_IC1F_0 (0x1UL << TIM_CCMR1_IC1F_Pos) /*!< 0x00000010 */
+#define TIM_CCMR1_IC1F_1 (0x2UL << TIM_CCMR1_IC1F_Pos) /*!< 0x00000020 */
+#define TIM_CCMR1_IC1F_2 (0x4UL << TIM_CCMR1_IC1F_Pos) /*!< 0x00000040 */
+#define TIM_CCMR1_IC1F_3 (0x8UL << TIM_CCMR1_IC1F_Pos) /*!< 0x00000080 */
+
+#define TIM_CCMR1_IC2PSC_Pos (10U)
+#define TIM_CCMR1_IC2PSC_Msk (0x3UL << TIM_CCMR1_IC2PSC_Pos) /*!< 0x00000C00 */
+#define TIM_CCMR1_IC2PSC TIM_CCMR1_IC2PSC_Msk /*!<IC2PSC[1:0] bits (Input Capture 2 Prescaler) */
+#define TIM_CCMR1_IC2PSC_0 (0x1UL << TIM_CCMR1_IC2PSC_Pos) /*!< 0x00000400 */
+#define TIM_CCMR1_IC2PSC_1 (0x2UL << TIM_CCMR1_IC2PSC_Pos) /*!< 0x00000800 */
+
+#define TIM_CCMR1_IC2F_Pos (12U)
+#define TIM_CCMR1_IC2F_Msk (0xFUL << TIM_CCMR1_IC2F_Pos) /*!< 0x0000F000 */
+#define TIM_CCMR1_IC2F TIM_CCMR1_IC2F_Msk /*!<IC2F[3:0] bits (Input Capture 2 Filter) */
+#define TIM_CCMR1_IC2F_0 (0x1UL << TIM_CCMR1_IC2F_Pos) /*!< 0x00001000 */
+#define TIM_CCMR1_IC2F_1 (0x2UL << TIM_CCMR1_IC2F_Pos) /*!< 0x00002000 */
+#define TIM_CCMR1_IC2F_2 (0x4UL << TIM_CCMR1_IC2F_Pos) /*!< 0x00004000 */
+#define TIM_CCMR1_IC2F_3 (0x8UL << TIM_CCMR1_IC2F_Pos) /*!< 0x00008000 */
+
+/****************** Bit definition for TIM_CCMR2 register ******************/
+#define TIM_CCMR2_CC3S_Pos (0U)
+#define TIM_CCMR2_CC3S_Msk (0x3UL << TIM_CCMR2_CC3S_Pos) /*!< 0x00000003 */
+#define TIM_CCMR2_CC3S TIM_CCMR2_CC3S_Msk /*!<CC3S[1:0] bits (Capture/Compare 3 Selection) */
+#define TIM_CCMR2_CC3S_0 (0x1UL << TIM_CCMR2_CC3S_Pos) /*!< 0x00000001 */
+#define TIM_CCMR2_CC3S_1 (0x2UL << TIM_CCMR2_CC3S_Pos) /*!< 0x00000002 */
+
+#define TIM_CCMR2_OC3FE_Pos (2U)
+#define TIM_CCMR2_OC3FE_Msk (0x1UL << TIM_CCMR2_OC3FE_Pos) /*!< 0x00000004 */
+#define TIM_CCMR2_OC3FE TIM_CCMR2_OC3FE_Msk /*!<Output Compare 3 Fast enable */
+#define TIM_CCMR2_OC3PE_Pos (3U)
+#define TIM_CCMR2_OC3PE_Msk (0x1UL << TIM_CCMR2_OC3PE_Pos) /*!< 0x00000008 */
+#define TIM_CCMR2_OC3PE TIM_CCMR2_OC3PE_Msk /*!<Output Compare 3 Preload enable */
+
+#define TIM_CCMR2_OC3M_Pos (4U)
+#define TIM_CCMR2_OC3M_Msk (0x7UL << TIM_CCMR2_OC3M_Pos) /*!< 0x00000070 */
+#define TIM_CCMR2_OC3M TIM_CCMR2_OC3M_Msk /*!<OC3M[2:0] bits (Output Compare 3 Mode) */
+#define TIM_CCMR2_OC3M_0 (0x1UL << TIM_CCMR2_OC3M_Pos) /*!< 0x00000010 */
+#define TIM_CCMR2_OC3M_1 (0x2UL << TIM_CCMR2_OC3M_Pos) /*!< 0x00000020 */
+#define TIM_CCMR2_OC3M_2 (0x4UL << TIM_CCMR2_OC3M_Pos) /*!< 0x00000040 */
+
+#define TIM_CCMR2_OC3CE_Pos (7U)
+#define TIM_CCMR2_OC3CE_Msk (0x1UL << TIM_CCMR2_OC3CE_Pos) /*!< 0x00000080 */
+#define TIM_CCMR2_OC3CE TIM_CCMR2_OC3CE_Msk /*!<Output Compare 3 Clear Enable */
+
+#define TIM_CCMR2_CC4S_Pos (8U)
+#define TIM_CCMR2_CC4S_Msk (0x3UL << TIM_CCMR2_CC4S_Pos) /*!< 0x00000300 */
+#define TIM_CCMR2_CC4S TIM_CCMR2_CC4S_Msk /*!<CC4S[1:0] bits (Capture/Compare 4 Selection) */
+#define TIM_CCMR2_CC4S_0 (0x1UL << TIM_CCMR2_CC4S_Pos) /*!< 0x00000100 */
+#define TIM_CCMR2_CC4S_1 (0x2UL << TIM_CCMR2_CC4S_Pos) /*!< 0x00000200 */
+
+#define TIM_CCMR2_OC4FE_Pos (10U)
+#define TIM_CCMR2_OC4FE_Msk (0x1UL << TIM_CCMR2_OC4FE_Pos) /*!< 0x00000400 */
+#define TIM_CCMR2_OC4FE TIM_CCMR2_OC4FE_Msk /*!<Output Compare 4 Fast enable */
+#define TIM_CCMR2_OC4PE_Pos (11U)
+#define TIM_CCMR2_OC4PE_Msk (0x1UL << TIM_CCMR2_OC4PE_Pos) /*!< 0x00000800 */
+#define TIM_CCMR2_OC4PE TIM_CCMR2_OC4PE_Msk /*!<Output Compare 4 Preload enable */
+
+#define TIM_CCMR2_OC4M_Pos (12U)
+#define TIM_CCMR2_OC4M_Msk (0x7UL << TIM_CCMR2_OC4M_Pos) /*!< 0x00007000 */
+#define TIM_CCMR2_OC4M TIM_CCMR2_OC4M_Msk /*!<OC4M[2:0] bits (Output Compare 4 Mode) */
+#define TIM_CCMR2_OC4M_0 (0x1UL << TIM_CCMR2_OC4M_Pos) /*!< 0x00001000 */
+#define TIM_CCMR2_OC4M_1 (0x2UL << TIM_CCMR2_OC4M_Pos) /*!< 0x00002000 */
+#define TIM_CCMR2_OC4M_2 (0x4UL << TIM_CCMR2_OC4M_Pos) /*!< 0x00004000 */
+
+#define TIM_CCMR2_OC4CE_Pos (15U)
+#define TIM_CCMR2_OC4CE_Msk (0x1UL << TIM_CCMR2_OC4CE_Pos) /*!< 0x00008000 */
+#define TIM_CCMR2_OC4CE TIM_CCMR2_OC4CE_Msk /*!<Output Compare 4 Clear Enable */
+
+/*---------------------------------------------------------------------------*/
+
+#define TIM_CCMR2_IC3PSC_Pos (2U)
+#define TIM_CCMR2_IC3PSC_Msk (0x3UL << TIM_CCMR2_IC3PSC_Pos) /*!< 0x0000000C */
+#define TIM_CCMR2_IC3PSC TIM_CCMR2_IC3PSC_Msk /*!<IC3PSC[1:0] bits (Input Capture 3 Prescaler) */
+#define TIM_CCMR2_IC3PSC_0 (0x1UL << TIM_CCMR2_IC3PSC_Pos) /*!< 0x00000004 */
+#define TIM_CCMR2_IC3PSC_1 (0x2UL << TIM_CCMR2_IC3PSC_Pos) /*!< 0x00000008 */
+
+#define TIM_CCMR2_IC3F_Pos (4U)
+#define TIM_CCMR2_IC3F_Msk (0xFUL << TIM_CCMR2_IC3F_Pos) /*!< 0x000000F0 */
+#define TIM_CCMR2_IC3F TIM_CCMR2_IC3F_Msk /*!<IC3F[3:0] bits (Input Capture 3 Filter) */
+#define TIM_CCMR2_IC3F_0 (0x1UL << TIM_CCMR2_IC3F_Pos) /*!< 0x00000010 */
+#define TIM_CCMR2_IC3F_1 (0x2UL << TIM_CCMR2_IC3F_Pos) /*!< 0x00000020 */
+#define TIM_CCMR2_IC3F_2 (0x4UL << TIM_CCMR2_IC3F_Pos) /*!< 0x00000040 */
+#define TIM_CCMR2_IC3F_3 (0x8UL << TIM_CCMR2_IC3F_Pos) /*!< 0x00000080 */
+
+#define TIM_CCMR2_IC4PSC_Pos (10U)
+#define TIM_CCMR2_IC4PSC_Msk (0x3UL << TIM_CCMR2_IC4PSC_Pos) /*!< 0x00000C00 */
+#define TIM_CCMR2_IC4PSC TIM_CCMR2_IC4PSC_Msk /*!<IC4PSC[1:0] bits (Input Capture 4 Prescaler) */
+#define TIM_CCMR2_IC4PSC_0 (0x1UL << TIM_CCMR2_IC4PSC_Pos) /*!< 0x00000400 */
+#define TIM_CCMR2_IC4PSC_1 (0x2UL << TIM_CCMR2_IC4PSC_Pos) /*!< 0x00000800 */
+
+#define TIM_CCMR2_IC4F_Pos (12U)
+#define TIM_CCMR2_IC4F_Msk (0xFUL << TIM_CCMR2_IC4F_Pos) /*!< 0x0000F000 */
+#define TIM_CCMR2_IC4F TIM_CCMR2_IC4F_Msk /*!<IC4F[3:0] bits (Input Capture 4 Filter) */
+#define TIM_CCMR2_IC4F_0 (0x1UL << TIM_CCMR2_IC4F_Pos) /*!< 0x00001000 */
+#define TIM_CCMR2_IC4F_1 (0x2UL << TIM_CCMR2_IC4F_Pos) /*!< 0x00002000 */
+#define TIM_CCMR2_IC4F_2 (0x4UL << TIM_CCMR2_IC4F_Pos) /*!< 0x00004000 */
+#define TIM_CCMR2_IC4F_3 (0x8UL << TIM_CCMR2_IC4F_Pos) /*!< 0x00008000 */
+
+/******************* Bit definition for TIM_CCER register ******************/
+#define TIM_CCER_CC1E_Pos (0U)
+#define TIM_CCER_CC1E_Msk (0x1UL << TIM_CCER_CC1E_Pos) /*!< 0x00000001 */
+#define TIM_CCER_CC1E TIM_CCER_CC1E_Msk /*!<Capture/Compare 1 output enable */
+#define TIM_CCER_CC1P_Pos (1U)
+#define TIM_CCER_CC1P_Msk (0x1UL << TIM_CCER_CC1P_Pos) /*!< 0x00000002 */
+#define TIM_CCER_CC1P TIM_CCER_CC1P_Msk /*!<Capture/Compare 1 output Polarity */
+#define TIM_CCER_CC1NE_Pos (2U)
+#define TIM_CCER_CC1NE_Msk (0x1UL << TIM_CCER_CC1NE_Pos) /*!< 0x00000004 */
+#define TIM_CCER_CC1NE TIM_CCER_CC1NE_Msk /*!<Capture/Compare 1 Complementary output enable */
+#define TIM_CCER_CC1NP_Pos (3U)
+#define TIM_CCER_CC1NP_Msk (0x1UL << TIM_CCER_CC1NP_Pos) /*!< 0x00000008 */
+#define TIM_CCER_CC1NP TIM_CCER_CC1NP_Msk /*!<Capture/Compare 1 Complementary output Polarity */
+#define TIM_CCER_CC2E_Pos (4U)
+#define TIM_CCER_CC2E_Msk (0x1UL << TIM_CCER_CC2E_Pos) /*!< 0x00000010 */
+#define TIM_CCER_CC2E TIM_CCER_CC2E_Msk /*!<Capture/Compare 2 output enable */
+#define TIM_CCER_CC2P_Pos (5U)
+#define TIM_CCER_CC2P_Msk (0x1UL << TIM_CCER_CC2P_Pos) /*!< 0x00000020 */
+#define TIM_CCER_CC2P TIM_CCER_CC2P_Msk /*!<Capture/Compare 2 output Polarity */
+#define TIM_CCER_CC2NE_Pos (6U)
+#define TIM_CCER_CC2NE_Msk (0x1UL << TIM_CCER_CC2NE_Pos) /*!< 0x00000040 */
+#define TIM_CCER_CC2NE TIM_CCER_CC2NE_Msk /*!<Capture/Compare 2 Complementary output enable */
+#define TIM_CCER_CC2NP_Pos (7U)
+#define TIM_CCER_CC2NP_Msk (0x1UL << TIM_CCER_CC2NP_Pos) /*!< 0x00000080 */
+#define TIM_CCER_CC2NP TIM_CCER_CC2NP_Msk /*!<Capture/Compare 2 Complementary output Polarity */
+#define TIM_CCER_CC3E_Pos (8U)
+#define TIM_CCER_CC3E_Msk (0x1UL << TIM_CCER_CC3E_Pos) /*!< 0x00000100 */
+#define TIM_CCER_CC3E TIM_CCER_CC3E_Msk /*!<Capture/Compare 3 output enable */
+#define TIM_CCER_CC3P_Pos (9U)
+#define TIM_CCER_CC3P_Msk (0x1UL << TIM_CCER_CC3P_Pos) /*!< 0x00000200 */
+#define TIM_CCER_CC3P TIM_CCER_CC3P_Msk /*!<Capture/Compare 3 output Polarity */
+#define TIM_CCER_CC3NE_Pos (10U)
+#define TIM_CCER_CC3NE_Msk (0x1UL << TIM_CCER_CC3NE_Pos) /*!< 0x00000400 */
+#define TIM_CCER_CC3NE TIM_CCER_CC3NE_Msk /*!<Capture/Compare 3 Complementary output enable */
+#define TIM_CCER_CC3NP_Pos (11U)
+#define TIM_CCER_CC3NP_Msk (0x1UL << TIM_CCER_CC3NP_Pos) /*!< 0x00000800 */
+#define TIM_CCER_CC3NP TIM_CCER_CC3NP_Msk /*!<Capture/Compare 3 Complementary output Polarity */
+#define TIM_CCER_CC4E_Pos (12U)
+#define TIM_CCER_CC4E_Msk (0x1UL << TIM_CCER_CC4E_Pos) /*!< 0x00001000 */
+#define TIM_CCER_CC4E TIM_CCER_CC4E_Msk /*!<Capture/Compare 4 output enable */
+#define TIM_CCER_CC4P_Pos (13U)
+#define TIM_CCER_CC4P_Msk (0x1UL << TIM_CCER_CC4P_Pos) /*!< 0x00002000 */
+#define TIM_CCER_CC4P TIM_CCER_CC4P_Msk /*!<Capture/Compare 4 output Polarity */
+
+/******************* Bit definition for TIM_CNT register *******************/
+#define TIM_CNT_CNT_Pos (0U)
+#define TIM_CNT_CNT_Msk (0xFFFFFFFFUL << TIM_CNT_CNT_Pos) /*!< 0xFFFFFFFF */
+#define TIM_CNT_CNT TIM_CNT_CNT_Msk /*!<Counter Value */
+
+/******************* Bit definition for TIM_PSC register *******************/
+#define TIM_PSC_PSC_Pos (0U)
+#define TIM_PSC_PSC_Msk (0xFFFFUL << TIM_PSC_PSC_Pos) /*!< 0x0000FFFF */
+#define TIM_PSC_PSC TIM_PSC_PSC_Msk /*!<Prescaler Value */
+
+/******************* Bit definition for TIM_ARR register *******************/
+#define TIM_ARR_ARR_Pos (0U)
+#define TIM_ARR_ARR_Msk (0xFFFFFFFFUL << TIM_ARR_ARR_Pos) /*!< 0xFFFFFFFF */
+#define TIM_ARR_ARR TIM_ARR_ARR_Msk /*!<actual auto-reload Value */
+
+/******************* Bit definition for TIM_RCR register *******************/
+#define TIM_RCR_REP_Pos (0U)
+#define TIM_RCR_REP_Msk (0xFFUL << TIM_RCR_REP_Pos) /*!< 0x000000FF */
+#define TIM_RCR_REP TIM_RCR_REP_Msk /*!<Repetition Counter Value */
+
+/******************* Bit definition for TIM_CCR1 register ******************/
+#define TIM_CCR1_CCR1_Pos (0U)
+#define TIM_CCR1_CCR1_Msk (0xFFFFUL << TIM_CCR1_CCR1_Pos) /*!< 0x0000FFFF */
+#define TIM_CCR1_CCR1 TIM_CCR1_CCR1_Msk /*!<Capture/Compare 1 Value */
+
+/******************* Bit definition for TIM_CCR2 register ******************/
+#define TIM_CCR2_CCR2_Pos (0U)
+#define TIM_CCR2_CCR2_Msk (0xFFFFUL << TIM_CCR2_CCR2_Pos) /*!< 0x0000FFFF */
+#define TIM_CCR2_CCR2 TIM_CCR2_CCR2_Msk /*!<Capture/Compare 2 Value */
+
+/******************* Bit definition for TIM_CCR3 register ******************/
+#define TIM_CCR3_CCR3_Pos (0U)
+#define TIM_CCR3_CCR3_Msk (0xFFFFUL << TIM_CCR3_CCR3_Pos) /*!< 0x0000FFFF */
+#define TIM_CCR3_CCR3 TIM_CCR3_CCR3_Msk /*!<Capture/Compare 3 Value */
+
+/******************* Bit definition for TIM_CCR4 register ******************/
+#define TIM_CCR4_CCR4_Pos (0U)
+#define TIM_CCR4_CCR4_Msk (0xFFFFUL << TIM_CCR4_CCR4_Pos) /*!< 0x0000FFFF */
+#define TIM_CCR4_CCR4 TIM_CCR4_CCR4_Msk /*!<Capture/Compare 4 Value */
+
+/******************* Bit definition for TIM_BDTR register ******************/
+#define TIM_BDTR_DTG_Pos (0U)
+#define TIM_BDTR_DTG_Msk (0xFFUL << TIM_BDTR_DTG_Pos) /*!< 0x000000FF */
+#define TIM_BDTR_DTG TIM_BDTR_DTG_Msk /*!<DTG[0:7] bits (Dead-Time Generator set-up) */
+#define TIM_BDTR_DTG_0 (0x01UL << TIM_BDTR_DTG_Pos) /*!< 0x00000001 */
+#define TIM_BDTR_DTG_1 (0x02UL << TIM_BDTR_DTG_Pos) /*!< 0x00000002 */
+#define TIM_BDTR_DTG_2 (0x04UL << TIM_BDTR_DTG_Pos) /*!< 0x00000004 */
+#define TIM_BDTR_DTG_3 (0x08UL << TIM_BDTR_DTG_Pos) /*!< 0x00000008 */
+#define TIM_BDTR_DTG_4 (0x10UL << TIM_BDTR_DTG_Pos) /*!< 0x00000010 */
+#define TIM_BDTR_DTG_5 (0x20UL << TIM_BDTR_DTG_Pos) /*!< 0x00000020 */
+#define TIM_BDTR_DTG_6 (0x40UL << TIM_BDTR_DTG_Pos) /*!< 0x00000040 */
+#define TIM_BDTR_DTG_7 (0x80UL << TIM_BDTR_DTG_Pos) /*!< 0x00000080 */
+
+#define TIM_BDTR_LOCK_Pos (8U)
+#define TIM_BDTR_LOCK_Msk (0x3UL << TIM_BDTR_LOCK_Pos) /*!< 0x00000300 */
+#define TIM_BDTR_LOCK TIM_BDTR_LOCK_Msk /*!<LOCK[1:0] bits (Lock Configuration) */
+#define TIM_BDTR_LOCK_0 (0x1UL << TIM_BDTR_LOCK_Pos) /*!< 0x00000100 */
+#define TIM_BDTR_LOCK_1 (0x2UL << TIM_BDTR_LOCK_Pos) /*!< 0x00000200 */
+
+#define TIM_BDTR_OSSI_Pos (10U)
+#define TIM_BDTR_OSSI_Msk (0x1UL << TIM_BDTR_OSSI_Pos) /*!< 0x00000400 */
+#define TIM_BDTR_OSSI TIM_BDTR_OSSI_Msk /*!<Off-State Selection for Idle mode */
+#define TIM_BDTR_OSSR_Pos (11U)
+#define TIM_BDTR_OSSR_Msk (0x1UL << TIM_BDTR_OSSR_Pos) /*!< 0x00000800 */
+#define TIM_BDTR_OSSR TIM_BDTR_OSSR_Msk /*!<Off-State Selection for Run mode */
+#define TIM_BDTR_BKE_Pos (12U)
+#define TIM_BDTR_BKE_Msk (0x1UL << TIM_BDTR_BKE_Pos) /*!< 0x00001000 */
+#define TIM_BDTR_BKE TIM_BDTR_BKE_Msk /*!<Break enable */
+#define TIM_BDTR_BKP_Pos (13U)
+#define TIM_BDTR_BKP_Msk (0x1UL << TIM_BDTR_BKP_Pos) /*!< 0x00002000 */
+#define TIM_BDTR_BKP TIM_BDTR_BKP_Msk /*!<Break Polarity */
+#define TIM_BDTR_AOE_Pos (14U)
+#define TIM_BDTR_AOE_Msk (0x1UL << TIM_BDTR_AOE_Pos) /*!< 0x00004000 */
+#define TIM_BDTR_AOE TIM_BDTR_AOE_Msk /*!<Automatic Output enable */
+#define TIM_BDTR_MOE_Pos (15U)
+#define TIM_BDTR_MOE_Msk (0x1UL << TIM_BDTR_MOE_Pos) /*!< 0x00008000 */
+#define TIM_BDTR_MOE TIM_BDTR_MOE_Msk /*!<Main Output enable */
+
+/******************* Bit definition for TIM_DCR register *******************/
+#define TIM_DCR_DBA_Pos (0U)
+#define TIM_DCR_DBA_Msk (0x1FUL << TIM_DCR_DBA_Pos) /*!< 0x0000001F */
+#define TIM_DCR_DBA TIM_DCR_DBA_Msk /*!<DBA[4:0] bits (DMA Base Address) */
+#define TIM_DCR_DBA_0 (0x01UL << TIM_DCR_DBA_Pos) /*!< 0x00000001 */
+#define TIM_DCR_DBA_1 (0x02UL << TIM_DCR_DBA_Pos) /*!< 0x00000002 */
+#define TIM_DCR_DBA_2 (0x04UL << TIM_DCR_DBA_Pos) /*!< 0x00000004 */
+#define TIM_DCR_DBA_3 (0x08UL << TIM_DCR_DBA_Pos) /*!< 0x00000008 */
+#define TIM_DCR_DBA_4 (0x10UL << TIM_DCR_DBA_Pos) /*!< 0x00000010 */
+
+#define TIM_DCR_DBL_Pos (8U)
+#define TIM_DCR_DBL_Msk (0x1FUL << TIM_DCR_DBL_Pos) /*!< 0x00001F00 */
+#define TIM_DCR_DBL TIM_DCR_DBL_Msk /*!<DBL[4:0] bits (DMA Burst Length) */
+#define TIM_DCR_DBL_0 (0x01UL << TIM_DCR_DBL_Pos) /*!< 0x00000100 */
+#define TIM_DCR_DBL_1 (0x02UL << TIM_DCR_DBL_Pos) /*!< 0x00000200 */
+#define TIM_DCR_DBL_2 (0x04UL << TIM_DCR_DBL_Pos) /*!< 0x00000400 */
+#define TIM_DCR_DBL_3 (0x08UL << TIM_DCR_DBL_Pos) /*!< 0x00000800 */
+#define TIM_DCR_DBL_4 (0x10UL << TIM_DCR_DBL_Pos) /*!< 0x00001000 */
+
+/******************* Bit definition for TIM_DMAR register ******************/
+#define TIM_DMAR_DMAB_Pos (0U)
+#define TIM_DMAR_DMAB_Msk (0xFFFFUL << TIM_DMAR_DMAB_Pos) /*!< 0x0000FFFF */
+#define TIM_DMAR_DMAB TIM_DMAR_DMAB_Msk /*!<DMA register for burst accesses */
+
+/******************************************************************************/
+/* */
+/* Real-Time Clock */
+/* */
+/******************************************************************************/
+
+/******************* Bit definition for RTC_CRH register ********************/
+#define RTC_CRH_SECIE_Pos (0U)
+#define RTC_CRH_SECIE_Msk (0x1UL << RTC_CRH_SECIE_Pos) /*!< 0x00000001 */
+#define RTC_CRH_SECIE RTC_CRH_SECIE_Msk /*!< Second Interrupt Enable */
+#define RTC_CRH_ALRIE_Pos (1U)
+#define RTC_CRH_ALRIE_Msk (0x1UL << RTC_CRH_ALRIE_Pos) /*!< 0x00000002 */
+#define RTC_CRH_ALRIE RTC_CRH_ALRIE_Msk /*!< Alarm Interrupt Enable */
+#define RTC_CRH_OWIE_Pos (2U)
+#define RTC_CRH_OWIE_Msk (0x1UL << RTC_CRH_OWIE_Pos) /*!< 0x00000004 */
+#define RTC_CRH_OWIE RTC_CRH_OWIE_Msk /*!< OverfloW Interrupt Enable */
+
+/******************* Bit definition for RTC_CRL register ********************/
+#define RTC_CRL_SECF_Pos (0U)
+#define RTC_CRL_SECF_Msk (0x1UL << RTC_CRL_SECF_Pos) /*!< 0x00000001 */
+#define RTC_CRL_SECF RTC_CRL_SECF_Msk /*!< Second Flag */
+#define RTC_CRL_ALRF_Pos (1U)
+#define RTC_CRL_ALRF_Msk (0x1UL << RTC_CRL_ALRF_Pos) /*!< 0x00000002 */
+#define RTC_CRL_ALRF RTC_CRL_ALRF_Msk /*!< Alarm Flag */
+#define RTC_CRL_OWF_Pos (2U)
+#define RTC_CRL_OWF_Msk (0x1UL << RTC_CRL_OWF_Pos) /*!< 0x00000004 */
+#define RTC_CRL_OWF RTC_CRL_OWF_Msk /*!< OverfloW Flag */
+#define RTC_CRL_RSF_Pos (3U)
+#define RTC_CRL_RSF_Msk (0x1UL << RTC_CRL_RSF_Pos) /*!< 0x00000008 */
+#define RTC_CRL_RSF RTC_CRL_RSF_Msk /*!< Registers Synchronized Flag */
+#define RTC_CRL_CNF_Pos (4U)
+#define RTC_CRL_CNF_Msk (0x1UL << RTC_CRL_CNF_Pos) /*!< 0x00000010 */
+#define RTC_CRL_CNF RTC_CRL_CNF_Msk /*!< Configuration Flag */
+#define RTC_CRL_RTOFF_Pos (5U)
+#define RTC_CRL_RTOFF_Msk (0x1UL << RTC_CRL_RTOFF_Pos) /*!< 0x00000020 */
+#define RTC_CRL_RTOFF RTC_CRL_RTOFF_Msk /*!< RTC operation OFF */
+
+/******************* Bit definition for RTC_PRLH register *******************/
+#define RTC_PRLH_PRL_Pos (0U)
+#define RTC_PRLH_PRL_Msk (0xFUL << RTC_PRLH_PRL_Pos) /*!< 0x0000000F */
+#define RTC_PRLH_PRL RTC_PRLH_PRL_Msk /*!< RTC Prescaler Reload Value High */
+
+/******************* Bit definition for RTC_PRLL register *******************/
+#define RTC_PRLL_PRL_Pos (0U)
+#define RTC_PRLL_PRL_Msk (0xFFFFUL << RTC_PRLL_PRL_Pos) /*!< 0x0000FFFF */
+#define RTC_PRLL_PRL RTC_PRLL_PRL_Msk /*!< RTC Prescaler Reload Value Low */
+
+/******************* Bit definition for RTC_DIVH register *******************/
+#define RTC_DIVH_RTC_DIV_Pos (0U)
+#define RTC_DIVH_RTC_DIV_Msk (0xFUL << RTC_DIVH_RTC_DIV_Pos) /*!< 0x0000000F */
+#define RTC_DIVH_RTC_DIV RTC_DIVH_RTC_DIV_Msk /*!< RTC Clock Divider High */
+
+/******************* Bit definition for RTC_DIVL register *******************/
+#define RTC_DIVL_RTC_DIV_Pos (0U)
+#define RTC_DIVL_RTC_DIV_Msk (0xFFFFUL << RTC_DIVL_RTC_DIV_Pos) /*!< 0x0000FFFF */
+#define RTC_DIVL_RTC_DIV RTC_DIVL_RTC_DIV_Msk /*!< RTC Clock Divider Low */
+
+/******************* Bit definition for RTC_CNTH register *******************/
+#define RTC_CNTH_RTC_CNT_Pos (0U)
+#define RTC_CNTH_RTC_CNT_Msk (0xFFFFUL << RTC_CNTH_RTC_CNT_Pos) /*!< 0x0000FFFF */
+#define RTC_CNTH_RTC_CNT RTC_CNTH_RTC_CNT_Msk /*!< RTC Counter High */
+
+/******************* Bit definition for RTC_CNTL register *******************/
+#define RTC_CNTL_RTC_CNT_Pos (0U)
+#define RTC_CNTL_RTC_CNT_Msk (0xFFFFUL << RTC_CNTL_RTC_CNT_Pos) /*!< 0x0000FFFF */
+#define RTC_CNTL_RTC_CNT RTC_CNTL_RTC_CNT_Msk /*!< RTC Counter Low */
+
+/******************* Bit definition for RTC_ALRH register *******************/
+#define RTC_ALRH_RTC_ALR_Pos (0U)
+#define RTC_ALRH_RTC_ALR_Msk (0xFFFFUL << RTC_ALRH_RTC_ALR_Pos) /*!< 0x0000FFFF */
+#define RTC_ALRH_RTC_ALR RTC_ALRH_RTC_ALR_Msk /*!< RTC Alarm High */
+
+/******************* Bit definition for RTC_ALRL register *******************/
+#define RTC_ALRL_RTC_ALR_Pos (0U)
+#define RTC_ALRL_RTC_ALR_Msk (0xFFFFUL << RTC_ALRL_RTC_ALR_Pos) /*!< 0x0000FFFF */
+#define RTC_ALRL_RTC_ALR RTC_ALRL_RTC_ALR_Msk /*!< RTC Alarm Low */
+
+/******************************************************************************/
+/* */
+/* Independent WATCHDOG (IWDG) */
+/* */
+/******************************************************************************/
+
+/******************* Bit definition for IWDG_KR register ********************/
+#define IWDG_KR_KEY_Pos (0U)
+#define IWDG_KR_KEY_Msk (0xFFFFUL << IWDG_KR_KEY_Pos) /*!< 0x0000FFFF */
+#define IWDG_KR_KEY IWDG_KR_KEY_Msk /*!< Key value (write only, read 0000h) */
+
+/******************* Bit definition for IWDG_PR register ********************/
+#define IWDG_PR_PR_Pos (0U)
+#define IWDG_PR_PR_Msk (0x7UL << IWDG_PR_PR_Pos) /*!< 0x00000007 */
+#define IWDG_PR_PR IWDG_PR_PR_Msk /*!< PR[2:0] (Prescaler divider) */
+#define IWDG_PR_PR_0 (0x1UL << IWDG_PR_PR_Pos) /*!< 0x00000001 */
+#define IWDG_PR_PR_1 (0x2UL << IWDG_PR_PR_Pos) /*!< 0x00000002 */
+#define IWDG_PR_PR_2 (0x4UL << IWDG_PR_PR_Pos) /*!< 0x00000004 */
+
+/******************* Bit definition for IWDG_RLR register *******************/
+#define IWDG_RLR_RL_Pos (0U)
+#define IWDG_RLR_RL_Msk (0xFFFUL << IWDG_RLR_RL_Pos) /*!< 0x00000FFF */
+#define IWDG_RLR_RL IWDG_RLR_RL_Msk /*!< Watchdog counter reload value */
+
+/******************* Bit definition for IWDG_SR register ********************/
+#define IWDG_SR_PVU_Pos (0U)
+#define IWDG_SR_PVU_Msk (0x1UL << IWDG_SR_PVU_Pos) /*!< 0x00000001 */
+#define IWDG_SR_PVU IWDG_SR_PVU_Msk /*!< Watchdog prescaler value update */
+#define IWDG_SR_RVU_Pos (1U)
+#define IWDG_SR_RVU_Msk (0x1UL << IWDG_SR_RVU_Pos) /*!< 0x00000002 */
+#define IWDG_SR_RVU IWDG_SR_RVU_Msk /*!< Watchdog counter reload value update */
+
+/******************************************************************************/
+/* */
+/* Window WATCHDOG (WWDG) */
+/* */
+/******************************************************************************/
+
+/******************* Bit definition for WWDG_CR register ********************/
+#define WWDG_CR_T_Pos (0U)
+#define WWDG_CR_T_Msk (0x7FUL << WWDG_CR_T_Pos) /*!< 0x0000007F */
+#define WWDG_CR_T WWDG_CR_T_Msk /*!< T[6:0] bits (7-Bit counter (MSB to LSB)) */
+#define WWDG_CR_T_0 (0x01UL << WWDG_CR_T_Pos) /*!< 0x00000001 */
+#define WWDG_CR_T_1 (0x02UL << WWDG_CR_T_Pos) /*!< 0x00000002 */
+#define WWDG_CR_T_2 (0x04UL << WWDG_CR_T_Pos) /*!< 0x00000004 */
+#define WWDG_CR_T_3 (0x08UL << WWDG_CR_T_Pos) /*!< 0x00000008 */
+#define WWDG_CR_T_4 (0x10UL << WWDG_CR_T_Pos) /*!< 0x00000010 */
+#define WWDG_CR_T_5 (0x20UL << WWDG_CR_T_Pos) /*!< 0x00000020 */
+#define WWDG_CR_T_6 (0x40UL << WWDG_CR_T_Pos) /*!< 0x00000040 */
+
+/* Legacy defines */
+#define WWDG_CR_T0 WWDG_CR_T_0
+#define WWDG_CR_T1 WWDG_CR_T_1
+#define WWDG_CR_T2 WWDG_CR_T_2
+#define WWDG_CR_T3 WWDG_CR_T_3
+#define WWDG_CR_T4 WWDG_CR_T_4
+#define WWDG_CR_T5 WWDG_CR_T_5
+#define WWDG_CR_T6 WWDG_CR_T_6
+
+#define WWDG_CR_WDGA_Pos (7U)
+#define WWDG_CR_WDGA_Msk (0x1UL << WWDG_CR_WDGA_Pos) /*!< 0x00000080 */
+#define WWDG_CR_WDGA WWDG_CR_WDGA_Msk /*!< Activation bit */
+
+/******************* Bit definition for WWDG_CFR register *******************/
+#define WWDG_CFR_W_Pos (0U)
+#define WWDG_CFR_W_Msk (0x7FUL << WWDG_CFR_W_Pos) /*!< 0x0000007F */
+#define WWDG_CFR_W WWDG_CFR_W_Msk /*!< W[6:0] bits (7-bit window value) */
+#define WWDG_CFR_W_0 (0x01UL << WWDG_CFR_W_Pos) /*!< 0x00000001 */
+#define WWDG_CFR_W_1 (0x02UL << WWDG_CFR_W_Pos) /*!< 0x00000002 */
+#define WWDG_CFR_W_2 (0x04UL << WWDG_CFR_W_Pos) /*!< 0x00000004 */
+#define WWDG_CFR_W_3 (0x08UL << WWDG_CFR_W_Pos) /*!< 0x00000008 */
+#define WWDG_CFR_W_4 (0x10UL << WWDG_CFR_W_Pos) /*!< 0x00000010 */
+#define WWDG_CFR_W_5 (0x20UL << WWDG_CFR_W_Pos) /*!< 0x00000020 */
+#define WWDG_CFR_W_6 (0x40UL << WWDG_CFR_W_Pos) /*!< 0x00000040 */
+
+/* Legacy defines */
+#define WWDG_CFR_W0 WWDG_CFR_W_0
+#define WWDG_CFR_W1 WWDG_CFR_W_1
+#define WWDG_CFR_W2 WWDG_CFR_W_2
+#define WWDG_CFR_W3 WWDG_CFR_W_3
+#define WWDG_CFR_W4 WWDG_CFR_W_4
+#define WWDG_CFR_W5 WWDG_CFR_W_5
+#define WWDG_CFR_W6 WWDG_CFR_W_6
+
+#define WWDG_CFR_WDGTB_Pos (7U)
+#define WWDG_CFR_WDGTB_Msk (0x3UL << WWDG_CFR_WDGTB_Pos) /*!< 0x00000180 */
+#define WWDG_CFR_WDGTB WWDG_CFR_WDGTB_Msk /*!< WDGTB[1:0] bits (Timer Base) */
+#define WWDG_CFR_WDGTB_0 (0x1UL << WWDG_CFR_WDGTB_Pos) /*!< 0x00000080 */
+#define WWDG_CFR_WDGTB_1 (0x2UL << WWDG_CFR_WDGTB_Pos) /*!< 0x00000100 */
+
+/* Legacy defines */
+#define WWDG_CFR_WDGTB0 WWDG_CFR_WDGTB_0
+#define WWDG_CFR_WDGTB1 WWDG_CFR_WDGTB_1
+
+#define WWDG_CFR_EWI_Pos (9U)
+#define WWDG_CFR_EWI_Msk (0x1UL << WWDG_CFR_EWI_Pos) /*!< 0x00000200 */
+#define WWDG_CFR_EWI WWDG_CFR_EWI_Msk /*!< Early Wakeup Interrupt */
+
+/******************* Bit definition for WWDG_SR register ********************/
+#define WWDG_SR_EWIF_Pos (0U)
+#define WWDG_SR_EWIF_Msk (0x1UL << WWDG_SR_EWIF_Pos) /*!< 0x00000001 */
+#define WWDG_SR_EWIF WWDG_SR_EWIF_Msk /*!< Early Wakeup Interrupt Flag */
+
+/******************************************************************************/
+/* */
+/* USB Device FS */
+/* */
+/******************************************************************************/
+
+/*!< Endpoint-specific registers */
+#define USB_EP0R USB_BASE /*!< Endpoint 0 register address */
+#define USB_EP1R (USB_BASE + 0x00000004) /*!< Endpoint 1 register address */
+#define USB_EP2R (USB_BASE + 0x00000008) /*!< Endpoint 2 register address */
+#define USB_EP3R (USB_BASE + 0x0000000C) /*!< Endpoint 3 register address */
+#define USB_EP4R (USB_BASE + 0x00000010) /*!< Endpoint 4 register address */
+#define USB_EP5R (USB_BASE + 0x00000014) /*!< Endpoint 5 register address */
+#define USB_EP6R (USB_BASE + 0x00000018) /*!< Endpoint 6 register address */
+#define USB_EP7R (USB_BASE + 0x0000001C) /*!< Endpoint 7 register address */
+
+/* bit positions */
+#define USB_EP_CTR_RX_Pos (15U)
+#define USB_EP_CTR_RX_Msk (0x1UL << USB_EP_CTR_RX_Pos) /*!< 0x00008000 */
+#define USB_EP_CTR_RX USB_EP_CTR_RX_Msk /*!< EndPoint Correct TRansfer RX */
+#define USB_EP_DTOG_RX_Pos (14U)
+#define USB_EP_DTOG_RX_Msk (0x1UL << USB_EP_DTOG_RX_Pos) /*!< 0x00004000 */
+#define USB_EP_DTOG_RX USB_EP_DTOG_RX_Msk /*!< EndPoint Data TOGGLE RX */
+#define USB_EPRX_STAT_Pos (12U)
+#define USB_EPRX_STAT_Msk (0x3UL << USB_EPRX_STAT_Pos) /*!< 0x00003000 */
+#define USB_EPRX_STAT USB_EPRX_STAT_Msk /*!< EndPoint RX STATus bit field */
+#define USB_EP_SETUP_Pos (11U)
+#define USB_EP_SETUP_Msk (0x1UL << USB_EP_SETUP_Pos) /*!< 0x00000800 */
+#define USB_EP_SETUP USB_EP_SETUP_Msk /*!< EndPoint SETUP */
+#define USB_EP_T_FIELD_Pos (9U)
+#define USB_EP_T_FIELD_Msk (0x3UL << USB_EP_T_FIELD_Pos) /*!< 0x00000600 */
+#define USB_EP_T_FIELD USB_EP_T_FIELD_Msk /*!< EndPoint TYPE */
+#define USB_EP_KIND_Pos (8U)
+#define USB_EP_KIND_Msk (0x1UL << USB_EP_KIND_Pos) /*!< 0x00000100 */
+#define USB_EP_KIND USB_EP_KIND_Msk /*!< EndPoint KIND */
+#define USB_EP_CTR_TX_Pos (7U)
+#define USB_EP_CTR_TX_Msk (0x1UL << USB_EP_CTR_TX_Pos) /*!< 0x00000080 */
+#define USB_EP_CTR_TX USB_EP_CTR_TX_Msk /*!< EndPoint Correct TRansfer TX */
+#define USB_EP_DTOG_TX_Pos (6U)
+#define USB_EP_DTOG_TX_Msk (0x1UL << USB_EP_DTOG_TX_Pos) /*!< 0x00000040 */
+#define USB_EP_DTOG_TX USB_EP_DTOG_TX_Msk /*!< EndPoint Data TOGGLE TX */
+#define USB_EPTX_STAT_Pos (4U)
+#define USB_EPTX_STAT_Msk (0x3UL << USB_EPTX_STAT_Pos) /*!< 0x00000030 */
+#define USB_EPTX_STAT USB_EPTX_STAT_Msk /*!< EndPoint TX STATus bit field */
+#define USB_EPADDR_FIELD_Pos (0U)
+#define USB_EPADDR_FIELD_Msk (0xFUL << USB_EPADDR_FIELD_Pos) /*!< 0x0000000F */
+#define USB_EPADDR_FIELD USB_EPADDR_FIELD_Msk /*!< EndPoint ADDRess FIELD */
+
+/* EndPoint REGister MASK (no toggle fields) */
+#define USB_EPREG_MASK (USB_EP_CTR_RX | USB_EP_SETUP | USB_EP_T_FIELD | USB_EP_KIND | USB_EP_CTR_TX | USB_EPADDR_FIELD)
+/*!< EP_TYPE[1:0] EndPoint TYPE */
+#define USB_EP_TYPE_MASK_Pos (9U)
+#define USB_EP_TYPE_MASK_Msk (0x3UL << USB_EP_TYPE_MASK_Pos) /*!< 0x00000600 */
+#define USB_EP_TYPE_MASK USB_EP_TYPE_MASK_Msk /*!< EndPoint TYPE Mask */
+#define USB_EP_BULK 0x00000000U /*!< EndPoint BULK */
+#define USB_EP_CONTROL 0x00000200U /*!< EndPoint CONTROL */
+#define USB_EP_ISOCHRONOUS 0x00000400U /*!< EndPoint ISOCHRONOUS */
+#define USB_EP_INTERRUPT 0x00000600U /*!< EndPoint INTERRUPT */
+#define USB_EP_T_MASK (~USB_EP_T_FIELD & USB_EPREG_MASK)
+
+#define USB_EPKIND_MASK (~USB_EP_KIND & USB_EPREG_MASK) /*!< EP_KIND EndPoint KIND */
+ /*!< STAT_TX[1:0] STATus for TX transfer */
+#define USB_EP_TX_DIS 0x00000000U /*!< EndPoint TX DISabled */
+#define USB_EP_TX_STALL 0x00000010U /*!< EndPoint TX STALLed */
+#define USB_EP_TX_NAK 0x00000020U /*!< EndPoint TX NAKed */
+#define USB_EP_TX_VALID 0x00000030U /*!< EndPoint TX VALID */
+#define USB_EPTX_DTOG1 0x00000010U /*!< EndPoint TX Data TOGgle bit1 */
+#define USB_EPTX_DTOG2 0x00000020U /*!< EndPoint TX Data TOGgle bit2 */
+#define USB_EPTX_DTOGMASK (USB_EPTX_STAT | USB_EPREG_MASK)
+/*!< STAT_RX[1:0] STATus for RX transfer */
+#define USB_EP_RX_DIS 0x00000000U /*!< EndPoint RX DISabled */
+#define USB_EP_RX_STALL 0x00001000U /*!< EndPoint RX STALLed */
+#define USB_EP_RX_NAK 0x00002000U /*!< EndPoint RX NAKed */
+#define USB_EP_RX_VALID 0x00003000U /*!< EndPoint RX VALID */
+#define USB_EPRX_DTOG1 0x00001000U /*!< EndPoint RX Data TOGgle bit1 */
+#define USB_EPRX_DTOG2 0x00002000U /*!< EndPoint RX Data TOGgle bit1 */
+#define USB_EPRX_DTOGMASK (USB_EPRX_STAT | USB_EPREG_MASK)
+
+/******************* Bit definition for USB_EP0R register *******************/
+#define USB_EP0R_EA_Pos (0U)
+#define USB_EP0R_EA_Msk (0xFUL << USB_EP0R_EA_Pos) /*!< 0x0000000F */
+#define USB_EP0R_EA USB_EP0R_EA_Msk /*!< Endpoint Address */
+
+#define USB_EP0R_STAT_TX_Pos (4U)
+#define USB_EP0R_STAT_TX_Msk (0x3UL << USB_EP0R_STAT_TX_Pos) /*!< 0x00000030 */
+#define USB_EP0R_STAT_TX USB_EP0R_STAT_TX_Msk /*!< STAT_TX[1:0] bits (Status bits, for transmission transfers) */
+#define USB_EP0R_STAT_TX_0 (0x1UL << USB_EP0R_STAT_TX_Pos) /*!< 0x00000010 */
+#define USB_EP0R_STAT_TX_1 (0x2UL << USB_EP0R_STAT_TX_Pos) /*!< 0x00000020 */
+
+#define USB_EP0R_DTOG_TX_Pos (6U)
+#define USB_EP0R_DTOG_TX_Msk (0x1UL << USB_EP0R_DTOG_TX_Pos) /*!< 0x00000040 */
+#define USB_EP0R_DTOG_TX USB_EP0R_DTOG_TX_Msk /*!< Data Toggle, for transmission transfers */
+#define USB_EP0R_CTR_TX_Pos (7U)
+#define USB_EP0R_CTR_TX_Msk (0x1UL << USB_EP0R_CTR_TX_Pos) /*!< 0x00000080 */
+#define USB_EP0R_CTR_TX USB_EP0R_CTR_TX_Msk /*!< Correct Transfer for transmission */
+#define USB_EP0R_EP_KIND_Pos (8U)
+#define USB_EP0R_EP_KIND_Msk (0x1UL << USB_EP0R_EP_KIND_Pos) /*!< 0x00000100 */
+#define USB_EP0R_EP_KIND USB_EP0R_EP_KIND_Msk /*!< Endpoint Kind */
+
+#define USB_EP0R_EP_TYPE_Pos (9U)
+#define USB_EP0R_EP_TYPE_Msk (0x3UL << USB_EP0R_EP_TYPE_Pos) /*!< 0x00000600 */
+#define USB_EP0R_EP_TYPE USB_EP0R_EP_TYPE_Msk /*!< EP_TYPE[1:0] bits (Endpoint type) */
+#define USB_EP0R_EP_TYPE_0 (0x1UL << USB_EP0R_EP_TYPE_Pos) /*!< 0x00000200 */
+#define USB_EP0R_EP_TYPE_1 (0x2UL << USB_EP0R_EP_TYPE_Pos) /*!< 0x00000400 */
+
+#define USB_EP0R_SETUP_Pos (11U)
+#define USB_EP0R_SETUP_Msk (0x1UL << USB_EP0R_SETUP_Pos) /*!< 0x00000800 */
+#define USB_EP0R_SETUP USB_EP0R_SETUP_Msk /*!< Setup transaction completed */
+
+#define USB_EP0R_STAT_RX_Pos (12U)
+#define USB_EP0R_STAT_RX_Msk (0x3UL << USB_EP0R_STAT_RX_Pos) /*!< 0x00003000 */
+#define USB_EP0R_STAT_RX USB_EP0R_STAT_RX_Msk /*!< STAT_RX[1:0] bits (Status bits, for reception transfers) */
+#define USB_EP0R_STAT_RX_0 (0x1UL << USB_EP0R_STAT_RX_Pos) /*!< 0x00001000 */
+#define USB_EP0R_STAT_RX_1 (0x2UL << USB_EP0R_STAT_RX_Pos) /*!< 0x00002000 */
+
+#define USB_EP0R_DTOG_RX_Pos (14U)
+#define USB_EP0R_DTOG_RX_Msk (0x1UL << USB_EP0R_DTOG_RX_Pos) /*!< 0x00004000 */
+#define USB_EP0R_DTOG_RX USB_EP0R_DTOG_RX_Msk /*!< Data Toggle, for reception transfers */
+#define USB_EP0R_CTR_RX_Pos (15U)
+#define USB_EP0R_CTR_RX_Msk (0x1UL << USB_EP0R_CTR_RX_Pos) /*!< 0x00008000 */
+#define USB_EP0R_CTR_RX USB_EP0R_CTR_RX_Msk /*!< Correct Transfer for reception */
+
+/******************* Bit definition for USB_EP1R register *******************/
+#define USB_EP1R_EA_Pos (0U)
+#define USB_EP1R_EA_Msk (0xFUL << USB_EP1R_EA_Pos) /*!< 0x0000000F */
+#define USB_EP1R_EA USB_EP1R_EA_Msk /*!< Endpoint Address */
+
+#define USB_EP1R_STAT_TX_Pos (4U)
+#define USB_EP1R_STAT_TX_Msk (0x3UL << USB_EP1R_STAT_TX_Pos) /*!< 0x00000030 */
+#define USB_EP1R_STAT_TX USB_EP1R_STAT_TX_Msk /*!< STAT_TX[1:0] bits (Status bits, for transmission transfers) */
+#define USB_EP1R_STAT_TX_0 (0x1UL << USB_EP1R_STAT_TX_Pos) /*!< 0x00000010 */
+#define USB_EP1R_STAT_TX_1 (0x2UL << USB_EP1R_STAT_TX_Pos) /*!< 0x00000020 */
+
+#define USB_EP1R_DTOG_TX_Pos (6U)
+#define USB_EP1R_DTOG_TX_Msk (0x1UL << USB_EP1R_DTOG_TX_Pos) /*!< 0x00000040 */
+#define USB_EP1R_DTOG_TX USB_EP1R_DTOG_TX_Msk /*!< Data Toggle, for transmission transfers */
+#define USB_EP1R_CTR_TX_Pos (7U)
+#define USB_EP1R_CTR_TX_Msk (0x1UL << USB_EP1R_CTR_TX_Pos) /*!< 0x00000080 */
+#define USB_EP1R_CTR_TX USB_EP1R_CTR_TX_Msk /*!< Correct Transfer for transmission */
+#define USB_EP1R_EP_KIND_Pos (8U)
+#define USB_EP1R_EP_KIND_Msk (0x1UL << USB_EP1R_EP_KIND_Pos) /*!< 0x00000100 */
+#define USB_EP1R_EP_KIND USB_EP1R_EP_KIND_Msk /*!< Endpoint Kind */
+
+#define USB_EP1R_EP_TYPE_Pos (9U)
+#define USB_EP1R_EP_TYPE_Msk (0x3UL << USB_EP1R_EP_TYPE_Pos) /*!< 0x00000600 */
+#define USB_EP1R_EP_TYPE USB_EP1R_EP_TYPE_Msk /*!< EP_TYPE[1:0] bits (Endpoint type) */
+#define USB_EP1R_EP_TYPE_0 (0x1UL << USB_EP1R_EP_TYPE_Pos) /*!< 0x00000200 */
+#define USB_EP1R_EP_TYPE_1 (0x2UL << USB_EP1R_EP_TYPE_Pos) /*!< 0x00000400 */
+
+#define USB_EP1R_SETUP_Pos (11U)
+#define USB_EP1R_SETUP_Msk (0x1UL << USB_EP1R_SETUP_Pos) /*!< 0x00000800 */
+#define USB_EP1R_SETUP USB_EP1R_SETUP_Msk /*!< Setup transaction completed */
+
+#define USB_EP1R_STAT_RX_Pos (12U)
+#define USB_EP1R_STAT_RX_Msk (0x3UL << USB_EP1R_STAT_RX_Pos) /*!< 0x00003000 */
+#define USB_EP1R_STAT_RX USB_EP1R_STAT_RX_Msk /*!< STAT_RX[1:0] bits (Status bits, for reception transfers) */
+#define USB_EP1R_STAT_RX_0 (0x1UL << USB_EP1R_STAT_RX_Pos) /*!< 0x00001000 */
+#define USB_EP1R_STAT_RX_1 (0x2UL << USB_EP1R_STAT_RX_Pos) /*!< 0x00002000 */
+
+#define USB_EP1R_DTOG_RX_Pos (14U)
+#define USB_EP1R_DTOG_RX_Msk (0x1UL << USB_EP1R_DTOG_RX_Pos) /*!< 0x00004000 */
+#define USB_EP1R_DTOG_RX USB_EP1R_DTOG_RX_Msk /*!< Data Toggle, for reception transfers */
+#define USB_EP1R_CTR_RX_Pos (15U)
+#define USB_EP1R_CTR_RX_Msk (0x1UL << USB_EP1R_CTR_RX_Pos) /*!< 0x00008000 */
+#define USB_EP1R_CTR_RX USB_EP1R_CTR_RX_Msk /*!< Correct Transfer for reception */
+
+/******************* Bit definition for USB_EP2R register *******************/
+#define USB_EP2R_EA_Pos (0U)
+#define USB_EP2R_EA_Msk (0xFUL << USB_EP2R_EA_Pos) /*!< 0x0000000F */
+#define USB_EP2R_EA USB_EP2R_EA_Msk /*!< Endpoint Address */
+
+#define USB_EP2R_STAT_TX_Pos (4U)
+#define USB_EP2R_STAT_TX_Msk (0x3UL << USB_EP2R_STAT_TX_Pos) /*!< 0x00000030 */
+#define USB_EP2R_STAT_TX USB_EP2R_STAT_TX_Msk /*!< STAT_TX[1:0] bits (Status bits, for transmission transfers) */
+#define USB_EP2R_STAT_TX_0 (0x1UL << USB_EP2R_STAT_TX_Pos) /*!< 0x00000010 */
+#define USB_EP2R_STAT_TX_1 (0x2UL << USB_EP2R_STAT_TX_Pos) /*!< 0x00000020 */
+
+#define USB_EP2R_DTOG_TX_Pos (6U)
+#define USB_EP2R_DTOG_TX_Msk (0x1UL << USB_EP2R_DTOG_TX_Pos) /*!< 0x00000040 */
+#define USB_EP2R_DTOG_TX USB_EP2R_DTOG_TX_Msk /*!< Data Toggle, for transmission transfers */
+#define USB_EP2R_CTR_TX_Pos (7U)
+#define USB_EP2R_CTR_TX_Msk (0x1UL << USB_EP2R_CTR_TX_Pos) /*!< 0x00000080 */
+#define USB_EP2R_CTR_TX USB_EP2R_CTR_TX_Msk /*!< Correct Transfer for transmission */
+#define USB_EP2R_EP_KIND_Pos (8U)
+#define USB_EP2R_EP_KIND_Msk (0x1UL << USB_EP2R_EP_KIND_Pos) /*!< 0x00000100 */
+#define USB_EP2R_EP_KIND USB_EP2R_EP_KIND_Msk /*!< Endpoint Kind */
+
+#define USB_EP2R_EP_TYPE_Pos (9U)
+#define USB_EP2R_EP_TYPE_Msk (0x3UL << USB_EP2R_EP_TYPE_Pos) /*!< 0x00000600 */
+#define USB_EP2R_EP_TYPE USB_EP2R_EP_TYPE_Msk /*!< EP_TYPE[1:0] bits (Endpoint type) */
+#define USB_EP2R_EP_TYPE_0 (0x1UL << USB_EP2R_EP_TYPE_Pos) /*!< 0x00000200 */
+#define USB_EP2R_EP_TYPE_1 (0x2UL << USB_EP2R_EP_TYPE_Pos) /*!< 0x00000400 */
+
+#define USB_EP2R_SETUP_Pos (11U)
+#define USB_EP2R_SETUP_Msk (0x1UL << USB_EP2R_SETUP_Pos) /*!< 0x00000800 */
+#define USB_EP2R_SETUP USB_EP2R_SETUP_Msk /*!< Setup transaction completed */
+
+#define USB_EP2R_STAT_RX_Pos (12U)
+#define USB_EP2R_STAT_RX_Msk (0x3UL << USB_EP2R_STAT_RX_Pos) /*!< 0x00003000 */
+#define USB_EP2R_STAT_RX USB_EP2R_STAT_RX_Msk /*!< STAT_RX[1:0] bits (Status bits, for reception transfers) */
+#define USB_EP2R_STAT_RX_0 (0x1UL << USB_EP2R_STAT_RX_Pos) /*!< 0x00001000 */
+#define USB_EP2R_STAT_RX_1 (0x2UL << USB_EP2R_STAT_RX_Pos) /*!< 0x00002000 */
+
+#define USB_EP2R_DTOG_RX_Pos (14U)
+#define USB_EP2R_DTOG_RX_Msk (0x1UL << USB_EP2R_DTOG_RX_Pos) /*!< 0x00004000 */
+#define USB_EP2R_DTOG_RX USB_EP2R_DTOG_RX_Msk /*!< Data Toggle, for reception transfers */
+#define USB_EP2R_CTR_RX_Pos (15U)
+#define USB_EP2R_CTR_RX_Msk (0x1UL << USB_EP2R_CTR_RX_Pos) /*!< 0x00008000 */
+#define USB_EP2R_CTR_RX USB_EP2R_CTR_RX_Msk /*!< Correct Transfer for reception */
+
+/******************* Bit definition for USB_EP3R register *******************/
+#define USB_EP3R_EA_Pos (0U)
+#define USB_EP3R_EA_Msk (0xFUL << USB_EP3R_EA_Pos) /*!< 0x0000000F */
+#define USB_EP3R_EA USB_EP3R_EA_Msk /*!< Endpoint Address */
+
+#define USB_EP3R_STAT_TX_Pos (4U)
+#define USB_EP3R_STAT_TX_Msk (0x3UL << USB_EP3R_STAT_TX_Pos) /*!< 0x00000030 */
+#define USB_EP3R_STAT_TX USB_EP3R_STAT_TX_Msk /*!< STAT_TX[1:0] bits (Status bits, for transmission transfers) */
+#define USB_EP3R_STAT_TX_0 (0x1UL << USB_EP3R_STAT_TX_Pos) /*!< 0x00000010 */
+#define USB_EP3R_STAT_TX_1 (0x2UL << USB_EP3R_STAT_TX_Pos) /*!< 0x00000020 */
+
+#define USB_EP3R_DTOG_TX_Pos (6U)
+#define USB_EP3R_DTOG_TX_Msk (0x1UL << USB_EP3R_DTOG_TX_Pos) /*!< 0x00000040 */
+#define USB_EP3R_DTOG_TX USB_EP3R_DTOG_TX_Msk /*!< Data Toggle, for transmission transfers */
+#define USB_EP3R_CTR_TX_Pos (7U)
+#define USB_EP3R_CTR_TX_Msk (0x1UL << USB_EP3R_CTR_TX_Pos) /*!< 0x00000080 */
+#define USB_EP3R_CTR_TX USB_EP3R_CTR_TX_Msk /*!< Correct Transfer for transmission */
+#define USB_EP3R_EP_KIND_Pos (8U)
+#define USB_EP3R_EP_KIND_Msk (0x1UL << USB_EP3R_EP_KIND_Pos) /*!< 0x00000100 */
+#define USB_EP3R_EP_KIND USB_EP3R_EP_KIND_Msk /*!< Endpoint Kind */
+
+#define USB_EP3R_EP_TYPE_Pos (9U)
+#define USB_EP3R_EP_TYPE_Msk (0x3UL << USB_EP3R_EP_TYPE_Pos) /*!< 0x00000600 */
+#define USB_EP3R_EP_TYPE USB_EP3R_EP_TYPE_Msk /*!< EP_TYPE[1:0] bits (Endpoint type) */
+#define USB_EP3R_EP_TYPE_0 (0x1UL << USB_EP3R_EP_TYPE_Pos) /*!< 0x00000200 */
+#define USB_EP3R_EP_TYPE_1 (0x2UL << USB_EP3R_EP_TYPE_Pos) /*!< 0x00000400 */
+
+#define USB_EP3R_SETUP_Pos (11U)
+#define USB_EP3R_SETUP_Msk (0x1UL << USB_EP3R_SETUP_Pos) /*!< 0x00000800 */
+#define USB_EP3R_SETUP USB_EP3R_SETUP_Msk /*!< Setup transaction completed */
+
+#define USB_EP3R_STAT_RX_Pos (12U)
+#define USB_EP3R_STAT_RX_Msk (0x3UL << USB_EP3R_STAT_RX_Pos) /*!< 0x00003000 */
+#define USB_EP3R_STAT_RX USB_EP3R_STAT_RX_Msk /*!< STAT_RX[1:0] bits (Status bits, for reception transfers) */
+#define USB_EP3R_STAT_RX_0 (0x1UL << USB_EP3R_STAT_RX_Pos) /*!< 0x00001000 */
+#define USB_EP3R_STAT_RX_1 (0x2UL << USB_EP3R_STAT_RX_Pos) /*!< 0x00002000 */
+
+#define USB_EP3R_DTOG_RX_Pos (14U)
+#define USB_EP3R_DTOG_RX_Msk (0x1UL << USB_EP3R_DTOG_RX_Pos) /*!< 0x00004000 */
+#define USB_EP3R_DTOG_RX USB_EP3R_DTOG_RX_Msk /*!< Data Toggle, for reception transfers */
+#define USB_EP3R_CTR_RX_Pos (15U)
+#define USB_EP3R_CTR_RX_Msk (0x1UL << USB_EP3R_CTR_RX_Pos) /*!< 0x00008000 */
+#define USB_EP3R_CTR_RX USB_EP3R_CTR_RX_Msk /*!< Correct Transfer for reception */
+
+/******************* Bit definition for USB_EP4R register *******************/
+#define USB_EP4R_EA_Pos (0U)
+#define USB_EP4R_EA_Msk (0xFUL << USB_EP4R_EA_Pos) /*!< 0x0000000F */
+#define USB_EP4R_EA USB_EP4R_EA_Msk /*!< Endpoint Address */
+
+#define USB_EP4R_STAT_TX_Pos (4U)
+#define USB_EP4R_STAT_TX_Msk (0x3UL << USB_EP4R_STAT_TX_Pos) /*!< 0x00000030 */
+#define USB_EP4R_STAT_TX USB_EP4R_STAT_TX_Msk /*!< STAT_TX[1:0] bits (Status bits, for transmission transfers) */
+#define USB_EP4R_STAT_TX_0 (0x1UL << USB_EP4R_STAT_TX_Pos) /*!< 0x00000010 */
+#define USB_EP4R_STAT_TX_1 (0x2UL << USB_EP4R_STAT_TX_Pos) /*!< 0x00000020 */
+
+#define USB_EP4R_DTOG_TX_Pos (6U)
+#define USB_EP4R_DTOG_TX_Msk (0x1UL << USB_EP4R_DTOG_TX_Pos) /*!< 0x00000040 */
+#define USB_EP4R_DTOG_TX USB_EP4R_DTOG_TX_Msk /*!< Data Toggle, for transmission transfers */
+#define USB_EP4R_CTR_TX_Pos (7U)
+#define USB_EP4R_CTR_TX_Msk (0x1UL << USB_EP4R_CTR_TX_Pos) /*!< 0x00000080 */
+#define USB_EP4R_CTR_TX USB_EP4R_CTR_TX_Msk /*!< Correct Transfer for transmission */
+#define USB_EP4R_EP_KIND_Pos (8U)
+#define USB_EP4R_EP_KIND_Msk (0x1UL << USB_EP4R_EP_KIND_Pos) /*!< 0x00000100 */
+#define USB_EP4R_EP_KIND USB_EP4R_EP_KIND_Msk /*!< Endpoint Kind */
+
+#define USB_EP4R_EP_TYPE_Pos (9U)
+#define USB_EP4R_EP_TYPE_Msk (0x3UL << USB_EP4R_EP_TYPE_Pos) /*!< 0x00000600 */
+#define USB_EP4R_EP_TYPE USB_EP4R_EP_TYPE_Msk /*!< EP_TYPE[1:0] bits (Endpoint type) */
+#define USB_EP4R_EP_TYPE_0 (0x1UL << USB_EP4R_EP_TYPE_Pos) /*!< 0x00000200 */
+#define USB_EP4R_EP_TYPE_1 (0x2UL << USB_EP4R_EP_TYPE_Pos) /*!< 0x00000400 */
+
+#define USB_EP4R_SETUP_Pos (11U)
+#define USB_EP4R_SETUP_Msk (0x1UL << USB_EP4R_SETUP_Pos) /*!< 0x00000800 */
+#define USB_EP4R_SETUP USB_EP4R_SETUP_Msk /*!< Setup transaction completed */
+
+#define USB_EP4R_STAT_RX_Pos (12U)
+#define USB_EP4R_STAT_RX_Msk (0x3UL << USB_EP4R_STAT_RX_Pos) /*!< 0x00003000 */
+#define USB_EP4R_STAT_RX USB_EP4R_STAT_RX_Msk /*!< STAT_RX[1:0] bits (Status bits, for reception transfers) */
+#define USB_EP4R_STAT_RX_0 (0x1UL << USB_EP4R_STAT_RX_Pos) /*!< 0x00001000 */
+#define USB_EP4R_STAT_RX_1 (0x2UL << USB_EP4R_STAT_RX_Pos) /*!< 0x00002000 */
+
+#define USB_EP4R_DTOG_RX_Pos (14U)
+#define USB_EP4R_DTOG_RX_Msk (0x1UL << USB_EP4R_DTOG_RX_Pos) /*!< 0x00004000 */
+#define USB_EP4R_DTOG_RX USB_EP4R_DTOG_RX_Msk /*!< Data Toggle, for reception transfers */
+#define USB_EP4R_CTR_RX_Pos (15U)
+#define USB_EP4R_CTR_RX_Msk (0x1UL << USB_EP4R_CTR_RX_Pos) /*!< 0x00008000 */
+#define USB_EP4R_CTR_RX USB_EP4R_CTR_RX_Msk /*!< Correct Transfer for reception */
+
+/******************* Bit definition for USB_EP5R register *******************/
+#define USB_EP5R_EA_Pos (0U)
+#define USB_EP5R_EA_Msk (0xFUL << USB_EP5R_EA_Pos) /*!< 0x0000000F */
+#define USB_EP5R_EA USB_EP5R_EA_Msk /*!< Endpoint Address */
+
+#define USB_EP5R_STAT_TX_Pos (4U)
+#define USB_EP5R_STAT_TX_Msk (0x3UL << USB_EP5R_STAT_TX_Pos) /*!< 0x00000030 */
+#define USB_EP5R_STAT_TX USB_EP5R_STAT_TX_Msk /*!< STAT_TX[1:0] bits (Status bits, for transmission transfers) */
+#define USB_EP5R_STAT_TX_0 (0x1UL << USB_EP5R_STAT_TX_Pos) /*!< 0x00000010 */
+#define USB_EP5R_STAT_TX_1 (0x2UL << USB_EP5R_STAT_TX_Pos) /*!< 0x00000020 */
+
+#define USB_EP5R_DTOG_TX_Pos (6U)
+#define USB_EP5R_DTOG_TX_Msk (0x1UL << USB_EP5R_DTOG_TX_Pos) /*!< 0x00000040 */
+#define USB_EP5R_DTOG_TX USB_EP5R_DTOG_TX_Msk /*!< Data Toggle, for transmission transfers */
+#define USB_EP5R_CTR_TX_Pos (7U)
+#define USB_EP5R_CTR_TX_Msk (0x1UL << USB_EP5R_CTR_TX_Pos) /*!< 0x00000080 */
+#define USB_EP5R_CTR_TX USB_EP5R_CTR_TX_Msk /*!< Correct Transfer for transmission */
+#define USB_EP5R_EP_KIND_Pos (8U)
+#define USB_EP5R_EP_KIND_Msk (0x1UL << USB_EP5R_EP_KIND_Pos) /*!< 0x00000100 */
+#define USB_EP5R_EP_KIND USB_EP5R_EP_KIND_Msk /*!< Endpoint Kind */
+
+#define USB_EP5R_EP_TYPE_Pos (9U)
+#define USB_EP5R_EP_TYPE_Msk (0x3UL << USB_EP5R_EP_TYPE_Pos) /*!< 0x00000600 */
+#define USB_EP5R_EP_TYPE USB_EP5R_EP_TYPE_Msk /*!< EP_TYPE[1:0] bits (Endpoint type) */
+#define USB_EP5R_EP_TYPE_0 (0x1UL << USB_EP5R_EP_TYPE_Pos) /*!< 0x00000200 */
+#define USB_EP5R_EP_TYPE_1 (0x2UL << USB_EP5R_EP_TYPE_Pos) /*!< 0x00000400 */
+
+#define USB_EP5R_SETUP_Pos (11U)
+#define USB_EP5R_SETUP_Msk (0x1UL << USB_EP5R_SETUP_Pos) /*!< 0x00000800 */
+#define USB_EP5R_SETUP USB_EP5R_SETUP_Msk /*!< Setup transaction completed */
+
+#define USB_EP5R_STAT_RX_Pos (12U)
+#define USB_EP5R_STAT_RX_Msk (0x3UL << USB_EP5R_STAT_RX_Pos) /*!< 0x00003000 */
+#define USB_EP5R_STAT_RX USB_EP5R_STAT_RX_Msk /*!< STAT_RX[1:0] bits (Status bits, for reception transfers) */
+#define USB_EP5R_STAT_RX_0 (0x1UL << USB_EP5R_STAT_RX_Pos) /*!< 0x00001000 */
+#define USB_EP5R_STAT_RX_1 (0x2UL << USB_EP5R_STAT_RX_Pos) /*!< 0x00002000 */
+
+#define USB_EP5R_DTOG_RX_Pos (14U)
+#define USB_EP5R_DTOG_RX_Msk (0x1UL << USB_EP5R_DTOG_RX_Pos) /*!< 0x00004000 */
+#define USB_EP5R_DTOG_RX USB_EP5R_DTOG_RX_Msk /*!< Data Toggle, for reception transfers */
+#define USB_EP5R_CTR_RX_Pos (15U)
+#define USB_EP5R_CTR_RX_Msk (0x1UL << USB_EP5R_CTR_RX_Pos) /*!< 0x00008000 */
+#define USB_EP5R_CTR_RX USB_EP5R_CTR_RX_Msk /*!< Correct Transfer for reception */
+
+/******************* Bit definition for USB_EP6R register *******************/
+#define USB_EP6R_EA_Pos (0U)
+#define USB_EP6R_EA_Msk (0xFUL << USB_EP6R_EA_Pos) /*!< 0x0000000F */
+#define USB_EP6R_EA USB_EP6R_EA_Msk /*!< Endpoint Address */
+
+#define USB_EP6R_STAT_TX_Pos (4U)
+#define USB_EP6R_STAT_TX_Msk (0x3UL << USB_EP6R_STAT_TX_Pos) /*!< 0x00000030 */
+#define USB_EP6R_STAT_TX USB_EP6R_STAT_TX_Msk /*!< STAT_TX[1:0] bits (Status bits, for transmission transfers) */
+#define USB_EP6R_STAT_TX_0 (0x1UL << USB_EP6R_STAT_TX_Pos) /*!< 0x00000010 */
+#define USB_EP6R_STAT_TX_1 (0x2UL << USB_EP6R_STAT_TX_Pos) /*!< 0x00000020 */
+
+#define USB_EP6R_DTOG_TX_Pos (6U)
+#define USB_EP6R_DTOG_TX_Msk (0x1UL << USB_EP6R_DTOG_TX_Pos) /*!< 0x00000040 */
+#define USB_EP6R_DTOG_TX USB_EP6R_DTOG_TX_Msk /*!< Data Toggle, for transmission transfers */
+#define USB_EP6R_CTR_TX_Pos (7U)
+#define USB_EP6R_CTR_TX_Msk (0x1UL << USB_EP6R_CTR_TX_Pos) /*!< 0x00000080 */
+#define USB_EP6R_CTR_TX USB_EP6R_CTR_TX_Msk /*!< Correct Transfer for transmission */
+#define USB_EP6R_EP_KIND_Pos (8U)
+#define USB_EP6R_EP_KIND_Msk (0x1UL << USB_EP6R_EP_KIND_Pos) /*!< 0x00000100 */
+#define USB_EP6R_EP_KIND USB_EP6R_EP_KIND_Msk /*!< Endpoint Kind */
+
+#define USB_EP6R_EP_TYPE_Pos (9U)
+#define USB_EP6R_EP_TYPE_Msk (0x3UL << USB_EP6R_EP_TYPE_Pos) /*!< 0x00000600 */
+#define USB_EP6R_EP_TYPE USB_EP6R_EP_TYPE_Msk /*!< EP_TYPE[1:0] bits (Endpoint type) */
+#define USB_EP6R_EP_TYPE_0 (0x1UL << USB_EP6R_EP_TYPE_Pos) /*!< 0x00000200 */
+#define USB_EP6R_EP_TYPE_1 (0x2UL << USB_EP6R_EP_TYPE_Pos) /*!< 0x00000400 */
+
+#define USB_EP6R_SETUP_Pos (11U)
+#define USB_EP6R_SETUP_Msk (0x1UL << USB_EP6R_SETUP_Pos) /*!< 0x00000800 */
+#define USB_EP6R_SETUP USB_EP6R_SETUP_Msk /*!< Setup transaction completed */
+
+#define USB_EP6R_STAT_RX_Pos (12U)
+#define USB_EP6R_STAT_RX_Msk (0x3UL << USB_EP6R_STAT_RX_Pos) /*!< 0x00003000 */
+#define USB_EP6R_STAT_RX USB_EP6R_STAT_RX_Msk /*!< STAT_RX[1:0] bits (Status bits, for reception transfers) */
+#define USB_EP6R_STAT_RX_0 (0x1UL << USB_EP6R_STAT_RX_Pos) /*!< 0x00001000 */
+#define USB_EP6R_STAT_RX_1 (0x2UL << USB_EP6R_STAT_RX_Pos) /*!< 0x00002000 */
+
+#define USB_EP6R_DTOG_RX_Pos (14U)
+#define USB_EP6R_DTOG_RX_Msk (0x1UL << USB_EP6R_DTOG_RX_Pos) /*!< 0x00004000 */
+#define USB_EP6R_DTOG_RX USB_EP6R_DTOG_RX_Msk /*!< Data Toggle, for reception transfers */
+#define USB_EP6R_CTR_RX_Pos (15U)
+#define USB_EP6R_CTR_RX_Msk (0x1UL << USB_EP6R_CTR_RX_Pos) /*!< 0x00008000 */
+#define USB_EP6R_CTR_RX USB_EP6R_CTR_RX_Msk /*!< Correct Transfer for reception */
+
+/******************* Bit definition for USB_EP7R register *******************/
+#define USB_EP7R_EA_Pos (0U)
+#define USB_EP7R_EA_Msk (0xFUL << USB_EP7R_EA_Pos) /*!< 0x0000000F */
+#define USB_EP7R_EA USB_EP7R_EA_Msk /*!< Endpoint Address */
+
+#define USB_EP7R_STAT_TX_Pos (4U)
+#define USB_EP7R_STAT_TX_Msk (0x3UL << USB_EP7R_STAT_TX_Pos) /*!< 0x00000030 */
+#define USB_EP7R_STAT_TX USB_EP7R_STAT_TX_Msk /*!< STAT_TX[1:0] bits (Status bits, for transmission transfers) */
+#define USB_EP7R_STAT_TX_0 (0x1UL << USB_EP7R_STAT_TX_Pos) /*!< 0x00000010 */
+#define USB_EP7R_STAT_TX_1 (0x2UL << USB_EP7R_STAT_TX_Pos) /*!< 0x00000020 */
+
+#define USB_EP7R_DTOG_TX_Pos (6U)
+#define USB_EP7R_DTOG_TX_Msk (0x1UL << USB_EP7R_DTOG_TX_Pos) /*!< 0x00000040 */
+#define USB_EP7R_DTOG_TX USB_EP7R_DTOG_TX_Msk /*!< Data Toggle, for transmission transfers */
+#define USB_EP7R_CTR_TX_Pos (7U)
+#define USB_EP7R_CTR_TX_Msk (0x1UL << USB_EP7R_CTR_TX_Pos) /*!< 0x00000080 */
+#define USB_EP7R_CTR_TX USB_EP7R_CTR_TX_Msk /*!< Correct Transfer for transmission */
+#define USB_EP7R_EP_KIND_Pos (8U)
+#define USB_EP7R_EP_KIND_Msk (0x1UL << USB_EP7R_EP_KIND_Pos) /*!< 0x00000100 */
+#define USB_EP7R_EP_KIND USB_EP7R_EP_KIND_Msk /*!< Endpoint Kind */
+
+#define USB_EP7R_EP_TYPE_Pos (9U)
+#define USB_EP7R_EP_TYPE_Msk (0x3UL << USB_EP7R_EP_TYPE_Pos) /*!< 0x00000600 */
+#define USB_EP7R_EP_TYPE USB_EP7R_EP_TYPE_Msk /*!< EP_TYPE[1:0] bits (Endpoint type) */
+#define USB_EP7R_EP_TYPE_0 (0x1UL << USB_EP7R_EP_TYPE_Pos) /*!< 0x00000200 */
+#define USB_EP7R_EP_TYPE_1 (0x2UL << USB_EP7R_EP_TYPE_Pos) /*!< 0x00000400 */
+
+#define USB_EP7R_SETUP_Pos (11U)
+#define USB_EP7R_SETUP_Msk (0x1UL << USB_EP7R_SETUP_Pos) /*!< 0x00000800 */
+#define USB_EP7R_SETUP USB_EP7R_SETUP_Msk /*!< Setup transaction completed */
+
+#define USB_EP7R_STAT_RX_Pos (12U)
+#define USB_EP7R_STAT_RX_Msk (0x3UL << USB_EP7R_STAT_RX_Pos) /*!< 0x00003000 */
+#define USB_EP7R_STAT_RX USB_EP7R_STAT_RX_Msk /*!< STAT_RX[1:0] bits (Status bits, for reception transfers) */
+#define USB_EP7R_STAT_RX_0 (0x1UL << USB_EP7R_STAT_RX_Pos) /*!< 0x00001000 */
+#define USB_EP7R_STAT_RX_1 (0x2UL << USB_EP7R_STAT_RX_Pos) /*!< 0x00002000 */
+
+#define USB_EP7R_DTOG_RX_Pos (14U)
+#define USB_EP7R_DTOG_RX_Msk (0x1UL << USB_EP7R_DTOG_RX_Pos) /*!< 0x00004000 */
+#define USB_EP7R_DTOG_RX USB_EP7R_DTOG_RX_Msk /*!< Data Toggle, for reception transfers */
+#define USB_EP7R_CTR_RX_Pos (15U)
+#define USB_EP7R_CTR_RX_Msk (0x1UL << USB_EP7R_CTR_RX_Pos) /*!< 0x00008000 */
+#define USB_EP7R_CTR_RX USB_EP7R_CTR_RX_Msk /*!< Correct Transfer for reception */
+
+/*!< Common registers */
+/******************* Bit definition for USB_CNTR register *******************/
+#define USB_CNTR_FRES_Pos (0U)
+#define USB_CNTR_FRES_Msk (0x1UL << USB_CNTR_FRES_Pos) /*!< 0x00000001 */
+#define USB_CNTR_FRES USB_CNTR_FRES_Msk /*!< Force USB Reset */
+#define USB_CNTR_PDWN_Pos (1U)
+#define USB_CNTR_PDWN_Msk (0x1UL << USB_CNTR_PDWN_Pos) /*!< 0x00000002 */
+#define USB_CNTR_PDWN USB_CNTR_PDWN_Msk /*!< Power down */
+#define USB_CNTR_LP_MODE_Pos (2U)
+#define USB_CNTR_LP_MODE_Msk (0x1UL << USB_CNTR_LP_MODE_Pos) /*!< 0x00000004 */
+#define USB_CNTR_LP_MODE USB_CNTR_LP_MODE_Msk /*!< Low-power mode */
+#define USB_CNTR_FSUSP_Pos (3U)
+#define USB_CNTR_FSUSP_Msk (0x1UL << USB_CNTR_FSUSP_Pos) /*!< 0x00000008 */
+#define USB_CNTR_FSUSP USB_CNTR_FSUSP_Msk /*!< Force suspend */
+#define USB_CNTR_RESUME_Pos (4U)
+#define USB_CNTR_RESUME_Msk (0x1UL << USB_CNTR_RESUME_Pos) /*!< 0x00000010 */
+#define USB_CNTR_RESUME USB_CNTR_RESUME_Msk /*!< Resume request */
+#define USB_CNTR_ESOFM_Pos (8U)
+#define USB_CNTR_ESOFM_Msk (0x1UL << USB_CNTR_ESOFM_Pos) /*!< 0x00000100 */
+#define USB_CNTR_ESOFM USB_CNTR_ESOFM_Msk /*!< Expected Start Of Frame Interrupt Mask */
+#define USB_CNTR_SOFM_Pos (9U)
+#define USB_CNTR_SOFM_Msk (0x1UL << USB_CNTR_SOFM_Pos) /*!< 0x00000200 */
+#define USB_CNTR_SOFM USB_CNTR_SOFM_Msk /*!< Start Of Frame Interrupt Mask */
+#define USB_CNTR_RESETM_Pos (10U)
+#define USB_CNTR_RESETM_Msk (0x1UL << USB_CNTR_RESETM_Pos) /*!< 0x00000400 */
+#define USB_CNTR_RESETM USB_CNTR_RESETM_Msk /*!< RESET Interrupt Mask */
+#define USB_CNTR_SUSPM_Pos (11U)
+#define USB_CNTR_SUSPM_Msk (0x1UL << USB_CNTR_SUSPM_Pos) /*!< 0x00000800 */
+#define USB_CNTR_SUSPM USB_CNTR_SUSPM_Msk /*!< Suspend mode Interrupt Mask */
+#define USB_CNTR_WKUPM_Pos (12U)
+#define USB_CNTR_WKUPM_Msk (0x1UL << USB_CNTR_WKUPM_Pos) /*!< 0x00001000 */
+#define USB_CNTR_WKUPM USB_CNTR_WKUPM_Msk /*!< Wakeup Interrupt Mask */
+#define USB_CNTR_ERRM_Pos (13U)
+#define USB_CNTR_ERRM_Msk (0x1UL << USB_CNTR_ERRM_Pos) /*!< 0x00002000 */
+#define USB_CNTR_ERRM USB_CNTR_ERRM_Msk /*!< Error Interrupt Mask */
+#define USB_CNTR_PMAOVRM_Pos (14U)
+#define USB_CNTR_PMAOVRM_Msk (0x1UL << USB_CNTR_PMAOVRM_Pos) /*!< 0x00004000 */
+#define USB_CNTR_PMAOVRM USB_CNTR_PMAOVRM_Msk /*!< Packet Memory Area Over / Underrun Interrupt Mask */
+#define USB_CNTR_CTRM_Pos (15U)
+#define USB_CNTR_CTRM_Msk (0x1UL << USB_CNTR_CTRM_Pos) /*!< 0x00008000 */
+#define USB_CNTR_CTRM USB_CNTR_CTRM_Msk /*!< Correct Transfer Interrupt Mask */
+
+/******************* Bit definition for USB_ISTR register *******************/
+#define USB_ISTR_EP_ID_Pos (0U)
+#define USB_ISTR_EP_ID_Msk (0xFUL << USB_ISTR_EP_ID_Pos) /*!< 0x0000000F */
+#define USB_ISTR_EP_ID USB_ISTR_EP_ID_Msk /*!< Endpoint Identifier */
+#define USB_ISTR_DIR_Pos (4U)
+#define USB_ISTR_DIR_Msk (0x1UL << USB_ISTR_DIR_Pos) /*!< 0x00000010 */
+#define USB_ISTR_DIR USB_ISTR_DIR_Msk /*!< Direction of transaction */
+#define USB_ISTR_ESOF_Pos (8U)
+#define USB_ISTR_ESOF_Msk (0x1UL << USB_ISTR_ESOF_Pos) /*!< 0x00000100 */
+#define USB_ISTR_ESOF USB_ISTR_ESOF_Msk /*!< Expected Start Of Frame */
+#define USB_ISTR_SOF_Pos (9U)
+#define USB_ISTR_SOF_Msk (0x1UL << USB_ISTR_SOF_Pos) /*!< 0x00000200 */
+#define USB_ISTR_SOF USB_ISTR_SOF_Msk /*!< Start Of Frame */
+#define USB_ISTR_RESET_Pos (10U)
+#define USB_ISTR_RESET_Msk (0x1UL << USB_ISTR_RESET_Pos) /*!< 0x00000400 */
+#define USB_ISTR_RESET USB_ISTR_RESET_Msk /*!< USB RESET request */
+#define USB_ISTR_SUSP_Pos (11U)
+#define USB_ISTR_SUSP_Msk (0x1UL << USB_ISTR_SUSP_Pos) /*!< 0x00000800 */
+#define USB_ISTR_SUSP USB_ISTR_SUSP_Msk /*!< Suspend mode request */
+#define USB_ISTR_WKUP_Pos (12U)
+#define USB_ISTR_WKUP_Msk (0x1UL << USB_ISTR_WKUP_Pos) /*!< 0x00001000 */
+#define USB_ISTR_WKUP USB_ISTR_WKUP_Msk /*!< Wake up */
+#define USB_ISTR_ERR_Pos (13U)
+#define USB_ISTR_ERR_Msk (0x1UL << USB_ISTR_ERR_Pos) /*!< 0x00002000 */
+#define USB_ISTR_ERR USB_ISTR_ERR_Msk /*!< Error */
+#define USB_ISTR_PMAOVR_Pos (14U)
+#define USB_ISTR_PMAOVR_Msk (0x1UL << USB_ISTR_PMAOVR_Pos) /*!< 0x00004000 */
+#define USB_ISTR_PMAOVR USB_ISTR_PMAOVR_Msk /*!< Packet Memory Area Over / Underrun */
+#define USB_ISTR_CTR_Pos (15U)
+#define USB_ISTR_CTR_Msk (0x1UL << USB_ISTR_CTR_Pos) /*!< 0x00008000 */
+#define USB_ISTR_CTR USB_ISTR_CTR_Msk /*!< Correct Transfer */
+
+/******************* Bit definition for USB_FNR register ********************/
+#define USB_FNR_FN_Pos (0U)
+#define USB_FNR_FN_Msk (0x7FFUL << USB_FNR_FN_Pos) /*!< 0x000007FF */
+#define USB_FNR_FN USB_FNR_FN_Msk /*!< Frame Number */
+#define USB_FNR_LSOF_Pos (11U)
+#define USB_FNR_LSOF_Msk (0x3UL << USB_FNR_LSOF_Pos) /*!< 0x00001800 */
+#define USB_FNR_LSOF USB_FNR_LSOF_Msk /*!< Lost SOF */
+#define USB_FNR_LCK_Pos (13U)
+#define USB_FNR_LCK_Msk (0x1UL << USB_FNR_LCK_Pos) /*!< 0x00002000 */
+#define USB_FNR_LCK USB_FNR_LCK_Msk /*!< Locked */
+#define USB_FNR_RXDM_Pos (14U)
+#define USB_FNR_RXDM_Msk (0x1UL << USB_FNR_RXDM_Pos) /*!< 0x00004000 */
+#define USB_FNR_RXDM USB_FNR_RXDM_Msk /*!< Receive Data - Line Status */
+#define USB_FNR_RXDP_Pos (15U)
+#define USB_FNR_RXDP_Msk (0x1UL << USB_FNR_RXDP_Pos) /*!< 0x00008000 */
+#define USB_FNR_RXDP USB_FNR_RXDP_Msk /*!< Receive Data + Line Status */
+
+/****************** Bit definition for USB_DADDR register *******************/
+#define USB_DADDR_ADD_Pos (0U)
+#define USB_DADDR_ADD_Msk (0x7FUL << USB_DADDR_ADD_Pos) /*!< 0x0000007F */
+#define USB_DADDR_ADD USB_DADDR_ADD_Msk /*!< ADD[6:0] bits (Device Address) */
+#define USB_DADDR_ADD0_Pos (0U)
+#define USB_DADDR_ADD0_Msk (0x1UL << USB_DADDR_ADD0_Pos) /*!< 0x00000001 */
+#define USB_DADDR_ADD0 USB_DADDR_ADD0_Msk /*!< Bit 0 */
+#define USB_DADDR_ADD1_Pos (1U)
+#define USB_DADDR_ADD1_Msk (0x1UL << USB_DADDR_ADD1_Pos) /*!< 0x00000002 */
+#define USB_DADDR_ADD1 USB_DADDR_ADD1_Msk /*!< Bit 1 */
+#define USB_DADDR_ADD2_Pos (2U)
+#define USB_DADDR_ADD2_Msk (0x1UL << USB_DADDR_ADD2_Pos) /*!< 0x00000004 */
+#define USB_DADDR_ADD2 USB_DADDR_ADD2_Msk /*!< Bit 2 */
+#define USB_DADDR_ADD3_Pos (3U)
+#define USB_DADDR_ADD3_Msk (0x1UL << USB_DADDR_ADD3_Pos) /*!< 0x00000008 */
+#define USB_DADDR_ADD3 USB_DADDR_ADD3_Msk /*!< Bit 3 */
+#define USB_DADDR_ADD4_Pos (4U)
+#define USB_DADDR_ADD4_Msk (0x1UL << USB_DADDR_ADD4_Pos) /*!< 0x00000010 */
+#define USB_DADDR_ADD4 USB_DADDR_ADD4_Msk /*!< Bit 4 */
+#define USB_DADDR_ADD5_Pos (5U)
+#define USB_DADDR_ADD5_Msk (0x1UL << USB_DADDR_ADD5_Pos) /*!< 0x00000020 */
+#define USB_DADDR_ADD5 USB_DADDR_ADD5_Msk /*!< Bit 5 */
+#define USB_DADDR_ADD6_Pos (6U)
+#define USB_DADDR_ADD6_Msk (0x1UL << USB_DADDR_ADD6_Pos) /*!< 0x00000040 */
+#define USB_DADDR_ADD6 USB_DADDR_ADD6_Msk /*!< Bit 6 */
+
+#define USB_DADDR_EF_Pos (7U)
+#define USB_DADDR_EF_Msk (0x1UL << USB_DADDR_EF_Pos) /*!< 0x00000080 */
+#define USB_DADDR_EF USB_DADDR_EF_Msk /*!< Enable Function */
+
+/****************** Bit definition for USB_BTABLE register ******************/
+#define USB_BTABLE_BTABLE_Pos (3U)
+#define USB_BTABLE_BTABLE_Msk (0x1FFFUL << USB_BTABLE_BTABLE_Pos) /*!< 0x0000FFF8 */
+#define USB_BTABLE_BTABLE USB_BTABLE_BTABLE_Msk /*!< Buffer Table */
+
+/*!< Buffer descriptor table */
+/***************** Bit definition for USB_ADDR0_TX register *****************/
+#define USB_ADDR0_TX_ADDR0_TX_Pos (1U)
+#define USB_ADDR0_TX_ADDR0_TX_Msk (0x7FFFUL << USB_ADDR0_TX_ADDR0_TX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR0_TX_ADDR0_TX USB_ADDR0_TX_ADDR0_TX_Msk /*!< Transmission Buffer Address 0 */
+
+/***************** Bit definition for USB_ADDR1_TX register *****************/
+#define USB_ADDR1_TX_ADDR1_TX_Pos (1U)
+#define USB_ADDR1_TX_ADDR1_TX_Msk (0x7FFFUL << USB_ADDR1_TX_ADDR1_TX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR1_TX_ADDR1_TX USB_ADDR1_TX_ADDR1_TX_Msk /*!< Transmission Buffer Address 1 */
+
+/***************** Bit definition for USB_ADDR2_TX register *****************/
+#define USB_ADDR2_TX_ADDR2_TX_Pos (1U)
+#define USB_ADDR2_TX_ADDR2_TX_Msk (0x7FFFUL << USB_ADDR2_TX_ADDR2_TX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR2_TX_ADDR2_TX USB_ADDR2_TX_ADDR2_TX_Msk /*!< Transmission Buffer Address 2 */
+
+/***************** Bit definition for USB_ADDR3_TX register *****************/
+#define USB_ADDR3_TX_ADDR3_TX_Pos (1U)
+#define USB_ADDR3_TX_ADDR3_TX_Msk (0x7FFFUL << USB_ADDR3_TX_ADDR3_TX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR3_TX_ADDR3_TX USB_ADDR3_TX_ADDR3_TX_Msk /*!< Transmission Buffer Address 3 */
+
+/***************** Bit definition for USB_ADDR4_TX register *****************/
+#define USB_ADDR4_TX_ADDR4_TX_Pos (1U)
+#define USB_ADDR4_TX_ADDR4_TX_Msk (0x7FFFUL << USB_ADDR4_TX_ADDR4_TX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR4_TX_ADDR4_TX USB_ADDR4_TX_ADDR4_TX_Msk /*!< Transmission Buffer Address 4 */
+
+/***************** Bit definition for USB_ADDR5_TX register *****************/
+#define USB_ADDR5_TX_ADDR5_TX_Pos (1U)
+#define USB_ADDR5_TX_ADDR5_TX_Msk (0x7FFFUL << USB_ADDR5_TX_ADDR5_TX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR5_TX_ADDR5_TX USB_ADDR5_TX_ADDR5_TX_Msk /*!< Transmission Buffer Address 5 */
+
+/***************** Bit definition for USB_ADDR6_TX register *****************/
+#define USB_ADDR6_TX_ADDR6_TX_Pos (1U)
+#define USB_ADDR6_TX_ADDR6_TX_Msk (0x7FFFUL << USB_ADDR6_TX_ADDR6_TX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR6_TX_ADDR6_TX USB_ADDR6_TX_ADDR6_TX_Msk /*!< Transmission Buffer Address 6 */
+
+/***************** Bit definition for USB_ADDR7_TX register *****************/
+#define USB_ADDR7_TX_ADDR7_TX_Pos (1U)
+#define USB_ADDR7_TX_ADDR7_TX_Msk (0x7FFFUL << USB_ADDR7_TX_ADDR7_TX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR7_TX_ADDR7_TX USB_ADDR7_TX_ADDR7_TX_Msk /*!< Transmission Buffer Address 7 */
+
+/*----------------------------------------------------------------------------*/
+
+/***************** Bit definition for USB_COUNT0_TX register ****************/
+#define USB_COUNT0_TX_COUNT0_TX_Pos (0U)
+#define USB_COUNT0_TX_COUNT0_TX_Msk (0x3FFUL << USB_COUNT0_TX_COUNT0_TX_Pos) /*!< 0x000003FF */
+#define USB_COUNT0_TX_COUNT0_TX USB_COUNT0_TX_COUNT0_TX_Msk /*!< Transmission Byte Count 0 */
+
+/***************** Bit definition for USB_COUNT1_TX register ****************/
+#define USB_COUNT1_TX_COUNT1_TX_Pos (0U)
+#define USB_COUNT1_TX_COUNT1_TX_Msk (0x3FFUL << USB_COUNT1_TX_COUNT1_TX_Pos) /*!< 0x000003FF */
+#define USB_COUNT1_TX_COUNT1_TX USB_COUNT1_TX_COUNT1_TX_Msk /*!< Transmission Byte Count 1 */
+
+/***************** Bit definition for USB_COUNT2_TX register ****************/
+#define USB_COUNT2_TX_COUNT2_TX_Pos (0U)
+#define USB_COUNT2_TX_COUNT2_TX_Msk (0x3FFUL << USB_COUNT2_TX_COUNT2_TX_Pos) /*!< 0x000003FF */
+#define USB_COUNT2_TX_COUNT2_TX USB_COUNT2_TX_COUNT2_TX_Msk /*!< Transmission Byte Count 2 */
+
+/***************** Bit definition for USB_COUNT3_TX register ****************/
+#define USB_COUNT3_TX_COUNT3_TX_Pos (0U)
+#define USB_COUNT3_TX_COUNT3_TX_Msk (0x3FFUL << USB_COUNT3_TX_COUNT3_TX_Pos) /*!< 0x000003FF */
+#define USB_COUNT3_TX_COUNT3_TX USB_COUNT3_TX_COUNT3_TX_Msk /*!< Transmission Byte Count 3 */
+
+/***************** Bit definition for USB_COUNT4_TX register ****************/
+#define USB_COUNT4_TX_COUNT4_TX_Pos (0U)
+#define USB_COUNT4_TX_COUNT4_TX_Msk (0x3FFUL << USB_COUNT4_TX_COUNT4_TX_Pos) /*!< 0x000003FF */
+#define USB_COUNT4_TX_COUNT4_TX USB_COUNT4_TX_COUNT4_TX_Msk /*!< Transmission Byte Count 4 */
+
+/***************** Bit definition for USB_COUNT5_TX register ****************/
+#define USB_COUNT5_TX_COUNT5_TX_Pos (0U)
+#define USB_COUNT5_TX_COUNT5_TX_Msk (0x3FFUL << USB_COUNT5_TX_COUNT5_TX_Pos) /*!< 0x000003FF */
+#define USB_COUNT5_TX_COUNT5_TX USB_COUNT5_TX_COUNT5_TX_Msk /*!< Transmission Byte Count 5 */
+
+/***************** Bit definition for USB_COUNT6_TX register ****************/
+#define USB_COUNT6_TX_COUNT6_TX_Pos (0U)
+#define USB_COUNT6_TX_COUNT6_TX_Msk (0x3FFUL << USB_COUNT6_TX_COUNT6_TX_Pos) /*!< 0x000003FF */
+#define USB_COUNT6_TX_COUNT6_TX USB_COUNT6_TX_COUNT6_TX_Msk /*!< Transmission Byte Count 6 */
+
+/***************** Bit definition for USB_COUNT7_TX register ****************/
+#define USB_COUNT7_TX_COUNT7_TX_Pos (0U)
+#define USB_COUNT7_TX_COUNT7_TX_Msk (0x3FFUL << USB_COUNT7_TX_COUNT7_TX_Pos) /*!< 0x000003FF */
+#define USB_COUNT7_TX_COUNT7_TX USB_COUNT7_TX_COUNT7_TX_Msk /*!< Transmission Byte Count 7 */
+
+/*----------------------------------------------------------------------------*/
+
+/**************** Bit definition for USB_COUNT0_TX_0 register ***************/
+#define USB_COUNT0_TX_0_COUNT0_TX_0 0x000003FFU /*!< Transmission Byte Count 0 (low) */
+
+/**************** Bit definition for USB_COUNT0_TX_1 register ***************/
+#define USB_COUNT0_TX_1_COUNT0_TX_1 0x03FF0000U /*!< Transmission Byte Count 0 (high) */
+
+/**************** Bit definition for USB_COUNT1_TX_0 register ***************/
+#define USB_COUNT1_TX_0_COUNT1_TX_0 0x000003FFU /*!< Transmission Byte Count 1 (low) */
+
+/**************** Bit definition for USB_COUNT1_TX_1 register ***************/
+#define USB_COUNT1_TX_1_COUNT1_TX_1 0x03FF0000U /*!< Transmission Byte Count 1 (high) */
+
+/**************** Bit definition for USB_COUNT2_TX_0 register ***************/
+#define USB_COUNT2_TX_0_COUNT2_TX_0 0x000003FFU /*!< Transmission Byte Count 2 (low) */
+
+/**************** Bit definition for USB_COUNT2_TX_1 register ***************/
+#define USB_COUNT2_TX_1_COUNT2_TX_1 0x03FF0000U /*!< Transmission Byte Count 2 (high) */
+
+/**************** Bit definition for USB_COUNT3_TX_0 register ***************/
+#define USB_COUNT3_TX_0_COUNT3_TX_0 0x000003FFU /*!< Transmission Byte Count 3 (low) */
+
+/**************** Bit definition for USB_COUNT3_TX_1 register ***************/
+#define USB_COUNT3_TX_1_COUNT3_TX_1 0x03FF0000U /*!< Transmission Byte Count 3 (high) */
+
+/**************** Bit definition for USB_COUNT4_TX_0 register ***************/
+#define USB_COUNT4_TX_0_COUNT4_TX_0 0x000003FFU /*!< Transmission Byte Count 4 (low) */
+
+/**************** Bit definition for USB_COUNT4_TX_1 register ***************/
+#define USB_COUNT4_TX_1_COUNT4_TX_1 0x03FF0000U /*!< Transmission Byte Count 4 (high) */
+
+/**************** Bit definition for USB_COUNT5_TX_0 register ***************/
+#define USB_COUNT5_TX_0_COUNT5_TX_0 0x000003FFU /*!< Transmission Byte Count 5 (low) */
+
+/**************** Bit definition for USB_COUNT5_TX_1 register ***************/
+#define USB_COUNT5_TX_1_COUNT5_TX_1 0x03FF0000U /*!< Transmission Byte Count 5 (high) */
+
+/**************** Bit definition for USB_COUNT6_TX_0 register ***************/
+#define USB_COUNT6_TX_0_COUNT6_TX_0 0x000003FFU /*!< Transmission Byte Count 6 (low) */
+
+/**************** Bit definition for USB_COUNT6_TX_1 register ***************/
+#define USB_COUNT6_TX_1_COUNT6_TX_1 0x03FF0000U /*!< Transmission Byte Count 6 (high) */
+
+/**************** Bit definition for USB_COUNT7_TX_0 register ***************/
+#define USB_COUNT7_TX_0_COUNT7_TX_0 0x000003FFU /*!< Transmission Byte Count 7 (low) */
+
+/**************** Bit definition for USB_COUNT7_TX_1 register ***************/
+#define USB_COUNT7_TX_1_COUNT7_TX_1 0x03FF0000U /*!< Transmission Byte Count 7 (high) */
+
+/*----------------------------------------------------------------------------*/
+
+/***************** Bit definition for USB_ADDR0_RX register *****************/
+#define USB_ADDR0_RX_ADDR0_RX_Pos (1U)
+#define USB_ADDR0_RX_ADDR0_RX_Msk (0x7FFFUL << USB_ADDR0_RX_ADDR0_RX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR0_RX_ADDR0_RX USB_ADDR0_RX_ADDR0_RX_Msk /*!< Reception Buffer Address 0 */
+
+/***************** Bit definition for USB_ADDR1_RX register *****************/
+#define USB_ADDR1_RX_ADDR1_RX_Pos (1U)
+#define USB_ADDR1_RX_ADDR1_RX_Msk (0x7FFFUL << USB_ADDR1_RX_ADDR1_RX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR1_RX_ADDR1_RX USB_ADDR1_RX_ADDR1_RX_Msk /*!< Reception Buffer Address 1 */
+
+/***************** Bit definition for USB_ADDR2_RX register *****************/
+#define USB_ADDR2_RX_ADDR2_RX_Pos (1U)
+#define USB_ADDR2_RX_ADDR2_RX_Msk (0x7FFFUL << USB_ADDR2_RX_ADDR2_RX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR2_RX_ADDR2_RX USB_ADDR2_RX_ADDR2_RX_Msk /*!< Reception Buffer Address 2 */
+
+/***************** Bit definition for USB_ADDR3_RX register *****************/
+#define USB_ADDR3_RX_ADDR3_RX_Pos (1U)
+#define USB_ADDR3_RX_ADDR3_RX_Msk (0x7FFFUL << USB_ADDR3_RX_ADDR3_RX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR3_RX_ADDR3_RX USB_ADDR3_RX_ADDR3_RX_Msk /*!< Reception Buffer Address 3 */
+
+/***************** Bit definition for USB_ADDR4_RX register *****************/
+#define USB_ADDR4_RX_ADDR4_RX_Pos (1U)
+#define USB_ADDR4_RX_ADDR4_RX_Msk (0x7FFFUL << USB_ADDR4_RX_ADDR4_RX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR4_RX_ADDR4_RX USB_ADDR4_RX_ADDR4_RX_Msk /*!< Reception Buffer Address 4 */
+
+/***************** Bit definition for USB_ADDR5_RX register *****************/
+#define USB_ADDR5_RX_ADDR5_RX_Pos (1U)
+#define USB_ADDR5_RX_ADDR5_RX_Msk (0x7FFFUL << USB_ADDR5_RX_ADDR5_RX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR5_RX_ADDR5_RX USB_ADDR5_RX_ADDR5_RX_Msk /*!< Reception Buffer Address 5 */
+
+/***************** Bit definition for USB_ADDR6_RX register *****************/
+#define USB_ADDR6_RX_ADDR6_RX_Pos (1U)
+#define USB_ADDR6_RX_ADDR6_RX_Msk (0x7FFFUL << USB_ADDR6_RX_ADDR6_RX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR6_RX_ADDR6_RX USB_ADDR6_RX_ADDR6_RX_Msk /*!< Reception Buffer Address 6 */
+
+/***************** Bit definition for USB_ADDR7_RX register *****************/
+#define USB_ADDR7_RX_ADDR7_RX_Pos (1U)
+#define USB_ADDR7_RX_ADDR7_RX_Msk (0x7FFFUL << USB_ADDR7_RX_ADDR7_RX_Pos) /*!< 0x0000FFFE */
+#define USB_ADDR7_RX_ADDR7_RX USB_ADDR7_RX_ADDR7_RX_Msk /*!< Reception Buffer Address 7 */
+
+/*----------------------------------------------------------------------------*/
+
+/***************** Bit definition for USB_COUNT0_RX register ****************/
+#define USB_COUNT0_RX_COUNT0_RX_Pos (0U)
+#define USB_COUNT0_RX_COUNT0_RX_Msk (0x3FFUL << USB_COUNT0_RX_COUNT0_RX_Pos) /*!< 0x000003FF */
+#define USB_COUNT0_RX_COUNT0_RX USB_COUNT0_RX_COUNT0_RX_Msk /*!< Reception Byte Count */
+
+#define USB_COUNT0_RX_NUM_BLOCK_Pos (10U)
+#define USB_COUNT0_RX_NUM_BLOCK_Msk (0x1FUL << USB_COUNT0_RX_NUM_BLOCK_Pos) /*!< 0x00007C00 */
+#define USB_COUNT0_RX_NUM_BLOCK USB_COUNT0_RX_NUM_BLOCK_Msk /*!< NUM_BLOCK[4:0] bits (Number of blocks) */
+#define USB_COUNT0_RX_NUM_BLOCK_0 (0x01UL << USB_COUNT0_RX_NUM_BLOCK_Pos) /*!< 0x00000400 */
+#define USB_COUNT0_RX_NUM_BLOCK_1 (0x02UL << USB_COUNT0_RX_NUM_BLOCK_Pos) /*!< 0x00000800 */
+#define USB_COUNT0_RX_NUM_BLOCK_2 (0x04UL << USB_COUNT0_RX_NUM_BLOCK_Pos) /*!< 0x00001000 */
+#define USB_COUNT0_RX_NUM_BLOCK_3 (0x08UL << USB_COUNT0_RX_NUM_BLOCK_Pos) /*!< 0x00002000 */
+#define USB_COUNT0_RX_NUM_BLOCK_4 (0x10UL << USB_COUNT0_RX_NUM_BLOCK_Pos) /*!< 0x00004000 */
+
+#define USB_COUNT0_RX_BLSIZE_Pos (15U)
+#define USB_COUNT0_RX_BLSIZE_Msk (0x1UL << USB_COUNT0_RX_BLSIZE_Pos) /*!< 0x00008000 */
+#define USB_COUNT0_RX_BLSIZE USB_COUNT0_RX_BLSIZE_Msk /*!< BLock SIZE */
+
+/***************** Bit definition for USB_COUNT1_RX register ****************/
+#define USB_COUNT1_RX_COUNT1_RX_Pos (0U)
+#define USB_COUNT1_RX_COUNT1_RX_Msk (0x3FFUL << USB_COUNT1_RX_COUNT1_RX_Pos) /*!< 0x000003FF */
+#define USB_COUNT1_RX_COUNT1_RX USB_COUNT1_RX_COUNT1_RX_Msk /*!< Reception Byte Count */
+
+#define USB_COUNT1_RX_NUM_BLOCK_Pos (10U)
+#define USB_COUNT1_RX_NUM_BLOCK_Msk (0x1FUL << USB_COUNT1_RX_NUM_BLOCK_Pos) /*!< 0x00007C00 */
+#define USB_COUNT1_RX_NUM_BLOCK USB_COUNT1_RX_NUM_BLOCK_Msk /*!< NUM_BLOCK[4:0] bits (Number of blocks) */
+#define USB_COUNT1_RX_NUM_BLOCK_0 (0x01UL << USB_COUNT1_RX_NUM_BLOCK_Pos) /*!< 0x00000400 */
+#define USB_COUNT1_RX_NUM_BLOCK_1 (0x02UL << USB_COUNT1_RX_NUM_BLOCK_Pos) /*!< 0x00000800 */
+#define USB_COUNT1_RX_NUM_BLOCK_2 (0x04UL << USB_COUNT1_RX_NUM_BLOCK_Pos) /*!< 0x00001000 */
+#define USB_COUNT1_RX_NUM_BLOCK_3 (0x08UL << USB_COUNT1_RX_NUM_BLOCK_Pos) /*!< 0x00002000 */
+#define USB_COUNT1_RX_NUM_BLOCK_4 (0x10UL << USB_COUNT1_RX_NUM_BLOCK_Pos) /*!< 0x00004000 */
+
+#define USB_COUNT1_RX_BLSIZE_Pos (15U)
+#define USB_COUNT1_RX_BLSIZE_Msk (0x1UL << USB_COUNT1_RX_BLSIZE_Pos) /*!< 0x00008000 */
+#define USB_COUNT1_RX_BLSIZE USB_COUNT1_RX_BLSIZE_Msk /*!< BLock SIZE */
+
+/***************** Bit definition for USB_COUNT2_RX register ****************/
+#define USB_COUNT2_RX_COUNT2_RX_Pos (0U)
+#define USB_COUNT2_RX_COUNT2_RX_Msk (0x3FFUL << USB_COUNT2_RX_COUNT2_RX_Pos) /*!< 0x000003FF */
+#define USB_COUNT2_RX_COUNT2_RX USB_COUNT2_RX_COUNT2_RX_Msk /*!< Reception Byte Count */
+
+#define USB_COUNT2_RX_NUM_BLOCK_Pos (10U)
+#define USB_COUNT2_RX_NUM_BLOCK_Msk (0x1FUL << USB_COUNT2_RX_NUM_BLOCK_Pos) /*!< 0x00007C00 */
+#define USB_COUNT2_RX_NUM_BLOCK USB_COUNT2_RX_NUM_BLOCK_Msk /*!< NUM_BLOCK[4:0] bits (Number of blocks) */
+#define USB_COUNT2_RX_NUM_BLOCK_0 (0x01UL << USB_COUNT2_RX_NUM_BLOCK_Pos) /*!< 0x00000400 */
+#define USB_COUNT2_RX_NUM_BLOCK_1 (0x02UL << USB_COUNT2_RX_NUM_BLOCK_Pos) /*!< 0x00000800 */
+#define USB_COUNT2_RX_NUM_BLOCK_2 (0x04UL << USB_COUNT2_RX_NUM_BLOCK_Pos) /*!< 0x00001000 */
+#define USB_COUNT2_RX_NUM_BLOCK_3 (0x08UL << USB_COUNT2_RX_NUM_BLOCK_Pos) /*!< 0x00002000 */
+#define USB_COUNT2_RX_NUM_BLOCK_4 (0x10UL << USB_COUNT2_RX_NUM_BLOCK_Pos) /*!< 0x00004000 */
+
+#define USB_COUNT2_RX_BLSIZE_Pos (15U)
+#define USB_COUNT2_RX_BLSIZE_Msk (0x1UL << USB_COUNT2_RX_BLSIZE_Pos) /*!< 0x00008000 */
+#define USB_COUNT2_RX_BLSIZE USB_COUNT2_RX_BLSIZE_Msk /*!< BLock SIZE */
+
+/***************** Bit definition for USB_COUNT3_RX register ****************/
+#define USB_COUNT3_RX_COUNT3_RX_Pos (0U)
+#define USB_COUNT3_RX_COUNT3_RX_Msk (0x3FFUL << USB_COUNT3_RX_COUNT3_RX_Pos) /*!< 0x000003FF */
+#define USB_COUNT3_RX_COUNT3_RX USB_COUNT3_RX_COUNT3_RX_Msk /*!< Reception Byte Count */
+
+#define USB_COUNT3_RX_NUM_BLOCK_Pos (10U)
+#define USB_COUNT3_RX_NUM_BLOCK_Msk (0x1FUL << USB_COUNT3_RX_NUM_BLOCK_Pos) /*!< 0x00007C00 */
+#define USB_COUNT3_RX_NUM_BLOCK USB_COUNT3_RX_NUM_BLOCK_Msk /*!< NUM_BLOCK[4:0] bits (Number of blocks) */
+#define USB_COUNT3_RX_NUM_BLOCK_0 (0x01UL << USB_COUNT3_RX_NUM_BLOCK_Pos) /*!< 0x00000400 */
+#define USB_COUNT3_RX_NUM_BLOCK_1 (0x02UL << USB_COUNT3_RX_NUM_BLOCK_Pos) /*!< 0x00000800 */
+#define USB_COUNT3_RX_NUM_BLOCK_2 (0x04UL << USB_COUNT3_RX_NUM_BLOCK_Pos) /*!< 0x00001000 */
+#define USB_COUNT3_RX_NUM_BLOCK_3 (0x08UL << USB_COUNT3_RX_NUM_BLOCK_Pos) /*!< 0x00002000 */
+#define USB_COUNT3_RX_NUM_BLOCK_4 (0x10UL << USB_COUNT3_RX_NUM_BLOCK_Pos) /*!< 0x00004000 */
+
+#define USB_COUNT3_RX_BLSIZE_Pos (15U)
+#define USB_COUNT3_RX_BLSIZE_Msk (0x1UL << USB_COUNT3_RX_BLSIZE_Pos) /*!< 0x00008000 */
+#define USB_COUNT3_RX_BLSIZE USB_COUNT3_RX_BLSIZE_Msk /*!< BLock SIZE */
+
+/***************** Bit definition for USB_COUNT4_RX register ****************/
+#define USB_COUNT4_RX_COUNT4_RX_Pos (0U)
+#define USB_COUNT4_RX_COUNT4_RX_Msk (0x3FFUL << USB_COUNT4_RX_COUNT4_RX_Pos) /*!< 0x000003FF */
+#define USB_COUNT4_RX_COUNT4_RX USB_COUNT4_RX_COUNT4_RX_Msk /*!< Reception Byte Count */
+
+#define USB_COUNT4_RX_NUM_BLOCK_Pos (10U)
+#define USB_COUNT4_RX_NUM_BLOCK_Msk (0x1FUL << USB_COUNT4_RX_NUM_BLOCK_Pos) /*!< 0x00007C00 */
+#define USB_COUNT4_RX_NUM_BLOCK USB_COUNT4_RX_NUM_BLOCK_Msk /*!< NUM_BLOCK[4:0] bits (Number of blocks) */
+#define USB_COUNT4_RX_NUM_BLOCK_0 (0x01UL << USB_COUNT4_RX_NUM_BLOCK_Pos) /*!< 0x00000400 */
+#define USB_COUNT4_RX_NUM_BLOCK_1 (0x02UL << USB_COUNT4_RX_NUM_BLOCK_Pos) /*!< 0x00000800 */
+#define USB_COUNT4_RX_NUM_BLOCK_2 (0x04UL << USB_COUNT4_RX_NUM_BLOCK_Pos) /*!< 0x00001000 */
+#define USB_COUNT4_RX_NUM_BLOCK_3 (0x08UL << USB_COUNT4_RX_NUM_BLOCK_Pos) /*!< 0x00002000 */
+#define USB_COUNT4_RX_NUM_BLOCK_4 (0x10UL << USB_COUNT4_RX_NUM_BLOCK_Pos) /*!< 0x00004000 */
+
+#define USB_COUNT4_RX_BLSIZE_Pos (15U)
+#define USB_COUNT4_RX_BLSIZE_Msk (0x1UL << USB_COUNT4_RX_BLSIZE_Pos) /*!< 0x00008000 */
+#define USB_COUNT4_RX_BLSIZE USB_COUNT4_RX_BLSIZE_Msk /*!< BLock SIZE */
+
+/***************** Bit definition for USB_COUNT5_RX register ****************/
+#define USB_COUNT5_RX_COUNT5_RX_Pos (0U)
+#define USB_COUNT5_RX_COUNT5_RX_Msk (0x3FFUL << USB_COUNT5_RX_COUNT5_RX_Pos) /*!< 0x000003FF */
+#define USB_COUNT5_RX_COUNT5_RX USB_COUNT5_RX_COUNT5_RX_Msk /*!< Reception Byte Count */
+
+#define USB_COUNT5_RX_NUM_BLOCK_Pos (10U)
+#define USB_COUNT5_RX_NUM_BLOCK_Msk (0x1FUL << USB_COUNT5_RX_NUM_BLOCK_Pos) /*!< 0x00007C00 */
+#define USB_COUNT5_RX_NUM_BLOCK USB_COUNT5_RX_NUM_BLOCK_Msk /*!< NUM_BLOCK[4:0] bits (Number of blocks) */
+#define USB_COUNT5_RX_NUM_BLOCK_0 (0x01UL << USB_COUNT5_RX_NUM_BLOCK_Pos) /*!< 0x00000400 */
+#define USB_COUNT5_RX_NUM_BLOCK_1 (0x02UL << USB_COUNT5_RX_NUM_BLOCK_Pos) /*!< 0x00000800 */
+#define USB_COUNT5_RX_NUM_BLOCK_2 (0x04UL << USB_COUNT5_RX_NUM_BLOCK_Pos) /*!< 0x00001000 */
+#define USB_COUNT5_RX_NUM_BLOCK_3 (0x08UL << USB_COUNT5_RX_NUM_BLOCK_Pos) /*!< 0x00002000 */
+#define USB_COUNT5_RX_NUM_BLOCK_4 (0x10UL << USB_COUNT5_RX_NUM_BLOCK_Pos) /*!< 0x00004000 */
+
+#define USB_COUNT5_RX_BLSIZE_Pos (15U)
+#define USB_COUNT5_RX_BLSIZE_Msk (0x1UL << USB_COUNT5_RX_BLSIZE_Pos) /*!< 0x00008000 */
+#define USB_COUNT5_RX_BLSIZE USB_COUNT5_RX_BLSIZE_Msk /*!< BLock SIZE */
+
+/***************** Bit definition for USB_COUNT6_RX register ****************/
+#define USB_COUNT6_RX_COUNT6_RX_Pos (0U)
+#define USB_COUNT6_RX_COUNT6_RX_Msk (0x3FFUL << USB_COUNT6_RX_COUNT6_RX_Pos) /*!< 0x000003FF */
+#define USB_COUNT6_RX_COUNT6_RX USB_COUNT6_RX_COUNT6_RX_Msk /*!< Reception Byte Count */
+
+#define USB_COUNT6_RX_NUM_BLOCK_Pos (10U)
+#define USB_COUNT6_RX_NUM_BLOCK_Msk (0x1FUL << USB_COUNT6_RX_NUM_BLOCK_Pos) /*!< 0x00007C00 */
+#define USB_COUNT6_RX_NUM_BLOCK USB_COUNT6_RX_NUM_BLOCK_Msk /*!< NUM_BLOCK[4:0] bits (Number of blocks) */
+#define USB_COUNT6_RX_NUM_BLOCK_0 (0x01UL << USB_COUNT6_RX_NUM_BLOCK_Pos) /*!< 0x00000400 */
+#define USB_COUNT6_RX_NUM_BLOCK_1 (0x02UL << USB_COUNT6_RX_NUM_BLOCK_Pos) /*!< 0x00000800 */
+#define USB_COUNT6_RX_NUM_BLOCK_2 (0x04UL << USB_COUNT6_RX_NUM_BLOCK_Pos) /*!< 0x00001000 */
+#define USB_COUNT6_RX_NUM_BLOCK_3 (0x08UL << USB_COUNT6_RX_NUM_BLOCK_Pos) /*!< 0x00002000 */
+#define USB_COUNT6_RX_NUM_BLOCK_4 (0x10UL << USB_COUNT6_RX_NUM_BLOCK_Pos) /*!< 0x00004000 */
+
+#define USB_COUNT6_RX_BLSIZE_Pos (15U)
+#define USB_COUNT6_RX_BLSIZE_Msk (0x1UL << USB_COUNT6_RX_BLSIZE_Pos) /*!< 0x00008000 */
+#define USB_COUNT6_RX_BLSIZE USB_COUNT6_RX_BLSIZE_Msk /*!< BLock SIZE */
+
+/***************** Bit definition for USB_COUNT7_RX register ****************/
+#define USB_COUNT7_RX_COUNT7_RX_Pos (0U)
+#define USB_COUNT7_RX_COUNT7_RX_Msk (0x3FFUL << USB_COUNT7_RX_COUNT7_RX_Pos) /*!< 0x000003FF */
+#define USB_COUNT7_RX_COUNT7_RX USB_COUNT7_RX_COUNT7_RX_Msk /*!< Reception Byte Count */
+
+#define USB_COUNT7_RX_NUM_BLOCK_Pos (10U)
+#define USB_COUNT7_RX_NUM_BLOCK_Msk (0x1FUL << USB_COUNT7_RX_NUM_BLOCK_Pos) /*!< 0x00007C00 */
+#define USB_COUNT7_RX_NUM_BLOCK USB_COUNT7_RX_NUM_BLOCK_Msk /*!< NUM_BLOCK[4:0] bits (Number of blocks) */
+#define USB_COUNT7_RX_NUM_BLOCK_0 (0x01UL << USB_COUNT7_RX_NUM_BLOCK_Pos) /*!< 0x00000400 */
+#define USB_COUNT7_RX_NUM_BLOCK_1 (0x02UL << USB_COUNT7_RX_NUM_BLOCK_Pos) /*!< 0x00000800 */
+#define USB_COUNT7_RX_NUM_BLOCK_2 (0x04UL << USB_COUNT7_RX_NUM_BLOCK_Pos) /*!< 0x00001000 */
+#define USB_COUNT7_RX_NUM_BLOCK_3 (0x08UL << USB_COUNT7_RX_NUM_BLOCK_Pos) /*!< 0x00002000 */
+#define USB_COUNT7_RX_NUM_BLOCK_4 (0x10UL << USB_COUNT7_RX_NUM_BLOCK_Pos) /*!< 0x00004000 */
+
+#define USB_COUNT7_RX_BLSIZE_Pos (15U)
+#define USB_COUNT7_RX_BLSIZE_Msk (0x1UL << USB_COUNT7_RX_BLSIZE_Pos) /*!< 0x00008000 */
+#define USB_COUNT7_RX_BLSIZE USB_COUNT7_RX_BLSIZE_Msk /*!< BLock SIZE */
+
+/*----------------------------------------------------------------------------*/
+
+/**************** Bit definition for USB_COUNT0_RX_0 register ***************/
+#define USB_COUNT0_RX_0_COUNT0_RX_0 0x000003FFU /*!< Reception Byte Count (low) */
+
+#define USB_COUNT0_RX_0_NUM_BLOCK_0 0x00007C00U /*!< NUM_BLOCK_0[4:0] bits (Number of blocks) (low) */
+#define USB_COUNT0_RX_0_NUM_BLOCK_0_0 0x00000400U /*!< Bit 0 */
+#define USB_COUNT0_RX_0_NUM_BLOCK_0_1 0x00000800U /*!< Bit 1 */
+#define USB_COUNT0_RX_0_NUM_BLOCK_0_2 0x00001000U /*!< Bit 2 */
+#define USB_COUNT0_RX_0_NUM_BLOCK_0_3 0x00002000U /*!< Bit 3 */
+#define USB_COUNT0_RX_0_NUM_BLOCK_0_4 0x00004000U /*!< Bit 4 */
+
+#define USB_COUNT0_RX_0_BLSIZE_0 0x00008000U /*!< BLock SIZE (low) */
+
+/**************** Bit definition for USB_COUNT0_RX_1 register ***************/
+#define USB_COUNT0_RX_1_COUNT0_RX_1 0x03FF0000U /*!< Reception Byte Count (high) */
+
+#define USB_COUNT0_RX_1_NUM_BLOCK_1 0x7C000000U /*!< NUM_BLOCK_1[4:0] bits (Number of blocks) (high) */
+#define USB_COUNT0_RX_1_NUM_BLOCK_1_0 0x04000000U /*!< Bit 1 */
+#define USB_COUNT0_RX_1_NUM_BLOCK_1_1 0x08000000U /*!< Bit 1 */
+#define USB_COUNT0_RX_1_NUM_BLOCK_1_2 0x10000000U /*!< Bit 2 */
+#define USB_COUNT0_RX_1_NUM_BLOCK_1_3 0x20000000U /*!< Bit 3 */
+#define USB_COUNT0_RX_1_NUM_BLOCK_1_4 0x40000000U /*!< Bit 4 */
+
+#define USB_COUNT0_RX_1_BLSIZE_1 0x80000000U /*!< BLock SIZE (high) */
+
+/**************** Bit definition for USB_COUNT1_RX_0 register ***************/
+#define USB_COUNT1_RX_0_COUNT1_RX_0 0x000003FFU /*!< Reception Byte Count (low) */
+
+#define USB_COUNT1_RX_0_NUM_BLOCK_0 0x00007C00U /*!< NUM_BLOCK_0[4:0] bits (Number of blocks) (low) */
+#define USB_COUNT1_RX_0_NUM_BLOCK_0_0 0x00000400U /*!< Bit 0 */
+#define USB_COUNT1_RX_0_NUM_BLOCK_0_1 0x00000800U /*!< Bit 1 */
+#define USB_COUNT1_RX_0_NUM_BLOCK_0_2 0x00001000U /*!< Bit 2 */
+#define USB_COUNT1_RX_0_NUM_BLOCK_0_3 0x00002000U /*!< Bit 3 */
+#define USB_COUNT1_RX_0_NUM_BLOCK_0_4 0x00004000U /*!< Bit 4 */
+
+#define USB_COUNT1_RX_0_BLSIZE_0 0x00008000U /*!< BLock SIZE (low) */
+
+/**************** Bit definition for USB_COUNT1_RX_1 register ***************/
+#define USB_COUNT1_RX_1_COUNT1_RX_1 0x03FF0000U /*!< Reception Byte Count (high) */
+
+#define USB_COUNT1_RX_1_NUM_BLOCK_1 0x7C000000U /*!< NUM_BLOCK_1[4:0] bits (Number of blocks) (high) */
+#define USB_COUNT1_RX_1_NUM_BLOCK_1_0 0x04000000U /*!< Bit 0 */
+#define USB_COUNT1_RX_1_NUM_BLOCK_1_1 0x08000000U /*!< Bit 1 */
+#define USB_COUNT1_RX_1_NUM_BLOCK_1_2 0x10000000U /*!< Bit 2 */
+#define USB_COUNT1_RX_1_NUM_BLOCK_1_3 0x20000000U /*!< Bit 3 */
+#define USB_COUNT1_RX_1_NUM_BLOCK_1_4 0x40000000U /*!< Bit 4 */
+
+#define USB_COUNT1_RX_1_BLSIZE_1 0x80000000U /*!< BLock SIZE (high) */
+
+/**************** Bit definition for USB_COUNT2_RX_0 register ***************/
+#define USB_COUNT2_RX_0_COUNT2_RX_0 0x000003FFU /*!< Reception Byte Count (low) */
+
+#define USB_COUNT2_RX_0_NUM_BLOCK_0 0x00007C00U /*!< NUM_BLOCK_0[4:0] bits (Number of blocks) (low) */
+#define USB_COUNT2_RX_0_NUM_BLOCK_0_0 0x00000400U /*!< Bit 0 */
+#define USB_COUNT2_RX_0_NUM_BLOCK_0_1 0x00000800U /*!< Bit 1 */
+#define USB_COUNT2_RX_0_NUM_BLOCK_0_2 0x00001000U /*!< Bit 2 */
+#define USB_COUNT2_RX_0_NUM_BLOCK_0_3 0x00002000U /*!< Bit 3 */
+#define USB_COUNT2_RX_0_NUM_BLOCK_0_4 0x00004000U /*!< Bit 4 */
+
+#define USB_COUNT2_RX_0_BLSIZE_0 0x00008000U /*!< BLock SIZE (low) */
+
+/**************** Bit definition for USB_COUNT2_RX_1 register ***************/
+#define USB_COUNT2_RX_1_COUNT2_RX_1 0x03FF0000U /*!< Reception Byte Count (high) */
+
+#define USB_COUNT2_RX_1_NUM_BLOCK_1 0x7C000000U /*!< NUM_BLOCK_1[4:0] bits (Number of blocks) (high) */
+#define USB_COUNT2_RX_1_NUM_BLOCK_1_0 0x04000000U /*!< Bit 0 */
+#define USB_COUNT2_RX_1_NUM_BLOCK_1_1 0x08000000U /*!< Bit 1 */
+#define USB_COUNT2_RX_1_NUM_BLOCK_1_2 0x10000000U /*!< Bit 2 */
+#define USB_COUNT2_RX_1_NUM_BLOCK_1_3 0x20000000U /*!< Bit 3 */
+#define USB_COUNT2_RX_1_NUM_BLOCK_1_4 0x40000000U /*!< Bit 4 */
+
+#define USB_COUNT2_RX_1_BLSIZE_1 0x80000000U /*!< BLock SIZE (high) */
+
+/**************** Bit definition for USB_COUNT3_RX_0 register ***************/
+#define USB_COUNT3_RX_0_COUNT3_RX_0 0x000003FFU /*!< Reception Byte Count (low) */
+
+#define USB_COUNT3_RX_0_NUM_BLOCK_0 0x00007C00U /*!< NUM_BLOCK_0[4:0] bits (Number of blocks) (low) */
+#define USB_COUNT3_RX_0_NUM_BLOCK_0_0 0x00000400U /*!< Bit 0 */
+#define USB_COUNT3_RX_0_NUM_BLOCK_0_1 0x00000800U /*!< Bit 1 */
+#define USB_COUNT3_RX_0_NUM_BLOCK_0_2 0x00001000U /*!< Bit 2 */
+#define USB_COUNT3_RX_0_NUM_BLOCK_0_3 0x00002000U /*!< Bit 3 */
+#define USB_COUNT3_RX_0_NUM_BLOCK_0_4 0x00004000U /*!< Bit 4 */
+
+#define USB_COUNT3_RX_0_BLSIZE_0 0x00008000U /*!< BLock SIZE (low) */
+
+/**************** Bit definition for USB_COUNT3_RX_1 register ***************/
+#define USB_COUNT3_RX_1_COUNT3_RX_1 0x03FF0000U /*!< Reception Byte Count (high) */
+
+#define USB_COUNT3_RX_1_NUM_BLOCK_1 0x7C000000U /*!< NUM_BLOCK_1[4:0] bits (Number of blocks) (high) */
+#define USB_COUNT3_RX_1_NUM_BLOCK_1_0 0x04000000U /*!< Bit 0 */
+#define USB_COUNT3_RX_1_NUM_BLOCK_1_1 0x08000000U /*!< Bit 1 */
+#define USB_COUNT3_RX_1_NUM_BLOCK_1_2 0x10000000U /*!< Bit 2 */
+#define USB_COUNT3_RX_1_NUM_BLOCK_1_3 0x20000000U /*!< Bit 3 */
+#define USB_COUNT3_RX_1_NUM_BLOCK_1_4 0x40000000U /*!< Bit 4 */
+
+#define USB_COUNT3_RX_1_BLSIZE_1 0x80000000U /*!< BLock SIZE (high) */
+
+/**************** Bit definition for USB_COUNT4_RX_0 register ***************/
+#define USB_COUNT4_RX_0_COUNT4_RX_0 0x000003FFU /*!< Reception Byte Count (low) */
+
+#define USB_COUNT4_RX_0_NUM_BLOCK_0 0x00007C00U /*!< NUM_BLOCK_0[4:0] bits (Number of blocks) (low) */
+#define USB_COUNT4_RX_0_NUM_BLOCK_0_0 0x00000400U /*!< Bit 0 */
+#define USB_COUNT4_RX_0_NUM_BLOCK_0_1 0x00000800U /*!< Bit 1 */
+#define USB_COUNT4_RX_0_NUM_BLOCK_0_2 0x00001000U /*!< Bit 2 */
+#define USB_COUNT4_RX_0_NUM_BLOCK_0_3 0x00002000U /*!< Bit 3 */
+#define USB_COUNT4_RX_0_NUM_BLOCK_0_4 0x00004000U /*!< Bit 4 */
+
+#define USB_COUNT4_RX_0_BLSIZE_0 0x00008000U /*!< BLock SIZE (low) */
+
+/**************** Bit definition for USB_COUNT4_RX_1 register ***************/
+#define USB_COUNT4_RX_1_COUNT4_RX_1 0x03FF0000U /*!< Reception Byte Count (high) */
+
+#define USB_COUNT4_RX_1_NUM_BLOCK_1 0x7C000000U /*!< NUM_BLOCK_1[4:0] bits (Number of blocks) (high) */
+#define USB_COUNT4_RX_1_NUM_BLOCK_1_0 0x04000000U /*!< Bit 0 */
+#define USB_COUNT4_RX_1_NUM_BLOCK_1_1 0x08000000U /*!< Bit 1 */
+#define USB_COUNT4_RX_1_NUM_BLOCK_1_2 0x10000000U /*!< Bit 2 */
+#define USB_COUNT4_RX_1_NUM_BLOCK_1_3 0x20000000U /*!< Bit 3 */
+#define USB_COUNT4_RX_1_NUM_BLOCK_1_4 0x40000000U /*!< Bit 4 */
+
+#define USB_COUNT4_RX_1_BLSIZE_1 0x80000000U /*!< BLock SIZE (high) */
+
+/**************** Bit definition for USB_COUNT5_RX_0 register ***************/
+#define USB_COUNT5_RX_0_COUNT5_RX_0 0x000003FFU /*!< Reception Byte Count (low) */
+
+#define USB_COUNT5_RX_0_NUM_BLOCK_0 0x00007C00U /*!< NUM_BLOCK_0[4:0] bits (Number of blocks) (low) */
+#define USB_COUNT5_RX_0_NUM_BLOCK_0_0 0x00000400U /*!< Bit 0 */
+#define USB_COUNT5_RX_0_NUM_BLOCK_0_1 0x00000800U /*!< Bit 1 */
+#define USB_COUNT5_RX_0_NUM_BLOCK_0_2 0x00001000U /*!< Bit 2 */
+#define USB_COUNT5_RX_0_NUM_BLOCK_0_3 0x00002000U /*!< Bit 3 */
+#define USB_COUNT5_RX_0_NUM_BLOCK_0_4 0x00004000U /*!< Bit 4 */
+
+#define USB_COUNT5_RX_0_BLSIZE_0 0x00008000U /*!< BLock SIZE (low) */
+
+/**************** Bit definition for USB_COUNT5_RX_1 register ***************/
+#define USB_COUNT5_RX_1_COUNT5_RX_1 0x03FF0000U /*!< Reception Byte Count (high) */
+
+#define USB_COUNT5_RX_1_NUM_BLOCK_1 0x7C000000U /*!< NUM_BLOCK_1[4:0] bits (Number of blocks) (high) */
+#define USB_COUNT5_RX_1_NUM_BLOCK_1_0 0x04000000U /*!< Bit 0 */
+#define USB_COUNT5_RX_1_NUM_BLOCK_1_1 0x08000000U /*!< Bit 1 */
+#define USB_COUNT5_RX_1_NUM_BLOCK_1_2 0x10000000U /*!< Bit 2 */
+#define USB_COUNT5_RX_1_NUM_BLOCK_1_3 0x20000000U /*!< Bit 3 */
+#define USB_COUNT5_RX_1_NUM_BLOCK_1_4 0x40000000U /*!< Bit 4 */
+
+#define USB_COUNT5_RX_1_BLSIZE_1 0x80000000U /*!< BLock SIZE (high) */
+
+/*************** Bit definition for USB_COUNT6_RX_0 register ***************/
+#define USB_COUNT6_RX_0_COUNT6_RX_0 0x000003FFU /*!< Reception Byte Count (low) */
+
+#define USB_COUNT6_RX_0_NUM_BLOCK_0 0x00007C00U /*!< NUM_BLOCK_0[4:0] bits (Number of blocks) (low) */
+#define USB_COUNT6_RX_0_NUM_BLOCK_0_0 0x00000400U /*!< Bit 0 */
+#define USB_COUNT6_RX_0_NUM_BLOCK_0_1 0x00000800U /*!< Bit 1 */
+#define USB_COUNT6_RX_0_NUM_BLOCK_0_2 0x00001000U /*!< Bit 2 */
+#define USB_COUNT6_RX_0_NUM_BLOCK_0_3 0x00002000U /*!< Bit 3 */
+#define USB_COUNT6_RX_0_NUM_BLOCK_0_4 0x00004000U /*!< Bit 4 */
+
+#define USB_COUNT6_RX_0_BLSIZE_0 0x00008000U /*!< BLock SIZE (low) */
+
+/**************** Bit definition for USB_COUNT6_RX_1 register ***************/
+#define USB_COUNT6_RX_1_COUNT6_RX_1 0x03FF0000U /*!< Reception Byte Count (high) */
+
+#define USB_COUNT6_RX_1_NUM_BLOCK_1 0x7C000000U /*!< NUM_BLOCK_1[4:0] bits (Number of blocks) (high) */
+#define USB_COUNT6_RX_1_NUM_BLOCK_1_0 0x04000000U /*!< Bit 0 */
+#define USB_COUNT6_RX_1_NUM_BLOCK_1_1 0x08000000U /*!< Bit 1 */
+#define USB_COUNT6_RX_1_NUM_BLOCK_1_2 0x10000000U /*!< Bit 2 */
+#define USB_COUNT6_RX_1_NUM_BLOCK_1_3 0x20000000U /*!< Bit 3 */
+#define USB_COUNT6_RX_1_NUM_BLOCK_1_4 0x40000000U /*!< Bit 4 */
+
+#define USB_COUNT6_RX_1_BLSIZE_1 0x80000000U /*!< BLock SIZE (high) */
+
+/*************** Bit definition for USB_COUNT7_RX_0 register ****************/
+#define USB_COUNT7_RX_0_COUNT7_RX_0 0x000003FFU /*!< Reception Byte Count (low) */
+
+#define USB_COUNT7_RX_0_NUM_BLOCK_0 0x00007C00U /*!< NUM_BLOCK_0[4:0] bits (Number of blocks) (low) */
+#define USB_COUNT7_RX_0_NUM_BLOCK_0_0 0x00000400U /*!< Bit 0 */
+#define USB_COUNT7_RX_0_NUM_BLOCK_0_1 0x00000800U /*!< Bit 1 */
+#define USB_COUNT7_RX_0_NUM_BLOCK_0_2 0x00001000U /*!< Bit 2 */
+#define USB_COUNT7_RX_0_NUM_BLOCK_0_3 0x00002000U /*!< Bit 3 */
+#define USB_COUNT7_RX_0_NUM_BLOCK_0_4 0x00004000U /*!< Bit 4 */
+
+#define USB_COUNT7_RX_0_BLSIZE_0 0x00008000U /*!< BLock SIZE (low) */
+
+/*************** Bit definition for USB_COUNT7_RX_1 register ****************/
+#define USB_COUNT7_RX_1_COUNT7_RX_1 0x03FF0000U /*!< Reception Byte Count (high) */
+
+#define USB_COUNT7_RX_1_NUM_BLOCK_1 0x7C000000U /*!< NUM_BLOCK_1[4:0] bits (Number of blocks) (high) */
+#define USB_COUNT7_RX_1_NUM_BLOCK_1_0 0x04000000U /*!< Bit 0 */
+#define USB_COUNT7_RX_1_NUM_BLOCK_1_1 0x08000000U /*!< Bit 1 */
+#define USB_COUNT7_RX_1_NUM_BLOCK_1_2 0x10000000U /*!< Bit 2 */
+#define USB_COUNT7_RX_1_NUM_BLOCK_1_3 0x20000000U /*!< Bit 3 */
+#define USB_COUNT7_RX_1_NUM_BLOCK_1_4 0x40000000U /*!< Bit 4 */
+
+#define USB_COUNT7_RX_1_BLSIZE_1 0x80000000U /*!< BLock SIZE (high) */
+
+/******************************************************************************/
+/* */
+/* Controller Area Network */
+/* */
+/******************************************************************************/
+
+/*!< CAN control and status registers */
+/******************* Bit definition for CAN_MCR register ********************/
+#define CAN_MCR_INRQ_Pos (0U)
+#define CAN_MCR_INRQ_Msk (0x1UL << CAN_MCR_INRQ_Pos) /*!< 0x00000001 */
+#define CAN_MCR_INRQ CAN_MCR_INRQ_Msk /*!< Initialization Request */
+#define CAN_MCR_SLEEP_Pos (1U)
+#define CAN_MCR_SLEEP_Msk (0x1UL << CAN_MCR_SLEEP_Pos) /*!< 0x00000002 */
+#define CAN_MCR_SLEEP CAN_MCR_SLEEP_Msk /*!< Sleep Mode Request */
+#define CAN_MCR_TXFP_Pos (2U)
+#define CAN_MCR_TXFP_Msk (0x1UL << CAN_MCR_TXFP_Pos) /*!< 0x00000004 */
+#define CAN_MCR_TXFP CAN_MCR_TXFP_Msk /*!< Transmit FIFO Priority */
+#define CAN_MCR_RFLM_Pos (3U)
+#define CAN_MCR_RFLM_Msk (0x1UL << CAN_MCR_RFLM_Pos) /*!< 0x00000008 */
+#define CAN_MCR_RFLM CAN_MCR_RFLM_Msk /*!< Receive FIFO Locked Mode */
+#define CAN_MCR_NART_Pos (4U)
+#define CAN_MCR_NART_Msk (0x1UL << CAN_MCR_NART_Pos) /*!< 0x00000010 */
+#define CAN_MCR_NART CAN_MCR_NART_Msk /*!< No Automatic Retransmission */
+#define CAN_MCR_AWUM_Pos (5U)
+#define CAN_MCR_AWUM_Msk (0x1UL << CAN_MCR_AWUM_Pos) /*!< 0x00000020 */
+#define CAN_MCR_AWUM CAN_MCR_AWUM_Msk /*!< Automatic Wakeup Mode */
+#define CAN_MCR_ABOM_Pos (6U)
+#define CAN_MCR_ABOM_Msk (0x1UL << CAN_MCR_ABOM_Pos) /*!< 0x00000040 */
+#define CAN_MCR_ABOM CAN_MCR_ABOM_Msk /*!< Automatic Bus-Off Management */
+#define CAN_MCR_TTCM_Pos (7U)
+#define CAN_MCR_TTCM_Msk (0x1UL << CAN_MCR_TTCM_Pos) /*!< 0x00000080 */
+#define CAN_MCR_TTCM CAN_MCR_TTCM_Msk /*!< Time Triggered Communication Mode */
+#define CAN_MCR_RESET_Pos (15U)
+#define CAN_MCR_RESET_Msk (0x1UL << CAN_MCR_RESET_Pos) /*!< 0x00008000 */
+#define CAN_MCR_RESET CAN_MCR_RESET_Msk /*!< CAN software master reset */
+#define CAN_MCR_DBF_Pos (16U)
+#define CAN_MCR_DBF_Msk (0x1UL << CAN_MCR_DBF_Pos) /*!< 0x00010000 */
+#define CAN_MCR_DBF CAN_MCR_DBF_Msk /*!< CAN Debug freeze */
+
+/******************* Bit definition for CAN_MSR register ********************/
+#define CAN_MSR_INAK_Pos (0U)
+#define CAN_MSR_INAK_Msk (0x1UL << CAN_MSR_INAK_Pos) /*!< 0x00000001 */
+#define CAN_MSR_INAK CAN_MSR_INAK_Msk /*!< Initialization Acknowledge */
+#define CAN_MSR_SLAK_Pos (1U)
+#define CAN_MSR_SLAK_Msk (0x1UL << CAN_MSR_SLAK_Pos) /*!< 0x00000002 */
+#define CAN_MSR_SLAK CAN_MSR_SLAK_Msk /*!< Sleep Acknowledge */
+#define CAN_MSR_ERRI_Pos (2U)
+#define CAN_MSR_ERRI_Msk (0x1UL << CAN_MSR_ERRI_Pos) /*!< 0x00000004 */
+#define CAN_MSR_ERRI CAN_MSR_ERRI_Msk /*!< Error Interrupt */
+#define CAN_MSR_WKUI_Pos (3U)
+#define CAN_MSR_WKUI_Msk (0x1UL << CAN_MSR_WKUI_Pos) /*!< 0x00000008 */
+#define CAN_MSR_WKUI CAN_MSR_WKUI_Msk /*!< Wakeup Interrupt */
+#define CAN_MSR_SLAKI_Pos (4U)
+#define CAN_MSR_SLAKI_Msk (0x1UL << CAN_MSR_SLAKI_Pos) /*!< 0x00000010 */
+#define CAN_MSR_SLAKI CAN_MSR_SLAKI_Msk /*!< Sleep Acknowledge Interrupt */
+#define CAN_MSR_TXM_Pos (8U)
+#define CAN_MSR_TXM_Msk (0x1UL << CAN_MSR_TXM_Pos) /*!< 0x00000100 */
+#define CAN_MSR_TXM CAN_MSR_TXM_Msk /*!< Transmit Mode */
+#define CAN_MSR_RXM_Pos (9U)
+#define CAN_MSR_RXM_Msk (0x1UL << CAN_MSR_RXM_Pos) /*!< 0x00000200 */
+#define CAN_MSR_RXM CAN_MSR_RXM_Msk /*!< Receive Mode */
+#define CAN_MSR_SAMP_Pos (10U)
+#define CAN_MSR_SAMP_Msk (0x1UL << CAN_MSR_SAMP_Pos) /*!< 0x00000400 */
+#define CAN_MSR_SAMP CAN_MSR_SAMP_Msk /*!< Last Sample Point */
+#define CAN_MSR_RX_Pos (11U)
+#define CAN_MSR_RX_Msk (0x1UL << CAN_MSR_RX_Pos) /*!< 0x00000800 */
+#define CAN_MSR_RX CAN_MSR_RX_Msk /*!< CAN Rx Signal */
+
+/******************* Bit definition for CAN_TSR register ********************/
+#define CAN_TSR_RQCP0_Pos (0U)
+#define CAN_TSR_RQCP0_Msk (0x1UL << CAN_TSR_RQCP0_Pos) /*!< 0x00000001 */
+#define CAN_TSR_RQCP0 CAN_TSR_RQCP0_Msk /*!< Request Completed Mailbox0 */
+#define CAN_TSR_TXOK0_Pos (1U)
+#define CAN_TSR_TXOK0_Msk (0x1UL << CAN_TSR_TXOK0_Pos) /*!< 0x00000002 */
+#define CAN_TSR_TXOK0 CAN_TSR_TXOK0_Msk /*!< Transmission OK of Mailbox0 */
+#define CAN_TSR_ALST0_Pos (2U)
+#define CAN_TSR_ALST0_Msk (0x1UL << CAN_TSR_ALST0_Pos) /*!< 0x00000004 */
+#define CAN_TSR_ALST0 CAN_TSR_ALST0_Msk /*!< Arbitration Lost for Mailbox0 */
+#define CAN_TSR_TERR0_Pos (3U)
+#define CAN_TSR_TERR0_Msk (0x1UL << CAN_TSR_TERR0_Pos) /*!< 0x00000008 */
+#define CAN_TSR_TERR0 CAN_TSR_TERR0_Msk /*!< Transmission Error of Mailbox0 */
+#define CAN_TSR_ABRQ0_Pos (7U)
+#define CAN_TSR_ABRQ0_Msk (0x1UL << CAN_TSR_ABRQ0_Pos) /*!< 0x00000080 */
+#define CAN_TSR_ABRQ0 CAN_TSR_ABRQ0_Msk /*!< Abort Request for Mailbox0 */
+#define CAN_TSR_RQCP1_Pos (8U)
+#define CAN_TSR_RQCP1_Msk (0x1UL << CAN_TSR_RQCP1_Pos) /*!< 0x00000100 */
+#define CAN_TSR_RQCP1 CAN_TSR_RQCP1_Msk /*!< Request Completed Mailbox1 */
+#define CAN_TSR_TXOK1_Pos (9U)
+#define CAN_TSR_TXOK1_Msk (0x1UL << CAN_TSR_TXOK1_Pos) /*!< 0x00000200 */
+#define CAN_TSR_TXOK1 CAN_TSR_TXOK1_Msk /*!< Transmission OK of Mailbox1 */
+#define CAN_TSR_ALST1_Pos (10U)
+#define CAN_TSR_ALST1_Msk (0x1UL << CAN_TSR_ALST1_Pos) /*!< 0x00000400 */
+#define CAN_TSR_ALST1 CAN_TSR_ALST1_Msk /*!< Arbitration Lost for Mailbox1 */
+#define CAN_TSR_TERR1_Pos (11U)
+#define CAN_TSR_TERR1_Msk (0x1UL << CAN_TSR_TERR1_Pos) /*!< 0x00000800 */
+#define CAN_TSR_TERR1 CAN_TSR_TERR1_Msk /*!< Transmission Error of Mailbox1 */
+#define CAN_TSR_ABRQ1_Pos (15U)
+#define CAN_TSR_ABRQ1_Msk (0x1UL << CAN_TSR_ABRQ1_Pos) /*!< 0x00008000 */
+#define CAN_TSR_ABRQ1 CAN_TSR_ABRQ1_Msk /*!< Abort Request for Mailbox 1 */
+#define CAN_TSR_RQCP2_Pos (16U)
+#define CAN_TSR_RQCP2_Msk (0x1UL << CAN_TSR_RQCP2_Pos) /*!< 0x00010000 */
+#define CAN_TSR_RQCP2 CAN_TSR_RQCP2_Msk /*!< Request Completed Mailbox2 */
+#define CAN_TSR_TXOK2_Pos (17U)
+#define CAN_TSR_TXOK2_Msk (0x1UL << CAN_TSR_TXOK2_Pos) /*!< 0x00020000 */
+#define CAN_TSR_TXOK2 CAN_TSR_TXOK2_Msk /*!< Transmission OK of Mailbox 2 */
+#define CAN_TSR_ALST2_Pos (18U)
+#define CAN_TSR_ALST2_Msk (0x1UL << CAN_TSR_ALST2_Pos) /*!< 0x00040000 */
+#define CAN_TSR_ALST2 CAN_TSR_ALST2_Msk /*!< Arbitration Lost for mailbox 2 */
+#define CAN_TSR_TERR2_Pos (19U)
+#define CAN_TSR_TERR2_Msk (0x1UL << CAN_TSR_TERR2_Pos) /*!< 0x00080000 */
+#define CAN_TSR_TERR2 CAN_TSR_TERR2_Msk /*!< Transmission Error of Mailbox 2 */
+#define CAN_TSR_ABRQ2_Pos (23U)
+#define CAN_TSR_ABRQ2_Msk (0x1UL << CAN_TSR_ABRQ2_Pos) /*!< 0x00800000 */
+#define CAN_TSR_ABRQ2 CAN_TSR_ABRQ2_Msk /*!< Abort Request for Mailbox 2 */
+#define CAN_TSR_CODE_Pos (24U)
+#define CAN_TSR_CODE_Msk (0x3UL << CAN_TSR_CODE_Pos) /*!< 0x03000000 */
+#define CAN_TSR_CODE CAN_TSR_CODE_Msk /*!< Mailbox Code */
+
+#define CAN_TSR_TME_Pos (26U)
+#define CAN_TSR_TME_Msk (0x7UL << CAN_TSR_TME_Pos) /*!< 0x1C000000 */
+#define CAN_TSR_TME CAN_TSR_TME_Msk /*!< TME[2:0] bits */
+#define CAN_TSR_TME0_Pos (26U)
+#define CAN_TSR_TME0_Msk (0x1UL << CAN_TSR_TME0_Pos) /*!< 0x04000000 */
+#define CAN_TSR_TME0 CAN_TSR_TME0_Msk /*!< Transmit Mailbox 0 Empty */
+#define CAN_TSR_TME1_Pos (27U)
+#define CAN_TSR_TME1_Msk (0x1UL << CAN_TSR_TME1_Pos) /*!< 0x08000000 */
+#define CAN_TSR_TME1 CAN_TSR_TME1_Msk /*!< Transmit Mailbox 1 Empty */
+#define CAN_TSR_TME2_Pos (28U)
+#define CAN_TSR_TME2_Msk (0x1UL << CAN_TSR_TME2_Pos) /*!< 0x10000000 */
+#define CAN_TSR_TME2 CAN_TSR_TME2_Msk /*!< Transmit Mailbox 2 Empty */
+
+#define CAN_TSR_LOW_Pos (29U)
+#define CAN_TSR_LOW_Msk (0x7UL << CAN_TSR_LOW_Pos) /*!< 0xE0000000 */
+#define CAN_TSR_LOW CAN_TSR_LOW_Msk /*!< LOW[2:0] bits */
+#define CAN_TSR_LOW0_Pos (29U)
+#define CAN_TSR_LOW0_Msk (0x1UL << CAN_TSR_LOW0_Pos) /*!< 0x20000000 */
+#define CAN_TSR_LOW0 CAN_TSR_LOW0_Msk /*!< Lowest Priority Flag for Mailbox 0 */
+#define CAN_TSR_LOW1_Pos (30U)
+#define CAN_TSR_LOW1_Msk (0x1UL << CAN_TSR_LOW1_Pos) /*!< 0x40000000 */
+#define CAN_TSR_LOW1 CAN_TSR_LOW1_Msk /*!< Lowest Priority Flag for Mailbox 1 */
+#define CAN_TSR_LOW2_Pos (31U)
+#define CAN_TSR_LOW2_Msk (0x1UL << CAN_TSR_LOW2_Pos) /*!< 0x80000000 */
+#define CAN_TSR_LOW2 CAN_TSR_LOW2_Msk /*!< Lowest Priority Flag for Mailbox 2 */
+
+/******************* Bit definition for CAN_RF0R register *******************/
+#define CAN_RF0R_FMP0_Pos (0U)
+#define CAN_RF0R_FMP0_Msk (0x3UL << CAN_RF0R_FMP0_Pos) /*!< 0x00000003 */
+#define CAN_RF0R_FMP0 CAN_RF0R_FMP0_Msk /*!< FIFO 0 Message Pending */
+#define CAN_RF0R_FULL0_Pos (3U)
+#define CAN_RF0R_FULL0_Msk (0x1UL << CAN_RF0R_FULL0_Pos) /*!< 0x00000008 */
+#define CAN_RF0R_FULL0 CAN_RF0R_FULL0_Msk /*!< FIFO 0 Full */
+#define CAN_RF0R_FOVR0_Pos (4U)
+#define CAN_RF0R_FOVR0_Msk (0x1UL << CAN_RF0R_FOVR0_Pos) /*!< 0x00000010 */
+#define CAN_RF0R_FOVR0 CAN_RF0R_FOVR0_Msk /*!< FIFO 0 Overrun */
+#define CAN_RF0R_RFOM0_Pos (5U)
+#define CAN_RF0R_RFOM0_Msk (0x1UL << CAN_RF0R_RFOM0_Pos) /*!< 0x00000020 */
+#define CAN_RF0R_RFOM0 CAN_RF0R_RFOM0_Msk /*!< Release FIFO 0 Output Mailbox */
+
+/******************* Bit definition for CAN_RF1R register *******************/
+#define CAN_RF1R_FMP1_Pos (0U)
+#define CAN_RF1R_FMP1_Msk (0x3UL << CAN_RF1R_FMP1_Pos) /*!< 0x00000003 */
+#define CAN_RF1R_FMP1 CAN_RF1R_FMP1_Msk /*!< FIFO 1 Message Pending */
+#define CAN_RF1R_FULL1_Pos (3U)
+#define CAN_RF1R_FULL1_Msk (0x1UL << CAN_RF1R_FULL1_Pos) /*!< 0x00000008 */
+#define CAN_RF1R_FULL1 CAN_RF1R_FULL1_Msk /*!< FIFO 1 Full */
+#define CAN_RF1R_FOVR1_Pos (4U)
+#define CAN_RF1R_FOVR1_Msk (0x1UL << CAN_RF1R_FOVR1_Pos) /*!< 0x00000010 */
+#define CAN_RF1R_FOVR1 CAN_RF1R_FOVR1_Msk /*!< FIFO 1 Overrun */
+#define CAN_RF1R_RFOM1_Pos (5U)
+#define CAN_RF1R_RFOM1_Msk (0x1UL << CAN_RF1R_RFOM1_Pos) /*!< 0x00000020 */
+#define CAN_RF1R_RFOM1 CAN_RF1R_RFOM1_Msk /*!< Release FIFO 1 Output Mailbox */
+
+/******************** Bit definition for CAN_IER register *******************/
+#define CAN_IER_TMEIE_Pos (0U)
+#define CAN_IER_TMEIE_Msk (0x1UL << CAN_IER_TMEIE_Pos) /*!< 0x00000001 */
+#define CAN_IER_TMEIE CAN_IER_TMEIE_Msk /*!< Transmit Mailbox Empty Interrupt Enable */
+#define CAN_IER_FMPIE0_Pos (1U)
+#define CAN_IER_FMPIE0_Msk (0x1UL << CAN_IER_FMPIE0_Pos) /*!< 0x00000002 */
+#define CAN_IER_FMPIE0 CAN_IER_FMPIE0_Msk /*!< FIFO Message Pending Interrupt Enable */
+#define CAN_IER_FFIE0_Pos (2U)
+#define CAN_IER_FFIE0_Msk (0x1UL << CAN_IER_FFIE0_Pos) /*!< 0x00000004 */
+#define CAN_IER_FFIE0 CAN_IER_FFIE0_Msk /*!< FIFO Full Interrupt Enable */
+#define CAN_IER_FOVIE0_Pos (3U)
+#define CAN_IER_FOVIE0_Msk (0x1UL << CAN_IER_FOVIE0_Pos) /*!< 0x00000008 */
+#define CAN_IER_FOVIE0 CAN_IER_FOVIE0_Msk /*!< FIFO Overrun Interrupt Enable */
+#define CAN_IER_FMPIE1_Pos (4U)
+#define CAN_IER_FMPIE1_Msk (0x1UL << CAN_IER_FMPIE1_Pos) /*!< 0x00000010 */
+#define CAN_IER_FMPIE1 CAN_IER_FMPIE1_Msk /*!< FIFO Message Pending Interrupt Enable */
+#define CAN_IER_FFIE1_Pos (5U)
+#define CAN_IER_FFIE1_Msk (0x1UL << CAN_IER_FFIE1_Pos) /*!< 0x00000020 */
+#define CAN_IER_FFIE1 CAN_IER_FFIE1_Msk /*!< FIFO Full Interrupt Enable */
+#define CAN_IER_FOVIE1_Pos (6U)
+#define CAN_IER_FOVIE1_Msk (0x1UL << CAN_IER_FOVIE1_Pos) /*!< 0x00000040 */
+#define CAN_IER_FOVIE1 CAN_IER_FOVIE1_Msk /*!< FIFO Overrun Interrupt Enable */
+#define CAN_IER_EWGIE_Pos (8U)
+#define CAN_IER_EWGIE_Msk (0x1UL << CAN_IER_EWGIE_Pos) /*!< 0x00000100 */
+#define CAN_IER_EWGIE CAN_IER_EWGIE_Msk /*!< Error Warning Interrupt Enable */
+#define CAN_IER_EPVIE_Pos (9U)
+#define CAN_IER_EPVIE_Msk (0x1UL << CAN_IER_EPVIE_Pos) /*!< 0x00000200 */
+#define CAN_IER_EPVIE CAN_IER_EPVIE_Msk /*!< Error Passive Interrupt Enable */
+#define CAN_IER_BOFIE_Pos (10U)
+#define CAN_IER_BOFIE_Msk (0x1UL << CAN_IER_BOFIE_Pos) /*!< 0x00000400 */
+#define CAN_IER_BOFIE CAN_IER_BOFIE_Msk /*!< Bus-Off Interrupt Enable */
+#define CAN_IER_LECIE_Pos (11U)
+#define CAN_IER_LECIE_Msk (0x1UL << CAN_IER_LECIE_Pos) /*!< 0x00000800 */
+#define CAN_IER_LECIE CAN_IER_LECIE_Msk /*!< Last Error Code Interrupt Enable */
+#define CAN_IER_ERRIE_Pos (15U)
+#define CAN_IER_ERRIE_Msk (0x1UL << CAN_IER_ERRIE_Pos) /*!< 0x00008000 */
+#define CAN_IER_ERRIE CAN_IER_ERRIE_Msk /*!< Error Interrupt Enable */
+#define CAN_IER_WKUIE_Pos (16U)
+#define CAN_IER_WKUIE_Msk (0x1UL << CAN_IER_WKUIE_Pos) /*!< 0x00010000 */
+#define CAN_IER_WKUIE CAN_IER_WKUIE_Msk /*!< Wakeup Interrupt Enable */
+#define CAN_IER_SLKIE_Pos (17U)
+#define CAN_IER_SLKIE_Msk (0x1UL << CAN_IER_SLKIE_Pos) /*!< 0x00020000 */
+#define CAN_IER_SLKIE CAN_IER_SLKIE_Msk /*!< Sleep Interrupt Enable */
+
+/******************** Bit definition for CAN_ESR register *******************/
+#define CAN_ESR_EWGF_Pos (0U)
+#define CAN_ESR_EWGF_Msk (0x1UL << CAN_ESR_EWGF_Pos) /*!< 0x00000001 */
+#define CAN_ESR_EWGF CAN_ESR_EWGF_Msk /*!< Error Warning Flag */
+#define CAN_ESR_EPVF_Pos (1U)
+#define CAN_ESR_EPVF_Msk (0x1UL << CAN_ESR_EPVF_Pos) /*!< 0x00000002 */
+#define CAN_ESR_EPVF CAN_ESR_EPVF_Msk /*!< Error Passive Flag */
+#define CAN_ESR_BOFF_Pos (2U)
+#define CAN_ESR_BOFF_Msk (0x1UL << CAN_ESR_BOFF_Pos) /*!< 0x00000004 */
+#define CAN_ESR_BOFF CAN_ESR_BOFF_Msk /*!< Bus-Off Flag */
+
+#define CAN_ESR_LEC_Pos (4U)
+#define CAN_ESR_LEC_Msk (0x7UL << CAN_ESR_LEC_Pos) /*!< 0x00000070 */
+#define CAN_ESR_LEC CAN_ESR_LEC_Msk /*!< LEC[2:0] bits (Last Error Code) */
+#define CAN_ESR_LEC_0 (0x1UL << CAN_ESR_LEC_Pos) /*!< 0x00000010 */
+#define CAN_ESR_LEC_1 (0x2UL << CAN_ESR_LEC_Pos) /*!< 0x00000020 */
+#define CAN_ESR_LEC_2 (0x4UL << CAN_ESR_LEC_Pos) /*!< 0x00000040 */
+
+#define CAN_ESR_TEC_Pos (16U)
+#define CAN_ESR_TEC_Msk (0xFFUL << CAN_ESR_TEC_Pos) /*!< 0x00FF0000 */
+#define CAN_ESR_TEC CAN_ESR_TEC_Msk /*!< Least significant byte of the 9-bit Transmit Error Counter */
+#define CAN_ESR_REC_Pos (24U)
+#define CAN_ESR_REC_Msk (0xFFUL << CAN_ESR_REC_Pos) /*!< 0xFF000000 */
+#define CAN_ESR_REC CAN_ESR_REC_Msk /*!< Receive Error Counter */
+
+/******************* Bit definition for CAN_BTR register ********************/
+#define CAN_BTR_BRP_Pos (0U)
+#define CAN_BTR_BRP_Msk (0x3FFUL << CAN_BTR_BRP_Pos) /*!< 0x000003FF */
+#define CAN_BTR_BRP CAN_BTR_BRP_Msk /*!<Baud Rate Prescaler */
+#define CAN_BTR_TS1_Pos (16U)
+#define CAN_BTR_TS1_Msk (0xFUL << CAN_BTR_TS1_Pos) /*!< 0x000F0000 */
+#define CAN_BTR_TS1 CAN_BTR_TS1_Msk /*!<Time Segment 1 */
+#define CAN_BTR_TS1_0 (0x1UL << CAN_BTR_TS1_Pos) /*!< 0x00010000 */
+#define CAN_BTR_TS1_1 (0x2UL << CAN_BTR_TS1_Pos) /*!< 0x00020000 */
+#define CAN_BTR_TS1_2 (0x4UL << CAN_BTR_TS1_Pos) /*!< 0x00040000 */
+#define CAN_BTR_TS1_3 (0x8UL << CAN_BTR_TS1_Pos) /*!< 0x00080000 */
+#define CAN_BTR_TS2_Pos (20U)
+#define CAN_BTR_TS2_Msk (0x7UL << CAN_BTR_TS2_Pos) /*!< 0x00700000 */
+#define CAN_BTR_TS2 CAN_BTR_TS2_Msk /*!<Time Segment 2 */
+#define CAN_BTR_TS2_0 (0x1UL << CAN_BTR_TS2_Pos) /*!< 0x00100000 */
+#define CAN_BTR_TS2_1 (0x2UL << CAN_BTR_TS2_Pos) /*!< 0x00200000 */
+#define CAN_BTR_TS2_2 (0x4UL << CAN_BTR_TS2_Pos) /*!< 0x00400000 */
+#define CAN_BTR_SJW_Pos (24U)
+#define CAN_BTR_SJW_Msk (0x3UL << CAN_BTR_SJW_Pos) /*!< 0x03000000 */
+#define CAN_BTR_SJW CAN_BTR_SJW_Msk /*!<Resynchronization Jump Width */
+#define CAN_BTR_SJW_0 (0x1UL << CAN_BTR_SJW_Pos) /*!< 0x01000000 */
+#define CAN_BTR_SJW_1 (0x2UL << CAN_BTR_SJW_Pos) /*!< 0x02000000 */
+#define CAN_BTR_LBKM_Pos (30U)
+#define CAN_BTR_LBKM_Msk (0x1UL << CAN_BTR_LBKM_Pos) /*!< 0x40000000 */
+#define CAN_BTR_LBKM CAN_BTR_LBKM_Msk /*!<Loop Back Mode (Debug) */
+#define CAN_BTR_SILM_Pos (31U)
+#define CAN_BTR_SILM_Msk (0x1UL << CAN_BTR_SILM_Pos) /*!< 0x80000000 */
+#define CAN_BTR_SILM CAN_BTR_SILM_Msk /*!<Silent Mode */
+
+/*!< Mailbox registers */
+/****************** Bit definition for CAN_TI0R register ********************/
+#define CAN_TI0R_TXRQ_Pos (0U)
+#define CAN_TI0R_TXRQ_Msk (0x1UL << CAN_TI0R_TXRQ_Pos) /*!< 0x00000001 */
+#define CAN_TI0R_TXRQ CAN_TI0R_TXRQ_Msk /*!< Transmit Mailbox Request */
+#define CAN_TI0R_RTR_Pos (1U)
+#define CAN_TI0R_RTR_Msk (0x1UL << CAN_TI0R_RTR_Pos) /*!< 0x00000002 */
+#define CAN_TI0R_RTR CAN_TI0R_RTR_Msk /*!< Remote Transmission Request */
+#define CAN_TI0R_IDE_Pos (2U)
+#define CAN_TI0R_IDE_Msk (0x1UL << CAN_TI0R_IDE_Pos) /*!< 0x00000004 */
+#define CAN_TI0R_IDE CAN_TI0R_IDE_Msk /*!< Identifier Extension */
+#define CAN_TI0R_EXID_Pos (3U)
+#define CAN_TI0R_EXID_Msk (0x3FFFFUL << CAN_TI0R_EXID_Pos) /*!< 0x001FFFF8 */
+#define CAN_TI0R_EXID CAN_TI0R_EXID_Msk /*!< Extended Identifier */
+#define CAN_TI0R_STID_Pos (21U)
+#define CAN_TI0R_STID_Msk (0x7FFUL << CAN_TI0R_STID_Pos) /*!< 0xFFE00000 */
+#define CAN_TI0R_STID CAN_TI0R_STID_Msk /*!< Standard Identifier or Extended Identifier */
+
+/****************** Bit definition for CAN_TDT0R register *******************/
+#define CAN_TDT0R_DLC_Pos (0U)
+#define CAN_TDT0R_DLC_Msk (0xFUL << CAN_TDT0R_DLC_Pos) /*!< 0x0000000F */
+#define CAN_TDT0R_DLC CAN_TDT0R_DLC_Msk /*!< Data Length Code */
+#define CAN_TDT0R_TGT_Pos (8U)
+#define CAN_TDT0R_TGT_Msk (0x1UL << CAN_TDT0R_TGT_Pos) /*!< 0x00000100 */
+#define CAN_TDT0R_TGT CAN_TDT0R_TGT_Msk /*!< Transmit Global Time */
+#define CAN_TDT0R_TIME_Pos (16U)
+#define CAN_TDT0R_TIME_Msk (0xFFFFUL << CAN_TDT0R_TIME_Pos) /*!< 0xFFFF0000 */
+#define CAN_TDT0R_TIME CAN_TDT0R_TIME_Msk /*!< Message Time Stamp */
+
+/****************** Bit definition for CAN_TDL0R register *******************/
+#define CAN_TDL0R_DATA0_Pos (0U)
+#define CAN_TDL0R_DATA0_Msk (0xFFUL << CAN_TDL0R_DATA0_Pos) /*!< 0x000000FF */
+#define CAN_TDL0R_DATA0 CAN_TDL0R_DATA0_Msk /*!< Data byte 0 */
+#define CAN_TDL0R_DATA1_Pos (8U)
+#define CAN_TDL0R_DATA1_Msk (0xFFUL << CAN_TDL0R_DATA1_Pos) /*!< 0x0000FF00 */
+#define CAN_TDL0R_DATA1 CAN_TDL0R_DATA1_Msk /*!< Data byte 1 */
+#define CAN_TDL0R_DATA2_Pos (16U)
+#define CAN_TDL0R_DATA2_Msk (0xFFUL << CAN_TDL0R_DATA2_Pos) /*!< 0x00FF0000 */
+#define CAN_TDL0R_DATA2 CAN_TDL0R_DATA2_Msk /*!< Data byte 2 */
+#define CAN_TDL0R_DATA3_Pos (24U)
+#define CAN_TDL0R_DATA3_Msk (0xFFUL << CAN_TDL0R_DATA3_Pos) /*!< 0xFF000000 */
+#define CAN_TDL0R_DATA3 CAN_TDL0R_DATA3_Msk /*!< Data byte 3 */
+
+/****************** Bit definition for CAN_TDH0R register *******************/
+#define CAN_TDH0R_DATA4_Pos (0U)
+#define CAN_TDH0R_DATA4_Msk (0xFFUL << CAN_TDH0R_DATA4_Pos) /*!< 0x000000FF */
+#define CAN_TDH0R_DATA4 CAN_TDH0R_DATA4_Msk /*!< Data byte 4 */
+#define CAN_TDH0R_DATA5_Pos (8U)
+#define CAN_TDH0R_DATA5_Msk (0xFFUL << CAN_TDH0R_DATA5_Pos) /*!< 0x0000FF00 */
+#define CAN_TDH0R_DATA5 CAN_TDH0R_DATA5_Msk /*!< Data byte 5 */
+#define CAN_TDH0R_DATA6_Pos (16U)
+#define CAN_TDH0R_DATA6_Msk (0xFFUL << CAN_TDH0R_DATA6_Pos) /*!< 0x00FF0000 */
+#define CAN_TDH0R_DATA6 CAN_TDH0R_DATA6_Msk /*!< Data byte 6 */
+#define CAN_TDH0R_DATA7_Pos (24U)
+#define CAN_TDH0R_DATA7_Msk (0xFFUL << CAN_TDH0R_DATA7_Pos) /*!< 0xFF000000 */
+#define CAN_TDH0R_DATA7 CAN_TDH0R_DATA7_Msk /*!< Data byte 7 */
+
+/******************* Bit definition for CAN_TI1R register *******************/
+#define CAN_TI1R_TXRQ_Pos (0U)
+#define CAN_TI1R_TXRQ_Msk (0x1UL << CAN_TI1R_TXRQ_Pos) /*!< 0x00000001 */
+#define CAN_TI1R_TXRQ CAN_TI1R_TXRQ_Msk /*!< Transmit Mailbox Request */
+#define CAN_TI1R_RTR_Pos (1U)
+#define CAN_TI1R_RTR_Msk (0x1UL << CAN_TI1R_RTR_Pos) /*!< 0x00000002 */
+#define CAN_TI1R_RTR CAN_TI1R_RTR_Msk /*!< Remote Transmission Request */
+#define CAN_TI1R_IDE_Pos (2U)
+#define CAN_TI1R_IDE_Msk (0x1UL << CAN_TI1R_IDE_Pos) /*!< 0x00000004 */
+#define CAN_TI1R_IDE CAN_TI1R_IDE_Msk /*!< Identifier Extension */
+#define CAN_TI1R_EXID_Pos (3U)
+#define CAN_TI1R_EXID_Msk (0x3FFFFUL << CAN_TI1R_EXID_Pos) /*!< 0x001FFFF8 */
+#define CAN_TI1R_EXID CAN_TI1R_EXID_Msk /*!< Extended Identifier */
+#define CAN_TI1R_STID_Pos (21U)
+#define CAN_TI1R_STID_Msk (0x7FFUL << CAN_TI1R_STID_Pos) /*!< 0xFFE00000 */
+#define CAN_TI1R_STID CAN_TI1R_STID_Msk /*!< Standard Identifier or Extended Identifier */
+
+/******************* Bit definition for CAN_TDT1R register ******************/
+#define CAN_TDT1R_DLC_Pos (0U)
+#define CAN_TDT1R_DLC_Msk (0xFUL << CAN_TDT1R_DLC_Pos) /*!< 0x0000000F */
+#define CAN_TDT1R_DLC CAN_TDT1R_DLC_Msk /*!< Data Length Code */
+#define CAN_TDT1R_TGT_Pos (8U)
+#define CAN_TDT1R_TGT_Msk (0x1UL << CAN_TDT1R_TGT_Pos) /*!< 0x00000100 */
+#define CAN_TDT1R_TGT CAN_TDT1R_TGT_Msk /*!< Transmit Global Time */
+#define CAN_TDT1R_TIME_Pos (16U)
+#define CAN_TDT1R_TIME_Msk (0xFFFFUL << CAN_TDT1R_TIME_Pos) /*!< 0xFFFF0000 */
+#define CAN_TDT1R_TIME CAN_TDT1R_TIME_Msk /*!< Message Time Stamp */
+
+/******************* Bit definition for CAN_TDL1R register ******************/
+#define CAN_TDL1R_DATA0_Pos (0U)
+#define CAN_TDL1R_DATA0_Msk (0xFFUL << CAN_TDL1R_DATA0_Pos) /*!< 0x000000FF */
+#define CAN_TDL1R_DATA0 CAN_TDL1R_DATA0_Msk /*!< Data byte 0 */
+#define CAN_TDL1R_DATA1_Pos (8U)
+#define CAN_TDL1R_DATA1_Msk (0xFFUL << CAN_TDL1R_DATA1_Pos) /*!< 0x0000FF00 */
+#define CAN_TDL1R_DATA1 CAN_TDL1R_DATA1_Msk /*!< Data byte 1 */
+#define CAN_TDL1R_DATA2_Pos (16U)
+#define CAN_TDL1R_DATA2_Msk (0xFFUL << CAN_TDL1R_DATA2_Pos) /*!< 0x00FF0000 */
+#define CAN_TDL1R_DATA2 CAN_TDL1R_DATA2_Msk /*!< Data byte 2 */
+#define CAN_TDL1R_DATA3_Pos (24U)
+#define CAN_TDL1R_DATA3_Msk (0xFFUL << CAN_TDL1R_DATA3_Pos) /*!< 0xFF000000 */
+#define CAN_TDL1R_DATA3 CAN_TDL1R_DATA3_Msk /*!< Data byte 3 */
+
+/******************* Bit definition for CAN_TDH1R register ******************/
+#define CAN_TDH1R_DATA4_Pos (0U)
+#define CAN_TDH1R_DATA4_Msk (0xFFUL << CAN_TDH1R_DATA4_Pos) /*!< 0x000000FF */
+#define CAN_TDH1R_DATA4 CAN_TDH1R_DATA4_Msk /*!< Data byte 4 */
+#define CAN_TDH1R_DATA5_Pos (8U)
+#define CAN_TDH1R_DATA5_Msk (0xFFUL << CAN_TDH1R_DATA5_Pos) /*!< 0x0000FF00 */
+#define CAN_TDH1R_DATA5 CAN_TDH1R_DATA5_Msk /*!< Data byte 5 */
+#define CAN_TDH1R_DATA6_Pos (16U)
+#define CAN_TDH1R_DATA6_Msk (0xFFUL << CAN_TDH1R_DATA6_Pos) /*!< 0x00FF0000 */
+#define CAN_TDH1R_DATA6 CAN_TDH1R_DATA6_Msk /*!< Data byte 6 */
+#define CAN_TDH1R_DATA7_Pos (24U)
+#define CAN_TDH1R_DATA7_Msk (0xFFUL << CAN_TDH1R_DATA7_Pos) /*!< 0xFF000000 */
+#define CAN_TDH1R_DATA7 CAN_TDH1R_DATA7_Msk /*!< Data byte 7 */
+
+/******************* Bit definition for CAN_TI2R register *******************/
+#define CAN_TI2R_TXRQ_Pos (0U)
+#define CAN_TI2R_TXRQ_Msk (0x1UL << CAN_TI2R_TXRQ_Pos) /*!< 0x00000001 */
+#define CAN_TI2R_TXRQ CAN_TI2R_TXRQ_Msk /*!< Transmit Mailbox Request */
+#define CAN_TI2R_RTR_Pos (1U)
+#define CAN_TI2R_RTR_Msk (0x1UL << CAN_TI2R_RTR_Pos) /*!< 0x00000002 */
+#define CAN_TI2R_RTR CAN_TI2R_RTR_Msk /*!< Remote Transmission Request */
+#define CAN_TI2R_IDE_Pos (2U)
+#define CAN_TI2R_IDE_Msk (0x1UL << CAN_TI2R_IDE_Pos) /*!< 0x00000004 */
+#define CAN_TI2R_IDE CAN_TI2R_IDE_Msk /*!< Identifier Extension */
+#define CAN_TI2R_EXID_Pos (3U)
+#define CAN_TI2R_EXID_Msk (0x3FFFFUL << CAN_TI2R_EXID_Pos) /*!< 0x001FFFF8 */
+#define CAN_TI2R_EXID CAN_TI2R_EXID_Msk /*!< Extended identifier */
+#define CAN_TI2R_STID_Pos (21U)
+#define CAN_TI2R_STID_Msk (0x7FFUL << CAN_TI2R_STID_Pos) /*!< 0xFFE00000 */
+#define CAN_TI2R_STID CAN_TI2R_STID_Msk /*!< Standard Identifier or Extended Identifier */
+
+/******************* Bit definition for CAN_TDT2R register ******************/
+#define CAN_TDT2R_DLC_Pos (0U)
+#define CAN_TDT2R_DLC_Msk (0xFUL << CAN_TDT2R_DLC_Pos) /*!< 0x0000000F */
+#define CAN_TDT2R_DLC CAN_TDT2R_DLC_Msk /*!< Data Length Code */
+#define CAN_TDT2R_TGT_Pos (8U)
+#define CAN_TDT2R_TGT_Msk (0x1UL << CAN_TDT2R_TGT_Pos) /*!< 0x00000100 */
+#define CAN_TDT2R_TGT CAN_TDT2R_TGT_Msk /*!< Transmit Global Time */
+#define CAN_TDT2R_TIME_Pos (16U)
+#define CAN_TDT2R_TIME_Msk (0xFFFFUL << CAN_TDT2R_TIME_Pos) /*!< 0xFFFF0000 */
+#define CAN_TDT2R_TIME CAN_TDT2R_TIME_Msk /*!< Message Time Stamp */
+
+/******************* Bit definition for CAN_TDL2R register ******************/
+#define CAN_TDL2R_DATA0_Pos (0U)
+#define CAN_TDL2R_DATA0_Msk (0xFFUL << CAN_TDL2R_DATA0_Pos) /*!< 0x000000FF */
+#define CAN_TDL2R_DATA0 CAN_TDL2R_DATA0_Msk /*!< Data byte 0 */
+#define CAN_TDL2R_DATA1_Pos (8U)
+#define CAN_TDL2R_DATA1_Msk (0xFFUL << CAN_TDL2R_DATA1_Pos) /*!< 0x0000FF00 */
+#define CAN_TDL2R_DATA1 CAN_TDL2R_DATA1_Msk /*!< Data byte 1 */
+#define CAN_TDL2R_DATA2_Pos (16U)
+#define CAN_TDL2R_DATA2_Msk (0xFFUL << CAN_TDL2R_DATA2_Pos) /*!< 0x00FF0000 */
+#define CAN_TDL2R_DATA2 CAN_TDL2R_DATA2_Msk /*!< Data byte 2 */
+#define CAN_TDL2R_DATA3_Pos (24U)
+#define CAN_TDL2R_DATA3_Msk (0xFFUL << CAN_TDL2R_DATA3_Pos) /*!< 0xFF000000 */
+#define CAN_TDL2R_DATA3 CAN_TDL2R_DATA3_Msk /*!< Data byte 3 */
+
+/******************* Bit definition for CAN_TDH2R register ******************/
+#define CAN_TDH2R_DATA4_Pos (0U)
+#define CAN_TDH2R_DATA4_Msk (0xFFUL << CAN_TDH2R_DATA4_Pos) /*!< 0x000000FF */
+#define CAN_TDH2R_DATA4 CAN_TDH2R_DATA4_Msk /*!< Data byte 4 */
+#define CAN_TDH2R_DATA5_Pos (8U)
+#define CAN_TDH2R_DATA5_Msk (0xFFUL << CAN_TDH2R_DATA5_Pos) /*!< 0x0000FF00 */
+#define CAN_TDH2R_DATA5 CAN_TDH2R_DATA5_Msk /*!< Data byte 5 */
+#define CAN_TDH2R_DATA6_Pos (16U)
+#define CAN_TDH2R_DATA6_Msk (0xFFUL << CAN_TDH2R_DATA6_Pos) /*!< 0x00FF0000 */
+#define CAN_TDH2R_DATA6 CAN_TDH2R_DATA6_Msk /*!< Data byte 6 */
+#define CAN_TDH2R_DATA7_Pos (24U)
+#define CAN_TDH2R_DATA7_Msk (0xFFUL << CAN_TDH2R_DATA7_Pos) /*!< 0xFF000000 */
+#define CAN_TDH2R_DATA7 CAN_TDH2R_DATA7_Msk /*!< Data byte 7 */
+
+/******************* Bit definition for CAN_RI0R register *******************/
+#define CAN_RI0R_RTR_Pos (1U)
+#define CAN_RI0R_RTR_Msk (0x1UL << CAN_RI0R_RTR_Pos) /*!< 0x00000002 */
+#define CAN_RI0R_RTR CAN_RI0R_RTR_Msk /*!< Remote Transmission Request */
+#define CAN_RI0R_IDE_Pos (2U)
+#define CAN_RI0R_IDE_Msk (0x1UL << CAN_RI0R_IDE_Pos) /*!< 0x00000004 */
+#define CAN_RI0R_IDE CAN_RI0R_IDE_Msk /*!< Identifier Extension */
+#define CAN_RI0R_EXID_Pos (3U)
+#define CAN_RI0R_EXID_Msk (0x3FFFFUL << CAN_RI0R_EXID_Pos) /*!< 0x001FFFF8 */
+#define CAN_RI0R_EXID CAN_RI0R_EXID_Msk /*!< Extended Identifier */
+#define CAN_RI0R_STID_Pos (21U)
+#define CAN_RI0R_STID_Msk (0x7FFUL << CAN_RI0R_STID_Pos) /*!< 0xFFE00000 */
+#define CAN_RI0R_STID CAN_RI0R_STID_Msk /*!< Standard Identifier or Extended Identifier */
+
+/******************* Bit definition for CAN_RDT0R register ******************/
+#define CAN_RDT0R_DLC_Pos (0U)
+#define CAN_RDT0R_DLC_Msk (0xFUL << CAN_RDT0R_DLC_Pos) /*!< 0x0000000F */
+#define CAN_RDT0R_DLC CAN_RDT0R_DLC_Msk /*!< Data Length Code */
+#define CAN_RDT0R_FMI_Pos (8U)
+#define CAN_RDT0R_FMI_Msk (0xFFUL << CAN_RDT0R_FMI_Pos) /*!< 0x0000FF00 */
+#define CAN_RDT0R_FMI CAN_RDT0R_FMI_Msk /*!< Filter Match Index */
+#define CAN_RDT0R_TIME_Pos (16U)
+#define CAN_RDT0R_TIME_Msk (0xFFFFUL << CAN_RDT0R_TIME_Pos) /*!< 0xFFFF0000 */
+#define CAN_RDT0R_TIME CAN_RDT0R_TIME_Msk /*!< Message Time Stamp */
+
+/******************* Bit definition for CAN_RDL0R register ******************/
+#define CAN_RDL0R_DATA0_Pos (0U)
+#define CAN_RDL0R_DATA0_Msk (0xFFUL << CAN_RDL0R_DATA0_Pos) /*!< 0x000000FF */
+#define CAN_RDL0R_DATA0 CAN_RDL0R_DATA0_Msk /*!< Data byte 0 */
+#define CAN_RDL0R_DATA1_Pos (8U)
+#define CAN_RDL0R_DATA1_Msk (0xFFUL << CAN_RDL0R_DATA1_Pos) /*!< 0x0000FF00 */
+#define CAN_RDL0R_DATA1 CAN_RDL0R_DATA1_Msk /*!< Data byte 1 */
+#define CAN_RDL0R_DATA2_Pos (16U)
+#define CAN_RDL0R_DATA2_Msk (0xFFUL << CAN_RDL0R_DATA2_Pos) /*!< 0x00FF0000 */
+#define CAN_RDL0R_DATA2 CAN_RDL0R_DATA2_Msk /*!< Data byte 2 */
+#define CAN_RDL0R_DATA3_Pos (24U)
+#define CAN_RDL0R_DATA3_Msk (0xFFUL << CAN_RDL0R_DATA3_Pos) /*!< 0xFF000000 */
+#define CAN_RDL0R_DATA3 CAN_RDL0R_DATA3_Msk /*!< Data byte 3 */
+
+/******************* Bit definition for CAN_RDH0R register ******************/
+#define CAN_RDH0R_DATA4_Pos (0U)
+#define CAN_RDH0R_DATA4_Msk (0xFFUL << CAN_RDH0R_DATA4_Pos) /*!< 0x000000FF */
+#define CAN_RDH0R_DATA4 CAN_RDH0R_DATA4_Msk /*!< Data byte 4 */
+#define CAN_RDH0R_DATA5_Pos (8U)
+#define CAN_RDH0R_DATA5_Msk (0xFFUL << CAN_RDH0R_DATA5_Pos) /*!< 0x0000FF00 */
+#define CAN_RDH0R_DATA5 CAN_RDH0R_DATA5_Msk /*!< Data byte 5 */
+#define CAN_RDH0R_DATA6_Pos (16U)
+#define CAN_RDH0R_DATA6_Msk (0xFFUL << CAN_RDH0R_DATA6_Pos) /*!< 0x00FF0000 */
+#define CAN_RDH0R_DATA6 CAN_RDH0R_DATA6_Msk /*!< Data byte 6 */
+#define CAN_RDH0R_DATA7_Pos (24U)
+#define CAN_RDH0R_DATA7_Msk (0xFFUL << CAN_RDH0R_DATA7_Pos) /*!< 0xFF000000 */
+#define CAN_RDH0R_DATA7 CAN_RDH0R_DATA7_Msk /*!< Data byte 7 */
+
+/******************* Bit definition for CAN_RI1R register *******************/
+#define CAN_RI1R_RTR_Pos (1U)
+#define CAN_RI1R_RTR_Msk (0x1UL << CAN_RI1R_RTR_Pos) /*!< 0x00000002 */
+#define CAN_RI1R_RTR CAN_RI1R_RTR_Msk /*!< Remote Transmission Request */
+#define CAN_RI1R_IDE_Pos (2U)
+#define CAN_RI1R_IDE_Msk (0x1UL << CAN_RI1R_IDE_Pos) /*!< 0x00000004 */
+#define CAN_RI1R_IDE CAN_RI1R_IDE_Msk /*!< Identifier Extension */
+#define CAN_RI1R_EXID_Pos (3U)
+#define CAN_RI1R_EXID_Msk (0x3FFFFUL << CAN_RI1R_EXID_Pos) /*!< 0x001FFFF8 */
+#define CAN_RI1R_EXID CAN_RI1R_EXID_Msk /*!< Extended identifier */
+#define CAN_RI1R_STID_Pos (21U)
+#define CAN_RI1R_STID_Msk (0x7FFUL << CAN_RI1R_STID_Pos) /*!< 0xFFE00000 */
+#define CAN_RI1R_STID CAN_RI1R_STID_Msk /*!< Standard Identifier or Extended Identifier */
+
+/******************* Bit definition for CAN_RDT1R register ******************/
+#define CAN_RDT1R_DLC_Pos (0U)
+#define CAN_RDT1R_DLC_Msk (0xFUL << CAN_RDT1R_DLC_Pos) /*!< 0x0000000F */
+#define CAN_RDT1R_DLC CAN_RDT1R_DLC_Msk /*!< Data Length Code */
+#define CAN_RDT1R_FMI_Pos (8U)
+#define CAN_RDT1R_FMI_Msk (0xFFUL << CAN_RDT1R_FMI_Pos) /*!< 0x0000FF00 */
+#define CAN_RDT1R_FMI CAN_RDT1R_FMI_Msk /*!< Filter Match Index */
+#define CAN_RDT1R_TIME_Pos (16U)
+#define CAN_RDT1R_TIME_Msk (0xFFFFUL << CAN_RDT1R_TIME_Pos) /*!< 0xFFFF0000 */
+#define CAN_RDT1R_TIME CAN_RDT1R_TIME_Msk /*!< Message Time Stamp */
+
+/******************* Bit definition for CAN_RDL1R register ******************/
+#define CAN_RDL1R_DATA0_Pos (0U)
+#define CAN_RDL1R_DATA0_Msk (0xFFUL << CAN_RDL1R_DATA0_Pos) /*!< 0x000000FF */
+#define CAN_RDL1R_DATA0 CAN_RDL1R_DATA0_Msk /*!< Data byte 0 */
+#define CAN_RDL1R_DATA1_Pos (8U)
+#define CAN_RDL1R_DATA1_Msk (0xFFUL << CAN_RDL1R_DATA1_Pos) /*!< 0x0000FF00 */
+#define CAN_RDL1R_DATA1 CAN_RDL1R_DATA1_Msk /*!< Data byte 1 */
+#define CAN_RDL1R_DATA2_Pos (16U)
+#define CAN_RDL1R_DATA2_Msk (0xFFUL << CAN_RDL1R_DATA2_Pos) /*!< 0x00FF0000 */
+#define CAN_RDL1R_DATA2 CAN_RDL1R_DATA2_Msk /*!< Data byte 2 */
+#define CAN_RDL1R_DATA3_Pos (24U)
+#define CAN_RDL1R_DATA3_Msk (0xFFUL << CAN_RDL1R_DATA3_Pos) /*!< 0xFF000000 */
+#define CAN_RDL1R_DATA3 CAN_RDL1R_DATA3_Msk /*!< Data byte 3 */
+
+/******************* Bit definition for CAN_RDH1R register ******************/
+#define CAN_RDH1R_DATA4_Pos (0U)
+#define CAN_RDH1R_DATA4_Msk (0xFFUL << CAN_RDH1R_DATA4_Pos) /*!< 0x000000FF */
+#define CAN_RDH1R_DATA4 CAN_RDH1R_DATA4_Msk /*!< Data byte 4 */
+#define CAN_RDH1R_DATA5_Pos (8U)
+#define CAN_RDH1R_DATA5_Msk (0xFFUL << CAN_RDH1R_DATA5_Pos) /*!< 0x0000FF00 */
+#define CAN_RDH1R_DATA5 CAN_RDH1R_DATA5_Msk /*!< Data byte 5 */
+#define CAN_RDH1R_DATA6_Pos (16U)
+#define CAN_RDH1R_DATA6_Msk (0xFFUL << CAN_RDH1R_DATA6_Pos) /*!< 0x00FF0000 */
+#define CAN_RDH1R_DATA6 CAN_RDH1R_DATA6_Msk /*!< Data byte 6 */
+#define CAN_RDH1R_DATA7_Pos (24U)
+#define CAN_RDH1R_DATA7_Msk (0xFFUL << CAN_RDH1R_DATA7_Pos) /*!< 0xFF000000 */
+#define CAN_RDH1R_DATA7 CAN_RDH1R_DATA7_Msk /*!< Data byte 7 */
+
+/*!< CAN filter registers */
+/******************* Bit definition for CAN_FMR register ********************/
+#define CAN_FMR_FINIT_Pos (0U)
+#define CAN_FMR_FINIT_Msk (0x1UL << CAN_FMR_FINIT_Pos) /*!< 0x00000001 */
+#define CAN_FMR_FINIT CAN_FMR_FINIT_Msk /*!< Filter Init Mode */
+#define CAN_FMR_CAN2SB_Pos (8U)
+#define CAN_FMR_CAN2SB_Msk (0x3FUL << CAN_FMR_CAN2SB_Pos) /*!< 0x00003F00 */
+#define CAN_FMR_CAN2SB CAN_FMR_CAN2SB_Msk /*!< CAN2 start bank */
+
+/******************* Bit definition for CAN_FM1R register *******************/
+#define CAN_FM1R_FBM_Pos (0U)
+#define CAN_FM1R_FBM_Msk (0x3FFFUL << CAN_FM1R_FBM_Pos) /*!< 0x00003FFF */
+#define CAN_FM1R_FBM CAN_FM1R_FBM_Msk /*!< Filter Mode */
+#define CAN_FM1R_FBM0_Pos (0U)
+#define CAN_FM1R_FBM0_Msk (0x1UL << CAN_FM1R_FBM0_Pos) /*!< 0x00000001 */
+#define CAN_FM1R_FBM0 CAN_FM1R_FBM0_Msk /*!< Filter Init Mode for filter 0 */
+#define CAN_FM1R_FBM1_Pos (1U)
+#define CAN_FM1R_FBM1_Msk (0x1UL << CAN_FM1R_FBM1_Pos) /*!< 0x00000002 */
+#define CAN_FM1R_FBM1 CAN_FM1R_FBM1_Msk /*!< Filter Init Mode for filter 1 */
+#define CAN_FM1R_FBM2_Pos (2U)
+#define CAN_FM1R_FBM2_Msk (0x1UL << CAN_FM1R_FBM2_Pos) /*!< 0x00000004 */
+#define CAN_FM1R_FBM2 CAN_FM1R_FBM2_Msk /*!< Filter Init Mode for filter 2 */
+#define CAN_FM1R_FBM3_Pos (3U)
+#define CAN_FM1R_FBM3_Msk (0x1UL << CAN_FM1R_FBM3_Pos) /*!< 0x00000008 */
+#define CAN_FM1R_FBM3 CAN_FM1R_FBM3_Msk /*!< Filter Init Mode for filter 3 */
+#define CAN_FM1R_FBM4_Pos (4U)
+#define CAN_FM1R_FBM4_Msk (0x1UL << CAN_FM1R_FBM4_Pos) /*!< 0x00000010 */
+#define CAN_FM1R_FBM4 CAN_FM1R_FBM4_Msk /*!< Filter Init Mode for filter 4 */
+#define CAN_FM1R_FBM5_Pos (5U)
+#define CAN_FM1R_FBM5_Msk (0x1UL << CAN_FM1R_FBM5_Pos) /*!< 0x00000020 */
+#define CAN_FM1R_FBM5 CAN_FM1R_FBM5_Msk /*!< Filter Init Mode for filter 5 */
+#define CAN_FM1R_FBM6_Pos (6U)
+#define CAN_FM1R_FBM6_Msk (0x1UL << CAN_FM1R_FBM6_Pos) /*!< 0x00000040 */
+#define CAN_FM1R_FBM6 CAN_FM1R_FBM6_Msk /*!< Filter Init Mode for filter 6 */
+#define CAN_FM1R_FBM7_Pos (7U)
+#define CAN_FM1R_FBM7_Msk (0x1UL << CAN_FM1R_FBM7_Pos) /*!< 0x00000080 */
+#define CAN_FM1R_FBM7 CAN_FM1R_FBM7_Msk /*!< Filter Init Mode for filter 7 */
+#define CAN_FM1R_FBM8_Pos (8U)
+#define CAN_FM1R_FBM8_Msk (0x1UL << CAN_FM1R_FBM8_Pos) /*!< 0x00000100 */
+#define CAN_FM1R_FBM8 CAN_FM1R_FBM8_Msk /*!< Filter Init Mode for filter 8 */
+#define CAN_FM1R_FBM9_Pos (9U)
+#define CAN_FM1R_FBM9_Msk (0x1UL << CAN_FM1R_FBM9_Pos) /*!< 0x00000200 */
+#define CAN_FM1R_FBM9 CAN_FM1R_FBM9_Msk /*!< Filter Init Mode for filter 9 */
+#define CAN_FM1R_FBM10_Pos (10U)
+#define CAN_FM1R_FBM10_Msk (0x1UL << CAN_FM1R_FBM10_Pos) /*!< 0x00000400 */
+#define CAN_FM1R_FBM10 CAN_FM1R_FBM10_Msk /*!< Filter Init Mode for filter 10 */
+#define CAN_FM1R_FBM11_Pos (11U)
+#define CAN_FM1R_FBM11_Msk (0x1UL << CAN_FM1R_FBM11_Pos) /*!< 0x00000800 */
+#define CAN_FM1R_FBM11 CAN_FM1R_FBM11_Msk /*!< Filter Init Mode for filter 11 */
+#define CAN_FM1R_FBM12_Pos (12U)
+#define CAN_FM1R_FBM12_Msk (0x1UL << CAN_FM1R_FBM12_Pos) /*!< 0x00001000 */
+#define CAN_FM1R_FBM12 CAN_FM1R_FBM12_Msk /*!< Filter Init Mode for filter 12 */
+#define CAN_FM1R_FBM13_Pos (13U)
+#define CAN_FM1R_FBM13_Msk (0x1UL << CAN_FM1R_FBM13_Pos) /*!< 0x00002000 */
+#define CAN_FM1R_FBM13 CAN_FM1R_FBM13_Msk /*!< Filter Init Mode for filter 13 */
+
+/******************* Bit definition for CAN_FS1R register *******************/
+#define CAN_FS1R_FSC_Pos (0U)
+#define CAN_FS1R_FSC_Msk (0x3FFFUL << CAN_FS1R_FSC_Pos) /*!< 0x00003FFF */
+#define CAN_FS1R_FSC CAN_FS1R_FSC_Msk /*!< Filter Scale Configuration */
+#define CAN_FS1R_FSC0_Pos (0U)
+#define CAN_FS1R_FSC0_Msk (0x1UL << CAN_FS1R_FSC0_Pos) /*!< 0x00000001 */
+#define CAN_FS1R_FSC0 CAN_FS1R_FSC0_Msk /*!< Filter Scale Configuration for filter 0 */
+#define CAN_FS1R_FSC1_Pos (1U)
+#define CAN_FS1R_FSC1_Msk (0x1UL << CAN_FS1R_FSC1_Pos) /*!< 0x00000002 */
+#define CAN_FS1R_FSC1 CAN_FS1R_FSC1_Msk /*!< Filter Scale Configuration for filter 1 */
+#define CAN_FS1R_FSC2_Pos (2U)
+#define CAN_FS1R_FSC2_Msk (0x1UL << CAN_FS1R_FSC2_Pos) /*!< 0x00000004 */
+#define CAN_FS1R_FSC2 CAN_FS1R_FSC2_Msk /*!< Filter Scale Configuration for filter 2 */
+#define CAN_FS1R_FSC3_Pos (3U)
+#define CAN_FS1R_FSC3_Msk (0x1UL << CAN_FS1R_FSC3_Pos) /*!< 0x00000008 */
+#define CAN_FS1R_FSC3 CAN_FS1R_FSC3_Msk /*!< Filter Scale Configuration for filter 3 */
+#define CAN_FS1R_FSC4_Pos (4U)
+#define CAN_FS1R_FSC4_Msk (0x1UL << CAN_FS1R_FSC4_Pos) /*!< 0x00000010 */
+#define CAN_FS1R_FSC4 CAN_FS1R_FSC4_Msk /*!< Filter Scale Configuration for filter 4 */
+#define CAN_FS1R_FSC5_Pos (5U)
+#define CAN_FS1R_FSC5_Msk (0x1UL << CAN_FS1R_FSC5_Pos) /*!< 0x00000020 */
+#define CAN_FS1R_FSC5 CAN_FS1R_FSC5_Msk /*!< Filter Scale Configuration for filter 5 */
+#define CAN_FS1R_FSC6_Pos (6U)
+#define CAN_FS1R_FSC6_Msk (0x1UL << CAN_FS1R_FSC6_Pos) /*!< 0x00000040 */
+#define CAN_FS1R_FSC6 CAN_FS1R_FSC6_Msk /*!< Filter Scale Configuration for filter 6 */
+#define CAN_FS1R_FSC7_Pos (7U)
+#define CAN_FS1R_FSC7_Msk (0x1UL << CAN_FS1R_FSC7_Pos) /*!< 0x00000080 */
+#define CAN_FS1R_FSC7 CAN_FS1R_FSC7_Msk /*!< Filter Scale Configuration for filter 7 */
+#define CAN_FS1R_FSC8_Pos (8U)
+#define CAN_FS1R_FSC8_Msk (0x1UL << CAN_FS1R_FSC8_Pos) /*!< 0x00000100 */
+#define CAN_FS1R_FSC8 CAN_FS1R_FSC8_Msk /*!< Filter Scale Configuration for filter 8 */
+#define CAN_FS1R_FSC9_Pos (9U)
+#define CAN_FS1R_FSC9_Msk (0x1UL << CAN_FS1R_FSC9_Pos) /*!< 0x00000200 */
+#define CAN_FS1R_FSC9 CAN_FS1R_FSC9_Msk /*!< Filter Scale Configuration for filter 9 */
+#define CAN_FS1R_FSC10_Pos (10U)
+#define CAN_FS1R_FSC10_Msk (0x1UL << CAN_FS1R_FSC10_Pos) /*!< 0x00000400 */
+#define CAN_FS1R_FSC10 CAN_FS1R_FSC10_Msk /*!< Filter Scale Configuration for filter 10 */
+#define CAN_FS1R_FSC11_Pos (11U)
+#define CAN_FS1R_FSC11_Msk (0x1UL << CAN_FS1R_FSC11_Pos) /*!< 0x00000800 */
+#define CAN_FS1R_FSC11 CAN_FS1R_FSC11_Msk /*!< Filter Scale Configuration for filter 11 */
+#define CAN_FS1R_FSC12_Pos (12U)
+#define CAN_FS1R_FSC12_Msk (0x1UL << CAN_FS1R_FSC12_Pos) /*!< 0x00001000 */
+#define CAN_FS1R_FSC12 CAN_FS1R_FSC12_Msk /*!< Filter Scale Configuration for filter 12 */
+#define CAN_FS1R_FSC13_Pos (13U)
+#define CAN_FS1R_FSC13_Msk (0x1UL << CAN_FS1R_FSC13_Pos) /*!< 0x00002000 */
+#define CAN_FS1R_FSC13 CAN_FS1R_FSC13_Msk /*!< Filter Scale Configuration for filter 13 */
+
+/****************** Bit definition for CAN_FFA1R register *******************/
+#define CAN_FFA1R_FFA_Pos (0U)
+#define CAN_FFA1R_FFA_Msk (0x3FFFUL << CAN_FFA1R_FFA_Pos) /*!< 0x00003FFF */
+#define CAN_FFA1R_FFA CAN_FFA1R_FFA_Msk /*!< Filter FIFO Assignment */
+#define CAN_FFA1R_FFA0_Pos (0U)
+#define CAN_FFA1R_FFA0_Msk (0x1UL << CAN_FFA1R_FFA0_Pos) /*!< 0x00000001 */
+#define CAN_FFA1R_FFA0 CAN_FFA1R_FFA0_Msk /*!< Filter FIFO Assignment for filter 0 */
+#define CAN_FFA1R_FFA1_Pos (1U)
+#define CAN_FFA1R_FFA1_Msk (0x1UL << CAN_FFA1R_FFA1_Pos) /*!< 0x00000002 */
+#define CAN_FFA1R_FFA1 CAN_FFA1R_FFA1_Msk /*!< Filter FIFO Assignment for filter 1 */
+#define CAN_FFA1R_FFA2_Pos (2U)
+#define CAN_FFA1R_FFA2_Msk (0x1UL << CAN_FFA1R_FFA2_Pos) /*!< 0x00000004 */
+#define CAN_FFA1R_FFA2 CAN_FFA1R_FFA2_Msk /*!< Filter FIFO Assignment for filter 2 */
+#define CAN_FFA1R_FFA3_Pos (3U)
+#define CAN_FFA1R_FFA3_Msk (0x1UL << CAN_FFA1R_FFA3_Pos) /*!< 0x00000008 */
+#define CAN_FFA1R_FFA3 CAN_FFA1R_FFA3_Msk /*!< Filter FIFO Assignment for filter 3 */
+#define CAN_FFA1R_FFA4_Pos (4U)
+#define CAN_FFA1R_FFA4_Msk (0x1UL << CAN_FFA1R_FFA4_Pos) /*!< 0x00000010 */
+#define CAN_FFA1R_FFA4 CAN_FFA1R_FFA4_Msk /*!< Filter FIFO Assignment for filter 4 */
+#define CAN_FFA1R_FFA5_Pos (5U)
+#define CAN_FFA1R_FFA5_Msk (0x1UL << CAN_FFA1R_FFA5_Pos) /*!< 0x00000020 */
+#define CAN_FFA1R_FFA5 CAN_FFA1R_FFA5_Msk /*!< Filter FIFO Assignment for filter 5 */
+#define CAN_FFA1R_FFA6_Pos (6U)
+#define CAN_FFA1R_FFA6_Msk (0x1UL << CAN_FFA1R_FFA6_Pos) /*!< 0x00000040 */
+#define CAN_FFA1R_FFA6 CAN_FFA1R_FFA6_Msk /*!< Filter FIFO Assignment for filter 6 */
+#define CAN_FFA1R_FFA7_Pos (7U)
+#define CAN_FFA1R_FFA7_Msk (0x1UL << CAN_FFA1R_FFA7_Pos) /*!< 0x00000080 */
+#define CAN_FFA1R_FFA7 CAN_FFA1R_FFA7_Msk /*!< Filter FIFO Assignment for filter 7 */
+#define CAN_FFA1R_FFA8_Pos (8U)
+#define CAN_FFA1R_FFA8_Msk (0x1UL << CAN_FFA1R_FFA8_Pos) /*!< 0x00000100 */
+#define CAN_FFA1R_FFA8 CAN_FFA1R_FFA8_Msk /*!< Filter FIFO Assignment for filter 8 */
+#define CAN_FFA1R_FFA9_Pos (9U)
+#define CAN_FFA1R_FFA9_Msk (0x1UL << CAN_FFA1R_FFA9_Pos) /*!< 0x00000200 */
+#define CAN_FFA1R_FFA9 CAN_FFA1R_FFA9_Msk /*!< Filter FIFO Assignment for filter 9 */
+#define CAN_FFA1R_FFA10_Pos (10U)
+#define CAN_FFA1R_FFA10_Msk (0x1UL << CAN_FFA1R_FFA10_Pos) /*!< 0x00000400 */
+#define CAN_FFA1R_FFA10 CAN_FFA1R_FFA10_Msk /*!< Filter FIFO Assignment for filter 10 */
+#define CAN_FFA1R_FFA11_Pos (11U)
+#define CAN_FFA1R_FFA11_Msk (0x1UL << CAN_FFA1R_FFA11_Pos) /*!< 0x00000800 */
+#define CAN_FFA1R_FFA11 CAN_FFA1R_FFA11_Msk /*!< Filter FIFO Assignment for filter 11 */
+#define CAN_FFA1R_FFA12_Pos (12U)
+#define CAN_FFA1R_FFA12_Msk (0x1UL << CAN_FFA1R_FFA12_Pos) /*!< 0x00001000 */
+#define CAN_FFA1R_FFA12 CAN_FFA1R_FFA12_Msk /*!< Filter FIFO Assignment for filter 12 */
+#define CAN_FFA1R_FFA13_Pos (13U)
+#define CAN_FFA1R_FFA13_Msk (0x1UL << CAN_FFA1R_FFA13_Pos) /*!< 0x00002000 */
+#define CAN_FFA1R_FFA13 CAN_FFA1R_FFA13_Msk /*!< Filter FIFO Assignment for filter 13 */
+
+/******************* Bit definition for CAN_FA1R register *******************/
+#define CAN_FA1R_FACT_Pos (0U)
+#define CAN_FA1R_FACT_Msk (0x3FFFUL << CAN_FA1R_FACT_Pos) /*!< 0x00003FFF */
+#define CAN_FA1R_FACT CAN_FA1R_FACT_Msk /*!< Filter Active */
+#define CAN_FA1R_FACT0_Pos (0U)
+#define CAN_FA1R_FACT0_Msk (0x1UL << CAN_FA1R_FACT0_Pos) /*!< 0x00000001 */
+#define CAN_FA1R_FACT0 CAN_FA1R_FACT0_Msk /*!< Filter 0 Active */
+#define CAN_FA1R_FACT1_Pos (1U)
+#define CAN_FA1R_FACT1_Msk (0x1UL << CAN_FA1R_FACT1_Pos) /*!< 0x00000002 */
+#define CAN_FA1R_FACT1 CAN_FA1R_FACT1_Msk /*!< Filter 1 Active */
+#define CAN_FA1R_FACT2_Pos (2U)
+#define CAN_FA1R_FACT2_Msk (0x1UL << CAN_FA1R_FACT2_Pos) /*!< 0x00000004 */
+#define CAN_FA1R_FACT2 CAN_FA1R_FACT2_Msk /*!< Filter 2 Active */
+#define CAN_FA1R_FACT3_Pos (3U)
+#define CAN_FA1R_FACT3_Msk (0x1UL << CAN_FA1R_FACT3_Pos) /*!< 0x00000008 */
+#define CAN_FA1R_FACT3 CAN_FA1R_FACT3_Msk /*!< Filter 3 Active */
+#define CAN_FA1R_FACT4_Pos (4U)
+#define CAN_FA1R_FACT4_Msk (0x1UL << CAN_FA1R_FACT4_Pos) /*!< 0x00000010 */
+#define CAN_FA1R_FACT4 CAN_FA1R_FACT4_Msk /*!< Filter 4 Active */
+#define CAN_FA1R_FACT5_Pos (5U)
+#define CAN_FA1R_FACT5_Msk (0x1UL << CAN_FA1R_FACT5_Pos) /*!< 0x00000020 */
+#define CAN_FA1R_FACT5 CAN_FA1R_FACT5_Msk /*!< Filter 5 Active */
+#define CAN_FA1R_FACT6_Pos (6U)
+#define CAN_FA1R_FACT6_Msk (0x1UL << CAN_FA1R_FACT6_Pos) /*!< 0x00000040 */
+#define CAN_FA1R_FACT6 CAN_FA1R_FACT6_Msk /*!< Filter 6 Active */
+#define CAN_FA1R_FACT7_Pos (7U)
+#define CAN_FA1R_FACT7_Msk (0x1UL << CAN_FA1R_FACT7_Pos) /*!< 0x00000080 */
+#define CAN_FA1R_FACT7 CAN_FA1R_FACT7_Msk /*!< Filter 7 Active */
+#define CAN_FA1R_FACT8_Pos (8U)
+#define CAN_FA1R_FACT8_Msk (0x1UL << CAN_FA1R_FACT8_Pos) /*!< 0x00000100 */
+#define CAN_FA1R_FACT8 CAN_FA1R_FACT8_Msk /*!< Filter 8 Active */
+#define CAN_FA1R_FACT9_Pos (9U)
+#define CAN_FA1R_FACT9_Msk (0x1UL << CAN_FA1R_FACT9_Pos) /*!< 0x00000200 */
+#define CAN_FA1R_FACT9 CAN_FA1R_FACT9_Msk /*!< Filter 9 Active */
+#define CAN_FA1R_FACT10_Pos (10U)
+#define CAN_FA1R_FACT10_Msk (0x1UL << CAN_FA1R_FACT10_Pos) /*!< 0x00000400 */
+#define CAN_FA1R_FACT10 CAN_FA1R_FACT10_Msk /*!< Filter 10 Active */
+#define CAN_FA1R_FACT11_Pos (11U)
+#define CAN_FA1R_FACT11_Msk (0x1UL << CAN_FA1R_FACT11_Pos) /*!< 0x00000800 */
+#define CAN_FA1R_FACT11 CAN_FA1R_FACT11_Msk /*!< Filter 11 Active */
+#define CAN_FA1R_FACT12_Pos (12U)
+#define CAN_FA1R_FACT12_Msk (0x1UL << CAN_FA1R_FACT12_Pos) /*!< 0x00001000 */
+#define CAN_FA1R_FACT12 CAN_FA1R_FACT12_Msk /*!< Filter 12 Active */
+#define CAN_FA1R_FACT13_Pos (13U)
+#define CAN_FA1R_FACT13_Msk (0x1UL << CAN_FA1R_FACT13_Pos) /*!< 0x00002000 */
+#define CAN_FA1R_FACT13 CAN_FA1R_FACT13_Msk /*!< Filter 13 Active */
+
+/******************* Bit definition for CAN_F0R1 register *******************/
+#define CAN_F0R1_FB0_Pos (0U)
+#define CAN_F0R1_FB0_Msk (0x1UL << CAN_F0R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F0R1_FB0 CAN_F0R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F0R1_FB1_Pos (1U)
+#define CAN_F0R1_FB1_Msk (0x1UL << CAN_F0R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F0R1_FB1 CAN_F0R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F0R1_FB2_Pos (2U)
+#define CAN_F0R1_FB2_Msk (0x1UL << CAN_F0R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F0R1_FB2 CAN_F0R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F0R1_FB3_Pos (3U)
+#define CAN_F0R1_FB3_Msk (0x1UL << CAN_F0R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F0R1_FB3 CAN_F0R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F0R1_FB4_Pos (4U)
+#define CAN_F0R1_FB4_Msk (0x1UL << CAN_F0R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F0R1_FB4 CAN_F0R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F0R1_FB5_Pos (5U)
+#define CAN_F0R1_FB5_Msk (0x1UL << CAN_F0R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F0R1_FB5 CAN_F0R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F0R1_FB6_Pos (6U)
+#define CAN_F0R1_FB6_Msk (0x1UL << CAN_F0R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F0R1_FB6 CAN_F0R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F0R1_FB7_Pos (7U)
+#define CAN_F0R1_FB7_Msk (0x1UL << CAN_F0R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F0R1_FB7 CAN_F0R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F0R1_FB8_Pos (8U)
+#define CAN_F0R1_FB8_Msk (0x1UL << CAN_F0R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F0R1_FB8 CAN_F0R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F0R1_FB9_Pos (9U)
+#define CAN_F0R1_FB9_Msk (0x1UL << CAN_F0R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F0R1_FB9 CAN_F0R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F0R1_FB10_Pos (10U)
+#define CAN_F0R1_FB10_Msk (0x1UL << CAN_F0R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F0R1_FB10 CAN_F0R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F0R1_FB11_Pos (11U)
+#define CAN_F0R1_FB11_Msk (0x1UL << CAN_F0R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F0R1_FB11 CAN_F0R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F0R1_FB12_Pos (12U)
+#define CAN_F0R1_FB12_Msk (0x1UL << CAN_F0R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F0R1_FB12 CAN_F0R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F0R1_FB13_Pos (13U)
+#define CAN_F0R1_FB13_Msk (0x1UL << CAN_F0R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F0R1_FB13 CAN_F0R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F0R1_FB14_Pos (14U)
+#define CAN_F0R1_FB14_Msk (0x1UL << CAN_F0R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F0R1_FB14 CAN_F0R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F0R1_FB15_Pos (15U)
+#define CAN_F0R1_FB15_Msk (0x1UL << CAN_F0R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F0R1_FB15 CAN_F0R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F0R1_FB16_Pos (16U)
+#define CAN_F0R1_FB16_Msk (0x1UL << CAN_F0R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F0R1_FB16 CAN_F0R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F0R1_FB17_Pos (17U)
+#define CAN_F0R1_FB17_Msk (0x1UL << CAN_F0R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F0R1_FB17 CAN_F0R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F0R1_FB18_Pos (18U)
+#define CAN_F0R1_FB18_Msk (0x1UL << CAN_F0R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F0R1_FB18 CAN_F0R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F0R1_FB19_Pos (19U)
+#define CAN_F0R1_FB19_Msk (0x1UL << CAN_F0R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F0R1_FB19 CAN_F0R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F0R1_FB20_Pos (20U)
+#define CAN_F0R1_FB20_Msk (0x1UL << CAN_F0R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F0R1_FB20 CAN_F0R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F0R1_FB21_Pos (21U)
+#define CAN_F0R1_FB21_Msk (0x1UL << CAN_F0R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F0R1_FB21 CAN_F0R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F0R1_FB22_Pos (22U)
+#define CAN_F0R1_FB22_Msk (0x1UL << CAN_F0R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F0R1_FB22 CAN_F0R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F0R1_FB23_Pos (23U)
+#define CAN_F0R1_FB23_Msk (0x1UL << CAN_F0R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F0R1_FB23 CAN_F0R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F0R1_FB24_Pos (24U)
+#define CAN_F0R1_FB24_Msk (0x1UL << CAN_F0R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F0R1_FB24 CAN_F0R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F0R1_FB25_Pos (25U)
+#define CAN_F0R1_FB25_Msk (0x1UL << CAN_F0R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F0R1_FB25 CAN_F0R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F0R1_FB26_Pos (26U)
+#define CAN_F0R1_FB26_Msk (0x1UL << CAN_F0R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F0R1_FB26 CAN_F0R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F0R1_FB27_Pos (27U)
+#define CAN_F0R1_FB27_Msk (0x1UL << CAN_F0R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F0R1_FB27 CAN_F0R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F0R1_FB28_Pos (28U)
+#define CAN_F0R1_FB28_Msk (0x1UL << CAN_F0R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F0R1_FB28 CAN_F0R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F0R1_FB29_Pos (29U)
+#define CAN_F0R1_FB29_Msk (0x1UL << CAN_F0R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F0R1_FB29 CAN_F0R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F0R1_FB30_Pos (30U)
+#define CAN_F0R1_FB30_Msk (0x1UL << CAN_F0R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F0R1_FB30 CAN_F0R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F0R1_FB31_Pos (31U)
+#define CAN_F0R1_FB31_Msk (0x1UL << CAN_F0R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F0R1_FB31 CAN_F0R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F1R1 register *******************/
+#define CAN_F1R1_FB0_Pos (0U)
+#define CAN_F1R1_FB0_Msk (0x1UL << CAN_F1R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F1R1_FB0 CAN_F1R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F1R1_FB1_Pos (1U)
+#define CAN_F1R1_FB1_Msk (0x1UL << CAN_F1R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F1R1_FB1 CAN_F1R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F1R1_FB2_Pos (2U)
+#define CAN_F1R1_FB2_Msk (0x1UL << CAN_F1R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F1R1_FB2 CAN_F1R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F1R1_FB3_Pos (3U)
+#define CAN_F1R1_FB3_Msk (0x1UL << CAN_F1R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F1R1_FB3 CAN_F1R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F1R1_FB4_Pos (4U)
+#define CAN_F1R1_FB4_Msk (0x1UL << CAN_F1R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F1R1_FB4 CAN_F1R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F1R1_FB5_Pos (5U)
+#define CAN_F1R1_FB5_Msk (0x1UL << CAN_F1R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F1R1_FB5 CAN_F1R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F1R1_FB6_Pos (6U)
+#define CAN_F1R1_FB6_Msk (0x1UL << CAN_F1R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F1R1_FB6 CAN_F1R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F1R1_FB7_Pos (7U)
+#define CAN_F1R1_FB7_Msk (0x1UL << CAN_F1R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F1R1_FB7 CAN_F1R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F1R1_FB8_Pos (8U)
+#define CAN_F1R1_FB8_Msk (0x1UL << CAN_F1R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F1R1_FB8 CAN_F1R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F1R1_FB9_Pos (9U)
+#define CAN_F1R1_FB9_Msk (0x1UL << CAN_F1R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F1R1_FB9 CAN_F1R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F1R1_FB10_Pos (10U)
+#define CAN_F1R1_FB10_Msk (0x1UL << CAN_F1R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F1R1_FB10 CAN_F1R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F1R1_FB11_Pos (11U)
+#define CAN_F1R1_FB11_Msk (0x1UL << CAN_F1R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F1R1_FB11 CAN_F1R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F1R1_FB12_Pos (12U)
+#define CAN_F1R1_FB12_Msk (0x1UL << CAN_F1R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F1R1_FB12 CAN_F1R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F1R1_FB13_Pos (13U)
+#define CAN_F1R1_FB13_Msk (0x1UL << CAN_F1R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F1R1_FB13 CAN_F1R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F1R1_FB14_Pos (14U)
+#define CAN_F1R1_FB14_Msk (0x1UL << CAN_F1R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F1R1_FB14 CAN_F1R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F1R1_FB15_Pos (15U)
+#define CAN_F1R1_FB15_Msk (0x1UL << CAN_F1R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F1R1_FB15 CAN_F1R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F1R1_FB16_Pos (16U)
+#define CAN_F1R1_FB16_Msk (0x1UL << CAN_F1R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F1R1_FB16 CAN_F1R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F1R1_FB17_Pos (17U)
+#define CAN_F1R1_FB17_Msk (0x1UL << CAN_F1R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F1R1_FB17 CAN_F1R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F1R1_FB18_Pos (18U)
+#define CAN_F1R1_FB18_Msk (0x1UL << CAN_F1R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F1R1_FB18 CAN_F1R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F1R1_FB19_Pos (19U)
+#define CAN_F1R1_FB19_Msk (0x1UL << CAN_F1R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F1R1_FB19 CAN_F1R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F1R1_FB20_Pos (20U)
+#define CAN_F1R1_FB20_Msk (0x1UL << CAN_F1R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F1R1_FB20 CAN_F1R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F1R1_FB21_Pos (21U)
+#define CAN_F1R1_FB21_Msk (0x1UL << CAN_F1R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F1R1_FB21 CAN_F1R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F1R1_FB22_Pos (22U)
+#define CAN_F1R1_FB22_Msk (0x1UL << CAN_F1R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F1R1_FB22 CAN_F1R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F1R1_FB23_Pos (23U)
+#define CAN_F1R1_FB23_Msk (0x1UL << CAN_F1R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F1R1_FB23 CAN_F1R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F1R1_FB24_Pos (24U)
+#define CAN_F1R1_FB24_Msk (0x1UL << CAN_F1R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F1R1_FB24 CAN_F1R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F1R1_FB25_Pos (25U)
+#define CAN_F1R1_FB25_Msk (0x1UL << CAN_F1R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F1R1_FB25 CAN_F1R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F1R1_FB26_Pos (26U)
+#define CAN_F1R1_FB26_Msk (0x1UL << CAN_F1R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F1R1_FB26 CAN_F1R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F1R1_FB27_Pos (27U)
+#define CAN_F1R1_FB27_Msk (0x1UL << CAN_F1R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F1R1_FB27 CAN_F1R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F1R1_FB28_Pos (28U)
+#define CAN_F1R1_FB28_Msk (0x1UL << CAN_F1R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F1R1_FB28 CAN_F1R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F1R1_FB29_Pos (29U)
+#define CAN_F1R1_FB29_Msk (0x1UL << CAN_F1R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F1R1_FB29 CAN_F1R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F1R1_FB30_Pos (30U)
+#define CAN_F1R1_FB30_Msk (0x1UL << CAN_F1R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F1R1_FB30 CAN_F1R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F1R1_FB31_Pos (31U)
+#define CAN_F1R1_FB31_Msk (0x1UL << CAN_F1R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F1R1_FB31 CAN_F1R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F2R1 register *******************/
+#define CAN_F2R1_FB0_Pos (0U)
+#define CAN_F2R1_FB0_Msk (0x1UL << CAN_F2R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F2R1_FB0 CAN_F2R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F2R1_FB1_Pos (1U)
+#define CAN_F2R1_FB1_Msk (0x1UL << CAN_F2R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F2R1_FB1 CAN_F2R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F2R1_FB2_Pos (2U)
+#define CAN_F2R1_FB2_Msk (0x1UL << CAN_F2R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F2R1_FB2 CAN_F2R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F2R1_FB3_Pos (3U)
+#define CAN_F2R1_FB3_Msk (0x1UL << CAN_F2R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F2R1_FB3 CAN_F2R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F2R1_FB4_Pos (4U)
+#define CAN_F2R1_FB4_Msk (0x1UL << CAN_F2R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F2R1_FB4 CAN_F2R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F2R1_FB5_Pos (5U)
+#define CAN_F2R1_FB5_Msk (0x1UL << CAN_F2R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F2R1_FB5 CAN_F2R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F2R1_FB6_Pos (6U)
+#define CAN_F2R1_FB6_Msk (0x1UL << CAN_F2R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F2R1_FB6 CAN_F2R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F2R1_FB7_Pos (7U)
+#define CAN_F2R1_FB7_Msk (0x1UL << CAN_F2R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F2R1_FB7 CAN_F2R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F2R1_FB8_Pos (8U)
+#define CAN_F2R1_FB8_Msk (0x1UL << CAN_F2R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F2R1_FB8 CAN_F2R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F2R1_FB9_Pos (9U)
+#define CAN_F2R1_FB9_Msk (0x1UL << CAN_F2R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F2R1_FB9 CAN_F2R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F2R1_FB10_Pos (10U)
+#define CAN_F2R1_FB10_Msk (0x1UL << CAN_F2R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F2R1_FB10 CAN_F2R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F2R1_FB11_Pos (11U)
+#define CAN_F2R1_FB11_Msk (0x1UL << CAN_F2R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F2R1_FB11 CAN_F2R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F2R1_FB12_Pos (12U)
+#define CAN_F2R1_FB12_Msk (0x1UL << CAN_F2R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F2R1_FB12 CAN_F2R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F2R1_FB13_Pos (13U)
+#define CAN_F2R1_FB13_Msk (0x1UL << CAN_F2R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F2R1_FB13 CAN_F2R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F2R1_FB14_Pos (14U)
+#define CAN_F2R1_FB14_Msk (0x1UL << CAN_F2R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F2R1_FB14 CAN_F2R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F2R1_FB15_Pos (15U)
+#define CAN_F2R1_FB15_Msk (0x1UL << CAN_F2R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F2R1_FB15 CAN_F2R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F2R1_FB16_Pos (16U)
+#define CAN_F2R1_FB16_Msk (0x1UL << CAN_F2R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F2R1_FB16 CAN_F2R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F2R1_FB17_Pos (17U)
+#define CAN_F2R1_FB17_Msk (0x1UL << CAN_F2R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F2R1_FB17 CAN_F2R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F2R1_FB18_Pos (18U)
+#define CAN_F2R1_FB18_Msk (0x1UL << CAN_F2R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F2R1_FB18 CAN_F2R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F2R1_FB19_Pos (19U)
+#define CAN_F2R1_FB19_Msk (0x1UL << CAN_F2R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F2R1_FB19 CAN_F2R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F2R1_FB20_Pos (20U)
+#define CAN_F2R1_FB20_Msk (0x1UL << CAN_F2R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F2R1_FB20 CAN_F2R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F2R1_FB21_Pos (21U)
+#define CAN_F2R1_FB21_Msk (0x1UL << CAN_F2R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F2R1_FB21 CAN_F2R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F2R1_FB22_Pos (22U)
+#define CAN_F2R1_FB22_Msk (0x1UL << CAN_F2R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F2R1_FB22 CAN_F2R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F2R1_FB23_Pos (23U)
+#define CAN_F2R1_FB23_Msk (0x1UL << CAN_F2R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F2R1_FB23 CAN_F2R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F2R1_FB24_Pos (24U)
+#define CAN_F2R1_FB24_Msk (0x1UL << CAN_F2R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F2R1_FB24 CAN_F2R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F2R1_FB25_Pos (25U)
+#define CAN_F2R1_FB25_Msk (0x1UL << CAN_F2R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F2R1_FB25 CAN_F2R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F2R1_FB26_Pos (26U)
+#define CAN_F2R1_FB26_Msk (0x1UL << CAN_F2R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F2R1_FB26 CAN_F2R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F2R1_FB27_Pos (27U)
+#define CAN_F2R1_FB27_Msk (0x1UL << CAN_F2R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F2R1_FB27 CAN_F2R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F2R1_FB28_Pos (28U)
+#define CAN_F2R1_FB28_Msk (0x1UL << CAN_F2R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F2R1_FB28 CAN_F2R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F2R1_FB29_Pos (29U)
+#define CAN_F2R1_FB29_Msk (0x1UL << CAN_F2R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F2R1_FB29 CAN_F2R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F2R1_FB30_Pos (30U)
+#define CAN_F2R1_FB30_Msk (0x1UL << CAN_F2R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F2R1_FB30 CAN_F2R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F2R1_FB31_Pos (31U)
+#define CAN_F2R1_FB31_Msk (0x1UL << CAN_F2R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F2R1_FB31 CAN_F2R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F3R1 register *******************/
+#define CAN_F3R1_FB0_Pos (0U)
+#define CAN_F3R1_FB0_Msk (0x1UL << CAN_F3R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F3R1_FB0 CAN_F3R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F3R1_FB1_Pos (1U)
+#define CAN_F3R1_FB1_Msk (0x1UL << CAN_F3R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F3R1_FB1 CAN_F3R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F3R1_FB2_Pos (2U)
+#define CAN_F3R1_FB2_Msk (0x1UL << CAN_F3R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F3R1_FB2 CAN_F3R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F3R1_FB3_Pos (3U)
+#define CAN_F3R1_FB3_Msk (0x1UL << CAN_F3R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F3R1_FB3 CAN_F3R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F3R1_FB4_Pos (4U)
+#define CAN_F3R1_FB4_Msk (0x1UL << CAN_F3R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F3R1_FB4 CAN_F3R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F3R1_FB5_Pos (5U)
+#define CAN_F3R1_FB5_Msk (0x1UL << CAN_F3R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F3R1_FB5 CAN_F3R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F3R1_FB6_Pos (6U)
+#define CAN_F3R1_FB6_Msk (0x1UL << CAN_F3R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F3R1_FB6 CAN_F3R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F3R1_FB7_Pos (7U)
+#define CAN_F3R1_FB7_Msk (0x1UL << CAN_F3R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F3R1_FB7 CAN_F3R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F3R1_FB8_Pos (8U)
+#define CAN_F3R1_FB8_Msk (0x1UL << CAN_F3R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F3R1_FB8 CAN_F3R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F3R1_FB9_Pos (9U)
+#define CAN_F3R1_FB9_Msk (0x1UL << CAN_F3R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F3R1_FB9 CAN_F3R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F3R1_FB10_Pos (10U)
+#define CAN_F3R1_FB10_Msk (0x1UL << CAN_F3R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F3R1_FB10 CAN_F3R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F3R1_FB11_Pos (11U)
+#define CAN_F3R1_FB11_Msk (0x1UL << CAN_F3R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F3R1_FB11 CAN_F3R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F3R1_FB12_Pos (12U)
+#define CAN_F3R1_FB12_Msk (0x1UL << CAN_F3R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F3R1_FB12 CAN_F3R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F3R1_FB13_Pos (13U)
+#define CAN_F3R1_FB13_Msk (0x1UL << CAN_F3R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F3R1_FB13 CAN_F3R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F3R1_FB14_Pos (14U)
+#define CAN_F3R1_FB14_Msk (0x1UL << CAN_F3R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F3R1_FB14 CAN_F3R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F3R1_FB15_Pos (15U)
+#define CAN_F3R1_FB15_Msk (0x1UL << CAN_F3R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F3R1_FB15 CAN_F3R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F3R1_FB16_Pos (16U)
+#define CAN_F3R1_FB16_Msk (0x1UL << CAN_F3R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F3R1_FB16 CAN_F3R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F3R1_FB17_Pos (17U)
+#define CAN_F3R1_FB17_Msk (0x1UL << CAN_F3R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F3R1_FB17 CAN_F3R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F3R1_FB18_Pos (18U)
+#define CAN_F3R1_FB18_Msk (0x1UL << CAN_F3R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F3R1_FB18 CAN_F3R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F3R1_FB19_Pos (19U)
+#define CAN_F3R1_FB19_Msk (0x1UL << CAN_F3R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F3R1_FB19 CAN_F3R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F3R1_FB20_Pos (20U)
+#define CAN_F3R1_FB20_Msk (0x1UL << CAN_F3R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F3R1_FB20 CAN_F3R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F3R1_FB21_Pos (21U)
+#define CAN_F3R1_FB21_Msk (0x1UL << CAN_F3R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F3R1_FB21 CAN_F3R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F3R1_FB22_Pos (22U)
+#define CAN_F3R1_FB22_Msk (0x1UL << CAN_F3R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F3R1_FB22 CAN_F3R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F3R1_FB23_Pos (23U)
+#define CAN_F3R1_FB23_Msk (0x1UL << CAN_F3R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F3R1_FB23 CAN_F3R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F3R1_FB24_Pos (24U)
+#define CAN_F3R1_FB24_Msk (0x1UL << CAN_F3R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F3R1_FB24 CAN_F3R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F3R1_FB25_Pos (25U)
+#define CAN_F3R1_FB25_Msk (0x1UL << CAN_F3R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F3R1_FB25 CAN_F3R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F3R1_FB26_Pos (26U)
+#define CAN_F3R1_FB26_Msk (0x1UL << CAN_F3R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F3R1_FB26 CAN_F3R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F3R1_FB27_Pos (27U)
+#define CAN_F3R1_FB27_Msk (0x1UL << CAN_F3R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F3R1_FB27 CAN_F3R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F3R1_FB28_Pos (28U)
+#define CAN_F3R1_FB28_Msk (0x1UL << CAN_F3R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F3R1_FB28 CAN_F3R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F3R1_FB29_Pos (29U)
+#define CAN_F3R1_FB29_Msk (0x1UL << CAN_F3R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F3R1_FB29 CAN_F3R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F3R1_FB30_Pos (30U)
+#define CAN_F3R1_FB30_Msk (0x1UL << CAN_F3R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F3R1_FB30 CAN_F3R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F3R1_FB31_Pos (31U)
+#define CAN_F3R1_FB31_Msk (0x1UL << CAN_F3R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F3R1_FB31 CAN_F3R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F4R1 register *******************/
+#define CAN_F4R1_FB0_Pos (0U)
+#define CAN_F4R1_FB0_Msk (0x1UL << CAN_F4R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F4R1_FB0 CAN_F4R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F4R1_FB1_Pos (1U)
+#define CAN_F4R1_FB1_Msk (0x1UL << CAN_F4R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F4R1_FB1 CAN_F4R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F4R1_FB2_Pos (2U)
+#define CAN_F4R1_FB2_Msk (0x1UL << CAN_F4R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F4R1_FB2 CAN_F4R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F4R1_FB3_Pos (3U)
+#define CAN_F4R1_FB3_Msk (0x1UL << CAN_F4R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F4R1_FB3 CAN_F4R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F4R1_FB4_Pos (4U)
+#define CAN_F4R1_FB4_Msk (0x1UL << CAN_F4R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F4R1_FB4 CAN_F4R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F4R1_FB5_Pos (5U)
+#define CAN_F4R1_FB5_Msk (0x1UL << CAN_F4R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F4R1_FB5 CAN_F4R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F4R1_FB6_Pos (6U)
+#define CAN_F4R1_FB6_Msk (0x1UL << CAN_F4R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F4R1_FB6 CAN_F4R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F4R1_FB7_Pos (7U)
+#define CAN_F4R1_FB7_Msk (0x1UL << CAN_F4R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F4R1_FB7 CAN_F4R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F4R1_FB8_Pos (8U)
+#define CAN_F4R1_FB8_Msk (0x1UL << CAN_F4R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F4R1_FB8 CAN_F4R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F4R1_FB9_Pos (9U)
+#define CAN_F4R1_FB9_Msk (0x1UL << CAN_F4R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F4R1_FB9 CAN_F4R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F4R1_FB10_Pos (10U)
+#define CAN_F4R1_FB10_Msk (0x1UL << CAN_F4R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F4R1_FB10 CAN_F4R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F4R1_FB11_Pos (11U)
+#define CAN_F4R1_FB11_Msk (0x1UL << CAN_F4R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F4R1_FB11 CAN_F4R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F4R1_FB12_Pos (12U)
+#define CAN_F4R1_FB12_Msk (0x1UL << CAN_F4R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F4R1_FB12 CAN_F4R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F4R1_FB13_Pos (13U)
+#define CAN_F4R1_FB13_Msk (0x1UL << CAN_F4R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F4R1_FB13 CAN_F4R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F4R1_FB14_Pos (14U)
+#define CAN_F4R1_FB14_Msk (0x1UL << CAN_F4R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F4R1_FB14 CAN_F4R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F4R1_FB15_Pos (15U)
+#define CAN_F4R1_FB15_Msk (0x1UL << CAN_F4R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F4R1_FB15 CAN_F4R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F4R1_FB16_Pos (16U)
+#define CAN_F4R1_FB16_Msk (0x1UL << CAN_F4R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F4R1_FB16 CAN_F4R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F4R1_FB17_Pos (17U)
+#define CAN_F4R1_FB17_Msk (0x1UL << CAN_F4R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F4R1_FB17 CAN_F4R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F4R1_FB18_Pos (18U)
+#define CAN_F4R1_FB18_Msk (0x1UL << CAN_F4R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F4R1_FB18 CAN_F4R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F4R1_FB19_Pos (19U)
+#define CAN_F4R1_FB19_Msk (0x1UL << CAN_F4R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F4R1_FB19 CAN_F4R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F4R1_FB20_Pos (20U)
+#define CAN_F4R1_FB20_Msk (0x1UL << CAN_F4R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F4R1_FB20 CAN_F4R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F4R1_FB21_Pos (21U)
+#define CAN_F4R1_FB21_Msk (0x1UL << CAN_F4R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F4R1_FB21 CAN_F4R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F4R1_FB22_Pos (22U)
+#define CAN_F4R1_FB22_Msk (0x1UL << CAN_F4R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F4R1_FB22 CAN_F4R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F4R1_FB23_Pos (23U)
+#define CAN_F4R1_FB23_Msk (0x1UL << CAN_F4R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F4R1_FB23 CAN_F4R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F4R1_FB24_Pos (24U)
+#define CAN_F4R1_FB24_Msk (0x1UL << CAN_F4R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F4R1_FB24 CAN_F4R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F4R1_FB25_Pos (25U)
+#define CAN_F4R1_FB25_Msk (0x1UL << CAN_F4R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F4R1_FB25 CAN_F4R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F4R1_FB26_Pos (26U)
+#define CAN_F4R1_FB26_Msk (0x1UL << CAN_F4R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F4R1_FB26 CAN_F4R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F4R1_FB27_Pos (27U)
+#define CAN_F4R1_FB27_Msk (0x1UL << CAN_F4R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F4R1_FB27 CAN_F4R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F4R1_FB28_Pos (28U)
+#define CAN_F4R1_FB28_Msk (0x1UL << CAN_F4R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F4R1_FB28 CAN_F4R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F4R1_FB29_Pos (29U)
+#define CAN_F4R1_FB29_Msk (0x1UL << CAN_F4R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F4R1_FB29 CAN_F4R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F4R1_FB30_Pos (30U)
+#define CAN_F4R1_FB30_Msk (0x1UL << CAN_F4R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F4R1_FB30 CAN_F4R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F4R1_FB31_Pos (31U)
+#define CAN_F4R1_FB31_Msk (0x1UL << CAN_F4R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F4R1_FB31 CAN_F4R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F5R1 register *******************/
+#define CAN_F5R1_FB0_Pos (0U)
+#define CAN_F5R1_FB0_Msk (0x1UL << CAN_F5R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F5R1_FB0 CAN_F5R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F5R1_FB1_Pos (1U)
+#define CAN_F5R1_FB1_Msk (0x1UL << CAN_F5R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F5R1_FB1 CAN_F5R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F5R1_FB2_Pos (2U)
+#define CAN_F5R1_FB2_Msk (0x1UL << CAN_F5R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F5R1_FB2 CAN_F5R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F5R1_FB3_Pos (3U)
+#define CAN_F5R1_FB3_Msk (0x1UL << CAN_F5R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F5R1_FB3 CAN_F5R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F5R1_FB4_Pos (4U)
+#define CAN_F5R1_FB4_Msk (0x1UL << CAN_F5R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F5R1_FB4 CAN_F5R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F5R1_FB5_Pos (5U)
+#define CAN_F5R1_FB5_Msk (0x1UL << CAN_F5R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F5R1_FB5 CAN_F5R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F5R1_FB6_Pos (6U)
+#define CAN_F5R1_FB6_Msk (0x1UL << CAN_F5R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F5R1_FB6 CAN_F5R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F5R1_FB7_Pos (7U)
+#define CAN_F5R1_FB7_Msk (0x1UL << CAN_F5R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F5R1_FB7 CAN_F5R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F5R1_FB8_Pos (8U)
+#define CAN_F5R1_FB8_Msk (0x1UL << CAN_F5R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F5R1_FB8 CAN_F5R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F5R1_FB9_Pos (9U)
+#define CAN_F5R1_FB9_Msk (0x1UL << CAN_F5R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F5R1_FB9 CAN_F5R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F5R1_FB10_Pos (10U)
+#define CAN_F5R1_FB10_Msk (0x1UL << CAN_F5R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F5R1_FB10 CAN_F5R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F5R1_FB11_Pos (11U)
+#define CAN_F5R1_FB11_Msk (0x1UL << CAN_F5R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F5R1_FB11 CAN_F5R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F5R1_FB12_Pos (12U)
+#define CAN_F5R1_FB12_Msk (0x1UL << CAN_F5R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F5R1_FB12 CAN_F5R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F5R1_FB13_Pos (13U)
+#define CAN_F5R1_FB13_Msk (0x1UL << CAN_F5R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F5R1_FB13 CAN_F5R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F5R1_FB14_Pos (14U)
+#define CAN_F5R1_FB14_Msk (0x1UL << CAN_F5R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F5R1_FB14 CAN_F5R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F5R1_FB15_Pos (15U)
+#define CAN_F5R1_FB15_Msk (0x1UL << CAN_F5R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F5R1_FB15 CAN_F5R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F5R1_FB16_Pos (16U)
+#define CAN_F5R1_FB16_Msk (0x1UL << CAN_F5R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F5R1_FB16 CAN_F5R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F5R1_FB17_Pos (17U)
+#define CAN_F5R1_FB17_Msk (0x1UL << CAN_F5R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F5R1_FB17 CAN_F5R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F5R1_FB18_Pos (18U)
+#define CAN_F5R1_FB18_Msk (0x1UL << CAN_F5R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F5R1_FB18 CAN_F5R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F5R1_FB19_Pos (19U)
+#define CAN_F5R1_FB19_Msk (0x1UL << CAN_F5R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F5R1_FB19 CAN_F5R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F5R1_FB20_Pos (20U)
+#define CAN_F5R1_FB20_Msk (0x1UL << CAN_F5R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F5R1_FB20 CAN_F5R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F5R1_FB21_Pos (21U)
+#define CAN_F5R1_FB21_Msk (0x1UL << CAN_F5R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F5R1_FB21 CAN_F5R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F5R1_FB22_Pos (22U)
+#define CAN_F5R1_FB22_Msk (0x1UL << CAN_F5R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F5R1_FB22 CAN_F5R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F5R1_FB23_Pos (23U)
+#define CAN_F5R1_FB23_Msk (0x1UL << CAN_F5R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F5R1_FB23 CAN_F5R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F5R1_FB24_Pos (24U)
+#define CAN_F5R1_FB24_Msk (0x1UL << CAN_F5R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F5R1_FB24 CAN_F5R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F5R1_FB25_Pos (25U)
+#define CAN_F5R1_FB25_Msk (0x1UL << CAN_F5R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F5R1_FB25 CAN_F5R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F5R1_FB26_Pos (26U)
+#define CAN_F5R1_FB26_Msk (0x1UL << CAN_F5R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F5R1_FB26 CAN_F5R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F5R1_FB27_Pos (27U)
+#define CAN_F5R1_FB27_Msk (0x1UL << CAN_F5R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F5R1_FB27 CAN_F5R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F5R1_FB28_Pos (28U)
+#define CAN_F5R1_FB28_Msk (0x1UL << CAN_F5R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F5R1_FB28 CAN_F5R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F5R1_FB29_Pos (29U)
+#define CAN_F5R1_FB29_Msk (0x1UL << CAN_F5R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F5R1_FB29 CAN_F5R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F5R1_FB30_Pos (30U)
+#define CAN_F5R1_FB30_Msk (0x1UL << CAN_F5R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F5R1_FB30 CAN_F5R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F5R1_FB31_Pos (31U)
+#define CAN_F5R1_FB31_Msk (0x1UL << CAN_F5R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F5R1_FB31 CAN_F5R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F6R1 register *******************/
+#define CAN_F6R1_FB0_Pos (0U)
+#define CAN_F6R1_FB0_Msk (0x1UL << CAN_F6R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F6R1_FB0 CAN_F6R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F6R1_FB1_Pos (1U)
+#define CAN_F6R1_FB1_Msk (0x1UL << CAN_F6R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F6R1_FB1 CAN_F6R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F6R1_FB2_Pos (2U)
+#define CAN_F6R1_FB2_Msk (0x1UL << CAN_F6R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F6R1_FB2 CAN_F6R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F6R1_FB3_Pos (3U)
+#define CAN_F6R1_FB3_Msk (0x1UL << CAN_F6R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F6R1_FB3 CAN_F6R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F6R1_FB4_Pos (4U)
+#define CAN_F6R1_FB4_Msk (0x1UL << CAN_F6R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F6R1_FB4 CAN_F6R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F6R1_FB5_Pos (5U)
+#define CAN_F6R1_FB5_Msk (0x1UL << CAN_F6R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F6R1_FB5 CAN_F6R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F6R1_FB6_Pos (6U)
+#define CAN_F6R1_FB6_Msk (0x1UL << CAN_F6R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F6R1_FB6 CAN_F6R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F6R1_FB7_Pos (7U)
+#define CAN_F6R1_FB7_Msk (0x1UL << CAN_F6R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F6R1_FB7 CAN_F6R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F6R1_FB8_Pos (8U)
+#define CAN_F6R1_FB8_Msk (0x1UL << CAN_F6R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F6R1_FB8 CAN_F6R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F6R1_FB9_Pos (9U)
+#define CAN_F6R1_FB9_Msk (0x1UL << CAN_F6R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F6R1_FB9 CAN_F6R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F6R1_FB10_Pos (10U)
+#define CAN_F6R1_FB10_Msk (0x1UL << CAN_F6R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F6R1_FB10 CAN_F6R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F6R1_FB11_Pos (11U)
+#define CAN_F6R1_FB11_Msk (0x1UL << CAN_F6R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F6R1_FB11 CAN_F6R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F6R1_FB12_Pos (12U)
+#define CAN_F6R1_FB12_Msk (0x1UL << CAN_F6R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F6R1_FB12 CAN_F6R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F6R1_FB13_Pos (13U)
+#define CAN_F6R1_FB13_Msk (0x1UL << CAN_F6R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F6R1_FB13 CAN_F6R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F6R1_FB14_Pos (14U)
+#define CAN_F6R1_FB14_Msk (0x1UL << CAN_F6R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F6R1_FB14 CAN_F6R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F6R1_FB15_Pos (15U)
+#define CAN_F6R1_FB15_Msk (0x1UL << CAN_F6R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F6R1_FB15 CAN_F6R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F6R1_FB16_Pos (16U)
+#define CAN_F6R1_FB16_Msk (0x1UL << CAN_F6R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F6R1_FB16 CAN_F6R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F6R1_FB17_Pos (17U)
+#define CAN_F6R1_FB17_Msk (0x1UL << CAN_F6R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F6R1_FB17 CAN_F6R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F6R1_FB18_Pos (18U)
+#define CAN_F6R1_FB18_Msk (0x1UL << CAN_F6R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F6R1_FB18 CAN_F6R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F6R1_FB19_Pos (19U)
+#define CAN_F6R1_FB19_Msk (0x1UL << CAN_F6R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F6R1_FB19 CAN_F6R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F6R1_FB20_Pos (20U)
+#define CAN_F6R1_FB20_Msk (0x1UL << CAN_F6R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F6R1_FB20 CAN_F6R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F6R1_FB21_Pos (21U)
+#define CAN_F6R1_FB21_Msk (0x1UL << CAN_F6R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F6R1_FB21 CAN_F6R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F6R1_FB22_Pos (22U)
+#define CAN_F6R1_FB22_Msk (0x1UL << CAN_F6R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F6R1_FB22 CAN_F6R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F6R1_FB23_Pos (23U)
+#define CAN_F6R1_FB23_Msk (0x1UL << CAN_F6R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F6R1_FB23 CAN_F6R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F6R1_FB24_Pos (24U)
+#define CAN_F6R1_FB24_Msk (0x1UL << CAN_F6R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F6R1_FB24 CAN_F6R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F6R1_FB25_Pos (25U)
+#define CAN_F6R1_FB25_Msk (0x1UL << CAN_F6R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F6R1_FB25 CAN_F6R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F6R1_FB26_Pos (26U)
+#define CAN_F6R1_FB26_Msk (0x1UL << CAN_F6R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F6R1_FB26 CAN_F6R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F6R1_FB27_Pos (27U)
+#define CAN_F6R1_FB27_Msk (0x1UL << CAN_F6R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F6R1_FB27 CAN_F6R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F6R1_FB28_Pos (28U)
+#define CAN_F6R1_FB28_Msk (0x1UL << CAN_F6R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F6R1_FB28 CAN_F6R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F6R1_FB29_Pos (29U)
+#define CAN_F6R1_FB29_Msk (0x1UL << CAN_F6R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F6R1_FB29 CAN_F6R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F6R1_FB30_Pos (30U)
+#define CAN_F6R1_FB30_Msk (0x1UL << CAN_F6R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F6R1_FB30 CAN_F6R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F6R1_FB31_Pos (31U)
+#define CAN_F6R1_FB31_Msk (0x1UL << CAN_F6R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F6R1_FB31 CAN_F6R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F7R1 register *******************/
+#define CAN_F7R1_FB0_Pos (0U)
+#define CAN_F7R1_FB0_Msk (0x1UL << CAN_F7R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F7R1_FB0 CAN_F7R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F7R1_FB1_Pos (1U)
+#define CAN_F7R1_FB1_Msk (0x1UL << CAN_F7R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F7R1_FB1 CAN_F7R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F7R1_FB2_Pos (2U)
+#define CAN_F7R1_FB2_Msk (0x1UL << CAN_F7R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F7R1_FB2 CAN_F7R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F7R1_FB3_Pos (3U)
+#define CAN_F7R1_FB3_Msk (0x1UL << CAN_F7R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F7R1_FB3 CAN_F7R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F7R1_FB4_Pos (4U)
+#define CAN_F7R1_FB4_Msk (0x1UL << CAN_F7R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F7R1_FB4 CAN_F7R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F7R1_FB5_Pos (5U)
+#define CAN_F7R1_FB5_Msk (0x1UL << CAN_F7R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F7R1_FB5 CAN_F7R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F7R1_FB6_Pos (6U)
+#define CAN_F7R1_FB6_Msk (0x1UL << CAN_F7R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F7R1_FB6 CAN_F7R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F7R1_FB7_Pos (7U)
+#define CAN_F7R1_FB7_Msk (0x1UL << CAN_F7R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F7R1_FB7 CAN_F7R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F7R1_FB8_Pos (8U)
+#define CAN_F7R1_FB8_Msk (0x1UL << CAN_F7R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F7R1_FB8 CAN_F7R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F7R1_FB9_Pos (9U)
+#define CAN_F7R1_FB9_Msk (0x1UL << CAN_F7R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F7R1_FB9 CAN_F7R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F7R1_FB10_Pos (10U)
+#define CAN_F7R1_FB10_Msk (0x1UL << CAN_F7R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F7R1_FB10 CAN_F7R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F7R1_FB11_Pos (11U)
+#define CAN_F7R1_FB11_Msk (0x1UL << CAN_F7R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F7R1_FB11 CAN_F7R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F7R1_FB12_Pos (12U)
+#define CAN_F7R1_FB12_Msk (0x1UL << CAN_F7R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F7R1_FB12 CAN_F7R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F7R1_FB13_Pos (13U)
+#define CAN_F7R1_FB13_Msk (0x1UL << CAN_F7R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F7R1_FB13 CAN_F7R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F7R1_FB14_Pos (14U)
+#define CAN_F7R1_FB14_Msk (0x1UL << CAN_F7R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F7R1_FB14 CAN_F7R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F7R1_FB15_Pos (15U)
+#define CAN_F7R1_FB15_Msk (0x1UL << CAN_F7R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F7R1_FB15 CAN_F7R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F7R1_FB16_Pos (16U)
+#define CAN_F7R1_FB16_Msk (0x1UL << CAN_F7R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F7R1_FB16 CAN_F7R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F7R1_FB17_Pos (17U)
+#define CAN_F7R1_FB17_Msk (0x1UL << CAN_F7R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F7R1_FB17 CAN_F7R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F7R1_FB18_Pos (18U)
+#define CAN_F7R1_FB18_Msk (0x1UL << CAN_F7R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F7R1_FB18 CAN_F7R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F7R1_FB19_Pos (19U)
+#define CAN_F7R1_FB19_Msk (0x1UL << CAN_F7R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F7R1_FB19 CAN_F7R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F7R1_FB20_Pos (20U)
+#define CAN_F7R1_FB20_Msk (0x1UL << CAN_F7R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F7R1_FB20 CAN_F7R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F7R1_FB21_Pos (21U)
+#define CAN_F7R1_FB21_Msk (0x1UL << CAN_F7R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F7R1_FB21 CAN_F7R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F7R1_FB22_Pos (22U)
+#define CAN_F7R1_FB22_Msk (0x1UL << CAN_F7R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F7R1_FB22 CAN_F7R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F7R1_FB23_Pos (23U)
+#define CAN_F7R1_FB23_Msk (0x1UL << CAN_F7R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F7R1_FB23 CAN_F7R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F7R1_FB24_Pos (24U)
+#define CAN_F7R1_FB24_Msk (0x1UL << CAN_F7R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F7R1_FB24 CAN_F7R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F7R1_FB25_Pos (25U)
+#define CAN_F7R1_FB25_Msk (0x1UL << CAN_F7R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F7R1_FB25 CAN_F7R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F7R1_FB26_Pos (26U)
+#define CAN_F7R1_FB26_Msk (0x1UL << CAN_F7R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F7R1_FB26 CAN_F7R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F7R1_FB27_Pos (27U)
+#define CAN_F7R1_FB27_Msk (0x1UL << CAN_F7R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F7R1_FB27 CAN_F7R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F7R1_FB28_Pos (28U)
+#define CAN_F7R1_FB28_Msk (0x1UL << CAN_F7R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F7R1_FB28 CAN_F7R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F7R1_FB29_Pos (29U)
+#define CAN_F7R1_FB29_Msk (0x1UL << CAN_F7R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F7R1_FB29 CAN_F7R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F7R1_FB30_Pos (30U)
+#define CAN_F7R1_FB30_Msk (0x1UL << CAN_F7R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F7R1_FB30 CAN_F7R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F7R1_FB31_Pos (31U)
+#define CAN_F7R1_FB31_Msk (0x1UL << CAN_F7R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F7R1_FB31 CAN_F7R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F8R1 register *******************/
+#define CAN_F8R1_FB0_Pos (0U)
+#define CAN_F8R1_FB0_Msk (0x1UL << CAN_F8R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F8R1_FB0 CAN_F8R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F8R1_FB1_Pos (1U)
+#define CAN_F8R1_FB1_Msk (0x1UL << CAN_F8R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F8R1_FB1 CAN_F8R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F8R1_FB2_Pos (2U)
+#define CAN_F8R1_FB2_Msk (0x1UL << CAN_F8R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F8R1_FB2 CAN_F8R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F8R1_FB3_Pos (3U)
+#define CAN_F8R1_FB3_Msk (0x1UL << CAN_F8R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F8R1_FB3 CAN_F8R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F8R1_FB4_Pos (4U)
+#define CAN_F8R1_FB4_Msk (0x1UL << CAN_F8R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F8R1_FB4 CAN_F8R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F8R1_FB5_Pos (5U)
+#define CAN_F8R1_FB5_Msk (0x1UL << CAN_F8R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F8R1_FB5 CAN_F8R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F8R1_FB6_Pos (6U)
+#define CAN_F8R1_FB6_Msk (0x1UL << CAN_F8R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F8R1_FB6 CAN_F8R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F8R1_FB7_Pos (7U)
+#define CAN_F8R1_FB7_Msk (0x1UL << CAN_F8R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F8R1_FB7 CAN_F8R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F8R1_FB8_Pos (8U)
+#define CAN_F8R1_FB8_Msk (0x1UL << CAN_F8R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F8R1_FB8 CAN_F8R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F8R1_FB9_Pos (9U)
+#define CAN_F8R1_FB9_Msk (0x1UL << CAN_F8R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F8R1_FB9 CAN_F8R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F8R1_FB10_Pos (10U)
+#define CAN_F8R1_FB10_Msk (0x1UL << CAN_F8R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F8R1_FB10 CAN_F8R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F8R1_FB11_Pos (11U)
+#define CAN_F8R1_FB11_Msk (0x1UL << CAN_F8R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F8R1_FB11 CAN_F8R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F8R1_FB12_Pos (12U)
+#define CAN_F8R1_FB12_Msk (0x1UL << CAN_F8R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F8R1_FB12 CAN_F8R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F8R1_FB13_Pos (13U)
+#define CAN_F8R1_FB13_Msk (0x1UL << CAN_F8R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F8R1_FB13 CAN_F8R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F8R1_FB14_Pos (14U)
+#define CAN_F8R1_FB14_Msk (0x1UL << CAN_F8R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F8R1_FB14 CAN_F8R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F8R1_FB15_Pos (15U)
+#define CAN_F8R1_FB15_Msk (0x1UL << CAN_F8R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F8R1_FB15 CAN_F8R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F8R1_FB16_Pos (16U)
+#define CAN_F8R1_FB16_Msk (0x1UL << CAN_F8R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F8R1_FB16 CAN_F8R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F8R1_FB17_Pos (17U)
+#define CAN_F8R1_FB17_Msk (0x1UL << CAN_F8R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F8R1_FB17 CAN_F8R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F8R1_FB18_Pos (18U)
+#define CAN_F8R1_FB18_Msk (0x1UL << CAN_F8R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F8R1_FB18 CAN_F8R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F8R1_FB19_Pos (19U)
+#define CAN_F8R1_FB19_Msk (0x1UL << CAN_F8R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F8R1_FB19 CAN_F8R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F8R1_FB20_Pos (20U)
+#define CAN_F8R1_FB20_Msk (0x1UL << CAN_F8R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F8R1_FB20 CAN_F8R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F8R1_FB21_Pos (21U)
+#define CAN_F8R1_FB21_Msk (0x1UL << CAN_F8R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F8R1_FB21 CAN_F8R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F8R1_FB22_Pos (22U)
+#define CAN_F8R1_FB22_Msk (0x1UL << CAN_F8R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F8R1_FB22 CAN_F8R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F8R1_FB23_Pos (23U)
+#define CAN_F8R1_FB23_Msk (0x1UL << CAN_F8R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F8R1_FB23 CAN_F8R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F8R1_FB24_Pos (24U)
+#define CAN_F8R1_FB24_Msk (0x1UL << CAN_F8R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F8R1_FB24 CAN_F8R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F8R1_FB25_Pos (25U)
+#define CAN_F8R1_FB25_Msk (0x1UL << CAN_F8R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F8R1_FB25 CAN_F8R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F8R1_FB26_Pos (26U)
+#define CAN_F8R1_FB26_Msk (0x1UL << CAN_F8R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F8R1_FB26 CAN_F8R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F8R1_FB27_Pos (27U)
+#define CAN_F8R1_FB27_Msk (0x1UL << CAN_F8R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F8R1_FB27 CAN_F8R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F8R1_FB28_Pos (28U)
+#define CAN_F8R1_FB28_Msk (0x1UL << CAN_F8R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F8R1_FB28 CAN_F8R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F8R1_FB29_Pos (29U)
+#define CAN_F8R1_FB29_Msk (0x1UL << CAN_F8R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F8R1_FB29 CAN_F8R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F8R1_FB30_Pos (30U)
+#define CAN_F8R1_FB30_Msk (0x1UL << CAN_F8R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F8R1_FB30 CAN_F8R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F8R1_FB31_Pos (31U)
+#define CAN_F8R1_FB31_Msk (0x1UL << CAN_F8R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F8R1_FB31 CAN_F8R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F9R1 register *******************/
+#define CAN_F9R1_FB0_Pos (0U)
+#define CAN_F9R1_FB0_Msk (0x1UL << CAN_F9R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F9R1_FB0 CAN_F9R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F9R1_FB1_Pos (1U)
+#define CAN_F9R1_FB1_Msk (0x1UL << CAN_F9R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F9R1_FB1 CAN_F9R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F9R1_FB2_Pos (2U)
+#define CAN_F9R1_FB2_Msk (0x1UL << CAN_F9R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F9R1_FB2 CAN_F9R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F9R1_FB3_Pos (3U)
+#define CAN_F9R1_FB3_Msk (0x1UL << CAN_F9R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F9R1_FB3 CAN_F9R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F9R1_FB4_Pos (4U)
+#define CAN_F9R1_FB4_Msk (0x1UL << CAN_F9R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F9R1_FB4 CAN_F9R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F9R1_FB5_Pos (5U)
+#define CAN_F9R1_FB5_Msk (0x1UL << CAN_F9R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F9R1_FB5 CAN_F9R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F9R1_FB6_Pos (6U)
+#define CAN_F9R1_FB6_Msk (0x1UL << CAN_F9R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F9R1_FB6 CAN_F9R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F9R1_FB7_Pos (7U)
+#define CAN_F9R1_FB7_Msk (0x1UL << CAN_F9R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F9R1_FB7 CAN_F9R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F9R1_FB8_Pos (8U)
+#define CAN_F9R1_FB8_Msk (0x1UL << CAN_F9R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F9R1_FB8 CAN_F9R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F9R1_FB9_Pos (9U)
+#define CAN_F9R1_FB9_Msk (0x1UL << CAN_F9R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F9R1_FB9 CAN_F9R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F9R1_FB10_Pos (10U)
+#define CAN_F9R1_FB10_Msk (0x1UL << CAN_F9R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F9R1_FB10 CAN_F9R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F9R1_FB11_Pos (11U)
+#define CAN_F9R1_FB11_Msk (0x1UL << CAN_F9R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F9R1_FB11 CAN_F9R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F9R1_FB12_Pos (12U)
+#define CAN_F9R1_FB12_Msk (0x1UL << CAN_F9R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F9R1_FB12 CAN_F9R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F9R1_FB13_Pos (13U)
+#define CAN_F9R1_FB13_Msk (0x1UL << CAN_F9R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F9R1_FB13 CAN_F9R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F9R1_FB14_Pos (14U)
+#define CAN_F9R1_FB14_Msk (0x1UL << CAN_F9R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F9R1_FB14 CAN_F9R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F9R1_FB15_Pos (15U)
+#define CAN_F9R1_FB15_Msk (0x1UL << CAN_F9R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F9R1_FB15 CAN_F9R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F9R1_FB16_Pos (16U)
+#define CAN_F9R1_FB16_Msk (0x1UL << CAN_F9R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F9R1_FB16 CAN_F9R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F9R1_FB17_Pos (17U)
+#define CAN_F9R1_FB17_Msk (0x1UL << CAN_F9R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F9R1_FB17 CAN_F9R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F9R1_FB18_Pos (18U)
+#define CAN_F9R1_FB18_Msk (0x1UL << CAN_F9R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F9R1_FB18 CAN_F9R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F9R1_FB19_Pos (19U)
+#define CAN_F9R1_FB19_Msk (0x1UL << CAN_F9R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F9R1_FB19 CAN_F9R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F9R1_FB20_Pos (20U)
+#define CAN_F9R1_FB20_Msk (0x1UL << CAN_F9R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F9R1_FB20 CAN_F9R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F9R1_FB21_Pos (21U)
+#define CAN_F9R1_FB21_Msk (0x1UL << CAN_F9R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F9R1_FB21 CAN_F9R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F9R1_FB22_Pos (22U)
+#define CAN_F9R1_FB22_Msk (0x1UL << CAN_F9R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F9R1_FB22 CAN_F9R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F9R1_FB23_Pos (23U)
+#define CAN_F9R1_FB23_Msk (0x1UL << CAN_F9R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F9R1_FB23 CAN_F9R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F9R1_FB24_Pos (24U)
+#define CAN_F9R1_FB24_Msk (0x1UL << CAN_F9R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F9R1_FB24 CAN_F9R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F9R1_FB25_Pos (25U)
+#define CAN_F9R1_FB25_Msk (0x1UL << CAN_F9R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F9R1_FB25 CAN_F9R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F9R1_FB26_Pos (26U)
+#define CAN_F9R1_FB26_Msk (0x1UL << CAN_F9R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F9R1_FB26 CAN_F9R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F9R1_FB27_Pos (27U)
+#define CAN_F9R1_FB27_Msk (0x1UL << CAN_F9R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F9R1_FB27 CAN_F9R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F9R1_FB28_Pos (28U)
+#define CAN_F9R1_FB28_Msk (0x1UL << CAN_F9R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F9R1_FB28 CAN_F9R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F9R1_FB29_Pos (29U)
+#define CAN_F9R1_FB29_Msk (0x1UL << CAN_F9R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F9R1_FB29 CAN_F9R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F9R1_FB30_Pos (30U)
+#define CAN_F9R1_FB30_Msk (0x1UL << CAN_F9R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F9R1_FB30 CAN_F9R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F9R1_FB31_Pos (31U)
+#define CAN_F9R1_FB31_Msk (0x1UL << CAN_F9R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F9R1_FB31 CAN_F9R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F10R1 register ******************/
+#define CAN_F10R1_FB0_Pos (0U)
+#define CAN_F10R1_FB0_Msk (0x1UL << CAN_F10R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F10R1_FB0 CAN_F10R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F10R1_FB1_Pos (1U)
+#define CAN_F10R1_FB1_Msk (0x1UL << CAN_F10R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F10R1_FB1 CAN_F10R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F10R1_FB2_Pos (2U)
+#define CAN_F10R1_FB2_Msk (0x1UL << CAN_F10R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F10R1_FB2 CAN_F10R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F10R1_FB3_Pos (3U)
+#define CAN_F10R1_FB3_Msk (0x1UL << CAN_F10R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F10R1_FB3 CAN_F10R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F10R1_FB4_Pos (4U)
+#define CAN_F10R1_FB4_Msk (0x1UL << CAN_F10R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F10R1_FB4 CAN_F10R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F10R1_FB5_Pos (5U)
+#define CAN_F10R1_FB5_Msk (0x1UL << CAN_F10R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F10R1_FB5 CAN_F10R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F10R1_FB6_Pos (6U)
+#define CAN_F10R1_FB6_Msk (0x1UL << CAN_F10R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F10R1_FB6 CAN_F10R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F10R1_FB7_Pos (7U)
+#define CAN_F10R1_FB7_Msk (0x1UL << CAN_F10R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F10R1_FB7 CAN_F10R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F10R1_FB8_Pos (8U)
+#define CAN_F10R1_FB8_Msk (0x1UL << CAN_F10R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F10R1_FB8 CAN_F10R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F10R1_FB9_Pos (9U)
+#define CAN_F10R1_FB9_Msk (0x1UL << CAN_F10R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F10R1_FB9 CAN_F10R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F10R1_FB10_Pos (10U)
+#define CAN_F10R1_FB10_Msk (0x1UL << CAN_F10R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F10R1_FB10 CAN_F10R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F10R1_FB11_Pos (11U)
+#define CAN_F10R1_FB11_Msk (0x1UL << CAN_F10R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F10R1_FB11 CAN_F10R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F10R1_FB12_Pos (12U)
+#define CAN_F10R1_FB12_Msk (0x1UL << CAN_F10R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F10R1_FB12 CAN_F10R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F10R1_FB13_Pos (13U)
+#define CAN_F10R1_FB13_Msk (0x1UL << CAN_F10R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F10R1_FB13 CAN_F10R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F10R1_FB14_Pos (14U)
+#define CAN_F10R1_FB14_Msk (0x1UL << CAN_F10R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F10R1_FB14 CAN_F10R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F10R1_FB15_Pos (15U)
+#define CAN_F10R1_FB15_Msk (0x1UL << CAN_F10R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F10R1_FB15 CAN_F10R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F10R1_FB16_Pos (16U)
+#define CAN_F10R1_FB16_Msk (0x1UL << CAN_F10R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F10R1_FB16 CAN_F10R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F10R1_FB17_Pos (17U)
+#define CAN_F10R1_FB17_Msk (0x1UL << CAN_F10R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F10R1_FB17 CAN_F10R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F10R1_FB18_Pos (18U)
+#define CAN_F10R1_FB18_Msk (0x1UL << CAN_F10R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F10R1_FB18 CAN_F10R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F10R1_FB19_Pos (19U)
+#define CAN_F10R1_FB19_Msk (0x1UL << CAN_F10R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F10R1_FB19 CAN_F10R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F10R1_FB20_Pos (20U)
+#define CAN_F10R1_FB20_Msk (0x1UL << CAN_F10R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F10R1_FB20 CAN_F10R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F10R1_FB21_Pos (21U)
+#define CAN_F10R1_FB21_Msk (0x1UL << CAN_F10R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F10R1_FB21 CAN_F10R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F10R1_FB22_Pos (22U)
+#define CAN_F10R1_FB22_Msk (0x1UL << CAN_F10R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F10R1_FB22 CAN_F10R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F10R1_FB23_Pos (23U)
+#define CAN_F10R1_FB23_Msk (0x1UL << CAN_F10R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F10R1_FB23 CAN_F10R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F10R1_FB24_Pos (24U)
+#define CAN_F10R1_FB24_Msk (0x1UL << CAN_F10R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F10R1_FB24 CAN_F10R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F10R1_FB25_Pos (25U)
+#define CAN_F10R1_FB25_Msk (0x1UL << CAN_F10R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F10R1_FB25 CAN_F10R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F10R1_FB26_Pos (26U)
+#define CAN_F10R1_FB26_Msk (0x1UL << CAN_F10R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F10R1_FB26 CAN_F10R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F10R1_FB27_Pos (27U)
+#define CAN_F10R1_FB27_Msk (0x1UL << CAN_F10R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F10R1_FB27 CAN_F10R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F10R1_FB28_Pos (28U)
+#define CAN_F10R1_FB28_Msk (0x1UL << CAN_F10R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F10R1_FB28 CAN_F10R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F10R1_FB29_Pos (29U)
+#define CAN_F10R1_FB29_Msk (0x1UL << CAN_F10R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F10R1_FB29 CAN_F10R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F10R1_FB30_Pos (30U)
+#define CAN_F10R1_FB30_Msk (0x1UL << CAN_F10R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F10R1_FB30 CAN_F10R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F10R1_FB31_Pos (31U)
+#define CAN_F10R1_FB31_Msk (0x1UL << CAN_F10R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F10R1_FB31 CAN_F10R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F11R1 register ******************/
+#define CAN_F11R1_FB0_Pos (0U)
+#define CAN_F11R1_FB0_Msk (0x1UL << CAN_F11R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F11R1_FB0 CAN_F11R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F11R1_FB1_Pos (1U)
+#define CAN_F11R1_FB1_Msk (0x1UL << CAN_F11R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F11R1_FB1 CAN_F11R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F11R1_FB2_Pos (2U)
+#define CAN_F11R1_FB2_Msk (0x1UL << CAN_F11R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F11R1_FB2 CAN_F11R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F11R1_FB3_Pos (3U)
+#define CAN_F11R1_FB3_Msk (0x1UL << CAN_F11R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F11R1_FB3 CAN_F11R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F11R1_FB4_Pos (4U)
+#define CAN_F11R1_FB4_Msk (0x1UL << CAN_F11R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F11R1_FB4 CAN_F11R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F11R1_FB5_Pos (5U)
+#define CAN_F11R1_FB5_Msk (0x1UL << CAN_F11R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F11R1_FB5 CAN_F11R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F11R1_FB6_Pos (6U)
+#define CAN_F11R1_FB6_Msk (0x1UL << CAN_F11R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F11R1_FB6 CAN_F11R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F11R1_FB7_Pos (7U)
+#define CAN_F11R1_FB7_Msk (0x1UL << CAN_F11R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F11R1_FB7 CAN_F11R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F11R1_FB8_Pos (8U)
+#define CAN_F11R1_FB8_Msk (0x1UL << CAN_F11R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F11R1_FB8 CAN_F11R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F11R1_FB9_Pos (9U)
+#define CAN_F11R1_FB9_Msk (0x1UL << CAN_F11R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F11R1_FB9 CAN_F11R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F11R1_FB10_Pos (10U)
+#define CAN_F11R1_FB10_Msk (0x1UL << CAN_F11R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F11R1_FB10 CAN_F11R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F11R1_FB11_Pos (11U)
+#define CAN_F11R1_FB11_Msk (0x1UL << CAN_F11R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F11R1_FB11 CAN_F11R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F11R1_FB12_Pos (12U)
+#define CAN_F11R1_FB12_Msk (0x1UL << CAN_F11R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F11R1_FB12 CAN_F11R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F11R1_FB13_Pos (13U)
+#define CAN_F11R1_FB13_Msk (0x1UL << CAN_F11R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F11R1_FB13 CAN_F11R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F11R1_FB14_Pos (14U)
+#define CAN_F11R1_FB14_Msk (0x1UL << CAN_F11R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F11R1_FB14 CAN_F11R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F11R1_FB15_Pos (15U)
+#define CAN_F11R1_FB15_Msk (0x1UL << CAN_F11R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F11R1_FB15 CAN_F11R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F11R1_FB16_Pos (16U)
+#define CAN_F11R1_FB16_Msk (0x1UL << CAN_F11R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F11R1_FB16 CAN_F11R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F11R1_FB17_Pos (17U)
+#define CAN_F11R1_FB17_Msk (0x1UL << CAN_F11R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F11R1_FB17 CAN_F11R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F11R1_FB18_Pos (18U)
+#define CAN_F11R1_FB18_Msk (0x1UL << CAN_F11R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F11R1_FB18 CAN_F11R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F11R1_FB19_Pos (19U)
+#define CAN_F11R1_FB19_Msk (0x1UL << CAN_F11R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F11R1_FB19 CAN_F11R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F11R1_FB20_Pos (20U)
+#define CAN_F11R1_FB20_Msk (0x1UL << CAN_F11R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F11R1_FB20 CAN_F11R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F11R1_FB21_Pos (21U)
+#define CAN_F11R1_FB21_Msk (0x1UL << CAN_F11R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F11R1_FB21 CAN_F11R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F11R1_FB22_Pos (22U)
+#define CAN_F11R1_FB22_Msk (0x1UL << CAN_F11R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F11R1_FB22 CAN_F11R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F11R1_FB23_Pos (23U)
+#define CAN_F11R1_FB23_Msk (0x1UL << CAN_F11R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F11R1_FB23 CAN_F11R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F11R1_FB24_Pos (24U)
+#define CAN_F11R1_FB24_Msk (0x1UL << CAN_F11R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F11R1_FB24 CAN_F11R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F11R1_FB25_Pos (25U)
+#define CAN_F11R1_FB25_Msk (0x1UL << CAN_F11R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F11R1_FB25 CAN_F11R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F11R1_FB26_Pos (26U)
+#define CAN_F11R1_FB26_Msk (0x1UL << CAN_F11R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F11R1_FB26 CAN_F11R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F11R1_FB27_Pos (27U)
+#define CAN_F11R1_FB27_Msk (0x1UL << CAN_F11R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F11R1_FB27 CAN_F11R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F11R1_FB28_Pos (28U)
+#define CAN_F11R1_FB28_Msk (0x1UL << CAN_F11R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F11R1_FB28 CAN_F11R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F11R1_FB29_Pos (29U)
+#define CAN_F11R1_FB29_Msk (0x1UL << CAN_F11R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F11R1_FB29 CAN_F11R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F11R1_FB30_Pos (30U)
+#define CAN_F11R1_FB30_Msk (0x1UL << CAN_F11R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F11R1_FB30 CAN_F11R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F11R1_FB31_Pos (31U)
+#define CAN_F11R1_FB31_Msk (0x1UL << CAN_F11R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F11R1_FB31 CAN_F11R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F12R1 register ******************/
+#define CAN_F12R1_FB0_Pos (0U)
+#define CAN_F12R1_FB0_Msk (0x1UL << CAN_F12R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F12R1_FB0 CAN_F12R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F12R1_FB1_Pos (1U)
+#define CAN_F12R1_FB1_Msk (0x1UL << CAN_F12R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F12R1_FB1 CAN_F12R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F12R1_FB2_Pos (2U)
+#define CAN_F12R1_FB2_Msk (0x1UL << CAN_F12R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F12R1_FB2 CAN_F12R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F12R1_FB3_Pos (3U)
+#define CAN_F12R1_FB3_Msk (0x1UL << CAN_F12R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F12R1_FB3 CAN_F12R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F12R1_FB4_Pos (4U)
+#define CAN_F12R1_FB4_Msk (0x1UL << CAN_F12R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F12R1_FB4 CAN_F12R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F12R1_FB5_Pos (5U)
+#define CAN_F12R1_FB5_Msk (0x1UL << CAN_F12R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F12R1_FB5 CAN_F12R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F12R1_FB6_Pos (6U)
+#define CAN_F12R1_FB6_Msk (0x1UL << CAN_F12R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F12R1_FB6 CAN_F12R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F12R1_FB7_Pos (7U)
+#define CAN_F12R1_FB7_Msk (0x1UL << CAN_F12R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F12R1_FB7 CAN_F12R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F12R1_FB8_Pos (8U)
+#define CAN_F12R1_FB8_Msk (0x1UL << CAN_F12R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F12R1_FB8 CAN_F12R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F12R1_FB9_Pos (9U)
+#define CAN_F12R1_FB9_Msk (0x1UL << CAN_F12R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F12R1_FB9 CAN_F12R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F12R1_FB10_Pos (10U)
+#define CAN_F12R1_FB10_Msk (0x1UL << CAN_F12R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F12R1_FB10 CAN_F12R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F12R1_FB11_Pos (11U)
+#define CAN_F12R1_FB11_Msk (0x1UL << CAN_F12R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F12R1_FB11 CAN_F12R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F12R1_FB12_Pos (12U)
+#define CAN_F12R1_FB12_Msk (0x1UL << CAN_F12R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F12R1_FB12 CAN_F12R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F12R1_FB13_Pos (13U)
+#define CAN_F12R1_FB13_Msk (0x1UL << CAN_F12R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F12R1_FB13 CAN_F12R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F12R1_FB14_Pos (14U)
+#define CAN_F12R1_FB14_Msk (0x1UL << CAN_F12R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F12R1_FB14 CAN_F12R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F12R1_FB15_Pos (15U)
+#define CAN_F12R1_FB15_Msk (0x1UL << CAN_F12R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F12R1_FB15 CAN_F12R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F12R1_FB16_Pos (16U)
+#define CAN_F12R1_FB16_Msk (0x1UL << CAN_F12R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F12R1_FB16 CAN_F12R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F12R1_FB17_Pos (17U)
+#define CAN_F12R1_FB17_Msk (0x1UL << CAN_F12R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F12R1_FB17 CAN_F12R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F12R1_FB18_Pos (18U)
+#define CAN_F12R1_FB18_Msk (0x1UL << CAN_F12R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F12R1_FB18 CAN_F12R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F12R1_FB19_Pos (19U)
+#define CAN_F12R1_FB19_Msk (0x1UL << CAN_F12R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F12R1_FB19 CAN_F12R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F12R1_FB20_Pos (20U)
+#define CAN_F12R1_FB20_Msk (0x1UL << CAN_F12R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F12R1_FB20 CAN_F12R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F12R1_FB21_Pos (21U)
+#define CAN_F12R1_FB21_Msk (0x1UL << CAN_F12R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F12R1_FB21 CAN_F12R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F12R1_FB22_Pos (22U)
+#define CAN_F12R1_FB22_Msk (0x1UL << CAN_F12R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F12R1_FB22 CAN_F12R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F12R1_FB23_Pos (23U)
+#define CAN_F12R1_FB23_Msk (0x1UL << CAN_F12R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F12R1_FB23 CAN_F12R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F12R1_FB24_Pos (24U)
+#define CAN_F12R1_FB24_Msk (0x1UL << CAN_F12R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F12R1_FB24 CAN_F12R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F12R1_FB25_Pos (25U)
+#define CAN_F12R1_FB25_Msk (0x1UL << CAN_F12R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F12R1_FB25 CAN_F12R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F12R1_FB26_Pos (26U)
+#define CAN_F12R1_FB26_Msk (0x1UL << CAN_F12R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F12R1_FB26 CAN_F12R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F12R1_FB27_Pos (27U)
+#define CAN_F12R1_FB27_Msk (0x1UL << CAN_F12R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F12R1_FB27 CAN_F12R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F12R1_FB28_Pos (28U)
+#define CAN_F12R1_FB28_Msk (0x1UL << CAN_F12R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F12R1_FB28 CAN_F12R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F12R1_FB29_Pos (29U)
+#define CAN_F12R1_FB29_Msk (0x1UL << CAN_F12R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F12R1_FB29 CAN_F12R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F12R1_FB30_Pos (30U)
+#define CAN_F12R1_FB30_Msk (0x1UL << CAN_F12R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F12R1_FB30 CAN_F12R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F12R1_FB31_Pos (31U)
+#define CAN_F12R1_FB31_Msk (0x1UL << CAN_F12R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F12R1_FB31 CAN_F12R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F13R1 register ******************/
+#define CAN_F13R1_FB0_Pos (0U)
+#define CAN_F13R1_FB0_Msk (0x1UL << CAN_F13R1_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F13R1_FB0 CAN_F13R1_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F13R1_FB1_Pos (1U)
+#define CAN_F13R1_FB1_Msk (0x1UL << CAN_F13R1_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F13R1_FB1 CAN_F13R1_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F13R1_FB2_Pos (2U)
+#define CAN_F13R1_FB2_Msk (0x1UL << CAN_F13R1_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F13R1_FB2 CAN_F13R1_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F13R1_FB3_Pos (3U)
+#define CAN_F13R1_FB3_Msk (0x1UL << CAN_F13R1_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F13R1_FB3 CAN_F13R1_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F13R1_FB4_Pos (4U)
+#define CAN_F13R1_FB4_Msk (0x1UL << CAN_F13R1_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F13R1_FB4 CAN_F13R1_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F13R1_FB5_Pos (5U)
+#define CAN_F13R1_FB5_Msk (0x1UL << CAN_F13R1_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F13R1_FB5 CAN_F13R1_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F13R1_FB6_Pos (6U)
+#define CAN_F13R1_FB6_Msk (0x1UL << CAN_F13R1_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F13R1_FB6 CAN_F13R1_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F13R1_FB7_Pos (7U)
+#define CAN_F13R1_FB7_Msk (0x1UL << CAN_F13R1_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F13R1_FB7 CAN_F13R1_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F13R1_FB8_Pos (8U)
+#define CAN_F13R1_FB8_Msk (0x1UL << CAN_F13R1_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F13R1_FB8 CAN_F13R1_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F13R1_FB9_Pos (9U)
+#define CAN_F13R1_FB9_Msk (0x1UL << CAN_F13R1_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F13R1_FB9 CAN_F13R1_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F13R1_FB10_Pos (10U)
+#define CAN_F13R1_FB10_Msk (0x1UL << CAN_F13R1_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F13R1_FB10 CAN_F13R1_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F13R1_FB11_Pos (11U)
+#define CAN_F13R1_FB11_Msk (0x1UL << CAN_F13R1_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F13R1_FB11 CAN_F13R1_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F13R1_FB12_Pos (12U)
+#define CAN_F13R1_FB12_Msk (0x1UL << CAN_F13R1_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F13R1_FB12 CAN_F13R1_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F13R1_FB13_Pos (13U)
+#define CAN_F13R1_FB13_Msk (0x1UL << CAN_F13R1_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F13R1_FB13 CAN_F13R1_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F13R1_FB14_Pos (14U)
+#define CAN_F13R1_FB14_Msk (0x1UL << CAN_F13R1_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F13R1_FB14 CAN_F13R1_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F13R1_FB15_Pos (15U)
+#define CAN_F13R1_FB15_Msk (0x1UL << CAN_F13R1_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F13R1_FB15 CAN_F13R1_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F13R1_FB16_Pos (16U)
+#define CAN_F13R1_FB16_Msk (0x1UL << CAN_F13R1_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F13R1_FB16 CAN_F13R1_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F13R1_FB17_Pos (17U)
+#define CAN_F13R1_FB17_Msk (0x1UL << CAN_F13R1_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F13R1_FB17 CAN_F13R1_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F13R1_FB18_Pos (18U)
+#define CAN_F13R1_FB18_Msk (0x1UL << CAN_F13R1_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F13R1_FB18 CAN_F13R1_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F13R1_FB19_Pos (19U)
+#define CAN_F13R1_FB19_Msk (0x1UL << CAN_F13R1_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F13R1_FB19 CAN_F13R1_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F13R1_FB20_Pos (20U)
+#define CAN_F13R1_FB20_Msk (0x1UL << CAN_F13R1_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F13R1_FB20 CAN_F13R1_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F13R1_FB21_Pos (21U)
+#define CAN_F13R1_FB21_Msk (0x1UL << CAN_F13R1_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F13R1_FB21 CAN_F13R1_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F13R1_FB22_Pos (22U)
+#define CAN_F13R1_FB22_Msk (0x1UL << CAN_F13R1_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F13R1_FB22 CAN_F13R1_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F13R1_FB23_Pos (23U)
+#define CAN_F13R1_FB23_Msk (0x1UL << CAN_F13R1_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F13R1_FB23 CAN_F13R1_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F13R1_FB24_Pos (24U)
+#define CAN_F13R1_FB24_Msk (0x1UL << CAN_F13R1_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F13R1_FB24 CAN_F13R1_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F13R1_FB25_Pos (25U)
+#define CAN_F13R1_FB25_Msk (0x1UL << CAN_F13R1_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F13R1_FB25 CAN_F13R1_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F13R1_FB26_Pos (26U)
+#define CAN_F13R1_FB26_Msk (0x1UL << CAN_F13R1_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F13R1_FB26 CAN_F13R1_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F13R1_FB27_Pos (27U)
+#define CAN_F13R1_FB27_Msk (0x1UL << CAN_F13R1_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F13R1_FB27 CAN_F13R1_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F13R1_FB28_Pos (28U)
+#define CAN_F13R1_FB28_Msk (0x1UL << CAN_F13R1_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F13R1_FB28 CAN_F13R1_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F13R1_FB29_Pos (29U)
+#define CAN_F13R1_FB29_Msk (0x1UL << CAN_F13R1_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F13R1_FB29 CAN_F13R1_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F13R1_FB30_Pos (30U)
+#define CAN_F13R1_FB30_Msk (0x1UL << CAN_F13R1_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F13R1_FB30 CAN_F13R1_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F13R1_FB31_Pos (31U)
+#define CAN_F13R1_FB31_Msk (0x1UL << CAN_F13R1_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F13R1_FB31 CAN_F13R1_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F0R2 register *******************/
+#define CAN_F0R2_FB0_Pos (0U)
+#define CAN_F0R2_FB0_Msk (0x1UL << CAN_F0R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F0R2_FB0 CAN_F0R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F0R2_FB1_Pos (1U)
+#define CAN_F0R2_FB1_Msk (0x1UL << CAN_F0R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F0R2_FB1 CAN_F0R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F0R2_FB2_Pos (2U)
+#define CAN_F0R2_FB2_Msk (0x1UL << CAN_F0R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F0R2_FB2 CAN_F0R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F0R2_FB3_Pos (3U)
+#define CAN_F0R2_FB3_Msk (0x1UL << CAN_F0R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F0R2_FB3 CAN_F0R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F0R2_FB4_Pos (4U)
+#define CAN_F0R2_FB4_Msk (0x1UL << CAN_F0R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F0R2_FB4 CAN_F0R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F0R2_FB5_Pos (5U)
+#define CAN_F0R2_FB5_Msk (0x1UL << CAN_F0R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F0R2_FB5 CAN_F0R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F0R2_FB6_Pos (6U)
+#define CAN_F0R2_FB6_Msk (0x1UL << CAN_F0R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F0R2_FB6 CAN_F0R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F0R2_FB7_Pos (7U)
+#define CAN_F0R2_FB7_Msk (0x1UL << CAN_F0R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F0R2_FB7 CAN_F0R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F0R2_FB8_Pos (8U)
+#define CAN_F0R2_FB8_Msk (0x1UL << CAN_F0R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F0R2_FB8 CAN_F0R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F0R2_FB9_Pos (9U)
+#define CAN_F0R2_FB9_Msk (0x1UL << CAN_F0R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F0R2_FB9 CAN_F0R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F0R2_FB10_Pos (10U)
+#define CAN_F0R2_FB10_Msk (0x1UL << CAN_F0R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F0R2_FB10 CAN_F0R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F0R2_FB11_Pos (11U)
+#define CAN_F0R2_FB11_Msk (0x1UL << CAN_F0R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F0R2_FB11 CAN_F0R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F0R2_FB12_Pos (12U)
+#define CAN_F0R2_FB12_Msk (0x1UL << CAN_F0R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F0R2_FB12 CAN_F0R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F0R2_FB13_Pos (13U)
+#define CAN_F0R2_FB13_Msk (0x1UL << CAN_F0R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F0R2_FB13 CAN_F0R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F0R2_FB14_Pos (14U)
+#define CAN_F0R2_FB14_Msk (0x1UL << CAN_F0R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F0R2_FB14 CAN_F0R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F0R2_FB15_Pos (15U)
+#define CAN_F0R2_FB15_Msk (0x1UL << CAN_F0R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F0R2_FB15 CAN_F0R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F0R2_FB16_Pos (16U)
+#define CAN_F0R2_FB16_Msk (0x1UL << CAN_F0R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F0R2_FB16 CAN_F0R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F0R2_FB17_Pos (17U)
+#define CAN_F0R2_FB17_Msk (0x1UL << CAN_F0R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F0R2_FB17 CAN_F0R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F0R2_FB18_Pos (18U)
+#define CAN_F0R2_FB18_Msk (0x1UL << CAN_F0R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F0R2_FB18 CAN_F0R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F0R2_FB19_Pos (19U)
+#define CAN_F0R2_FB19_Msk (0x1UL << CAN_F0R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F0R2_FB19 CAN_F0R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F0R2_FB20_Pos (20U)
+#define CAN_F0R2_FB20_Msk (0x1UL << CAN_F0R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F0R2_FB20 CAN_F0R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F0R2_FB21_Pos (21U)
+#define CAN_F0R2_FB21_Msk (0x1UL << CAN_F0R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F0R2_FB21 CAN_F0R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F0R2_FB22_Pos (22U)
+#define CAN_F0R2_FB22_Msk (0x1UL << CAN_F0R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F0R2_FB22 CAN_F0R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F0R2_FB23_Pos (23U)
+#define CAN_F0R2_FB23_Msk (0x1UL << CAN_F0R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F0R2_FB23 CAN_F0R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F0R2_FB24_Pos (24U)
+#define CAN_F0R2_FB24_Msk (0x1UL << CAN_F0R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F0R2_FB24 CAN_F0R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F0R2_FB25_Pos (25U)
+#define CAN_F0R2_FB25_Msk (0x1UL << CAN_F0R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F0R2_FB25 CAN_F0R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F0R2_FB26_Pos (26U)
+#define CAN_F0R2_FB26_Msk (0x1UL << CAN_F0R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F0R2_FB26 CAN_F0R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F0R2_FB27_Pos (27U)
+#define CAN_F0R2_FB27_Msk (0x1UL << CAN_F0R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F0R2_FB27 CAN_F0R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F0R2_FB28_Pos (28U)
+#define CAN_F0R2_FB28_Msk (0x1UL << CAN_F0R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F0R2_FB28 CAN_F0R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F0R2_FB29_Pos (29U)
+#define CAN_F0R2_FB29_Msk (0x1UL << CAN_F0R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F0R2_FB29 CAN_F0R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F0R2_FB30_Pos (30U)
+#define CAN_F0R2_FB30_Msk (0x1UL << CAN_F0R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F0R2_FB30 CAN_F0R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F0R2_FB31_Pos (31U)
+#define CAN_F0R2_FB31_Msk (0x1UL << CAN_F0R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F0R2_FB31 CAN_F0R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F1R2 register *******************/
+#define CAN_F1R2_FB0_Pos (0U)
+#define CAN_F1R2_FB0_Msk (0x1UL << CAN_F1R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F1R2_FB0 CAN_F1R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F1R2_FB1_Pos (1U)
+#define CAN_F1R2_FB1_Msk (0x1UL << CAN_F1R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F1R2_FB1 CAN_F1R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F1R2_FB2_Pos (2U)
+#define CAN_F1R2_FB2_Msk (0x1UL << CAN_F1R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F1R2_FB2 CAN_F1R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F1R2_FB3_Pos (3U)
+#define CAN_F1R2_FB3_Msk (0x1UL << CAN_F1R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F1R2_FB3 CAN_F1R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F1R2_FB4_Pos (4U)
+#define CAN_F1R2_FB4_Msk (0x1UL << CAN_F1R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F1R2_FB4 CAN_F1R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F1R2_FB5_Pos (5U)
+#define CAN_F1R2_FB5_Msk (0x1UL << CAN_F1R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F1R2_FB5 CAN_F1R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F1R2_FB6_Pos (6U)
+#define CAN_F1R2_FB6_Msk (0x1UL << CAN_F1R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F1R2_FB6 CAN_F1R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F1R2_FB7_Pos (7U)
+#define CAN_F1R2_FB7_Msk (0x1UL << CAN_F1R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F1R2_FB7 CAN_F1R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F1R2_FB8_Pos (8U)
+#define CAN_F1R2_FB8_Msk (0x1UL << CAN_F1R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F1R2_FB8 CAN_F1R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F1R2_FB9_Pos (9U)
+#define CAN_F1R2_FB9_Msk (0x1UL << CAN_F1R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F1R2_FB9 CAN_F1R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F1R2_FB10_Pos (10U)
+#define CAN_F1R2_FB10_Msk (0x1UL << CAN_F1R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F1R2_FB10 CAN_F1R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F1R2_FB11_Pos (11U)
+#define CAN_F1R2_FB11_Msk (0x1UL << CAN_F1R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F1R2_FB11 CAN_F1R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F1R2_FB12_Pos (12U)
+#define CAN_F1R2_FB12_Msk (0x1UL << CAN_F1R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F1R2_FB12 CAN_F1R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F1R2_FB13_Pos (13U)
+#define CAN_F1R2_FB13_Msk (0x1UL << CAN_F1R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F1R2_FB13 CAN_F1R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F1R2_FB14_Pos (14U)
+#define CAN_F1R2_FB14_Msk (0x1UL << CAN_F1R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F1R2_FB14 CAN_F1R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F1R2_FB15_Pos (15U)
+#define CAN_F1R2_FB15_Msk (0x1UL << CAN_F1R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F1R2_FB15 CAN_F1R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F1R2_FB16_Pos (16U)
+#define CAN_F1R2_FB16_Msk (0x1UL << CAN_F1R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F1R2_FB16 CAN_F1R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F1R2_FB17_Pos (17U)
+#define CAN_F1R2_FB17_Msk (0x1UL << CAN_F1R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F1R2_FB17 CAN_F1R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F1R2_FB18_Pos (18U)
+#define CAN_F1R2_FB18_Msk (0x1UL << CAN_F1R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F1R2_FB18 CAN_F1R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F1R2_FB19_Pos (19U)
+#define CAN_F1R2_FB19_Msk (0x1UL << CAN_F1R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F1R2_FB19 CAN_F1R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F1R2_FB20_Pos (20U)
+#define CAN_F1R2_FB20_Msk (0x1UL << CAN_F1R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F1R2_FB20 CAN_F1R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F1R2_FB21_Pos (21U)
+#define CAN_F1R2_FB21_Msk (0x1UL << CAN_F1R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F1R2_FB21 CAN_F1R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F1R2_FB22_Pos (22U)
+#define CAN_F1R2_FB22_Msk (0x1UL << CAN_F1R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F1R2_FB22 CAN_F1R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F1R2_FB23_Pos (23U)
+#define CAN_F1R2_FB23_Msk (0x1UL << CAN_F1R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F1R2_FB23 CAN_F1R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F1R2_FB24_Pos (24U)
+#define CAN_F1R2_FB24_Msk (0x1UL << CAN_F1R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F1R2_FB24 CAN_F1R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F1R2_FB25_Pos (25U)
+#define CAN_F1R2_FB25_Msk (0x1UL << CAN_F1R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F1R2_FB25 CAN_F1R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F1R2_FB26_Pos (26U)
+#define CAN_F1R2_FB26_Msk (0x1UL << CAN_F1R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F1R2_FB26 CAN_F1R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F1R2_FB27_Pos (27U)
+#define CAN_F1R2_FB27_Msk (0x1UL << CAN_F1R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F1R2_FB27 CAN_F1R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F1R2_FB28_Pos (28U)
+#define CAN_F1R2_FB28_Msk (0x1UL << CAN_F1R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F1R2_FB28 CAN_F1R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F1R2_FB29_Pos (29U)
+#define CAN_F1R2_FB29_Msk (0x1UL << CAN_F1R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F1R2_FB29 CAN_F1R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F1R2_FB30_Pos (30U)
+#define CAN_F1R2_FB30_Msk (0x1UL << CAN_F1R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F1R2_FB30 CAN_F1R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F1R2_FB31_Pos (31U)
+#define CAN_F1R2_FB31_Msk (0x1UL << CAN_F1R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F1R2_FB31 CAN_F1R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F2R2 register *******************/
+#define CAN_F2R2_FB0_Pos (0U)
+#define CAN_F2R2_FB0_Msk (0x1UL << CAN_F2R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F2R2_FB0 CAN_F2R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F2R2_FB1_Pos (1U)
+#define CAN_F2R2_FB1_Msk (0x1UL << CAN_F2R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F2R2_FB1 CAN_F2R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F2R2_FB2_Pos (2U)
+#define CAN_F2R2_FB2_Msk (0x1UL << CAN_F2R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F2R2_FB2 CAN_F2R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F2R2_FB3_Pos (3U)
+#define CAN_F2R2_FB3_Msk (0x1UL << CAN_F2R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F2R2_FB3 CAN_F2R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F2R2_FB4_Pos (4U)
+#define CAN_F2R2_FB4_Msk (0x1UL << CAN_F2R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F2R2_FB4 CAN_F2R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F2R2_FB5_Pos (5U)
+#define CAN_F2R2_FB5_Msk (0x1UL << CAN_F2R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F2R2_FB5 CAN_F2R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F2R2_FB6_Pos (6U)
+#define CAN_F2R2_FB6_Msk (0x1UL << CAN_F2R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F2R2_FB6 CAN_F2R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F2R2_FB7_Pos (7U)
+#define CAN_F2R2_FB7_Msk (0x1UL << CAN_F2R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F2R2_FB7 CAN_F2R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F2R2_FB8_Pos (8U)
+#define CAN_F2R2_FB8_Msk (0x1UL << CAN_F2R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F2R2_FB8 CAN_F2R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F2R2_FB9_Pos (9U)
+#define CAN_F2R2_FB9_Msk (0x1UL << CAN_F2R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F2R2_FB9 CAN_F2R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F2R2_FB10_Pos (10U)
+#define CAN_F2R2_FB10_Msk (0x1UL << CAN_F2R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F2R2_FB10 CAN_F2R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F2R2_FB11_Pos (11U)
+#define CAN_F2R2_FB11_Msk (0x1UL << CAN_F2R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F2R2_FB11 CAN_F2R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F2R2_FB12_Pos (12U)
+#define CAN_F2R2_FB12_Msk (0x1UL << CAN_F2R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F2R2_FB12 CAN_F2R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F2R2_FB13_Pos (13U)
+#define CAN_F2R2_FB13_Msk (0x1UL << CAN_F2R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F2R2_FB13 CAN_F2R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F2R2_FB14_Pos (14U)
+#define CAN_F2R2_FB14_Msk (0x1UL << CAN_F2R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F2R2_FB14 CAN_F2R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F2R2_FB15_Pos (15U)
+#define CAN_F2R2_FB15_Msk (0x1UL << CAN_F2R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F2R2_FB15 CAN_F2R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F2R2_FB16_Pos (16U)
+#define CAN_F2R2_FB16_Msk (0x1UL << CAN_F2R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F2R2_FB16 CAN_F2R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F2R2_FB17_Pos (17U)
+#define CAN_F2R2_FB17_Msk (0x1UL << CAN_F2R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F2R2_FB17 CAN_F2R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F2R2_FB18_Pos (18U)
+#define CAN_F2R2_FB18_Msk (0x1UL << CAN_F2R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F2R2_FB18 CAN_F2R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F2R2_FB19_Pos (19U)
+#define CAN_F2R2_FB19_Msk (0x1UL << CAN_F2R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F2R2_FB19 CAN_F2R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F2R2_FB20_Pos (20U)
+#define CAN_F2R2_FB20_Msk (0x1UL << CAN_F2R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F2R2_FB20 CAN_F2R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F2R2_FB21_Pos (21U)
+#define CAN_F2R2_FB21_Msk (0x1UL << CAN_F2R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F2R2_FB21 CAN_F2R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F2R2_FB22_Pos (22U)
+#define CAN_F2R2_FB22_Msk (0x1UL << CAN_F2R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F2R2_FB22 CAN_F2R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F2R2_FB23_Pos (23U)
+#define CAN_F2R2_FB23_Msk (0x1UL << CAN_F2R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F2R2_FB23 CAN_F2R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F2R2_FB24_Pos (24U)
+#define CAN_F2R2_FB24_Msk (0x1UL << CAN_F2R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F2R2_FB24 CAN_F2R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F2R2_FB25_Pos (25U)
+#define CAN_F2R2_FB25_Msk (0x1UL << CAN_F2R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F2R2_FB25 CAN_F2R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F2R2_FB26_Pos (26U)
+#define CAN_F2R2_FB26_Msk (0x1UL << CAN_F2R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F2R2_FB26 CAN_F2R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F2R2_FB27_Pos (27U)
+#define CAN_F2R2_FB27_Msk (0x1UL << CAN_F2R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F2R2_FB27 CAN_F2R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F2R2_FB28_Pos (28U)
+#define CAN_F2R2_FB28_Msk (0x1UL << CAN_F2R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F2R2_FB28 CAN_F2R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F2R2_FB29_Pos (29U)
+#define CAN_F2R2_FB29_Msk (0x1UL << CAN_F2R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F2R2_FB29 CAN_F2R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F2R2_FB30_Pos (30U)
+#define CAN_F2R2_FB30_Msk (0x1UL << CAN_F2R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F2R2_FB30 CAN_F2R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F2R2_FB31_Pos (31U)
+#define CAN_F2R2_FB31_Msk (0x1UL << CAN_F2R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F2R2_FB31 CAN_F2R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F3R2 register *******************/
+#define CAN_F3R2_FB0_Pos (0U)
+#define CAN_F3R2_FB0_Msk (0x1UL << CAN_F3R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F3R2_FB0 CAN_F3R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F3R2_FB1_Pos (1U)
+#define CAN_F3R2_FB1_Msk (0x1UL << CAN_F3R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F3R2_FB1 CAN_F3R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F3R2_FB2_Pos (2U)
+#define CAN_F3R2_FB2_Msk (0x1UL << CAN_F3R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F3R2_FB2 CAN_F3R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F3R2_FB3_Pos (3U)
+#define CAN_F3R2_FB3_Msk (0x1UL << CAN_F3R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F3R2_FB3 CAN_F3R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F3R2_FB4_Pos (4U)
+#define CAN_F3R2_FB4_Msk (0x1UL << CAN_F3R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F3R2_FB4 CAN_F3R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F3R2_FB5_Pos (5U)
+#define CAN_F3R2_FB5_Msk (0x1UL << CAN_F3R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F3R2_FB5 CAN_F3R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F3R2_FB6_Pos (6U)
+#define CAN_F3R2_FB6_Msk (0x1UL << CAN_F3R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F3R2_FB6 CAN_F3R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F3R2_FB7_Pos (7U)
+#define CAN_F3R2_FB7_Msk (0x1UL << CAN_F3R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F3R2_FB7 CAN_F3R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F3R2_FB8_Pos (8U)
+#define CAN_F3R2_FB8_Msk (0x1UL << CAN_F3R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F3R2_FB8 CAN_F3R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F3R2_FB9_Pos (9U)
+#define CAN_F3R2_FB9_Msk (0x1UL << CAN_F3R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F3R2_FB9 CAN_F3R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F3R2_FB10_Pos (10U)
+#define CAN_F3R2_FB10_Msk (0x1UL << CAN_F3R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F3R2_FB10 CAN_F3R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F3R2_FB11_Pos (11U)
+#define CAN_F3R2_FB11_Msk (0x1UL << CAN_F3R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F3R2_FB11 CAN_F3R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F3R2_FB12_Pos (12U)
+#define CAN_F3R2_FB12_Msk (0x1UL << CAN_F3R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F3R2_FB12 CAN_F3R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F3R2_FB13_Pos (13U)
+#define CAN_F3R2_FB13_Msk (0x1UL << CAN_F3R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F3R2_FB13 CAN_F3R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F3R2_FB14_Pos (14U)
+#define CAN_F3R2_FB14_Msk (0x1UL << CAN_F3R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F3R2_FB14 CAN_F3R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F3R2_FB15_Pos (15U)
+#define CAN_F3R2_FB15_Msk (0x1UL << CAN_F3R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F3R2_FB15 CAN_F3R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F3R2_FB16_Pos (16U)
+#define CAN_F3R2_FB16_Msk (0x1UL << CAN_F3R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F3R2_FB16 CAN_F3R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F3R2_FB17_Pos (17U)
+#define CAN_F3R2_FB17_Msk (0x1UL << CAN_F3R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F3R2_FB17 CAN_F3R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F3R2_FB18_Pos (18U)
+#define CAN_F3R2_FB18_Msk (0x1UL << CAN_F3R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F3R2_FB18 CAN_F3R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F3R2_FB19_Pos (19U)
+#define CAN_F3R2_FB19_Msk (0x1UL << CAN_F3R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F3R2_FB19 CAN_F3R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F3R2_FB20_Pos (20U)
+#define CAN_F3R2_FB20_Msk (0x1UL << CAN_F3R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F3R2_FB20 CAN_F3R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F3R2_FB21_Pos (21U)
+#define CAN_F3R2_FB21_Msk (0x1UL << CAN_F3R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F3R2_FB21 CAN_F3R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F3R2_FB22_Pos (22U)
+#define CAN_F3R2_FB22_Msk (0x1UL << CAN_F3R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F3R2_FB22 CAN_F3R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F3R2_FB23_Pos (23U)
+#define CAN_F3R2_FB23_Msk (0x1UL << CAN_F3R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F3R2_FB23 CAN_F3R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F3R2_FB24_Pos (24U)
+#define CAN_F3R2_FB24_Msk (0x1UL << CAN_F3R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F3R2_FB24 CAN_F3R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F3R2_FB25_Pos (25U)
+#define CAN_F3R2_FB25_Msk (0x1UL << CAN_F3R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F3R2_FB25 CAN_F3R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F3R2_FB26_Pos (26U)
+#define CAN_F3R2_FB26_Msk (0x1UL << CAN_F3R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F3R2_FB26 CAN_F3R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F3R2_FB27_Pos (27U)
+#define CAN_F3R2_FB27_Msk (0x1UL << CAN_F3R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F3R2_FB27 CAN_F3R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F3R2_FB28_Pos (28U)
+#define CAN_F3R2_FB28_Msk (0x1UL << CAN_F3R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F3R2_FB28 CAN_F3R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F3R2_FB29_Pos (29U)
+#define CAN_F3R2_FB29_Msk (0x1UL << CAN_F3R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F3R2_FB29 CAN_F3R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F3R2_FB30_Pos (30U)
+#define CAN_F3R2_FB30_Msk (0x1UL << CAN_F3R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F3R2_FB30 CAN_F3R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F3R2_FB31_Pos (31U)
+#define CAN_F3R2_FB31_Msk (0x1UL << CAN_F3R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F3R2_FB31 CAN_F3R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F4R2 register *******************/
+#define CAN_F4R2_FB0_Pos (0U)
+#define CAN_F4R2_FB0_Msk (0x1UL << CAN_F4R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F4R2_FB0 CAN_F4R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F4R2_FB1_Pos (1U)
+#define CAN_F4R2_FB1_Msk (0x1UL << CAN_F4R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F4R2_FB1 CAN_F4R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F4R2_FB2_Pos (2U)
+#define CAN_F4R2_FB2_Msk (0x1UL << CAN_F4R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F4R2_FB2 CAN_F4R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F4R2_FB3_Pos (3U)
+#define CAN_F4R2_FB3_Msk (0x1UL << CAN_F4R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F4R2_FB3 CAN_F4R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F4R2_FB4_Pos (4U)
+#define CAN_F4R2_FB4_Msk (0x1UL << CAN_F4R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F4R2_FB4 CAN_F4R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F4R2_FB5_Pos (5U)
+#define CAN_F4R2_FB5_Msk (0x1UL << CAN_F4R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F4R2_FB5 CAN_F4R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F4R2_FB6_Pos (6U)
+#define CAN_F4R2_FB6_Msk (0x1UL << CAN_F4R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F4R2_FB6 CAN_F4R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F4R2_FB7_Pos (7U)
+#define CAN_F4R2_FB7_Msk (0x1UL << CAN_F4R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F4R2_FB7 CAN_F4R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F4R2_FB8_Pos (8U)
+#define CAN_F4R2_FB8_Msk (0x1UL << CAN_F4R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F4R2_FB8 CAN_F4R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F4R2_FB9_Pos (9U)
+#define CAN_F4R2_FB9_Msk (0x1UL << CAN_F4R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F4R2_FB9 CAN_F4R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F4R2_FB10_Pos (10U)
+#define CAN_F4R2_FB10_Msk (0x1UL << CAN_F4R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F4R2_FB10 CAN_F4R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F4R2_FB11_Pos (11U)
+#define CAN_F4R2_FB11_Msk (0x1UL << CAN_F4R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F4R2_FB11 CAN_F4R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F4R2_FB12_Pos (12U)
+#define CAN_F4R2_FB12_Msk (0x1UL << CAN_F4R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F4R2_FB12 CAN_F4R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F4R2_FB13_Pos (13U)
+#define CAN_F4R2_FB13_Msk (0x1UL << CAN_F4R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F4R2_FB13 CAN_F4R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F4R2_FB14_Pos (14U)
+#define CAN_F4R2_FB14_Msk (0x1UL << CAN_F4R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F4R2_FB14 CAN_F4R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F4R2_FB15_Pos (15U)
+#define CAN_F4R2_FB15_Msk (0x1UL << CAN_F4R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F4R2_FB15 CAN_F4R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F4R2_FB16_Pos (16U)
+#define CAN_F4R2_FB16_Msk (0x1UL << CAN_F4R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F4R2_FB16 CAN_F4R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F4R2_FB17_Pos (17U)
+#define CAN_F4R2_FB17_Msk (0x1UL << CAN_F4R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F4R2_FB17 CAN_F4R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F4R2_FB18_Pos (18U)
+#define CAN_F4R2_FB18_Msk (0x1UL << CAN_F4R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F4R2_FB18 CAN_F4R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F4R2_FB19_Pos (19U)
+#define CAN_F4R2_FB19_Msk (0x1UL << CAN_F4R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F4R2_FB19 CAN_F4R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F4R2_FB20_Pos (20U)
+#define CAN_F4R2_FB20_Msk (0x1UL << CAN_F4R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F4R2_FB20 CAN_F4R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F4R2_FB21_Pos (21U)
+#define CAN_F4R2_FB21_Msk (0x1UL << CAN_F4R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F4R2_FB21 CAN_F4R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F4R2_FB22_Pos (22U)
+#define CAN_F4R2_FB22_Msk (0x1UL << CAN_F4R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F4R2_FB22 CAN_F4R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F4R2_FB23_Pos (23U)
+#define CAN_F4R2_FB23_Msk (0x1UL << CAN_F4R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F4R2_FB23 CAN_F4R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F4R2_FB24_Pos (24U)
+#define CAN_F4R2_FB24_Msk (0x1UL << CAN_F4R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F4R2_FB24 CAN_F4R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F4R2_FB25_Pos (25U)
+#define CAN_F4R2_FB25_Msk (0x1UL << CAN_F4R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F4R2_FB25 CAN_F4R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F4R2_FB26_Pos (26U)
+#define CAN_F4R2_FB26_Msk (0x1UL << CAN_F4R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F4R2_FB26 CAN_F4R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F4R2_FB27_Pos (27U)
+#define CAN_F4R2_FB27_Msk (0x1UL << CAN_F4R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F4R2_FB27 CAN_F4R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F4R2_FB28_Pos (28U)
+#define CAN_F4R2_FB28_Msk (0x1UL << CAN_F4R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F4R2_FB28 CAN_F4R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F4R2_FB29_Pos (29U)
+#define CAN_F4R2_FB29_Msk (0x1UL << CAN_F4R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F4R2_FB29 CAN_F4R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F4R2_FB30_Pos (30U)
+#define CAN_F4R2_FB30_Msk (0x1UL << CAN_F4R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F4R2_FB30 CAN_F4R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F4R2_FB31_Pos (31U)
+#define CAN_F4R2_FB31_Msk (0x1UL << CAN_F4R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F4R2_FB31 CAN_F4R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F5R2 register *******************/
+#define CAN_F5R2_FB0_Pos (0U)
+#define CAN_F5R2_FB0_Msk (0x1UL << CAN_F5R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F5R2_FB0 CAN_F5R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F5R2_FB1_Pos (1U)
+#define CAN_F5R2_FB1_Msk (0x1UL << CAN_F5R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F5R2_FB1 CAN_F5R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F5R2_FB2_Pos (2U)
+#define CAN_F5R2_FB2_Msk (0x1UL << CAN_F5R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F5R2_FB2 CAN_F5R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F5R2_FB3_Pos (3U)
+#define CAN_F5R2_FB3_Msk (0x1UL << CAN_F5R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F5R2_FB3 CAN_F5R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F5R2_FB4_Pos (4U)
+#define CAN_F5R2_FB4_Msk (0x1UL << CAN_F5R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F5R2_FB4 CAN_F5R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F5R2_FB5_Pos (5U)
+#define CAN_F5R2_FB5_Msk (0x1UL << CAN_F5R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F5R2_FB5 CAN_F5R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F5R2_FB6_Pos (6U)
+#define CAN_F5R2_FB6_Msk (0x1UL << CAN_F5R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F5R2_FB6 CAN_F5R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F5R2_FB7_Pos (7U)
+#define CAN_F5R2_FB7_Msk (0x1UL << CAN_F5R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F5R2_FB7 CAN_F5R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F5R2_FB8_Pos (8U)
+#define CAN_F5R2_FB8_Msk (0x1UL << CAN_F5R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F5R2_FB8 CAN_F5R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F5R2_FB9_Pos (9U)
+#define CAN_F5R2_FB9_Msk (0x1UL << CAN_F5R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F5R2_FB9 CAN_F5R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F5R2_FB10_Pos (10U)
+#define CAN_F5R2_FB10_Msk (0x1UL << CAN_F5R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F5R2_FB10 CAN_F5R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F5R2_FB11_Pos (11U)
+#define CAN_F5R2_FB11_Msk (0x1UL << CAN_F5R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F5R2_FB11 CAN_F5R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F5R2_FB12_Pos (12U)
+#define CAN_F5R2_FB12_Msk (0x1UL << CAN_F5R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F5R2_FB12 CAN_F5R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F5R2_FB13_Pos (13U)
+#define CAN_F5R2_FB13_Msk (0x1UL << CAN_F5R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F5R2_FB13 CAN_F5R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F5R2_FB14_Pos (14U)
+#define CAN_F5R2_FB14_Msk (0x1UL << CAN_F5R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F5R2_FB14 CAN_F5R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F5R2_FB15_Pos (15U)
+#define CAN_F5R2_FB15_Msk (0x1UL << CAN_F5R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F5R2_FB15 CAN_F5R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F5R2_FB16_Pos (16U)
+#define CAN_F5R2_FB16_Msk (0x1UL << CAN_F5R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F5R2_FB16 CAN_F5R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F5R2_FB17_Pos (17U)
+#define CAN_F5R2_FB17_Msk (0x1UL << CAN_F5R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F5R2_FB17 CAN_F5R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F5R2_FB18_Pos (18U)
+#define CAN_F5R2_FB18_Msk (0x1UL << CAN_F5R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F5R2_FB18 CAN_F5R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F5R2_FB19_Pos (19U)
+#define CAN_F5R2_FB19_Msk (0x1UL << CAN_F5R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F5R2_FB19 CAN_F5R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F5R2_FB20_Pos (20U)
+#define CAN_F5R2_FB20_Msk (0x1UL << CAN_F5R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F5R2_FB20 CAN_F5R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F5R2_FB21_Pos (21U)
+#define CAN_F5R2_FB21_Msk (0x1UL << CAN_F5R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F5R2_FB21 CAN_F5R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F5R2_FB22_Pos (22U)
+#define CAN_F5R2_FB22_Msk (0x1UL << CAN_F5R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F5R2_FB22 CAN_F5R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F5R2_FB23_Pos (23U)
+#define CAN_F5R2_FB23_Msk (0x1UL << CAN_F5R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F5R2_FB23 CAN_F5R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F5R2_FB24_Pos (24U)
+#define CAN_F5R2_FB24_Msk (0x1UL << CAN_F5R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F5R2_FB24 CAN_F5R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F5R2_FB25_Pos (25U)
+#define CAN_F5R2_FB25_Msk (0x1UL << CAN_F5R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F5R2_FB25 CAN_F5R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F5R2_FB26_Pos (26U)
+#define CAN_F5R2_FB26_Msk (0x1UL << CAN_F5R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F5R2_FB26 CAN_F5R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F5R2_FB27_Pos (27U)
+#define CAN_F5R2_FB27_Msk (0x1UL << CAN_F5R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F5R2_FB27 CAN_F5R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F5R2_FB28_Pos (28U)
+#define CAN_F5R2_FB28_Msk (0x1UL << CAN_F5R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F5R2_FB28 CAN_F5R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F5R2_FB29_Pos (29U)
+#define CAN_F5R2_FB29_Msk (0x1UL << CAN_F5R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F5R2_FB29 CAN_F5R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F5R2_FB30_Pos (30U)
+#define CAN_F5R2_FB30_Msk (0x1UL << CAN_F5R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F5R2_FB30 CAN_F5R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F5R2_FB31_Pos (31U)
+#define CAN_F5R2_FB31_Msk (0x1UL << CAN_F5R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F5R2_FB31 CAN_F5R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F6R2 register *******************/
+#define CAN_F6R2_FB0_Pos (0U)
+#define CAN_F6R2_FB0_Msk (0x1UL << CAN_F6R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F6R2_FB0 CAN_F6R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F6R2_FB1_Pos (1U)
+#define CAN_F6R2_FB1_Msk (0x1UL << CAN_F6R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F6R2_FB1 CAN_F6R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F6R2_FB2_Pos (2U)
+#define CAN_F6R2_FB2_Msk (0x1UL << CAN_F6R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F6R2_FB2 CAN_F6R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F6R2_FB3_Pos (3U)
+#define CAN_F6R2_FB3_Msk (0x1UL << CAN_F6R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F6R2_FB3 CAN_F6R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F6R2_FB4_Pos (4U)
+#define CAN_F6R2_FB4_Msk (0x1UL << CAN_F6R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F6R2_FB4 CAN_F6R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F6R2_FB5_Pos (5U)
+#define CAN_F6R2_FB5_Msk (0x1UL << CAN_F6R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F6R2_FB5 CAN_F6R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F6R2_FB6_Pos (6U)
+#define CAN_F6R2_FB6_Msk (0x1UL << CAN_F6R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F6R2_FB6 CAN_F6R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F6R2_FB7_Pos (7U)
+#define CAN_F6R2_FB7_Msk (0x1UL << CAN_F6R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F6R2_FB7 CAN_F6R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F6R2_FB8_Pos (8U)
+#define CAN_F6R2_FB8_Msk (0x1UL << CAN_F6R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F6R2_FB8 CAN_F6R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F6R2_FB9_Pos (9U)
+#define CAN_F6R2_FB9_Msk (0x1UL << CAN_F6R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F6R2_FB9 CAN_F6R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F6R2_FB10_Pos (10U)
+#define CAN_F6R2_FB10_Msk (0x1UL << CAN_F6R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F6R2_FB10 CAN_F6R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F6R2_FB11_Pos (11U)
+#define CAN_F6R2_FB11_Msk (0x1UL << CAN_F6R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F6R2_FB11 CAN_F6R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F6R2_FB12_Pos (12U)
+#define CAN_F6R2_FB12_Msk (0x1UL << CAN_F6R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F6R2_FB12 CAN_F6R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F6R2_FB13_Pos (13U)
+#define CAN_F6R2_FB13_Msk (0x1UL << CAN_F6R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F6R2_FB13 CAN_F6R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F6R2_FB14_Pos (14U)
+#define CAN_F6R2_FB14_Msk (0x1UL << CAN_F6R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F6R2_FB14 CAN_F6R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F6R2_FB15_Pos (15U)
+#define CAN_F6R2_FB15_Msk (0x1UL << CAN_F6R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F6R2_FB15 CAN_F6R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F6R2_FB16_Pos (16U)
+#define CAN_F6R2_FB16_Msk (0x1UL << CAN_F6R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F6R2_FB16 CAN_F6R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F6R2_FB17_Pos (17U)
+#define CAN_F6R2_FB17_Msk (0x1UL << CAN_F6R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F6R2_FB17 CAN_F6R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F6R2_FB18_Pos (18U)
+#define CAN_F6R2_FB18_Msk (0x1UL << CAN_F6R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F6R2_FB18 CAN_F6R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F6R2_FB19_Pos (19U)
+#define CAN_F6R2_FB19_Msk (0x1UL << CAN_F6R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F6R2_FB19 CAN_F6R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F6R2_FB20_Pos (20U)
+#define CAN_F6R2_FB20_Msk (0x1UL << CAN_F6R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F6R2_FB20 CAN_F6R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F6R2_FB21_Pos (21U)
+#define CAN_F6R2_FB21_Msk (0x1UL << CAN_F6R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F6R2_FB21 CAN_F6R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F6R2_FB22_Pos (22U)
+#define CAN_F6R2_FB22_Msk (0x1UL << CAN_F6R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F6R2_FB22 CAN_F6R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F6R2_FB23_Pos (23U)
+#define CAN_F6R2_FB23_Msk (0x1UL << CAN_F6R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F6R2_FB23 CAN_F6R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F6R2_FB24_Pos (24U)
+#define CAN_F6R2_FB24_Msk (0x1UL << CAN_F6R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F6R2_FB24 CAN_F6R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F6R2_FB25_Pos (25U)
+#define CAN_F6R2_FB25_Msk (0x1UL << CAN_F6R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F6R2_FB25 CAN_F6R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F6R2_FB26_Pos (26U)
+#define CAN_F6R2_FB26_Msk (0x1UL << CAN_F6R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F6R2_FB26 CAN_F6R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F6R2_FB27_Pos (27U)
+#define CAN_F6R2_FB27_Msk (0x1UL << CAN_F6R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F6R2_FB27 CAN_F6R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F6R2_FB28_Pos (28U)
+#define CAN_F6R2_FB28_Msk (0x1UL << CAN_F6R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F6R2_FB28 CAN_F6R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F6R2_FB29_Pos (29U)
+#define CAN_F6R2_FB29_Msk (0x1UL << CAN_F6R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F6R2_FB29 CAN_F6R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F6R2_FB30_Pos (30U)
+#define CAN_F6R2_FB30_Msk (0x1UL << CAN_F6R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F6R2_FB30 CAN_F6R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F6R2_FB31_Pos (31U)
+#define CAN_F6R2_FB31_Msk (0x1UL << CAN_F6R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F6R2_FB31 CAN_F6R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F7R2 register *******************/
+#define CAN_F7R2_FB0_Pos (0U)
+#define CAN_F7R2_FB0_Msk (0x1UL << CAN_F7R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F7R2_FB0 CAN_F7R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F7R2_FB1_Pos (1U)
+#define CAN_F7R2_FB1_Msk (0x1UL << CAN_F7R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F7R2_FB1 CAN_F7R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F7R2_FB2_Pos (2U)
+#define CAN_F7R2_FB2_Msk (0x1UL << CAN_F7R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F7R2_FB2 CAN_F7R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F7R2_FB3_Pos (3U)
+#define CAN_F7R2_FB3_Msk (0x1UL << CAN_F7R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F7R2_FB3 CAN_F7R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F7R2_FB4_Pos (4U)
+#define CAN_F7R2_FB4_Msk (0x1UL << CAN_F7R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F7R2_FB4 CAN_F7R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F7R2_FB5_Pos (5U)
+#define CAN_F7R2_FB5_Msk (0x1UL << CAN_F7R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F7R2_FB5 CAN_F7R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F7R2_FB6_Pos (6U)
+#define CAN_F7R2_FB6_Msk (0x1UL << CAN_F7R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F7R2_FB6 CAN_F7R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F7R2_FB7_Pos (7U)
+#define CAN_F7R2_FB7_Msk (0x1UL << CAN_F7R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F7R2_FB7 CAN_F7R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F7R2_FB8_Pos (8U)
+#define CAN_F7R2_FB8_Msk (0x1UL << CAN_F7R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F7R2_FB8 CAN_F7R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F7R2_FB9_Pos (9U)
+#define CAN_F7R2_FB9_Msk (0x1UL << CAN_F7R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F7R2_FB9 CAN_F7R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F7R2_FB10_Pos (10U)
+#define CAN_F7R2_FB10_Msk (0x1UL << CAN_F7R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F7R2_FB10 CAN_F7R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F7R2_FB11_Pos (11U)
+#define CAN_F7R2_FB11_Msk (0x1UL << CAN_F7R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F7R2_FB11 CAN_F7R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F7R2_FB12_Pos (12U)
+#define CAN_F7R2_FB12_Msk (0x1UL << CAN_F7R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F7R2_FB12 CAN_F7R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F7R2_FB13_Pos (13U)
+#define CAN_F7R2_FB13_Msk (0x1UL << CAN_F7R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F7R2_FB13 CAN_F7R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F7R2_FB14_Pos (14U)
+#define CAN_F7R2_FB14_Msk (0x1UL << CAN_F7R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F7R2_FB14 CAN_F7R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F7R2_FB15_Pos (15U)
+#define CAN_F7R2_FB15_Msk (0x1UL << CAN_F7R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F7R2_FB15 CAN_F7R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F7R2_FB16_Pos (16U)
+#define CAN_F7R2_FB16_Msk (0x1UL << CAN_F7R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F7R2_FB16 CAN_F7R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F7R2_FB17_Pos (17U)
+#define CAN_F7R2_FB17_Msk (0x1UL << CAN_F7R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F7R2_FB17 CAN_F7R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F7R2_FB18_Pos (18U)
+#define CAN_F7R2_FB18_Msk (0x1UL << CAN_F7R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F7R2_FB18 CAN_F7R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F7R2_FB19_Pos (19U)
+#define CAN_F7R2_FB19_Msk (0x1UL << CAN_F7R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F7R2_FB19 CAN_F7R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F7R2_FB20_Pos (20U)
+#define CAN_F7R2_FB20_Msk (0x1UL << CAN_F7R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F7R2_FB20 CAN_F7R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F7R2_FB21_Pos (21U)
+#define CAN_F7R2_FB21_Msk (0x1UL << CAN_F7R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F7R2_FB21 CAN_F7R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F7R2_FB22_Pos (22U)
+#define CAN_F7R2_FB22_Msk (0x1UL << CAN_F7R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F7R2_FB22 CAN_F7R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F7R2_FB23_Pos (23U)
+#define CAN_F7R2_FB23_Msk (0x1UL << CAN_F7R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F7R2_FB23 CAN_F7R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F7R2_FB24_Pos (24U)
+#define CAN_F7R2_FB24_Msk (0x1UL << CAN_F7R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F7R2_FB24 CAN_F7R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F7R2_FB25_Pos (25U)
+#define CAN_F7R2_FB25_Msk (0x1UL << CAN_F7R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F7R2_FB25 CAN_F7R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F7R2_FB26_Pos (26U)
+#define CAN_F7R2_FB26_Msk (0x1UL << CAN_F7R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F7R2_FB26 CAN_F7R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F7R2_FB27_Pos (27U)
+#define CAN_F7R2_FB27_Msk (0x1UL << CAN_F7R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F7R2_FB27 CAN_F7R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F7R2_FB28_Pos (28U)
+#define CAN_F7R2_FB28_Msk (0x1UL << CAN_F7R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F7R2_FB28 CAN_F7R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F7R2_FB29_Pos (29U)
+#define CAN_F7R2_FB29_Msk (0x1UL << CAN_F7R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F7R2_FB29 CAN_F7R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F7R2_FB30_Pos (30U)
+#define CAN_F7R2_FB30_Msk (0x1UL << CAN_F7R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F7R2_FB30 CAN_F7R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F7R2_FB31_Pos (31U)
+#define CAN_F7R2_FB31_Msk (0x1UL << CAN_F7R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F7R2_FB31 CAN_F7R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F8R2 register *******************/
+#define CAN_F8R2_FB0_Pos (0U)
+#define CAN_F8R2_FB0_Msk (0x1UL << CAN_F8R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F8R2_FB0 CAN_F8R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F8R2_FB1_Pos (1U)
+#define CAN_F8R2_FB1_Msk (0x1UL << CAN_F8R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F8R2_FB1 CAN_F8R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F8R2_FB2_Pos (2U)
+#define CAN_F8R2_FB2_Msk (0x1UL << CAN_F8R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F8R2_FB2 CAN_F8R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F8R2_FB3_Pos (3U)
+#define CAN_F8R2_FB3_Msk (0x1UL << CAN_F8R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F8R2_FB3 CAN_F8R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F8R2_FB4_Pos (4U)
+#define CAN_F8R2_FB4_Msk (0x1UL << CAN_F8R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F8R2_FB4 CAN_F8R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F8R2_FB5_Pos (5U)
+#define CAN_F8R2_FB5_Msk (0x1UL << CAN_F8R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F8R2_FB5 CAN_F8R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F8R2_FB6_Pos (6U)
+#define CAN_F8R2_FB6_Msk (0x1UL << CAN_F8R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F8R2_FB6 CAN_F8R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F8R2_FB7_Pos (7U)
+#define CAN_F8R2_FB7_Msk (0x1UL << CAN_F8R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F8R2_FB7 CAN_F8R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F8R2_FB8_Pos (8U)
+#define CAN_F8R2_FB8_Msk (0x1UL << CAN_F8R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F8R2_FB8 CAN_F8R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F8R2_FB9_Pos (9U)
+#define CAN_F8R2_FB9_Msk (0x1UL << CAN_F8R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F8R2_FB9 CAN_F8R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F8R2_FB10_Pos (10U)
+#define CAN_F8R2_FB10_Msk (0x1UL << CAN_F8R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F8R2_FB10 CAN_F8R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F8R2_FB11_Pos (11U)
+#define CAN_F8R2_FB11_Msk (0x1UL << CAN_F8R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F8R2_FB11 CAN_F8R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F8R2_FB12_Pos (12U)
+#define CAN_F8R2_FB12_Msk (0x1UL << CAN_F8R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F8R2_FB12 CAN_F8R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F8R2_FB13_Pos (13U)
+#define CAN_F8R2_FB13_Msk (0x1UL << CAN_F8R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F8R2_FB13 CAN_F8R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F8R2_FB14_Pos (14U)
+#define CAN_F8R2_FB14_Msk (0x1UL << CAN_F8R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F8R2_FB14 CAN_F8R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F8R2_FB15_Pos (15U)
+#define CAN_F8R2_FB15_Msk (0x1UL << CAN_F8R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F8R2_FB15 CAN_F8R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F8R2_FB16_Pos (16U)
+#define CAN_F8R2_FB16_Msk (0x1UL << CAN_F8R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F8R2_FB16 CAN_F8R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F8R2_FB17_Pos (17U)
+#define CAN_F8R2_FB17_Msk (0x1UL << CAN_F8R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F8R2_FB17 CAN_F8R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F8R2_FB18_Pos (18U)
+#define CAN_F8R2_FB18_Msk (0x1UL << CAN_F8R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F8R2_FB18 CAN_F8R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F8R2_FB19_Pos (19U)
+#define CAN_F8R2_FB19_Msk (0x1UL << CAN_F8R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F8R2_FB19 CAN_F8R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F8R2_FB20_Pos (20U)
+#define CAN_F8R2_FB20_Msk (0x1UL << CAN_F8R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F8R2_FB20 CAN_F8R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F8R2_FB21_Pos (21U)
+#define CAN_F8R2_FB21_Msk (0x1UL << CAN_F8R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F8R2_FB21 CAN_F8R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F8R2_FB22_Pos (22U)
+#define CAN_F8R2_FB22_Msk (0x1UL << CAN_F8R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F8R2_FB22 CAN_F8R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F8R2_FB23_Pos (23U)
+#define CAN_F8R2_FB23_Msk (0x1UL << CAN_F8R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F8R2_FB23 CAN_F8R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F8R2_FB24_Pos (24U)
+#define CAN_F8R2_FB24_Msk (0x1UL << CAN_F8R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F8R2_FB24 CAN_F8R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F8R2_FB25_Pos (25U)
+#define CAN_F8R2_FB25_Msk (0x1UL << CAN_F8R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F8R2_FB25 CAN_F8R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F8R2_FB26_Pos (26U)
+#define CAN_F8R2_FB26_Msk (0x1UL << CAN_F8R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F8R2_FB26 CAN_F8R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F8R2_FB27_Pos (27U)
+#define CAN_F8R2_FB27_Msk (0x1UL << CAN_F8R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F8R2_FB27 CAN_F8R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F8R2_FB28_Pos (28U)
+#define CAN_F8R2_FB28_Msk (0x1UL << CAN_F8R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F8R2_FB28 CAN_F8R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F8R2_FB29_Pos (29U)
+#define CAN_F8R2_FB29_Msk (0x1UL << CAN_F8R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F8R2_FB29 CAN_F8R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F8R2_FB30_Pos (30U)
+#define CAN_F8R2_FB30_Msk (0x1UL << CAN_F8R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F8R2_FB30 CAN_F8R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F8R2_FB31_Pos (31U)
+#define CAN_F8R2_FB31_Msk (0x1UL << CAN_F8R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F8R2_FB31 CAN_F8R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F9R2 register *******************/
+#define CAN_F9R2_FB0_Pos (0U)
+#define CAN_F9R2_FB0_Msk (0x1UL << CAN_F9R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F9R2_FB0 CAN_F9R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F9R2_FB1_Pos (1U)
+#define CAN_F9R2_FB1_Msk (0x1UL << CAN_F9R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F9R2_FB1 CAN_F9R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F9R2_FB2_Pos (2U)
+#define CAN_F9R2_FB2_Msk (0x1UL << CAN_F9R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F9R2_FB2 CAN_F9R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F9R2_FB3_Pos (3U)
+#define CAN_F9R2_FB3_Msk (0x1UL << CAN_F9R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F9R2_FB3 CAN_F9R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F9R2_FB4_Pos (4U)
+#define CAN_F9R2_FB4_Msk (0x1UL << CAN_F9R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F9R2_FB4 CAN_F9R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F9R2_FB5_Pos (5U)
+#define CAN_F9R2_FB5_Msk (0x1UL << CAN_F9R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F9R2_FB5 CAN_F9R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F9R2_FB6_Pos (6U)
+#define CAN_F9R2_FB6_Msk (0x1UL << CAN_F9R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F9R2_FB6 CAN_F9R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F9R2_FB7_Pos (7U)
+#define CAN_F9R2_FB7_Msk (0x1UL << CAN_F9R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F9R2_FB7 CAN_F9R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F9R2_FB8_Pos (8U)
+#define CAN_F9R2_FB8_Msk (0x1UL << CAN_F9R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F9R2_FB8 CAN_F9R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F9R2_FB9_Pos (9U)
+#define CAN_F9R2_FB9_Msk (0x1UL << CAN_F9R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F9R2_FB9 CAN_F9R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F9R2_FB10_Pos (10U)
+#define CAN_F9R2_FB10_Msk (0x1UL << CAN_F9R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F9R2_FB10 CAN_F9R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F9R2_FB11_Pos (11U)
+#define CAN_F9R2_FB11_Msk (0x1UL << CAN_F9R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F9R2_FB11 CAN_F9R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F9R2_FB12_Pos (12U)
+#define CAN_F9R2_FB12_Msk (0x1UL << CAN_F9R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F9R2_FB12 CAN_F9R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F9R2_FB13_Pos (13U)
+#define CAN_F9R2_FB13_Msk (0x1UL << CAN_F9R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F9R2_FB13 CAN_F9R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F9R2_FB14_Pos (14U)
+#define CAN_F9R2_FB14_Msk (0x1UL << CAN_F9R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F9R2_FB14 CAN_F9R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F9R2_FB15_Pos (15U)
+#define CAN_F9R2_FB15_Msk (0x1UL << CAN_F9R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F9R2_FB15 CAN_F9R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F9R2_FB16_Pos (16U)
+#define CAN_F9R2_FB16_Msk (0x1UL << CAN_F9R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F9R2_FB16 CAN_F9R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F9R2_FB17_Pos (17U)
+#define CAN_F9R2_FB17_Msk (0x1UL << CAN_F9R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F9R2_FB17 CAN_F9R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F9R2_FB18_Pos (18U)
+#define CAN_F9R2_FB18_Msk (0x1UL << CAN_F9R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F9R2_FB18 CAN_F9R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F9R2_FB19_Pos (19U)
+#define CAN_F9R2_FB19_Msk (0x1UL << CAN_F9R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F9R2_FB19 CAN_F9R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F9R2_FB20_Pos (20U)
+#define CAN_F9R2_FB20_Msk (0x1UL << CAN_F9R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F9R2_FB20 CAN_F9R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F9R2_FB21_Pos (21U)
+#define CAN_F9R2_FB21_Msk (0x1UL << CAN_F9R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F9R2_FB21 CAN_F9R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F9R2_FB22_Pos (22U)
+#define CAN_F9R2_FB22_Msk (0x1UL << CAN_F9R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F9R2_FB22 CAN_F9R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F9R2_FB23_Pos (23U)
+#define CAN_F9R2_FB23_Msk (0x1UL << CAN_F9R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F9R2_FB23 CAN_F9R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F9R2_FB24_Pos (24U)
+#define CAN_F9R2_FB24_Msk (0x1UL << CAN_F9R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F9R2_FB24 CAN_F9R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F9R2_FB25_Pos (25U)
+#define CAN_F9R2_FB25_Msk (0x1UL << CAN_F9R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F9R2_FB25 CAN_F9R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F9R2_FB26_Pos (26U)
+#define CAN_F9R2_FB26_Msk (0x1UL << CAN_F9R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F9R2_FB26 CAN_F9R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F9R2_FB27_Pos (27U)
+#define CAN_F9R2_FB27_Msk (0x1UL << CAN_F9R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F9R2_FB27 CAN_F9R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F9R2_FB28_Pos (28U)
+#define CAN_F9R2_FB28_Msk (0x1UL << CAN_F9R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F9R2_FB28 CAN_F9R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F9R2_FB29_Pos (29U)
+#define CAN_F9R2_FB29_Msk (0x1UL << CAN_F9R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F9R2_FB29 CAN_F9R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F9R2_FB30_Pos (30U)
+#define CAN_F9R2_FB30_Msk (0x1UL << CAN_F9R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F9R2_FB30 CAN_F9R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F9R2_FB31_Pos (31U)
+#define CAN_F9R2_FB31_Msk (0x1UL << CAN_F9R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F9R2_FB31 CAN_F9R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F10R2 register ******************/
+#define CAN_F10R2_FB0_Pos (0U)
+#define CAN_F10R2_FB0_Msk (0x1UL << CAN_F10R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F10R2_FB0 CAN_F10R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F10R2_FB1_Pos (1U)
+#define CAN_F10R2_FB1_Msk (0x1UL << CAN_F10R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F10R2_FB1 CAN_F10R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F10R2_FB2_Pos (2U)
+#define CAN_F10R2_FB2_Msk (0x1UL << CAN_F10R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F10R2_FB2 CAN_F10R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F10R2_FB3_Pos (3U)
+#define CAN_F10R2_FB3_Msk (0x1UL << CAN_F10R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F10R2_FB3 CAN_F10R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F10R2_FB4_Pos (4U)
+#define CAN_F10R2_FB4_Msk (0x1UL << CAN_F10R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F10R2_FB4 CAN_F10R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F10R2_FB5_Pos (5U)
+#define CAN_F10R2_FB5_Msk (0x1UL << CAN_F10R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F10R2_FB5 CAN_F10R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F10R2_FB6_Pos (6U)
+#define CAN_F10R2_FB6_Msk (0x1UL << CAN_F10R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F10R2_FB6 CAN_F10R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F10R2_FB7_Pos (7U)
+#define CAN_F10R2_FB7_Msk (0x1UL << CAN_F10R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F10R2_FB7 CAN_F10R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F10R2_FB8_Pos (8U)
+#define CAN_F10R2_FB8_Msk (0x1UL << CAN_F10R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F10R2_FB8 CAN_F10R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F10R2_FB9_Pos (9U)
+#define CAN_F10R2_FB9_Msk (0x1UL << CAN_F10R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F10R2_FB9 CAN_F10R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F10R2_FB10_Pos (10U)
+#define CAN_F10R2_FB10_Msk (0x1UL << CAN_F10R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F10R2_FB10 CAN_F10R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F10R2_FB11_Pos (11U)
+#define CAN_F10R2_FB11_Msk (0x1UL << CAN_F10R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F10R2_FB11 CAN_F10R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F10R2_FB12_Pos (12U)
+#define CAN_F10R2_FB12_Msk (0x1UL << CAN_F10R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F10R2_FB12 CAN_F10R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F10R2_FB13_Pos (13U)
+#define CAN_F10R2_FB13_Msk (0x1UL << CAN_F10R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F10R2_FB13 CAN_F10R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F10R2_FB14_Pos (14U)
+#define CAN_F10R2_FB14_Msk (0x1UL << CAN_F10R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F10R2_FB14 CAN_F10R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F10R2_FB15_Pos (15U)
+#define CAN_F10R2_FB15_Msk (0x1UL << CAN_F10R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F10R2_FB15 CAN_F10R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F10R2_FB16_Pos (16U)
+#define CAN_F10R2_FB16_Msk (0x1UL << CAN_F10R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F10R2_FB16 CAN_F10R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F10R2_FB17_Pos (17U)
+#define CAN_F10R2_FB17_Msk (0x1UL << CAN_F10R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F10R2_FB17 CAN_F10R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F10R2_FB18_Pos (18U)
+#define CAN_F10R2_FB18_Msk (0x1UL << CAN_F10R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F10R2_FB18 CAN_F10R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F10R2_FB19_Pos (19U)
+#define CAN_F10R2_FB19_Msk (0x1UL << CAN_F10R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F10R2_FB19 CAN_F10R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F10R2_FB20_Pos (20U)
+#define CAN_F10R2_FB20_Msk (0x1UL << CAN_F10R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F10R2_FB20 CAN_F10R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F10R2_FB21_Pos (21U)
+#define CAN_F10R2_FB21_Msk (0x1UL << CAN_F10R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F10R2_FB21 CAN_F10R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F10R2_FB22_Pos (22U)
+#define CAN_F10R2_FB22_Msk (0x1UL << CAN_F10R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F10R2_FB22 CAN_F10R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F10R2_FB23_Pos (23U)
+#define CAN_F10R2_FB23_Msk (0x1UL << CAN_F10R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F10R2_FB23 CAN_F10R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F10R2_FB24_Pos (24U)
+#define CAN_F10R2_FB24_Msk (0x1UL << CAN_F10R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F10R2_FB24 CAN_F10R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F10R2_FB25_Pos (25U)
+#define CAN_F10R2_FB25_Msk (0x1UL << CAN_F10R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F10R2_FB25 CAN_F10R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F10R2_FB26_Pos (26U)
+#define CAN_F10R2_FB26_Msk (0x1UL << CAN_F10R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F10R2_FB26 CAN_F10R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F10R2_FB27_Pos (27U)
+#define CAN_F10R2_FB27_Msk (0x1UL << CAN_F10R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F10R2_FB27 CAN_F10R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F10R2_FB28_Pos (28U)
+#define CAN_F10R2_FB28_Msk (0x1UL << CAN_F10R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F10R2_FB28 CAN_F10R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F10R2_FB29_Pos (29U)
+#define CAN_F10R2_FB29_Msk (0x1UL << CAN_F10R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F10R2_FB29 CAN_F10R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F10R2_FB30_Pos (30U)
+#define CAN_F10R2_FB30_Msk (0x1UL << CAN_F10R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F10R2_FB30 CAN_F10R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F10R2_FB31_Pos (31U)
+#define CAN_F10R2_FB31_Msk (0x1UL << CAN_F10R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F10R2_FB31 CAN_F10R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F11R2 register ******************/
+#define CAN_F11R2_FB0_Pos (0U)
+#define CAN_F11R2_FB0_Msk (0x1UL << CAN_F11R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F11R2_FB0 CAN_F11R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F11R2_FB1_Pos (1U)
+#define CAN_F11R2_FB1_Msk (0x1UL << CAN_F11R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F11R2_FB1 CAN_F11R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F11R2_FB2_Pos (2U)
+#define CAN_F11R2_FB2_Msk (0x1UL << CAN_F11R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F11R2_FB2 CAN_F11R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F11R2_FB3_Pos (3U)
+#define CAN_F11R2_FB3_Msk (0x1UL << CAN_F11R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F11R2_FB3 CAN_F11R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F11R2_FB4_Pos (4U)
+#define CAN_F11R2_FB4_Msk (0x1UL << CAN_F11R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F11R2_FB4 CAN_F11R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F11R2_FB5_Pos (5U)
+#define CAN_F11R2_FB5_Msk (0x1UL << CAN_F11R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F11R2_FB5 CAN_F11R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F11R2_FB6_Pos (6U)
+#define CAN_F11R2_FB6_Msk (0x1UL << CAN_F11R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F11R2_FB6 CAN_F11R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F11R2_FB7_Pos (7U)
+#define CAN_F11R2_FB7_Msk (0x1UL << CAN_F11R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F11R2_FB7 CAN_F11R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F11R2_FB8_Pos (8U)
+#define CAN_F11R2_FB8_Msk (0x1UL << CAN_F11R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F11R2_FB8 CAN_F11R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F11R2_FB9_Pos (9U)
+#define CAN_F11R2_FB9_Msk (0x1UL << CAN_F11R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F11R2_FB9 CAN_F11R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F11R2_FB10_Pos (10U)
+#define CAN_F11R2_FB10_Msk (0x1UL << CAN_F11R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F11R2_FB10 CAN_F11R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F11R2_FB11_Pos (11U)
+#define CAN_F11R2_FB11_Msk (0x1UL << CAN_F11R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F11R2_FB11 CAN_F11R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F11R2_FB12_Pos (12U)
+#define CAN_F11R2_FB12_Msk (0x1UL << CAN_F11R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F11R2_FB12 CAN_F11R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F11R2_FB13_Pos (13U)
+#define CAN_F11R2_FB13_Msk (0x1UL << CAN_F11R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F11R2_FB13 CAN_F11R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F11R2_FB14_Pos (14U)
+#define CAN_F11R2_FB14_Msk (0x1UL << CAN_F11R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F11R2_FB14 CAN_F11R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F11R2_FB15_Pos (15U)
+#define CAN_F11R2_FB15_Msk (0x1UL << CAN_F11R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F11R2_FB15 CAN_F11R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F11R2_FB16_Pos (16U)
+#define CAN_F11R2_FB16_Msk (0x1UL << CAN_F11R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F11R2_FB16 CAN_F11R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F11R2_FB17_Pos (17U)
+#define CAN_F11R2_FB17_Msk (0x1UL << CAN_F11R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F11R2_FB17 CAN_F11R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F11R2_FB18_Pos (18U)
+#define CAN_F11R2_FB18_Msk (0x1UL << CAN_F11R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F11R2_FB18 CAN_F11R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F11R2_FB19_Pos (19U)
+#define CAN_F11R2_FB19_Msk (0x1UL << CAN_F11R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F11R2_FB19 CAN_F11R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F11R2_FB20_Pos (20U)
+#define CAN_F11R2_FB20_Msk (0x1UL << CAN_F11R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F11R2_FB20 CAN_F11R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F11R2_FB21_Pos (21U)
+#define CAN_F11R2_FB21_Msk (0x1UL << CAN_F11R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F11R2_FB21 CAN_F11R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F11R2_FB22_Pos (22U)
+#define CAN_F11R2_FB22_Msk (0x1UL << CAN_F11R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F11R2_FB22 CAN_F11R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F11R2_FB23_Pos (23U)
+#define CAN_F11R2_FB23_Msk (0x1UL << CAN_F11R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F11R2_FB23 CAN_F11R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F11R2_FB24_Pos (24U)
+#define CAN_F11R2_FB24_Msk (0x1UL << CAN_F11R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F11R2_FB24 CAN_F11R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F11R2_FB25_Pos (25U)
+#define CAN_F11R2_FB25_Msk (0x1UL << CAN_F11R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F11R2_FB25 CAN_F11R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F11R2_FB26_Pos (26U)
+#define CAN_F11R2_FB26_Msk (0x1UL << CAN_F11R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F11R2_FB26 CAN_F11R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F11R2_FB27_Pos (27U)
+#define CAN_F11R2_FB27_Msk (0x1UL << CAN_F11R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F11R2_FB27 CAN_F11R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F11R2_FB28_Pos (28U)
+#define CAN_F11R2_FB28_Msk (0x1UL << CAN_F11R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F11R2_FB28 CAN_F11R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F11R2_FB29_Pos (29U)
+#define CAN_F11R2_FB29_Msk (0x1UL << CAN_F11R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F11R2_FB29 CAN_F11R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F11R2_FB30_Pos (30U)
+#define CAN_F11R2_FB30_Msk (0x1UL << CAN_F11R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F11R2_FB30 CAN_F11R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F11R2_FB31_Pos (31U)
+#define CAN_F11R2_FB31_Msk (0x1UL << CAN_F11R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F11R2_FB31 CAN_F11R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F12R2 register ******************/
+#define CAN_F12R2_FB0_Pos (0U)
+#define CAN_F12R2_FB0_Msk (0x1UL << CAN_F12R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F12R2_FB0 CAN_F12R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F12R2_FB1_Pos (1U)
+#define CAN_F12R2_FB1_Msk (0x1UL << CAN_F12R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F12R2_FB1 CAN_F12R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F12R2_FB2_Pos (2U)
+#define CAN_F12R2_FB2_Msk (0x1UL << CAN_F12R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F12R2_FB2 CAN_F12R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F12R2_FB3_Pos (3U)
+#define CAN_F12R2_FB3_Msk (0x1UL << CAN_F12R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F12R2_FB3 CAN_F12R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F12R2_FB4_Pos (4U)
+#define CAN_F12R2_FB4_Msk (0x1UL << CAN_F12R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F12R2_FB4 CAN_F12R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F12R2_FB5_Pos (5U)
+#define CAN_F12R2_FB5_Msk (0x1UL << CAN_F12R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F12R2_FB5 CAN_F12R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F12R2_FB6_Pos (6U)
+#define CAN_F12R2_FB6_Msk (0x1UL << CAN_F12R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F12R2_FB6 CAN_F12R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F12R2_FB7_Pos (7U)
+#define CAN_F12R2_FB7_Msk (0x1UL << CAN_F12R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F12R2_FB7 CAN_F12R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F12R2_FB8_Pos (8U)
+#define CAN_F12R2_FB8_Msk (0x1UL << CAN_F12R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F12R2_FB8 CAN_F12R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F12R2_FB9_Pos (9U)
+#define CAN_F12R2_FB9_Msk (0x1UL << CAN_F12R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F12R2_FB9 CAN_F12R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F12R2_FB10_Pos (10U)
+#define CAN_F12R2_FB10_Msk (0x1UL << CAN_F12R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F12R2_FB10 CAN_F12R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F12R2_FB11_Pos (11U)
+#define CAN_F12R2_FB11_Msk (0x1UL << CAN_F12R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F12R2_FB11 CAN_F12R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F12R2_FB12_Pos (12U)
+#define CAN_F12R2_FB12_Msk (0x1UL << CAN_F12R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F12R2_FB12 CAN_F12R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F12R2_FB13_Pos (13U)
+#define CAN_F12R2_FB13_Msk (0x1UL << CAN_F12R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F12R2_FB13 CAN_F12R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F12R2_FB14_Pos (14U)
+#define CAN_F12R2_FB14_Msk (0x1UL << CAN_F12R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F12R2_FB14 CAN_F12R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F12R2_FB15_Pos (15U)
+#define CAN_F12R2_FB15_Msk (0x1UL << CAN_F12R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F12R2_FB15 CAN_F12R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F12R2_FB16_Pos (16U)
+#define CAN_F12R2_FB16_Msk (0x1UL << CAN_F12R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F12R2_FB16 CAN_F12R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F12R2_FB17_Pos (17U)
+#define CAN_F12R2_FB17_Msk (0x1UL << CAN_F12R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F12R2_FB17 CAN_F12R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F12R2_FB18_Pos (18U)
+#define CAN_F12R2_FB18_Msk (0x1UL << CAN_F12R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F12R2_FB18 CAN_F12R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F12R2_FB19_Pos (19U)
+#define CAN_F12R2_FB19_Msk (0x1UL << CAN_F12R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F12R2_FB19 CAN_F12R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F12R2_FB20_Pos (20U)
+#define CAN_F12R2_FB20_Msk (0x1UL << CAN_F12R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F12R2_FB20 CAN_F12R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F12R2_FB21_Pos (21U)
+#define CAN_F12R2_FB21_Msk (0x1UL << CAN_F12R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F12R2_FB21 CAN_F12R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F12R2_FB22_Pos (22U)
+#define CAN_F12R2_FB22_Msk (0x1UL << CAN_F12R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F12R2_FB22 CAN_F12R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F12R2_FB23_Pos (23U)
+#define CAN_F12R2_FB23_Msk (0x1UL << CAN_F12R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F12R2_FB23 CAN_F12R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F12R2_FB24_Pos (24U)
+#define CAN_F12R2_FB24_Msk (0x1UL << CAN_F12R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F12R2_FB24 CAN_F12R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F12R2_FB25_Pos (25U)
+#define CAN_F12R2_FB25_Msk (0x1UL << CAN_F12R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F12R2_FB25 CAN_F12R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F12R2_FB26_Pos (26U)
+#define CAN_F12R2_FB26_Msk (0x1UL << CAN_F12R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F12R2_FB26 CAN_F12R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F12R2_FB27_Pos (27U)
+#define CAN_F12R2_FB27_Msk (0x1UL << CAN_F12R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F12R2_FB27 CAN_F12R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F12R2_FB28_Pos (28U)
+#define CAN_F12R2_FB28_Msk (0x1UL << CAN_F12R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F12R2_FB28 CAN_F12R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F12R2_FB29_Pos (29U)
+#define CAN_F12R2_FB29_Msk (0x1UL << CAN_F12R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F12R2_FB29 CAN_F12R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F12R2_FB30_Pos (30U)
+#define CAN_F12R2_FB30_Msk (0x1UL << CAN_F12R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F12R2_FB30 CAN_F12R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F12R2_FB31_Pos (31U)
+#define CAN_F12R2_FB31_Msk (0x1UL << CAN_F12R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F12R2_FB31 CAN_F12R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************* Bit definition for CAN_F13R2 register ******************/
+#define CAN_F13R2_FB0_Pos (0U)
+#define CAN_F13R2_FB0_Msk (0x1UL << CAN_F13R2_FB0_Pos) /*!< 0x00000001 */
+#define CAN_F13R2_FB0 CAN_F13R2_FB0_Msk /*!< Filter bit 0 */
+#define CAN_F13R2_FB1_Pos (1U)
+#define CAN_F13R2_FB1_Msk (0x1UL << CAN_F13R2_FB1_Pos) /*!< 0x00000002 */
+#define CAN_F13R2_FB1 CAN_F13R2_FB1_Msk /*!< Filter bit 1 */
+#define CAN_F13R2_FB2_Pos (2U)
+#define CAN_F13R2_FB2_Msk (0x1UL << CAN_F13R2_FB2_Pos) /*!< 0x00000004 */
+#define CAN_F13R2_FB2 CAN_F13R2_FB2_Msk /*!< Filter bit 2 */
+#define CAN_F13R2_FB3_Pos (3U)
+#define CAN_F13R2_FB3_Msk (0x1UL << CAN_F13R2_FB3_Pos) /*!< 0x00000008 */
+#define CAN_F13R2_FB3 CAN_F13R2_FB3_Msk /*!< Filter bit 3 */
+#define CAN_F13R2_FB4_Pos (4U)
+#define CAN_F13R2_FB4_Msk (0x1UL << CAN_F13R2_FB4_Pos) /*!< 0x00000010 */
+#define CAN_F13R2_FB4 CAN_F13R2_FB4_Msk /*!< Filter bit 4 */
+#define CAN_F13R2_FB5_Pos (5U)
+#define CAN_F13R2_FB5_Msk (0x1UL << CAN_F13R2_FB5_Pos) /*!< 0x00000020 */
+#define CAN_F13R2_FB5 CAN_F13R2_FB5_Msk /*!< Filter bit 5 */
+#define CAN_F13R2_FB6_Pos (6U)
+#define CAN_F13R2_FB6_Msk (0x1UL << CAN_F13R2_FB6_Pos) /*!< 0x00000040 */
+#define CAN_F13R2_FB6 CAN_F13R2_FB6_Msk /*!< Filter bit 6 */
+#define CAN_F13R2_FB7_Pos (7U)
+#define CAN_F13R2_FB7_Msk (0x1UL << CAN_F13R2_FB7_Pos) /*!< 0x00000080 */
+#define CAN_F13R2_FB7 CAN_F13R2_FB7_Msk /*!< Filter bit 7 */
+#define CAN_F13R2_FB8_Pos (8U)
+#define CAN_F13R2_FB8_Msk (0x1UL << CAN_F13R2_FB8_Pos) /*!< 0x00000100 */
+#define CAN_F13R2_FB8 CAN_F13R2_FB8_Msk /*!< Filter bit 8 */
+#define CAN_F13R2_FB9_Pos (9U)
+#define CAN_F13R2_FB9_Msk (0x1UL << CAN_F13R2_FB9_Pos) /*!< 0x00000200 */
+#define CAN_F13R2_FB9 CAN_F13R2_FB9_Msk /*!< Filter bit 9 */
+#define CAN_F13R2_FB10_Pos (10U)
+#define CAN_F13R2_FB10_Msk (0x1UL << CAN_F13R2_FB10_Pos) /*!< 0x00000400 */
+#define CAN_F13R2_FB10 CAN_F13R2_FB10_Msk /*!< Filter bit 10 */
+#define CAN_F13R2_FB11_Pos (11U)
+#define CAN_F13R2_FB11_Msk (0x1UL << CAN_F13R2_FB11_Pos) /*!< 0x00000800 */
+#define CAN_F13R2_FB11 CAN_F13R2_FB11_Msk /*!< Filter bit 11 */
+#define CAN_F13R2_FB12_Pos (12U)
+#define CAN_F13R2_FB12_Msk (0x1UL << CAN_F13R2_FB12_Pos) /*!< 0x00001000 */
+#define CAN_F13R2_FB12 CAN_F13R2_FB12_Msk /*!< Filter bit 12 */
+#define CAN_F13R2_FB13_Pos (13U)
+#define CAN_F13R2_FB13_Msk (0x1UL << CAN_F13R2_FB13_Pos) /*!< 0x00002000 */
+#define CAN_F13R2_FB13 CAN_F13R2_FB13_Msk /*!< Filter bit 13 */
+#define CAN_F13R2_FB14_Pos (14U)
+#define CAN_F13R2_FB14_Msk (0x1UL << CAN_F13R2_FB14_Pos) /*!< 0x00004000 */
+#define CAN_F13R2_FB14 CAN_F13R2_FB14_Msk /*!< Filter bit 14 */
+#define CAN_F13R2_FB15_Pos (15U)
+#define CAN_F13R2_FB15_Msk (0x1UL << CAN_F13R2_FB15_Pos) /*!< 0x00008000 */
+#define CAN_F13R2_FB15 CAN_F13R2_FB15_Msk /*!< Filter bit 15 */
+#define CAN_F13R2_FB16_Pos (16U)
+#define CAN_F13R2_FB16_Msk (0x1UL << CAN_F13R2_FB16_Pos) /*!< 0x00010000 */
+#define CAN_F13R2_FB16 CAN_F13R2_FB16_Msk /*!< Filter bit 16 */
+#define CAN_F13R2_FB17_Pos (17U)
+#define CAN_F13R2_FB17_Msk (0x1UL << CAN_F13R2_FB17_Pos) /*!< 0x00020000 */
+#define CAN_F13R2_FB17 CAN_F13R2_FB17_Msk /*!< Filter bit 17 */
+#define CAN_F13R2_FB18_Pos (18U)
+#define CAN_F13R2_FB18_Msk (0x1UL << CAN_F13R2_FB18_Pos) /*!< 0x00040000 */
+#define CAN_F13R2_FB18 CAN_F13R2_FB18_Msk /*!< Filter bit 18 */
+#define CAN_F13R2_FB19_Pos (19U)
+#define CAN_F13R2_FB19_Msk (0x1UL << CAN_F13R2_FB19_Pos) /*!< 0x00080000 */
+#define CAN_F13R2_FB19 CAN_F13R2_FB19_Msk /*!< Filter bit 19 */
+#define CAN_F13R2_FB20_Pos (20U)
+#define CAN_F13R2_FB20_Msk (0x1UL << CAN_F13R2_FB20_Pos) /*!< 0x00100000 */
+#define CAN_F13R2_FB20 CAN_F13R2_FB20_Msk /*!< Filter bit 20 */
+#define CAN_F13R2_FB21_Pos (21U)
+#define CAN_F13R2_FB21_Msk (0x1UL << CAN_F13R2_FB21_Pos) /*!< 0x00200000 */
+#define CAN_F13R2_FB21 CAN_F13R2_FB21_Msk /*!< Filter bit 21 */
+#define CAN_F13R2_FB22_Pos (22U)
+#define CAN_F13R2_FB22_Msk (0x1UL << CAN_F13R2_FB22_Pos) /*!< 0x00400000 */
+#define CAN_F13R2_FB22 CAN_F13R2_FB22_Msk /*!< Filter bit 22 */
+#define CAN_F13R2_FB23_Pos (23U)
+#define CAN_F13R2_FB23_Msk (0x1UL << CAN_F13R2_FB23_Pos) /*!< 0x00800000 */
+#define CAN_F13R2_FB23 CAN_F13R2_FB23_Msk /*!< Filter bit 23 */
+#define CAN_F13R2_FB24_Pos (24U)
+#define CAN_F13R2_FB24_Msk (0x1UL << CAN_F13R2_FB24_Pos) /*!< 0x01000000 */
+#define CAN_F13R2_FB24 CAN_F13R2_FB24_Msk /*!< Filter bit 24 */
+#define CAN_F13R2_FB25_Pos (25U)
+#define CAN_F13R2_FB25_Msk (0x1UL << CAN_F13R2_FB25_Pos) /*!< 0x02000000 */
+#define CAN_F13R2_FB25 CAN_F13R2_FB25_Msk /*!< Filter bit 25 */
+#define CAN_F13R2_FB26_Pos (26U)
+#define CAN_F13R2_FB26_Msk (0x1UL << CAN_F13R2_FB26_Pos) /*!< 0x04000000 */
+#define CAN_F13R2_FB26 CAN_F13R2_FB26_Msk /*!< Filter bit 26 */
+#define CAN_F13R2_FB27_Pos (27U)
+#define CAN_F13R2_FB27_Msk (0x1UL << CAN_F13R2_FB27_Pos) /*!< 0x08000000 */
+#define CAN_F13R2_FB27 CAN_F13R2_FB27_Msk /*!< Filter bit 27 */
+#define CAN_F13R2_FB28_Pos (28U)
+#define CAN_F13R2_FB28_Msk (0x1UL << CAN_F13R2_FB28_Pos) /*!< 0x10000000 */
+#define CAN_F13R2_FB28 CAN_F13R2_FB28_Msk /*!< Filter bit 28 */
+#define CAN_F13R2_FB29_Pos (29U)
+#define CAN_F13R2_FB29_Msk (0x1UL << CAN_F13R2_FB29_Pos) /*!< 0x20000000 */
+#define CAN_F13R2_FB29 CAN_F13R2_FB29_Msk /*!< Filter bit 29 */
+#define CAN_F13R2_FB30_Pos (30U)
+#define CAN_F13R2_FB30_Msk (0x1UL << CAN_F13R2_FB30_Pos) /*!< 0x40000000 */
+#define CAN_F13R2_FB30 CAN_F13R2_FB30_Msk /*!< Filter bit 30 */
+#define CAN_F13R2_FB31_Pos (31U)
+#define CAN_F13R2_FB31_Msk (0x1UL << CAN_F13R2_FB31_Pos) /*!< 0x80000000 */
+#define CAN_F13R2_FB31 CAN_F13R2_FB31_Msk /*!< Filter bit 31 */
+
+/******************************************************************************/
+/* */
+/* Serial Peripheral Interface */
+/* */
+/******************************************************************************/
+
+/******************* Bit definition for SPI_CR1 register ********************/
+#define SPI_CR1_CPHA_Pos (0U)
+#define SPI_CR1_CPHA_Msk (0x1UL << SPI_CR1_CPHA_Pos) /*!< 0x00000001 */
+#define SPI_CR1_CPHA SPI_CR1_CPHA_Msk /*!< Clock Phase */
+#define SPI_CR1_CPOL_Pos (1U)
+#define SPI_CR1_CPOL_Msk (0x1UL << SPI_CR1_CPOL_Pos) /*!< 0x00000002 */
+#define SPI_CR1_CPOL SPI_CR1_CPOL_Msk /*!< Clock Polarity */
+#define SPI_CR1_MSTR_Pos (2U)
+#define SPI_CR1_MSTR_Msk (0x1UL << SPI_CR1_MSTR_Pos) /*!< 0x00000004 */
+#define SPI_CR1_MSTR SPI_CR1_MSTR_Msk /*!< Master Selection */
+
+#define SPI_CR1_BR_Pos (3U)
+#define SPI_CR1_BR_Msk (0x7UL << SPI_CR1_BR_Pos) /*!< 0x00000038 */
+#define SPI_CR1_BR SPI_CR1_BR_Msk /*!< BR[2:0] bits (Baud Rate Control) */
+#define SPI_CR1_BR_0 (0x1UL << SPI_CR1_BR_Pos) /*!< 0x00000008 */
+#define SPI_CR1_BR_1 (0x2UL << SPI_CR1_BR_Pos) /*!< 0x00000010 */
+#define SPI_CR1_BR_2 (0x4UL << SPI_CR1_BR_Pos) /*!< 0x00000020 */
+
+#define SPI_CR1_SPE_Pos (6U)
+#define SPI_CR1_SPE_Msk (0x1UL << SPI_CR1_SPE_Pos) /*!< 0x00000040 */
+#define SPI_CR1_SPE SPI_CR1_SPE_Msk /*!< SPI Enable */
+#define SPI_CR1_LSBFIRST_Pos (7U)
+#define SPI_CR1_LSBFIRST_Msk (0x1UL << SPI_CR1_LSBFIRST_Pos) /*!< 0x00000080 */
+#define SPI_CR1_LSBFIRST SPI_CR1_LSBFIRST_Msk /*!< Frame Format */
+#define SPI_CR1_SSI_Pos (8U)
+#define SPI_CR1_SSI_Msk (0x1UL << SPI_CR1_SSI_Pos) /*!< 0x00000100 */
+#define SPI_CR1_SSI SPI_CR1_SSI_Msk /*!< Internal slave select */
+#define SPI_CR1_SSM_Pos (9U)
+#define SPI_CR1_SSM_Msk (0x1UL << SPI_CR1_SSM_Pos) /*!< 0x00000200 */
+#define SPI_CR1_SSM SPI_CR1_SSM_Msk /*!< Software slave management */
+#define SPI_CR1_RXONLY_Pos (10U)
+#define SPI_CR1_RXONLY_Msk (0x1UL << SPI_CR1_RXONLY_Pos) /*!< 0x00000400 */
+#define SPI_CR1_RXONLY SPI_CR1_RXONLY_Msk /*!< Receive only */
+#define SPI_CR1_DFF_Pos (11U)
+#define SPI_CR1_DFF_Msk (0x1UL << SPI_CR1_DFF_Pos) /*!< 0x00000800 */
+#define SPI_CR1_DFF SPI_CR1_DFF_Msk /*!< Data Frame Format */
+#define SPI_CR1_CRCNEXT_Pos (12U)
+#define SPI_CR1_CRCNEXT_Msk (0x1UL << SPI_CR1_CRCNEXT_Pos) /*!< 0x00001000 */
+#define SPI_CR1_CRCNEXT SPI_CR1_CRCNEXT_Msk /*!< Transmit CRC next */
+#define SPI_CR1_CRCEN_Pos (13U)
+#define SPI_CR1_CRCEN_Msk (0x1UL << SPI_CR1_CRCEN_Pos) /*!< 0x00002000 */
+#define SPI_CR1_CRCEN SPI_CR1_CRCEN_Msk /*!< Hardware CRC calculation enable */
+#define SPI_CR1_BIDIOE_Pos (14U)
+#define SPI_CR1_BIDIOE_Msk (0x1UL << SPI_CR1_BIDIOE_Pos) /*!< 0x00004000 */
+#define SPI_CR1_BIDIOE SPI_CR1_BIDIOE_Msk /*!< Output enable in bidirectional mode */
+#define SPI_CR1_BIDIMODE_Pos (15U)
+#define SPI_CR1_BIDIMODE_Msk (0x1UL << SPI_CR1_BIDIMODE_Pos) /*!< 0x00008000 */
+#define SPI_CR1_BIDIMODE SPI_CR1_BIDIMODE_Msk /*!< Bidirectional data mode enable */
+
+/******************* Bit definition for SPI_CR2 register ********************/
+#define SPI_CR2_RXDMAEN_Pos (0U)
+#define SPI_CR2_RXDMAEN_Msk (0x1UL << SPI_CR2_RXDMAEN_Pos) /*!< 0x00000001 */
+#define SPI_CR2_RXDMAEN SPI_CR2_RXDMAEN_Msk /*!< Rx Buffer DMA Enable */
+#define SPI_CR2_TXDMAEN_Pos (1U)
+#define SPI_CR2_TXDMAEN_Msk (0x1UL << SPI_CR2_TXDMAEN_Pos) /*!< 0x00000002 */
+#define SPI_CR2_TXDMAEN SPI_CR2_TXDMAEN_Msk /*!< Tx Buffer DMA Enable */
+#define SPI_CR2_SSOE_Pos (2U)
+#define SPI_CR2_SSOE_Msk (0x1UL << SPI_CR2_SSOE_Pos) /*!< 0x00000004 */
+#define SPI_CR2_SSOE SPI_CR2_SSOE_Msk /*!< SS Output Enable */
+#define SPI_CR2_ERRIE_Pos (5U)
+#define SPI_CR2_ERRIE_Msk (0x1UL << SPI_CR2_ERRIE_Pos) /*!< 0x00000020 */
+#define SPI_CR2_ERRIE SPI_CR2_ERRIE_Msk /*!< Error Interrupt Enable */
+#define SPI_CR2_RXNEIE_Pos (6U)
+#define SPI_CR2_RXNEIE_Msk (0x1UL << SPI_CR2_RXNEIE_Pos) /*!< 0x00000040 */
+#define SPI_CR2_RXNEIE SPI_CR2_RXNEIE_Msk /*!< RX buffer Not Empty Interrupt Enable */
+#define SPI_CR2_TXEIE_Pos (7U)
+#define SPI_CR2_TXEIE_Msk (0x1UL << SPI_CR2_TXEIE_Pos) /*!< 0x00000080 */
+#define SPI_CR2_TXEIE SPI_CR2_TXEIE_Msk /*!< Tx buffer Empty Interrupt Enable */
+
+/******************** Bit definition for SPI_SR register ********************/
+#define SPI_SR_RXNE_Pos (0U)
+#define SPI_SR_RXNE_Msk (0x1UL << SPI_SR_RXNE_Pos) /*!< 0x00000001 */
+#define SPI_SR_RXNE SPI_SR_RXNE_Msk /*!< Receive buffer Not Empty */
+#define SPI_SR_TXE_Pos (1U)
+#define SPI_SR_TXE_Msk (0x1UL << SPI_SR_TXE_Pos) /*!< 0x00000002 */
+#define SPI_SR_TXE SPI_SR_TXE_Msk /*!< Transmit buffer Empty */
+#define SPI_SR_CHSIDE_Pos (2U)
+#define SPI_SR_CHSIDE_Msk (0x1UL << SPI_SR_CHSIDE_Pos) /*!< 0x00000004 */
+#define SPI_SR_CHSIDE SPI_SR_CHSIDE_Msk /*!< Channel side */
+#define SPI_SR_UDR_Pos (3U)
+#define SPI_SR_UDR_Msk (0x1UL << SPI_SR_UDR_Pos) /*!< 0x00000008 */
+#define SPI_SR_UDR SPI_SR_UDR_Msk /*!< Underrun flag */
+#define SPI_SR_CRCERR_Pos (4U)
+#define SPI_SR_CRCERR_Msk (0x1UL << SPI_SR_CRCERR_Pos) /*!< 0x00000010 */
+#define SPI_SR_CRCERR SPI_SR_CRCERR_Msk /*!< CRC Error flag */
+#define SPI_SR_MODF_Pos (5U)
+#define SPI_SR_MODF_Msk (0x1UL << SPI_SR_MODF_Pos) /*!< 0x00000020 */
+#define SPI_SR_MODF SPI_SR_MODF_Msk /*!< Mode fault */
+#define SPI_SR_OVR_Pos (6U)
+#define SPI_SR_OVR_Msk (0x1UL << SPI_SR_OVR_Pos) /*!< 0x00000040 */
+#define SPI_SR_OVR SPI_SR_OVR_Msk /*!< Overrun flag */
+#define SPI_SR_BSY_Pos (7U)
+#define SPI_SR_BSY_Msk (0x1UL << SPI_SR_BSY_Pos) /*!< 0x00000080 */
+#define SPI_SR_BSY SPI_SR_BSY_Msk /*!< Busy flag */
+
+/******************** Bit definition for SPI_DR register ********************/
+#define SPI_DR_DR_Pos (0U)
+#define SPI_DR_DR_Msk (0xFFFFUL << SPI_DR_DR_Pos) /*!< 0x0000FFFF */
+#define SPI_DR_DR SPI_DR_DR_Msk /*!< Data Register */
+
+/******************* Bit definition for SPI_CRCPR register ******************/
+#define SPI_CRCPR_CRCPOLY_Pos (0U)
+#define SPI_CRCPR_CRCPOLY_Msk (0xFFFFUL << SPI_CRCPR_CRCPOLY_Pos) /*!< 0x0000FFFF */
+#define SPI_CRCPR_CRCPOLY SPI_CRCPR_CRCPOLY_Msk /*!< CRC polynomial register */
+
+/****************** Bit definition for SPI_RXCRCR register ******************/
+#define SPI_RXCRCR_RXCRC_Pos (0U)
+#define SPI_RXCRCR_RXCRC_Msk (0xFFFFUL << SPI_RXCRCR_RXCRC_Pos) /*!< 0x0000FFFF */
+#define SPI_RXCRCR_RXCRC SPI_RXCRCR_RXCRC_Msk /*!< Rx CRC Register */
+
+/****************** Bit definition for SPI_TXCRCR register ******************/
+#define SPI_TXCRCR_TXCRC_Pos (0U)
+#define SPI_TXCRCR_TXCRC_Msk (0xFFFFUL << SPI_TXCRCR_TXCRC_Pos) /*!< 0x0000FFFF */
+#define SPI_TXCRCR_TXCRC SPI_TXCRCR_TXCRC_Msk /*!< Tx CRC Register */
+
+#define SPI_I2SCFGR_I2SMOD_Pos (11U)
+#define SPI_I2SCFGR_I2SMOD_Msk (0x1UL << SPI_I2SCFGR_I2SMOD_Pos) /*!< 0x00000800 */
+#define SPI_I2SCFGR_I2SMOD SPI_I2SCFGR_I2SMOD_Msk /*!< I2S mode selection */
+
+/******************************************************************************/
+/* */
+/* Inter-integrated Circuit Interface */
+/* */
+/******************************************************************************/
+
+/******************* Bit definition for I2C_CR1 register ********************/
+#define I2C_CR1_PE_Pos (0U)
+#define I2C_CR1_PE_Msk (0x1UL << I2C_CR1_PE_Pos) /*!< 0x00000001 */
+#define I2C_CR1_PE I2C_CR1_PE_Msk /*!< Peripheral Enable */
+#define I2C_CR1_SMBUS_Pos (1U)
+#define I2C_CR1_SMBUS_Msk (0x1UL << I2C_CR1_SMBUS_Pos) /*!< 0x00000002 */
+#define I2C_CR1_SMBUS I2C_CR1_SMBUS_Msk /*!< SMBus Mode */
+#define I2C_CR1_SMBTYPE_Pos (3U)
+#define I2C_CR1_SMBTYPE_Msk (0x1UL << I2C_CR1_SMBTYPE_Pos) /*!< 0x00000008 */
+#define I2C_CR1_SMBTYPE I2C_CR1_SMBTYPE_Msk /*!< SMBus Type */
+#define I2C_CR1_ENARP_Pos (4U)
+#define I2C_CR1_ENARP_Msk (0x1UL << I2C_CR1_ENARP_Pos) /*!< 0x00000010 */
+#define I2C_CR1_ENARP I2C_CR1_ENARP_Msk /*!< ARP Enable */
+#define I2C_CR1_ENPEC_Pos (5U)
+#define I2C_CR1_ENPEC_Msk (0x1UL << I2C_CR1_ENPEC_Pos) /*!< 0x00000020 */
+#define I2C_CR1_ENPEC I2C_CR1_ENPEC_Msk /*!< PEC Enable */
+#define I2C_CR1_ENGC_Pos (6U)
+#define I2C_CR1_ENGC_Msk (0x1UL << I2C_CR1_ENGC_Pos) /*!< 0x00000040 */
+#define I2C_CR1_ENGC I2C_CR1_ENGC_Msk /*!< General Call Enable */
+#define I2C_CR1_NOSTRETCH_Pos (7U)
+#define I2C_CR1_NOSTRETCH_Msk (0x1UL << I2C_CR1_NOSTRETCH_Pos) /*!< 0x00000080 */
+#define I2C_CR1_NOSTRETCH I2C_CR1_NOSTRETCH_Msk /*!< Clock Stretching Disable (Slave mode) */
+#define I2C_CR1_START_Pos (8U)
+#define I2C_CR1_START_Msk (0x1UL << I2C_CR1_START_Pos) /*!< 0x00000100 */
+#define I2C_CR1_START I2C_CR1_START_Msk /*!< Start Generation */
+#define I2C_CR1_STOP_Pos (9U)
+#define I2C_CR1_STOP_Msk (0x1UL << I2C_CR1_STOP_Pos) /*!< 0x00000200 */
+#define I2C_CR1_STOP I2C_CR1_STOP_Msk /*!< Stop Generation */
+#define I2C_CR1_ACK_Pos (10U)
+#define I2C_CR1_ACK_Msk (0x1UL << I2C_CR1_ACK_Pos) /*!< 0x00000400 */
+#define I2C_CR1_ACK I2C_CR1_ACK_Msk /*!< Acknowledge Enable */
+#define I2C_CR1_POS_Pos (11U)
+#define I2C_CR1_POS_Msk (0x1UL << I2C_CR1_POS_Pos) /*!< 0x00000800 */
+#define I2C_CR1_POS I2C_CR1_POS_Msk /*!< Acknowledge/PEC Position (for data reception) */
+#define I2C_CR1_PEC_Pos (12U)
+#define I2C_CR1_PEC_Msk (0x1UL << I2C_CR1_PEC_Pos) /*!< 0x00001000 */
+#define I2C_CR1_PEC I2C_CR1_PEC_Msk /*!< Packet Error Checking */
+#define I2C_CR1_ALERT_Pos (13U)
+#define I2C_CR1_ALERT_Msk (0x1UL << I2C_CR1_ALERT_Pos) /*!< 0x00002000 */
+#define I2C_CR1_ALERT I2C_CR1_ALERT_Msk /*!< SMBus Alert */
+#define I2C_CR1_SWRST_Pos (15U)
+#define I2C_CR1_SWRST_Msk (0x1UL << I2C_CR1_SWRST_Pos) /*!< 0x00008000 */
+#define I2C_CR1_SWRST I2C_CR1_SWRST_Msk /*!< Software Reset */
+
+/******************* Bit definition for I2C_CR2 register ********************/
+#define I2C_CR2_FREQ_Pos (0U)
+#define I2C_CR2_FREQ_Msk (0x3FUL << I2C_CR2_FREQ_Pos) /*!< 0x0000003F */
+#define I2C_CR2_FREQ I2C_CR2_FREQ_Msk /*!< FREQ[5:0] bits (Peripheral Clock Frequency) */
+#define I2C_CR2_FREQ_0 (0x01UL << I2C_CR2_FREQ_Pos) /*!< 0x00000001 */
+#define I2C_CR2_FREQ_1 (0x02UL << I2C_CR2_FREQ_Pos) /*!< 0x00000002 */
+#define I2C_CR2_FREQ_2 (0x04UL << I2C_CR2_FREQ_Pos) /*!< 0x00000004 */
+#define I2C_CR2_FREQ_3 (0x08UL << I2C_CR2_FREQ_Pos) /*!< 0x00000008 */
+#define I2C_CR2_FREQ_4 (0x10UL << I2C_CR2_FREQ_Pos) /*!< 0x00000010 */
+#define I2C_CR2_FREQ_5 (0x20UL << I2C_CR2_FREQ_Pos) /*!< 0x00000020 */
+
+#define I2C_CR2_ITERREN_Pos (8U)
+#define I2C_CR2_ITERREN_Msk (0x1UL << I2C_CR2_ITERREN_Pos) /*!< 0x00000100 */
+#define I2C_CR2_ITERREN I2C_CR2_ITERREN_Msk /*!< Error Interrupt Enable */
+#define I2C_CR2_ITEVTEN_Pos (9U)
+#define I2C_CR2_ITEVTEN_Msk (0x1UL << I2C_CR2_ITEVTEN_Pos) /*!< 0x00000200 */
+#define I2C_CR2_ITEVTEN I2C_CR2_ITEVTEN_Msk /*!< Event Interrupt Enable */
+#define I2C_CR2_ITBUFEN_Pos (10U)
+#define I2C_CR2_ITBUFEN_Msk (0x1UL << I2C_CR2_ITBUFEN_Pos) /*!< 0x00000400 */
+#define I2C_CR2_ITBUFEN I2C_CR2_ITBUFEN_Msk /*!< Buffer Interrupt Enable */
+#define I2C_CR2_DMAEN_Pos (11U)
+#define I2C_CR2_DMAEN_Msk (0x1UL << I2C_CR2_DMAEN_Pos) /*!< 0x00000800 */
+#define I2C_CR2_DMAEN I2C_CR2_DMAEN_Msk /*!< DMA Requests Enable */
+#define I2C_CR2_LAST_Pos (12U)
+#define I2C_CR2_LAST_Msk (0x1UL << I2C_CR2_LAST_Pos) /*!< 0x00001000 */
+#define I2C_CR2_LAST I2C_CR2_LAST_Msk /*!< DMA Last Transfer */
+
+/******************* Bit definition for I2C_OAR1 register *******************/
+#define I2C_OAR1_ADD1_7 0x000000FEU /*!< Interface Address */
+#define I2C_OAR1_ADD8_9 0x00000300U /*!< Interface Address */
+
+#define I2C_OAR1_ADD0_Pos (0U)
+#define I2C_OAR1_ADD0_Msk (0x1UL << I2C_OAR1_ADD0_Pos) /*!< 0x00000001 */
+#define I2C_OAR1_ADD0 I2C_OAR1_ADD0_Msk /*!< Bit 0 */
+#define I2C_OAR1_ADD1_Pos (1U)
+#define I2C_OAR1_ADD1_Msk (0x1UL << I2C_OAR1_ADD1_Pos) /*!< 0x00000002 */
+#define I2C_OAR1_ADD1 I2C_OAR1_ADD1_Msk /*!< Bit 1 */
+#define I2C_OAR1_ADD2_Pos (2U)
+#define I2C_OAR1_ADD2_Msk (0x1UL << I2C_OAR1_ADD2_Pos) /*!< 0x00000004 */
+#define I2C_OAR1_ADD2 I2C_OAR1_ADD2_Msk /*!< Bit 2 */
+#define I2C_OAR1_ADD3_Pos (3U)
+#define I2C_OAR1_ADD3_Msk (0x1UL << I2C_OAR1_ADD3_Pos) /*!< 0x00000008 */
+#define I2C_OAR1_ADD3 I2C_OAR1_ADD3_Msk /*!< Bit 3 */
+#define I2C_OAR1_ADD4_Pos (4U)
+#define I2C_OAR1_ADD4_Msk (0x1UL << I2C_OAR1_ADD4_Pos) /*!< 0x00000010 */
+#define I2C_OAR1_ADD4 I2C_OAR1_ADD4_Msk /*!< Bit 4 */
+#define I2C_OAR1_ADD5_Pos (5U)
+#define I2C_OAR1_ADD5_Msk (0x1UL << I2C_OAR1_ADD5_Pos) /*!< 0x00000020 */
+#define I2C_OAR1_ADD5 I2C_OAR1_ADD5_Msk /*!< Bit 5 */
+#define I2C_OAR1_ADD6_Pos (6U)
+#define I2C_OAR1_ADD6_Msk (0x1UL << I2C_OAR1_ADD6_Pos) /*!< 0x00000040 */
+#define I2C_OAR1_ADD6 I2C_OAR1_ADD6_Msk /*!< Bit 6 */
+#define I2C_OAR1_ADD7_Pos (7U)
+#define I2C_OAR1_ADD7_Msk (0x1UL << I2C_OAR1_ADD7_Pos) /*!< 0x00000080 */
+#define I2C_OAR1_ADD7 I2C_OAR1_ADD7_Msk /*!< Bit 7 */
+#define I2C_OAR1_ADD8_Pos (8U)
+#define I2C_OAR1_ADD8_Msk (0x1UL << I2C_OAR1_ADD8_Pos) /*!< 0x00000100 */
+#define I2C_OAR1_ADD8 I2C_OAR1_ADD8_Msk /*!< Bit 8 */
+#define I2C_OAR1_ADD9_Pos (9U)
+#define I2C_OAR1_ADD9_Msk (0x1UL << I2C_OAR1_ADD9_Pos) /*!< 0x00000200 */
+#define I2C_OAR1_ADD9 I2C_OAR1_ADD9_Msk /*!< Bit 9 */
+
+#define I2C_OAR1_ADDMODE_Pos (15U)
+#define I2C_OAR1_ADDMODE_Msk (0x1UL << I2C_OAR1_ADDMODE_Pos) /*!< 0x00008000 */
+#define I2C_OAR1_ADDMODE I2C_OAR1_ADDMODE_Msk /*!< Addressing Mode (Slave mode) */
+
+/******************* Bit definition for I2C_OAR2 register *******************/
+#define I2C_OAR2_ENDUAL_Pos (0U)
+#define I2C_OAR2_ENDUAL_Msk (0x1UL << I2C_OAR2_ENDUAL_Pos) /*!< 0x00000001 */
+#define I2C_OAR2_ENDUAL I2C_OAR2_ENDUAL_Msk /*!< Dual addressing mode enable */
+#define I2C_OAR2_ADD2_Pos (1U)
+#define I2C_OAR2_ADD2_Msk (0x7FUL << I2C_OAR2_ADD2_Pos) /*!< 0x000000FE */
+#define I2C_OAR2_ADD2 I2C_OAR2_ADD2_Msk /*!< Interface address */
+
+/******************** Bit definition for I2C_DR register ********************/
+#define I2C_DR_DR_Pos (0U)
+#define I2C_DR_DR_Msk (0xFFUL << I2C_DR_DR_Pos) /*!< 0x000000FF */
+#define I2C_DR_DR I2C_DR_DR_Msk /*!< 8-bit Data Register */
+
+/******************* Bit definition for I2C_SR1 register ********************/
+#define I2C_SR1_SB_Pos (0U)
+#define I2C_SR1_SB_Msk (0x1UL << I2C_SR1_SB_Pos) /*!< 0x00000001 */
+#define I2C_SR1_SB I2C_SR1_SB_Msk /*!< Start Bit (Master mode) */
+#define I2C_SR1_ADDR_Pos (1U)
+#define I2C_SR1_ADDR_Msk (0x1UL << I2C_SR1_ADDR_Pos) /*!< 0x00000002 */
+#define I2C_SR1_ADDR I2C_SR1_ADDR_Msk /*!< Address sent (master mode)/matched (slave mode) */
+#define I2C_SR1_BTF_Pos (2U)
+#define I2C_SR1_BTF_Msk (0x1UL << I2C_SR1_BTF_Pos) /*!< 0x00000004 */
+#define I2C_SR1_BTF I2C_SR1_BTF_Msk /*!< Byte Transfer Finished */
+#define I2C_SR1_ADD10_Pos (3U)
+#define I2C_SR1_ADD10_Msk (0x1UL << I2C_SR1_ADD10_Pos) /*!< 0x00000008 */
+#define I2C_SR1_ADD10 I2C_SR1_ADD10_Msk /*!< 10-bit header sent (Master mode) */
+#define I2C_SR1_STOPF_Pos (4U)
+#define I2C_SR1_STOPF_Msk (0x1UL << I2C_SR1_STOPF_Pos) /*!< 0x00000010 */
+#define I2C_SR1_STOPF I2C_SR1_STOPF_Msk /*!< Stop detection (Slave mode) */
+#define I2C_SR1_RXNE_Pos (6U)
+#define I2C_SR1_RXNE_Msk (0x1UL << I2C_SR1_RXNE_Pos) /*!< 0x00000040 */
+#define I2C_SR1_RXNE I2C_SR1_RXNE_Msk /*!< Data Register not Empty (receivers) */
+#define I2C_SR1_TXE_Pos (7U)
+#define I2C_SR1_TXE_Msk (0x1UL << I2C_SR1_TXE_Pos) /*!< 0x00000080 */
+#define I2C_SR1_TXE I2C_SR1_TXE_Msk /*!< Data Register Empty (transmitters) */
+#define I2C_SR1_BERR_Pos (8U)
+#define I2C_SR1_BERR_Msk (0x1UL << I2C_SR1_BERR_Pos) /*!< 0x00000100 */
+#define I2C_SR1_BERR I2C_SR1_BERR_Msk /*!< Bus Error */
+#define I2C_SR1_ARLO_Pos (9U)
+#define I2C_SR1_ARLO_Msk (0x1UL << I2C_SR1_ARLO_Pos) /*!< 0x00000200 */
+#define I2C_SR1_ARLO I2C_SR1_ARLO_Msk /*!< Arbitration Lost (master mode) */
+#define I2C_SR1_AF_Pos (10U)
+#define I2C_SR1_AF_Msk (0x1UL << I2C_SR1_AF_Pos) /*!< 0x00000400 */
+#define I2C_SR1_AF I2C_SR1_AF_Msk /*!< Acknowledge Failure */
+#define I2C_SR1_OVR_Pos (11U)
+#define I2C_SR1_OVR_Msk (0x1UL << I2C_SR1_OVR_Pos) /*!< 0x00000800 */
+#define I2C_SR1_OVR I2C_SR1_OVR_Msk /*!< Overrun/Underrun */
+#define I2C_SR1_PECERR_Pos (12U)
+#define I2C_SR1_PECERR_Msk (0x1UL << I2C_SR1_PECERR_Pos) /*!< 0x00001000 */
+#define I2C_SR1_PECERR I2C_SR1_PECERR_Msk /*!< PEC Error in reception */
+#define I2C_SR1_TIMEOUT_Pos (14U)
+#define I2C_SR1_TIMEOUT_Msk (0x1UL << I2C_SR1_TIMEOUT_Pos) /*!< 0x00004000 */
+#define I2C_SR1_TIMEOUT I2C_SR1_TIMEOUT_Msk /*!< Timeout or Tlow Error */
+#define I2C_SR1_SMBALERT_Pos (15U)
+#define I2C_SR1_SMBALERT_Msk (0x1UL << I2C_SR1_SMBALERT_Pos) /*!< 0x00008000 */
+#define I2C_SR1_SMBALERT I2C_SR1_SMBALERT_Msk /*!< SMBus Alert */
+
+/******************* Bit definition for I2C_SR2 register ********************/
+#define I2C_SR2_MSL_Pos (0U)
+#define I2C_SR2_MSL_Msk (0x1UL << I2C_SR2_MSL_Pos) /*!< 0x00000001 */
+#define I2C_SR2_MSL I2C_SR2_MSL_Msk /*!< Master/Slave */
+#define I2C_SR2_BUSY_Pos (1U)
+#define I2C_SR2_BUSY_Msk (0x1UL << I2C_SR2_BUSY_Pos) /*!< 0x00000002 */
+#define I2C_SR2_BUSY I2C_SR2_BUSY_Msk /*!< Bus Busy */
+#define I2C_SR2_TRA_Pos (2U)
+#define I2C_SR2_TRA_Msk (0x1UL << I2C_SR2_TRA_Pos) /*!< 0x00000004 */
+#define I2C_SR2_TRA I2C_SR2_TRA_Msk /*!< Transmitter/Receiver */
+#define I2C_SR2_GENCALL_Pos (4U)
+#define I2C_SR2_GENCALL_Msk (0x1UL << I2C_SR2_GENCALL_Pos) /*!< 0x00000010 */
+#define I2C_SR2_GENCALL I2C_SR2_GENCALL_Msk /*!< General Call Address (Slave mode) */
+#define I2C_SR2_SMBDEFAULT_Pos (5U)
+#define I2C_SR2_SMBDEFAULT_Msk (0x1UL << I2C_SR2_SMBDEFAULT_Pos) /*!< 0x00000020 */
+#define I2C_SR2_SMBDEFAULT I2C_SR2_SMBDEFAULT_Msk /*!< SMBus Device Default Address (Slave mode) */
+#define I2C_SR2_SMBHOST_Pos (6U)
+#define I2C_SR2_SMBHOST_Msk (0x1UL << I2C_SR2_SMBHOST_Pos) /*!< 0x00000040 */
+#define I2C_SR2_SMBHOST I2C_SR2_SMBHOST_Msk /*!< SMBus Host Header (Slave mode) */
+#define I2C_SR2_DUALF_Pos (7U)
+#define I2C_SR2_DUALF_Msk (0x1UL << I2C_SR2_DUALF_Pos) /*!< 0x00000080 */
+#define I2C_SR2_DUALF I2C_SR2_DUALF_Msk /*!< Dual Flag (Slave mode) */
+#define I2C_SR2_PEC_Pos (8U)
+#define I2C_SR2_PEC_Msk (0xFFUL << I2C_SR2_PEC_Pos) /*!< 0x0000FF00 */
+#define I2C_SR2_PEC I2C_SR2_PEC_Msk /*!< Packet Error Checking Register */
+
+/******************* Bit definition for I2C_CCR register ********************/
+#define I2C_CCR_CCR_Pos (0U)
+#define I2C_CCR_CCR_Msk (0xFFFUL << I2C_CCR_CCR_Pos) /*!< 0x00000FFF */
+#define I2C_CCR_CCR I2C_CCR_CCR_Msk /*!< Clock Control Register in Fast/Standard mode (Master mode) */
+#define I2C_CCR_DUTY_Pos (14U)
+#define I2C_CCR_DUTY_Msk (0x1UL << I2C_CCR_DUTY_Pos) /*!< 0x00004000 */
+#define I2C_CCR_DUTY I2C_CCR_DUTY_Msk /*!< Fast Mode Duty Cycle */
+#define I2C_CCR_FS_Pos (15U)
+#define I2C_CCR_FS_Msk (0x1UL << I2C_CCR_FS_Pos) /*!< 0x00008000 */
+#define I2C_CCR_FS I2C_CCR_FS_Msk /*!< I2C Master Mode Selection */
+
+/****************** Bit definition for I2C_TRISE register *******************/
+#define I2C_TRISE_TRISE_Pos (0U)
+#define I2C_TRISE_TRISE_Msk (0x3FUL << I2C_TRISE_TRISE_Pos) /*!< 0x0000003F */
+#define I2C_TRISE_TRISE I2C_TRISE_TRISE_Msk /*!< Maximum Rise Time in Fast/Standard mode (Master mode) */
+
+/******************************************************************************/
+/* */
+/* Universal Synchronous Asynchronous Receiver Transmitter */
+/* */
+/******************************************************************************/
+
+/******************* Bit definition for USART_SR register *******************/
+#define USART_SR_PE_Pos (0U)
+#define USART_SR_PE_Msk (0x1UL << USART_SR_PE_Pos) /*!< 0x00000001 */
+#define USART_SR_PE USART_SR_PE_Msk /*!< Parity Error */
+#define USART_SR_FE_Pos (1U)
+#define USART_SR_FE_Msk (0x1UL << USART_SR_FE_Pos) /*!< 0x00000002 */
+#define USART_SR_FE USART_SR_FE_Msk /*!< Framing Error */
+#define USART_SR_NE_Pos (2U)
+#define USART_SR_NE_Msk (0x1UL << USART_SR_NE_Pos) /*!< 0x00000004 */
+#define USART_SR_NE USART_SR_NE_Msk /*!< Noise Error Flag */
+#define USART_SR_ORE_Pos (3U)
+#define USART_SR_ORE_Msk (0x1UL << USART_SR_ORE_Pos) /*!< 0x00000008 */
+#define USART_SR_ORE USART_SR_ORE_Msk /*!< OverRun Error */
+#define USART_SR_IDLE_Pos (4U)
+#define USART_SR_IDLE_Msk (0x1UL << USART_SR_IDLE_Pos) /*!< 0x00000010 */
+#define USART_SR_IDLE USART_SR_IDLE_Msk /*!< IDLE line detected */
+#define USART_SR_RXNE_Pos (5U)
+#define USART_SR_RXNE_Msk (0x1UL << USART_SR_RXNE_Pos) /*!< 0x00000020 */
+#define USART_SR_RXNE USART_SR_RXNE_Msk /*!< Read Data Register Not Empty */
+#define USART_SR_TC_Pos (6U)
+#define USART_SR_TC_Msk (0x1UL << USART_SR_TC_Pos) /*!< 0x00000040 */
+#define USART_SR_TC USART_SR_TC_Msk /*!< Transmission Complete */
+#define USART_SR_TXE_Pos (7U)
+#define USART_SR_TXE_Msk (0x1UL << USART_SR_TXE_Pos) /*!< 0x00000080 */
+#define USART_SR_TXE USART_SR_TXE_Msk /*!< Transmit Data Register Empty */
+#define USART_SR_LBD_Pos (8U)
+#define USART_SR_LBD_Msk (0x1UL << USART_SR_LBD_Pos) /*!< 0x00000100 */
+#define USART_SR_LBD USART_SR_LBD_Msk /*!< LIN Break Detection Flag */
+#define USART_SR_CTS_Pos (9U)
+#define USART_SR_CTS_Msk (0x1UL << USART_SR_CTS_Pos) /*!< 0x00000200 */
+#define USART_SR_CTS USART_SR_CTS_Msk /*!< CTS Flag */
+
+/******************* Bit definition for USART_DR register *******************/
+#define USART_DR_DR_Pos (0U)
+#define USART_DR_DR_Msk (0x1FFUL << USART_DR_DR_Pos) /*!< 0x000001FF */
+#define USART_DR_DR USART_DR_DR_Msk /*!< Data value */
+
+/****************** Bit definition for USART_BRR register *******************/
+#define USART_BRR_DIV_Fraction_Pos (0U)
+#define USART_BRR_DIV_Fraction_Msk (0xFUL << USART_BRR_DIV_Fraction_Pos) /*!< 0x0000000F */
+#define USART_BRR_DIV_Fraction USART_BRR_DIV_Fraction_Msk /*!< Fraction of USARTDIV */
+#define USART_BRR_DIV_Mantissa_Pos (4U)
+#define USART_BRR_DIV_Mantissa_Msk (0xFFFUL << USART_BRR_DIV_Mantissa_Pos) /*!< 0x0000FFF0 */
+#define USART_BRR_DIV_Mantissa USART_BRR_DIV_Mantissa_Msk /*!< Mantissa of USARTDIV */
+
+/****************** Bit definition for USART_CR1 register *******************/
+#define USART_CR1_SBK_Pos (0U)
+#define USART_CR1_SBK_Msk (0x1UL << USART_CR1_SBK_Pos) /*!< 0x00000001 */
+#define USART_CR1_SBK USART_CR1_SBK_Msk /*!< Send Break */
+#define USART_CR1_RWU_Pos (1U)
+#define USART_CR1_RWU_Msk (0x1UL << USART_CR1_RWU_Pos) /*!< 0x00000002 */
+#define USART_CR1_RWU USART_CR1_RWU_Msk /*!< Receiver wakeup */
+#define USART_CR1_RE_Pos (2U)
+#define USART_CR1_RE_Msk (0x1UL << USART_CR1_RE_Pos) /*!< 0x00000004 */
+#define USART_CR1_RE USART_CR1_RE_Msk /*!< Receiver Enable */
+#define USART_CR1_TE_Pos (3U)
+#define USART_CR1_TE_Msk (0x1UL << USART_CR1_TE_Pos) /*!< 0x00000008 */
+#define USART_CR1_TE USART_CR1_TE_Msk /*!< Transmitter Enable */
+#define USART_CR1_IDLEIE_Pos (4U)
+#define USART_CR1_IDLEIE_Msk (0x1UL << USART_CR1_IDLEIE_Pos) /*!< 0x00000010 */
+#define USART_CR1_IDLEIE USART_CR1_IDLEIE_Msk /*!< IDLE Interrupt Enable */
+#define USART_CR1_RXNEIE_Pos (5U)
+#define USART_CR1_RXNEIE_Msk (0x1UL << USART_CR1_RXNEIE_Pos) /*!< 0x00000020 */
+#define USART_CR1_RXNEIE USART_CR1_RXNEIE_Msk /*!< RXNE Interrupt Enable */
+#define USART_CR1_TCIE_Pos (6U)
+#define USART_CR1_TCIE_Msk (0x1UL << USART_CR1_TCIE_Pos) /*!< 0x00000040 */
+#define USART_CR1_TCIE USART_CR1_TCIE_Msk /*!< Transmission Complete Interrupt Enable */
+#define USART_CR1_TXEIE_Pos (7U)
+#define USART_CR1_TXEIE_Msk (0x1UL << USART_CR1_TXEIE_Pos) /*!< 0x00000080 */
+#define USART_CR1_TXEIE USART_CR1_TXEIE_Msk /*!< PE Interrupt Enable */
+#define USART_CR1_PEIE_Pos (8U)
+#define USART_CR1_PEIE_Msk (0x1UL << USART_CR1_PEIE_Pos) /*!< 0x00000100 */
+#define USART_CR1_PEIE USART_CR1_PEIE_Msk /*!< PE Interrupt Enable */
+#define USART_CR1_PS_Pos (9U)
+#define USART_CR1_PS_Msk (0x1UL << USART_CR1_PS_Pos) /*!< 0x00000200 */
+#define USART_CR1_PS USART_CR1_PS_Msk /*!< Parity Selection */
+#define USART_CR1_PCE_Pos (10U)
+#define USART_CR1_PCE_Msk (0x1UL << USART_CR1_PCE_Pos) /*!< 0x00000400 */
+#define USART_CR1_PCE USART_CR1_PCE_Msk /*!< Parity Control Enable */
+#define USART_CR1_WAKE_Pos (11U)
+#define USART_CR1_WAKE_Msk (0x1UL << USART_CR1_WAKE_Pos) /*!< 0x00000800 */
+#define USART_CR1_WAKE USART_CR1_WAKE_Msk /*!< Wakeup method */
+#define USART_CR1_M_Pos (12U)
+#define USART_CR1_M_Msk (0x1UL << USART_CR1_M_Pos) /*!< 0x00001000 */
+#define USART_CR1_M USART_CR1_M_Msk /*!< Word length */
+#define USART_CR1_UE_Pos (13U)
+#define USART_CR1_UE_Msk (0x1UL << USART_CR1_UE_Pos) /*!< 0x00002000 */
+#define USART_CR1_UE USART_CR1_UE_Msk /*!< USART Enable */
+
+/****************** Bit definition for USART_CR2 register *******************/
+#define USART_CR2_ADD_Pos (0U)
+#define USART_CR2_ADD_Msk (0xFUL << USART_CR2_ADD_Pos) /*!< 0x0000000F */
+#define USART_CR2_ADD USART_CR2_ADD_Msk /*!< Address of the USART node */
+#define USART_CR2_LBDL_Pos (5U)
+#define USART_CR2_LBDL_Msk (0x1UL << USART_CR2_LBDL_Pos) /*!< 0x00000020 */
+#define USART_CR2_LBDL USART_CR2_LBDL_Msk /*!< LIN Break Detection Length */
+#define USART_CR2_LBDIE_Pos (6U)
+#define USART_CR2_LBDIE_Msk (0x1UL << USART_CR2_LBDIE_Pos) /*!< 0x00000040 */
+#define USART_CR2_LBDIE USART_CR2_LBDIE_Msk /*!< LIN Break Detection Interrupt Enable */
+#define USART_CR2_LBCL_Pos (8U)
+#define USART_CR2_LBCL_Msk (0x1UL << USART_CR2_LBCL_Pos) /*!< 0x00000100 */
+#define USART_CR2_LBCL USART_CR2_LBCL_Msk /*!< Last Bit Clock pulse */
+#define USART_CR2_CPHA_Pos (9U)
+#define USART_CR2_CPHA_Msk (0x1UL << USART_CR2_CPHA_Pos) /*!< 0x00000200 */
+#define USART_CR2_CPHA USART_CR2_CPHA_Msk /*!< Clock Phase */
+#define USART_CR2_CPOL_Pos (10U)
+#define USART_CR2_CPOL_Msk (0x1UL << USART_CR2_CPOL_Pos) /*!< 0x00000400 */
+#define USART_CR2_CPOL USART_CR2_CPOL_Msk /*!< Clock Polarity */
+#define USART_CR2_CLKEN_Pos (11U)
+#define USART_CR2_CLKEN_Msk (0x1UL << USART_CR2_CLKEN_Pos) /*!< 0x00000800 */
+#define USART_CR2_CLKEN USART_CR2_CLKEN_Msk /*!< Clock Enable */
+
+#define USART_CR2_STOP_Pos (12U)
+#define USART_CR2_STOP_Msk (0x3UL << USART_CR2_STOP_Pos) /*!< 0x00003000 */
+#define USART_CR2_STOP USART_CR2_STOP_Msk /*!< STOP[1:0] bits (STOP bits) */
+#define USART_CR2_STOP_0 (0x1UL << USART_CR2_STOP_Pos) /*!< 0x00001000 */
+#define USART_CR2_STOP_1 (0x2UL << USART_CR2_STOP_Pos) /*!< 0x00002000 */
+
+#define USART_CR2_LINEN_Pos (14U)
+#define USART_CR2_LINEN_Msk (0x1UL << USART_CR2_LINEN_Pos) /*!< 0x00004000 */
+#define USART_CR2_LINEN USART_CR2_LINEN_Msk /*!< LIN mode enable */
+
+/****************** Bit definition for USART_CR3 register *******************/
+#define USART_CR3_EIE_Pos (0U)
+#define USART_CR3_EIE_Msk (0x1UL << USART_CR3_EIE_Pos) /*!< 0x00000001 */
+#define USART_CR3_EIE USART_CR3_EIE_Msk /*!< Error Interrupt Enable */
+#define USART_CR3_IREN_Pos (1U)
+#define USART_CR3_IREN_Msk (0x1UL << USART_CR3_IREN_Pos) /*!< 0x00000002 */
+#define USART_CR3_IREN USART_CR3_IREN_Msk /*!< IrDA mode Enable */
+#define USART_CR3_IRLP_Pos (2U)
+#define USART_CR3_IRLP_Msk (0x1UL << USART_CR3_IRLP_Pos) /*!< 0x00000004 */
+#define USART_CR3_IRLP USART_CR3_IRLP_Msk /*!< IrDA Low-Power */
+#define USART_CR3_HDSEL_Pos (3U)
+#define USART_CR3_HDSEL_Msk (0x1UL << USART_CR3_HDSEL_Pos) /*!< 0x00000008 */
+#define USART_CR3_HDSEL USART_CR3_HDSEL_Msk /*!< Half-Duplex Selection */
+#define USART_CR3_NACK_Pos (4U)
+#define USART_CR3_NACK_Msk (0x1UL << USART_CR3_NACK_Pos) /*!< 0x00000010 */
+#define USART_CR3_NACK USART_CR3_NACK_Msk /*!< Smartcard NACK enable */
+#define USART_CR3_SCEN_Pos (5U)
+#define USART_CR3_SCEN_Msk (0x1UL << USART_CR3_SCEN_Pos) /*!< 0x00000020 */
+#define USART_CR3_SCEN USART_CR3_SCEN_Msk /*!< Smartcard mode enable */
+#define USART_CR3_DMAR_Pos (6U)
+#define USART_CR3_DMAR_Msk (0x1UL << USART_CR3_DMAR_Pos) /*!< 0x00000040 */
+#define USART_CR3_DMAR USART_CR3_DMAR_Msk /*!< DMA Enable Receiver */
+#define USART_CR3_DMAT_Pos (7U)
+#define USART_CR3_DMAT_Msk (0x1UL << USART_CR3_DMAT_Pos) /*!< 0x00000080 */
+#define USART_CR3_DMAT USART_CR3_DMAT_Msk /*!< DMA Enable Transmitter */
+#define USART_CR3_RTSE_Pos (8U)
+#define USART_CR3_RTSE_Msk (0x1UL << USART_CR3_RTSE_Pos) /*!< 0x00000100 */
+#define USART_CR3_RTSE USART_CR3_RTSE_Msk /*!< RTS Enable */
+#define USART_CR3_CTSE_Pos (9U)
+#define USART_CR3_CTSE_Msk (0x1UL << USART_CR3_CTSE_Pos) /*!< 0x00000200 */
+#define USART_CR3_CTSE USART_CR3_CTSE_Msk /*!< CTS Enable */
+#define USART_CR3_CTSIE_Pos (10U)
+#define USART_CR3_CTSIE_Msk (0x1UL << USART_CR3_CTSIE_Pos) /*!< 0x00000400 */
+#define USART_CR3_CTSIE USART_CR3_CTSIE_Msk /*!< CTS Interrupt Enable */
+
+/****************** Bit definition for USART_GTPR register ******************/
+#define USART_GTPR_PSC_Pos (0U)
+#define USART_GTPR_PSC_Msk (0xFFUL << USART_GTPR_PSC_Pos) /*!< 0x000000FF */
+#define USART_GTPR_PSC USART_GTPR_PSC_Msk /*!< PSC[7:0] bits (Prescaler value) */
+#define USART_GTPR_PSC_0 (0x01UL << USART_GTPR_PSC_Pos) /*!< 0x00000001 */
+#define USART_GTPR_PSC_1 (0x02UL << USART_GTPR_PSC_Pos) /*!< 0x00000002 */
+#define USART_GTPR_PSC_2 (0x04UL << USART_GTPR_PSC_Pos) /*!< 0x00000004 */
+#define USART_GTPR_PSC_3 (0x08UL << USART_GTPR_PSC_Pos) /*!< 0x00000008 */
+#define USART_GTPR_PSC_4 (0x10UL << USART_GTPR_PSC_Pos) /*!< 0x00000010 */
+#define USART_GTPR_PSC_5 (0x20UL << USART_GTPR_PSC_Pos) /*!< 0x00000020 */
+#define USART_GTPR_PSC_6 (0x40UL << USART_GTPR_PSC_Pos) /*!< 0x00000040 */
+#define USART_GTPR_PSC_7 (0x80UL << USART_GTPR_PSC_Pos) /*!< 0x00000080 */
+
+#define USART_GTPR_GT_Pos (8U)
+#define USART_GTPR_GT_Msk (0xFFUL << USART_GTPR_GT_Pos) /*!< 0x0000FF00 */
+#define USART_GTPR_GT USART_GTPR_GT_Msk /*!< Guard time value */
+
+/******************************************************************************/
+/* */
+/* Debug MCU */
+/* */
+/******************************************************************************/
+
+/**************** Bit definition for DBGMCU_IDCODE register *****************/
+#define DBGMCU_IDCODE_DEV_ID_Pos (0U)
+#define DBGMCU_IDCODE_DEV_ID_Msk (0xFFFUL << DBGMCU_IDCODE_DEV_ID_Pos) /*!< 0x00000FFF */
+#define DBGMCU_IDCODE_DEV_ID DBGMCU_IDCODE_DEV_ID_Msk /*!< Device Identifier */
+
+#define DBGMCU_IDCODE_REV_ID_Pos (16U)
+#define DBGMCU_IDCODE_REV_ID_Msk (0xFFFFUL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0xFFFF0000 */
+#define DBGMCU_IDCODE_REV_ID DBGMCU_IDCODE_REV_ID_Msk /*!< REV_ID[15:0] bits (Revision Identifier) */
+#define DBGMCU_IDCODE_REV_ID_0 (0x0001UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x00010000 */
+#define DBGMCU_IDCODE_REV_ID_1 (0x0002UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x00020000 */
+#define DBGMCU_IDCODE_REV_ID_2 (0x0004UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x00040000 */
+#define DBGMCU_IDCODE_REV_ID_3 (0x0008UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x00080000 */
+#define DBGMCU_IDCODE_REV_ID_4 (0x0010UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x00100000 */
+#define DBGMCU_IDCODE_REV_ID_5 (0x0020UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x00200000 */
+#define DBGMCU_IDCODE_REV_ID_6 (0x0040UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x00400000 */
+#define DBGMCU_IDCODE_REV_ID_7 (0x0080UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x00800000 */
+#define DBGMCU_IDCODE_REV_ID_8 (0x0100UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x01000000 */
+#define DBGMCU_IDCODE_REV_ID_9 (0x0200UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x02000000 */
+#define DBGMCU_IDCODE_REV_ID_10 (0x0400UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x04000000 */
+#define DBGMCU_IDCODE_REV_ID_11 (0x0800UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x08000000 */
+#define DBGMCU_IDCODE_REV_ID_12 (0x1000UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x10000000 */
+#define DBGMCU_IDCODE_REV_ID_13 (0x2000UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x20000000 */
+#define DBGMCU_IDCODE_REV_ID_14 (0x4000UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x40000000 */
+#define DBGMCU_IDCODE_REV_ID_15 (0x8000UL << DBGMCU_IDCODE_REV_ID_Pos) /*!< 0x80000000 */
+
+/****************** Bit definition for DBGMCU_CR register *******************/
+#define DBGMCU_CR_DBG_SLEEP_Pos (0U)
+#define DBGMCU_CR_DBG_SLEEP_Msk (0x1UL << DBGMCU_CR_DBG_SLEEP_Pos) /*!< 0x00000001 */
+#define DBGMCU_CR_DBG_SLEEP DBGMCU_CR_DBG_SLEEP_Msk /*!< Debug Sleep Mode */
+#define DBGMCU_CR_DBG_STOP_Pos (1U)
+#define DBGMCU_CR_DBG_STOP_Msk (0x1UL << DBGMCU_CR_DBG_STOP_Pos) /*!< 0x00000002 */
+#define DBGMCU_CR_DBG_STOP DBGMCU_CR_DBG_STOP_Msk /*!< Debug Stop Mode */
+#define DBGMCU_CR_DBG_STANDBY_Pos (2U)
+#define DBGMCU_CR_DBG_STANDBY_Msk (0x1UL << DBGMCU_CR_DBG_STANDBY_Pos) /*!< 0x00000004 */
+#define DBGMCU_CR_DBG_STANDBY DBGMCU_CR_DBG_STANDBY_Msk /*!< Debug Standby mode */
+#define DBGMCU_CR_TRACE_IOEN_Pos (5U)
+#define DBGMCU_CR_TRACE_IOEN_Msk (0x1UL << DBGMCU_CR_TRACE_IOEN_Pos) /*!< 0x00000020 */
+#define DBGMCU_CR_TRACE_IOEN DBGMCU_CR_TRACE_IOEN_Msk /*!< Trace Pin Assignment Control */
+
+#define DBGMCU_CR_TRACE_MODE_Pos (6U)
+#define DBGMCU_CR_TRACE_MODE_Msk (0x3UL << DBGMCU_CR_TRACE_MODE_Pos) /*!< 0x000000C0 */
+#define DBGMCU_CR_TRACE_MODE DBGMCU_CR_TRACE_MODE_Msk /*!< TRACE_MODE[1:0] bits (Trace Pin Assignment Control) */
+#define DBGMCU_CR_TRACE_MODE_0 (0x1UL << DBGMCU_CR_TRACE_MODE_Pos) /*!< 0x00000040 */
+#define DBGMCU_CR_TRACE_MODE_1 (0x2UL << DBGMCU_CR_TRACE_MODE_Pos) /*!< 0x00000080 */
+
+#define DBGMCU_CR_DBG_IWDG_STOP_Pos (8U)
+#define DBGMCU_CR_DBG_IWDG_STOP_Msk (0x1UL << DBGMCU_CR_DBG_IWDG_STOP_Pos) /*!< 0x00000100 */
+#define DBGMCU_CR_DBG_IWDG_STOP DBGMCU_CR_DBG_IWDG_STOP_Msk /*!< Debug Independent Watchdog stopped when Core is halted */
+#define DBGMCU_CR_DBG_WWDG_STOP_Pos (9U)
+#define DBGMCU_CR_DBG_WWDG_STOP_Msk (0x1UL << DBGMCU_CR_DBG_WWDG_STOP_Pos) /*!< 0x00000200 */
+#define DBGMCU_CR_DBG_WWDG_STOP DBGMCU_CR_DBG_WWDG_STOP_Msk /*!< Debug Window Watchdog stopped when Core is halted */
+#define DBGMCU_CR_DBG_TIM1_STOP_Pos (10U)
+#define DBGMCU_CR_DBG_TIM1_STOP_Msk (0x1UL << DBGMCU_CR_DBG_TIM1_STOP_Pos) /*!< 0x00000400 */
+#define DBGMCU_CR_DBG_TIM1_STOP DBGMCU_CR_DBG_TIM1_STOP_Msk /*!< TIM1 counter stopped when core is halted */
+#define DBGMCU_CR_DBG_TIM2_STOP_Pos (11U)
+#define DBGMCU_CR_DBG_TIM2_STOP_Msk (0x1UL << DBGMCU_CR_DBG_TIM2_STOP_Pos) /*!< 0x00000800 */
+#define DBGMCU_CR_DBG_TIM2_STOP DBGMCU_CR_DBG_TIM2_STOP_Msk /*!< TIM2 counter stopped when core is halted */
+#define DBGMCU_CR_DBG_TIM3_STOP_Pos (12U)
+#define DBGMCU_CR_DBG_TIM3_STOP_Msk (0x1UL << DBGMCU_CR_DBG_TIM3_STOP_Pos) /*!< 0x00001000 */
+#define DBGMCU_CR_DBG_TIM3_STOP DBGMCU_CR_DBG_TIM3_STOP_Msk /*!< TIM3 counter stopped when core is halted */
+#define DBGMCU_CR_DBG_TIM4_STOP_Pos (13U)
+#define DBGMCU_CR_DBG_TIM4_STOP_Msk (0x1UL << DBGMCU_CR_DBG_TIM4_STOP_Pos) /*!< 0x00002000 */
+#define DBGMCU_CR_DBG_TIM4_STOP DBGMCU_CR_DBG_TIM4_STOP_Msk /*!< TIM4 counter stopped when core is halted */
+#define DBGMCU_CR_DBG_CAN1_STOP_Pos (14U)
+#define DBGMCU_CR_DBG_CAN1_STOP_Msk (0x1UL << DBGMCU_CR_DBG_CAN1_STOP_Pos) /*!< 0x00004000 */
+#define DBGMCU_CR_DBG_CAN1_STOP DBGMCU_CR_DBG_CAN1_STOP_Msk /*!< Debug CAN1 stopped when Core is halted */
+#define DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT_Pos (15U)
+#define DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT_Msk (0x1UL << DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT_Pos) /*!< 0x00008000 */
+#define DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT_Msk /*!< SMBUS timeout mode stopped when Core is halted */
+#define DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT_Pos (16U)
+#define DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT_Msk (0x1UL << DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT_Pos) /*!< 0x00010000 */
+#define DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT_Msk /*!< SMBUS timeout mode stopped when Core is halted */
+
+/******************************************************************************/
+/* */
+/* FLASH and Option Bytes Registers */
+/* */
+/******************************************************************************/
+/******************* Bit definition for FLASH_ACR register ******************/
+#define FLASH_ACR_LATENCY_Pos (0U)
+#define FLASH_ACR_LATENCY_Msk (0x7UL << FLASH_ACR_LATENCY_Pos) /*!< 0x00000007 */
+#define FLASH_ACR_LATENCY FLASH_ACR_LATENCY_Msk /*!< LATENCY[2:0] bits (Latency) */
+#define FLASH_ACR_LATENCY_0 (0x1UL << FLASH_ACR_LATENCY_Pos) /*!< 0x00000001 */
+#define FLASH_ACR_LATENCY_1 (0x2UL << FLASH_ACR_LATENCY_Pos) /*!< 0x00000002 */
+#define FLASH_ACR_LATENCY_2 (0x4UL << FLASH_ACR_LATENCY_Pos) /*!< 0x00000004 */
+
+#define FLASH_ACR_HLFCYA_Pos (3U)
+#define FLASH_ACR_HLFCYA_Msk (0x1UL << FLASH_ACR_HLFCYA_Pos) /*!< 0x00000008 */
+#define FLASH_ACR_HLFCYA FLASH_ACR_HLFCYA_Msk /*!< Flash Half Cycle Access Enable */
+#define FLASH_ACR_PRFTBE_Pos (4U)
+#define FLASH_ACR_PRFTBE_Msk (0x1UL << FLASH_ACR_PRFTBE_Pos) /*!< 0x00000010 */
+#define FLASH_ACR_PRFTBE FLASH_ACR_PRFTBE_Msk /*!< Prefetch Buffer Enable */
+#define FLASH_ACR_PRFTBS_Pos (5U)
+#define FLASH_ACR_PRFTBS_Msk (0x1UL << FLASH_ACR_PRFTBS_Pos) /*!< 0x00000020 */
+#define FLASH_ACR_PRFTBS FLASH_ACR_PRFTBS_Msk /*!< Prefetch Buffer Status */
+
+/****************** Bit definition for FLASH_KEYR register ******************/
+#define FLASH_KEYR_FKEYR_Pos (0U)
+#define FLASH_KEYR_FKEYR_Msk (0xFFFFFFFFUL << FLASH_KEYR_FKEYR_Pos) /*!< 0xFFFFFFFF */
+#define FLASH_KEYR_FKEYR FLASH_KEYR_FKEYR_Msk /*!< FPEC Key */
+
+#define RDP_KEY_Pos (0U)
+#define RDP_KEY_Msk (0xA5UL << RDP_KEY_Pos) /*!< 0x000000A5 */
+#define RDP_KEY RDP_KEY_Msk /*!< RDP Key */
+#define FLASH_KEY1_Pos (0U)
+#define FLASH_KEY1_Msk (0x45670123UL << FLASH_KEY1_Pos) /*!< 0x45670123 */
+#define FLASH_KEY1 FLASH_KEY1_Msk /*!< FPEC Key1 */
+#define FLASH_KEY2_Pos (0U)
+#define FLASH_KEY2_Msk (0xCDEF89ABUL << FLASH_KEY2_Pos) /*!< 0xCDEF89AB */
+#define FLASH_KEY2 FLASH_KEY2_Msk /*!< FPEC Key2 */
+
+/***************** Bit definition for FLASH_OPTKEYR register ****************/
+#define FLASH_OPTKEYR_OPTKEYR_Pos (0U)
+#define FLASH_OPTKEYR_OPTKEYR_Msk (0xFFFFFFFFUL << FLASH_OPTKEYR_OPTKEYR_Pos) /*!< 0xFFFFFFFF */
+#define FLASH_OPTKEYR_OPTKEYR FLASH_OPTKEYR_OPTKEYR_Msk /*!< Option Byte Key */
+
+#define FLASH_OPTKEY1 FLASH_KEY1 /*!< Option Byte Key1 */
+#define FLASH_OPTKEY2 FLASH_KEY2 /*!< Option Byte Key2 */
+
+/****************** Bit definition for FLASH_SR register ********************/
+#define FLASH_SR_BSY_Pos (0U)
+#define FLASH_SR_BSY_Msk (0x1UL << FLASH_SR_BSY_Pos) /*!< 0x00000001 */
+#define FLASH_SR_BSY FLASH_SR_BSY_Msk /*!< Busy */
+#define FLASH_SR_PGERR_Pos (2U)
+#define FLASH_SR_PGERR_Msk (0x1UL << FLASH_SR_PGERR_Pos) /*!< 0x00000004 */
+#define FLASH_SR_PGERR FLASH_SR_PGERR_Msk /*!< Programming Error */
+#define FLASH_SR_WRPRTERR_Pos (4U)
+#define FLASH_SR_WRPRTERR_Msk (0x1UL << FLASH_SR_WRPRTERR_Pos) /*!< 0x00000010 */
+#define FLASH_SR_WRPRTERR FLASH_SR_WRPRTERR_Msk /*!< Write Protection Error */
+#define FLASH_SR_EOP_Pos (5U)
+#define FLASH_SR_EOP_Msk (0x1UL << FLASH_SR_EOP_Pos) /*!< 0x00000020 */
+#define FLASH_SR_EOP FLASH_SR_EOP_Msk /*!< End of operation */
+
+/******************* Bit definition for FLASH_CR register *******************/
+#define FLASH_CR_PG_Pos (0U)
+#define FLASH_CR_PG_Msk (0x1UL << FLASH_CR_PG_Pos) /*!< 0x00000001 */
+#define FLASH_CR_PG FLASH_CR_PG_Msk /*!< Programming */
+#define FLASH_CR_PER_Pos (1U)
+#define FLASH_CR_PER_Msk (0x1UL << FLASH_CR_PER_Pos) /*!< 0x00000002 */
+#define FLASH_CR_PER FLASH_CR_PER_Msk /*!< Page Erase */
+#define FLASH_CR_MER_Pos (2U)
+#define FLASH_CR_MER_Msk (0x1UL << FLASH_CR_MER_Pos) /*!< 0x00000004 */
+#define FLASH_CR_MER FLASH_CR_MER_Msk /*!< Mass Erase */
+#define FLASH_CR_OPTPG_Pos (4U)
+#define FLASH_CR_OPTPG_Msk (0x1UL << FLASH_CR_OPTPG_Pos) /*!< 0x00000010 */
+#define FLASH_CR_OPTPG FLASH_CR_OPTPG_Msk /*!< Option Byte Programming */
+#define FLASH_CR_OPTER_Pos (5U)
+#define FLASH_CR_OPTER_Msk (0x1UL << FLASH_CR_OPTER_Pos) /*!< 0x00000020 */
+#define FLASH_CR_OPTER FLASH_CR_OPTER_Msk /*!< Option Byte Erase */
+#define FLASH_CR_STRT_Pos (6U)
+#define FLASH_CR_STRT_Msk (0x1UL << FLASH_CR_STRT_Pos) /*!< 0x00000040 */
+#define FLASH_CR_STRT FLASH_CR_STRT_Msk /*!< Start */
+#define FLASH_CR_LOCK_Pos (7U)
+#define FLASH_CR_LOCK_Msk (0x1UL << FLASH_CR_LOCK_Pos) /*!< 0x00000080 */
+#define FLASH_CR_LOCK FLASH_CR_LOCK_Msk /*!< Lock */
+#define FLASH_CR_OPTWRE_Pos (9U)
+#define FLASH_CR_OPTWRE_Msk (0x1UL << FLASH_CR_OPTWRE_Pos) /*!< 0x00000200 */
+#define FLASH_CR_OPTWRE FLASH_CR_OPTWRE_Msk /*!< Option Bytes Write Enable */
+#define FLASH_CR_ERRIE_Pos (10U)
+#define FLASH_CR_ERRIE_Msk (0x1UL << FLASH_CR_ERRIE_Pos) /*!< 0x00000400 */
+#define FLASH_CR_ERRIE FLASH_CR_ERRIE_Msk /*!< Error Interrupt Enable */
+#define FLASH_CR_EOPIE_Pos (12U)
+#define FLASH_CR_EOPIE_Msk (0x1UL << FLASH_CR_EOPIE_Pos) /*!< 0x00001000 */
+#define FLASH_CR_EOPIE FLASH_CR_EOPIE_Msk /*!< End of operation interrupt enable */
+
+/******************* Bit definition for FLASH_AR register *******************/
+#define FLASH_AR_FAR_Pos (0U)
+#define FLASH_AR_FAR_Msk (0xFFFFFFFFUL << FLASH_AR_FAR_Pos) /*!< 0xFFFFFFFF */
+#define FLASH_AR_FAR FLASH_AR_FAR_Msk /*!< Flash Address */
+
+/****************** Bit definition for FLASH_OBR register *******************/
+#define FLASH_OBR_OPTERR_Pos (0U)
+#define FLASH_OBR_OPTERR_Msk (0x1UL << FLASH_OBR_OPTERR_Pos) /*!< 0x00000001 */
+#define FLASH_OBR_OPTERR FLASH_OBR_OPTERR_Msk /*!< Option Byte Error */
+#define FLASH_OBR_RDPRT_Pos (1U)
+#define FLASH_OBR_RDPRT_Msk (0x1UL << FLASH_OBR_RDPRT_Pos) /*!< 0x00000002 */
+#define FLASH_OBR_RDPRT FLASH_OBR_RDPRT_Msk /*!< Read protection */
+
+#define FLASH_OBR_IWDG_SW_Pos (2U)
+#define FLASH_OBR_IWDG_SW_Msk (0x1UL << FLASH_OBR_IWDG_SW_Pos) /*!< 0x00000004 */
+#define FLASH_OBR_IWDG_SW FLASH_OBR_IWDG_SW_Msk /*!< IWDG SW */
+#define FLASH_OBR_nRST_STOP_Pos (3U)
+#define FLASH_OBR_nRST_STOP_Msk (0x1UL << FLASH_OBR_nRST_STOP_Pos) /*!< 0x00000008 */
+#define FLASH_OBR_nRST_STOP FLASH_OBR_nRST_STOP_Msk /*!< nRST_STOP */
+#define FLASH_OBR_nRST_STDBY_Pos (4U)
+#define FLASH_OBR_nRST_STDBY_Msk (0x1UL << FLASH_OBR_nRST_STDBY_Pos) /*!< 0x00000010 */
+#define FLASH_OBR_nRST_STDBY FLASH_OBR_nRST_STDBY_Msk /*!< nRST_STDBY */
+#define FLASH_OBR_USER_Pos (2U)
+#define FLASH_OBR_USER_Msk (0x7UL << FLASH_OBR_USER_Pos) /*!< 0x0000001C */
+#define FLASH_OBR_USER FLASH_OBR_USER_Msk /*!< User Option Bytes */
+#define FLASH_OBR_DATA0_Pos (10U)
+#define FLASH_OBR_DATA0_Msk (0xFFUL << FLASH_OBR_DATA0_Pos) /*!< 0x0003FC00 */
+#define FLASH_OBR_DATA0 FLASH_OBR_DATA0_Msk /*!< Data0 */
+#define FLASH_OBR_DATA1_Pos (18U)
+#define FLASH_OBR_DATA1_Msk (0xFFUL << FLASH_OBR_DATA1_Pos) /*!< 0x03FC0000 */
+#define FLASH_OBR_DATA1 FLASH_OBR_DATA1_Msk /*!< Data1 */
+
+/****************** Bit definition for FLASH_WRPR register ******************/
+#define FLASH_WRPR_WRP_Pos (0U)
+#define FLASH_WRPR_WRP_Msk (0xFFFFFFFFUL << FLASH_WRPR_WRP_Pos) /*!< 0xFFFFFFFF */
+#define FLASH_WRPR_WRP FLASH_WRPR_WRP_Msk /*!< Write Protect */
+
+/*----------------------------------------------------------------------------*/
+
+/****************** Bit definition for FLASH_RDP register *******************/
+#define FLASH_RDP_RDP_Pos (0U)
+#define FLASH_RDP_RDP_Msk (0xFFUL << FLASH_RDP_RDP_Pos) /*!< 0x000000FF */
+#define FLASH_RDP_RDP FLASH_RDP_RDP_Msk /*!< Read protection option byte */
+#define FLASH_RDP_nRDP_Pos (8U)
+#define FLASH_RDP_nRDP_Msk (0xFFUL << FLASH_RDP_nRDP_Pos) /*!< 0x0000FF00 */
+#define FLASH_RDP_nRDP FLASH_RDP_nRDP_Msk /*!< Read protection complemented option byte */
+
+/****************** Bit definition for FLASH_USER register ******************/
+#define FLASH_USER_USER_Pos (16U)
+#define FLASH_USER_USER_Msk (0xFFUL << FLASH_USER_USER_Pos) /*!< 0x00FF0000 */
+#define FLASH_USER_USER FLASH_USER_USER_Msk /*!< User option byte */
+#define FLASH_USER_nUSER_Pos (24U)
+#define FLASH_USER_nUSER_Msk (0xFFUL << FLASH_USER_nUSER_Pos) /*!< 0xFF000000 */
+#define FLASH_USER_nUSER FLASH_USER_nUSER_Msk /*!< User complemented option byte */
+
+/****************** Bit definition for FLASH_Data0 register *****************/
+#define FLASH_DATA0_DATA0_Pos (0U)
+#define FLASH_DATA0_DATA0_Msk (0xFFUL << FLASH_DATA0_DATA0_Pos) /*!< 0x000000FF */
+#define FLASH_DATA0_DATA0 FLASH_DATA0_DATA0_Msk /*!< User data storage option byte */
+#define FLASH_DATA0_nDATA0_Pos (8U)
+#define FLASH_DATA0_nDATA0_Msk (0xFFUL << FLASH_DATA0_nDATA0_Pos) /*!< 0x0000FF00 */
+#define FLASH_DATA0_nDATA0 FLASH_DATA0_nDATA0_Msk /*!< User data storage complemented option byte */
+
+/****************** Bit definition for FLASH_Data1 register *****************/
+#define FLASH_DATA1_DATA1_Pos (16U)
+#define FLASH_DATA1_DATA1_Msk (0xFFUL << FLASH_DATA1_DATA1_Pos) /*!< 0x00FF0000 */
+#define FLASH_DATA1_DATA1 FLASH_DATA1_DATA1_Msk /*!< User data storage option byte */
+#define FLASH_DATA1_nDATA1_Pos (24U)
+#define FLASH_DATA1_nDATA1_Msk (0xFFUL << FLASH_DATA1_nDATA1_Pos) /*!< 0xFF000000 */
+#define FLASH_DATA1_nDATA1 FLASH_DATA1_nDATA1_Msk /*!< User data storage complemented option byte */
+
+/****************** Bit definition for FLASH_WRP0 register ******************/
+#define FLASH_WRP0_WRP0_Pos (0U)
+#define FLASH_WRP0_WRP0_Msk (0xFFUL << FLASH_WRP0_WRP0_Pos) /*!< 0x000000FF */
+#define FLASH_WRP0_WRP0 FLASH_WRP0_WRP0_Msk /*!< Flash memory write protection option bytes */
+#define FLASH_WRP0_nWRP0_Pos (8U)
+#define FLASH_WRP0_nWRP0_Msk (0xFFUL << FLASH_WRP0_nWRP0_Pos) /*!< 0x0000FF00 */
+#define FLASH_WRP0_nWRP0 FLASH_WRP0_nWRP0_Msk /*!< Flash memory write protection complemented option bytes */
+
+/****************** Bit definition for FLASH_WRP1 register ******************/
+#define FLASH_WRP1_WRP1_Pos (16U)
+#define FLASH_WRP1_WRP1_Msk (0xFFUL << FLASH_WRP1_WRP1_Pos) /*!< 0x00FF0000 */
+#define FLASH_WRP1_WRP1 FLASH_WRP1_WRP1_Msk /*!< Flash memory write protection option bytes */
+#define FLASH_WRP1_nWRP1_Pos (24U)
+#define FLASH_WRP1_nWRP1_Msk (0xFFUL << FLASH_WRP1_nWRP1_Pos) /*!< 0xFF000000 */
+#define FLASH_WRP1_nWRP1 FLASH_WRP1_nWRP1_Msk /*!< Flash memory write protection complemented option bytes */
+
+/****************** Bit definition for FLASH_WRP2 register ******************/
+#define FLASH_WRP2_WRP2_Pos (0U)
+#define FLASH_WRP2_WRP2_Msk (0xFFUL << FLASH_WRP2_WRP2_Pos) /*!< 0x000000FF */
+#define FLASH_WRP2_WRP2 FLASH_WRP2_WRP2_Msk /*!< Flash memory write protection option bytes */
+#define FLASH_WRP2_nWRP2_Pos (8U)
+#define FLASH_WRP2_nWRP2_Msk (0xFFUL << FLASH_WRP2_nWRP2_Pos) /*!< 0x0000FF00 */
+#define FLASH_WRP2_nWRP2 FLASH_WRP2_nWRP2_Msk /*!< Flash memory write protection complemented option bytes */
+
+/****************** Bit definition for FLASH_WRP3 register ******************/
+#define FLASH_WRP3_WRP3_Pos (16U)
+#define FLASH_WRP3_WRP3_Msk (0xFFUL << FLASH_WRP3_WRP3_Pos) /*!< 0x00FF0000 */
+#define FLASH_WRP3_WRP3 FLASH_WRP3_WRP3_Msk /*!< Flash memory write protection option bytes */
+#define FLASH_WRP3_nWRP3_Pos (24U)
+#define FLASH_WRP3_nWRP3_Msk (0xFFUL << FLASH_WRP3_nWRP3_Pos) /*!< 0xFF000000 */
+#define FLASH_WRP3_nWRP3 FLASH_WRP3_nWRP3_Msk /*!< Flash memory write protection complemented option bytes */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup Exported_macro
+ * @{
+ */
+
+/****************************** ADC Instances *********************************/
+#define IS_ADC_ALL_INSTANCE(INSTANCE) (((INSTANCE) == ADC1) || ((INSTANCE) == ADC2))
+
+#define IS_ADC_COMMON_INSTANCE(INSTANCE) ((INSTANCE) == ADC12_COMMON)
+
+#define IS_ADC_MULTIMODE_MASTER_INSTANCE(INSTANCE) ((INSTANCE) == ADC1)
+
+#define IS_ADC_DMA_CAPABILITY_INSTANCE(INSTANCE) ((INSTANCE) == ADC1)
+
+/****************************** CAN Instances *********************************/
+#define IS_CAN_ALL_INSTANCE(INSTANCE) ((INSTANCE) == CAN1)
+
+/****************************** CRC Instances *********************************/
+#define IS_CRC_ALL_INSTANCE(INSTANCE) ((INSTANCE) == CRC)
+
+/****************************** DAC Instances *********************************/
+
+/****************************** DMA Instances *********************************/
+#define IS_DMA_ALL_INSTANCE(INSTANCE) \
+ (((INSTANCE) == DMA1_Channel1) || ((INSTANCE) == DMA1_Channel2) || ((INSTANCE) == DMA1_Channel3) || ((INSTANCE) == DMA1_Channel4) || ((INSTANCE) == DMA1_Channel5) || ((INSTANCE) == DMA1_Channel6) \
+ || ((INSTANCE) == DMA1_Channel7))
+
+/******************************* GPIO Instances *******************************/
+#define IS_GPIO_ALL_INSTANCE(INSTANCE) (((INSTANCE) == GPIOA) || ((INSTANCE) == GPIOB) || ((INSTANCE) == GPIOC) || ((INSTANCE) == GPIOD) || ((INSTANCE) == GPIOE))
+
+/**************************** GPIO Alternate Function Instances ***************/
+#define IS_GPIO_AF_INSTANCE(INSTANCE) IS_GPIO_ALL_INSTANCE(INSTANCE)
+
+/**************************** GPIO Lock Instances *****************************/
+#define IS_GPIO_LOCK_INSTANCE(INSTANCE) IS_GPIO_ALL_INSTANCE(INSTANCE)
+
+/******************************** I2C Instances *******************************/
+#define IS_I2C_ALL_INSTANCE(INSTANCE) (((INSTANCE) == I2C1) || ((INSTANCE) == I2C2))
+
+/******************************* SMBUS Instances ******************************/
+#define IS_SMBUS_ALL_INSTANCE IS_I2C_ALL_INSTANCE
+
+/****************************** IWDG Instances ********************************/
+#define IS_IWDG_ALL_INSTANCE(INSTANCE) ((INSTANCE) == IWDG)
+
+/******************************** SPI Instances *******************************/
+#define IS_SPI_ALL_INSTANCE(INSTANCE) (((INSTANCE) == SPI1) || ((INSTANCE) == SPI2))
+
+/****************************** START TIM Instances ***************************/
+/****************************** TIM Instances *********************************/
+#define IS_TIM_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_ADVANCED_INSTANCE(INSTANCE) ((INSTANCE) == TIM1)
+
+#define IS_TIM_CC1_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_CC2_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_CC3_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_CC4_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_CLOCKSOURCE_TIX_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_OCXREF_CLEAR_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_ENCODER_INTERFACE_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_XOR_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_MASTER_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_SLAVE_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_DMABURST_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_BREAK_INSTANCE(INSTANCE) ((INSTANCE) == TIM1)
+
+#define IS_TIM_CCX_INSTANCE(INSTANCE, CHANNEL) \
+ ((((INSTANCE) == TIM1) && (((CHANNEL) == TIM_CHANNEL_1) || ((CHANNEL) == TIM_CHANNEL_2) || ((CHANNEL) == TIM_CHANNEL_3) || ((CHANNEL) == TIM_CHANNEL_4))) \
+ || (((INSTANCE) == TIM2) && (((CHANNEL) == TIM_CHANNEL_1) || ((CHANNEL) == TIM_CHANNEL_2) || ((CHANNEL) == TIM_CHANNEL_3) || ((CHANNEL) == TIM_CHANNEL_4))) \
+ || (((INSTANCE) == TIM3) && (((CHANNEL) == TIM_CHANNEL_1) || ((CHANNEL) == TIM_CHANNEL_2) || ((CHANNEL) == TIM_CHANNEL_3) || ((CHANNEL) == TIM_CHANNEL_4))) \
+ || (((INSTANCE) == TIM4) && (((CHANNEL) == TIM_CHANNEL_1) || ((CHANNEL) == TIM_CHANNEL_2) || ((CHANNEL) == TIM_CHANNEL_3) || ((CHANNEL) == TIM_CHANNEL_4))))
+
+#define IS_TIM_CCXN_INSTANCE(INSTANCE, CHANNEL) (((INSTANCE) == TIM1) && (((CHANNEL) == TIM_CHANNEL_1) || ((CHANNEL) == TIM_CHANNEL_2) || ((CHANNEL) == TIM_CHANNEL_3)))
+
+#define IS_TIM_COUNTER_MODE_SELECT_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_REPETITION_COUNTER_INSTANCE(INSTANCE) ((INSTANCE) == TIM1)
+
+#define IS_TIM_CLOCK_DIVISION_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_DMA_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_DMA_CC_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_COMMUTATION_EVENT_INSTANCE(INSTANCE) ((INSTANCE) == TIM1)
+
+#define IS_TIM_ETR_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || ((INSTANCE) == TIM2) || ((INSTANCE) == TIM3) || ((INSTANCE) == TIM4))
+
+#define IS_TIM_32B_COUNTER_INSTANCE(INSTANCE) 0U
+
+/****************************** END TIM Instances *****************************/
+
+/******************** USART Instances : Synchronous mode **********************/
+#define IS_USART_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || ((INSTANCE) == USART2) || ((INSTANCE) == USART3))
+
+/******************** UART Instances : Asynchronous mode **********************/
+#define IS_UART_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || ((INSTANCE) == USART2) || ((INSTANCE) == USART3))
+
+/******************** UART Instances : Half-Duplex mode **********************/
+#define IS_UART_HALFDUPLEX_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || ((INSTANCE) == USART2) || ((INSTANCE) == USART3))
+
+/******************** UART Instances : LIN mode **********************/
+#define IS_UART_LIN_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || ((INSTANCE) == USART2) || ((INSTANCE) == USART3))
+
+/****************** UART Instances : Hardware Flow control ********************/
+#define IS_UART_HWFLOW_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || ((INSTANCE) == USART2) || ((INSTANCE) == USART3))
+
+/********************* UART Instances : Smard card mode ***********************/
+#define IS_SMARTCARD_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || ((INSTANCE) == USART2) || ((INSTANCE) == USART3))
+
+/*********************** UART Instances : IRDA mode ***************************/
+#define IS_IRDA_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || ((INSTANCE) == USART2) || ((INSTANCE) == USART3))
+
+/***************** UART Instances : Multi-Processor mode **********************/
+#define IS_UART_MULTIPROCESSOR_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || ((INSTANCE) == USART2) || ((INSTANCE) == USART3))
+
+/***************** UART Instances : DMA mode available **********************/
+#define IS_UART_DMA_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || ((INSTANCE) == USART2) || ((INSTANCE) == USART3))
+
+/****************************** RTC Instances *********************************/
+#define IS_RTC_ALL_INSTANCE(INSTANCE) ((INSTANCE) == RTC)
+
+/**************************** WWDG Instances *****************************/
+#define IS_WWDG_ALL_INSTANCE(INSTANCE) ((INSTANCE) == WWDG)
+
+/****************************** USB Instances ********************************/
+#define IS_PCD_ALL_INSTANCE(INSTANCE) ((INSTANCE) == USB)
+
+#define RCC_HSE_MIN 4000000U
+#define RCC_HSE_MAX 16000000U
+
+#define RCC_MAX_FREQUENCY 72000000U
+
+/**
+ * @}
+ */
+/******************************************************************************/
+/* For a painless codes migration between the STM32F1xx device product */
+/* lines, the aliases defined below are put in place to overcome the */
+/* differences in the interrupt handlers and IRQn definitions. */
+/* No need to update developed interrupt code when moving across */
+/* product lines within the same STM32F1 Family */
+/******************************************************************************/
+
+/* Aliases for __IRQn */
+#define ADC1_IRQn ADC1_2_IRQn
+#define TIM1_BRK_TIM15_IRQn TIM1_BRK_IRQn
+#define TIM9_IRQn TIM1_BRK_IRQn
+#define TIM1_BRK_TIM9_IRQn TIM1_BRK_IRQn
+#define TIM1_TRG_COM_TIM17_IRQn TIM1_TRG_COM_IRQn
+#define TIM1_TRG_COM_TIM11_IRQn TIM1_TRG_COM_IRQn
+#define TIM11_IRQn TIM1_TRG_COM_IRQn
+#define TIM10_IRQn TIM1_UP_IRQn
+#define TIM1_UP_TIM16_IRQn TIM1_UP_IRQn
+#define TIM1_UP_TIM10_IRQn TIM1_UP_IRQn
+#define OTG_FS_WKUP_IRQn USBWakeUp_IRQn
+#define CEC_IRQn USBWakeUp_IRQn
+#define CAN1_TX_IRQn USB_HP_CAN1_TX_IRQn
+#define USB_HP_IRQn USB_HP_CAN1_TX_IRQn
+#define CAN1_RX0_IRQn USB_LP_CAN1_RX0_IRQn
+#define USB_LP_IRQn USB_LP_CAN1_RX0_IRQn
+
+/* Aliases for __IRQHandler */
+#define ADC1_IRQHandler ADC1_2_IRQHandler
+#define TIM1_BRK_TIM15_IRQHandler TIM1_BRK_IRQHandler
+#define TIM9_IRQHandler TIM1_BRK_IRQHandler
+#define TIM1_BRK_TIM9_IRQHandler TIM1_BRK_IRQHandler
+#define TIM1_TRG_COM_TIM17_IRQHandler TIM1_TRG_COM_IRQHandler
+#define TIM1_TRG_COM_TIM11_IRQHandler TIM1_TRG_COM_IRQHandler
+#define TIM11_IRQHandler TIM1_TRG_COM_IRQHandler
+#define TIM10_IRQHandler TIM1_UP_IRQHandler
+#define TIM1_UP_TIM16_IRQHandler TIM1_UP_IRQHandler
+#define TIM1_UP_TIM10_IRQHandler TIM1_UP_IRQHandler
+#define OTG_FS_WKUP_IRQHandler USBWakeUp_IRQHandler
+#define CEC_IRQHandler USBWakeUp_IRQHandler
+#define CAN1_TX_IRQHandler USB_HP_CAN1_TX_IRQHandler
+#define USB_HP_IRQHandler USB_HP_CAN1_TX_IRQHandler
+#define CAN1_RX0_IRQHandler USB_LP_CAN1_RX0_IRQHandler
+#define USB_LP_IRQHandler USB_LP_CAN1_RX0_IRQHandler
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif /* __cplusplus */
+
+#endif /* __STM32F103xB_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Device/ST/STM32F1xx/Include/stm32f1xx.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Device/ST/STM32F1xx/Include/stm32f1xx.h new file mode 100644 index 00000000..afff7f3d --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Device/ST/STM32F1xx/Include/stm32f1xx.h @@ -0,0 +1,198 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx.h
+ * @author MCD Application Team
+ * @brief CMSIS STM32F1xx Device Peripheral Access Layer Header File.
+ *
+ * The file is the unique include file that the application programmer
+ * is using in the C source code, usually in main.c. This file contains:
+ * - Configuration section that allows to select:
+ * - The STM32F1xx device used in the target application
+ * - To use or not the peripheral�s drivers in application code(i.e.
+ * code will be based on direct access to peripheral�s registers
+ * rather than drivers API), this option is controlled by
+ * "#define USE_HAL_DRIVER"
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/** @addtogroup CMSIS
+ * @{
+ */
+
+/** @addtogroup stm32f1xx
+ * @{
+ */
+
+#ifndef __STM32F1XX_H
+#define __STM32F1XX_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif /* __cplusplus */
+
+/** @addtogroup Library_configuration_section
+ * @{
+ */
+
+/**
+ * @brief STM32 Family
+ */
+#if !defined(STM32F1)
+#define STM32F1
+#endif /* STM32F1 */
+
+/* Uncomment the line below according to the target STM32L device used in your
+ application
+ */
+
+#if !defined(STM32F100xB) && !defined(STM32F100xE) && !defined(STM32F101x6) && !defined(STM32F101xB) && !defined(STM32F101xE) && !defined(STM32F101xG) && !defined(STM32F102x6) \
+ && !defined(STM32F102xB) && !defined(STM32F103x6) && !defined(STM32F103xB) && !defined(STM32F103xE) && !defined(STM32F103xG) && !defined(STM32F105xC) && !defined(STM32F107xC)
+/* #define STM32F100xB */ /*!< STM32F100C4, STM32F100R4, STM32F100C6, STM32F100R6, STM32F100C8, STM32F100R8, STM32F100V8, STM32F100CB, STM32F100RB and STM32F100VB */
+/* #define STM32F100xE */ /*!< STM32F100RC, STM32F100VC, STM32F100ZC, STM32F100RD, STM32F100VD, STM32F100ZD, STM32F100RE, STM32F100VE and STM32F100ZE */
+/* #define STM32F101x6 */ /*!< STM32F101C4, STM32F101R4, STM32F101T4, STM32F101C6, STM32F101R6 and STM32F101T6 Devices */
+/* #define STM32F101xB */ /*!< STM32F101C8, STM32F101R8, STM32F101T8, STM32F101V8, STM32F101CB, STM32F101RB, STM32F101TB and STM32F101VB */
+/* #define STM32F101xE */ /*!< STM32F101RC, STM32F101VC, STM32F101ZC, STM32F101RD, STM32F101VD, STM32F101ZD, STM32F101RE, STM32F101VE and STM32F101ZE */
+/* #define STM32F101xG */ /*!< STM32F101RF, STM32F101VF, STM32F101ZF, STM32F101RG, STM32F101VG and STM32F101ZG */
+/* #define STM32F102x6 */ /*!< STM32F102C4, STM32F102R4, STM32F102C6 and STM32F102R6 */
+/* #define STM32F102xB */ /*!< STM32F102C8, STM32F102R8, STM32F102CB and STM32F102RB */
+/* #define STM32F103x6 */ /*!< STM32F103C4, STM32F103R4, STM32F103T4, STM32F103C6, STM32F103R6 and STM32F103T6 */
+/* #define STM32F103xB */ /*!< STM32F103C8, STM32F103R8, STM32F103T8, STM32F103V8, STM32F103CB, STM32F103RB, STM32F103TB and STM32F103VB */
+/* #define STM32F103xE */ /*!< STM32F103RC, STM32F103VC, STM32F103ZC, STM32F103RD, STM32F103VD, STM32F103ZD, STM32F103RE, STM32F103VE and STM32F103ZE */
+/* #define STM32F103xG */ /*!< STM32F103RF, STM32F103VF, STM32F103ZF, STM32F103RG, STM32F103VG and STM32F103ZG */
+/* #define STM32F105xC */ /*!< STM32F105R8, STM32F105V8, STM32F105RB, STM32F105VB, STM32F105RC and STM32F105VC */
+/* #define STM32F107xC */ /*!< STM32F107RB, STM32F107VB, STM32F107RC and STM32F107VC */
+#endif
+
+/* Tip: To avoid modifying this file each time you need to switch between these
+ devices, you can define the device in your toolchain compiler preprocessor.
+ */
+
+#if !defined(USE_HAL_DRIVER)
+/**
+ * @brief Comment the line below if you will not use the peripherals drivers.
+ In this case, these drivers will not be included and the application code will
+ be based on direct access to peripherals registers
+ */
+/*#define USE_HAL_DRIVER */
+#endif /* USE_HAL_DRIVER */
+
+/**
+ * @brief CMSIS Device version number V4.3.2
+ */
+#define __STM32F1_CMSIS_VERSION_MAIN (0x04) /*!< [31:24] main version */
+#define __STM32F1_CMSIS_VERSION_SUB1 (0x03) /*!< [23:16] sub1 version */
+#define __STM32F1_CMSIS_VERSION_SUB2 (0x02) /*!< [15:8] sub2 version */
+#define __STM32F1_CMSIS_VERSION_RC (0x00) /*!< [7:0] release candidate */
+#define __STM32F1_CMSIS_VERSION ((__STM32F1_CMSIS_VERSION_MAIN << 24) | (__STM32F1_CMSIS_VERSION_SUB1 << 16) | (__STM32F1_CMSIS_VERSION_SUB2 << 8) | (__STM32F1_CMSIS_VERSION_RC))
+
+/**
+ * @}
+ */
+
+/** @addtogroup Device_Included
+ * @{
+ */
+
+#if defined(STM32F100xB)
+#include "stm32f100xb.h"
+#elif defined(STM32F100xE)
+#include "stm32f100xe.h"
+#elif defined(STM32F101x6)
+#include "stm32f101x6.h"
+#elif defined(STM32F101xB)
+#include "stm32f101xb.h"
+#elif defined(STM32F101xE)
+#include "stm32f101xe.h"
+#elif defined(STM32F101xG)
+#include "stm32f101xg.h"
+#elif defined(STM32F102x6)
+#include "stm32f102x6.h"
+#elif defined(STM32F102xB)
+#include "stm32f102xb.h"
+#elif defined(STM32F103x6)
+#include "stm32f103x6.h"
+#elif defined(STM32F103xB)
+#include "stm32f103xb.h"
+#elif defined(STM32F103xE)
+#include "stm32f103xe.h"
+#elif defined(STM32F103xG)
+#include "stm32f103xg.h"
+#elif defined(STM32F105xC)
+#include "stm32f105xc.h"
+#elif defined(STM32F107xC)
+#include "stm32f107xc.h"
+#else
+#error "Please select first the target STM32F1xx device used in your application (in stm32f1xx.h file)"
+#endif
+
+/**
+ * @}
+ */
+
+/** @addtogroup Exported_types
+ * @{
+ */
+typedef enum { RESET = 0, SET = !RESET } FlagStatus, ITStatus;
+
+typedef enum { DISABLE = 0, ENABLE = !DISABLE } FunctionalState;
+#define IS_FUNCTIONAL_STATE(STATE) (((STATE) == DISABLE) || ((STATE) == ENABLE))
+
+typedef enum { SUCCESS = 0U, ERROR = !SUCCESS } ErrorStatus;
+
+/**
+ * @}
+ */
+
+/** @addtogroup Exported_macros
+ * @{
+ */
+#define SET_BIT(REG, BIT) ((REG) |= (BIT))
+
+#define CLEAR_BIT(REG, BIT) ((REG) &= ~(BIT))
+
+#define READ_BIT(REG, BIT) ((REG) & (BIT))
+
+#define CLEAR_REG(REG) ((REG) = (0x0))
+
+#define WRITE_REG(REG, VAL) ((REG) = (VAL))
+
+#define READ_REG(REG) ((REG))
+
+#define MODIFY_REG(REG, CLEARMASK, SETMASK) WRITE_REG((REG), (((READ_REG(REG)) & (~(CLEARMASK))) | (SETMASK)))
+
+#define POSITION_VAL(VAL) (__CLZ(__RBIT(VAL)))
+
+/**
+ * @}
+ */
+
+#if defined(USE_HAL_DRIVER)
+#include "stm32f1xx_hal.h"
+#endif /* USE_HAL_DRIVER */
+
+#ifdef __cplusplus
+}
+#endif /* __cplusplus */
+
+#endif /* __STM32F1xx_H */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Device/ST/STM32F1xx/Include/system_stm32f1xx.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Device/ST/STM32F1xx/Include/system_stm32f1xx.h new file mode 100644 index 00000000..58422f4f --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Device/ST/STM32F1xx/Include/system_stm32f1xx.h @@ -0,0 +1,97 @@ +/**
+ ******************************************************************************
+ * @file system_stm32f10x.h
+ * @author MCD Application Team
+ * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Header File.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/** @addtogroup CMSIS
+ * @{
+ */
+
+/** @addtogroup stm32f10x_system
+ * @{
+ */
+
+/**
+ * @brief Define to prevent recursive inclusion
+ */
+#ifndef __SYSTEM_STM32F10X_H
+#define __SYSTEM_STM32F10X_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** @addtogroup STM32F10x_System_Includes
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup STM32F10x_System_Exported_types
+ * @{
+ */
+
+extern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Clock) */
+extern const uint8_t AHBPrescTable[16U]; /*!< AHB prescalers table values */
+extern const uint8_t APBPrescTable[8U]; /*!< APB prescalers table values */
+
+/**
+ * @}
+ */
+
+/** @addtogroup STM32F10x_System_Exported_Constants
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup STM32F10x_System_Exported_Macros
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup STM32F10x_System_Exported_Functions
+ * @{
+ */
+
+extern void SystemInit(void);
+extern void SystemCoreClockUpdate(void);
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /*__SYSTEM_STM32F10X_H */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_armcc.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_armcc.h new file mode 100644 index 00000000..e7960341 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_armcc.h @@ -0,0 +1,764 @@ +/**************************************************************************/ /**
+ * @file cmsis_armcc.h
+ * @brief CMSIS compiler ARMCC (Arm Compiler 5) header file
+ * @version V5.0.4
+ * @date 10. January 2018
+ ******************************************************************************/
+/*
+ * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __CMSIS_ARMCC_H
+#define __CMSIS_ARMCC_H
+
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677)
+#error "Please use Arm Compiler Toolchain V4.0.677 or later!"
+#endif
+
+/* CMSIS compiler control architecture macros */
+#if ((defined(__TARGET_ARCH_6_M) && (__TARGET_ARCH_6_M == 1)) || (defined(__TARGET_ARCH_6S_M) && (__TARGET_ARCH_6S_M == 1)))
+#define __ARM_ARCH_6M__ 1
+#endif
+
+#if (defined(__TARGET_ARCH_7_M) && (__TARGET_ARCH_7_M == 1))
+#define __ARM_ARCH_7M__ 1
+#endif
+
+#if (defined(__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1))
+#define __ARM_ARCH_7EM__ 1
+#endif
+
+/* __ARM_ARCH_8M_BASE__ not applicable */
+/* __ARM_ARCH_8M_MAIN__ not applicable */
+
+/* CMSIS compiler specific defines */
+#ifndef __ASM
+#define __ASM __asm
+#endif
+#ifndef __INLINE
+#define __INLINE __inline
+#endif
+#ifndef __STATIC_INLINE
+#define __STATIC_INLINE static __inline
+#endif
+#ifndef __STATIC_FORCEINLINE
+#define __STATIC_FORCEINLINE static __forceinline
+#endif
+#ifndef __NO_RETURN
+#define __NO_RETURN __declspec(noreturn)
+#endif
+#ifndef __USED
+#define __USED __attribute__((used))
+#endif
+#ifndef __WEAK
+#define __WEAK __attribute__((weak))
+#endif
+#ifndef __PACKED
+#define __PACKED __attribute__((packed))
+#endif
+#ifndef __PACKED_STRUCT
+#define __PACKED_STRUCT __packed struct
+#endif
+#ifndef __PACKED_UNION
+#define __PACKED_UNION __packed union
+#endif
+#ifndef __UNALIGNED_UINT32 /* deprecated */
+#define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x)))
+#endif
+#ifndef __UNALIGNED_UINT16_WRITE
+#define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val))
+#endif
+#ifndef __UNALIGNED_UINT16_READ
+#define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr)))
+#endif
+#ifndef __UNALIGNED_UINT32_WRITE
+#define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val))
+#endif
+#ifndef __UNALIGNED_UINT32_READ
+#define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr)))
+#endif
+#ifndef __ALIGNED
+#define __ALIGNED(x) __attribute__((aligned(x)))
+#endif
+#ifndef __RESTRICT
+#define __RESTRICT __restrict
+#endif
+
+/* ########################### Core Function Access ########################### */
+/** \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
+ @{
+ */
+
+/**
+ \brief Enable IRQ Interrupts
+ \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+/* intrinsic void __enable_irq(); */
+
+/**
+ \brief Disable IRQ Interrupts
+ \details Disables IRQ interrupts by setting the I-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+/* intrinsic void __disable_irq(); */
+
+/**
+ \brief Get Control Register
+ \details Returns the content of the Control Register.
+ \return Control Register value
+ */
+__STATIC_INLINE uint32_t __get_CONTROL(void) {
+ register uint32_t __regControl __ASM("control");
+ return (__regControl);
+}
+
+/**
+ \brief Set Control Register
+ \details Writes the given value to the Control Register.
+ \param [in] control Control Register value to set
+ */
+__STATIC_INLINE void __set_CONTROL(uint32_t control) {
+ register uint32_t __regControl __ASM("control");
+ __regControl = control;
+}
+
+/**
+ \brief Get IPSR Register
+ \details Returns the content of the IPSR Register.
+ \return IPSR Register value
+ */
+__STATIC_INLINE uint32_t __get_IPSR(void) {
+ register uint32_t __regIPSR __ASM("ipsr");
+ return (__regIPSR);
+}
+
+/**
+ \brief Get APSR Register
+ \details Returns the content of the APSR Register.
+ \return APSR Register value
+ */
+__STATIC_INLINE uint32_t __get_APSR(void) {
+ register uint32_t __regAPSR __ASM("apsr");
+ return (__regAPSR);
+}
+
+/**
+ \brief Get xPSR Register
+ \details Returns the content of the xPSR Register.
+ \return xPSR Register value
+ */
+__STATIC_INLINE uint32_t __get_xPSR(void) {
+ register uint32_t __regXPSR __ASM("xpsr");
+ return (__regXPSR);
+}
+
+/**
+ \brief Get Process Stack Pointer
+ \details Returns the current value of the Process Stack Pointer (PSP).
+ \return PSP Register value
+ */
+__STATIC_INLINE uint32_t __get_PSP(void) {
+ register uint32_t __regProcessStackPointer __ASM("psp");
+ return (__regProcessStackPointer);
+}
+
+/**
+ \brief Set Process Stack Pointer
+ \details Assigns the given value to the Process Stack Pointer (PSP).
+ \param [in] topOfProcStack Process Stack Pointer value to set
+ */
+__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack) {
+ register uint32_t __regProcessStackPointer __ASM("psp");
+ __regProcessStackPointer = topOfProcStack;
+}
+
+/**
+ \brief Get Main Stack Pointer
+ \details Returns the current value of the Main Stack Pointer (MSP).
+ \return MSP Register value
+ */
+__STATIC_INLINE uint32_t __get_MSP(void) {
+ register uint32_t __regMainStackPointer __ASM("msp");
+ return (__regMainStackPointer);
+}
+
+/**
+ \brief Set Main Stack Pointer
+ \details Assigns the given value to the Main Stack Pointer (MSP).
+ \param [in] topOfMainStack Main Stack Pointer value to set
+ */
+__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack) {
+ register uint32_t __regMainStackPointer __ASM("msp");
+ __regMainStackPointer = topOfMainStack;
+}
+
+/**
+ \brief Get Priority Mask
+ \details Returns the current state of the priority mask bit from the Priority Mask Register.
+ \return Priority Mask value
+ */
+__STATIC_INLINE uint32_t __get_PRIMASK(void) {
+ register uint32_t __regPriMask __ASM("primask");
+ return (__regPriMask);
+}
+
+/**
+ \brief Set Priority Mask
+ \details Assigns the given value to the Priority Mask Register.
+ \param [in] priMask Priority Mask
+ */
+__STATIC_INLINE void __set_PRIMASK(uint32_t priMask) {
+ register uint32_t __regPriMask __ASM("primask");
+ __regPriMask = (priMask);
+}
+
+#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ == 1)) || (defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)))
+
+/**
+ \brief Enable FIQ
+ \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+#define __enable_fault_irq __enable_fiq
+
+/**
+ \brief Disable FIQ
+ \details Disables FIQ interrupts by setting the F-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+#define __disable_fault_irq __disable_fiq
+
+/**
+ \brief Get Base Priority
+ \details Returns the current value of the Base Priority register.
+ \return Base Priority register value
+ */
+__STATIC_INLINE uint32_t __get_BASEPRI(void) {
+ register uint32_t __regBasePri __ASM("basepri");
+ return (__regBasePri);
+}
+
+/**
+ \brief Set Base Priority
+ \details Assigns the given value to the Base Priority register.
+ \param [in] basePri Base Priority value to set
+ */
+__STATIC_INLINE void __set_BASEPRI(uint32_t basePri) {
+ register uint32_t __regBasePri __ASM("basepri");
+ __regBasePri = (basePri & 0xFFU);
+}
+
+/**
+ \brief Set Base Priority with condition
+ \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
+ or the new value increases the BASEPRI priority level.
+ \param [in] basePri Base Priority value to set
+ */
+__STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri) {
+ register uint32_t __regBasePriMax __ASM("basepri_max");
+ __regBasePriMax = (basePri & 0xFFU);
+}
+
+/**
+ \brief Get Fault Mask
+ \details Returns the current value of the Fault Mask register.
+ \return Fault Mask register value
+ */
+__STATIC_INLINE uint32_t __get_FAULTMASK(void) {
+ register uint32_t __regFaultMask __ASM("faultmask");
+ return (__regFaultMask);
+}
+
+/**
+ \brief Set Fault Mask
+ \details Assigns the given value to the Fault Mask register.
+ \param [in] faultMask Fault Mask value to set
+ */
+__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask) {
+ register uint32_t __regFaultMask __ASM("faultmask");
+ __regFaultMask = (faultMask & (uint32_t)1U);
+}
+
+#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
+ (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
+
+/**
+ \brief Get FPSCR
+ \details Returns the current value of the Floating Point Status/Control register.
+ \return Floating Point Status/Control register value
+ */
+__STATIC_INLINE uint32_t __get_FPSCR(void) {
+#if ((defined(__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && (defined(__FPU_USED) && (__FPU_USED == 1U)))
+ register uint32_t __regfpscr __ASM("fpscr");
+ return (__regfpscr);
+#else
+ return (0U);
+#endif
+}
+
+/**
+ \brief Set FPSCR
+ \details Assigns the given value to the Floating Point Status/Control register.
+ \param [in] fpscr Floating Point Status/Control value to set
+ */
+__STATIC_INLINE void __set_FPSCR(uint32_t fpscr) {
+#if ((defined(__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && (defined(__FPU_USED) && (__FPU_USED == 1U)))
+ register uint32_t __regfpscr __ASM("fpscr");
+ __regfpscr = (fpscr);
+#else
+ (void)fpscr;
+#endif
+}
+
+/*@} end of CMSIS_Core_RegAccFunctions */
+
+/* ########################## Core Instruction Access ######################### */
+/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
+ Access to dedicated instructions
+ @{
+*/
+
+/**
+ \brief No Operation
+ \details No Operation does nothing. This instruction can be used for code alignment purposes.
+ */
+#define __NOP __nop
+
+/**
+ \brief Wait For Interrupt
+ \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
+ */
+#define __WFI __wfi
+
+/**
+ \brief Wait For Event
+ \details Wait For Event is a hint instruction that permits the processor to enter
+ a low-power state until one of a number of events occurs.
+ */
+#define __WFE __wfe
+
+/**
+ \brief Send Event
+ \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
+ */
+#define __SEV __sev
+
+/**
+ \brief Instruction Synchronization Barrier
+ \details Instruction Synchronization Barrier flushes the pipeline in the processor,
+ so that all instructions following the ISB are fetched from cache or memory,
+ after the instruction has been completed.
+ */
+#define __ISB() \
+ do { \
+ __schedule_barrier(); \
+ __isb(0xF); \
+ __schedule_barrier(); \
+ } while (0U)
+
+/**
+ \brief Data Synchronization Barrier
+ \details Acts as a special kind of Data Memory Barrier.
+ It completes when all explicit memory accesses before this instruction complete.
+ */
+#define __DSB() \
+ do { \
+ __schedule_barrier(); \
+ __dsb(0xF); \
+ __schedule_barrier(); \
+ } while (0U)
+
+/**
+ \brief Data Memory Barrier
+ \details Ensures the apparent order of the explicit memory operations before
+ and after the instruction, without ensuring their completion.
+ */
+#define __DMB() \
+ do { \
+ __schedule_barrier(); \
+ __dmb(0xF); \
+ __schedule_barrier(); \
+ } while (0U)
+
+/**
+ \brief Reverse byte order (32 bit)
+ \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+#define __REV __rev
+
+/**
+ \brief Reverse byte order (16 bit)
+ \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+#ifndef __NO_EMBEDDED_ASM
+__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value) { rev16 r0, r0 bx lr }
+#endif
+
+/**
+ \brief Reverse byte order (16 bit)
+ \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+#ifndef __NO_EMBEDDED_ASM
+__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value) { revsh r0, r0 bx lr }
+#endif
+
+/**
+ \brief Rotate Right in unsigned value (32 bit)
+ \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
+ \param [in] op1 Value to rotate
+ \param [in] op2 Number of Bits to rotate
+ \return Rotated value
+ */
+#define __ROR __ror
+
+/**
+ \brief Breakpoint
+ \details Causes the processor to enter Debug state.
+ Debug tools can use this to investigate system state when the instruction at a particular address is reached.
+ \param [in] value is ignored by the processor.
+ If required, a debugger can use it to store additional information about the breakpoint.
+ */
+#define __BKPT(value) __breakpoint(value)
+
+/**
+ \brief Reverse bit order of value
+ \details Reverses the bit order of the given value.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ == 1)) || (defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)))
+#define __RBIT __rbit
+#else
+__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value) {
+ uint32_t result;
+ uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
+
+ result = value; /* r will be reversed bits of v; first get LSB of v */
+ for (value >>= 1U; value != 0U; value >>= 1U) {
+ result <<= 1U;
+ result |= value & 1U;
+ s--;
+ }
+ result <<= s; /* shift when v's highest bits are zero */
+ return result;
+}
+#endif
+
+/**
+ \brief Count leading zeros
+ \details Counts the number of leading zeros of a data value.
+ \param [in] value Value to count the leading zeros
+ \return number of leading zeros in value
+ */
+#define __CLZ __clz
+
+#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ == 1)) || (defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)))
+
+/**
+ \brief LDR Exclusive (8 bit)
+ \details Executes a exclusive LDR instruction for 8 bit value.
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
+#define __LDREXB(ptr) ((uint8_t)__ldrex(ptr))
+#else
+#define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731")((uint8_t)__ldrex(ptr)) _Pragma("pop")
+#endif
+
+/**
+ \brief LDR Exclusive (16 bit)
+ \details Executes a exclusive LDR instruction for 16 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
+#define __LDREXH(ptr) ((uint16_t)__ldrex(ptr))
+#else
+#define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731")((uint16_t)__ldrex(ptr)) _Pragma("pop")
+#endif
+
+/**
+ \brief LDR Exclusive (32 bit)
+ \details Executes a exclusive LDR instruction for 32 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
+#define __LDREXW(ptr) ((uint32_t)__ldrex(ptr))
+#else
+#define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731")((uint32_t)__ldrex(ptr)) _Pragma("pop")
+#endif
+
+/**
+ \brief STR Exclusive (8 bit)
+ \details Executes a exclusive STR instruction for 8 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
+#define __STREXB(value, ptr) __strex(value, ptr)
+#else
+#define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
+#endif
+
+/**
+ \brief STR Exclusive (16 bit)
+ \details Executes a exclusive STR instruction for 16 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
+#define __STREXH(value, ptr) __strex(value, ptr)
+#else
+#define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
+#endif
+
+/**
+ \brief STR Exclusive (32 bit)
+ \details Executes a exclusive STR instruction for 32 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
+#define __STREXW(value, ptr) __strex(value, ptr)
+#else
+#define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
+#endif
+
+/**
+ \brief Remove the exclusive lock
+ \details Removes the exclusive lock which is created by LDREX.
+ */
+#define __CLREX __clrex
+
+/**
+ \brief Signed Saturate
+ \details Saturates a signed value.
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (1..32)
+ \return Saturated value
+ */
+#define __SSAT __ssat
+
+/**
+ \brief Unsigned Saturate
+ \details Saturates an unsigned value.
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (0..31)
+ \return Saturated value
+ */
+#define __USAT __usat
+
+/**
+ \brief Rotate Right with Extend (32 bit)
+ \details Moves each bit of a bitstring right by one bit.
+ The carry input is shifted in at the left end of the bitstring.
+ \param [in] value Value to rotate
+ \return Rotated value
+ */
+#ifndef __NO_EMBEDDED_ASM
+__attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value) { rrx r0, r0 bx lr }
+#endif
+
+/**
+ \brief LDRT Unprivileged (8 bit)
+ \details Executes a Unprivileged LDRT instruction for 8 bit value.
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+#define __LDRBT(ptr) ((uint8_t)__ldrt(ptr))
+
+/**
+ \brief LDRT Unprivileged (16 bit)
+ \details Executes a Unprivileged LDRT instruction for 16 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+#define __LDRHT(ptr) ((uint16_t)__ldrt(ptr))
+
+/**
+ \brief LDRT Unprivileged (32 bit)
+ \details Executes a Unprivileged LDRT instruction for 32 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+#define __LDRT(ptr) ((uint32_t)__ldrt(ptr))
+
+/**
+ \brief STRT Unprivileged (8 bit)
+ \details Executes a Unprivileged STRT instruction for 8 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+#define __STRBT(value, ptr) __strt(value, ptr)
+
+/**
+ \brief STRT Unprivileged (16 bit)
+ \details Executes a Unprivileged STRT instruction for 16 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+#define __STRHT(value, ptr) __strt(value, ptr)
+
+/**
+ \brief STRT Unprivileged (32 bit)
+ \details Executes a Unprivileged STRT instruction for 32 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+#define __STRT(value, ptr) __strt(value, ptr)
+
+#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
+ (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
+
+/**
+ \brief Signed Saturate
+ \details Saturates a signed value.
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (1..32)
+ \return Saturated value
+ */
+__attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat) {
+ if ((sat >= 1U) && (sat <= 32U)) {
+ const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
+ const int32_t min = -1 - max;
+ if (val > max) {
+ return max;
+ } else if (val < min) {
+ return min;
+ }
+ }
+ return val;
+}
+
+/**
+ \brief Unsigned Saturate
+ \details Saturates an unsigned value.
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (0..31)
+ \return Saturated value
+ */
+__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat) {
+ if (sat <= 31U) {
+ const uint32_t max = ((1U << sat) - 1U);
+ if (val > (int32_t)max) {
+ return max;
+ } else if (val < 0) {
+ return 0U;
+ }
+ }
+ return (uint32_t)val;
+}
+
+#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
+ (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
+
+/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
+
+/* ################### Compiler specific Intrinsics ########################### */
+/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
+ Access to dedicated SIMD instructions
+ @{
+*/
+
+#if ((defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)))
+
+#define __SADD8 __sadd8
+#define __QADD8 __qadd8
+#define __SHADD8 __shadd8
+#define __UADD8 __uadd8
+#define __UQADD8 __uqadd8
+#define __UHADD8 __uhadd8
+#define __SSUB8 __ssub8
+#define __QSUB8 __qsub8
+#define __SHSUB8 __shsub8
+#define __USUB8 __usub8
+#define __UQSUB8 __uqsub8
+#define __UHSUB8 __uhsub8
+#define __SADD16 __sadd16
+#define __QADD16 __qadd16
+#define __SHADD16 __shadd16
+#define __UADD16 __uadd16
+#define __UQADD16 __uqadd16
+#define __UHADD16 __uhadd16
+#define __SSUB16 __ssub16
+#define __QSUB16 __qsub16
+#define __SHSUB16 __shsub16
+#define __USUB16 __usub16
+#define __UQSUB16 __uqsub16
+#define __UHSUB16 __uhsub16
+#define __SASX __sasx
+#define __QASX __qasx
+#define __SHASX __shasx
+#define __UASX __uasx
+#define __UQASX __uqasx
+#define __UHASX __uhasx
+#define __SSAX __ssax
+#define __QSAX __qsax
+#define __SHSAX __shsax
+#define __USAX __usax
+#define __UQSAX __uqsax
+#define __UHSAX __uhsax
+#define __USAD8 __usad8
+#define __USADA8 __usada8
+#define __SSAT16 __ssat16
+#define __USAT16 __usat16
+#define __UXTB16 __uxtb16
+#define __UXTAB16 __uxtab16
+#define __SXTB16 __sxtb16
+#define __SXTAB16 __sxtab16
+#define __SMUAD __smuad
+#define __SMUADX __smuadx
+#define __SMLAD __smlad
+#define __SMLADX __smladx
+#define __SMLALD __smlald
+#define __SMLALDX __smlaldx
+#define __SMUSD __smusd
+#define __SMUSDX __smusdx
+#define __SMLSD __smlsd
+#define __SMLSDX __smlsdx
+#define __SMLSLD __smlsld
+#define __SMLSLDX __smlsldx
+#define __SEL __sel
+#define __QADD __qadd
+#define __QSUB __qsub
+
+#define __PKHBT(ARG1, ARG2, ARG3) (((((uint32_t)(ARG1))) & 0x0000FFFFUL) | ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL))
+
+#define __PKHTB(ARG1, ARG2, ARG3) (((((uint32_t)(ARG1))) & 0xFFFF0000UL) | ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL))
+
+#define __SMMLA(ARG1, ARG2, ARG3) ((int32_t)((((int64_t)(ARG1) * (ARG2)) + ((int64_t)(ARG3) << 32U)) >> 32U))
+
+#endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
+/*@} end of group CMSIS_SIMD_intrinsics */
+
+#endif /* __CMSIS_ARMCC_H */
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_armclang.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_armclang.h new file mode 100644 index 00000000..3d63b7f2 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_armclang.h @@ -0,0 +1,1609 @@ +/**************************************************************************/ /**
+ * @file cmsis_armclang.h
+ * @brief CMSIS compiler armclang (Arm Compiler 6) header file
+ * @version V5.0.4
+ * @date 10. January 2018
+ ******************************************************************************/
+/*
+ * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */
+
+#ifndef __CMSIS_ARMCLANG_H
+#define __CMSIS_ARMCLANG_H
+
+#pragma clang system_header /* treat file as system include file */
+
+#ifndef __ARM_COMPAT_H
+#include <arm_compat.h> /* Compatibility header for Arm Compiler 5 intrinsics */
+#endif
+
+/* CMSIS compiler specific defines */
+#ifndef __ASM
+#define __ASM __asm
+#endif
+#ifndef __INLINE
+#define __INLINE __inline
+#endif
+#ifndef __STATIC_INLINE
+#define __STATIC_INLINE static __inline
+#endif
+#ifndef __STATIC_FORCEINLINE
+#define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline
+#endif
+#ifndef __NO_RETURN
+#define __NO_RETURN __attribute__((__noreturn__))
+#endif
+#ifndef __USED
+#define __USED __attribute__((used))
+#endif
+#ifndef __WEAK
+#define __WEAK __attribute__((weak))
+#endif
+#ifndef __PACKED
+#define __PACKED __attribute__((packed, aligned(1)))
+#endif
+#ifndef __PACKED_STRUCT
+#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
+#endif
+#ifndef __PACKED_UNION
+#define __PACKED_UNION union __attribute__((packed, aligned(1)))
+#endif
+#ifndef __UNALIGNED_UINT32 /* deprecated */
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wpacked"
+/*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */
+struct __attribute__((packed)) T_UINT32 {
+ uint32_t v;
+};
+#pragma clang diagnostic pop
+#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
+#endif
+#ifndef __UNALIGNED_UINT16_WRITE
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wpacked"
+/*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
+__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
+#pragma clang diagnostic pop
+#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
+#endif
+#ifndef __UNALIGNED_UINT16_READ
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wpacked"
+/*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
+__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
+#pragma clang diagnostic pop
+#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
+#endif
+#ifndef __UNALIGNED_UINT32_WRITE
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wpacked"
+/*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
+__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
+#pragma clang diagnostic pop
+#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
+#endif
+#ifndef __UNALIGNED_UINT32_READ
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wpacked"
+/*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */
+__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
+#pragma clang diagnostic pop
+#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
+#endif
+#ifndef __ALIGNED
+#define __ALIGNED(x) __attribute__((aligned(x)))
+#endif
+#ifndef __RESTRICT
+#define __RESTRICT __restrict
+#endif
+
+/* ########################### Core Function Access ########################### */
+/** \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
+ @{
+ */
+
+/**
+ \brief Enable IRQ Interrupts
+ \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+/* intrinsic void __enable_irq(); see arm_compat.h */
+
+/**
+ \brief Disable IRQ Interrupts
+ \details Disables IRQ interrupts by setting the I-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+/* intrinsic void __disable_irq(); see arm_compat.h */
+
+/**
+ \brief Get Control Register
+ \details Returns the content of the Control Register.
+ \return Control Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_CONTROL(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, control" : "=r"(result));
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Control Register (non-secure)
+ \details Returns the content of the non-secure Control Register when in secure mode.
+ \return non-secure Control Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, control_ns" : "=r"(result));
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Control Register
+ \details Writes the given value to the Control Register.
+ \param [in] control Control Register value to set
+ */
+__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control) { __ASM volatile("MSR control, %0" : : "r"(control) : "memory"); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Control Register (non-secure)
+ \details Writes the given value to the non-secure Control Register when in secure state.
+ \param [in] control Control Register value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control) { __ASM volatile("MSR control_ns, %0" : : "r"(control) : "memory"); }
+#endif
+
+/**
+ \brief Get IPSR Register
+ \details Returns the content of the IPSR Register.
+ \return IPSR Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_IPSR(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, ipsr" : "=r"(result));
+ return (result);
+}
+
+/**
+ \brief Get APSR Register
+ \details Returns the content of the APSR Register.
+ \return APSR Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_APSR(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, apsr" : "=r"(result));
+ return (result);
+}
+
+/**
+ \brief Get xPSR Register
+ \details Returns the content of the xPSR Register.
+ \return xPSR Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_xPSR(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, xpsr" : "=r"(result));
+ return (result);
+}
+
+/**
+ \brief Get Process Stack Pointer
+ \details Returns the current value of the Process Stack Pointer (PSP).
+ \return PSP Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_PSP(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, psp" : "=r"(result));
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Process Stack Pointer (non-secure)
+ \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
+ \return PSP Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, psp_ns" : "=r"(result));
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Process Stack Pointer
+ \details Assigns the given value to the Process Stack Pointer (PSP).
+ \param [in] topOfProcStack Process Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack) { __ASM volatile("MSR psp, %0" : : "r"(topOfProcStack) :); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Process Stack Pointer (non-secure)
+ \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
+ \param [in] topOfProcStack Process Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack) { __ASM volatile("MSR psp_ns, %0" : : "r"(topOfProcStack) :); }
+#endif
+
+/**
+ \brief Get Main Stack Pointer
+ \details Returns the current value of the Main Stack Pointer (MSP).
+ \return MSP Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_MSP(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, msp" : "=r"(result));
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Main Stack Pointer (non-secure)
+ \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
+ \return MSP Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, msp_ns" : "=r"(result));
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Main Stack Pointer
+ \details Assigns the given value to the Main Stack Pointer (MSP).
+ \param [in] topOfMainStack Main Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack) { __ASM volatile("MSR msp, %0" : : "r"(topOfMainStack) :); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Main Stack Pointer (non-secure)
+ \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
+ \param [in] topOfMainStack Main Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack) { __ASM volatile("MSR msp_ns, %0" : : "r"(topOfMainStack) :); }
+#endif
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Stack Pointer (non-secure)
+ \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
+ \return SP Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, sp_ns" : "=r"(result));
+ return (result);
+}
+
+/**
+ \brief Set Stack Pointer (non-secure)
+ \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
+ \param [in] topOfStack Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack) { __ASM volatile("MSR sp_ns, %0" : : "r"(topOfStack) :); }
+#endif
+
+/**
+ \brief Get Priority Mask
+ \details Returns the current state of the priority mask bit from the Priority Mask Register.
+ \return Priority Mask value
+ */
+__STATIC_FORCEINLINE uint32_t __get_PRIMASK(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, primask" : "=r"(result));
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Priority Mask (non-secure)
+ \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
+ \return Priority Mask value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, primask_ns" : "=r"(result));
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Priority Mask
+ \details Assigns the given value to the Priority Mask Register.
+ \param [in] priMask Priority Mask
+ */
+__STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask) { __ASM volatile("MSR primask, %0" : : "r"(priMask) : "memory"); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Priority Mask (non-secure)
+ \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
+ \param [in] priMask Priority Mask
+ */
+__STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask) { __ASM volatile("MSR primask_ns, %0" : : "r"(priMask) : "memory"); }
+#endif
+
+#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ == 1)) || (defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) || (defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+/**
+ \brief Enable FIQ
+ \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+#define __enable_fault_irq __enable_fiq /* see arm_compat.h */
+
+/**
+ \brief Disable FIQ
+ \details Disables FIQ interrupts by setting the F-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+#define __disable_fault_irq __disable_fiq /* see arm_compat.h */
+
+/**
+ \brief Get Base Priority
+ \details Returns the current value of the Base Priority register.
+ \return Base Priority register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_BASEPRI(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, basepri" : "=r"(result));
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Base Priority (non-secure)
+ \details Returns the current value of the non-secure Base Priority register when in secure state.
+ \return Base Priority register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, basepri_ns" : "=r"(result));
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Base Priority
+ \details Assigns the given value to the Base Priority register.
+ \param [in] basePri Base Priority value to set
+ */
+__STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri) { __ASM volatile("MSR basepri, %0" : : "r"(basePri) : "memory"); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Base Priority (non-secure)
+ \details Assigns the given value to the non-secure Base Priority register when in secure state.
+ \param [in] basePri Base Priority value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri) { __ASM volatile("MSR basepri_ns, %0" : : "r"(basePri) : "memory"); }
+#endif
+
+/**
+ \brief Set Base Priority with condition
+ \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
+ or the new value increases the BASEPRI priority level.
+ \param [in] basePri Base Priority value to set
+ */
+__STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri) { __ASM volatile("MSR basepri_max, %0" : : "r"(basePri) : "memory"); }
+
+/**
+ \brief Get Fault Mask
+ \details Returns the current value of the Fault Mask register.
+ \return Fault Mask register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, faultmask" : "=r"(result));
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Fault Mask (non-secure)
+ \details Returns the current value of the non-secure Fault Mask register when in secure state.
+ \return Fault Mask register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, faultmask_ns" : "=r"(result));
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Fault Mask
+ \details Assigns the given value to the Fault Mask register.
+ \param [in] faultMask Fault Mask value to set
+ */
+__STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask) { __ASM volatile("MSR faultmask, %0" : : "r"(faultMask) : "memory"); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Fault Mask (non-secure)
+ \details Assigns the given value to the non-secure Fault Mask register when in secure state.
+ \param [in] faultMask Fault Mask value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask) { __ASM volatile("MSR faultmask_ns, %0" : : "r"(faultMask) : "memory"); }
+#endif
+
+#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
+ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
+ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
+
+#if ((defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) || (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ == 1)))
+
+/**
+ \brief Get Process Stack Pointer Limit
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence zero is returned always in non-secure
+ mode.
+
+ \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
+ \return PSPLIM Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_PSPLIM(void) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ return 0U;
+#else
+ uint32_t result;
+ __ASM volatile("MRS %0, psplim" : "=r"(result));
+ return result;
+#endif
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Process Stack Pointer Limit (non-secure)
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence zero is returned always in non-secure
+ mode.
+
+ \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
+ \return PSPLIM Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ return 0U;
+#else
+ uint32_t result;
+ __ASM volatile("MRS %0, psplim_ns" : "=r"(result));
+ return result;
+#endif
+}
+#endif
+
+/**
+ \brief Set Process Stack Pointer Limit
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence the write is silently ignored in non-secure
+ mode.
+
+ \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
+ \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
+ */
+__STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ (void)ProcStackPtrLimit;
+#else
+ __ASM volatile("MSR psplim, %0" : : "r"(ProcStackPtrLimit));
+#endif
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Process Stack Pointer (non-secure)
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence the write is silently ignored in non-secure
+ mode.
+
+ \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
+ \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ (void)ProcStackPtrLimit;
+#else
+ __ASM volatile("MSR psplim_ns, %0\n" : : "r"(ProcStackPtrLimit));
+#endif
+}
+#endif
+
+/**
+ \brief Get Main Stack Pointer Limit
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence zero is returned always.
+
+ \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
+ \return MSPLIM Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_MSPLIM(void) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure MSPLIM is RAZ/WI
+ return 0U;
+#else
+ uint32_t result;
+ __ASM volatile("MRS %0, msplim" : "=r"(result));
+ return result;
+#endif
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Main Stack Pointer Limit (non-secure)
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence zero is returned always.
+
+ \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
+ \return MSPLIM Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+ // without main extensions, the non-secure MSPLIM is RAZ/WI
+ return 0U;
+#else
+ uint32_t result;
+ __ASM volatile("MRS %0, msplim_ns" : "=r"(result));
+ return result;
+#endif
+}
+#endif
+
+/**
+ \brief Set Main Stack Pointer Limit
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence the write is silently ignored.
+
+ \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
+ \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
+ */
+__STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure MSPLIM is RAZ/WI
+ (void)MainStackPtrLimit;
+#else
+ __ASM volatile("MSR msplim, %0" : : "r"(MainStackPtrLimit));
+#endif
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Main Stack Pointer Limit (non-secure)
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence the write is silently ignored.
+
+ \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
+ \param [in] MainStackPtrLimit Main Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+ // without main extensions, the non-secure MSPLIM is RAZ/WI
+ (void)MainStackPtrLimit;
+#else
+ __ASM volatile("MSR msplim_ns, %0" : : "r"(MainStackPtrLimit));
+#endif
+}
+#endif
+
+#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
+ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
+
+/**
+ \brief Get FPSCR
+ \details Returns the current value of the Floating Point Status/Control register.
+ \return Floating Point Status/Control register value
+ */
+#if ((defined(__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && (defined(__FPU_USED) && (__FPU_USED == 1U)))
+#define __get_FPSCR (uint32_t) __builtin_arm_get_fpscr
+#else
+#define __get_FPSCR() ((uint32_t)0U)
+#endif
+
+/**
+ \brief Set FPSCR
+ \details Assigns the given value to the Floating Point Status/Control register.
+ \param [in] fpscr Floating Point Status/Control value to set
+ */
+#if ((defined(__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && (defined(__FPU_USED) && (__FPU_USED == 1U)))
+#define __set_FPSCR __builtin_arm_set_fpscr
+#else
+#define __set_FPSCR(x) ((void)(x))
+#endif
+
+/*@} end of CMSIS_Core_RegAccFunctions */
+
+/* ########################## Core Instruction Access ######################### */
+/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
+ Access to dedicated instructions
+ @{
+*/
+
+/* Define macros for porting to both thumb1 and thumb2.
+ * For thumb1, use low register (r0-r7), specified by constraint "l"
+ * Otherwise, use general registers, specified by constraint "r" */
+#if defined(__thumb__) && !defined(__thumb2__)
+#define __CMSIS_GCC_OUT_REG(r) "=l"(r)
+#define __CMSIS_GCC_USE_REG(r) "l"(r)
+#else
+#define __CMSIS_GCC_OUT_REG(r) "=r"(r)
+#define __CMSIS_GCC_USE_REG(r) "r"(r)
+#endif
+
+/**
+ \brief No Operation
+ \details No Operation does nothing. This instruction can be used for code alignment purposes.
+ */
+#define __NOP __builtin_arm_nop
+
+/**
+ \brief Wait For Interrupt
+ \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
+ */
+#define __WFI __builtin_arm_wfi
+
+/**
+ \brief Wait For Event
+ \details Wait For Event is a hint instruction that permits the processor to enter
+ a low-power state until one of a number of events occurs.
+ */
+#define __WFE __builtin_arm_wfe
+
+/**
+ \brief Send Event
+ \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
+ */
+#define __SEV __builtin_arm_sev
+
+/**
+ \brief Instruction Synchronization Barrier
+ \details Instruction Synchronization Barrier flushes the pipeline in the processor,
+ so that all instructions following the ISB are fetched from cache or memory,
+ after the instruction has been completed.
+ */
+#define __ISB() __builtin_arm_isb(0xF);
+
+/**
+ \brief Data Synchronization Barrier
+ \details Acts as a special kind of Data Memory Barrier.
+ It completes when all explicit memory accesses before this instruction complete.
+ */
+#define __DSB() __builtin_arm_dsb(0xF);
+
+/**
+ \brief Data Memory Barrier
+ \details Ensures the apparent order of the explicit memory operations before
+ and after the instruction, without ensuring their completion.
+ */
+#define __DMB() __builtin_arm_dmb(0xF);
+
+/**
+ \brief Reverse byte order (32 bit)
+ \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+#define __REV(value) __builtin_bswap32(value)
+
+/**
+ \brief Reverse byte order (16 bit)
+ \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+#define __REV16(value) __ROR(__REV(value), 16)
+
+/**
+ \brief Reverse byte order (16 bit)
+ \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+#define __REVSH(value) (int16_t) __builtin_bswap16(value)
+
+/**
+ \brief Rotate Right in unsigned value (32 bit)
+ \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
+ \param [in] op1 Value to rotate
+ \param [in] op2 Number of Bits to rotate
+ \return Rotated value
+ */
+__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2) {
+ op2 %= 32U;
+ if (op2 == 0U) {
+ return op1;
+ }
+ return (op1 >> op2) | (op1 << (32U - op2));
+}
+
+/**
+ \brief Breakpoint
+ \details Causes the processor to enter Debug state.
+ Debug tools can use this to investigate system state when the instruction at a particular address is reached.
+ \param [in] value is ignored by the processor.
+ If required, a debugger can use it to store additional information about the breakpoint.
+ */
+#define __BKPT(value) __ASM volatile("bkpt " #value)
+
+/**
+ \brief Reverse bit order of value
+ \details Reverses the bit order of the given value.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+#define __RBIT __builtin_arm_rbit
+
+/**
+ \brief Count leading zeros
+ \details Counts the number of leading zeros of a data value.
+ \param [in] value Value to count the leading zeros
+ \return number of leading zeros in value
+ */
+#define __CLZ (uint8_t) __builtin_clz
+
+#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ == 1)) || (defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) || (defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) \
+ || (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ == 1)))
+/**
+ \brief LDR Exclusive (8 bit)
+ \details Executes a exclusive LDR instruction for 8 bit value.
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+#define __LDREXB (uint8_t) __builtin_arm_ldrex
+
+/**
+ \brief LDR Exclusive (16 bit)
+ \details Executes a exclusive LDR instruction for 16 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+#define __LDREXH (uint16_t) __builtin_arm_ldrex
+
+/**
+ \brief LDR Exclusive (32 bit)
+ \details Executes a exclusive LDR instruction for 32 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+#define __LDREXW (uint32_t) __builtin_arm_ldrex
+
+/**
+ \brief STR Exclusive (8 bit)
+ \details Executes a exclusive STR instruction for 8 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#define __STREXB (uint32_t) __builtin_arm_strex
+
+/**
+ \brief STR Exclusive (16 bit)
+ \details Executes a exclusive STR instruction for 16 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#define __STREXH (uint32_t) __builtin_arm_strex
+
+/**
+ \brief STR Exclusive (32 bit)
+ \details Executes a exclusive STR instruction for 32 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#define __STREXW (uint32_t) __builtin_arm_strex
+
+/**
+ \brief Remove the exclusive lock
+ \details Removes the exclusive lock which is created by LDREX.
+ */
+#define __CLREX __builtin_arm_clrex
+
+#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
+ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
+ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
+ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
+
+#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ == 1)) || (defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) || (defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+
+/**
+ \brief Signed Saturate
+ \details Saturates a signed value.
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (1..32)
+ \return Saturated value
+ */
+#define __SSAT __builtin_arm_ssat
+
+/**
+ \brief Unsigned Saturate
+ \details Saturates an unsigned value.
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (0..31)
+ \return Saturated value
+ */
+#define __USAT __builtin_arm_usat
+
+/**
+ \brief Rotate Right with Extend (32 bit)
+ \details Moves each bit of a bitstring right by one bit.
+ The carry input is shifted in at the left end of the bitstring.
+ \param [in] value Value to rotate
+ \return Rotated value
+ */
+__STATIC_FORCEINLINE uint32_t __RRX(uint32_t value) {
+ uint32_t result;
+
+ __ASM volatile("rrx %0, %1" : __CMSIS_GCC_OUT_REG(result) : __CMSIS_GCC_USE_REG(value));
+ return (result);
+}
+
+/**
+ \brief LDRT Unprivileged (8 bit)
+ \details Executes a Unprivileged LDRT instruction for 8 bit value.
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("ldrbt %0, %1" : "=r"(result) : "Q"(*ptr));
+ return ((uint8_t)result); /* Add explicit type cast here */
+}
+
+/**
+ \brief LDRT Unprivileged (16 bit)
+ \details Executes a Unprivileged LDRT instruction for 16 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("ldrht %0, %1" : "=r"(result) : "Q"(*ptr));
+ return ((uint16_t)result); /* Add explicit type cast here */
+}
+
+/**
+ \brief LDRT Unprivileged (32 bit)
+ \details Executes a Unprivileged LDRT instruction for 32 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("ldrt %0, %1" : "=r"(result) : "Q"(*ptr));
+ return (result);
+}
+
+/**
+ \brief STRT Unprivileged (8 bit)
+ \details Executes a Unprivileged STRT instruction for 8 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr) { __ASM volatile("strbt %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value)); }
+
+/**
+ \brief STRT Unprivileged (16 bit)
+ \details Executes a Unprivileged STRT instruction for 16 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr) { __ASM volatile("strht %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value)); }
+
+/**
+ \brief STRT Unprivileged (32 bit)
+ \details Executes a Unprivileged STRT instruction for 32 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr) { __ASM volatile("strt %1, %0" : "=Q"(*ptr) : "r"(value)); }
+
+#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
+ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
+ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
+
+/**
+ \brief Signed Saturate
+ \details Saturates a signed value.
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (1..32)
+ \return Saturated value
+ */
+__STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) {
+ if ((sat >= 1U) && (sat <= 32U)) {
+ const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
+ const int32_t min = -1 - max;
+ if (val > max) {
+ return max;
+ } else if (val < min) {
+ return min;
+ }
+ }
+ return val;
+}
+
+/**
+ \brief Unsigned Saturate
+ \details Saturates an unsigned value.
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (0..31)
+ \return Saturated value
+ */
+__STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) {
+ if (sat <= 31U) {
+ const uint32_t max = ((1U << sat) - 1U);
+ if (val > (int32_t)max) {
+ return max;
+ } else if (val < 0) {
+ return 0U;
+ }
+ }
+ return (uint32_t)val;
+}
+
+#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
+ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
+ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
+
+#if ((defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) || (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ == 1)))
+/**
+ \brief Load-Acquire (8 bit)
+ \details Executes a LDAB instruction for 8 bit value.
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("ldab %0, %1" : "=r"(result) : "Q"(*ptr));
+ return ((uint8_t)result);
+}
+
+/**
+ \brief Load-Acquire (16 bit)
+ \details Executes a LDAH instruction for 16 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("ldah %0, %1" : "=r"(result) : "Q"(*ptr));
+ return ((uint16_t)result);
+}
+
+/**
+ \brief Load-Acquire (32 bit)
+ \details Executes a LDA instruction for 32 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("lda %0, %1" : "=r"(result) : "Q"(*ptr));
+ return (result);
+}
+
+/**
+ \brief Store-Release (8 bit)
+ \details Executes a STLB instruction for 8 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr) { __ASM volatile("stlb %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value)); }
+
+/**
+ \brief Store-Release (16 bit)
+ \details Executes a STLH instruction for 16 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr) { __ASM volatile("stlh %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value)); }
+
+/**
+ \brief Store-Release (32 bit)
+ \details Executes a STL instruction for 32 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr) { __ASM volatile("stl %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value)); }
+
+/**
+ \brief Load-Acquire Exclusive (8 bit)
+ \details Executes a LDAB exclusive instruction for 8 bit value.
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+#define __LDAEXB (uint8_t) __builtin_arm_ldaex
+
+/**
+ \brief Load-Acquire Exclusive (16 bit)
+ \details Executes a LDAH exclusive instruction for 16 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+#define __LDAEXH (uint16_t) __builtin_arm_ldaex
+
+/**
+ \brief Load-Acquire Exclusive (32 bit)
+ \details Executes a LDA exclusive instruction for 32 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+#define __LDAEX (uint32_t) __builtin_arm_ldaex
+
+/**
+ \brief Store-Release Exclusive (8 bit)
+ \details Executes a STLB exclusive instruction for 8 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#define __STLEXB (uint32_t) __builtin_arm_stlex
+
+/**
+ \brief Store-Release Exclusive (16 bit)
+ \details Executes a STLH exclusive instruction for 16 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#define __STLEXH (uint32_t) __builtin_arm_stlex
+
+/**
+ \brief Store-Release Exclusive (32 bit)
+ \details Executes a STL exclusive instruction for 32 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#define __STLEX (uint32_t) __builtin_arm_stlex
+
+#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
+ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
+
+/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
+
+/* ################### Compiler specific Intrinsics ########################### */
+/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
+ Access to dedicated SIMD instructions
+ @{
+*/
+
+#if (defined(__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
+
+__STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("sadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("ssub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("usub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("sadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("ssub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("usub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("sasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("ssax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("usax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("usad8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) {
+ uint32_t result;
+
+ __ASM volatile("usada8 %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+#define __SSAT16(ARG1, ARG2) \
+ ({ \
+ int32_t __RES, __ARG1 = (ARG1); \
+ __ASM("ssat16 %0, %1, %2" : "=r"(__RES) : "I"(ARG2), "r"(__ARG1)); \
+ __RES; \
+ })
+
+#define __USAT16(ARG1, ARG2) \
+ ({ \
+ uint32_t __RES, __ARG1 = (ARG1); \
+ __ASM("usat16 %0, %1, %2" : "=r"(__RES) : "I"(ARG2), "r"(__ARG1)); \
+ __RES; \
+ })
+
+__STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1) {
+ uint32_t result;
+
+ __ASM volatile("uxtb16 %0, %1" : "=r"(result) : "r"(op1));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uxtab16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1) {
+ uint32_t result;
+
+ __ASM volatile("sxtb16 %0, %1" : "=r"(result) : "r"(op1));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("sxtab16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMUAD(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("smuad %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMUADX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("smuadx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMLAD(uint32_t op1, uint32_t op2, uint32_t op3) {
+ uint32_t result;
+
+ __ASM volatile("smlad %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMLADX(uint32_t op1, uint32_t op2, uint32_t op3) {
+ uint32_t result;
+
+ __ASM volatile("smladx %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint64_t __SMLALD(uint32_t op1, uint32_t op2, uint64_t acc) {
+ union llreg_u {
+ uint32_t w32[2];
+ uint64_t w64;
+ } llr;
+ llr.w64 = acc;
+
+#ifndef __ARMEB__ /* Little endian */
+ __ASM volatile("smlald %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]) : "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
+#else /* Big endian */
+ __ASM volatile("smlald %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]) : "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
+#endif
+
+ return (llr.w64);
+}
+
+__STATIC_FORCEINLINE uint64_t __SMLALDX(uint32_t op1, uint32_t op2, uint64_t acc) {
+ union llreg_u {
+ uint32_t w32[2];
+ uint64_t w64;
+ } llr;
+ llr.w64 = acc;
+
+#ifndef __ARMEB__ /* Little endian */
+ __ASM volatile("smlaldx %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]) : "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
+#else /* Big endian */
+ __ASM volatile("smlaldx %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]) : "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
+#endif
+
+ return (llr.w64);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMUSD(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("smusd %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMUSDX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("smusdx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMLSD(uint32_t op1, uint32_t op2, uint32_t op3) {
+ uint32_t result;
+
+ __ASM volatile("smlsd %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMLSDX(uint32_t op1, uint32_t op2, uint32_t op3) {
+ uint32_t result;
+
+ __ASM volatile("smlsdx %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint64_t __SMLSLD(uint32_t op1, uint32_t op2, uint64_t acc) {
+ union llreg_u {
+ uint32_t w32[2];
+ uint64_t w64;
+ } llr;
+ llr.w64 = acc;
+
+#ifndef __ARMEB__ /* Little endian */
+ __ASM volatile("smlsld %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]) : "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
+#else /* Big endian */
+ __ASM volatile("smlsld %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]) : "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
+#endif
+
+ return (llr.w64);
+}
+
+__STATIC_FORCEINLINE uint64_t __SMLSLDX(uint32_t op1, uint32_t op2, uint64_t acc) {
+ union llreg_u {
+ uint32_t w32[2];
+ uint64_t w64;
+ } llr;
+ llr.w64 = acc;
+
+#ifndef __ARMEB__ /* Little endian */
+ __ASM volatile("smlsldx %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]) : "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
+#else /* Big endian */
+ __ASM volatile("smlsldx %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]) : "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
+#endif
+
+ return (llr.w64);
+}
+
+__STATIC_FORCEINLINE uint32_t __SEL(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("sel %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE int32_t __QADD(int32_t op1, int32_t op2) {
+ int32_t result;
+
+ __ASM volatile("qadd %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE int32_t __QSUB(int32_t op1, int32_t op2) {
+ int32_t result;
+
+ __ASM volatile("qsub %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+#if 0
+#define __PKHBT(ARG1, ARG2, ARG3) \
+ ({ \
+ uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
+ __ASM("pkhbt %0, %1, %2, lsl %3" : "=r"(__RES) : "r"(__ARG1), "r"(__ARG2), "I"(ARG3)); \
+ __RES; \
+ })
+
+#define __PKHTB(ARG1, ARG2, ARG3) \
+ ({ \
+ uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
+ if (ARG3 == 0) \
+ __ASM("pkhtb %0, %1, %2" : "=r"(__RES) : "r"(__ARG1), "r"(__ARG2)); \
+ else \
+ __ASM("pkhtb %0, %1, %2, asr %3" : "=r"(__RES) : "r"(__ARG1), "r"(__ARG2), "I"(ARG3)); \
+ __RES; \
+ })
+#endif
+
+#define __PKHBT(ARG1, ARG2, ARG3) (((((uint32_t)(ARG1))) & 0x0000FFFFUL) | ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL))
+
+#define __PKHTB(ARG1, ARG2, ARG3) (((((uint32_t)(ARG1))) & 0xFFFF0000UL) | ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL))
+
+__STATIC_FORCEINLINE int32_t __SMMLA(int32_t op1, int32_t op2, int32_t op3) {
+ int32_t result;
+
+ __ASM volatile("smmla %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+#endif /* (__ARM_FEATURE_DSP == 1) */
+/*@} end of group CMSIS_SIMD_intrinsics */
+
+#endif /* __CMSIS_ARMCLANG_H */
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_compiler.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_compiler.h new file mode 100644 index 00000000..999e4789 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_compiler.h @@ -0,0 +1,263 @@ +/**************************************************************************/ /**
+ * @file cmsis_compiler.h
+ * @brief CMSIS compiler generic header file
+ * @version V5.0.4
+ * @date 10. January 2018
+ ******************************************************************************/
+/*
+ * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __CMSIS_COMPILER_H
+#define __CMSIS_COMPILER_H
+
+#include <stdint.h>
+
+/*
+ * Arm Compiler 4/5
+ */
+#if defined(__CC_ARM)
+#include "cmsis_armcc.h"
+
+/*
+ * Arm Compiler 6 (armclang)
+ */
+#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+#include "cmsis_armclang.h"
+
+/*
+ * GNU Compiler
+ */
+#elif defined(__GNUC__)
+#include "cmsis_gcc.h"
+
+/*
+ * IAR Compiler
+ */
+#elif defined(__ICCARM__)
+#include <cmsis_iccarm.h>
+
+/*
+ * TI Arm Compiler
+ */
+#elif defined(__TI_ARM__)
+#include <cmsis_ccs.h>
+
+#ifndef __ASM
+#define __ASM __asm
+#endif
+#ifndef __INLINE
+#define __INLINE inline
+#endif
+#ifndef __STATIC_INLINE
+#define __STATIC_INLINE static inline
+#endif
+#ifndef __STATIC_FORCEINLINE
+#define __STATIC_FORCEINLINE __STATIC_INLINE
+#endif
+#ifndef __NO_RETURN
+#define __NO_RETURN __attribute__((noreturn))
+#endif
+#ifndef __USED
+#define __USED __attribute__((used))
+#endif
+#ifndef __WEAK
+#define __WEAK __attribute__((weak))
+#endif
+#ifndef __PACKED
+#define __PACKED __attribute__((packed))
+#endif
+#ifndef __PACKED_STRUCT
+#define __PACKED_STRUCT struct __attribute__((packed))
+#endif
+#ifndef __PACKED_UNION
+#define __PACKED_UNION union __attribute__((packed))
+#endif
+#ifndef __UNALIGNED_UINT32 /* deprecated */
+struct __attribute__((packed)) T_UINT32 {
+ uint32_t v;
+};
+#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
+#endif
+#ifndef __UNALIGNED_UINT16_WRITE
+__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
+#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
+#endif
+#ifndef __UNALIGNED_UINT16_READ
+__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
+#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
+#endif
+#ifndef __UNALIGNED_UINT32_WRITE
+__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
+#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
+#endif
+#ifndef __UNALIGNED_UINT32_READ
+__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
+#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
+#endif
+#ifndef __ALIGNED
+#define __ALIGNED(x) __attribute__((aligned(x)))
+#endif
+#ifndef __RESTRICT
+#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
+#define __RESTRICT
+#endif
+
+/*
+ * TASKING Compiler
+ */
+#elif defined(__TASKING__)
+/*
+ * The CMSIS functions have been implemented as intrinsics in the compiler.
+ * Please use "carm -?i" to get an up to date list of all intrinsics,
+ * Including the CMSIS ones.
+ */
+
+#ifndef __ASM
+#define __ASM __asm
+#endif
+#ifndef __INLINE
+#define __INLINE inline
+#endif
+#ifndef __STATIC_INLINE
+#define __STATIC_INLINE static inline
+#endif
+#ifndef __STATIC_FORCEINLINE
+#define __STATIC_FORCEINLINE __STATIC_INLINE
+#endif
+#ifndef __NO_RETURN
+#define __NO_RETURN __attribute__((noreturn))
+#endif
+#ifndef __USED
+#define __USED __attribute__((used))
+#endif
+#ifndef __WEAK
+#define __WEAK __attribute__((weak))
+#endif
+#ifndef __PACKED
+#define __PACKED __packed__
+#endif
+#ifndef __PACKED_STRUCT
+#define __PACKED_STRUCT struct __packed__
+#endif
+#ifndef __PACKED_UNION
+#define __PACKED_UNION union __packed__
+#endif
+#ifndef __UNALIGNED_UINT32 /* deprecated */
+struct __packed__ T_UINT32 {
+ uint32_t v;
+};
+#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
+#endif
+#ifndef __UNALIGNED_UINT16_WRITE
+__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
+#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
+#endif
+#ifndef __UNALIGNED_UINT16_READ
+__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
+#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
+#endif
+#ifndef __UNALIGNED_UINT32_WRITE
+__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
+#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
+#endif
+#ifndef __UNALIGNED_UINT32_READ
+__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
+#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
+#endif
+#ifndef __ALIGNED
+#define __ALIGNED(x) __align(x)
+#endif
+#ifndef __RESTRICT
+#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
+#define __RESTRICT
+#endif
+
+/*
+ * COSMIC Compiler
+ */
+#elif defined(__CSMC__)
+#include <cmsis_csm.h>
+
+#ifndef __ASM
+#define __ASM _asm
+#endif
+#ifndef __INLINE
+#define __INLINE inline
+#endif
+#ifndef __STATIC_INLINE
+#define __STATIC_INLINE static inline
+#endif
+#ifndef __STATIC_FORCEINLINE
+#define __STATIC_FORCEINLINE __STATIC_INLINE
+#endif
+#ifndef __NO_RETURN
+// NO RETURN is automatically detected hence no warning here
+#define __NO_RETURN
+#endif
+#ifndef __USED
+#warning No compiler specific solution for __USED. __USED is ignored.
+#define __USED
+#endif
+#ifndef __WEAK
+#define __WEAK __weak
+#endif
+#ifndef __PACKED
+#define __PACKED @packed
+#endif
+#ifndef __PACKED_STRUCT
+#define __PACKED_STRUCT @packed struct
+#endif
+#ifndef __PACKED_UNION
+#define __PACKED_UNION @packed union
+#endif
+#ifndef __UNALIGNED_UINT32 /* deprecated */
+@packed struct T_UINT32 {
+ uint32_t v;
+};
+#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
+#endif
+#ifndef __UNALIGNED_UINT16_WRITE
+__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
+#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
+#endif
+#ifndef __UNALIGNED_UINT16_READ
+__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
+#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
+#endif
+#ifndef __UNALIGNED_UINT32_WRITE
+__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
+#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
+#endif
+#ifndef __UNALIGNED_UINT32_READ
+__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
+#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
+#endif
+#ifndef __ALIGNED
+#warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored.
+#define __ALIGNED(x)
+#endif
+#ifndef __RESTRICT
+#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
+#define __RESTRICT
+#endif
+
+#else
+#error Unknown compiler.
+#endif
+
+#endif /* __CMSIS_COMPILER_H */
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_gcc.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_gcc.h new file mode 100644 index 00000000..4d27f98d --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_gcc.h @@ -0,0 +1,1774 @@ +/**************************************************************************/ /**
+ * @file cmsis_gcc.h
+ * @brief CMSIS compiler GCC header file
+ * @version V5.0.4
+ * @date 09. April 2018
+ ******************************************************************************/
+/*
+ * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __CMSIS_GCC_H
+#define __CMSIS_GCC_H
+
+/* ignore some GCC warnings */
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wsign-conversion"
+#pragma GCC diagnostic ignored "-Wconversion"
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+
+/* Fallback for __has_builtin */
+#ifndef __has_builtin
+#define __has_builtin(x) (0)
+#endif
+
+/* CMSIS compiler specific defines */
+#ifndef __ASM
+#define __ASM __asm
+#endif
+#ifndef __INLINE
+#define __INLINE inline
+#endif
+#ifndef __STATIC_INLINE
+#define __STATIC_INLINE static inline
+#endif
+#ifndef __STATIC_FORCEINLINE
+#define __STATIC_FORCEINLINE __attribute__((always_inline)) static inline
+#endif
+#ifndef __NO_RETURN
+#define __NO_RETURN __attribute__((__noreturn__))
+#endif
+#ifndef __USED
+#define __USED __attribute__((used))
+#endif
+#ifndef __WEAK
+#define __WEAK __attribute__((weak))
+#endif
+#ifndef __PACKED
+#define __PACKED __attribute__((packed, aligned(1)))
+#endif
+#ifndef __PACKED_STRUCT
+#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
+#endif
+#ifndef __PACKED_UNION
+#define __PACKED_UNION union __attribute__((packed, aligned(1)))
+#endif
+#ifndef __UNALIGNED_UINT32 /* deprecated */
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wpacked"
+#pragma GCC diagnostic ignored "-Wattributes"
+struct __attribute__((packed)) T_UINT32 {
+ uint32_t v;
+};
+#pragma GCC diagnostic pop
+#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
+#endif
+#ifndef __UNALIGNED_UINT16_WRITE
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wpacked"
+#pragma GCC diagnostic ignored "-Wattributes"
+__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
+#pragma GCC diagnostic pop
+#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
+#endif
+#ifndef __UNALIGNED_UINT16_READ
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wpacked"
+#pragma GCC diagnostic ignored "-Wattributes"
+__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
+#pragma GCC diagnostic pop
+#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
+#endif
+#ifndef __UNALIGNED_UINT32_WRITE
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wpacked"
+#pragma GCC diagnostic ignored "-Wattributes"
+__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
+#pragma GCC diagnostic pop
+#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
+#endif
+#ifndef __UNALIGNED_UINT32_READ
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wpacked"
+#pragma GCC diagnostic ignored "-Wattributes"
+__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
+#pragma GCC diagnostic pop
+#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
+#endif
+#ifndef __ALIGNED
+#define __ALIGNED(x) __attribute__((aligned(x)))
+#endif
+#ifndef __RESTRICT
+#define __RESTRICT __restrict
+#endif
+
+/* ########################### Core Function Access ########################### */
+/** \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
+ @{
+ */
+
+/**
+ \brief Enable IRQ Interrupts
+ \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+__STATIC_FORCEINLINE void __enable_irq(void) { __ASM volatile("cpsie i" : : : "memory"); }
+
+/**
+ \brief Disable IRQ Interrupts
+ \details Disables IRQ interrupts by setting the I-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+__STATIC_FORCEINLINE void __disable_irq(void) { __ASM volatile("cpsid i" : : : "memory"); }
+
+/**
+ \brief Get Control Register
+ \details Returns the content of the Control Register.
+ \return Control Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_CONTROL(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, control" : "=r"(result));
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Control Register (non-secure)
+ \details Returns the content of the non-secure Control Register when in secure mode.
+ \return non-secure Control Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, control_ns" : "=r"(result));
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Control Register
+ \details Writes the given value to the Control Register.
+ \param [in] control Control Register value to set
+ */
+__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control) { __ASM volatile("MSR control, %0" : : "r"(control) : "memory"); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Control Register (non-secure)
+ \details Writes the given value to the non-secure Control Register when in secure state.
+ \param [in] control Control Register value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control) { __ASM volatile("MSR control_ns, %0" : : "r"(control) : "memory"); }
+#endif
+
+/**
+ \brief Get IPSR Register
+ \details Returns the content of the IPSR Register.
+ \return IPSR Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_IPSR(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, ipsr" : "=r"(result));
+ return (result);
+}
+
+/**
+ \brief Get APSR Register
+ \details Returns the content of the APSR Register.
+ \return APSR Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_APSR(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, apsr" : "=r"(result));
+ return (result);
+}
+
+/**
+ \brief Get xPSR Register
+ \details Returns the content of the xPSR Register.
+ \return xPSR Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_xPSR(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, xpsr" : "=r"(result));
+ return (result);
+}
+
+/**
+ \brief Get Process Stack Pointer
+ \details Returns the current value of the Process Stack Pointer (PSP).
+ \return PSP Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_PSP(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, psp" : "=r"(result));
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Process Stack Pointer (non-secure)
+ \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
+ \return PSP Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, psp_ns" : "=r"(result));
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Process Stack Pointer
+ \details Assigns the given value to the Process Stack Pointer (PSP).
+ \param [in] topOfProcStack Process Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack) { __ASM volatile("MSR psp, %0" : : "r"(topOfProcStack) :); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Process Stack Pointer (non-secure)
+ \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
+ \param [in] topOfProcStack Process Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack) { __ASM volatile("MSR psp_ns, %0" : : "r"(topOfProcStack) :); }
+#endif
+
+/**
+ \brief Get Main Stack Pointer
+ \details Returns the current value of the Main Stack Pointer (MSP).
+ \return MSP Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_MSP(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, msp" : "=r"(result));
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Main Stack Pointer (non-secure)
+ \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
+ \return MSP Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, msp_ns" : "=r"(result));
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Main Stack Pointer
+ \details Assigns the given value to the Main Stack Pointer (MSP).
+ \param [in] topOfMainStack Main Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack) { __ASM volatile("MSR msp, %0" : : "r"(topOfMainStack) :); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Main Stack Pointer (non-secure)
+ \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
+ \param [in] topOfMainStack Main Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack) { __ASM volatile("MSR msp_ns, %0" : : "r"(topOfMainStack) :); }
+#endif
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Stack Pointer (non-secure)
+ \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
+ \return SP Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, sp_ns" : "=r"(result));
+ return (result);
+}
+
+/**
+ \brief Set Stack Pointer (non-secure)
+ \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
+ \param [in] topOfStack Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack) { __ASM volatile("MSR sp_ns, %0" : : "r"(topOfStack) :); }
+#endif
+
+/**
+ \brief Get Priority Mask
+ \details Returns the current state of the priority mask bit from the Priority Mask Register.
+ \return Priority Mask value
+ */
+__STATIC_FORCEINLINE uint32_t __get_PRIMASK(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, primask" : "=r"(result)::"memory");
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Priority Mask (non-secure)
+ \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
+ \return Priority Mask value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, primask_ns" : "=r"(result)::"memory");
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Priority Mask
+ \details Assigns the given value to the Priority Mask Register.
+ \param [in] priMask Priority Mask
+ */
+__STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask) { __ASM volatile("MSR primask, %0" : : "r"(priMask) : "memory"); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Priority Mask (non-secure)
+ \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
+ \param [in] priMask Priority Mask
+ */
+__STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask) { __ASM volatile("MSR primask_ns, %0" : : "r"(priMask) : "memory"); }
+#endif
+
+#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ == 1)) || (defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) || (defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+/**
+ \brief Enable FIQ
+ \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+__STATIC_FORCEINLINE void __enable_fault_irq(void) { __ASM volatile("cpsie f" : : : "memory"); }
+
+/**
+ \brief Disable FIQ
+ \details Disables FIQ interrupts by setting the F-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+__STATIC_FORCEINLINE void __disable_fault_irq(void) { __ASM volatile("cpsid f" : : : "memory"); }
+
+/**
+ \brief Get Base Priority
+ \details Returns the current value of the Base Priority register.
+ \return Base Priority register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_BASEPRI(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, basepri" : "=r"(result));
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Base Priority (non-secure)
+ \details Returns the current value of the non-secure Base Priority register when in secure state.
+ \return Base Priority register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, basepri_ns" : "=r"(result));
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Base Priority
+ \details Assigns the given value to the Base Priority register.
+ \param [in] basePri Base Priority value to set
+ */
+__STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri) { __ASM volatile("MSR basepri, %0" : : "r"(basePri) : "memory"); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Base Priority (non-secure)
+ \details Assigns the given value to the non-secure Base Priority register when in secure state.
+ \param [in] basePri Base Priority value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri) { __ASM volatile("MSR basepri_ns, %0" : : "r"(basePri) : "memory"); }
+#endif
+
+/**
+ \brief Set Base Priority with condition
+ \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
+ or the new value increases the BASEPRI priority level.
+ \param [in] basePri Base Priority value to set
+ */
+__STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri) { __ASM volatile("MSR basepri_max, %0" : : "r"(basePri) : "memory"); }
+
+/**
+ \brief Get Fault Mask
+ \details Returns the current value of the Fault Mask register.
+ \return Fault Mask register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, faultmask" : "=r"(result));
+ return (result);
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Fault Mask (non-secure)
+ \details Returns the current value of the non-secure Fault Mask register when in secure state.
+ \return Fault Mask register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void) {
+ uint32_t result;
+
+ __ASM volatile("MRS %0, faultmask_ns" : "=r"(result));
+ return (result);
+}
+#endif
+
+/**
+ \brief Set Fault Mask
+ \details Assigns the given value to the Fault Mask register.
+ \param [in] faultMask Fault Mask value to set
+ */
+__STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask) { __ASM volatile("MSR faultmask, %0" : : "r"(faultMask) : "memory"); }
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Fault Mask (non-secure)
+ \details Assigns the given value to the non-secure Fault Mask register when in secure state.
+ \param [in] faultMask Fault Mask value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask) { __ASM volatile("MSR faultmask_ns, %0" : : "r"(faultMask) : "memory"); }
+#endif
+
+#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
+ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
+ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
+
+#if ((defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) || (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ == 1)))
+
+/**
+ \brief Get Process Stack Pointer Limit
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence zero is returned always in non-secure
+ mode.
+
+ \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
+ \return PSPLIM Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_PSPLIM(void) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ return 0U;
+#else
+ uint32_t result;
+ __ASM volatile("MRS %0, psplim" : "=r"(result));
+ return result;
+#endif
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Process Stack Pointer Limit (non-secure)
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence zero is returned always.
+
+ \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
+ \return PSPLIM Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ return 0U;
+#else
+ uint32_t result;
+ __ASM volatile("MRS %0, psplim_ns" : "=r"(result));
+ return result;
+#endif
+}
+#endif
+
+/**
+ \brief Set Process Stack Pointer Limit
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence the write is silently ignored in non-secure
+ mode.
+
+ \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
+ \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
+ */
+__STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ (void)ProcStackPtrLimit;
+#else
+ __ASM volatile("MSR psplim, %0" : : "r"(ProcStackPtrLimit));
+#endif
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Process Stack Pointer (non-secure)
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence the write is silently ignored.
+
+ \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
+ \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ (void)ProcStackPtrLimit;
+#else
+ __ASM volatile("MSR psplim_ns, %0\n" : : "r"(ProcStackPtrLimit));
+#endif
+}
+#endif
+
+/**
+ \brief Get Main Stack Pointer Limit
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence zero is returned always in non-secure
+ mode.
+
+ \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
+ \return MSPLIM Register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_MSPLIM(void) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure MSPLIM is RAZ/WI
+ return 0U;
+#else
+ uint32_t result;
+ __ASM volatile("MRS %0, msplim" : "=r"(result));
+ return result;
+#endif
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Get Main Stack Pointer Limit (non-secure)
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence zero is returned always.
+
+ \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
+ \return MSPLIM Register value
+ */
+__STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+ // without main extensions, the non-secure MSPLIM is RAZ/WI
+ return 0U;
+#else
+ uint32_t result;
+ __ASM volatile("MRS %0, msplim_ns" : "=r"(result));
+ return result;
+#endif
+}
+#endif
+
+/**
+ \brief Set Main Stack Pointer Limit
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence the write is silently ignored in non-secure
+ mode.
+
+ \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
+ \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
+ */
+__STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure MSPLIM is RAZ/WI
+ (void)MainStackPtrLimit;
+#else
+ __ASM volatile("MSR msplim, %0" : : "r"(MainStackPtrLimit));
+#endif
+}
+
+#if (defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
+/**
+ \brief Set Main Stack Pointer Limit (non-secure)
+ Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
+ Stack Pointer Limit register hence the write is silently ignored.
+
+ \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
+ \param [in] MainStackPtrLimit Main Stack Pointer value to set
+ */
+__STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+ // without main extensions, the non-secure MSPLIM is RAZ/WI
+ (void)MainStackPtrLimit;
+#else
+ __ASM volatile("MSR msplim_ns, %0" : : "r"(MainStackPtrLimit));
+#endif
+}
+#endif
+
+#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
+ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
+
+/**
+ \brief Get FPSCR
+ \details Returns the current value of the Floating Point Status/Control register.
+ \return Floating Point Status/Control register value
+ */
+__STATIC_FORCEINLINE uint32_t __get_FPSCR(void) {
+#if ((defined(__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && (defined(__FPU_USED) && (__FPU_USED == 1U)))
+#if __has_builtin(__builtin_arm_get_fpscr)
+ // Re-enable using built-in when GCC has been fixed
+ // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
+ /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
+ return __builtin_arm_get_fpscr();
+#else
+ uint32_t result;
+
+ __ASM volatile("VMRS %0, fpscr" : "=r"(result));
+ return (result);
+#endif
+#else
+ return (0U);
+#endif
+}
+
+/**
+ \brief Set FPSCR
+ \details Assigns the given value to the Floating Point Status/Control register.
+ \param [in] fpscr Floating Point Status/Control value to set
+ */
+__STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr) {
+#if ((defined(__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && (defined(__FPU_USED) && (__FPU_USED == 1U)))
+#if __has_builtin(__builtin_arm_set_fpscr)
+ // Re-enable using built-in when GCC has been fixed
+ // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
+ /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
+ __builtin_arm_set_fpscr(fpscr);
+#else
+ __ASM volatile("VMSR fpscr, %0" : : "r"(fpscr) : "vfpcc", "memory");
+#endif
+#else
+ (void)fpscr;
+#endif
+}
+
+/*@} end of CMSIS_Core_RegAccFunctions */
+
+/* ########################## Core Instruction Access ######################### */
+/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
+ Access to dedicated instructions
+ @{
+*/
+
+/* Define macros for porting to both thumb1 and thumb2.
+ * For thumb1, use low register (r0-r7), specified by constraint "l"
+ * Otherwise, use general registers, specified by constraint "r" */
+#if defined(__thumb__) && !defined(__thumb2__)
+#define __CMSIS_GCC_OUT_REG(r) "=l"(r)
+#define __CMSIS_GCC_RW_REG(r) "+l"(r)
+#define __CMSIS_GCC_USE_REG(r) "l"(r)
+#else
+#define __CMSIS_GCC_OUT_REG(r) "=r"(r)
+#define __CMSIS_GCC_RW_REG(r) "+r"(r)
+#define __CMSIS_GCC_USE_REG(r) "r"(r)
+#endif
+
+/**
+ \brief No Operation
+ \details No Operation does nothing. This instruction can be used for code alignment purposes.
+ */
+#define __NOP() __ASM volatile("nop")
+
+/**
+ \brief Wait For Interrupt
+ \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
+ */
+#define __WFI() __ASM volatile("wfi")
+
+/**
+ \brief Wait For Event
+ \details Wait For Event is a hint instruction that permits the processor to enter
+ a low-power state until one of a number of events occurs.
+ */
+#define __WFE() __ASM volatile("wfe")
+
+/**
+ \brief Send Event
+ \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
+ */
+#define __SEV() __ASM volatile("sev")
+
+/**
+ \brief Instruction Synchronization Barrier
+ \details Instruction Synchronization Barrier flushes the pipeline in the processor,
+ so that all instructions following the ISB are fetched from cache or memory,
+ after the instruction has been completed.
+ */
+__STATIC_FORCEINLINE void __ISB(void) { __ASM volatile("isb 0xF" ::: "memory"); }
+
+/**
+ \brief Data Synchronization Barrier
+ \details Acts as a special kind of Data Memory Barrier.
+ It completes when all explicit memory accesses before this instruction complete.
+ */
+__STATIC_FORCEINLINE void __DSB(void) { __ASM volatile("dsb 0xF" ::: "memory"); }
+
+/**
+ \brief Data Memory Barrier
+ \details Ensures the apparent order of the explicit memory operations before
+ and after the instruction, without ensuring their completion.
+ */
+__STATIC_FORCEINLINE void __DMB(void) { __ASM volatile("dmb 0xF" ::: "memory"); }
+
+/**
+ \brief Reverse byte order (32 bit)
+ \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+__STATIC_FORCEINLINE uint32_t __REV(uint32_t value) {
+#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
+ return __builtin_bswap32(value);
+#else
+ uint32_t result;
+
+ __ASM volatile("rev %0, %1" : __CMSIS_GCC_OUT_REG(result) : __CMSIS_GCC_USE_REG(value));
+ return result;
+#endif
+}
+
+/**
+ \brief Reverse byte order (16 bit)
+ \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+__STATIC_FORCEINLINE uint32_t __REV16(uint32_t value) {
+ uint32_t result;
+
+ __ASM volatile("rev16 %0, %1" : __CMSIS_GCC_OUT_REG(result) : __CMSIS_GCC_USE_REG(value));
+ return result;
+}
+
+/**
+ \brief Reverse byte order (16 bit)
+ \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+__STATIC_FORCEINLINE int16_t __REVSH(int16_t value) {
+#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
+ return (int16_t)__builtin_bswap16(value);
+#else
+ int16_t result;
+
+ __ASM volatile("revsh %0, %1" : __CMSIS_GCC_OUT_REG(result) : __CMSIS_GCC_USE_REG(value));
+ return result;
+#endif
+}
+
+/**
+ \brief Rotate Right in unsigned value (32 bit)
+ \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
+ \param [in] op1 Value to rotate
+ \param [in] op2 Number of Bits to rotate
+ \return Rotated value
+ */
+__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2) {
+ op2 %= 32U;
+ if (op2 == 0U) {
+ return op1;
+ }
+ return (op1 >> op2) | (op1 << (32U - op2));
+}
+
+/**
+ \brief Breakpoint
+ \details Causes the processor to enter Debug state.
+ Debug tools can use this to investigate system state when the instruction at a particular address is reached.
+ \param [in] value is ignored by the processor.
+ If required, a debugger can use it to store additional information about the breakpoint.
+ */
+#define __BKPT(value) __ASM volatile("bkpt " #value)
+
+/**
+ \brief Reverse bit order of value
+ \details Reverses the bit order of the given value.
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+__STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value) {
+ uint32_t result;
+
+#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ == 1)) || (defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) || (defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+ __ASM volatile("rbit %0, %1" : "=r"(result) : "r"(value));
+#else
+ uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
+
+ result = value; /* r will be reversed bits of v; first get LSB of v */
+ for (value >>= 1U; value != 0U; value >>= 1U) {
+ result <<= 1U;
+ result |= value & 1U;
+ s--;
+ }
+ result <<= s; /* shift when v's highest bits are zero */
+#endif
+ return result;
+}
+
+/**
+ \brief Count leading zeros
+ \details Counts the number of leading zeros of a data value.
+ \param [in] value Value to count the leading zeros
+ \return number of leading zeros in value
+ */
+#define __CLZ (uint8_t) __builtin_clz
+
+#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ == 1)) || (defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) || (defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) \
+ || (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ == 1)))
+/**
+ \brief LDR Exclusive (8 bit)
+ \details Executes a exclusive LDR instruction for 8 bit value.
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr) {
+ uint32_t result;
+
+#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
+ __ASM volatile("ldrexb %0, %1" : "=r"(result) : "Q"(*addr));
+#else
+ /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
+ accepted by assembler. So has to use following less efficient pattern.
+ */
+ __ASM volatile("ldrexb %0, [%1]" : "=r"(result) : "r"(addr) : "memory");
+#endif
+ return ((uint8_t)result); /* Add explicit type cast here */
+}
+
+/**
+ \brief LDR Exclusive (16 bit)
+ \details Executes a exclusive LDR instruction for 16 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr) {
+ uint32_t result;
+
+#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
+ __ASM volatile("ldrexh %0, %1" : "=r"(result) : "Q"(*addr));
+#else
+ /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
+ accepted by assembler. So has to use following less efficient pattern.
+ */
+ __ASM volatile("ldrexh %0, [%1]" : "=r"(result) : "r"(addr) : "memory");
+#endif
+ return ((uint16_t)result); /* Add explicit type cast here */
+}
+
+/**
+ \brief LDR Exclusive (32 bit)
+ \details Executes a exclusive LDR instruction for 32 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr) {
+ uint32_t result;
+
+ __ASM volatile("ldrex %0, %1" : "=r"(result) : "Q"(*addr));
+ return (result);
+}
+
+/**
+ \brief STR Exclusive (8 bit)
+ \details Executes a exclusive STR instruction for 8 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+__STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) {
+ uint32_t result;
+
+ __ASM volatile("strexb %0, %2, %1" : "=&r"(result), "=Q"(*addr) : "r"((uint32_t)value));
+ return (result);
+}
+
+/**
+ \brief STR Exclusive (16 bit)
+ \details Executes a exclusive STR instruction for 16 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+__STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) {
+ uint32_t result;
+
+ __ASM volatile("strexh %0, %2, %1" : "=&r"(result), "=Q"(*addr) : "r"((uint32_t)value));
+ return (result);
+}
+
+/**
+ \brief STR Exclusive (32 bit)
+ \details Executes a exclusive STR instruction for 32 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+__STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) {
+ uint32_t result;
+
+ __ASM volatile("strex %0, %2, %1" : "=&r"(result), "=Q"(*addr) : "r"(value));
+ return (result);
+}
+
+/**
+ \brief Remove the exclusive lock
+ \details Removes the exclusive lock which is created by LDREX.
+ */
+__STATIC_FORCEINLINE void __CLREX(void) { __ASM volatile("clrex" ::: "memory"); }
+
+#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
+ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
+ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
+ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
+
+#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ == 1)) || (defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) || (defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)))
+/**
+ \brief Signed Saturate
+ \details Saturates a signed value.
+ \param [in] ARG1 Value to be saturated
+ \param [in] ARG2 Bit position to saturate to (1..32)
+ \return Saturated value
+ */
+#define __SSAT(ARG1, ARG2) \
+ __extension__({ \
+ int32_t __RES, __ARG1 = (ARG1); \
+ __ASM("ssat %0, %1, %2" : "=r"(__RES) : "I"(ARG2), "r"(__ARG1)); \
+ __RES; \
+ })
+
+/**
+ \brief Unsigned Saturate
+ \details Saturates an unsigned value.
+ \param [in] ARG1 Value to be saturated
+ \param [in] ARG2 Bit position to saturate to (0..31)
+ \return Saturated value
+ */
+#define __USAT(ARG1, ARG2) \
+ __extension__({ \
+ uint32_t __RES, __ARG1 = (ARG1); \
+ __ASM("usat %0, %1, %2" : "=r"(__RES) : "I"(ARG2), "r"(__ARG1)); \
+ __RES; \
+ })
+
+/**
+ \brief Rotate Right with Extend (32 bit)
+ \details Moves each bit of a bitstring right by one bit.
+ The carry input is shifted in at the left end of the bitstring.
+ \param [in] value Value to rotate
+ \return Rotated value
+ */
+__STATIC_FORCEINLINE uint32_t __RRX(uint32_t value) {
+ uint32_t result;
+
+ __ASM volatile("rrx %0, %1" : __CMSIS_GCC_OUT_REG(result) : __CMSIS_GCC_USE_REG(value));
+ return (result);
+}
+
+/**
+ \brief LDRT Unprivileged (8 bit)
+ \details Executes a Unprivileged LDRT instruction for 8 bit value.
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr) {
+ uint32_t result;
+
+#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
+ __ASM volatile("ldrbt %0, %1" : "=r"(result) : "Q"(*ptr));
+#else
+ /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
+ accepted by assembler. So has to use following less efficient pattern.
+ */
+ __ASM volatile("ldrbt %0, [%1]" : "=r"(result) : "r"(ptr) : "memory");
+#endif
+ return ((uint8_t)result); /* Add explicit type cast here */
+}
+
+/**
+ \brief LDRT Unprivileged (16 bit)
+ \details Executes a Unprivileged LDRT instruction for 16 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr) {
+ uint32_t result;
+
+#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
+ __ASM volatile("ldrht %0, %1" : "=r"(result) : "Q"(*ptr));
+#else
+ /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
+ accepted by assembler. So has to use following less efficient pattern.
+ */
+ __ASM volatile("ldrht %0, [%1]" : "=r"(result) : "r"(ptr) : "memory");
+#endif
+ return ((uint16_t)result); /* Add explicit type cast here */
+}
+
+/**
+ \brief LDRT Unprivileged (32 bit)
+ \details Executes a Unprivileged LDRT instruction for 32 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("ldrt %0, %1" : "=r"(result) : "Q"(*ptr));
+ return (result);
+}
+
+/**
+ \brief STRT Unprivileged (8 bit)
+ \details Executes a Unprivileged STRT instruction for 8 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr) { __ASM volatile("strbt %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value)); }
+
+/**
+ \brief STRT Unprivileged (16 bit)
+ \details Executes a Unprivileged STRT instruction for 16 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr) { __ASM volatile("strht %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value)); }
+
+/**
+ \brief STRT Unprivileged (32 bit)
+ \details Executes a Unprivileged STRT instruction for 32 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr) { __ASM volatile("strt %1, %0" : "=Q"(*ptr) : "r"(value)); }
+
+#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
+ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
+ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
+
+/**
+ \brief Signed Saturate
+ \details Saturates a signed value.
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (1..32)
+ \return Saturated value
+ */
+__STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) {
+ if ((sat >= 1U) && (sat <= 32U)) {
+ const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
+ const int32_t min = -1 - max;
+ if (val > max) {
+ return max;
+ } else if (val < min) {
+ return min;
+ }
+ }
+ return val;
+}
+
+/**
+ \brief Unsigned Saturate
+ \details Saturates an unsigned value.
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (0..31)
+ \return Saturated value
+ */
+__STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) {
+ if (sat <= 31U) {
+ const uint32_t max = ((1U << sat) - 1U);
+ if (val > (int32_t)max) {
+ return max;
+ } else if (val < 0) {
+ return 0U;
+ }
+ }
+ return (uint32_t)val;
+}
+
+#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
+ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
+ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
+
+#if ((defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) || (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ == 1)))
+/**
+ \brief Load-Acquire (8 bit)
+ \details Executes a LDAB instruction for 8 bit value.
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("ldab %0, %1" : "=r"(result) : "Q"(*ptr));
+ return ((uint8_t)result);
+}
+
+/**
+ \brief Load-Acquire (16 bit)
+ \details Executes a LDAH instruction for 16 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("ldah %0, %1" : "=r"(result) : "Q"(*ptr));
+ return ((uint16_t)result);
+}
+
+/**
+ \brief Load-Acquire (32 bit)
+ \details Executes a LDA instruction for 32 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("lda %0, %1" : "=r"(result) : "Q"(*ptr));
+ return (result);
+}
+
+/**
+ \brief Store-Release (8 bit)
+ \details Executes a STLB instruction for 8 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr) { __ASM volatile("stlb %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value)); }
+
+/**
+ \brief Store-Release (16 bit)
+ \details Executes a STLH instruction for 16 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr) { __ASM volatile("stlh %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value)); }
+
+/**
+ \brief Store-Release (32 bit)
+ \details Executes a STL instruction for 32 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ */
+__STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr) { __ASM volatile("stl %1, %0" : "=Q"(*ptr) : "r"((uint32_t)value)); }
+
+/**
+ \brief Load-Acquire Exclusive (8 bit)
+ \details Executes a LDAB exclusive instruction for 8 bit value.
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("ldaexb %0, %1" : "=r"(result) : "Q"(*ptr));
+ return ((uint8_t)result);
+}
+
+/**
+ \brief Load-Acquire Exclusive (16 bit)
+ \details Executes a LDAH exclusive instruction for 16 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("ldaexh %0, %1" : "=r"(result) : "Q"(*ptr));
+ return ((uint16_t)result);
+}
+
+/**
+ \brief Load-Acquire Exclusive (32 bit)
+ \details Executes a LDA exclusive instruction for 32 bit values.
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+__STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("ldaex %0, %1" : "=r"(result) : "Q"(*ptr));
+ return (result);
+}
+
+/**
+ \brief Store-Release Exclusive (8 bit)
+ \details Executes a STLB exclusive instruction for 8 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+__STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("stlexb %0, %2, %1" : "=&r"(result), "=Q"(*ptr) : "r"((uint32_t)value));
+ return (result);
+}
+
+/**
+ \brief Store-Release Exclusive (16 bit)
+ \details Executes a STLH exclusive instruction for 16 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+__STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("stlexh %0, %2, %1" : "=&r"(result), "=Q"(*ptr) : "r"((uint32_t)value));
+ return (result);
+}
+
+/**
+ \brief Store-Release Exclusive (32 bit)
+ \details Executes a STL exclusive instruction for 32 bit values.
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+__STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr) {
+ uint32_t result;
+
+ __ASM volatile("stlex %0, %2, %1" : "=&r"(result), "=Q"(*ptr) : "r"((uint32_t)value));
+ return (result);
+}
+
+#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
+ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
+
+/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
+
+/* ################### Compiler specific Intrinsics ########################### */
+/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
+ Access to dedicated SIMD instructions
+ @{
+*/
+
+#if (defined(__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
+
+__STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("sadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("ssub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("usub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("sadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("ssub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("usub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("sasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("ssax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("qsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("shsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("usax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uqsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uhsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("usad8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) {
+ uint32_t result;
+
+ __ASM volatile("usada8 %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+#define __SSAT16(ARG1, ARG2) \
+ ({ \
+ int32_t __RES, __ARG1 = (ARG1); \
+ __ASM("ssat16 %0, %1, %2" : "=r"(__RES) : "I"(ARG2), "r"(__ARG1)); \
+ __RES; \
+ })
+
+#define __USAT16(ARG1, ARG2) \
+ ({ \
+ uint32_t __RES, __ARG1 = (ARG1); \
+ __ASM("usat16 %0, %1, %2" : "=r"(__RES) : "I"(ARG2), "r"(__ARG1)); \
+ __RES; \
+ })
+
+__STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1) {
+ uint32_t result;
+
+ __ASM volatile("uxtb16 %0, %1" : "=r"(result) : "r"(op1));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("uxtab16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1) {
+ uint32_t result;
+
+ __ASM volatile("sxtb16 %0, %1" : "=r"(result) : "r"(op1));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("sxtab16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMUAD(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("smuad %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMUADX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("smuadx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMLAD(uint32_t op1, uint32_t op2, uint32_t op3) {
+ uint32_t result;
+
+ __ASM volatile("smlad %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMLADX(uint32_t op1, uint32_t op2, uint32_t op3) {
+ uint32_t result;
+
+ __ASM volatile("smladx %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint64_t __SMLALD(uint32_t op1, uint32_t op2, uint64_t acc) {
+ union llreg_u {
+ uint32_t w32[2];
+ uint64_t w64;
+ } llr;
+ llr.w64 = acc;
+
+#ifndef __ARMEB__ /* Little endian */
+ __ASM volatile("smlald %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]) : "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
+#else /* Big endian */
+ __ASM volatile("smlald %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]) : "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
+#endif
+
+ return (llr.w64);
+}
+
+__STATIC_FORCEINLINE uint64_t __SMLALDX(uint32_t op1, uint32_t op2, uint64_t acc) {
+ union llreg_u {
+ uint32_t w32[2];
+ uint64_t w64;
+ } llr;
+ llr.w64 = acc;
+
+#ifndef __ARMEB__ /* Little endian */
+ __ASM volatile("smlaldx %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]) : "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
+#else /* Big endian */
+ __ASM volatile("smlaldx %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]) : "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
+#endif
+
+ return (llr.w64);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMUSD(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("smusd %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMUSDX(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("smusdx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMLSD(uint32_t op1, uint32_t op2, uint32_t op3) {
+ uint32_t result;
+
+ __ASM volatile("smlsd %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint32_t __SMLSDX(uint32_t op1, uint32_t op2, uint32_t op3) {
+ uint32_t result;
+
+ __ASM volatile("smlsdx %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+__STATIC_FORCEINLINE uint64_t __SMLSLD(uint32_t op1, uint32_t op2, uint64_t acc) {
+ union llreg_u {
+ uint32_t w32[2];
+ uint64_t w64;
+ } llr;
+ llr.w64 = acc;
+
+#ifndef __ARMEB__ /* Little endian */
+ __ASM volatile("smlsld %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]) : "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
+#else /* Big endian */
+ __ASM volatile("smlsld %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]) : "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
+#endif
+
+ return (llr.w64);
+}
+
+__STATIC_FORCEINLINE uint64_t __SMLSLDX(uint32_t op1, uint32_t op2, uint64_t acc) {
+ union llreg_u {
+ uint32_t w32[2];
+ uint64_t w64;
+ } llr;
+ llr.w64 = acc;
+
+#ifndef __ARMEB__ /* Little endian */
+ __ASM volatile("smlsldx %0, %1, %2, %3" : "=r"(llr.w32[0]), "=r"(llr.w32[1]) : "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
+#else /* Big endian */
+ __ASM volatile("smlsldx %0, %1, %2, %3" : "=r"(llr.w32[1]), "=r"(llr.w32[0]) : "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
+#endif
+
+ return (llr.w64);
+}
+
+__STATIC_FORCEINLINE uint32_t __SEL(uint32_t op1, uint32_t op2) {
+ uint32_t result;
+
+ __ASM volatile("sel %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE int32_t __QADD(int32_t op1, int32_t op2) {
+ int32_t result;
+
+ __ASM volatile("qadd %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+__STATIC_FORCEINLINE int32_t __QSUB(int32_t op1, int32_t op2) {
+ int32_t result;
+
+ __ASM volatile("qsub %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
+ return (result);
+}
+
+#if 0
+#define __PKHBT(ARG1, ARG2, ARG3) \
+ ({ \
+ uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
+ __ASM("pkhbt %0, %1, %2, lsl %3" : "=r"(__RES) : "r"(__ARG1), "r"(__ARG2), "I"(ARG3)); \
+ __RES; \
+ })
+
+#define __PKHTB(ARG1, ARG2, ARG3) \
+ ({ \
+ uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
+ if (ARG3 == 0) \
+ __ASM("pkhtb %0, %1, %2" : "=r"(__RES) : "r"(__ARG1), "r"(__ARG2)); \
+ else \
+ __ASM("pkhtb %0, %1, %2, asr %3" : "=r"(__RES) : "r"(__ARG1), "r"(__ARG2), "I"(ARG3)); \
+ __RES; \
+ })
+#endif
+
+#define __PKHBT(ARG1, ARG2, ARG3) (((((uint32_t)(ARG1))) & 0x0000FFFFUL) | ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL))
+
+#define __PKHTB(ARG1, ARG2, ARG3) (((((uint32_t)(ARG1))) & 0xFFFF0000UL) | ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL))
+
+__STATIC_FORCEINLINE int32_t __SMMLA(int32_t op1, int32_t op2, int32_t op3) {
+ int32_t result;
+
+ __ASM volatile("smmla %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
+ return (result);
+}
+
+#endif /* (__ARM_FEATURE_DSP == 1) */
+/*@} end of group CMSIS_SIMD_intrinsics */
+
+#pragma GCC diagnostic pop
+
+#endif /* __CMSIS_GCC_H */
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_iccarm.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_iccarm.h new file mode 100644 index 00000000..163ce531 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_iccarm.h @@ -0,0 +1,802 @@ +/**************************************************************************/ /**
+ * @file cmsis_iccarm.h
+ * @brief CMSIS compiler ICCARM (IAR Compiler for Arm) header file
+ * @version V5.0.7
+ * @date 19. June 2018
+ ******************************************************************************/
+
+//------------------------------------------------------------------------------
+//
+// Copyright (c) 2017-2018 IAR Systems
+//
+// Licensed under the Apache License, Version 2.0 (the "License")
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+//------------------------------------------------------------------------------
+
+#ifndef __CMSIS_ICCARM_H__
+#define __CMSIS_ICCARM_H__
+
+#ifndef __ICCARM__
+#error This file should only be compiled by ICCARM
+#endif
+
+#pragma system_include
+
+#define __IAR_FT _Pragma("inline=forced") __intrinsic
+
+#if (__VER__ >= 8000000)
+#define __ICCARM_V8 1
+#else
+#define __ICCARM_V8 0
+#endif
+
+#ifndef __ALIGNED
+#if __ICCARM_V8
+#define __ALIGNED(x) __attribute__((aligned(x)))
+#elif (__VER__ >= 7080000)
+/* Needs IAR language extensions */
+#define __ALIGNED(x) __attribute__((aligned(x)))
+#else
+#warning No compiler specific solution for __ALIGNED.__ALIGNED is ignored.
+#define __ALIGNED(x)
+#endif
+#endif
+
+/* Define compiler macros for CPU architecture, used in CMSIS 5.
+ */
+#if __ARM_ARCH_6M__ || __ARM_ARCH_7M__ || __ARM_ARCH_7EM__ || __ARM_ARCH_8M_BASE__ || __ARM_ARCH_8M_MAIN__
+/* Macros already defined */
+#else
+#if defined(__ARM8M_MAINLINE__) || defined(__ARM8EM_MAINLINE__)
+#define __ARM_ARCH_8M_MAIN__ 1
+#elif defined(__ARM8M_BASELINE__)
+#define __ARM_ARCH_8M_BASE__ 1
+#elif defined(__ARM_ARCH_PROFILE) && __ARM_ARCH_PROFILE == 'M'
+#if __ARM_ARCH == 6
+#define __ARM_ARCH_6M__ 1
+#elif __ARM_ARCH == 7
+#if __ARM_FEATURE_DSP
+#define __ARM_ARCH_7EM__ 1
+#else
+#define __ARM_ARCH_7M__ 1
+#endif
+#endif /* __ARM_ARCH */
+#endif /* __ARM_ARCH_PROFILE == 'M' */
+#endif
+
+/* Alternativ core deduction for older ICCARM's */
+#if !defined(__ARM_ARCH_6M__) && !defined(__ARM_ARCH_7M__) && !defined(__ARM_ARCH_7EM__) && !defined(__ARM_ARCH_8M_BASE__) && !defined(__ARM_ARCH_8M_MAIN__)
+#if defined(__ARM6M__) && (__CORE__ == __ARM6M__)
+#define __ARM_ARCH_6M__ 1
+#elif defined(__ARM7M__) && (__CORE__ == __ARM7M__)
+#define __ARM_ARCH_7M__ 1
+#elif defined(__ARM7EM__) && (__CORE__ == __ARM7EM__)
+#define __ARM_ARCH_7EM__ 1
+#elif defined(__ARM8M_BASELINE__) && (__CORE == __ARM8M_BASELINE__)
+#define __ARM_ARCH_8M_BASE__ 1
+#elif defined(__ARM8M_MAINLINE__) && (__CORE == __ARM8M_MAINLINE__)
+#define __ARM_ARCH_8M_MAIN__ 1
+#elif defined(__ARM8EM_MAINLINE__) && (__CORE == __ARM8EM_MAINLINE__)
+#define __ARM_ARCH_8M_MAIN__ 1
+#else
+#error "Unknown target."
+#endif
+#endif
+
+#if defined(__ARM_ARCH_6M__) && __ARM_ARCH_6M__ == 1
+#define __IAR_M0_FAMILY 1
+#elif defined(__ARM_ARCH_8M_BASE__) && __ARM_ARCH_8M_BASE__ == 1
+#define __IAR_M0_FAMILY 1
+#else
+#define __IAR_M0_FAMILY 0
+#endif
+
+#ifndef __ASM
+#define __ASM __asm
+#endif
+
+#ifndef __INLINE
+#define __INLINE inline
+#endif
+
+#ifndef __NO_RETURN
+#if __ICCARM_V8
+#define __NO_RETURN __attribute__((__noreturn__))
+#else
+#define __NO_RETURN _Pragma("object_attribute=__noreturn")
+#endif
+#endif
+
+#ifndef __PACKED
+#if __ICCARM_V8
+#define __PACKED __attribute__((packed, aligned(1)))
+#else
+/* Needs IAR language extensions */
+#define __PACKED __packed
+#endif
+#endif
+
+#ifndef __PACKED_STRUCT
+#if __ICCARM_V8
+#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
+#else
+/* Needs IAR language extensions */
+#define __PACKED_STRUCT __packed struct
+#endif
+#endif
+
+#ifndef __PACKED_UNION
+#if __ICCARM_V8
+#define __PACKED_UNION union __attribute__((packed, aligned(1)))
+#else
+/* Needs IAR language extensions */
+#define __PACKED_UNION __packed union
+#endif
+#endif
+
+#ifndef __RESTRICT
+#define __RESTRICT __restrict
+#endif
+
+#ifndef __STATIC_INLINE
+#define __STATIC_INLINE static inline
+#endif
+
+#ifndef __FORCEINLINE
+#define __FORCEINLINE _Pragma("inline=forced")
+#endif
+
+#ifndef __STATIC_FORCEINLINE
+#define __STATIC_FORCEINLINE __FORCEINLINE __STATIC_INLINE
+#endif
+
+#ifndef __UNALIGNED_UINT16_READ
+#pragma language = save
+#pragma language = extended
+__IAR_FT uint16_t __iar_uint16_read(void const *ptr) { return *(__packed uint16_t *)(ptr); }
+#pragma language = restore
+#define __UNALIGNED_UINT16_READ(PTR) __iar_uint16_read(PTR)
+#endif
+
+#ifndef __UNALIGNED_UINT16_WRITE
+#pragma language = save
+#pragma language = extended
+__IAR_FT void __iar_uint16_write(void const *ptr, uint16_t val) {
+ *(__packed uint16_t *)(ptr) = val;
+ ;
+}
+#pragma language = restore
+#define __UNALIGNED_UINT16_WRITE(PTR, VAL) __iar_uint16_write(PTR, VAL)
+#endif
+
+#ifndef __UNALIGNED_UINT32_READ
+#pragma language = save
+#pragma language = extended
+__IAR_FT uint32_t __iar_uint32_read(void const *ptr) { return *(__packed uint32_t *)(ptr); }
+#pragma language = restore
+#define __UNALIGNED_UINT32_READ(PTR) __iar_uint32_read(PTR)
+#endif
+
+#ifndef __UNALIGNED_UINT32_WRITE
+#pragma language = save
+#pragma language = extended
+__IAR_FT void __iar_uint32_write(void const *ptr, uint32_t val) {
+ *(__packed uint32_t *)(ptr) = val;
+ ;
+}
+#pragma language = restore
+#define __UNALIGNED_UINT32_WRITE(PTR, VAL) __iar_uint32_write(PTR, VAL)
+#endif
+
+#ifndef __UNALIGNED_UINT32 /* deprecated */
+#pragma language = save
+#pragma language = extended
+__packed struct __iar_u32 { uint32_t v; };
+#pragma language = restore
+#define __UNALIGNED_UINT32(PTR) (((struct __iar_u32 *)(PTR))->v)
+#endif
+
+#ifndef __USED
+#if __ICCARM_V8
+#define __USED __attribute__((used))
+#else
+#define __USED _Pragma("__root")
+#endif
+#endif
+
+#ifndef __WEAK
+#if __ICCARM_V8
+#define __WEAK __attribute__((weak))
+#else
+#define __WEAK _Pragma("__weak")
+#endif
+#endif
+
+#ifndef __ICCARM_INTRINSICS_VERSION__
+#define __ICCARM_INTRINSICS_VERSION__ 0
+#endif
+
+#if __ICCARM_INTRINSICS_VERSION__ == 2
+
+#if defined(__CLZ)
+#undef __CLZ
+#endif
+#if defined(__REVSH)
+#undef __REVSH
+#endif
+#if defined(__RBIT)
+#undef __RBIT
+#endif
+#if defined(__SSAT)
+#undef __SSAT
+#endif
+#if defined(__USAT)
+#undef __USAT
+#endif
+
+#include "iccarm_builtin.h"
+
+#define __disable_fault_irq __iar_builtin_disable_fiq
+#define __disable_irq __iar_builtin_disable_interrupt
+#define __enable_fault_irq __iar_builtin_enable_fiq
+#define __enable_irq __iar_builtin_enable_interrupt
+#define __arm_rsr __iar_builtin_rsr
+#define __arm_wsr __iar_builtin_wsr
+
+#define __get_APSR() (__arm_rsr("APSR"))
+#define __get_BASEPRI() (__arm_rsr("BASEPRI"))
+#define __get_CONTROL() (__arm_rsr("CONTROL"))
+#define __get_FAULTMASK() (__arm_rsr("FAULTMASK"))
+
+#if ((defined(__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && (defined(__FPU_USED) && (__FPU_USED == 1U)))
+#define __get_FPSCR() (__arm_rsr("FPSCR"))
+#define __set_FPSCR(VALUE) (__arm_wsr("FPSCR", (VALUE)))
+#else
+#define __get_FPSCR() (0)
+#define __set_FPSCR(VALUE) ((void)VALUE)
+#endif
+
+#define __get_IPSR() (__arm_rsr("IPSR"))
+#define __get_MSP() (__arm_rsr("MSP"))
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+// without main extensions, the non-secure MSPLIM is RAZ/WI
+#define __get_MSPLIM() (0U)
+#else
+#define __get_MSPLIM() (__arm_rsr("MSPLIM"))
+#endif
+#define __get_PRIMASK() (__arm_rsr("PRIMASK"))
+#define __get_PSP() (__arm_rsr("PSP"))
+
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+// without main extensions, the non-secure PSPLIM is RAZ/WI
+#define __get_PSPLIM() (0U)
+#else
+#define __get_PSPLIM() (__arm_rsr("PSPLIM"))
+#endif
+
+#define __get_xPSR() (__arm_rsr("xPSR"))
+
+#define __set_BASEPRI(VALUE) (__arm_wsr("BASEPRI", (VALUE)))
+#define __set_BASEPRI_MAX(VALUE) (__arm_wsr("BASEPRI_MAX", (VALUE)))
+#define __set_CONTROL(VALUE) (__arm_wsr("CONTROL", (VALUE)))
+#define __set_FAULTMASK(VALUE) (__arm_wsr("FAULTMASK", (VALUE)))
+#define __set_MSP(VALUE) (__arm_wsr("MSP", (VALUE)))
+
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+// without main extensions, the non-secure MSPLIM is RAZ/WI
+#define __set_MSPLIM(VALUE) ((void)(VALUE))
+#else
+#define __set_MSPLIM(VALUE) (__arm_wsr("MSPLIM", (VALUE)))
+#endif
+#define __set_PRIMASK(VALUE) (__arm_wsr("PRIMASK", (VALUE)))
+#define __set_PSP(VALUE) (__arm_wsr("PSP", (VALUE)))
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+// without main extensions, the non-secure PSPLIM is RAZ/WI
+#define __set_PSPLIM(VALUE) ((void)(VALUE))
+#else
+#define __set_PSPLIM(VALUE) (__arm_wsr("PSPLIM", (VALUE)))
+#endif
+
+#define __TZ_get_CONTROL_NS() (__arm_rsr("CONTROL_NS"))
+#define __TZ_set_CONTROL_NS(VALUE) (__arm_wsr("CONTROL_NS", (VALUE)))
+#define __TZ_get_PSP_NS() (__arm_rsr("PSP_NS"))
+#define __TZ_set_PSP_NS(VALUE) (__arm_wsr("PSP_NS", (VALUE)))
+#define __TZ_get_MSP_NS() (__arm_rsr("MSP_NS"))
+#define __TZ_set_MSP_NS(VALUE) (__arm_wsr("MSP_NS", (VALUE)))
+#define __TZ_get_SP_NS() (__arm_rsr("SP_NS"))
+#define __TZ_set_SP_NS(VALUE) (__arm_wsr("SP_NS", (VALUE)))
+#define __TZ_get_PRIMASK_NS() (__arm_rsr("PRIMASK_NS"))
+#define __TZ_set_PRIMASK_NS(VALUE) (__arm_wsr("PRIMASK_NS", (VALUE)))
+#define __TZ_get_BASEPRI_NS() (__arm_rsr("BASEPRI_NS"))
+#define __TZ_set_BASEPRI_NS(VALUE) (__arm_wsr("BASEPRI_NS", (VALUE)))
+#define __TZ_get_FAULTMASK_NS() (__arm_rsr("FAULTMASK_NS"))
+#define __TZ_set_FAULTMASK_NS(VALUE) (__arm_wsr("FAULTMASK_NS", (VALUE)))
+
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+// without main extensions, the non-secure PSPLIM is RAZ/WI
+#define __TZ_get_PSPLIM_NS() (0U)
+#define __TZ_set_PSPLIM_NS(VALUE) ((void)(VALUE))
+#else
+#define __TZ_get_PSPLIM_NS() (__arm_rsr("PSPLIM_NS"))
+#define __TZ_set_PSPLIM_NS(VALUE) (__arm_wsr("PSPLIM_NS", (VALUE)))
+#endif
+
+#define __TZ_get_MSPLIM_NS() (__arm_rsr("MSPLIM_NS"))
+#define __TZ_set_MSPLIM_NS(VALUE) (__arm_wsr("MSPLIM_NS", (VALUE)))
+
+#define __NOP __iar_builtin_no_operation
+
+#define __CLZ __iar_builtin_CLZ
+#define __CLREX __iar_builtin_CLREX
+
+#define __DMB __iar_builtin_DMB
+#define __DSB __iar_builtin_DSB
+#define __ISB __iar_builtin_ISB
+
+#define __LDREXB __iar_builtin_LDREXB
+#define __LDREXH __iar_builtin_LDREXH
+#define __LDREXW __iar_builtin_LDREX
+
+#define __RBIT __iar_builtin_RBIT
+#define __REV __iar_builtin_REV
+#define __REV16 __iar_builtin_REV16
+
+__IAR_FT int16_t __REVSH(int16_t val) { return (int16_t)__iar_builtin_REVSH(val); }
+
+#define __ROR __iar_builtin_ROR
+#define __RRX __iar_builtin_RRX
+
+#define __SEV __iar_builtin_SEV
+
+#if !__IAR_M0_FAMILY
+#define __SSAT __iar_builtin_SSAT
+#endif
+
+#define __STREXB __iar_builtin_STREXB
+#define __STREXH __iar_builtin_STREXH
+#define __STREXW __iar_builtin_STREX
+
+#if !__IAR_M0_FAMILY
+#define __USAT __iar_builtin_USAT
+#endif
+
+#define __WFE __iar_builtin_WFE
+#define __WFI __iar_builtin_WFI
+
+#if __ARM_MEDIA__
+#define __SADD8 __iar_builtin_SADD8
+#define __QADD8 __iar_builtin_QADD8
+#define __SHADD8 __iar_builtin_SHADD8
+#define __UADD8 __iar_builtin_UADD8
+#define __UQADD8 __iar_builtin_UQADD8
+#define __UHADD8 __iar_builtin_UHADD8
+#define __SSUB8 __iar_builtin_SSUB8
+#define __QSUB8 __iar_builtin_QSUB8
+#define __SHSUB8 __iar_builtin_SHSUB8
+#define __USUB8 __iar_builtin_USUB8
+#define __UQSUB8 __iar_builtin_UQSUB8
+#define __UHSUB8 __iar_builtin_UHSUB8
+#define __SADD16 __iar_builtin_SADD16
+#define __QADD16 __iar_builtin_QADD16
+#define __SHADD16 __iar_builtin_SHADD16
+#define __UADD16 __iar_builtin_UADD16
+#define __UQADD16 __iar_builtin_UQADD16
+#define __UHADD16 __iar_builtin_UHADD16
+#define __SSUB16 __iar_builtin_SSUB16
+#define __QSUB16 __iar_builtin_QSUB16
+#define __SHSUB16 __iar_builtin_SHSUB16
+#define __USUB16 __iar_builtin_USUB16
+#define __UQSUB16 __iar_builtin_UQSUB16
+#define __UHSUB16 __iar_builtin_UHSUB16
+#define __SASX __iar_builtin_SASX
+#define __QASX __iar_builtin_QASX
+#define __SHASX __iar_builtin_SHASX
+#define __UASX __iar_builtin_UASX
+#define __UQASX __iar_builtin_UQASX
+#define __UHASX __iar_builtin_UHASX
+#define __SSAX __iar_builtin_SSAX
+#define __QSAX __iar_builtin_QSAX
+#define __SHSAX __iar_builtin_SHSAX
+#define __USAX __iar_builtin_USAX
+#define __UQSAX __iar_builtin_UQSAX
+#define __UHSAX __iar_builtin_UHSAX
+#define __USAD8 __iar_builtin_USAD8
+#define __USADA8 __iar_builtin_USADA8
+#define __SSAT16 __iar_builtin_SSAT16
+#define __USAT16 __iar_builtin_USAT16
+#define __UXTB16 __iar_builtin_UXTB16
+#define __UXTAB16 __iar_builtin_UXTAB16
+#define __SXTB16 __iar_builtin_SXTB16
+#define __SXTAB16 __iar_builtin_SXTAB16
+#define __SMUAD __iar_builtin_SMUAD
+#define __SMUADX __iar_builtin_SMUADX
+#define __SMMLA __iar_builtin_SMMLA
+#define __SMLAD __iar_builtin_SMLAD
+#define __SMLADX __iar_builtin_SMLADX
+#define __SMLALD __iar_builtin_SMLALD
+#define __SMLALDX __iar_builtin_SMLALDX
+#define __SMUSD __iar_builtin_SMUSD
+#define __SMUSDX __iar_builtin_SMUSDX
+#define __SMLSD __iar_builtin_SMLSD
+#define __SMLSDX __iar_builtin_SMLSDX
+#define __SMLSLD __iar_builtin_SMLSLD
+#define __SMLSLDX __iar_builtin_SMLSLDX
+#define __SEL __iar_builtin_SEL
+#define __QADD __iar_builtin_QADD
+#define __QSUB __iar_builtin_QSUB
+#define __PKHBT __iar_builtin_PKHBT
+#define __PKHTB __iar_builtin_PKHTB
+#endif
+
+#else /* __ICCARM_INTRINSICS_VERSION__ == 2 */
+
+#if __IAR_M0_FAMILY
+/* Avoid clash between intrinsics.h and arm_math.h when compiling for Cortex-M0. */
+#define __CLZ __cmsis_iar_clz_not_active
+#define __SSAT __cmsis_iar_ssat_not_active
+#define __USAT __cmsis_iar_usat_not_active
+#define __RBIT __cmsis_iar_rbit_not_active
+#define __get_APSR __cmsis_iar_get_APSR_not_active
+#endif
+
+#if (!((defined(__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && (defined(__FPU_USED) && (__FPU_USED == 1U))))
+#define __get_FPSCR __cmsis_iar_get_FPSR_not_active
+#define __set_FPSCR __cmsis_iar_set_FPSR_not_active
+#endif
+
+#ifdef __INTRINSICS_INCLUDED
+#error intrinsics.h is already included previously!
+#endif
+
+#include <intrinsics.h>
+
+#if __IAR_M0_FAMILY
+/* Avoid clash between intrinsics.h and arm_math.h when compiling for Cortex-M0. */
+#undef __CLZ
+#undef __SSAT
+#undef __USAT
+#undef __RBIT
+#undef __get_APSR
+
+__STATIC_INLINE uint8_t __CLZ(uint32_t data) {
+ if (data == 0U) {
+ return 32U;
+ }
+
+ uint32_t count = 0U;
+ uint32_t mask = 0x80000000U;
+
+ while ((data & mask) == 0U) {
+ count += 1U;
+ mask = mask >> 1U;
+ }
+ return count;
+}
+
+__STATIC_INLINE uint32_t __RBIT(uint32_t v) {
+ uint8_t sc = 31U;
+ uint32_t r = v;
+ for (v >>= 1U; v; v >>= 1U) {
+ r <<= 1U;
+ r |= v & 1U;
+ sc--;
+ }
+ return (r << sc);
+}
+
+__STATIC_INLINE uint32_t __get_APSR(void) {
+ uint32_t res;
+ __asm("MRS %0,APSR" : "=r"(res));
+ return res;
+}
+
+#endif
+
+#if (!((defined(__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && (defined(__FPU_USED) && (__FPU_USED == 1U))))
+#undef __get_FPSCR
+#undef __set_FPSCR
+#define __get_FPSCR() (0)
+#define __set_FPSCR(VALUE) ((void)VALUE)
+#endif
+
+#pragma diag_suppress = Pe940
+#pragma diag_suppress = Pe177
+
+#define __enable_irq __enable_interrupt
+#define __disable_irq __disable_interrupt
+#define __NOP __no_operation
+
+#define __get_xPSR __get_PSR
+
+#if (!defined(__ARM_ARCH_6M__) || __ARM_ARCH_6M__ == 0)
+
+__IAR_FT uint32_t __LDREXW(uint32_t volatile *ptr) { return __LDREX((unsigned long *)ptr); }
+
+__IAR_FT uint32_t __STREXW(uint32_t value, uint32_t volatile *ptr) { return __STREX(value, (unsigned long *)ptr); }
+#endif
+
+/* __CORTEX_M is defined in core_cm0.h, core_cm3.h and core_cm4.h. */
+#if (__CORTEX_M >= 0x03)
+
+__IAR_FT uint32_t __RRX(uint32_t value) {
+ uint32_t result;
+ __ASM("RRX %0, %1" : "=r"(result) : "r"(value) : "cc");
+ return (result);
+}
+
+__IAR_FT void __set_BASEPRI_MAX(uint32_t value) { __asm volatile("MSR BASEPRI_MAX,%0" ::"r"(value)); }
+
+#define __enable_fault_irq __enable_fiq
+#define __disable_fault_irq __disable_fiq
+
+#endif /* (__CORTEX_M >= 0x03) */
+
+__IAR_FT uint32_t __ROR(uint32_t op1, uint32_t op2) { return (op1 >> op2) | (op1 << ((sizeof(op1) * 8) - op2)); }
+
+#if ((defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) || (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ == 1)))
+
+__IAR_FT uint32_t __get_MSPLIM(void) {
+ uint32_t res;
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure MSPLIM is RAZ/WI
+ res = 0U;
+#else
+ __asm volatile("MRS %0,MSPLIM" : "=r"(res));
+#endif
+ return res;
+}
+
+__IAR_FT void __set_MSPLIM(uint32_t value) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure MSPLIM is RAZ/WI
+ (void)value;
+#else
+ __asm volatile("MSR MSPLIM,%0" ::"r"(value));
+#endif
+}
+
+__IAR_FT uint32_t __get_PSPLIM(void) {
+ uint32_t res;
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ res = 0U;
+#else
+ __asm volatile("MRS %0,PSPLIM" : "=r"(res));
+#endif
+ return res;
+}
+
+__IAR_FT void __set_PSPLIM(uint32_t value) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ (void)value;
+#else
+ __asm volatile("MSR PSPLIM,%0" ::"r"(value));
+#endif
+}
+
+__IAR_FT uint32_t __TZ_get_CONTROL_NS(void) {
+ uint32_t res;
+ __asm volatile("MRS %0,CONTROL_NS" : "=r"(res));
+ return res;
+}
+
+__IAR_FT void __TZ_set_CONTROL_NS(uint32_t value) { __asm volatile("MSR CONTROL_NS,%0" ::"r"(value)); }
+
+__IAR_FT uint32_t __TZ_get_PSP_NS(void) {
+ uint32_t res;
+ __asm volatile("MRS %0,PSP_NS" : "=r"(res));
+ return res;
+}
+
+__IAR_FT void __TZ_set_PSP_NS(uint32_t value) { __asm volatile("MSR PSP_NS,%0" ::"r"(value)); }
+
+__IAR_FT uint32_t __TZ_get_MSP_NS(void) {
+ uint32_t res;
+ __asm volatile("MRS %0,MSP_NS" : "=r"(res));
+ return res;
+}
+
+__IAR_FT void __TZ_set_MSP_NS(uint32_t value) { __asm volatile("MSR MSP_NS,%0" ::"r"(value)); }
+
+__IAR_FT uint32_t __TZ_get_SP_NS(void) {
+ uint32_t res;
+ __asm volatile("MRS %0,SP_NS" : "=r"(res));
+ return res;
+}
+__IAR_FT void __TZ_set_SP_NS(uint32_t value) { __asm volatile("MSR SP_NS,%0" ::"r"(value)); }
+
+__IAR_FT uint32_t __TZ_get_PRIMASK_NS(void) {
+ uint32_t res;
+ __asm volatile("MRS %0,PRIMASK_NS" : "=r"(res));
+ return res;
+}
+
+__IAR_FT void __TZ_set_PRIMASK_NS(uint32_t value) { __asm volatile("MSR PRIMASK_NS,%0" ::"r"(value)); }
+
+__IAR_FT uint32_t __TZ_get_BASEPRI_NS(void) {
+ uint32_t res;
+ __asm volatile("MRS %0,BASEPRI_NS" : "=r"(res));
+ return res;
+}
+
+__IAR_FT void __TZ_set_BASEPRI_NS(uint32_t value) { __asm volatile("MSR BASEPRI_NS,%0" ::"r"(value)); }
+
+__IAR_FT uint32_t __TZ_get_FAULTMASK_NS(void) {
+ uint32_t res;
+ __asm volatile("MRS %0,FAULTMASK_NS" : "=r"(res));
+ return res;
+}
+
+__IAR_FT void __TZ_set_FAULTMASK_NS(uint32_t value) { __asm volatile("MSR FAULTMASK_NS,%0" ::"r"(value)); }
+
+__IAR_FT uint32_t __TZ_get_PSPLIM_NS(void) {
+ uint32_t res;
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ res = 0U;
+#else
+ __asm volatile("MRS %0,PSPLIM_NS" : "=r"(res));
+#endif
+ return res;
+}
+
+__IAR_FT void __TZ_set_PSPLIM_NS(uint32_t value) {
+#if (!(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) && (!defined(__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
+ // without main extensions, the non-secure PSPLIM is RAZ/WI
+ (void)value;
+#else
+ __asm volatile("MSR PSPLIM_NS,%0" ::"r"(value));
+#endif
+}
+
+__IAR_FT uint32_t __TZ_get_MSPLIM_NS(void) {
+ uint32_t res;
+ __asm volatile("MRS %0,MSPLIM_NS" : "=r"(res));
+ return res;
+}
+
+__IAR_FT void __TZ_set_MSPLIM_NS(uint32_t value) { __asm volatile("MSR MSPLIM_NS,%0" ::"r"(value)); }
+
+#endif /* __ARM_ARCH_8M_MAIN__ or __ARM_ARCH_8M_BASE__ */
+
+#endif /* __ICCARM_INTRINSICS_VERSION__ == 2 */
+
+#define __BKPT(value) __asm volatile("BKPT %0" : : "i"(value))
+
+#if __IAR_M0_FAMILY
+__STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat) {
+ if ((sat >= 1U) && (sat <= 32U)) {
+ const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
+ const int32_t min = -1 - max;
+ if (val > max) {
+ return max;
+ } else if (val < min) {
+ return min;
+ }
+ }
+ return val;
+}
+
+__STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat) {
+ if (sat <= 31U) {
+ const uint32_t max = ((1U << sat) - 1U);
+ if (val > (int32_t)max) {
+ return max;
+ } else if (val < 0) {
+ return 0U;
+ }
+ }
+ return (uint32_t)val;
+}
+#endif
+
+#if (__CORTEX_M >= 0x03) /* __CORTEX_M is defined in core_cm0.h, core_cm3.h and core_cm4.h. */
+
+__IAR_FT uint8_t __LDRBT(volatile uint8_t *addr) {
+ uint32_t res;
+ __ASM("LDRBT %0, [%1]" : "=r"(res) : "r"(addr) : "memory");
+ return ((uint8_t)res);
+}
+
+__IAR_FT uint16_t __LDRHT(volatile uint16_t *addr) {
+ uint32_t res;
+ __ASM("LDRHT %0, [%1]" : "=r"(res) : "r"(addr) : "memory");
+ return ((uint16_t)res);
+}
+
+__IAR_FT uint32_t __LDRT(volatile uint32_t *addr) {
+ uint32_t res;
+ __ASM("LDRT %0, [%1]" : "=r"(res) : "r"(addr) : "memory");
+ return res;
+}
+
+__IAR_FT void __STRBT(uint8_t value, volatile uint8_t *addr) { __ASM("STRBT %1, [%0]" : : "r"(addr), "r"((uint32_t)value) : "memory"); }
+
+__IAR_FT void __STRHT(uint16_t value, volatile uint16_t *addr) { __ASM("STRHT %1, [%0]" : : "r"(addr), "r"((uint32_t)value) : "memory"); }
+
+__IAR_FT void __STRT(uint32_t value, volatile uint32_t *addr) { __ASM("STRT %1, [%0]" : : "r"(addr), "r"(value) : "memory"); }
+
+#endif /* (__CORTEX_M >= 0x03) */
+
+#if ((defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) || (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ == 1)))
+
+__IAR_FT uint8_t __LDAB(volatile uint8_t *ptr) {
+ uint32_t res;
+ __ASM volatile("LDAB %0, [%1]" : "=r"(res) : "r"(ptr) : "memory");
+ return ((uint8_t)res);
+}
+
+__IAR_FT uint16_t __LDAH(volatile uint16_t *ptr) {
+ uint32_t res;
+ __ASM volatile("LDAH %0, [%1]" : "=r"(res) : "r"(ptr) : "memory");
+ return ((uint16_t)res);
+}
+
+__IAR_FT uint32_t __LDA(volatile uint32_t *ptr) {
+ uint32_t res;
+ __ASM volatile("LDA %0, [%1]" : "=r"(res) : "r"(ptr) : "memory");
+ return res;
+}
+
+__IAR_FT void __STLB(uint8_t value, volatile uint8_t *ptr) { __ASM volatile("STLB %1, [%0]" ::"r"(ptr), "r"(value) : "memory"); }
+
+__IAR_FT void __STLH(uint16_t value, volatile uint16_t *ptr) { __ASM volatile("STLH %1, [%0]" ::"r"(ptr), "r"(value) : "memory"); }
+
+__IAR_FT void __STL(uint32_t value, volatile uint32_t *ptr) { __ASM volatile("STL %1, [%0]" ::"r"(ptr), "r"(value) : "memory"); }
+
+__IAR_FT uint8_t __LDAEXB(volatile uint8_t *ptr) {
+ uint32_t res;
+ __ASM volatile("LDAEXB %0, [%1]" : "=r"(res) : "r"(ptr) : "memory");
+ return ((uint8_t)res);
+}
+
+__IAR_FT uint16_t __LDAEXH(volatile uint16_t *ptr) {
+ uint32_t res;
+ __ASM volatile("LDAEXH %0, [%1]" : "=r"(res) : "r"(ptr) : "memory");
+ return ((uint16_t)res);
+}
+
+__IAR_FT uint32_t __LDAEX(volatile uint32_t *ptr) {
+ uint32_t res;
+ __ASM volatile("LDAEX %0, [%1]" : "=r"(res) : "r"(ptr) : "memory");
+ return res;
+}
+
+__IAR_FT uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr) {
+ uint32_t res;
+ __ASM volatile("STLEXB %0, %2, [%1]" : "=r"(res) : "r"(ptr), "r"(value) : "memory");
+ return res;
+}
+
+__IAR_FT uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr) {
+ uint32_t res;
+ __ASM volatile("STLEXH %0, %2, [%1]" : "=r"(res) : "r"(ptr), "r"(value) : "memory");
+ return res;
+}
+
+__IAR_FT uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr) {
+ uint32_t res;
+ __ASM volatile("STLEX %0, %2, [%1]" : "=r"(res) : "r"(ptr), "r"(value) : "memory");
+ return res;
+}
+
+#endif /* __ARM_ARCH_8M_MAIN__ or __ARM_ARCH_8M_BASE__ */
+
+#undef __IAR_FT
+#undef __IAR_M0_FAMILY
+#undef __ICCARM_V8
+
+#pragma diag_default = Pe940
+#pragma diag_default = Pe177
+
+#endif /* __CMSIS_ICCARM_H__ */
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_version.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_version.h new file mode 100644 index 00000000..39d71901 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/cmsis_version.h @@ -0,0 +1,38 @@ +/**************************************************************************/ /**
+ * @file cmsis_version.h
+ * @brief CMSIS Core(M) Version definitions
+ * @version V5.0.2
+ * @date 19. April 2017
+ ******************************************************************************/
+/*
+ * Copyright (c) 2009-2017 ARM Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#if defined(__ICCARM__)
+#pragma system_include /* treat file as system include file for MISRA check */
+#elif defined(__clang__)
+#pragma clang system_header /* treat file as system include file */
+#endif
+
+#ifndef __CMSIS_VERSION_H
+#define __CMSIS_VERSION_H
+
+/* CMSIS Version definitions */
+#define __CM_CMSIS_VERSION_MAIN (5U) /*!< [31:16] CMSIS Core(M) main version */
+#define __CM_CMSIS_VERSION_SUB (1U) /*!< [15:0] CMSIS Core(M) sub version */
+#define __CM_CMSIS_VERSION ((__CM_CMSIS_VERSION_MAIN << 16U) | __CM_CMSIS_VERSION_SUB) /*!< CMSIS Core(M) version number */
+#endif
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Include/core_cm3.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/core_cm3.h new file mode 100644 index 00000000..58f02e80 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/core_cm3.h @@ -0,0 +1,1813 @@ +/**************************************************************************/ /**
+ * @file core_cm3.h
+ * @brief CMSIS Cortex-M3 Core Peripheral Access Layer Header File
+ * @version V5.0.8
+ * @date 04. June 2018
+ ******************************************************************************/
+/*
+ * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#if defined(__ICCARM__)
+#pragma system_include /* treat file as system include file for MISRA check */
+#elif defined(__clang__)
+#pragma clang system_header /* treat file as system include file */
+#endif
+
+#ifndef __CORE_CM3_H_GENERIC
+#define __CORE_CM3_H_GENERIC
+
+#include <stdint.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
+ CMSIS violates the following MISRA-C:2004 rules:
+
+ \li Required Rule 8.5, object/function definition in header file.<br>
+ Function definitions in header files are used to allow 'inlining'.
+
+ \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
+ Unions are used for effective representation of core registers.
+
+ \li Advisory Rule 19.7, Function-like macro defined.<br>
+ Function-like macros are used to allow more efficient code.
+ */
+
+/*******************************************************************************
+ * CMSIS definitions
+ ******************************************************************************/
+/**
+ \ingroup Cortex_M3
+ @{
+ */
+
+#include "cmsis_version.h"
+
+/* CMSIS CM3 definitions */
+#define __CM3_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
+#define __CM3_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
+#define __CM3_CMSIS_VERSION ((__CM3_CMSIS_VERSION_MAIN << 16U) | __CM3_CMSIS_VERSION_SUB) /*!< \deprecated CMSIS HAL version number */
+
+#define __CORTEX_M (3U) /*!< Cortex-M Core */
+
+/** __FPU_USED indicates whether an FPU is used or not.
+ This core does not support an FPU at all
+*/
+#define __FPU_USED 0U
+
+#if defined(__CC_ARM)
+#if defined __TARGET_FPU_VFP
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+#if defined __ARM_PCS_VFP
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__GNUC__)
+#if defined(__VFP_FP__) && !defined(__SOFTFP__)
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__ICCARM__)
+#if defined __ARMVFP__
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__TI_ARM__)
+#if defined __TI_VFP_SUPPORT__
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__TASKING__)
+#if defined __FPU_VFP__
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__CSMC__)
+#if (__CSMC__ & 0x400U)
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#endif
+
+#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __CORE_CM3_H_GENERIC */
+
+#ifndef __CMSIS_GENERIC
+
+#ifndef __CORE_CM3_H_DEPENDANT
+#define __CORE_CM3_H_DEPENDANT
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* check device defines and use defaults */
+#if defined __CHECK_DEVICE_DEFINES
+#ifndef __CM3_REV
+#define __CM3_REV 0x0200U
+#warning "__CM3_REV not defined in device header file; using default!"
+#endif
+
+#ifndef __MPU_PRESENT
+#define __MPU_PRESENT 0U
+#warning "__MPU_PRESENT not defined in device header file; using default!"
+#endif
+
+#ifndef __NVIC_PRIO_BITS
+#define __NVIC_PRIO_BITS 3U
+#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
+#endif
+
+#ifndef __Vendor_SysTickConfig
+#define __Vendor_SysTickConfig 0U
+#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
+#endif
+#endif
+
+/* IO definitions (access restrictions to peripheral registers) */
+/**
+ \defgroup CMSIS_glob_defs CMSIS Global Defines
+
+ <strong>IO Type Qualifiers</strong> are used
+ \li to specify the access to peripheral variables.
+ \li for automatic generation of peripheral register debug information.
+*/
+#ifdef __cplusplus
+#define __I volatile /*!< Defines 'read only' permissions */
+#else
+#define __I volatile const /*!< Defines 'read only' permissions */
+#endif
+#define __O volatile /*!< Defines 'write only' permissions */
+#define __IO volatile /*!< Defines 'read / write' permissions */
+
+/* following defines should be used for structure members */
+#define __IM volatile const /*! Defines 'read only' structure member permissions */
+#define __OM volatile /*! Defines 'write only' structure member permissions */
+#define __IOM volatile /*! Defines 'read / write' structure member permissions */
+
+/*@} end of group Cortex_M3 */
+
+/*******************************************************************************
+ * Register Abstraction
+ Core Register contain:
+ - Core Register
+ - Core NVIC Register
+ - Core SCB Register
+ - Core SysTick Register
+ - Core Debug Register
+ - Core MPU Register
+ ******************************************************************************/
+/**
+ \defgroup CMSIS_core_register Defines and Type Definitions
+ \brief Type definitions and defines for Cortex-M processor based devices.
+*/
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_CORE Status and Control Registers
+ \brief Core Register type definitions.
+ @{
+ */
+
+/**
+ \brief Union type to access the Application Program Status Register (APSR).
+ */
+typedef union {
+ struct {
+ uint32_t _reserved0 : 27; /*!< bit: 0..26 Reserved */
+ uint32_t Q : 1; /*!< bit: 27 Saturation condition flag */
+ uint32_t V : 1; /*!< bit: 28 Overflow condition code flag */
+ uint32_t C : 1; /*!< bit: 29 Carry condition code flag */
+ uint32_t Z : 1; /*!< bit: 30 Zero condition code flag */
+ uint32_t N : 1; /*!< bit: 31 Negative condition code flag */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} APSR_Type;
+
+/* APSR Register Definitions */
+#define APSR_N_Pos 31U /*!< APSR: N Position */
+#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
+
+#define APSR_Z_Pos 30U /*!< APSR: Z Position */
+#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
+
+#define APSR_C_Pos 29U /*!< APSR: C Position */
+#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
+
+#define APSR_V_Pos 28U /*!< APSR: V Position */
+#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
+
+#define APSR_Q_Pos 27U /*!< APSR: Q Position */
+#define APSR_Q_Msk (1UL << APSR_Q_Pos) /*!< APSR: Q Mask */
+
+/**
+ \brief Union type to access the Interrupt Program Status Register (IPSR).
+ */
+typedef union {
+ struct {
+ uint32_t ISR : 9; /*!< bit: 0.. 8 Exception number */
+ uint32_t _reserved0 : 23; /*!< bit: 9..31 Reserved */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} IPSR_Type;
+
+/* IPSR Register Definitions */
+#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
+#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
+
+/**
+ \brief Union type to access the Special-Purpose Program Status Registers (xPSR).
+ */
+typedef union {
+ struct {
+ uint32_t ISR : 9; /*!< bit: 0.. 8 Exception number */
+ uint32_t _reserved0 : 1; /*!< bit: 9 Reserved */
+ uint32_t ICI_IT_1 : 6; /*!< bit: 10..15 ICI/IT part 1 */
+ uint32_t _reserved1 : 8; /*!< bit: 16..23 Reserved */
+ uint32_t T : 1; /*!< bit: 24 Thumb bit */
+ uint32_t ICI_IT_2 : 2; /*!< bit: 25..26 ICI/IT part 2 */
+ uint32_t Q : 1; /*!< bit: 27 Saturation condition flag */
+ uint32_t V : 1; /*!< bit: 28 Overflow condition code flag */
+ uint32_t C : 1; /*!< bit: 29 Carry condition code flag */
+ uint32_t Z : 1; /*!< bit: 30 Zero condition code flag */
+ uint32_t N : 1; /*!< bit: 31 Negative condition code flag */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} xPSR_Type;
+
+/* xPSR Register Definitions */
+#define xPSR_N_Pos 31U /*!< xPSR: N Position */
+#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
+
+#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
+#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
+
+#define xPSR_C_Pos 29U /*!< xPSR: C Position */
+#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
+
+#define xPSR_V_Pos 28U /*!< xPSR: V Position */
+#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
+
+#define xPSR_Q_Pos 27U /*!< xPSR: Q Position */
+#define xPSR_Q_Msk (1UL << xPSR_Q_Pos) /*!< xPSR: Q Mask */
+
+#define xPSR_ICI_IT_2_Pos 25U /*!< xPSR: ICI/IT part 2 Position */
+#define xPSR_ICI_IT_2_Msk (3UL << xPSR_ICI_IT_2_Pos) /*!< xPSR: ICI/IT part 2 Mask */
+
+#define xPSR_T_Pos 24U /*!< xPSR: T Position */
+#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
+
+#define xPSR_ICI_IT_1_Pos 10U /*!< xPSR: ICI/IT part 1 Position */
+#define xPSR_ICI_IT_1_Msk (0x3FUL << xPSR_ICI_IT_1_Pos) /*!< xPSR: ICI/IT part 1 Mask */
+
+#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
+#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
+
+/**
+ \brief Union type to access the Control Registers (CONTROL).
+ */
+typedef union {
+ struct {
+ uint32_t nPRIV : 1; /*!< bit: 0 Execution privilege in Thread mode */
+ uint32_t SPSEL : 1; /*!< bit: 1 Stack to be used */
+ uint32_t _reserved1 : 30; /*!< bit: 2..31 Reserved */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} CONTROL_Type;
+
+/* CONTROL Register Definitions */
+#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
+#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
+
+#define CONTROL_nPRIV_Pos 0U /*!< CONTROL: nPRIV Position */
+#define CONTROL_nPRIV_Msk (1UL /*<< CONTROL_nPRIV_Pos*/) /*!< CONTROL: nPRIV Mask */
+
+/*@} end of group CMSIS_CORE */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
+ \brief Type definitions for the NVIC Registers
+ @{
+ */
+
+/**
+ \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
+ */
+typedef struct {
+ __IOM uint32_t ISER[8U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
+ uint32_t RESERVED0[24U];
+ __IOM uint32_t ICER[8U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
+ uint32_t RSERVED1[24U];
+ __IOM uint32_t ISPR[8U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
+ uint32_t RESERVED2[24U];
+ __IOM uint32_t ICPR[8U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
+ uint32_t RESERVED3[24U];
+ __IOM uint32_t IABR[8U]; /*!< Offset: 0x200 (R/W) Interrupt Active bit Register */
+ uint32_t RESERVED4[56U];
+ __IOM uint8_t IP[240U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register (8Bit wide) */
+ uint32_t RESERVED5[644U];
+ __OM uint32_t STIR; /*!< Offset: 0xE00 ( /W) Software Trigger Interrupt Register */
+} NVIC_Type;
+
+/* Software Triggered Interrupt Register Definitions */
+#define NVIC_STIR_INTID_Pos 0U /*!< STIR: INTLINESNUM Position */
+#define NVIC_STIR_INTID_Msk (0x1FFUL /*<< NVIC_STIR_INTID_Pos*/) /*!< STIR: INTLINESNUM Mask */
+
+/*@} end of group CMSIS_NVIC */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_SCB System Control Block (SCB)
+ \brief Type definitions for the System Control Block Registers
+ @{
+ */
+
+/**
+ \brief Structure type to access the System Control Block (SCB).
+ */
+typedef struct {
+ __IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
+ __IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
+ __IOM uint32_t VTOR; /*!< Offset: 0x008 (R/W) Vector Table Offset Register */
+ __IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
+ __IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
+ __IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
+ __IOM uint8_t SHP[12U]; /*!< Offset: 0x018 (R/W) System Handlers Priority Registers (4-7, 8-11, 12-15) */
+ __IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
+ __IOM uint32_t CFSR; /*!< Offset: 0x028 (R/W) Configurable Fault Status Register */
+ __IOM uint32_t HFSR; /*!< Offset: 0x02C (R/W) HardFault Status Register */
+ __IOM uint32_t DFSR; /*!< Offset: 0x030 (R/W) Debug Fault Status Register */
+ __IOM uint32_t MMFAR; /*!< Offset: 0x034 (R/W) MemManage Fault Address Register */
+ __IOM uint32_t BFAR; /*!< Offset: 0x038 (R/W) BusFault Address Register */
+ __IOM uint32_t AFSR; /*!< Offset: 0x03C (R/W) Auxiliary Fault Status Register */
+ __IM uint32_t PFR[2U]; /*!< Offset: 0x040 (R/ ) Processor Feature Register */
+ __IM uint32_t DFR; /*!< Offset: 0x048 (R/ ) Debug Feature Register */
+ __IM uint32_t ADR; /*!< Offset: 0x04C (R/ ) Auxiliary Feature Register */
+ __IM uint32_t MMFR[4U]; /*!< Offset: 0x050 (R/ ) Memory Model Feature Register */
+ __IM uint32_t ISAR[5U]; /*!< Offset: 0x060 (R/ ) Instruction Set Attributes Register */
+ uint32_t RESERVED0[5U];
+ __IOM uint32_t CPACR; /*!< Offset: 0x088 (R/W) Coprocessor Access Control Register */
+} SCB_Type;
+
+/* SCB CPUID Register Definitions */
+#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
+#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
+
+#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
+#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
+
+#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
+#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
+
+#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
+#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
+
+#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
+#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
+
+/* SCB Interrupt Control State Register Definitions */
+#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
+#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
+
+#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
+#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
+
+#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
+#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
+
+#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
+#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
+
+#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
+#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
+
+#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
+#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
+
+#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
+#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
+
+#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
+#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
+
+#define SCB_ICSR_RETTOBASE_Pos 11U /*!< SCB ICSR: RETTOBASE Position */
+#define SCB_ICSR_RETTOBASE_Msk (1UL << SCB_ICSR_RETTOBASE_Pos) /*!< SCB ICSR: RETTOBASE Mask */
+
+#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
+#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
+
+/* SCB Vector Table Offset Register Definitions */
+#if defined(__CM3_REV) && (__CM3_REV < 0x0201U) /* core r2p1 */
+#define SCB_VTOR_TBLBASE_Pos 29U /*!< SCB VTOR: TBLBASE Position */
+#define SCB_VTOR_TBLBASE_Msk (1UL << SCB_VTOR_TBLBASE_Pos) /*!< SCB VTOR: TBLBASE Mask */
+
+#define SCB_VTOR_TBLOFF_Pos 7U /*!< SCB VTOR: TBLOFF Position */
+#define SCB_VTOR_TBLOFF_Msk (0x3FFFFFUL << SCB_VTOR_TBLOFF_Pos) /*!< SCB VTOR: TBLOFF Mask */
+#else
+#define SCB_VTOR_TBLOFF_Pos 7U /*!< SCB VTOR: TBLOFF Position */
+#define SCB_VTOR_TBLOFF_Msk (0x1FFFFFFUL << SCB_VTOR_TBLOFF_Pos) /*!< SCB VTOR: TBLOFF Mask */
+#endif
+
+/* SCB Application Interrupt and Reset Control Register Definitions */
+#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
+#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
+
+#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
+#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
+
+#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
+#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
+
+#define SCB_AIRCR_PRIGROUP_Pos 8U /*!< SCB AIRCR: PRIGROUP Position */
+#define SCB_AIRCR_PRIGROUP_Msk (7UL << SCB_AIRCR_PRIGROUP_Pos) /*!< SCB AIRCR: PRIGROUP Mask */
+
+#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
+#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
+
+#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
+#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
+
+#define SCB_AIRCR_VECTRESET_Pos 0U /*!< SCB AIRCR: VECTRESET Position */
+#define SCB_AIRCR_VECTRESET_Msk (1UL /*<< SCB_AIRCR_VECTRESET_Pos*/) /*!< SCB AIRCR: VECTRESET Mask */
+
+/* SCB System Control Register Definitions */
+#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
+#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
+
+#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
+#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
+
+#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
+#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
+
+/* SCB Configuration Control Register Definitions */
+#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
+#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
+
+#define SCB_CCR_BFHFNMIGN_Pos 8U /*!< SCB CCR: BFHFNMIGN Position */
+#define SCB_CCR_BFHFNMIGN_Msk (1UL << SCB_CCR_BFHFNMIGN_Pos) /*!< SCB CCR: BFHFNMIGN Mask */
+
+#define SCB_CCR_DIV_0_TRP_Pos 4U /*!< SCB CCR: DIV_0_TRP Position */
+#define SCB_CCR_DIV_0_TRP_Msk (1UL << SCB_CCR_DIV_0_TRP_Pos) /*!< SCB CCR: DIV_0_TRP Mask */
+
+#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
+#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
+
+#define SCB_CCR_USERSETMPEND_Pos 1U /*!< SCB CCR: USERSETMPEND Position */
+#define SCB_CCR_USERSETMPEND_Msk (1UL << SCB_CCR_USERSETMPEND_Pos) /*!< SCB CCR: USERSETMPEND Mask */
+
+#define SCB_CCR_NONBASETHRDENA_Pos 0U /*!< SCB CCR: NONBASETHRDENA Position */
+#define SCB_CCR_NONBASETHRDENA_Msk (1UL /*<< SCB_CCR_NONBASETHRDENA_Pos*/) /*!< SCB CCR: NONBASETHRDENA Mask */
+
+/* SCB System Handler Control and State Register Definitions */
+#define SCB_SHCSR_USGFAULTENA_Pos 18U /*!< SCB SHCSR: USGFAULTENA Position */
+#define SCB_SHCSR_USGFAULTENA_Msk (1UL << SCB_SHCSR_USGFAULTENA_Pos) /*!< SCB SHCSR: USGFAULTENA Mask */
+
+#define SCB_SHCSR_BUSFAULTENA_Pos 17U /*!< SCB SHCSR: BUSFAULTENA Position */
+#define SCB_SHCSR_BUSFAULTENA_Msk (1UL << SCB_SHCSR_BUSFAULTENA_Pos) /*!< SCB SHCSR: BUSFAULTENA Mask */
+
+#define SCB_SHCSR_MEMFAULTENA_Pos 16U /*!< SCB SHCSR: MEMFAULTENA Position */
+#define SCB_SHCSR_MEMFAULTENA_Msk (1UL << SCB_SHCSR_MEMFAULTENA_Pos) /*!< SCB SHCSR: MEMFAULTENA Mask */
+
+#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
+#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
+
+#define SCB_SHCSR_BUSFAULTPENDED_Pos 14U /*!< SCB SHCSR: BUSFAULTPENDED Position */
+#define SCB_SHCSR_BUSFAULTPENDED_Msk (1UL << SCB_SHCSR_BUSFAULTPENDED_Pos) /*!< SCB SHCSR: BUSFAULTPENDED Mask */
+
+#define SCB_SHCSR_MEMFAULTPENDED_Pos 13U /*!< SCB SHCSR: MEMFAULTPENDED Position */
+#define SCB_SHCSR_MEMFAULTPENDED_Msk (1UL << SCB_SHCSR_MEMFAULTPENDED_Pos) /*!< SCB SHCSR: MEMFAULTPENDED Mask */
+
+#define SCB_SHCSR_USGFAULTPENDED_Pos 12U /*!< SCB SHCSR: USGFAULTPENDED Position */
+#define SCB_SHCSR_USGFAULTPENDED_Msk (1UL << SCB_SHCSR_USGFAULTPENDED_Pos) /*!< SCB SHCSR: USGFAULTPENDED Mask */
+
+#define SCB_SHCSR_SYSTICKACT_Pos 11U /*!< SCB SHCSR: SYSTICKACT Position */
+#define SCB_SHCSR_SYSTICKACT_Msk (1UL << SCB_SHCSR_SYSTICKACT_Pos) /*!< SCB SHCSR: SYSTICKACT Mask */
+
+#define SCB_SHCSR_PENDSVACT_Pos 10U /*!< SCB SHCSR: PENDSVACT Position */
+#define SCB_SHCSR_PENDSVACT_Msk (1UL << SCB_SHCSR_PENDSVACT_Pos) /*!< SCB SHCSR: PENDSVACT Mask */
+
+#define SCB_SHCSR_MONITORACT_Pos 8U /*!< SCB SHCSR: MONITORACT Position */
+#define SCB_SHCSR_MONITORACT_Msk (1UL << SCB_SHCSR_MONITORACT_Pos) /*!< SCB SHCSR: MONITORACT Mask */
+
+#define SCB_SHCSR_SVCALLACT_Pos 7U /*!< SCB SHCSR: SVCALLACT Position */
+#define SCB_SHCSR_SVCALLACT_Msk (1UL << SCB_SHCSR_SVCALLACT_Pos) /*!< SCB SHCSR: SVCALLACT Mask */
+
+#define SCB_SHCSR_USGFAULTACT_Pos 3U /*!< SCB SHCSR: USGFAULTACT Position */
+#define SCB_SHCSR_USGFAULTACT_Msk (1UL << SCB_SHCSR_USGFAULTACT_Pos) /*!< SCB SHCSR: USGFAULTACT Mask */
+
+#define SCB_SHCSR_BUSFAULTACT_Pos 1U /*!< SCB SHCSR: BUSFAULTACT Position */
+#define SCB_SHCSR_BUSFAULTACT_Msk (1UL << SCB_SHCSR_BUSFAULTACT_Pos) /*!< SCB SHCSR: BUSFAULTACT Mask */
+
+#define SCB_SHCSR_MEMFAULTACT_Pos 0U /*!< SCB SHCSR: MEMFAULTACT Position */
+#define SCB_SHCSR_MEMFAULTACT_Msk (1UL /*<< SCB_SHCSR_MEMFAULTACT_Pos*/) /*!< SCB SHCSR: MEMFAULTACT Mask */
+
+/* SCB Configurable Fault Status Register Definitions */
+#define SCB_CFSR_USGFAULTSR_Pos 16U /*!< SCB CFSR: Usage Fault Status Register Position */
+#define SCB_CFSR_USGFAULTSR_Msk (0xFFFFUL << SCB_CFSR_USGFAULTSR_Pos) /*!< SCB CFSR: Usage Fault Status Register Mask */
+
+#define SCB_CFSR_BUSFAULTSR_Pos 8U /*!< SCB CFSR: Bus Fault Status Register Position */
+#define SCB_CFSR_BUSFAULTSR_Msk (0xFFUL << SCB_CFSR_BUSFAULTSR_Pos) /*!< SCB CFSR: Bus Fault Status Register Mask */
+
+#define SCB_CFSR_MEMFAULTSR_Pos 0U /*!< SCB CFSR: Memory Manage Fault Status Register Position */
+#define SCB_CFSR_MEMFAULTSR_Msk (0xFFUL /*<< SCB_CFSR_MEMFAULTSR_Pos*/) /*!< SCB CFSR: Memory Manage Fault Status Register Mask */
+
+/* MemManage Fault Status Register (part of SCB Configurable Fault Status Register) */
+#define SCB_CFSR_MMARVALID_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 7U) /*!< SCB CFSR (MMFSR): MMARVALID Position */
+#define SCB_CFSR_MMARVALID_Msk (1UL << SCB_CFSR_MMARVALID_Pos) /*!< SCB CFSR (MMFSR): MMARVALID Mask */
+
+#define SCB_CFSR_MSTKERR_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 4U) /*!< SCB CFSR (MMFSR): MSTKERR Position */
+#define SCB_CFSR_MSTKERR_Msk (1UL << SCB_CFSR_MSTKERR_Pos) /*!< SCB CFSR (MMFSR): MSTKERR Mask */
+
+#define SCB_CFSR_MUNSTKERR_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 3U) /*!< SCB CFSR (MMFSR): MUNSTKERR Position */
+#define SCB_CFSR_MUNSTKERR_Msk (1UL << SCB_CFSR_MUNSTKERR_Pos) /*!< SCB CFSR (MMFSR): MUNSTKERR Mask */
+
+#define SCB_CFSR_DACCVIOL_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 1U) /*!< SCB CFSR (MMFSR): DACCVIOL Position */
+#define SCB_CFSR_DACCVIOL_Msk (1UL << SCB_CFSR_DACCVIOL_Pos) /*!< SCB CFSR (MMFSR): DACCVIOL Mask */
+
+#define SCB_CFSR_IACCVIOL_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 0U) /*!< SCB CFSR (MMFSR): IACCVIOL Position */
+#define SCB_CFSR_IACCVIOL_Msk (1UL /*<< SCB_CFSR_IACCVIOL_Pos*/) /*!< SCB CFSR (MMFSR): IACCVIOL Mask */
+
+/* BusFault Status Register (part of SCB Configurable Fault Status Register) */
+#define SCB_CFSR_BFARVALID_Pos (SCB_CFSR_BUSFAULTSR_Pos + 7U) /*!< SCB CFSR (BFSR): BFARVALID Position */
+#define SCB_CFSR_BFARVALID_Msk (1UL << SCB_CFSR_BFARVALID_Pos) /*!< SCB CFSR (BFSR): BFARVALID Mask */
+
+#define SCB_CFSR_STKERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 4U) /*!< SCB CFSR (BFSR): STKERR Position */
+#define SCB_CFSR_STKERR_Msk (1UL << SCB_CFSR_STKERR_Pos) /*!< SCB CFSR (BFSR): STKERR Mask */
+
+#define SCB_CFSR_UNSTKERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 3U) /*!< SCB CFSR (BFSR): UNSTKERR Position */
+#define SCB_CFSR_UNSTKERR_Msk (1UL << SCB_CFSR_UNSTKERR_Pos) /*!< SCB CFSR (BFSR): UNSTKERR Mask */
+
+#define SCB_CFSR_IMPRECISERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 2U) /*!< SCB CFSR (BFSR): IMPRECISERR Position */
+#define SCB_CFSR_IMPRECISERR_Msk (1UL << SCB_CFSR_IMPRECISERR_Pos) /*!< SCB CFSR (BFSR): IMPRECISERR Mask */
+
+#define SCB_CFSR_PRECISERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 1U) /*!< SCB CFSR (BFSR): PRECISERR Position */
+#define SCB_CFSR_PRECISERR_Msk (1UL << SCB_CFSR_PRECISERR_Pos) /*!< SCB CFSR (BFSR): PRECISERR Mask */
+
+#define SCB_CFSR_IBUSERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 0U) /*!< SCB CFSR (BFSR): IBUSERR Position */
+#define SCB_CFSR_IBUSERR_Msk (1UL << SCB_CFSR_IBUSERR_Pos) /*!< SCB CFSR (BFSR): IBUSERR Mask */
+
+/* UsageFault Status Register (part of SCB Configurable Fault Status Register) */
+#define SCB_CFSR_DIVBYZERO_Pos (SCB_CFSR_USGFAULTSR_Pos + 9U) /*!< SCB CFSR (UFSR): DIVBYZERO Position */
+#define SCB_CFSR_DIVBYZERO_Msk (1UL << SCB_CFSR_DIVBYZERO_Pos) /*!< SCB CFSR (UFSR): DIVBYZERO Mask */
+
+#define SCB_CFSR_UNALIGNED_Pos (SCB_CFSR_USGFAULTSR_Pos + 8U) /*!< SCB CFSR (UFSR): UNALIGNED Position */
+#define SCB_CFSR_UNALIGNED_Msk (1UL << SCB_CFSR_UNALIGNED_Pos) /*!< SCB CFSR (UFSR): UNALIGNED Mask */
+
+#define SCB_CFSR_NOCP_Pos (SCB_CFSR_USGFAULTSR_Pos + 3U) /*!< SCB CFSR (UFSR): NOCP Position */
+#define SCB_CFSR_NOCP_Msk (1UL << SCB_CFSR_NOCP_Pos) /*!< SCB CFSR (UFSR): NOCP Mask */
+
+#define SCB_CFSR_INVPC_Pos (SCB_CFSR_USGFAULTSR_Pos + 2U) /*!< SCB CFSR (UFSR): INVPC Position */
+#define SCB_CFSR_INVPC_Msk (1UL << SCB_CFSR_INVPC_Pos) /*!< SCB CFSR (UFSR): INVPC Mask */
+
+#define SCB_CFSR_INVSTATE_Pos (SCB_CFSR_USGFAULTSR_Pos + 1U) /*!< SCB CFSR (UFSR): INVSTATE Position */
+#define SCB_CFSR_INVSTATE_Msk (1UL << SCB_CFSR_INVSTATE_Pos) /*!< SCB CFSR (UFSR): INVSTATE Mask */
+
+#define SCB_CFSR_UNDEFINSTR_Pos (SCB_CFSR_USGFAULTSR_Pos + 0U) /*!< SCB CFSR (UFSR): UNDEFINSTR Position */
+#define SCB_CFSR_UNDEFINSTR_Msk (1UL << SCB_CFSR_UNDEFINSTR_Pos) /*!< SCB CFSR (UFSR): UNDEFINSTR Mask */
+
+/* SCB Hard Fault Status Register Definitions */
+#define SCB_HFSR_DEBUGEVT_Pos 31U /*!< SCB HFSR: DEBUGEVT Position */
+#define SCB_HFSR_DEBUGEVT_Msk (1UL << SCB_HFSR_DEBUGEVT_Pos) /*!< SCB HFSR: DEBUGEVT Mask */
+
+#define SCB_HFSR_FORCED_Pos 30U /*!< SCB HFSR: FORCED Position */
+#define SCB_HFSR_FORCED_Msk (1UL << SCB_HFSR_FORCED_Pos) /*!< SCB HFSR: FORCED Mask */
+
+#define SCB_HFSR_VECTTBL_Pos 1U /*!< SCB HFSR: VECTTBL Position */
+#define SCB_HFSR_VECTTBL_Msk (1UL << SCB_HFSR_VECTTBL_Pos) /*!< SCB HFSR: VECTTBL Mask */
+
+/* SCB Debug Fault Status Register Definitions */
+#define SCB_DFSR_EXTERNAL_Pos 4U /*!< SCB DFSR: EXTERNAL Position */
+#define SCB_DFSR_EXTERNAL_Msk (1UL << SCB_DFSR_EXTERNAL_Pos) /*!< SCB DFSR: EXTERNAL Mask */
+
+#define SCB_DFSR_VCATCH_Pos 3U /*!< SCB DFSR: VCATCH Position */
+#define SCB_DFSR_VCATCH_Msk (1UL << SCB_DFSR_VCATCH_Pos) /*!< SCB DFSR: VCATCH Mask */
+
+#define SCB_DFSR_DWTTRAP_Pos 2U /*!< SCB DFSR: DWTTRAP Position */
+#define SCB_DFSR_DWTTRAP_Msk (1UL << SCB_DFSR_DWTTRAP_Pos) /*!< SCB DFSR: DWTTRAP Mask */
+
+#define SCB_DFSR_BKPT_Pos 1U /*!< SCB DFSR: BKPT Position */
+#define SCB_DFSR_BKPT_Msk (1UL << SCB_DFSR_BKPT_Pos) /*!< SCB DFSR: BKPT Mask */
+
+#define SCB_DFSR_HALTED_Pos 0U /*!< SCB DFSR: HALTED Position */
+#define SCB_DFSR_HALTED_Msk (1UL /*<< SCB_DFSR_HALTED_Pos*/) /*!< SCB DFSR: HALTED Mask */
+
+/*@} end of group CMSIS_SCB */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB)
+ \brief Type definitions for the System Control and ID Register not in the SCB
+ @{
+ */
+
+/**
+ \brief Structure type to access the System Control and ID Register not in the SCB.
+ */
+typedef struct {
+ uint32_t RESERVED0[1U];
+ __IM uint32_t ICTR; /*!< Offset: 0x004 (R/ ) Interrupt Controller Type Register */
+#if defined(__CM3_REV) && (__CM3_REV >= 0x200U)
+ __IOM uint32_t ACTLR; /*!< Offset: 0x008 (R/W) Auxiliary Control Register */
+#else
+ uint32_t RESERVED1[1U];
+#endif
+} SCnSCB_Type;
+
+/* Interrupt Controller Type Register Definitions */
+#define SCnSCB_ICTR_INTLINESNUM_Pos 0U /*!< ICTR: INTLINESNUM Position */
+#define SCnSCB_ICTR_INTLINESNUM_Msk (0xFUL /*<< SCnSCB_ICTR_INTLINESNUM_Pos*/) /*!< ICTR: INTLINESNUM Mask */
+
+/* Auxiliary Control Register Definitions */
+
+#define SCnSCB_ACTLR_DISFOLD_Pos 2U /*!< ACTLR: DISFOLD Position */
+#define SCnSCB_ACTLR_DISFOLD_Msk (1UL << SCnSCB_ACTLR_DISFOLD_Pos) /*!< ACTLR: DISFOLD Mask */
+
+#define SCnSCB_ACTLR_DISDEFWBUF_Pos 1U /*!< ACTLR: DISDEFWBUF Position */
+#define SCnSCB_ACTLR_DISDEFWBUF_Msk (1UL << SCnSCB_ACTLR_DISDEFWBUF_Pos) /*!< ACTLR: DISDEFWBUF Mask */
+
+#define SCnSCB_ACTLR_DISMCYCINT_Pos 0U /*!< ACTLR: DISMCYCINT Position */
+#define SCnSCB_ACTLR_DISMCYCINT_Msk (1UL /*<< SCnSCB_ACTLR_DISMCYCINT_Pos*/) /*!< ACTLR: DISMCYCINT Mask */
+
+/*@} end of group CMSIS_SCnotSCB */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_SysTick System Tick Timer (SysTick)
+ \brief Type definitions for the System Timer Registers.
+ @{
+ */
+
+/**
+ \brief Structure type to access the System Timer (SysTick).
+ */
+typedef struct {
+ __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
+ __IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
+ __IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
+ __IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
+} SysTick_Type;
+
+/* SysTick Control / Status Register Definitions */
+#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
+#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
+
+#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
+#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
+
+#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
+#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
+
+#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
+#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
+
+/* SysTick Reload Register Definitions */
+#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
+#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
+
+/* SysTick Current Register Definitions */
+#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
+#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
+
+/* SysTick Calibration Register Definitions */
+#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
+#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
+
+#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
+#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
+
+#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
+#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
+
+/*@} end of group CMSIS_SysTick */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_ITM Instrumentation Trace Macrocell (ITM)
+ \brief Type definitions for the Instrumentation Trace Macrocell (ITM)
+ @{
+ */
+
+/**
+ \brief Structure type to access the Instrumentation Trace Macrocell Register (ITM).
+ */
+typedef struct {
+ __OM union {
+ __OM uint8_t u8; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 8-bit */
+ __OM uint16_t u16; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 16-bit */
+ __OM uint32_t u32; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 32-bit */
+ } PORT[32U]; /*!< Offset: 0x000 ( /W) ITM Stimulus Port Registers */
+ uint32_t RESERVED0[864U];
+ __IOM uint32_t TER; /*!< Offset: 0xE00 (R/W) ITM Trace Enable Register */
+ uint32_t RESERVED1[15U];
+ __IOM uint32_t TPR; /*!< Offset: 0xE40 (R/W) ITM Trace Privilege Register */
+ uint32_t RESERVED2[15U];
+ __IOM uint32_t TCR; /*!< Offset: 0xE80 (R/W) ITM Trace Control Register */
+ uint32_t RESERVED3[29U];
+ __OM uint32_t IWR; /*!< Offset: 0xEF8 ( /W) ITM Integration Write Register */
+ __IM uint32_t IRR; /*!< Offset: 0xEFC (R/ ) ITM Integration Read Register */
+ __IOM uint32_t IMCR; /*!< Offset: 0xF00 (R/W) ITM Integration Mode Control Register */
+ uint32_t RESERVED4[43U];
+ __OM uint32_t LAR; /*!< Offset: 0xFB0 ( /W) ITM Lock Access Register */
+ __IM uint32_t LSR; /*!< Offset: 0xFB4 (R/ ) ITM Lock Status Register */
+ uint32_t RESERVED5[6U];
+ __IM uint32_t PID4; /*!< Offset: 0xFD0 (R/ ) ITM Peripheral Identification Register #4 */
+ __IM uint32_t PID5; /*!< Offset: 0xFD4 (R/ ) ITM Peripheral Identification Register #5 */
+ __IM uint32_t PID6; /*!< Offset: 0xFD8 (R/ ) ITM Peripheral Identification Register #6 */
+ __IM uint32_t PID7; /*!< Offset: 0xFDC (R/ ) ITM Peripheral Identification Register #7 */
+ __IM uint32_t PID0; /*!< Offset: 0xFE0 (R/ ) ITM Peripheral Identification Register #0 */
+ __IM uint32_t PID1; /*!< Offset: 0xFE4 (R/ ) ITM Peripheral Identification Register #1 */
+ __IM uint32_t PID2; /*!< Offset: 0xFE8 (R/ ) ITM Peripheral Identification Register #2 */
+ __IM uint32_t PID3; /*!< Offset: 0xFEC (R/ ) ITM Peripheral Identification Register #3 */
+ __IM uint32_t CID0; /*!< Offset: 0xFF0 (R/ ) ITM Component Identification Register #0 */
+ __IM uint32_t CID1; /*!< Offset: 0xFF4 (R/ ) ITM Component Identification Register #1 */
+ __IM uint32_t CID2; /*!< Offset: 0xFF8 (R/ ) ITM Component Identification Register #2 */
+ __IM uint32_t CID3; /*!< Offset: 0xFFC (R/ ) ITM Component Identification Register #3 */
+} ITM_Type;
+
+/* ITM Trace Privilege Register Definitions */
+#define ITM_TPR_PRIVMASK_Pos 0U /*!< ITM TPR: PRIVMASK Position */
+#define ITM_TPR_PRIVMASK_Msk (0xFFFFFFFFUL /*<< ITM_TPR_PRIVMASK_Pos*/) /*!< ITM TPR: PRIVMASK Mask */
+
+/* ITM Trace Control Register Definitions */
+#define ITM_TCR_BUSY_Pos 23U /*!< ITM TCR: BUSY Position */
+#define ITM_TCR_BUSY_Msk (1UL << ITM_TCR_BUSY_Pos) /*!< ITM TCR: BUSY Mask */
+
+#define ITM_TCR_TraceBusID_Pos 16U /*!< ITM TCR: ATBID Position */
+#define ITM_TCR_TraceBusID_Msk (0x7FUL << ITM_TCR_TraceBusID_Pos) /*!< ITM TCR: ATBID Mask */
+
+#define ITM_TCR_GTSFREQ_Pos 10U /*!< ITM TCR: Global timestamp frequency Position */
+#define ITM_TCR_GTSFREQ_Msk (3UL << ITM_TCR_GTSFREQ_Pos) /*!< ITM TCR: Global timestamp frequency Mask */
+
+#define ITM_TCR_TSPrescale_Pos 8U /*!< ITM TCR: TSPrescale Position */
+#define ITM_TCR_TSPrescale_Msk (3UL << ITM_TCR_TSPrescale_Pos) /*!< ITM TCR: TSPrescale Mask */
+
+#define ITM_TCR_SWOENA_Pos 4U /*!< ITM TCR: SWOENA Position */
+#define ITM_TCR_SWOENA_Msk (1UL << ITM_TCR_SWOENA_Pos) /*!< ITM TCR: SWOENA Mask */
+
+#define ITM_TCR_DWTENA_Pos 3U /*!< ITM TCR: DWTENA Position */
+#define ITM_TCR_DWTENA_Msk (1UL << ITM_TCR_DWTENA_Pos) /*!< ITM TCR: DWTENA Mask */
+
+#define ITM_TCR_SYNCENA_Pos 2U /*!< ITM TCR: SYNCENA Position */
+#define ITM_TCR_SYNCENA_Msk (1UL << ITM_TCR_SYNCENA_Pos) /*!< ITM TCR: SYNCENA Mask */
+
+#define ITM_TCR_TSENA_Pos 1U /*!< ITM TCR: TSENA Position */
+#define ITM_TCR_TSENA_Msk (1UL << ITM_TCR_TSENA_Pos) /*!< ITM TCR: TSENA Mask */
+
+#define ITM_TCR_ITMENA_Pos 0U /*!< ITM TCR: ITM Enable bit Position */
+#define ITM_TCR_ITMENA_Msk (1UL /*<< ITM_TCR_ITMENA_Pos*/) /*!< ITM TCR: ITM Enable bit Mask */
+
+/* ITM Integration Write Register Definitions */
+#define ITM_IWR_ATVALIDM_Pos 0U /*!< ITM IWR: ATVALIDM Position */
+#define ITM_IWR_ATVALIDM_Msk (1UL /*<< ITM_IWR_ATVALIDM_Pos*/) /*!< ITM IWR: ATVALIDM Mask */
+
+/* ITM Integration Read Register Definitions */
+#define ITM_IRR_ATREADYM_Pos 0U /*!< ITM IRR: ATREADYM Position */
+#define ITM_IRR_ATREADYM_Msk (1UL /*<< ITM_IRR_ATREADYM_Pos*/) /*!< ITM IRR: ATREADYM Mask */
+
+/* ITM Integration Mode Control Register Definitions */
+#define ITM_IMCR_INTEGRATION_Pos 0U /*!< ITM IMCR: INTEGRATION Position */
+#define ITM_IMCR_INTEGRATION_Msk (1UL /*<< ITM_IMCR_INTEGRATION_Pos*/) /*!< ITM IMCR: INTEGRATION Mask */
+
+/* ITM Lock Status Register Definitions */
+#define ITM_LSR_ByteAcc_Pos 2U /*!< ITM LSR: ByteAcc Position */
+#define ITM_LSR_ByteAcc_Msk (1UL << ITM_LSR_ByteAcc_Pos) /*!< ITM LSR: ByteAcc Mask */
+
+#define ITM_LSR_Access_Pos 1U /*!< ITM LSR: Access Position */
+#define ITM_LSR_Access_Msk (1UL << ITM_LSR_Access_Pos) /*!< ITM LSR: Access Mask */
+
+#define ITM_LSR_Present_Pos 0U /*!< ITM LSR: Present Position */
+#define ITM_LSR_Present_Msk (1UL /*<< ITM_LSR_Present_Pos*/) /*!< ITM LSR: Present Mask */
+
+/*@}*/ /* end of group CMSIS_ITM */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_DWT Data Watchpoint and Trace (DWT)
+ \brief Type definitions for the Data Watchpoint and Trace (DWT)
+ @{
+ */
+
+/**
+ \brief Structure type to access the Data Watchpoint and Trace Register (DWT).
+ */
+typedef struct {
+ __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) Control Register */
+ __IOM uint32_t CYCCNT; /*!< Offset: 0x004 (R/W) Cycle Count Register */
+ __IOM uint32_t CPICNT; /*!< Offset: 0x008 (R/W) CPI Count Register */
+ __IOM uint32_t EXCCNT; /*!< Offset: 0x00C (R/W) Exception Overhead Count Register */
+ __IOM uint32_t SLEEPCNT; /*!< Offset: 0x010 (R/W) Sleep Count Register */
+ __IOM uint32_t LSUCNT; /*!< Offset: 0x014 (R/W) LSU Count Register */
+ __IOM uint32_t FOLDCNT; /*!< Offset: 0x018 (R/W) Folded-instruction Count Register */
+ __IM uint32_t PCSR; /*!< Offset: 0x01C (R/ ) Program Counter Sample Register */
+ __IOM uint32_t COMP0; /*!< Offset: 0x020 (R/W) Comparator Register 0 */
+ __IOM uint32_t MASK0; /*!< Offset: 0x024 (R/W) Mask Register 0 */
+ __IOM uint32_t FUNCTION0; /*!< Offset: 0x028 (R/W) Function Register 0 */
+ uint32_t RESERVED0[1U];
+ __IOM uint32_t COMP1; /*!< Offset: 0x030 (R/W) Comparator Register 1 */
+ __IOM uint32_t MASK1; /*!< Offset: 0x034 (R/W) Mask Register 1 */
+ __IOM uint32_t FUNCTION1; /*!< Offset: 0x038 (R/W) Function Register 1 */
+ uint32_t RESERVED1[1U];
+ __IOM uint32_t COMP2; /*!< Offset: 0x040 (R/W) Comparator Register 2 */
+ __IOM uint32_t MASK2; /*!< Offset: 0x044 (R/W) Mask Register 2 */
+ __IOM uint32_t FUNCTION2; /*!< Offset: 0x048 (R/W) Function Register 2 */
+ uint32_t RESERVED2[1U];
+ __IOM uint32_t COMP3; /*!< Offset: 0x050 (R/W) Comparator Register 3 */
+ __IOM uint32_t MASK3; /*!< Offset: 0x054 (R/W) Mask Register 3 */
+ __IOM uint32_t FUNCTION3; /*!< Offset: 0x058 (R/W) Function Register 3 */
+} DWT_Type;
+
+/* DWT Control Register Definitions */
+#define DWT_CTRL_NUMCOMP_Pos 28U /*!< DWT CTRL: NUMCOMP Position */
+#define DWT_CTRL_NUMCOMP_Msk (0xFUL << DWT_CTRL_NUMCOMP_Pos) /*!< DWT CTRL: NUMCOMP Mask */
+
+#define DWT_CTRL_NOTRCPKT_Pos 27U /*!< DWT CTRL: NOTRCPKT Position */
+#define DWT_CTRL_NOTRCPKT_Msk (0x1UL << DWT_CTRL_NOTRCPKT_Pos) /*!< DWT CTRL: NOTRCPKT Mask */
+
+#define DWT_CTRL_NOEXTTRIG_Pos 26U /*!< DWT CTRL: NOEXTTRIG Position */
+#define DWT_CTRL_NOEXTTRIG_Msk (0x1UL << DWT_CTRL_NOEXTTRIG_Pos) /*!< DWT CTRL: NOEXTTRIG Mask */
+
+#define DWT_CTRL_NOCYCCNT_Pos 25U /*!< DWT CTRL: NOCYCCNT Position */
+#define DWT_CTRL_NOCYCCNT_Msk (0x1UL << DWT_CTRL_NOCYCCNT_Pos) /*!< DWT CTRL: NOCYCCNT Mask */
+
+#define DWT_CTRL_NOPRFCNT_Pos 24U /*!< DWT CTRL: NOPRFCNT Position */
+#define DWT_CTRL_NOPRFCNT_Msk (0x1UL << DWT_CTRL_NOPRFCNT_Pos) /*!< DWT CTRL: NOPRFCNT Mask */
+
+#define DWT_CTRL_CYCEVTENA_Pos 22U /*!< DWT CTRL: CYCEVTENA Position */
+#define DWT_CTRL_CYCEVTENA_Msk (0x1UL << DWT_CTRL_CYCEVTENA_Pos) /*!< DWT CTRL: CYCEVTENA Mask */
+
+#define DWT_CTRL_FOLDEVTENA_Pos 21U /*!< DWT CTRL: FOLDEVTENA Position */
+#define DWT_CTRL_FOLDEVTENA_Msk (0x1UL << DWT_CTRL_FOLDEVTENA_Pos) /*!< DWT CTRL: FOLDEVTENA Mask */
+
+#define DWT_CTRL_LSUEVTENA_Pos 20U /*!< DWT CTRL: LSUEVTENA Position */
+#define DWT_CTRL_LSUEVTENA_Msk (0x1UL << DWT_CTRL_LSUEVTENA_Pos) /*!< DWT CTRL: LSUEVTENA Mask */
+
+#define DWT_CTRL_SLEEPEVTENA_Pos 19U /*!< DWT CTRL: SLEEPEVTENA Position */
+#define DWT_CTRL_SLEEPEVTENA_Msk (0x1UL << DWT_CTRL_SLEEPEVTENA_Pos) /*!< DWT CTRL: SLEEPEVTENA Mask */
+
+#define DWT_CTRL_EXCEVTENA_Pos 18U /*!< DWT CTRL: EXCEVTENA Position */
+#define DWT_CTRL_EXCEVTENA_Msk (0x1UL << DWT_CTRL_EXCEVTENA_Pos) /*!< DWT CTRL: EXCEVTENA Mask */
+
+#define DWT_CTRL_CPIEVTENA_Pos 17U /*!< DWT CTRL: CPIEVTENA Position */
+#define DWT_CTRL_CPIEVTENA_Msk (0x1UL << DWT_CTRL_CPIEVTENA_Pos) /*!< DWT CTRL: CPIEVTENA Mask */
+
+#define DWT_CTRL_EXCTRCENA_Pos 16U /*!< DWT CTRL: EXCTRCENA Position */
+#define DWT_CTRL_EXCTRCENA_Msk (0x1UL << DWT_CTRL_EXCTRCENA_Pos) /*!< DWT CTRL: EXCTRCENA Mask */
+
+#define DWT_CTRL_PCSAMPLENA_Pos 12U /*!< DWT CTRL: PCSAMPLENA Position */
+#define DWT_CTRL_PCSAMPLENA_Msk (0x1UL << DWT_CTRL_PCSAMPLENA_Pos) /*!< DWT CTRL: PCSAMPLENA Mask */
+
+#define DWT_CTRL_SYNCTAP_Pos 10U /*!< DWT CTRL: SYNCTAP Position */
+#define DWT_CTRL_SYNCTAP_Msk (0x3UL << DWT_CTRL_SYNCTAP_Pos) /*!< DWT CTRL: SYNCTAP Mask */
+
+#define DWT_CTRL_CYCTAP_Pos 9U /*!< DWT CTRL: CYCTAP Position */
+#define DWT_CTRL_CYCTAP_Msk (0x1UL << DWT_CTRL_CYCTAP_Pos) /*!< DWT CTRL: CYCTAP Mask */
+
+#define DWT_CTRL_POSTINIT_Pos 5U /*!< DWT CTRL: POSTINIT Position */
+#define DWT_CTRL_POSTINIT_Msk (0xFUL << DWT_CTRL_POSTINIT_Pos) /*!< DWT CTRL: POSTINIT Mask */
+
+#define DWT_CTRL_POSTPRESET_Pos 1U /*!< DWT CTRL: POSTPRESET Position */
+#define DWT_CTRL_POSTPRESET_Msk (0xFUL << DWT_CTRL_POSTPRESET_Pos) /*!< DWT CTRL: POSTPRESET Mask */
+
+#define DWT_CTRL_CYCCNTENA_Pos 0U /*!< DWT CTRL: CYCCNTENA Position */
+#define DWT_CTRL_CYCCNTENA_Msk (0x1UL /*<< DWT_CTRL_CYCCNTENA_Pos*/) /*!< DWT CTRL: CYCCNTENA Mask */
+
+/* DWT CPI Count Register Definitions */
+#define DWT_CPICNT_CPICNT_Pos 0U /*!< DWT CPICNT: CPICNT Position */
+#define DWT_CPICNT_CPICNT_Msk (0xFFUL /*<< DWT_CPICNT_CPICNT_Pos*/) /*!< DWT CPICNT: CPICNT Mask */
+
+/* DWT Exception Overhead Count Register Definitions */
+#define DWT_EXCCNT_EXCCNT_Pos 0U /*!< DWT EXCCNT: EXCCNT Position */
+#define DWT_EXCCNT_EXCCNT_Msk (0xFFUL /*<< DWT_EXCCNT_EXCCNT_Pos*/) /*!< DWT EXCCNT: EXCCNT Mask */
+
+/* DWT Sleep Count Register Definitions */
+#define DWT_SLEEPCNT_SLEEPCNT_Pos 0U /*!< DWT SLEEPCNT: SLEEPCNT Position */
+#define DWT_SLEEPCNT_SLEEPCNT_Msk (0xFFUL /*<< DWT_SLEEPCNT_SLEEPCNT_Pos*/) /*!< DWT SLEEPCNT: SLEEPCNT Mask */
+
+/* DWT LSU Count Register Definitions */
+#define DWT_LSUCNT_LSUCNT_Pos 0U /*!< DWT LSUCNT: LSUCNT Position */
+#define DWT_LSUCNT_LSUCNT_Msk (0xFFUL /*<< DWT_LSUCNT_LSUCNT_Pos*/) /*!< DWT LSUCNT: LSUCNT Mask */
+
+/* DWT Folded-instruction Count Register Definitions */
+#define DWT_FOLDCNT_FOLDCNT_Pos 0U /*!< DWT FOLDCNT: FOLDCNT Position */
+#define DWT_FOLDCNT_FOLDCNT_Msk (0xFFUL /*<< DWT_FOLDCNT_FOLDCNT_Pos*/) /*!< DWT FOLDCNT: FOLDCNT Mask */
+
+/* DWT Comparator Mask Register Definitions */
+#define DWT_MASK_MASK_Pos 0U /*!< DWT MASK: MASK Position */
+#define DWT_MASK_MASK_Msk (0x1FUL /*<< DWT_MASK_MASK_Pos*/) /*!< DWT MASK: MASK Mask */
+
+/* DWT Comparator Function Register Definitions */
+#define DWT_FUNCTION_MATCHED_Pos 24U /*!< DWT FUNCTION: MATCHED Position */
+#define DWT_FUNCTION_MATCHED_Msk (0x1UL << DWT_FUNCTION_MATCHED_Pos) /*!< DWT FUNCTION: MATCHED Mask */
+
+#define DWT_FUNCTION_DATAVADDR1_Pos 16U /*!< DWT FUNCTION: DATAVADDR1 Position */
+#define DWT_FUNCTION_DATAVADDR1_Msk (0xFUL << DWT_FUNCTION_DATAVADDR1_Pos) /*!< DWT FUNCTION: DATAVADDR1 Mask */
+
+#define DWT_FUNCTION_DATAVADDR0_Pos 12U /*!< DWT FUNCTION: DATAVADDR0 Position */
+#define DWT_FUNCTION_DATAVADDR0_Msk (0xFUL << DWT_FUNCTION_DATAVADDR0_Pos) /*!< DWT FUNCTION: DATAVADDR0 Mask */
+
+#define DWT_FUNCTION_DATAVSIZE_Pos 10U /*!< DWT FUNCTION: DATAVSIZE Position */
+#define DWT_FUNCTION_DATAVSIZE_Msk (0x3UL << DWT_FUNCTION_DATAVSIZE_Pos) /*!< DWT FUNCTION: DATAVSIZE Mask */
+
+#define DWT_FUNCTION_LNK1ENA_Pos 9U /*!< DWT FUNCTION: LNK1ENA Position */
+#define DWT_FUNCTION_LNK1ENA_Msk (0x1UL << DWT_FUNCTION_LNK1ENA_Pos) /*!< DWT FUNCTION: LNK1ENA Mask */
+
+#define DWT_FUNCTION_DATAVMATCH_Pos 8U /*!< DWT FUNCTION: DATAVMATCH Position */
+#define DWT_FUNCTION_DATAVMATCH_Msk (0x1UL << DWT_FUNCTION_DATAVMATCH_Pos) /*!< DWT FUNCTION: DATAVMATCH Mask */
+
+#define DWT_FUNCTION_CYCMATCH_Pos 7U /*!< DWT FUNCTION: CYCMATCH Position */
+#define DWT_FUNCTION_CYCMATCH_Msk (0x1UL << DWT_FUNCTION_CYCMATCH_Pos) /*!< DWT FUNCTION: CYCMATCH Mask */
+
+#define DWT_FUNCTION_EMITRANGE_Pos 5U /*!< DWT FUNCTION: EMITRANGE Position */
+#define DWT_FUNCTION_EMITRANGE_Msk (0x1UL << DWT_FUNCTION_EMITRANGE_Pos) /*!< DWT FUNCTION: EMITRANGE Mask */
+
+#define DWT_FUNCTION_FUNCTION_Pos 0U /*!< DWT FUNCTION: FUNCTION Position */
+#define DWT_FUNCTION_FUNCTION_Msk (0xFUL /*<< DWT_FUNCTION_FUNCTION_Pos*/) /*!< DWT FUNCTION: FUNCTION Mask */
+
+/*@}*/ /* end of group CMSIS_DWT */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_TPI Trace Port Interface (TPI)
+ \brief Type definitions for the Trace Port Interface (TPI)
+ @{
+ */
+
+/**
+ \brief Structure type to access the Trace Port Interface Register (TPI).
+ */
+typedef struct {
+ __IM uint32_t SSPSR; /*!< Offset: 0x000 (R/ ) Supported Parallel Port Size Register */
+ __IOM uint32_t CSPSR; /*!< Offset: 0x004 (R/W) Current Parallel Port Size Register */
+ uint32_t RESERVED0[2U];
+ __IOM uint32_t ACPR; /*!< Offset: 0x010 (R/W) Asynchronous Clock Prescaler Register */
+ uint32_t RESERVED1[55U];
+ __IOM uint32_t SPPR; /*!< Offset: 0x0F0 (R/W) Selected Pin Protocol Register */
+ uint32_t RESERVED2[131U];
+ __IM uint32_t FFSR; /*!< Offset: 0x300 (R/ ) Formatter and Flush Status Register */
+ __IOM uint32_t FFCR; /*!< Offset: 0x304 (R/W) Formatter and Flush Control Register */
+ __IM uint32_t FSCR; /*!< Offset: 0x308 (R/ ) Formatter Synchronization Counter Register */
+ uint32_t RESERVED3[759U];
+ __IM uint32_t TRIGGER; /*!< Offset: 0xEE8 (R/ ) TRIGGER Register */
+ __IM uint32_t FIFO0; /*!< Offset: 0xEEC (R/ ) Integration ETM Data */
+ __IM uint32_t ITATBCTR2; /*!< Offset: 0xEF0 (R/ ) ITATBCTR2 */
+ uint32_t RESERVED4[1U];
+ __IM uint32_t ITATBCTR0; /*!< Offset: 0xEF8 (R/ ) ITATBCTR0 */
+ __IM uint32_t FIFO1; /*!< Offset: 0xEFC (R/ ) Integration ITM Data */
+ __IOM uint32_t ITCTRL; /*!< Offset: 0xF00 (R/W) Integration Mode Control */
+ uint32_t RESERVED5[39U];
+ __IOM uint32_t CLAIMSET; /*!< Offset: 0xFA0 (R/W) Claim tag set */
+ __IOM uint32_t CLAIMCLR; /*!< Offset: 0xFA4 (R/W) Claim tag clear */
+ uint32_t RESERVED7[8U];
+ __IM uint32_t DEVID; /*!< Offset: 0xFC8 (R/ ) TPIU_DEVID */
+ __IM uint32_t DEVTYPE; /*!< Offset: 0xFCC (R/ ) TPIU_DEVTYPE */
+} TPI_Type;
+
+/* TPI Asynchronous Clock Prescaler Register Definitions */
+#define TPI_ACPR_PRESCALER_Pos 0U /*!< TPI ACPR: PRESCALER Position */
+#define TPI_ACPR_PRESCALER_Msk (0x1FFFUL /*<< TPI_ACPR_PRESCALER_Pos*/) /*!< TPI ACPR: PRESCALER Mask */
+
+/* TPI Selected Pin Protocol Register Definitions */
+#define TPI_SPPR_TXMODE_Pos 0U /*!< TPI SPPR: TXMODE Position */
+#define TPI_SPPR_TXMODE_Msk (0x3UL /*<< TPI_SPPR_TXMODE_Pos*/) /*!< TPI SPPR: TXMODE Mask */
+
+/* TPI Formatter and Flush Status Register Definitions */
+#define TPI_FFSR_FtNonStop_Pos 3U /*!< TPI FFSR: FtNonStop Position */
+#define TPI_FFSR_FtNonStop_Msk (0x1UL << TPI_FFSR_FtNonStop_Pos) /*!< TPI FFSR: FtNonStop Mask */
+
+#define TPI_FFSR_TCPresent_Pos 2U /*!< TPI FFSR: TCPresent Position */
+#define TPI_FFSR_TCPresent_Msk (0x1UL << TPI_FFSR_TCPresent_Pos) /*!< TPI FFSR: TCPresent Mask */
+
+#define TPI_FFSR_FtStopped_Pos 1U /*!< TPI FFSR: FtStopped Position */
+#define TPI_FFSR_FtStopped_Msk (0x1UL << TPI_FFSR_FtStopped_Pos) /*!< TPI FFSR: FtStopped Mask */
+
+#define TPI_FFSR_FlInProg_Pos 0U /*!< TPI FFSR: FlInProg Position */
+#define TPI_FFSR_FlInProg_Msk (0x1UL /*<< TPI_FFSR_FlInProg_Pos*/) /*!< TPI FFSR: FlInProg Mask */
+
+/* TPI Formatter and Flush Control Register Definitions */
+#define TPI_FFCR_TrigIn_Pos 8U /*!< TPI FFCR: TrigIn Position */
+#define TPI_FFCR_TrigIn_Msk (0x1UL << TPI_FFCR_TrigIn_Pos) /*!< TPI FFCR: TrigIn Mask */
+
+#define TPI_FFCR_EnFCont_Pos 1U /*!< TPI FFCR: EnFCont Position */
+#define TPI_FFCR_EnFCont_Msk (0x1UL << TPI_FFCR_EnFCont_Pos) /*!< TPI FFCR: EnFCont Mask */
+
+/* TPI TRIGGER Register Definitions */
+#define TPI_TRIGGER_TRIGGER_Pos 0U /*!< TPI TRIGGER: TRIGGER Position */
+#define TPI_TRIGGER_TRIGGER_Msk (0x1UL /*<< TPI_TRIGGER_TRIGGER_Pos*/) /*!< TPI TRIGGER: TRIGGER Mask */
+
+/* TPI Integration ETM Data Register Definitions (FIFO0) */
+#define TPI_FIFO0_ITM_ATVALID_Pos 29U /*!< TPI FIFO0: ITM_ATVALID Position */
+#define TPI_FIFO0_ITM_ATVALID_Msk (0x3UL << TPI_FIFO0_ITM_ATVALID_Pos) /*!< TPI FIFO0: ITM_ATVALID Mask */
+
+#define TPI_FIFO0_ITM_bytecount_Pos 27U /*!< TPI FIFO0: ITM_bytecount Position */
+#define TPI_FIFO0_ITM_bytecount_Msk (0x3UL << TPI_FIFO0_ITM_bytecount_Pos) /*!< TPI FIFO0: ITM_bytecount Mask */
+
+#define TPI_FIFO0_ETM_ATVALID_Pos 26U /*!< TPI FIFO0: ETM_ATVALID Position */
+#define TPI_FIFO0_ETM_ATVALID_Msk (0x3UL << TPI_FIFO0_ETM_ATVALID_Pos) /*!< TPI FIFO0: ETM_ATVALID Mask */
+
+#define TPI_FIFO0_ETM_bytecount_Pos 24U /*!< TPI FIFO0: ETM_bytecount Position */
+#define TPI_FIFO0_ETM_bytecount_Msk (0x3UL << TPI_FIFO0_ETM_bytecount_Pos) /*!< TPI FIFO0: ETM_bytecount Mask */
+
+#define TPI_FIFO0_ETM2_Pos 16U /*!< TPI FIFO0: ETM2 Position */
+#define TPI_FIFO0_ETM2_Msk (0xFFUL << TPI_FIFO0_ETM2_Pos) /*!< TPI FIFO0: ETM2 Mask */
+
+#define TPI_FIFO0_ETM1_Pos 8U /*!< TPI FIFO0: ETM1 Position */
+#define TPI_FIFO0_ETM1_Msk (0xFFUL << TPI_FIFO0_ETM1_Pos) /*!< TPI FIFO0: ETM1 Mask */
+
+#define TPI_FIFO0_ETM0_Pos 0U /*!< TPI FIFO0: ETM0 Position */
+#define TPI_FIFO0_ETM0_Msk (0xFFUL /*<< TPI_FIFO0_ETM0_Pos*/) /*!< TPI FIFO0: ETM0 Mask */
+
+/* TPI ITATBCTR2 Register Definitions */
+#define TPI_ITATBCTR2_ATREADY2_Pos 0U /*!< TPI ITATBCTR2: ATREADY2 Position */
+#define TPI_ITATBCTR2_ATREADY2_Msk (0x1UL /*<< TPI_ITATBCTR2_ATREADY2_Pos*/) /*!< TPI ITATBCTR2: ATREADY2 Mask */
+
+#define TPI_ITATBCTR2_ATREADY1_Pos 0U /*!< TPI ITATBCTR2: ATREADY1 Position */
+#define TPI_ITATBCTR2_ATREADY1_Msk (0x1UL /*<< TPI_ITATBCTR2_ATREADY1_Pos*/) /*!< TPI ITATBCTR2: ATREADY1 Mask */
+
+/* TPI Integration ITM Data Register Definitions (FIFO1) */
+#define TPI_FIFO1_ITM_ATVALID_Pos 29U /*!< TPI FIFO1: ITM_ATVALID Position */
+#define TPI_FIFO1_ITM_ATVALID_Msk (0x3UL << TPI_FIFO1_ITM_ATVALID_Pos) /*!< TPI FIFO1: ITM_ATVALID Mask */
+
+#define TPI_FIFO1_ITM_bytecount_Pos 27U /*!< TPI FIFO1: ITM_bytecount Position */
+#define TPI_FIFO1_ITM_bytecount_Msk (0x3UL << TPI_FIFO1_ITM_bytecount_Pos) /*!< TPI FIFO1: ITM_bytecount Mask */
+
+#define TPI_FIFO1_ETM_ATVALID_Pos 26U /*!< TPI FIFO1: ETM_ATVALID Position */
+#define TPI_FIFO1_ETM_ATVALID_Msk (0x3UL << TPI_FIFO1_ETM_ATVALID_Pos) /*!< TPI FIFO1: ETM_ATVALID Mask */
+
+#define TPI_FIFO1_ETM_bytecount_Pos 24U /*!< TPI FIFO1: ETM_bytecount Position */
+#define TPI_FIFO1_ETM_bytecount_Msk (0x3UL << TPI_FIFO1_ETM_bytecount_Pos) /*!< TPI FIFO1: ETM_bytecount Mask */
+
+#define TPI_FIFO1_ITM2_Pos 16U /*!< TPI FIFO1: ITM2 Position */
+#define TPI_FIFO1_ITM2_Msk (0xFFUL << TPI_FIFO1_ITM2_Pos) /*!< TPI FIFO1: ITM2 Mask */
+
+#define TPI_FIFO1_ITM1_Pos 8U /*!< TPI FIFO1: ITM1 Position */
+#define TPI_FIFO1_ITM1_Msk (0xFFUL << TPI_FIFO1_ITM1_Pos) /*!< TPI FIFO1: ITM1 Mask */
+
+#define TPI_FIFO1_ITM0_Pos 0U /*!< TPI FIFO1: ITM0 Position */
+#define TPI_FIFO1_ITM0_Msk (0xFFUL /*<< TPI_FIFO1_ITM0_Pos*/) /*!< TPI FIFO1: ITM0 Mask */
+
+/* TPI ITATBCTR0 Register Definitions */
+#define TPI_ITATBCTR0_ATREADY2_Pos 0U /*!< TPI ITATBCTR0: ATREADY2 Position */
+#define TPI_ITATBCTR0_ATREADY2_Msk (0x1UL /*<< TPI_ITATBCTR0_ATREADY2_Pos*/) /*!< TPI ITATBCTR0: ATREADY2 Mask */
+
+#define TPI_ITATBCTR0_ATREADY1_Pos 0U /*!< TPI ITATBCTR0: ATREADY1 Position */
+#define TPI_ITATBCTR0_ATREADY1_Msk (0x1UL /*<< TPI_ITATBCTR0_ATREADY1_Pos*/) /*!< TPI ITATBCTR0: ATREADY1 Mask */
+
+/* TPI Integration Mode Control Register Definitions */
+#define TPI_ITCTRL_Mode_Pos 0U /*!< TPI ITCTRL: Mode Position */
+#define TPI_ITCTRL_Mode_Msk (0x3UL /*<< TPI_ITCTRL_Mode_Pos*/) /*!< TPI ITCTRL: Mode Mask */
+
+/* TPI DEVID Register Definitions */
+#define TPI_DEVID_NRZVALID_Pos 11U /*!< TPI DEVID: NRZVALID Position */
+#define TPI_DEVID_NRZVALID_Msk (0x1UL << TPI_DEVID_NRZVALID_Pos) /*!< TPI DEVID: NRZVALID Mask */
+
+#define TPI_DEVID_MANCVALID_Pos 10U /*!< TPI DEVID: MANCVALID Position */
+#define TPI_DEVID_MANCVALID_Msk (0x1UL << TPI_DEVID_MANCVALID_Pos) /*!< TPI DEVID: MANCVALID Mask */
+
+#define TPI_DEVID_PTINVALID_Pos 9U /*!< TPI DEVID: PTINVALID Position */
+#define TPI_DEVID_PTINVALID_Msk (0x1UL << TPI_DEVID_PTINVALID_Pos) /*!< TPI DEVID: PTINVALID Mask */
+
+#define TPI_DEVID_MinBufSz_Pos 6U /*!< TPI DEVID: MinBufSz Position */
+#define TPI_DEVID_MinBufSz_Msk (0x7UL << TPI_DEVID_MinBufSz_Pos) /*!< TPI DEVID: MinBufSz Mask */
+
+#define TPI_DEVID_AsynClkIn_Pos 5U /*!< TPI DEVID: AsynClkIn Position */
+#define TPI_DEVID_AsynClkIn_Msk (0x1UL << TPI_DEVID_AsynClkIn_Pos) /*!< TPI DEVID: AsynClkIn Mask */
+
+#define TPI_DEVID_NrTraceInput_Pos 0U /*!< TPI DEVID: NrTraceInput Position */
+#define TPI_DEVID_NrTraceInput_Msk (0x1FUL /*<< TPI_DEVID_NrTraceInput_Pos*/) /*!< TPI DEVID: NrTraceInput Mask */
+
+/* TPI DEVTYPE Register Definitions */
+#define TPI_DEVTYPE_SubType_Pos 4U /*!< TPI DEVTYPE: SubType Position */
+#define TPI_DEVTYPE_SubType_Msk (0xFUL /*<< TPI_DEVTYPE_SubType_Pos*/) /*!< TPI DEVTYPE: SubType Mask */
+
+#define TPI_DEVTYPE_MajorType_Pos 0U /*!< TPI DEVTYPE: MajorType Position */
+#define TPI_DEVTYPE_MajorType_Msk (0xFUL << TPI_DEVTYPE_MajorType_Pos) /*!< TPI DEVTYPE: MajorType Mask */
+
+/*@}*/ /* end of group CMSIS_TPI */
+
+#if defined(__MPU_PRESENT) && (__MPU_PRESENT == 1U)
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_MPU Memory Protection Unit (MPU)
+ \brief Type definitions for the Memory Protection Unit (MPU)
+ @{
+ */
+
+/**
+ \brief Structure type to access the Memory Protection Unit (MPU).
+ */
+typedef struct {
+ __IM uint32_t TYPE; /*!< Offset: 0x000 (R/ ) MPU Type Register */
+ __IOM uint32_t CTRL; /*!< Offset: 0x004 (R/W) MPU Control Register */
+ __IOM uint32_t RNR; /*!< Offset: 0x008 (R/W) MPU Region RNRber Register */
+ __IOM uint32_t RBAR; /*!< Offset: 0x00C (R/W) MPU Region Base Address Register */
+ __IOM uint32_t RASR; /*!< Offset: 0x010 (R/W) MPU Region Attribute and Size Register */
+ __IOM uint32_t RBAR_A1; /*!< Offset: 0x014 (R/W) MPU Alias 1 Region Base Address Register */
+ __IOM uint32_t RASR_A1; /*!< Offset: 0x018 (R/W) MPU Alias 1 Region Attribute and Size Register */
+ __IOM uint32_t RBAR_A2; /*!< Offset: 0x01C (R/W) MPU Alias 2 Region Base Address Register */
+ __IOM uint32_t RASR_A2; /*!< Offset: 0x020 (R/W) MPU Alias 2 Region Attribute and Size Register */
+ __IOM uint32_t RBAR_A3; /*!< Offset: 0x024 (R/W) MPU Alias 3 Region Base Address Register */
+ __IOM uint32_t RASR_A3; /*!< Offset: 0x028 (R/W) MPU Alias 3 Region Attribute and Size Register */
+} MPU_Type;
+
+#define MPU_TYPE_RALIASES 4U
+
+/* MPU Type Register Definitions */
+#define MPU_TYPE_IREGION_Pos 16U /*!< MPU TYPE: IREGION Position */
+#define MPU_TYPE_IREGION_Msk (0xFFUL << MPU_TYPE_IREGION_Pos) /*!< MPU TYPE: IREGION Mask */
+
+#define MPU_TYPE_DREGION_Pos 8U /*!< MPU TYPE: DREGION Position */
+#define MPU_TYPE_DREGION_Msk (0xFFUL << MPU_TYPE_DREGION_Pos) /*!< MPU TYPE: DREGION Mask */
+
+#define MPU_TYPE_SEPARATE_Pos 0U /*!< MPU TYPE: SEPARATE Position */
+#define MPU_TYPE_SEPARATE_Msk (1UL /*<< MPU_TYPE_SEPARATE_Pos*/) /*!< MPU TYPE: SEPARATE Mask */
+
+/* MPU Control Register Definitions */
+#define MPU_CTRL_PRIVDEFENA_Pos 2U /*!< MPU CTRL: PRIVDEFENA Position */
+#define MPU_CTRL_PRIVDEFENA_Msk (1UL << MPU_CTRL_PRIVDEFENA_Pos) /*!< MPU CTRL: PRIVDEFENA Mask */
+
+#define MPU_CTRL_HFNMIENA_Pos 1U /*!< MPU CTRL: HFNMIENA Position */
+#define MPU_CTRL_HFNMIENA_Msk (1UL << MPU_CTRL_HFNMIENA_Pos) /*!< MPU CTRL: HFNMIENA Mask */
+
+#define MPU_CTRL_ENABLE_Pos 0U /*!< MPU CTRL: ENABLE Position */
+#define MPU_CTRL_ENABLE_Msk (1UL /*<< MPU_CTRL_ENABLE_Pos*/) /*!< MPU CTRL: ENABLE Mask */
+
+/* MPU Region Number Register Definitions */
+#define MPU_RNR_REGION_Pos 0U /*!< MPU RNR: REGION Position */
+#define MPU_RNR_REGION_Msk (0xFFUL /*<< MPU_RNR_REGION_Pos*/) /*!< MPU RNR: REGION Mask */
+
+/* MPU Region Base Address Register Definitions */
+#define MPU_RBAR_ADDR_Pos 5U /*!< MPU RBAR: ADDR Position */
+#define MPU_RBAR_ADDR_Msk (0x7FFFFFFUL << MPU_RBAR_ADDR_Pos) /*!< MPU RBAR: ADDR Mask */
+
+#define MPU_RBAR_VALID_Pos 4U /*!< MPU RBAR: VALID Position */
+#define MPU_RBAR_VALID_Msk (1UL << MPU_RBAR_VALID_Pos) /*!< MPU RBAR: VALID Mask */
+
+#define MPU_RBAR_REGION_Pos 0U /*!< MPU RBAR: REGION Position */
+#define MPU_RBAR_REGION_Msk (0xFUL /*<< MPU_RBAR_REGION_Pos*/) /*!< MPU RBAR: REGION Mask */
+
+/* MPU Region Attribute and Size Register Definitions */
+#define MPU_RASR_ATTRS_Pos 16U /*!< MPU RASR: MPU Region Attribute field Position */
+#define MPU_RASR_ATTRS_Msk (0xFFFFUL << MPU_RASR_ATTRS_Pos) /*!< MPU RASR: MPU Region Attribute field Mask */
+
+#define MPU_RASR_XN_Pos 28U /*!< MPU RASR: ATTRS.XN Position */
+#define MPU_RASR_XN_Msk (1UL << MPU_RASR_XN_Pos) /*!< MPU RASR: ATTRS.XN Mask */
+
+#define MPU_RASR_AP_Pos 24U /*!< MPU RASR: ATTRS.AP Position */
+#define MPU_RASR_AP_Msk (0x7UL << MPU_RASR_AP_Pos) /*!< MPU RASR: ATTRS.AP Mask */
+
+#define MPU_RASR_TEX_Pos 19U /*!< MPU RASR: ATTRS.TEX Position */
+#define MPU_RASR_TEX_Msk (0x7UL << MPU_RASR_TEX_Pos) /*!< MPU RASR: ATTRS.TEX Mask */
+
+#define MPU_RASR_S_Pos 18U /*!< MPU RASR: ATTRS.S Position */
+#define MPU_RASR_S_Msk (1UL << MPU_RASR_S_Pos) /*!< MPU RASR: ATTRS.S Mask */
+
+#define MPU_RASR_C_Pos 17U /*!< MPU RASR: ATTRS.C Position */
+#define MPU_RASR_C_Msk (1UL << MPU_RASR_C_Pos) /*!< MPU RASR: ATTRS.C Mask */
+
+#define MPU_RASR_B_Pos 16U /*!< MPU RASR: ATTRS.B Position */
+#define MPU_RASR_B_Msk (1UL << MPU_RASR_B_Pos) /*!< MPU RASR: ATTRS.B Mask */
+
+#define MPU_RASR_SRD_Pos 8U /*!< MPU RASR: Sub-Region Disable Position */
+#define MPU_RASR_SRD_Msk (0xFFUL << MPU_RASR_SRD_Pos) /*!< MPU RASR: Sub-Region Disable Mask */
+
+#define MPU_RASR_SIZE_Pos 1U /*!< MPU RASR: Region Size Field Position */
+#define MPU_RASR_SIZE_Msk (0x1FUL << MPU_RASR_SIZE_Pos) /*!< MPU RASR: Region Size Field Mask */
+
+#define MPU_RASR_ENABLE_Pos 0U /*!< MPU RASR: Region enable bit Position */
+#define MPU_RASR_ENABLE_Msk (1UL /*<< MPU_RASR_ENABLE_Pos*/) /*!< MPU RASR: Region enable bit Disable Mask */
+
+/*@} end of group CMSIS_MPU */
+#endif
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
+ \brief Type definitions for the Core Debug Registers
+ @{
+ */
+
+/**
+ \brief Structure type to access the Core Debug Register (CoreDebug).
+ */
+typedef struct {
+ __IOM uint32_t DHCSR; /*!< Offset: 0x000 (R/W) Debug Halting Control and Status Register */
+ __OM uint32_t DCRSR; /*!< Offset: 0x004 ( /W) Debug Core Register Selector Register */
+ __IOM uint32_t DCRDR; /*!< Offset: 0x008 (R/W) Debug Core Register Data Register */
+ __IOM uint32_t DEMCR; /*!< Offset: 0x00C (R/W) Debug Exception and Monitor Control Register */
+} CoreDebug_Type;
+
+/* Debug Halting Control and Status Register Definitions */
+#define CoreDebug_DHCSR_DBGKEY_Pos 16U /*!< CoreDebug DHCSR: DBGKEY Position */
+#define CoreDebug_DHCSR_DBGKEY_Msk (0xFFFFUL << CoreDebug_DHCSR_DBGKEY_Pos) /*!< CoreDebug DHCSR: DBGKEY Mask */
+
+#define CoreDebug_DHCSR_S_RESET_ST_Pos 25U /*!< CoreDebug DHCSR: S_RESET_ST Position */
+#define CoreDebug_DHCSR_S_RESET_ST_Msk (1UL << CoreDebug_DHCSR_S_RESET_ST_Pos) /*!< CoreDebug DHCSR: S_RESET_ST Mask */
+
+#define CoreDebug_DHCSR_S_RETIRE_ST_Pos 24U /*!< CoreDebug DHCSR: S_RETIRE_ST Position */
+#define CoreDebug_DHCSR_S_RETIRE_ST_Msk (1UL << CoreDebug_DHCSR_S_RETIRE_ST_Pos) /*!< CoreDebug DHCSR: S_RETIRE_ST Mask */
+
+#define CoreDebug_DHCSR_S_LOCKUP_Pos 19U /*!< CoreDebug DHCSR: S_LOCKUP Position */
+#define CoreDebug_DHCSR_S_LOCKUP_Msk (1UL << CoreDebug_DHCSR_S_LOCKUP_Pos) /*!< CoreDebug DHCSR: S_LOCKUP Mask */
+
+#define CoreDebug_DHCSR_S_SLEEP_Pos 18U /*!< CoreDebug DHCSR: S_SLEEP Position */
+#define CoreDebug_DHCSR_S_SLEEP_Msk (1UL << CoreDebug_DHCSR_S_SLEEP_Pos) /*!< CoreDebug DHCSR: S_SLEEP Mask */
+
+#define CoreDebug_DHCSR_S_HALT_Pos 17U /*!< CoreDebug DHCSR: S_HALT Position */
+#define CoreDebug_DHCSR_S_HALT_Msk (1UL << CoreDebug_DHCSR_S_HALT_Pos) /*!< CoreDebug DHCSR: S_HALT Mask */
+
+#define CoreDebug_DHCSR_S_REGRDY_Pos 16U /*!< CoreDebug DHCSR: S_REGRDY Position */
+#define CoreDebug_DHCSR_S_REGRDY_Msk (1UL << CoreDebug_DHCSR_S_REGRDY_Pos) /*!< CoreDebug DHCSR: S_REGRDY Mask */
+
+#define CoreDebug_DHCSR_C_SNAPSTALL_Pos 5U /*!< CoreDebug DHCSR: C_SNAPSTALL Position */
+#define CoreDebug_DHCSR_C_SNAPSTALL_Msk (1UL << CoreDebug_DHCSR_C_SNAPSTALL_Pos) /*!< CoreDebug DHCSR: C_SNAPSTALL Mask */
+
+#define CoreDebug_DHCSR_C_MASKINTS_Pos 3U /*!< CoreDebug DHCSR: C_MASKINTS Position */
+#define CoreDebug_DHCSR_C_MASKINTS_Msk (1UL << CoreDebug_DHCSR_C_MASKINTS_Pos) /*!< CoreDebug DHCSR: C_MASKINTS Mask */
+
+#define CoreDebug_DHCSR_C_STEP_Pos 2U /*!< CoreDebug DHCSR: C_STEP Position */
+#define CoreDebug_DHCSR_C_STEP_Msk (1UL << CoreDebug_DHCSR_C_STEP_Pos) /*!< CoreDebug DHCSR: C_STEP Mask */
+
+#define CoreDebug_DHCSR_C_HALT_Pos 1U /*!< CoreDebug DHCSR: C_HALT Position */
+#define CoreDebug_DHCSR_C_HALT_Msk (1UL << CoreDebug_DHCSR_C_HALT_Pos) /*!< CoreDebug DHCSR: C_HALT Mask */
+
+#define CoreDebug_DHCSR_C_DEBUGEN_Pos 0U /*!< CoreDebug DHCSR: C_DEBUGEN Position */
+#define CoreDebug_DHCSR_C_DEBUGEN_Msk (1UL /*<< CoreDebug_DHCSR_C_DEBUGEN_Pos*/) /*!< CoreDebug DHCSR: C_DEBUGEN Mask */
+
+/* Debug Core Register Selector Register Definitions */
+#define CoreDebug_DCRSR_REGWnR_Pos 16U /*!< CoreDebug DCRSR: REGWnR Position */
+#define CoreDebug_DCRSR_REGWnR_Msk (1UL << CoreDebug_DCRSR_REGWnR_Pos) /*!< CoreDebug DCRSR: REGWnR Mask */
+
+#define CoreDebug_DCRSR_REGSEL_Pos 0U /*!< CoreDebug DCRSR: REGSEL Position */
+#define CoreDebug_DCRSR_REGSEL_Msk (0x1FUL /*<< CoreDebug_DCRSR_REGSEL_Pos*/) /*!< CoreDebug DCRSR: REGSEL Mask */
+
+/* Debug Exception and Monitor Control Register Definitions */
+#define CoreDebug_DEMCR_TRCENA_Pos 24U /*!< CoreDebug DEMCR: TRCENA Position */
+#define CoreDebug_DEMCR_TRCENA_Msk (1UL << CoreDebug_DEMCR_TRCENA_Pos) /*!< CoreDebug DEMCR: TRCENA Mask */
+
+#define CoreDebug_DEMCR_MON_REQ_Pos 19U /*!< CoreDebug DEMCR: MON_REQ Position */
+#define CoreDebug_DEMCR_MON_REQ_Msk (1UL << CoreDebug_DEMCR_MON_REQ_Pos) /*!< CoreDebug DEMCR: MON_REQ Mask */
+
+#define CoreDebug_DEMCR_MON_STEP_Pos 18U /*!< CoreDebug DEMCR: MON_STEP Position */
+#define CoreDebug_DEMCR_MON_STEP_Msk (1UL << CoreDebug_DEMCR_MON_STEP_Pos) /*!< CoreDebug DEMCR: MON_STEP Mask */
+
+#define CoreDebug_DEMCR_MON_PEND_Pos 17U /*!< CoreDebug DEMCR: MON_PEND Position */
+#define CoreDebug_DEMCR_MON_PEND_Msk (1UL << CoreDebug_DEMCR_MON_PEND_Pos) /*!< CoreDebug DEMCR: MON_PEND Mask */
+
+#define CoreDebug_DEMCR_MON_EN_Pos 16U /*!< CoreDebug DEMCR: MON_EN Position */
+#define CoreDebug_DEMCR_MON_EN_Msk (1UL << CoreDebug_DEMCR_MON_EN_Pos) /*!< CoreDebug DEMCR: MON_EN Mask */
+
+#define CoreDebug_DEMCR_VC_HARDERR_Pos 10U /*!< CoreDebug DEMCR: VC_HARDERR Position */
+#define CoreDebug_DEMCR_VC_HARDERR_Msk (1UL << CoreDebug_DEMCR_VC_HARDERR_Pos) /*!< CoreDebug DEMCR: VC_HARDERR Mask */
+
+#define CoreDebug_DEMCR_VC_INTERR_Pos 9U /*!< CoreDebug DEMCR: VC_INTERR Position */
+#define CoreDebug_DEMCR_VC_INTERR_Msk (1UL << CoreDebug_DEMCR_VC_INTERR_Pos) /*!< CoreDebug DEMCR: VC_INTERR Mask */
+
+#define CoreDebug_DEMCR_VC_BUSERR_Pos 8U /*!< CoreDebug DEMCR: VC_BUSERR Position */
+#define CoreDebug_DEMCR_VC_BUSERR_Msk (1UL << CoreDebug_DEMCR_VC_BUSERR_Pos) /*!< CoreDebug DEMCR: VC_BUSERR Mask */
+
+#define CoreDebug_DEMCR_VC_STATERR_Pos 7U /*!< CoreDebug DEMCR: VC_STATERR Position */
+#define CoreDebug_DEMCR_VC_STATERR_Msk (1UL << CoreDebug_DEMCR_VC_STATERR_Pos) /*!< CoreDebug DEMCR: VC_STATERR Mask */
+
+#define CoreDebug_DEMCR_VC_CHKERR_Pos 6U /*!< CoreDebug DEMCR: VC_CHKERR Position */
+#define CoreDebug_DEMCR_VC_CHKERR_Msk (1UL << CoreDebug_DEMCR_VC_CHKERR_Pos) /*!< CoreDebug DEMCR: VC_CHKERR Mask */
+
+#define CoreDebug_DEMCR_VC_NOCPERR_Pos 5U /*!< CoreDebug DEMCR: VC_NOCPERR Position */
+#define CoreDebug_DEMCR_VC_NOCPERR_Msk (1UL << CoreDebug_DEMCR_VC_NOCPERR_Pos) /*!< CoreDebug DEMCR: VC_NOCPERR Mask */
+
+#define CoreDebug_DEMCR_VC_MMERR_Pos 4U /*!< CoreDebug DEMCR: VC_MMERR Position */
+#define CoreDebug_DEMCR_VC_MMERR_Msk (1UL << CoreDebug_DEMCR_VC_MMERR_Pos) /*!< CoreDebug DEMCR: VC_MMERR Mask */
+
+#define CoreDebug_DEMCR_VC_CORERESET_Pos 0U /*!< CoreDebug DEMCR: VC_CORERESET Position */
+#define CoreDebug_DEMCR_VC_CORERESET_Msk (1UL /*<< CoreDebug_DEMCR_VC_CORERESET_Pos*/) /*!< CoreDebug DEMCR: VC_CORERESET Mask */
+
+/*@} end of group CMSIS_CoreDebug */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_core_bitfield Core register bit field macros
+ \brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
+ @{
+ */
+
+/**
+ \brief Mask and shift a bit field value for use in a register bit range.
+ \param[in] field Name of the register bit field.
+ \param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
+ \return Masked and shifted value.
+*/
+#define _VAL2FLD(field, value) (((uint32_t)(value) << field##_Pos) & field##_Msk)
+
+/**
+ \brief Mask and shift a register value to extract a bit filed value.
+ \param[in] field Name of the register bit field.
+ \param[in] value Value of register. This parameter is interpreted as an uint32_t type.
+ \return Masked and shifted bit field value.
+*/
+#define _FLD2VAL(field, value) (((uint32_t)(value)&field##_Msk) >> field##_Pos)
+
+/*@} end of group CMSIS_core_bitfield */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_core_base Core Definitions
+ \brief Definitions for base addresses, unions, and structures.
+ @{
+ */
+
+/* Memory mapping of Core Hardware */
+#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
+#define ITM_BASE (0xE0000000UL) /*!< ITM Base Address */
+#define DWT_BASE (0xE0001000UL) /*!< DWT Base Address */
+#define TPI_BASE (0xE0040000UL) /*!< TPI Base Address */
+#define CoreDebug_BASE (0xE000EDF0UL) /*!< Core Debug Base Address */
+#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
+#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
+#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
+
+#define SCnSCB ((SCnSCB_Type *)SCS_BASE) /*!< System control Register not in SCB */
+#define SCB ((SCB_Type *)SCB_BASE) /*!< SCB configuration struct */
+#define SysTick ((SysTick_Type *)SysTick_BASE) /*!< SysTick configuration struct */
+#define NVIC ((NVIC_Type *)NVIC_BASE) /*!< NVIC configuration struct */
+#define ITM ((ITM_Type *)ITM_BASE) /*!< ITM configuration struct */
+#define DWT ((DWT_Type *)DWT_BASE) /*!< DWT configuration struct */
+#define TPI ((TPI_Type *)TPI_BASE) /*!< TPI configuration struct */
+#define CoreDebug ((CoreDebug_Type *)CoreDebug_BASE) /*!< Core Debug configuration struct */
+
+#if defined(__MPU_PRESENT) && (__MPU_PRESENT == 1U)
+#define MPU_BASE (SCS_BASE + 0x0D90UL) /*!< Memory Protection Unit */
+#define MPU ((MPU_Type *)MPU_BASE) /*!< Memory Protection Unit */
+#endif
+
+/*@} */
+
+/*******************************************************************************
+ * Hardware Abstraction Layer
+ Core Function Interface contains:
+ - Core NVIC Functions
+ - Core SysTick Functions
+ - Core Debug Functions
+ - Core Register Access Functions
+ ******************************************************************************/
+/**
+ \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
+*/
+
+/* ########################## NVIC functions #################################### */
+/**
+ \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_NVICFunctions NVIC Functions
+ \brief Functions that manage interrupts and exceptions via the NVIC.
+ @{
+ */
+
+#ifdef CMSIS_NVIC_VIRTUAL
+#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
+#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
+#endif
+#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
+#else
+#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
+#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
+#define NVIC_EnableIRQ __NVIC_EnableIRQ
+#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
+#define NVIC_DisableIRQ __NVIC_DisableIRQ
+#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
+#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
+#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
+#define NVIC_GetActive __NVIC_GetActive
+#define NVIC_SetPriority __NVIC_SetPriority
+#define NVIC_GetPriority __NVIC_GetPriority
+#define NVIC_SystemReset __NVIC_SystemReset
+#endif /* CMSIS_NVIC_VIRTUAL */
+
+#ifdef CMSIS_VECTAB_VIRTUAL
+#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
+#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
+#endif
+#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
+#else
+#define NVIC_SetVector __NVIC_SetVector
+#define NVIC_GetVector __NVIC_GetVector
+#endif /* (CMSIS_VECTAB_VIRTUAL) */
+
+#define NVIC_USER_IRQ_OFFSET 16
+
+/* The following EXC_RETURN values are saved the LR on exception entry */
+#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
+#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
+#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
+
+/**
+ \brief Set Priority Grouping
+ \details Sets the priority grouping field using the required unlock sequence.
+ The parameter PriorityGroup is assigned to the field SCB->AIRCR [10:8] PRIGROUP field.
+ Only values from 0..7 are used.
+ In case of a conflict between priority grouping and available
+ priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
+ \param [in] PriorityGroup Priority grouping field.
+ */
+__STATIC_INLINE void __NVIC_SetPriorityGrouping(uint32_t PriorityGroup) {
+ uint32_t reg_value;
+ uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
+
+ reg_value = SCB->AIRCR; /* read old register configuration */
+ reg_value &= ~((uint32_t)(SCB_AIRCR_VECTKEY_Msk | SCB_AIRCR_PRIGROUP_Msk)); /* clear bits to change */
+ reg_value = (reg_value | ((uint32_t)0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | (PriorityGroupTmp << SCB_AIRCR_PRIGROUP_Pos)); /* Insert write key and priority group */
+ SCB->AIRCR = reg_value;
+}
+
+/**
+ \brief Get Priority Grouping
+ \details Reads the priority grouping field from the NVIC Interrupt Controller.
+ \return Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field).
+ */
+__STATIC_INLINE uint32_t __NVIC_GetPriorityGrouping(void) { return ((uint32_t)((SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) >> SCB_AIRCR_PRIGROUP_Pos)); }
+
+/**
+ \brief Enable Interrupt
+ \details Enables a device specific interrupt in the NVIC interrupt controller.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ISER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ }
+}
+
+/**
+ \brief Get Interrupt Enable status
+ \details Returns a device specific interrupt enable status from the NVIC interrupt controller.
+ \param [in] IRQn Device specific interrupt number.
+ \return 0 Interrupt is not enabled.
+ \return 1 Interrupt is enabled.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ return ((uint32_t)(((NVIC->ISER[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
+ } else {
+ return (0U);
+ }
+}
+
+/**
+ \brief Disable Interrupt
+ \details Disables a device specific interrupt in the NVIC interrupt controller.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ICER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ __DSB();
+ __ISB();
+ }
+}
+
+/**
+ \brief Get Pending Interrupt
+ \details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
+ \param [in] IRQn Device specific interrupt number.
+ \return 0 Interrupt status is not pending.
+ \return 1 Interrupt status is pending.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ return ((uint32_t)(((NVIC->ISPR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
+ } else {
+ return (0U);
+ }
+}
+
+/**
+ \brief Set Pending Interrupt
+ \details Sets the pending bit of a device specific interrupt in the NVIC pending register.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ISPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ }
+}
+
+/**
+ \brief Clear Pending Interrupt
+ \details Clears the pending bit of a device specific interrupt in the NVIC pending register.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ICPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ }
+}
+
+/**
+ \brief Get Active Interrupt
+ \details Reads the active register in the NVIC and returns the active bit for the device specific interrupt.
+ \param [in] IRQn Device specific interrupt number.
+ \return 0 Interrupt status is not active.
+ \return 1 Interrupt status is active.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE uint32_t __NVIC_GetActive(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ return ((uint32_t)(((NVIC->IABR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
+ } else {
+ return (0U);
+ }
+}
+
+/**
+ \brief Set Interrupt Priority
+ \details Sets the priority of a device specific interrupt or a processor exception.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ \param [in] IRQn Interrupt number.
+ \param [in] priority Priority to set.
+ \note The priority cannot be set for every processor exception.
+ */
+__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->IP[((uint32_t)IRQn)] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL);
+ } else {
+ SCB->SHP[(((uint32_t)IRQn) & 0xFUL) - 4UL] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL);
+ }
+}
+
+/**
+ \brief Get Interrupt Priority
+ \details Reads the priority of a device specific interrupt or a processor exception.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ \param [in] IRQn Interrupt number.
+ \return Interrupt Priority.
+ Value is aligned automatically to the implemented priority bits of the microcontroller.
+ */
+__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn) {
+
+ if ((int32_t)(IRQn) >= 0) {
+ return (((uint32_t)NVIC->IP[((uint32_t)IRQn)] >> (8U - __NVIC_PRIO_BITS)));
+ } else {
+ return (((uint32_t)SCB->SHP[(((uint32_t)IRQn) & 0xFUL) - 4UL] >> (8U - __NVIC_PRIO_BITS)));
+ }
+}
+
+/**
+ \brief Encode Priority
+ \details Encodes the priority for an interrupt with the given priority group,
+ preemptive priority value, and subpriority value.
+ In case of a conflict between priority grouping and available
+ priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
+ \param [in] PriorityGroup Used priority group.
+ \param [in] PreemptPriority Preemptive priority value (starting from 0).
+ \param [in] SubPriority Subpriority value (starting from 0).
+ \return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
+ */
+__STATIC_INLINE uint32_t NVIC_EncodePriority(uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority) {
+ uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
+ uint32_t PreemptPriorityBits;
+ uint32_t SubPriorityBits;
+
+ PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
+ SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
+
+ return (((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) | ((SubPriority & (uint32_t)((1UL << (SubPriorityBits)) - 1UL))));
+}
+
+/**
+ \brief Decode Priority
+ \details Decodes an interrupt priority value with a given priority group to
+ preemptive priority value and subpriority value.
+ In case of a conflict between priority grouping and available
+ priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
+ \param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
+ \param [in] PriorityGroup Used priority group.
+ \param [out] pPreemptPriority Preemptive priority value (starting from 0).
+ \param [out] pSubPriority Subpriority value (starting from 0).
+ */
+__STATIC_INLINE void NVIC_DecodePriority(uint32_t Priority, uint32_t PriorityGroup, uint32_t *const pPreemptPriority, uint32_t *const pSubPriority) {
+ uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
+ uint32_t PreemptPriorityBits;
+ uint32_t SubPriorityBits;
+
+ PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
+ SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
+
+ *pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
+ *pSubPriority = (Priority) & (uint32_t)((1UL << (SubPriorityBits)) - 1UL);
+}
+
+/**
+ \brief Set Interrupt Vector
+ \details Sets an interrupt vector in SRAM based interrupt vector table.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ VTOR must been relocated to SRAM before.
+ \param [in] IRQn Interrupt number
+ \param [in] vector Address of interrupt handler function
+ */
+__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) {
+ uint32_t *vectors = (uint32_t *)SCB->VTOR;
+ vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector;
+}
+
+/**
+ \brief Get Interrupt Vector
+ \details Reads an interrupt vector from interrupt vector table.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ \param [in] IRQn Interrupt number.
+ \return Address of interrupt handler function
+ */
+__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn) {
+ uint32_t *vectors = (uint32_t *)SCB->VTOR;
+ return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET];
+}
+
+/**
+ \brief System Reset
+ \details Initiates a system reset request to reset the MCU.
+ */
+__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void) {
+ __DSB(); /* Ensure all outstanding memory accesses included
+ buffered write are completed before reset */
+ SCB->AIRCR = (uint32_t)((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | (SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) | SCB_AIRCR_SYSRESETREQ_Msk); /* Keep priority group unchanged */
+ __DSB(); /* Ensure completion of memory access */
+
+ for (;;) /* wait until reset */
+ {
+ __NOP();
+ }
+}
+
+/*@} end of CMSIS_Core_NVICFunctions */
+
+/* ########################## MPU functions #################################### */
+
+#if defined(__MPU_PRESENT) && (__MPU_PRESENT == 1U)
+
+#include "mpu_armv7.h"
+
+#endif
+
+/* ########################## FPU functions #################################### */
+/**
+ \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_FpuFunctions FPU Functions
+ \brief Function that provides FPU type.
+ @{
+ */
+
+/**
+ \brief get FPU type
+ \details returns the FPU type
+ \returns
+ - \b 0: No FPU
+ - \b 1: Single precision FPU
+ - \b 2: Double + Single precision FPU
+ */
+__STATIC_INLINE uint32_t SCB_GetFPUType(void) { return 0U; /* No FPU */ }
+
+/*@} end of CMSIS_Core_FpuFunctions */
+
+/* ################################## SysTick function ############################################ */
+/**
+ \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_SysTickFunctions SysTick Functions
+ \brief Functions that configure the System.
+ @{
+ */
+
+#if defined(__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
+
+/**
+ \brief System Tick Configuration
+ \details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
+ Counter is in free running mode to generate periodic interrupts.
+ \param [in] ticks Number of ticks between two interrupts.
+ \return 0 Function succeeded.
+ \return 1 Function failed.
+ \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
+ function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
+ must contain a vendor-specific implementation of this function.
+ */
+__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks) {
+ if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) {
+ return (1UL); /* Reload value impossible */
+ }
+
+ SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
+ NVIC_SetPriority(SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
+ SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
+ SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
+ return (0UL); /* Function successful */
+}
+
+#endif
+
+/*@} end of CMSIS_Core_SysTickFunctions */
+
+/* ##################################### Debug In/Output function ########################################### */
+/**
+ \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_core_DebugFunctions ITM Functions
+ \brief Functions that access the ITM debug interface.
+ @{
+ */
+
+extern volatile int32_t ITM_RxBuffer; /*!< External variable to receive characters. */
+#define ITM_RXBUFFER_EMPTY ((int32_t)0x5AA55AA5U) /*!< Value identifying \ref ITM_RxBuffer is ready for next character. */
+
+/**
+ \brief ITM Send Character
+ \details Transmits a character via the ITM channel 0, and
+ \li Just returns when no debugger is connected that has booked the output.
+ \li Is blocking when a debugger is connected, but the previous character sent has not been transmitted.
+ \param [in] ch Character to transmit.
+ \returns Character to transmit.
+ */
+__STATIC_INLINE uint32_t ITM_SendChar(uint32_t ch) {
+ if (((ITM->TCR & ITM_TCR_ITMENA_Msk) != 0UL) && /* ITM enabled */
+ ((ITM->TER & 1UL) != 0UL)) /* ITM Port #0 enabled */
+ {
+ while (ITM->PORT[0U].u32 == 0UL) {
+ __NOP();
+ }
+ ITM->PORT[0U].u8 = (uint8_t)ch;
+ }
+ return (ch);
+}
+
+/**
+ \brief ITM Receive Character
+ \details Inputs a character via the external variable \ref ITM_RxBuffer.
+ \return Received character.
+ \return -1 No character pending.
+ */
+__STATIC_INLINE int32_t ITM_ReceiveChar(void) {
+ int32_t ch = -1; /* no character available */
+
+ if (ITM_RxBuffer != ITM_RXBUFFER_EMPTY) {
+ ch = ITM_RxBuffer;
+ ITM_RxBuffer = ITM_RXBUFFER_EMPTY; /* ready for next character */
+ }
+
+ return (ch);
+}
+
+/**
+ \brief ITM Check Character
+ \details Checks whether a character is pending for reading in the variable \ref ITM_RxBuffer.
+ \return 0 No character available.
+ \return 1 Character available.
+ */
+__STATIC_INLINE int32_t ITM_CheckChar(void) {
+
+ if (ITM_RxBuffer == ITM_RXBUFFER_EMPTY) {
+ return (0); /* no character available */
+ } else {
+ return (1); /* character available */
+ }
+}
+
+/*@} end of CMSIS_core_DebugFunctions */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __CORE_CM3_H_DEPENDANT */
+
+#endif /* __CMSIS_GENERIC */
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Include/core_sc000.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/core_sc000.h new file mode 100644 index 00000000..0b11fb27 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/core_sc000.h @@ -0,0 +1,933 @@ +/**************************************************************************/ /**
+ * @file core_sc000.h
+ * @brief CMSIS SC000 Core Peripheral Access Layer Header File
+ * @version V5.0.5
+ * @date 28. May 2018
+ ******************************************************************************/
+/*
+ * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#if defined(__ICCARM__)
+#pragma system_include /* treat file as system include file for MISRA check */
+#elif defined(__clang__)
+#pragma clang system_header /* treat file as system include file */
+#endif
+
+#ifndef __CORE_SC000_H_GENERIC
+#define __CORE_SC000_H_GENERIC
+
+#include <stdint.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
+ CMSIS violates the following MISRA-C:2004 rules:
+
+ \li Required Rule 8.5, object/function definition in header file.<br>
+ Function definitions in header files are used to allow 'inlining'.
+
+ \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
+ Unions are used for effective representation of core registers.
+
+ \li Advisory Rule 19.7, Function-like macro defined.<br>
+ Function-like macros are used to allow more efficient code.
+ */
+
+/*******************************************************************************
+ * CMSIS definitions
+ ******************************************************************************/
+/**
+ \ingroup SC000
+ @{
+ */
+
+#include "cmsis_version.h"
+
+/* CMSIS SC000 definitions */
+#define __SC000_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
+#define __SC000_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
+#define __SC000_CMSIS_VERSION ((__SC000_CMSIS_VERSION_MAIN << 16U) | __SC000_CMSIS_VERSION_SUB) /*!< \deprecated CMSIS HAL version number */
+
+#define __CORTEX_SC (000U) /*!< Cortex secure core */
+
+/** __FPU_USED indicates whether an FPU is used or not.
+ This core does not support an FPU at all
+*/
+#define __FPU_USED 0U
+
+#if defined(__CC_ARM)
+#if defined __TARGET_FPU_VFP
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+#if defined __ARM_PCS_VFP
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__GNUC__)
+#if defined(__VFP_FP__) && !defined(__SOFTFP__)
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__ICCARM__)
+#if defined __ARMVFP__
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__TI_ARM__)
+#if defined __TI_VFP_SUPPORT__
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__TASKING__)
+#if defined __FPU_VFP__
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__CSMC__)
+#if (__CSMC__ & 0x400U)
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#endif
+
+#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __CORE_SC000_H_GENERIC */
+
+#ifndef __CMSIS_GENERIC
+
+#ifndef __CORE_SC000_H_DEPENDANT
+#define __CORE_SC000_H_DEPENDANT
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* check device defines and use defaults */
+#if defined __CHECK_DEVICE_DEFINES
+#ifndef __SC000_REV
+#define __SC000_REV 0x0000U
+#warning "__SC000_REV not defined in device header file; using default!"
+#endif
+
+#ifndef __MPU_PRESENT
+#define __MPU_PRESENT 0U
+#warning "__MPU_PRESENT not defined in device header file; using default!"
+#endif
+
+#ifndef __NVIC_PRIO_BITS
+#define __NVIC_PRIO_BITS 2U
+#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
+#endif
+
+#ifndef __Vendor_SysTickConfig
+#define __Vendor_SysTickConfig 0U
+#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
+#endif
+#endif
+
+/* IO definitions (access restrictions to peripheral registers) */
+/**
+ \defgroup CMSIS_glob_defs CMSIS Global Defines
+
+ <strong>IO Type Qualifiers</strong> are used
+ \li to specify the access to peripheral variables.
+ \li for automatic generation of peripheral register debug information.
+*/
+#ifdef __cplusplus
+#define __I volatile /*!< Defines 'read only' permissions */
+#else
+#define __I volatile const /*!< Defines 'read only' permissions */
+#endif
+#define __O volatile /*!< Defines 'write only' permissions */
+#define __IO volatile /*!< Defines 'read / write' permissions */
+
+/* following defines should be used for structure members */
+#define __IM volatile const /*! Defines 'read only' structure member permissions */
+#define __OM volatile /*! Defines 'write only' structure member permissions */
+#define __IOM volatile /*! Defines 'read / write' structure member permissions */
+
+/*@} end of group SC000 */
+
+/*******************************************************************************
+ * Register Abstraction
+ Core Register contain:
+ - Core Register
+ - Core NVIC Register
+ - Core SCB Register
+ - Core SysTick Register
+ - Core MPU Register
+ ******************************************************************************/
+/**
+ \defgroup CMSIS_core_register Defines and Type Definitions
+ \brief Type definitions and defines for Cortex-M processor based devices.
+*/
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_CORE Status and Control Registers
+ \brief Core Register type definitions.
+ @{
+ */
+
+/**
+ \brief Union type to access the Application Program Status Register (APSR).
+ */
+typedef union {
+ struct {
+ uint32_t _reserved0 : 28; /*!< bit: 0..27 Reserved */
+ uint32_t V : 1; /*!< bit: 28 Overflow condition code flag */
+ uint32_t C : 1; /*!< bit: 29 Carry condition code flag */
+ uint32_t Z : 1; /*!< bit: 30 Zero condition code flag */
+ uint32_t N : 1; /*!< bit: 31 Negative condition code flag */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} APSR_Type;
+
+/* APSR Register Definitions */
+#define APSR_N_Pos 31U /*!< APSR: N Position */
+#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
+
+#define APSR_Z_Pos 30U /*!< APSR: Z Position */
+#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
+
+#define APSR_C_Pos 29U /*!< APSR: C Position */
+#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
+
+#define APSR_V_Pos 28U /*!< APSR: V Position */
+#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
+
+/**
+ \brief Union type to access the Interrupt Program Status Register (IPSR).
+ */
+typedef union {
+ struct {
+ uint32_t ISR : 9; /*!< bit: 0.. 8 Exception number */
+ uint32_t _reserved0 : 23; /*!< bit: 9..31 Reserved */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} IPSR_Type;
+
+/* IPSR Register Definitions */
+#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
+#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
+
+/**
+ \brief Union type to access the Special-Purpose Program Status Registers (xPSR).
+ */
+typedef union {
+ struct {
+ uint32_t ISR : 9; /*!< bit: 0.. 8 Exception number */
+ uint32_t _reserved0 : 15; /*!< bit: 9..23 Reserved */
+ uint32_t T : 1; /*!< bit: 24 Thumb bit (read 0) */
+ uint32_t _reserved1 : 3; /*!< bit: 25..27 Reserved */
+ uint32_t V : 1; /*!< bit: 28 Overflow condition code flag */
+ uint32_t C : 1; /*!< bit: 29 Carry condition code flag */
+ uint32_t Z : 1; /*!< bit: 30 Zero condition code flag */
+ uint32_t N : 1; /*!< bit: 31 Negative condition code flag */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} xPSR_Type;
+
+/* xPSR Register Definitions */
+#define xPSR_N_Pos 31U /*!< xPSR: N Position */
+#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
+
+#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
+#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
+
+#define xPSR_C_Pos 29U /*!< xPSR: C Position */
+#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
+
+#define xPSR_V_Pos 28U /*!< xPSR: V Position */
+#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
+
+#define xPSR_T_Pos 24U /*!< xPSR: T Position */
+#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
+
+#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
+#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
+
+/**
+ \brief Union type to access the Control Registers (CONTROL).
+ */
+typedef union {
+ struct {
+ uint32_t _reserved0 : 1; /*!< bit: 0 Reserved */
+ uint32_t SPSEL : 1; /*!< bit: 1 Stack to be used */
+ uint32_t _reserved1 : 30; /*!< bit: 2..31 Reserved */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} CONTROL_Type;
+
+/* CONTROL Register Definitions */
+#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
+#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
+
+/*@} end of group CMSIS_CORE */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
+ \brief Type definitions for the NVIC Registers
+ @{
+ */
+
+/**
+ \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
+ */
+typedef struct {
+ __IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
+ uint32_t RESERVED0[31U];
+ __IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
+ uint32_t RSERVED1[31U];
+ __IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
+ uint32_t RESERVED2[31U];
+ __IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
+ uint32_t RESERVED3[31U];
+ uint32_t RESERVED4[64U];
+ __IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
+} NVIC_Type;
+
+/*@} end of group CMSIS_NVIC */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_SCB System Control Block (SCB)
+ \brief Type definitions for the System Control Block Registers
+ @{
+ */
+
+/**
+ \brief Structure type to access the System Control Block (SCB).
+ */
+typedef struct {
+ __IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
+ __IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
+ __IOM uint32_t VTOR; /*!< Offset: 0x008 (R/W) Vector Table Offset Register */
+ __IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
+ __IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
+ __IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
+ uint32_t RESERVED0[1U];
+ __IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
+ __IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
+ uint32_t RESERVED1[154U];
+ __IOM uint32_t SFCR; /*!< Offset: 0x290 (R/W) Security Features Control Register */
+} SCB_Type;
+
+/* SCB CPUID Register Definitions */
+#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
+#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
+
+#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
+#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
+
+#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
+#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
+
+#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
+#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
+
+#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
+#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
+
+/* SCB Interrupt Control State Register Definitions */
+#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
+#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
+
+#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
+#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
+
+#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
+#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
+
+#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
+#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
+
+#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
+#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
+
+#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
+#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
+
+#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
+#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
+
+#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
+#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
+
+#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
+#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
+
+/* SCB Interrupt Control State Register Definitions */
+#define SCB_VTOR_TBLOFF_Pos 7U /*!< SCB VTOR: TBLOFF Position */
+#define SCB_VTOR_TBLOFF_Msk (0x1FFFFFFUL << SCB_VTOR_TBLOFF_Pos) /*!< SCB VTOR: TBLOFF Mask */
+
+/* SCB Application Interrupt and Reset Control Register Definitions */
+#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
+#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
+
+#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
+#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
+
+#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
+#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
+
+#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
+#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
+
+#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
+#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
+
+/* SCB System Control Register Definitions */
+#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
+#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
+
+#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
+#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
+
+#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
+#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
+
+/* SCB Configuration Control Register Definitions */
+#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
+#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
+
+#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
+#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
+
+/* SCB System Handler Control and State Register Definitions */
+#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
+#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
+
+/*@} end of group CMSIS_SCB */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB)
+ \brief Type definitions for the System Control and ID Register not in the SCB
+ @{
+ */
+
+/**
+ \brief Structure type to access the System Control and ID Register not in the SCB.
+ */
+typedef struct {
+ uint32_t RESERVED0[2U];
+ __IOM uint32_t ACTLR; /*!< Offset: 0x008 (R/W) Auxiliary Control Register */
+} SCnSCB_Type;
+
+/* Auxiliary Control Register Definitions */
+#define SCnSCB_ACTLR_DISMCYCINT_Pos 0U /*!< ACTLR: DISMCYCINT Position */
+#define SCnSCB_ACTLR_DISMCYCINT_Msk (1UL /*<< SCnSCB_ACTLR_DISMCYCINT_Pos*/) /*!< ACTLR: DISMCYCINT Mask */
+
+/*@} end of group CMSIS_SCnotSCB */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_SysTick System Tick Timer (SysTick)
+ \brief Type definitions for the System Timer Registers.
+ @{
+ */
+
+/**
+ \brief Structure type to access the System Timer (SysTick).
+ */
+typedef struct {
+ __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
+ __IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
+ __IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
+ __IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
+} SysTick_Type;
+
+/* SysTick Control / Status Register Definitions */
+#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
+#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
+
+#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
+#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
+
+#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
+#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
+
+#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
+#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
+
+/* SysTick Reload Register Definitions */
+#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
+#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
+
+/* SysTick Current Register Definitions */
+#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
+#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
+
+/* SysTick Calibration Register Definitions */
+#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
+#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
+
+#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
+#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
+
+#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
+#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
+
+/*@} end of group CMSIS_SysTick */
+
+#if defined(__MPU_PRESENT) && (__MPU_PRESENT == 1U)
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_MPU Memory Protection Unit (MPU)
+ \brief Type definitions for the Memory Protection Unit (MPU)
+ @{
+ */
+
+/**
+ \brief Structure type to access the Memory Protection Unit (MPU).
+ */
+typedef struct {
+ __IM uint32_t TYPE; /*!< Offset: 0x000 (R/ ) MPU Type Register */
+ __IOM uint32_t CTRL; /*!< Offset: 0x004 (R/W) MPU Control Register */
+ __IOM uint32_t RNR; /*!< Offset: 0x008 (R/W) MPU Region RNRber Register */
+ __IOM uint32_t RBAR; /*!< Offset: 0x00C (R/W) MPU Region Base Address Register */
+ __IOM uint32_t RASR; /*!< Offset: 0x010 (R/W) MPU Region Attribute and Size Register */
+} MPU_Type;
+
+/* MPU Type Register Definitions */
+#define MPU_TYPE_IREGION_Pos 16U /*!< MPU TYPE: IREGION Position */
+#define MPU_TYPE_IREGION_Msk (0xFFUL << MPU_TYPE_IREGION_Pos) /*!< MPU TYPE: IREGION Mask */
+
+#define MPU_TYPE_DREGION_Pos 8U /*!< MPU TYPE: DREGION Position */
+#define MPU_TYPE_DREGION_Msk (0xFFUL << MPU_TYPE_DREGION_Pos) /*!< MPU TYPE: DREGION Mask */
+
+#define MPU_TYPE_SEPARATE_Pos 0U /*!< MPU TYPE: SEPARATE Position */
+#define MPU_TYPE_SEPARATE_Msk (1UL /*<< MPU_TYPE_SEPARATE_Pos*/) /*!< MPU TYPE: SEPARATE Mask */
+
+/* MPU Control Register Definitions */
+#define MPU_CTRL_PRIVDEFENA_Pos 2U /*!< MPU CTRL: PRIVDEFENA Position */
+#define MPU_CTRL_PRIVDEFENA_Msk (1UL << MPU_CTRL_PRIVDEFENA_Pos) /*!< MPU CTRL: PRIVDEFENA Mask */
+
+#define MPU_CTRL_HFNMIENA_Pos 1U /*!< MPU CTRL: HFNMIENA Position */
+#define MPU_CTRL_HFNMIENA_Msk (1UL << MPU_CTRL_HFNMIENA_Pos) /*!< MPU CTRL: HFNMIENA Mask */
+
+#define MPU_CTRL_ENABLE_Pos 0U /*!< MPU CTRL: ENABLE Position */
+#define MPU_CTRL_ENABLE_Msk (1UL /*<< MPU_CTRL_ENABLE_Pos*/) /*!< MPU CTRL: ENABLE Mask */
+
+/* MPU Region Number Register Definitions */
+#define MPU_RNR_REGION_Pos 0U /*!< MPU RNR: REGION Position */
+#define MPU_RNR_REGION_Msk (0xFFUL /*<< MPU_RNR_REGION_Pos*/) /*!< MPU RNR: REGION Mask */
+
+/* MPU Region Base Address Register Definitions */
+#define MPU_RBAR_ADDR_Pos 8U /*!< MPU RBAR: ADDR Position */
+#define MPU_RBAR_ADDR_Msk (0xFFFFFFUL << MPU_RBAR_ADDR_Pos) /*!< MPU RBAR: ADDR Mask */
+
+#define MPU_RBAR_VALID_Pos 4U /*!< MPU RBAR: VALID Position */
+#define MPU_RBAR_VALID_Msk (1UL << MPU_RBAR_VALID_Pos) /*!< MPU RBAR: VALID Mask */
+
+#define MPU_RBAR_REGION_Pos 0U /*!< MPU RBAR: REGION Position */
+#define MPU_RBAR_REGION_Msk (0xFUL /*<< MPU_RBAR_REGION_Pos*/) /*!< MPU RBAR: REGION Mask */
+
+/* MPU Region Attribute and Size Register Definitions */
+#define MPU_RASR_ATTRS_Pos 16U /*!< MPU RASR: MPU Region Attribute field Position */
+#define MPU_RASR_ATTRS_Msk (0xFFFFUL << MPU_RASR_ATTRS_Pos) /*!< MPU RASR: MPU Region Attribute field Mask */
+
+#define MPU_RASR_XN_Pos 28U /*!< MPU RASR: ATTRS.XN Position */
+#define MPU_RASR_XN_Msk (1UL << MPU_RASR_XN_Pos) /*!< MPU RASR: ATTRS.XN Mask */
+
+#define MPU_RASR_AP_Pos 24U /*!< MPU RASR: ATTRS.AP Position */
+#define MPU_RASR_AP_Msk (0x7UL << MPU_RASR_AP_Pos) /*!< MPU RASR: ATTRS.AP Mask */
+
+#define MPU_RASR_TEX_Pos 19U /*!< MPU RASR: ATTRS.TEX Position */
+#define MPU_RASR_TEX_Msk (0x7UL << MPU_RASR_TEX_Pos) /*!< MPU RASR: ATTRS.TEX Mask */
+
+#define MPU_RASR_S_Pos 18U /*!< MPU RASR: ATTRS.S Position */
+#define MPU_RASR_S_Msk (1UL << MPU_RASR_S_Pos) /*!< MPU RASR: ATTRS.S Mask */
+
+#define MPU_RASR_C_Pos 17U /*!< MPU RASR: ATTRS.C Position */
+#define MPU_RASR_C_Msk (1UL << MPU_RASR_C_Pos) /*!< MPU RASR: ATTRS.C Mask */
+
+#define MPU_RASR_B_Pos 16U /*!< MPU RASR: ATTRS.B Position */
+#define MPU_RASR_B_Msk (1UL << MPU_RASR_B_Pos) /*!< MPU RASR: ATTRS.B Mask */
+
+#define MPU_RASR_SRD_Pos 8U /*!< MPU RASR: Sub-Region Disable Position */
+#define MPU_RASR_SRD_Msk (0xFFUL << MPU_RASR_SRD_Pos) /*!< MPU RASR: Sub-Region Disable Mask */
+
+#define MPU_RASR_SIZE_Pos 1U /*!< MPU RASR: Region Size Field Position */
+#define MPU_RASR_SIZE_Msk (0x1FUL << MPU_RASR_SIZE_Pos) /*!< MPU RASR: Region Size Field Mask */
+
+#define MPU_RASR_ENABLE_Pos 0U /*!< MPU RASR: Region enable bit Position */
+#define MPU_RASR_ENABLE_Msk (1UL /*<< MPU_RASR_ENABLE_Pos*/) /*!< MPU RASR: Region enable bit Disable Mask */
+
+/*@} end of group CMSIS_MPU */
+#endif
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
+ \brief SC000 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
+ Therefore they are not covered by the SC000 header file.
+ @{
+ */
+/*@} end of group CMSIS_CoreDebug */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_core_bitfield Core register bit field macros
+ \brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
+ @{
+ */
+
+/**
+ \brief Mask and shift a bit field value for use in a register bit range.
+ \param[in] field Name of the register bit field.
+ \param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
+ \return Masked and shifted value.
+*/
+#define _VAL2FLD(field, value) (((uint32_t)(value) << field##_Pos) & field##_Msk)
+
+/**
+ \brief Mask and shift a register value to extract a bit filed value.
+ \param[in] field Name of the register bit field.
+ \param[in] value Value of register. This parameter is interpreted as an uint32_t type.
+ \return Masked and shifted bit field value.
+*/
+#define _FLD2VAL(field, value) (((uint32_t)(value)&field##_Msk) >> field##_Pos)
+
+/*@} end of group CMSIS_core_bitfield */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_core_base Core Definitions
+ \brief Definitions for base addresses, unions, and structures.
+ @{
+ */
+
+/* Memory mapping of Core Hardware */
+#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
+#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
+#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
+#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
+
+#define SCnSCB ((SCnSCB_Type *)SCS_BASE) /*!< System control Register not in SCB */
+#define SCB ((SCB_Type *)SCB_BASE) /*!< SCB configuration struct */
+#define SysTick ((SysTick_Type *)SysTick_BASE) /*!< SysTick configuration struct */
+#define NVIC ((NVIC_Type *)NVIC_BASE) /*!< NVIC configuration struct */
+
+#if defined(__MPU_PRESENT) && (__MPU_PRESENT == 1U)
+#define MPU_BASE (SCS_BASE + 0x0D90UL) /*!< Memory Protection Unit */
+#define MPU ((MPU_Type *)MPU_BASE) /*!< Memory Protection Unit */
+#endif
+
+/*@} */
+
+/*******************************************************************************
+ * Hardware Abstraction Layer
+ Core Function Interface contains:
+ - Core NVIC Functions
+ - Core SysTick Functions
+ - Core Register Access Functions
+ ******************************************************************************/
+/**
+ \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
+*/
+
+/* ########################## NVIC functions #################################### */
+/**
+ \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_NVICFunctions NVIC Functions
+ \brief Functions that manage interrupts and exceptions via the NVIC.
+ @{
+ */
+
+#ifdef CMSIS_NVIC_VIRTUAL
+#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
+#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
+#endif
+#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
+#else
+/*#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping not available for SC000 */
+/*#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping not available for SC000 */
+#define NVIC_EnableIRQ __NVIC_EnableIRQ
+#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
+#define NVIC_DisableIRQ __NVIC_DisableIRQ
+#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
+#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
+#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
+/*#define NVIC_GetActive __NVIC_GetActive not available for SC000 */
+#define NVIC_SetPriority __NVIC_SetPriority
+#define NVIC_GetPriority __NVIC_GetPriority
+#define NVIC_SystemReset __NVIC_SystemReset
+#endif /* CMSIS_NVIC_VIRTUAL */
+
+#ifdef CMSIS_VECTAB_VIRTUAL
+#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
+#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
+#endif
+#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
+#else
+#define NVIC_SetVector __NVIC_SetVector
+#define NVIC_GetVector __NVIC_GetVector
+#endif /* (CMSIS_VECTAB_VIRTUAL) */
+
+#define NVIC_USER_IRQ_OFFSET 16
+
+/* The following EXC_RETURN values are saved the LR on exception entry */
+#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
+#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
+#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
+
+/* Interrupt Priorities are WORD accessible only under Armv6-M */
+/* The following MACROS handle generation of the register offset and byte masks */
+#define _BIT_SHIFT(IRQn) (((((uint32_t)(int32_t)(IRQn))) & 0x03UL) * 8UL)
+#define _SHP_IDX(IRQn) ((((((uint32_t)(int32_t)(IRQn)) & 0x0FUL) - 8UL) >> 2UL))
+#define _IP_IDX(IRQn) ((((uint32_t)(int32_t)(IRQn)) >> 2UL))
+
+/**
+ \brief Enable Interrupt
+ \details Enables a device specific interrupt in the NVIC interrupt controller.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ }
+}
+
+/**
+ \brief Get Interrupt Enable status
+ \details Returns a device specific interrupt enable status from the NVIC interrupt controller.
+ \param [in] IRQn Device specific interrupt number.
+ \return 0 Interrupt is not enabled.
+ \return 1 Interrupt is enabled.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ return ((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
+ } else {
+ return (0U);
+ }
+}
+
+/**
+ \brief Disable Interrupt
+ \details Disables a device specific interrupt in the NVIC interrupt controller.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ __DSB();
+ __ISB();
+ }
+}
+
+/**
+ \brief Get Pending Interrupt
+ \details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
+ \param [in] IRQn Device specific interrupt number.
+ \return 0 Interrupt status is not pending.
+ \return 1 Interrupt status is pending.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ return ((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
+ } else {
+ return (0U);
+ }
+}
+
+/**
+ \brief Set Pending Interrupt
+ \details Sets the pending bit of a device specific interrupt in the NVIC pending register.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ }
+}
+
+/**
+ \brief Clear Pending Interrupt
+ \details Clears the pending bit of a device specific interrupt in the NVIC pending register.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ }
+}
+
+/**
+ \brief Set Interrupt Priority
+ \details Sets the priority of a device specific interrupt or a processor exception.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ \param [in] IRQn Interrupt number.
+ \param [in] priority Priority to set.
+ \note The priority cannot be set for every processor exception.
+ */
+__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) | (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
+ } else {
+ SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) | (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
+ }
+}
+
+/**
+ \brief Get Interrupt Priority
+ \details Reads the priority of a device specific interrupt or a processor exception.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ \param [in] IRQn Interrupt number.
+ \return Interrupt Priority.
+ Value is aligned automatically to the implemented priority bits of the microcontroller.
+ */
+__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn) {
+
+ if ((int32_t)(IRQn) >= 0) {
+ return ((uint32_t)(((NVIC->IP[_IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn)) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
+ } else {
+ return ((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn)) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
+ }
+}
+
+/**
+ \brief Set Interrupt Vector
+ \details Sets an interrupt vector in SRAM based interrupt vector table.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ VTOR must been relocated to SRAM before.
+ \param [in] IRQn Interrupt number
+ \param [in] vector Address of interrupt handler function
+ */
+__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) {
+ uint32_t *vectors = (uint32_t *)SCB->VTOR;
+ vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector;
+}
+
+/**
+ \brief Get Interrupt Vector
+ \details Reads an interrupt vector from interrupt vector table.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ \param [in] IRQn Interrupt number.
+ \return Address of interrupt handler function
+ */
+__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn) {
+ uint32_t *vectors = (uint32_t *)SCB->VTOR;
+ return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET];
+}
+
+/**
+ \brief System Reset
+ \details Initiates a system reset request to reset the MCU.
+ */
+__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void) {
+ __DSB(); /* Ensure all outstanding memory accesses included
+ buffered write are completed before reset */
+ SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | SCB_AIRCR_SYSRESETREQ_Msk);
+ __DSB(); /* Ensure completion of memory access */
+
+ for (;;) /* wait until reset */
+ {
+ __NOP();
+ }
+}
+
+/*@} end of CMSIS_Core_NVICFunctions */
+
+/* ########################## FPU functions #################################### */
+/**
+ \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_FpuFunctions FPU Functions
+ \brief Function that provides FPU type.
+ @{
+ */
+
+/**
+ \brief get FPU type
+ \details returns the FPU type
+ \returns
+ - \b 0: No FPU
+ - \b 1: Single precision FPU
+ - \b 2: Double + Single precision FPU
+ */
+__STATIC_INLINE uint32_t SCB_GetFPUType(void) { return 0U; /* No FPU */ }
+
+/*@} end of CMSIS_Core_FpuFunctions */
+
+/* ################################## SysTick function ############################################ */
+/**
+ \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_SysTickFunctions SysTick Functions
+ \brief Functions that configure the System.
+ @{
+ */
+
+#if defined(__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
+
+/**
+ \brief System Tick Configuration
+ \details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
+ Counter is in free running mode to generate periodic interrupts.
+ \param [in] ticks Number of ticks between two interrupts.
+ \return 0 Function succeeded.
+ \return 1 Function failed.
+ \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
+ function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
+ must contain a vendor-specific implementation of this function.
+ */
+__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks) {
+ if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) {
+ return (1UL); /* Reload value impossible */
+ }
+
+ SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
+ NVIC_SetPriority(SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
+ SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
+ SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
+ return (0UL); /* Function successful */
+}
+
+#endif
+
+/*@} end of CMSIS_Core_SysTickFunctions */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __CORE_SC000_H_DEPENDANT */
+
+#endif /* __CMSIS_GENERIC */
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Include/core_sc300.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/core_sc300.h new file mode 100644 index 00000000..d93c5ec8 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/core_sc300.h @@ -0,0 +1,1785 @@ +/**************************************************************************/ /**
+ * @file core_sc300.h
+ * @brief CMSIS SC300 Core Peripheral Access Layer Header File
+ * @version V5.0.6
+ * @date 04. June 2018
+ ******************************************************************************/
+/*
+ * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#if defined(__ICCARM__)
+#pragma system_include /* treat file as system include file for MISRA check */
+#elif defined(__clang__)
+#pragma clang system_header /* treat file as system include file */
+#endif
+
+#ifndef __CORE_SC300_H_GENERIC
+#define __CORE_SC300_H_GENERIC
+
+#include <stdint.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
+ CMSIS violates the following MISRA-C:2004 rules:
+
+ \li Required Rule 8.5, object/function definition in header file.<br>
+ Function definitions in header files are used to allow 'inlining'.
+
+ \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
+ Unions are used for effective representation of core registers.
+
+ \li Advisory Rule 19.7, Function-like macro defined.<br>
+ Function-like macros are used to allow more efficient code.
+ */
+
+/*******************************************************************************
+ * CMSIS definitions
+ ******************************************************************************/
+/**
+ \ingroup SC3000
+ @{
+ */
+
+#include "cmsis_version.h"
+
+/* CMSIS SC300 definitions */
+#define __SC300_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
+#define __SC300_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
+#define __SC300_CMSIS_VERSION ((__SC300_CMSIS_VERSION_MAIN << 16U) | __SC300_CMSIS_VERSION_SUB) /*!< \deprecated CMSIS HAL version number */
+
+#define __CORTEX_SC (300U) /*!< Cortex secure core */
+
+/** __FPU_USED indicates whether an FPU is used or not.
+ This core does not support an FPU at all
+*/
+#define __FPU_USED 0U
+
+#if defined(__CC_ARM)
+#if defined __TARGET_FPU_VFP
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+#if defined __ARM_PCS_VFP
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__GNUC__)
+#if defined(__VFP_FP__) && !defined(__SOFTFP__)
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__ICCARM__)
+#if defined __ARMVFP__
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__TI_ARM__)
+#if defined __TI_VFP_SUPPORT__
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__TASKING__)
+#if defined __FPU_VFP__
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#elif defined(__CSMC__)
+#if (__CSMC__ & 0x400U)
+#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+#endif
+
+#endif
+
+#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __CORE_SC300_H_GENERIC */
+
+#ifndef __CMSIS_GENERIC
+
+#ifndef __CORE_SC300_H_DEPENDANT
+#define __CORE_SC300_H_DEPENDANT
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* check device defines and use defaults */
+#if defined __CHECK_DEVICE_DEFINES
+#ifndef __SC300_REV
+#define __SC300_REV 0x0000U
+#warning "__SC300_REV not defined in device header file; using default!"
+#endif
+
+#ifndef __MPU_PRESENT
+#define __MPU_PRESENT 0U
+#warning "__MPU_PRESENT not defined in device header file; using default!"
+#endif
+
+#ifndef __NVIC_PRIO_BITS
+#define __NVIC_PRIO_BITS 3U
+#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
+#endif
+
+#ifndef __Vendor_SysTickConfig
+#define __Vendor_SysTickConfig 0U
+#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
+#endif
+#endif
+
+/* IO definitions (access restrictions to peripheral registers) */
+/**
+ \defgroup CMSIS_glob_defs CMSIS Global Defines
+
+ <strong>IO Type Qualifiers</strong> are used
+ \li to specify the access to peripheral variables.
+ \li for automatic generation of peripheral register debug information.
+*/
+#ifdef __cplusplus
+#define __I volatile /*!< Defines 'read only' permissions */
+#else
+#define __I volatile const /*!< Defines 'read only' permissions */
+#endif
+#define __O volatile /*!< Defines 'write only' permissions */
+#define __IO volatile /*!< Defines 'read / write' permissions */
+
+/* following defines should be used for structure members */
+#define __IM volatile const /*! Defines 'read only' structure member permissions */
+#define __OM volatile /*! Defines 'write only' structure member permissions */
+#define __IOM volatile /*! Defines 'read / write' structure member permissions */
+
+/*@} end of group SC300 */
+
+/*******************************************************************************
+ * Register Abstraction
+ Core Register contain:
+ - Core Register
+ - Core NVIC Register
+ - Core SCB Register
+ - Core SysTick Register
+ - Core Debug Register
+ - Core MPU Register
+ ******************************************************************************/
+/**
+ \defgroup CMSIS_core_register Defines and Type Definitions
+ \brief Type definitions and defines for Cortex-M processor based devices.
+*/
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_CORE Status and Control Registers
+ \brief Core Register type definitions.
+ @{
+ */
+
+/**
+ \brief Union type to access the Application Program Status Register (APSR).
+ */
+typedef union {
+ struct {
+ uint32_t _reserved0 : 27; /*!< bit: 0..26 Reserved */
+ uint32_t Q : 1; /*!< bit: 27 Saturation condition flag */
+ uint32_t V : 1; /*!< bit: 28 Overflow condition code flag */
+ uint32_t C : 1; /*!< bit: 29 Carry condition code flag */
+ uint32_t Z : 1; /*!< bit: 30 Zero condition code flag */
+ uint32_t N : 1; /*!< bit: 31 Negative condition code flag */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} APSR_Type;
+
+/* APSR Register Definitions */
+#define APSR_N_Pos 31U /*!< APSR: N Position */
+#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
+
+#define APSR_Z_Pos 30U /*!< APSR: Z Position */
+#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
+
+#define APSR_C_Pos 29U /*!< APSR: C Position */
+#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
+
+#define APSR_V_Pos 28U /*!< APSR: V Position */
+#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
+
+#define APSR_Q_Pos 27U /*!< APSR: Q Position */
+#define APSR_Q_Msk (1UL << APSR_Q_Pos) /*!< APSR: Q Mask */
+
+/**
+ \brief Union type to access the Interrupt Program Status Register (IPSR).
+ */
+typedef union {
+ struct {
+ uint32_t ISR : 9; /*!< bit: 0.. 8 Exception number */
+ uint32_t _reserved0 : 23; /*!< bit: 9..31 Reserved */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} IPSR_Type;
+
+/* IPSR Register Definitions */
+#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
+#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
+
+/**
+ \brief Union type to access the Special-Purpose Program Status Registers (xPSR).
+ */
+typedef union {
+ struct {
+ uint32_t ISR : 9; /*!< bit: 0.. 8 Exception number */
+ uint32_t _reserved0 : 1; /*!< bit: 9 Reserved */
+ uint32_t ICI_IT_1 : 6; /*!< bit: 10..15 ICI/IT part 1 */
+ uint32_t _reserved1 : 8; /*!< bit: 16..23 Reserved */
+ uint32_t T : 1; /*!< bit: 24 Thumb bit */
+ uint32_t ICI_IT_2 : 2; /*!< bit: 25..26 ICI/IT part 2 */
+ uint32_t Q : 1; /*!< bit: 27 Saturation condition flag */
+ uint32_t V : 1; /*!< bit: 28 Overflow condition code flag */
+ uint32_t C : 1; /*!< bit: 29 Carry condition code flag */
+ uint32_t Z : 1; /*!< bit: 30 Zero condition code flag */
+ uint32_t N : 1; /*!< bit: 31 Negative condition code flag */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} xPSR_Type;
+
+/* xPSR Register Definitions */
+#define xPSR_N_Pos 31U /*!< xPSR: N Position */
+#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
+
+#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
+#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
+
+#define xPSR_C_Pos 29U /*!< xPSR: C Position */
+#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
+
+#define xPSR_V_Pos 28U /*!< xPSR: V Position */
+#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
+
+#define xPSR_Q_Pos 27U /*!< xPSR: Q Position */
+#define xPSR_Q_Msk (1UL << xPSR_Q_Pos) /*!< xPSR: Q Mask */
+
+#define xPSR_ICI_IT_2_Pos 25U /*!< xPSR: ICI/IT part 2 Position */
+#define xPSR_ICI_IT_2_Msk (3UL << xPSR_ICI_IT_2_Pos) /*!< xPSR: ICI/IT part 2 Mask */
+
+#define xPSR_T_Pos 24U /*!< xPSR: T Position */
+#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
+
+#define xPSR_ICI_IT_1_Pos 10U /*!< xPSR: ICI/IT part 1 Position */
+#define xPSR_ICI_IT_1_Msk (0x3FUL << xPSR_ICI_IT_1_Pos) /*!< xPSR: ICI/IT part 1 Mask */
+
+#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
+#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
+
+/**
+ \brief Union type to access the Control Registers (CONTROL).
+ */
+typedef union {
+ struct {
+ uint32_t nPRIV : 1; /*!< bit: 0 Execution privilege in Thread mode */
+ uint32_t SPSEL : 1; /*!< bit: 1 Stack to be used */
+ uint32_t _reserved1 : 30; /*!< bit: 2..31 Reserved */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} CONTROL_Type;
+
+/* CONTROL Register Definitions */
+#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
+#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
+
+#define CONTROL_nPRIV_Pos 0U /*!< CONTROL: nPRIV Position */
+#define CONTROL_nPRIV_Msk (1UL /*<< CONTROL_nPRIV_Pos*/) /*!< CONTROL: nPRIV Mask */
+
+/*@} end of group CMSIS_CORE */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
+ \brief Type definitions for the NVIC Registers
+ @{
+ */
+
+/**
+ \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
+ */
+typedef struct {
+ __IOM uint32_t ISER[8U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
+ uint32_t RESERVED0[24U];
+ __IOM uint32_t ICER[8U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
+ uint32_t RSERVED1[24U];
+ __IOM uint32_t ISPR[8U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
+ uint32_t RESERVED2[24U];
+ __IOM uint32_t ICPR[8U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
+ uint32_t RESERVED3[24U];
+ __IOM uint32_t IABR[8U]; /*!< Offset: 0x200 (R/W) Interrupt Active bit Register */
+ uint32_t RESERVED4[56U];
+ __IOM uint8_t IP[240U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register (8Bit wide) */
+ uint32_t RESERVED5[644U];
+ __OM uint32_t STIR; /*!< Offset: 0xE00 ( /W) Software Trigger Interrupt Register */
+} NVIC_Type;
+
+/* Software Triggered Interrupt Register Definitions */
+#define NVIC_STIR_INTID_Pos 0U /*!< STIR: INTLINESNUM Position */
+#define NVIC_STIR_INTID_Msk (0x1FFUL /*<< NVIC_STIR_INTID_Pos*/) /*!< STIR: INTLINESNUM Mask */
+
+/*@} end of group CMSIS_NVIC */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_SCB System Control Block (SCB)
+ \brief Type definitions for the System Control Block Registers
+ @{
+ */
+
+/**
+ \brief Structure type to access the System Control Block (SCB).
+ */
+typedef struct {
+ __IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
+ __IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
+ __IOM uint32_t VTOR; /*!< Offset: 0x008 (R/W) Vector Table Offset Register */
+ __IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
+ __IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
+ __IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
+ __IOM uint8_t SHP[12U]; /*!< Offset: 0x018 (R/W) System Handlers Priority Registers (4-7, 8-11, 12-15) */
+ __IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
+ __IOM uint32_t CFSR; /*!< Offset: 0x028 (R/W) Configurable Fault Status Register */
+ __IOM uint32_t HFSR; /*!< Offset: 0x02C (R/W) HardFault Status Register */
+ __IOM uint32_t DFSR; /*!< Offset: 0x030 (R/W) Debug Fault Status Register */
+ __IOM uint32_t MMFAR; /*!< Offset: 0x034 (R/W) MemManage Fault Address Register */
+ __IOM uint32_t BFAR; /*!< Offset: 0x038 (R/W) BusFault Address Register */
+ __IOM uint32_t AFSR; /*!< Offset: 0x03C (R/W) Auxiliary Fault Status Register */
+ __IM uint32_t PFR[2U]; /*!< Offset: 0x040 (R/ ) Processor Feature Register */
+ __IM uint32_t DFR; /*!< Offset: 0x048 (R/ ) Debug Feature Register */
+ __IM uint32_t ADR; /*!< Offset: 0x04C (R/ ) Auxiliary Feature Register */
+ __IM uint32_t MMFR[4U]; /*!< Offset: 0x050 (R/ ) Memory Model Feature Register */
+ __IM uint32_t ISAR[5U]; /*!< Offset: 0x060 (R/ ) Instruction Set Attributes Register */
+ uint32_t RESERVED0[5U];
+ __IOM uint32_t CPACR; /*!< Offset: 0x088 (R/W) Coprocessor Access Control Register */
+ uint32_t RESERVED1[129U];
+ __IOM uint32_t SFCR; /*!< Offset: 0x290 (R/W) Security Features Control Register */
+} SCB_Type;
+
+/* SCB CPUID Register Definitions */
+#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
+#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
+
+#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
+#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
+
+#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
+#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
+
+#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
+#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
+
+#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
+#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
+
+/* SCB Interrupt Control State Register Definitions */
+#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
+#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
+
+#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
+#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
+
+#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
+#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
+
+#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
+#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
+
+#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
+#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
+
+#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
+#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
+
+#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
+#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
+
+#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
+#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
+
+#define SCB_ICSR_RETTOBASE_Pos 11U /*!< SCB ICSR: RETTOBASE Position */
+#define SCB_ICSR_RETTOBASE_Msk (1UL << SCB_ICSR_RETTOBASE_Pos) /*!< SCB ICSR: RETTOBASE Mask */
+
+#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
+#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
+
+/* SCB Vector Table Offset Register Definitions */
+#define SCB_VTOR_TBLBASE_Pos 29U /*!< SCB VTOR: TBLBASE Position */
+#define SCB_VTOR_TBLBASE_Msk (1UL << SCB_VTOR_TBLBASE_Pos) /*!< SCB VTOR: TBLBASE Mask */
+
+#define SCB_VTOR_TBLOFF_Pos 7U /*!< SCB VTOR: TBLOFF Position */
+#define SCB_VTOR_TBLOFF_Msk (0x3FFFFFUL << SCB_VTOR_TBLOFF_Pos) /*!< SCB VTOR: TBLOFF Mask */
+
+/* SCB Application Interrupt and Reset Control Register Definitions */
+#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
+#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
+
+#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
+#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
+
+#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
+#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
+
+#define SCB_AIRCR_PRIGROUP_Pos 8U /*!< SCB AIRCR: PRIGROUP Position */
+#define SCB_AIRCR_PRIGROUP_Msk (7UL << SCB_AIRCR_PRIGROUP_Pos) /*!< SCB AIRCR: PRIGROUP Mask */
+
+#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
+#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
+
+#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
+#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
+
+#define SCB_AIRCR_VECTRESET_Pos 0U /*!< SCB AIRCR: VECTRESET Position */
+#define SCB_AIRCR_VECTRESET_Msk (1UL /*<< SCB_AIRCR_VECTRESET_Pos*/) /*!< SCB AIRCR: VECTRESET Mask */
+
+/* SCB System Control Register Definitions */
+#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
+#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
+
+#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
+#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
+
+#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
+#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
+
+/* SCB Configuration Control Register Definitions */
+#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
+#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
+
+#define SCB_CCR_BFHFNMIGN_Pos 8U /*!< SCB CCR: BFHFNMIGN Position */
+#define SCB_CCR_BFHFNMIGN_Msk (1UL << SCB_CCR_BFHFNMIGN_Pos) /*!< SCB CCR: BFHFNMIGN Mask */
+
+#define SCB_CCR_DIV_0_TRP_Pos 4U /*!< SCB CCR: DIV_0_TRP Position */
+#define SCB_CCR_DIV_0_TRP_Msk (1UL << SCB_CCR_DIV_0_TRP_Pos) /*!< SCB CCR: DIV_0_TRP Mask */
+
+#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
+#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
+
+#define SCB_CCR_USERSETMPEND_Pos 1U /*!< SCB CCR: USERSETMPEND Position */
+#define SCB_CCR_USERSETMPEND_Msk (1UL << SCB_CCR_USERSETMPEND_Pos) /*!< SCB CCR: USERSETMPEND Mask */
+
+#define SCB_CCR_NONBASETHRDENA_Pos 0U /*!< SCB CCR: NONBASETHRDENA Position */
+#define SCB_CCR_NONBASETHRDENA_Msk (1UL /*<< SCB_CCR_NONBASETHRDENA_Pos*/) /*!< SCB CCR: NONBASETHRDENA Mask */
+
+/* SCB System Handler Control and State Register Definitions */
+#define SCB_SHCSR_USGFAULTENA_Pos 18U /*!< SCB SHCSR: USGFAULTENA Position */
+#define SCB_SHCSR_USGFAULTENA_Msk (1UL << SCB_SHCSR_USGFAULTENA_Pos) /*!< SCB SHCSR: USGFAULTENA Mask */
+
+#define SCB_SHCSR_BUSFAULTENA_Pos 17U /*!< SCB SHCSR: BUSFAULTENA Position */
+#define SCB_SHCSR_BUSFAULTENA_Msk (1UL << SCB_SHCSR_BUSFAULTENA_Pos) /*!< SCB SHCSR: BUSFAULTENA Mask */
+
+#define SCB_SHCSR_MEMFAULTENA_Pos 16U /*!< SCB SHCSR: MEMFAULTENA Position */
+#define SCB_SHCSR_MEMFAULTENA_Msk (1UL << SCB_SHCSR_MEMFAULTENA_Pos) /*!< SCB SHCSR: MEMFAULTENA Mask */
+
+#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
+#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
+
+#define SCB_SHCSR_BUSFAULTPENDED_Pos 14U /*!< SCB SHCSR: BUSFAULTPENDED Position */
+#define SCB_SHCSR_BUSFAULTPENDED_Msk (1UL << SCB_SHCSR_BUSFAULTPENDED_Pos) /*!< SCB SHCSR: BUSFAULTPENDED Mask */
+
+#define SCB_SHCSR_MEMFAULTPENDED_Pos 13U /*!< SCB SHCSR: MEMFAULTPENDED Position */
+#define SCB_SHCSR_MEMFAULTPENDED_Msk (1UL << SCB_SHCSR_MEMFAULTPENDED_Pos) /*!< SCB SHCSR: MEMFAULTPENDED Mask */
+
+#define SCB_SHCSR_USGFAULTPENDED_Pos 12U /*!< SCB SHCSR: USGFAULTPENDED Position */
+#define SCB_SHCSR_USGFAULTPENDED_Msk (1UL << SCB_SHCSR_USGFAULTPENDED_Pos) /*!< SCB SHCSR: USGFAULTPENDED Mask */
+
+#define SCB_SHCSR_SYSTICKACT_Pos 11U /*!< SCB SHCSR: SYSTICKACT Position */
+#define SCB_SHCSR_SYSTICKACT_Msk (1UL << SCB_SHCSR_SYSTICKACT_Pos) /*!< SCB SHCSR: SYSTICKACT Mask */
+
+#define SCB_SHCSR_PENDSVACT_Pos 10U /*!< SCB SHCSR: PENDSVACT Position */
+#define SCB_SHCSR_PENDSVACT_Msk (1UL << SCB_SHCSR_PENDSVACT_Pos) /*!< SCB SHCSR: PENDSVACT Mask */
+
+#define SCB_SHCSR_MONITORACT_Pos 8U /*!< SCB SHCSR: MONITORACT Position */
+#define SCB_SHCSR_MONITORACT_Msk (1UL << SCB_SHCSR_MONITORACT_Pos) /*!< SCB SHCSR: MONITORACT Mask */
+
+#define SCB_SHCSR_SVCALLACT_Pos 7U /*!< SCB SHCSR: SVCALLACT Position */
+#define SCB_SHCSR_SVCALLACT_Msk (1UL << SCB_SHCSR_SVCALLACT_Pos) /*!< SCB SHCSR: SVCALLACT Mask */
+
+#define SCB_SHCSR_USGFAULTACT_Pos 3U /*!< SCB SHCSR: USGFAULTACT Position */
+#define SCB_SHCSR_USGFAULTACT_Msk (1UL << SCB_SHCSR_USGFAULTACT_Pos) /*!< SCB SHCSR: USGFAULTACT Mask */
+
+#define SCB_SHCSR_BUSFAULTACT_Pos 1U /*!< SCB SHCSR: BUSFAULTACT Position */
+#define SCB_SHCSR_BUSFAULTACT_Msk (1UL << SCB_SHCSR_BUSFAULTACT_Pos) /*!< SCB SHCSR: BUSFAULTACT Mask */
+
+#define SCB_SHCSR_MEMFAULTACT_Pos 0U /*!< SCB SHCSR: MEMFAULTACT Position */
+#define SCB_SHCSR_MEMFAULTACT_Msk (1UL /*<< SCB_SHCSR_MEMFAULTACT_Pos*/) /*!< SCB SHCSR: MEMFAULTACT Mask */
+
+/* SCB Configurable Fault Status Register Definitions */
+#define SCB_CFSR_USGFAULTSR_Pos 16U /*!< SCB CFSR: Usage Fault Status Register Position */
+#define SCB_CFSR_USGFAULTSR_Msk (0xFFFFUL << SCB_CFSR_USGFAULTSR_Pos) /*!< SCB CFSR: Usage Fault Status Register Mask */
+
+#define SCB_CFSR_BUSFAULTSR_Pos 8U /*!< SCB CFSR: Bus Fault Status Register Position */
+#define SCB_CFSR_BUSFAULTSR_Msk (0xFFUL << SCB_CFSR_BUSFAULTSR_Pos) /*!< SCB CFSR: Bus Fault Status Register Mask */
+
+#define SCB_CFSR_MEMFAULTSR_Pos 0U /*!< SCB CFSR: Memory Manage Fault Status Register Position */
+#define SCB_CFSR_MEMFAULTSR_Msk (0xFFUL /*<< SCB_CFSR_MEMFAULTSR_Pos*/) /*!< SCB CFSR: Memory Manage Fault Status Register Mask */
+
+/* MemManage Fault Status Register (part of SCB Configurable Fault Status Register) */
+#define SCB_CFSR_MMARVALID_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 7U) /*!< SCB CFSR (MMFSR): MMARVALID Position */
+#define SCB_CFSR_MMARVALID_Msk (1UL << SCB_CFSR_MMARVALID_Pos) /*!< SCB CFSR (MMFSR): MMARVALID Mask */
+
+#define SCB_CFSR_MSTKERR_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 4U) /*!< SCB CFSR (MMFSR): MSTKERR Position */
+#define SCB_CFSR_MSTKERR_Msk (1UL << SCB_CFSR_MSTKERR_Pos) /*!< SCB CFSR (MMFSR): MSTKERR Mask */
+
+#define SCB_CFSR_MUNSTKERR_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 3U) /*!< SCB CFSR (MMFSR): MUNSTKERR Position */
+#define SCB_CFSR_MUNSTKERR_Msk (1UL << SCB_CFSR_MUNSTKERR_Pos) /*!< SCB CFSR (MMFSR): MUNSTKERR Mask */
+
+#define SCB_CFSR_DACCVIOL_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 1U) /*!< SCB CFSR (MMFSR): DACCVIOL Position */
+#define SCB_CFSR_DACCVIOL_Msk (1UL << SCB_CFSR_DACCVIOL_Pos) /*!< SCB CFSR (MMFSR): DACCVIOL Mask */
+
+#define SCB_CFSR_IACCVIOL_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 0U) /*!< SCB CFSR (MMFSR): IACCVIOL Position */
+#define SCB_CFSR_IACCVIOL_Msk (1UL /*<< SCB_CFSR_IACCVIOL_Pos*/) /*!< SCB CFSR (MMFSR): IACCVIOL Mask */
+
+/* BusFault Status Register (part of SCB Configurable Fault Status Register) */
+#define SCB_CFSR_BFARVALID_Pos (SCB_CFSR_BUSFAULTSR_Pos + 7U) /*!< SCB CFSR (BFSR): BFARVALID Position */
+#define SCB_CFSR_BFARVALID_Msk (1UL << SCB_CFSR_BFARVALID_Pos) /*!< SCB CFSR (BFSR): BFARVALID Mask */
+
+#define SCB_CFSR_STKERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 4U) /*!< SCB CFSR (BFSR): STKERR Position */
+#define SCB_CFSR_STKERR_Msk (1UL << SCB_CFSR_STKERR_Pos) /*!< SCB CFSR (BFSR): STKERR Mask */
+
+#define SCB_CFSR_UNSTKERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 3U) /*!< SCB CFSR (BFSR): UNSTKERR Position */
+#define SCB_CFSR_UNSTKERR_Msk (1UL << SCB_CFSR_UNSTKERR_Pos) /*!< SCB CFSR (BFSR): UNSTKERR Mask */
+
+#define SCB_CFSR_IMPRECISERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 2U) /*!< SCB CFSR (BFSR): IMPRECISERR Position */
+#define SCB_CFSR_IMPRECISERR_Msk (1UL << SCB_CFSR_IMPRECISERR_Pos) /*!< SCB CFSR (BFSR): IMPRECISERR Mask */
+
+#define SCB_CFSR_PRECISERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 1U) /*!< SCB CFSR (BFSR): PRECISERR Position */
+#define SCB_CFSR_PRECISERR_Msk (1UL << SCB_CFSR_PRECISERR_Pos) /*!< SCB CFSR (BFSR): PRECISERR Mask */
+
+#define SCB_CFSR_IBUSERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 0U) /*!< SCB CFSR (BFSR): IBUSERR Position */
+#define SCB_CFSR_IBUSERR_Msk (1UL << SCB_CFSR_IBUSERR_Pos) /*!< SCB CFSR (BFSR): IBUSERR Mask */
+
+/* UsageFault Status Register (part of SCB Configurable Fault Status Register) */
+#define SCB_CFSR_DIVBYZERO_Pos (SCB_CFSR_USGFAULTSR_Pos + 9U) /*!< SCB CFSR (UFSR): DIVBYZERO Position */
+#define SCB_CFSR_DIVBYZERO_Msk (1UL << SCB_CFSR_DIVBYZERO_Pos) /*!< SCB CFSR (UFSR): DIVBYZERO Mask */
+
+#define SCB_CFSR_UNALIGNED_Pos (SCB_CFSR_USGFAULTSR_Pos + 8U) /*!< SCB CFSR (UFSR): UNALIGNED Position */
+#define SCB_CFSR_UNALIGNED_Msk (1UL << SCB_CFSR_UNALIGNED_Pos) /*!< SCB CFSR (UFSR): UNALIGNED Mask */
+
+#define SCB_CFSR_NOCP_Pos (SCB_CFSR_USGFAULTSR_Pos + 3U) /*!< SCB CFSR (UFSR): NOCP Position */
+#define SCB_CFSR_NOCP_Msk (1UL << SCB_CFSR_NOCP_Pos) /*!< SCB CFSR (UFSR): NOCP Mask */
+
+#define SCB_CFSR_INVPC_Pos (SCB_CFSR_USGFAULTSR_Pos + 2U) /*!< SCB CFSR (UFSR): INVPC Position */
+#define SCB_CFSR_INVPC_Msk (1UL << SCB_CFSR_INVPC_Pos) /*!< SCB CFSR (UFSR): INVPC Mask */
+
+#define SCB_CFSR_INVSTATE_Pos (SCB_CFSR_USGFAULTSR_Pos + 1U) /*!< SCB CFSR (UFSR): INVSTATE Position */
+#define SCB_CFSR_INVSTATE_Msk (1UL << SCB_CFSR_INVSTATE_Pos) /*!< SCB CFSR (UFSR): INVSTATE Mask */
+
+#define SCB_CFSR_UNDEFINSTR_Pos (SCB_CFSR_USGFAULTSR_Pos + 0U) /*!< SCB CFSR (UFSR): UNDEFINSTR Position */
+#define SCB_CFSR_UNDEFINSTR_Msk (1UL << SCB_CFSR_UNDEFINSTR_Pos) /*!< SCB CFSR (UFSR): UNDEFINSTR Mask */
+
+/* SCB Hard Fault Status Register Definitions */
+#define SCB_HFSR_DEBUGEVT_Pos 31U /*!< SCB HFSR: DEBUGEVT Position */
+#define SCB_HFSR_DEBUGEVT_Msk (1UL << SCB_HFSR_DEBUGEVT_Pos) /*!< SCB HFSR: DEBUGEVT Mask */
+
+#define SCB_HFSR_FORCED_Pos 30U /*!< SCB HFSR: FORCED Position */
+#define SCB_HFSR_FORCED_Msk (1UL << SCB_HFSR_FORCED_Pos) /*!< SCB HFSR: FORCED Mask */
+
+#define SCB_HFSR_VECTTBL_Pos 1U /*!< SCB HFSR: VECTTBL Position */
+#define SCB_HFSR_VECTTBL_Msk (1UL << SCB_HFSR_VECTTBL_Pos) /*!< SCB HFSR: VECTTBL Mask */
+
+/* SCB Debug Fault Status Register Definitions */
+#define SCB_DFSR_EXTERNAL_Pos 4U /*!< SCB DFSR: EXTERNAL Position */
+#define SCB_DFSR_EXTERNAL_Msk (1UL << SCB_DFSR_EXTERNAL_Pos) /*!< SCB DFSR: EXTERNAL Mask */
+
+#define SCB_DFSR_VCATCH_Pos 3U /*!< SCB DFSR: VCATCH Position */
+#define SCB_DFSR_VCATCH_Msk (1UL << SCB_DFSR_VCATCH_Pos) /*!< SCB DFSR: VCATCH Mask */
+
+#define SCB_DFSR_DWTTRAP_Pos 2U /*!< SCB DFSR: DWTTRAP Position */
+#define SCB_DFSR_DWTTRAP_Msk (1UL << SCB_DFSR_DWTTRAP_Pos) /*!< SCB DFSR: DWTTRAP Mask */
+
+#define SCB_DFSR_BKPT_Pos 1U /*!< SCB DFSR: BKPT Position */
+#define SCB_DFSR_BKPT_Msk (1UL << SCB_DFSR_BKPT_Pos) /*!< SCB DFSR: BKPT Mask */
+
+#define SCB_DFSR_HALTED_Pos 0U /*!< SCB DFSR: HALTED Position */
+#define SCB_DFSR_HALTED_Msk (1UL /*<< SCB_DFSR_HALTED_Pos*/) /*!< SCB DFSR: HALTED Mask */
+
+/*@} end of group CMSIS_SCB */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB)
+ \brief Type definitions for the System Control and ID Register not in the SCB
+ @{
+ */
+
+/**
+ \brief Structure type to access the System Control and ID Register not in the SCB.
+ */
+typedef struct {
+ uint32_t RESERVED0[1U];
+ __IM uint32_t ICTR; /*!< Offset: 0x004 (R/ ) Interrupt Controller Type Register */
+ uint32_t RESERVED1[1U];
+} SCnSCB_Type;
+
+/* Interrupt Controller Type Register Definitions */
+#define SCnSCB_ICTR_INTLINESNUM_Pos 0U /*!< ICTR: INTLINESNUM Position */
+#define SCnSCB_ICTR_INTLINESNUM_Msk (0xFUL /*<< SCnSCB_ICTR_INTLINESNUM_Pos*/) /*!< ICTR: INTLINESNUM Mask */
+
+/*@} end of group CMSIS_SCnotSCB */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_SysTick System Tick Timer (SysTick)
+ \brief Type definitions for the System Timer Registers.
+ @{
+ */
+
+/**
+ \brief Structure type to access the System Timer (SysTick).
+ */
+typedef struct {
+ __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
+ __IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
+ __IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
+ __IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
+} SysTick_Type;
+
+/* SysTick Control / Status Register Definitions */
+#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
+#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
+
+#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
+#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
+
+#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
+#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
+
+#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
+#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
+
+/* SysTick Reload Register Definitions */
+#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
+#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
+
+/* SysTick Current Register Definitions */
+#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
+#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
+
+/* SysTick Calibration Register Definitions */
+#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
+#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
+
+#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
+#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
+
+#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
+#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
+
+/*@} end of group CMSIS_SysTick */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_ITM Instrumentation Trace Macrocell (ITM)
+ \brief Type definitions for the Instrumentation Trace Macrocell (ITM)
+ @{
+ */
+
+/**
+ \brief Structure type to access the Instrumentation Trace Macrocell Register (ITM).
+ */
+typedef struct {
+ __OM union {
+ __OM uint8_t u8; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 8-bit */
+ __OM uint16_t u16; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 16-bit */
+ __OM uint32_t u32; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 32-bit */
+ } PORT[32U]; /*!< Offset: 0x000 ( /W) ITM Stimulus Port Registers */
+ uint32_t RESERVED0[864U];
+ __IOM uint32_t TER; /*!< Offset: 0xE00 (R/W) ITM Trace Enable Register */
+ uint32_t RESERVED1[15U];
+ __IOM uint32_t TPR; /*!< Offset: 0xE40 (R/W) ITM Trace Privilege Register */
+ uint32_t RESERVED2[15U];
+ __IOM uint32_t TCR; /*!< Offset: 0xE80 (R/W) ITM Trace Control Register */
+ uint32_t RESERVED3[29U];
+ __OM uint32_t IWR; /*!< Offset: 0xEF8 ( /W) ITM Integration Write Register */
+ __IM uint32_t IRR; /*!< Offset: 0xEFC (R/ ) ITM Integration Read Register */
+ __IOM uint32_t IMCR; /*!< Offset: 0xF00 (R/W) ITM Integration Mode Control Register */
+ uint32_t RESERVED4[43U];
+ __OM uint32_t LAR; /*!< Offset: 0xFB0 ( /W) ITM Lock Access Register */
+ __IM uint32_t LSR; /*!< Offset: 0xFB4 (R/ ) ITM Lock Status Register */
+ uint32_t RESERVED5[6U];
+ __IM uint32_t PID4; /*!< Offset: 0xFD0 (R/ ) ITM Peripheral Identification Register #4 */
+ __IM uint32_t PID5; /*!< Offset: 0xFD4 (R/ ) ITM Peripheral Identification Register #5 */
+ __IM uint32_t PID6; /*!< Offset: 0xFD8 (R/ ) ITM Peripheral Identification Register #6 */
+ __IM uint32_t PID7; /*!< Offset: 0xFDC (R/ ) ITM Peripheral Identification Register #7 */
+ __IM uint32_t PID0; /*!< Offset: 0xFE0 (R/ ) ITM Peripheral Identification Register #0 */
+ __IM uint32_t PID1; /*!< Offset: 0xFE4 (R/ ) ITM Peripheral Identification Register #1 */
+ __IM uint32_t PID2; /*!< Offset: 0xFE8 (R/ ) ITM Peripheral Identification Register #2 */
+ __IM uint32_t PID3; /*!< Offset: 0xFEC (R/ ) ITM Peripheral Identification Register #3 */
+ __IM uint32_t CID0; /*!< Offset: 0xFF0 (R/ ) ITM Component Identification Register #0 */
+ __IM uint32_t CID1; /*!< Offset: 0xFF4 (R/ ) ITM Component Identification Register #1 */
+ __IM uint32_t CID2; /*!< Offset: 0xFF8 (R/ ) ITM Component Identification Register #2 */
+ __IM uint32_t CID3; /*!< Offset: 0xFFC (R/ ) ITM Component Identification Register #3 */
+} ITM_Type;
+
+/* ITM Trace Privilege Register Definitions */
+#define ITM_TPR_PRIVMASK_Pos 0U /*!< ITM TPR: PRIVMASK Position */
+#define ITM_TPR_PRIVMASK_Msk (0xFUL /*<< ITM_TPR_PRIVMASK_Pos*/) /*!< ITM TPR: PRIVMASK Mask */
+
+/* ITM Trace Control Register Definitions */
+#define ITM_TCR_BUSY_Pos 23U /*!< ITM TCR: BUSY Position */
+#define ITM_TCR_BUSY_Msk (1UL << ITM_TCR_BUSY_Pos) /*!< ITM TCR: BUSY Mask */
+
+#define ITM_TCR_TraceBusID_Pos 16U /*!< ITM TCR: ATBID Position */
+#define ITM_TCR_TraceBusID_Msk (0x7FUL << ITM_TCR_TraceBusID_Pos) /*!< ITM TCR: ATBID Mask */
+
+#define ITM_TCR_GTSFREQ_Pos 10U /*!< ITM TCR: Global timestamp frequency Position */
+#define ITM_TCR_GTSFREQ_Msk (3UL << ITM_TCR_GTSFREQ_Pos) /*!< ITM TCR: Global timestamp frequency Mask */
+
+#define ITM_TCR_TSPrescale_Pos 8U /*!< ITM TCR: TSPrescale Position */
+#define ITM_TCR_TSPrescale_Msk (3UL << ITM_TCR_TSPrescale_Pos) /*!< ITM TCR: TSPrescale Mask */
+
+#define ITM_TCR_SWOENA_Pos 4U /*!< ITM TCR: SWOENA Position */
+#define ITM_TCR_SWOENA_Msk (1UL << ITM_TCR_SWOENA_Pos) /*!< ITM TCR: SWOENA Mask */
+
+#define ITM_TCR_DWTENA_Pos 3U /*!< ITM TCR: DWTENA Position */
+#define ITM_TCR_DWTENA_Msk (1UL << ITM_TCR_DWTENA_Pos) /*!< ITM TCR: DWTENA Mask */
+
+#define ITM_TCR_SYNCENA_Pos 2U /*!< ITM TCR: SYNCENA Position */
+#define ITM_TCR_SYNCENA_Msk (1UL << ITM_TCR_SYNCENA_Pos) /*!< ITM TCR: SYNCENA Mask */
+
+#define ITM_TCR_TSENA_Pos 1U /*!< ITM TCR: TSENA Position */
+#define ITM_TCR_TSENA_Msk (1UL << ITM_TCR_TSENA_Pos) /*!< ITM TCR: TSENA Mask */
+
+#define ITM_TCR_ITMENA_Pos 0U /*!< ITM TCR: ITM Enable bit Position */
+#define ITM_TCR_ITMENA_Msk (1UL /*<< ITM_TCR_ITMENA_Pos*/) /*!< ITM TCR: ITM Enable bit Mask */
+
+/* ITM Integration Write Register Definitions */
+#define ITM_IWR_ATVALIDM_Pos 0U /*!< ITM IWR: ATVALIDM Position */
+#define ITM_IWR_ATVALIDM_Msk (1UL /*<< ITM_IWR_ATVALIDM_Pos*/) /*!< ITM IWR: ATVALIDM Mask */
+
+/* ITM Integration Read Register Definitions */
+#define ITM_IRR_ATREADYM_Pos 0U /*!< ITM IRR: ATREADYM Position */
+#define ITM_IRR_ATREADYM_Msk (1UL /*<< ITM_IRR_ATREADYM_Pos*/) /*!< ITM IRR: ATREADYM Mask */
+
+/* ITM Integration Mode Control Register Definitions */
+#define ITM_IMCR_INTEGRATION_Pos 0U /*!< ITM IMCR: INTEGRATION Position */
+#define ITM_IMCR_INTEGRATION_Msk (1UL /*<< ITM_IMCR_INTEGRATION_Pos*/) /*!< ITM IMCR: INTEGRATION Mask */
+
+/* ITM Lock Status Register Definitions */
+#define ITM_LSR_ByteAcc_Pos 2U /*!< ITM LSR: ByteAcc Position */
+#define ITM_LSR_ByteAcc_Msk (1UL << ITM_LSR_ByteAcc_Pos) /*!< ITM LSR: ByteAcc Mask */
+
+#define ITM_LSR_Access_Pos 1U /*!< ITM LSR: Access Position */
+#define ITM_LSR_Access_Msk (1UL << ITM_LSR_Access_Pos) /*!< ITM LSR: Access Mask */
+
+#define ITM_LSR_Present_Pos 0U /*!< ITM LSR: Present Position */
+#define ITM_LSR_Present_Msk (1UL /*<< ITM_LSR_Present_Pos*/) /*!< ITM LSR: Present Mask */
+
+/*@}*/ /* end of group CMSIS_ITM */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_DWT Data Watchpoint and Trace (DWT)
+ \brief Type definitions for the Data Watchpoint and Trace (DWT)
+ @{
+ */
+
+/**
+ \brief Structure type to access the Data Watchpoint and Trace Register (DWT).
+ */
+typedef struct {
+ __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) Control Register */
+ __IOM uint32_t CYCCNT; /*!< Offset: 0x004 (R/W) Cycle Count Register */
+ __IOM uint32_t CPICNT; /*!< Offset: 0x008 (R/W) CPI Count Register */
+ __IOM uint32_t EXCCNT; /*!< Offset: 0x00C (R/W) Exception Overhead Count Register */
+ __IOM uint32_t SLEEPCNT; /*!< Offset: 0x010 (R/W) Sleep Count Register */
+ __IOM uint32_t LSUCNT; /*!< Offset: 0x014 (R/W) LSU Count Register */
+ __IOM uint32_t FOLDCNT; /*!< Offset: 0x018 (R/W) Folded-instruction Count Register */
+ __IM uint32_t PCSR; /*!< Offset: 0x01C (R/ ) Program Counter Sample Register */
+ __IOM uint32_t COMP0; /*!< Offset: 0x020 (R/W) Comparator Register 0 */
+ __IOM uint32_t MASK0; /*!< Offset: 0x024 (R/W) Mask Register 0 */
+ __IOM uint32_t FUNCTION0; /*!< Offset: 0x028 (R/W) Function Register 0 */
+ uint32_t RESERVED0[1U];
+ __IOM uint32_t COMP1; /*!< Offset: 0x030 (R/W) Comparator Register 1 */
+ __IOM uint32_t MASK1; /*!< Offset: 0x034 (R/W) Mask Register 1 */
+ __IOM uint32_t FUNCTION1; /*!< Offset: 0x038 (R/W) Function Register 1 */
+ uint32_t RESERVED1[1U];
+ __IOM uint32_t COMP2; /*!< Offset: 0x040 (R/W) Comparator Register 2 */
+ __IOM uint32_t MASK2; /*!< Offset: 0x044 (R/W) Mask Register 2 */
+ __IOM uint32_t FUNCTION2; /*!< Offset: 0x048 (R/W) Function Register 2 */
+ uint32_t RESERVED2[1U];
+ __IOM uint32_t COMP3; /*!< Offset: 0x050 (R/W) Comparator Register 3 */
+ __IOM uint32_t MASK3; /*!< Offset: 0x054 (R/W) Mask Register 3 */
+ __IOM uint32_t FUNCTION3; /*!< Offset: 0x058 (R/W) Function Register 3 */
+} DWT_Type;
+
+/* DWT Control Register Definitions */
+#define DWT_CTRL_NUMCOMP_Pos 28U /*!< DWT CTRL: NUMCOMP Position */
+#define DWT_CTRL_NUMCOMP_Msk (0xFUL << DWT_CTRL_NUMCOMP_Pos) /*!< DWT CTRL: NUMCOMP Mask */
+
+#define DWT_CTRL_NOTRCPKT_Pos 27U /*!< DWT CTRL: NOTRCPKT Position */
+#define DWT_CTRL_NOTRCPKT_Msk (0x1UL << DWT_CTRL_NOTRCPKT_Pos) /*!< DWT CTRL: NOTRCPKT Mask */
+
+#define DWT_CTRL_NOEXTTRIG_Pos 26U /*!< DWT CTRL: NOEXTTRIG Position */
+#define DWT_CTRL_NOEXTTRIG_Msk (0x1UL << DWT_CTRL_NOEXTTRIG_Pos) /*!< DWT CTRL: NOEXTTRIG Mask */
+
+#define DWT_CTRL_NOCYCCNT_Pos 25U /*!< DWT CTRL: NOCYCCNT Position */
+#define DWT_CTRL_NOCYCCNT_Msk (0x1UL << DWT_CTRL_NOCYCCNT_Pos) /*!< DWT CTRL: NOCYCCNT Mask */
+
+#define DWT_CTRL_NOPRFCNT_Pos 24U /*!< DWT CTRL: NOPRFCNT Position */
+#define DWT_CTRL_NOPRFCNT_Msk (0x1UL << DWT_CTRL_NOPRFCNT_Pos) /*!< DWT CTRL: NOPRFCNT Mask */
+
+#define DWT_CTRL_CYCEVTENA_Pos 22U /*!< DWT CTRL: CYCEVTENA Position */
+#define DWT_CTRL_CYCEVTENA_Msk (0x1UL << DWT_CTRL_CYCEVTENA_Pos) /*!< DWT CTRL: CYCEVTENA Mask */
+
+#define DWT_CTRL_FOLDEVTENA_Pos 21U /*!< DWT CTRL: FOLDEVTENA Position */
+#define DWT_CTRL_FOLDEVTENA_Msk (0x1UL << DWT_CTRL_FOLDEVTENA_Pos) /*!< DWT CTRL: FOLDEVTENA Mask */
+
+#define DWT_CTRL_LSUEVTENA_Pos 20U /*!< DWT CTRL: LSUEVTENA Position */
+#define DWT_CTRL_LSUEVTENA_Msk (0x1UL << DWT_CTRL_LSUEVTENA_Pos) /*!< DWT CTRL: LSUEVTENA Mask */
+
+#define DWT_CTRL_SLEEPEVTENA_Pos 19U /*!< DWT CTRL: SLEEPEVTENA Position */
+#define DWT_CTRL_SLEEPEVTENA_Msk (0x1UL << DWT_CTRL_SLEEPEVTENA_Pos) /*!< DWT CTRL: SLEEPEVTENA Mask */
+
+#define DWT_CTRL_EXCEVTENA_Pos 18U /*!< DWT CTRL: EXCEVTENA Position */
+#define DWT_CTRL_EXCEVTENA_Msk (0x1UL << DWT_CTRL_EXCEVTENA_Pos) /*!< DWT CTRL: EXCEVTENA Mask */
+
+#define DWT_CTRL_CPIEVTENA_Pos 17U /*!< DWT CTRL: CPIEVTENA Position */
+#define DWT_CTRL_CPIEVTENA_Msk (0x1UL << DWT_CTRL_CPIEVTENA_Pos) /*!< DWT CTRL: CPIEVTENA Mask */
+
+#define DWT_CTRL_EXCTRCENA_Pos 16U /*!< DWT CTRL: EXCTRCENA Position */
+#define DWT_CTRL_EXCTRCENA_Msk (0x1UL << DWT_CTRL_EXCTRCENA_Pos) /*!< DWT CTRL: EXCTRCENA Mask */
+
+#define DWT_CTRL_PCSAMPLENA_Pos 12U /*!< DWT CTRL: PCSAMPLENA Position */
+#define DWT_CTRL_PCSAMPLENA_Msk (0x1UL << DWT_CTRL_PCSAMPLENA_Pos) /*!< DWT CTRL: PCSAMPLENA Mask */
+
+#define DWT_CTRL_SYNCTAP_Pos 10U /*!< DWT CTRL: SYNCTAP Position */
+#define DWT_CTRL_SYNCTAP_Msk (0x3UL << DWT_CTRL_SYNCTAP_Pos) /*!< DWT CTRL: SYNCTAP Mask */
+
+#define DWT_CTRL_CYCTAP_Pos 9U /*!< DWT CTRL: CYCTAP Position */
+#define DWT_CTRL_CYCTAP_Msk (0x1UL << DWT_CTRL_CYCTAP_Pos) /*!< DWT CTRL: CYCTAP Mask */
+
+#define DWT_CTRL_POSTINIT_Pos 5U /*!< DWT CTRL: POSTINIT Position */
+#define DWT_CTRL_POSTINIT_Msk (0xFUL << DWT_CTRL_POSTINIT_Pos) /*!< DWT CTRL: POSTINIT Mask */
+
+#define DWT_CTRL_POSTPRESET_Pos 1U /*!< DWT CTRL: POSTPRESET Position */
+#define DWT_CTRL_POSTPRESET_Msk (0xFUL << DWT_CTRL_POSTPRESET_Pos) /*!< DWT CTRL: POSTPRESET Mask */
+
+#define DWT_CTRL_CYCCNTENA_Pos 0U /*!< DWT CTRL: CYCCNTENA Position */
+#define DWT_CTRL_CYCCNTENA_Msk (0x1UL /*<< DWT_CTRL_CYCCNTENA_Pos*/) /*!< DWT CTRL: CYCCNTENA Mask */
+
+/* DWT CPI Count Register Definitions */
+#define DWT_CPICNT_CPICNT_Pos 0U /*!< DWT CPICNT: CPICNT Position */
+#define DWT_CPICNT_CPICNT_Msk (0xFFUL /*<< DWT_CPICNT_CPICNT_Pos*/) /*!< DWT CPICNT: CPICNT Mask */
+
+/* DWT Exception Overhead Count Register Definitions */
+#define DWT_EXCCNT_EXCCNT_Pos 0U /*!< DWT EXCCNT: EXCCNT Position */
+#define DWT_EXCCNT_EXCCNT_Msk (0xFFUL /*<< DWT_EXCCNT_EXCCNT_Pos*/) /*!< DWT EXCCNT: EXCCNT Mask */
+
+/* DWT Sleep Count Register Definitions */
+#define DWT_SLEEPCNT_SLEEPCNT_Pos 0U /*!< DWT SLEEPCNT: SLEEPCNT Position */
+#define DWT_SLEEPCNT_SLEEPCNT_Msk (0xFFUL /*<< DWT_SLEEPCNT_SLEEPCNT_Pos*/) /*!< DWT SLEEPCNT: SLEEPCNT Mask */
+
+/* DWT LSU Count Register Definitions */
+#define DWT_LSUCNT_LSUCNT_Pos 0U /*!< DWT LSUCNT: LSUCNT Position */
+#define DWT_LSUCNT_LSUCNT_Msk (0xFFUL /*<< DWT_LSUCNT_LSUCNT_Pos*/) /*!< DWT LSUCNT: LSUCNT Mask */
+
+/* DWT Folded-instruction Count Register Definitions */
+#define DWT_FOLDCNT_FOLDCNT_Pos 0U /*!< DWT FOLDCNT: FOLDCNT Position */
+#define DWT_FOLDCNT_FOLDCNT_Msk (0xFFUL /*<< DWT_FOLDCNT_FOLDCNT_Pos*/) /*!< DWT FOLDCNT: FOLDCNT Mask */
+
+/* DWT Comparator Mask Register Definitions */
+#define DWT_MASK_MASK_Pos 0U /*!< DWT MASK: MASK Position */
+#define DWT_MASK_MASK_Msk (0x1FUL /*<< DWT_MASK_MASK_Pos*/) /*!< DWT MASK: MASK Mask */
+
+/* DWT Comparator Function Register Definitions */
+#define DWT_FUNCTION_MATCHED_Pos 24U /*!< DWT FUNCTION: MATCHED Position */
+#define DWT_FUNCTION_MATCHED_Msk (0x1UL << DWT_FUNCTION_MATCHED_Pos) /*!< DWT FUNCTION: MATCHED Mask */
+
+#define DWT_FUNCTION_DATAVADDR1_Pos 16U /*!< DWT FUNCTION: DATAVADDR1 Position */
+#define DWT_FUNCTION_DATAVADDR1_Msk (0xFUL << DWT_FUNCTION_DATAVADDR1_Pos) /*!< DWT FUNCTION: DATAVADDR1 Mask */
+
+#define DWT_FUNCTION_DATAVADDR0_Pos 12U /*!< DWT FUNCTION: DATAVADDR0 Position */
+#define DWT_FUNCTION_DATAVADDR0_Msk (0xFUL << DWT_FUNCTION_DATAVADDR0_Pos) /*!< DWT FUNCTION: DATAVADDR0 Mask */
+
+#define DWT_FUNCTION_DATAVSIZE_Pos 10U /*!< DWT FUNCTION: DATAVSIZE Position */
+#define DWT_FUNCTION_DATAVSIZE_Msk (0x3UL << DWT_FUNCTION_DATAVSIZE_Pos) /*!< DWT FUNCTION: DATAVSIZE Mask */
+
+#define DWT_FUNCTION_LNK1ENA_Pos 9U /*!< DWT FUNCTION: LNK1ENA Position */
+#define DWT_FUNCTION_LNK1ENA_Msk (0x1UL << DWT_FUNCTION_LNK1ENA_Pos) /*!< DWT FUNCTION: LNK1ENA Mask */
+
+#define DWT_FUNCTION_DATAVMATCH_Pos 8U /*!< DWT FUNCTION: DATAVMATCH Position */
+#define DWT_FUNCTION_DATAVMATCH_Msk (0x1UL << DWT_FUNCTION_DATAVMATCH_Pos) /*!< DWT FUNCTION: DATAVMATCH Mask */
+
+#define DWT_FUNCTION_CYCMATCH_Pos 7U /*!< DWT FUNCTION: CYCMATCH Position */
+#define DWT_FUNCTION_CYCMATCH_Msk (0x1UL << DWT_FUNCTION_CYCMATCH_Pos) /*!< DWT FUNCTION: CYCMATCH Mask */
+
+#define DWT_FUNCTION_EMITRANGE_Pos 5U /*!< DWT FUNCTION: EMITRANGE Position */
+#define DWT_FUNCTION_EMITRANGE_Msk (0x1UL << DWT_FUNCTION_EMITRANGE_Pos) /*!< DWT FUNCTION: EMITRANGE Mask */
+
+#define DWT_FUNCTION_FUNCTION_Pos 0U /*!< DWT FUNCTION: FUNCTION Position */
+#define DWT_FUNCTION_FUNCTION_Msk (0xFUL /*<< DWT_FUNCTION_FUNCTION_Pos*/) /*!< DWT FUNCTION: FUNCTION Mask */
+
+/*@}*/ /* end of group CMSIS_DWT */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_TPI Trace Port Interface (TPI)
+ \brief Type definitions for the Trace Port Interface (TPI)
+ @{
+ */
+
+/**
+ \brief Structure type to access the Trace Port Interface Register (TPI).
+ */
+typedef struct {
+ __IM uint32_t SSPSR; /*!< Offset: 0x000 (R/ ) Supported Parallel Port Size Register */
+ __IOM uint32_t CSPSR; /*!< Offset: 0x004 (R/W) Current Parallel Port Size Register */
+ uint32_t RESERVED0[2U];
+ __IOM uint32_t ACPR; /*!< Offset: 0x010 (R/W) Asynchronous Clock Prescaler Register */
+ uint32_t RESERVED1[55U];
+ __IOM uint32_t SPPR; /*!< Offset: 0x0F0 (R/W) Selected Pin Protocol Register */
+ uint32_t RESERVED2[131U];
+ __IM uint32_t FFSR; /*!< Offset: 0x300 (R/ ) Formatter and Flush Status Register */
+ __IOM uint32_t FFCR; /*!< Offset: 0x304 (R/W) Formatter and Flush Control Register */
+ __IM uint32_t FSCR; /*!< Offset: 0x308 (R/ ) Formatter Synchronization Counter Register */
+ uint32_t RESERVED3[759U];
+ __IM uint32_t TRIGGER; /*!< Offset: 0xEE8 (R/ ) TRIGGER Register */
+ __IM uint32_t FIFO0; /*!< Offset: 0xEEC (R/ ) Integration ETM Data */
+ __IM uint32_t ITATBCTR2; /*!< Offset: 0xEF0 (R/ ) ITATBCTR2 */
+ uint32_t RESERVED4[1U];
+ __IM uint32_t ITATBCTR0; /*!< Offset: 0xEF8 (R/ ) ITATBCTR0 */
+ __IM uint32_t FIFO1; /*!< Offset: 0xEFC (R/ ) Integration ITM Data */
+ __IOM uint32_t ITCTRL; /*!< Offset: 0xF00 (R/W) Integration Mode Control */
+ uint32_t RESERVED5[39U];
+ __IOM uint32_t CLAIMSET; /*!< Offset: 0xFA0 (R/W) Claim tag set */
+ __IOM uint32_t CLAIMCLR; /*!< Offset: 0xFA4 (R/W) Claim tag clear */
+ uint32_t RESERVED7[8U];
+ __IM uint32_t DEVID; /*!< Offset: 0xFC8 (R/ ) TPIU_DEVID */
+ __IM uint32_t DEVTYPE; /*!< Offset: 0xFCC (R/ ) TPIU_DEVTYPE */
+} TPI_Type;
+
+/* TPI Asynchronous Clock Prescaler Register Definitions */
+#define TPI_ACPR_PRESCALER_Pos 0U /*!< TPI ACPR: PRESCALER Position */
+#define TPI_ACPR_PRESCALER_Msk (0x1FFFUL /*<< TPI_ACPR_PRESCALER_Pos*/) /*!< TPI ACPR: PRESCALER Mask */
+
+/* TPI Selected Pin Protocol Register Definitions */
+#define TPI_SPPR_TXMODE_Pos 0U /*!< TPI SPPR: TXMODE Position */
+#define TPI_SPPR_TXMODE_Msk (0x3UL /*<< TPI_SPPR_TXMODE_Pos*/) /*!< TPI SPPR: TXMODE Mask */
+
+/* TPI Formatter and Flush Status Register Definitions */
+#define TPI_FFSR_FtNonStop_Pos 3U /*!< TPI FFSR: FtNonStop Position */
+#define TPI_FFSR_FtNonStop_Msk (0x1UL << TPI_FFSR_FtNonStop_Pos) /*!< TPI FFSR: FtNonStop Mask */
+
+#define TPI_FFSR_TCPresent_Pos 2U /*!< TPI FFSR: TCPresent Position */
+#define TPI_FFSR_TCPresent_Msk (0x1UL << TPI_FFSR_TCPresent_Pos) /*!< TPI FFSR: TCPresent Mask */
+
+#define TPI_FFSR_FtStopped_Pos 1U /*!< TPI FFSR: FtStopped Position */
+#define TPI_FFSR_FtStopped_Msk (0x1UL << TPI_FFSR_FtStopped_Pos) /*!< TPI FFSR: FtStopped Mask */
+
+#define TPI_FFSR_FlInProg_Pos 0U /*!< TPI FFSR: FlInProg Position */
+#define TPI_FFSR_FlInProg_Msk (0x1UL /*<< TPI_FFSR_FlInProg_Pos*/) /*!< TPI FFSR: FlInProg Mask */
+
+/* TPI Formatter and Flush Control Register Definitions */
+#define TPI_FFCR_TrigIn_Pos 8U /*!< TPI FFCR: TrigIn Position */
+#define TPI_FFCR_TrigIn_Msk (0x1UL << TPI_FFCR_TrigIn_Pos) /*!< TPI FFCR: TrigIn Mask */
+
+#define TPI_FFCR_EnFCont_Pos 1U /*!< TPI FFCR: EnFCont Position */
+#define TPI_FFCR_EnFCont_Msk (0x1UL << TPI_FFCR_EnFCont_Pos) /*!< TPI FFCR: EnFCont Mask */
+
+/* TPI TRIGGER Register Definitions */
+#define TPI_TRIGGER_TRIGGER_Pos 0U /*!< TPI TRIGGER: TRIGGER Position */
+#define TPI_TRIGGER_TRIGGER_Msk (0x1UL /*<< TPI_TRIGGER_TRIGGER_Pos*/) /*!< TPI TRIGGER: TRIGGER Mask */
+
+/* TPI Integration ETM Data Register Definitions (FIFO0) */
+#define TPI_FIFO0_ITM_ATVALID_Pos 29U /*!< TPI FIFO0: ITM_ATVALID Position */
+#define TPI_FIFO0_ITM_ATVALID_Msk (0x3UL << TPI_FIFO0_ITM_ATVALID_Pos) /*!< TPI FIFO0: ITM_ATVALID Mask */
+
+#define TPI_FIFO0_ITM_bytecount_Pos 27U /*!< TPI FIFO0: ITM_bytecount Position */
+#define TPI_FIFO0_ITM_bytecount_Msk (0x3UL << TPI_FIFO0_ITM_bytecount_Pos) /*!< TPI FIFO0: ITM_bytecount Mask */
+
+#define TPI_FIFO0_ETM_ATVALID_Pos 26U /*!< TPI FIFO0: ETM_ATVALID Position */
+#define TPI_FIFO0_ETM_ATVALID_Msk (0x3UL << TPI_FIFO0_ETM_ATVALID_Pos) /*!< TPI FIFO0: ETM_ATVALID Mask */
+
+#define TPI_FIFO0_ETM_bytecount_Pos 24U /*!< TPI FIFO0: ETM_bytecount Position */
+#define TPI_FIFO0_ETM_bytecount_Msk (0x3UL << TPI_FIFO0_ETM_bytecount_Pos) /*!< TPI FIFO0: ETM_bytecount Mask */
+
+#define TPI_FIFO0_ETM2_Pos 16U /*!< TPI FIFO0: ETM2 Position */
+#define TPI_FIFO0_ETM2_Msk (0xFFUL << TPI_FIFO0_ETM2_Pos) /*!< TPI FIFO0: ETM2 Mask */
+
+#define TPI_FIFO0_ETM1_Pos 8U /*!< TPI FIFO0: ETM1 Position */
+#define TPI_FIFO0_ETM1_Msk (0xFFUL << TPI_FIFO0_ETM1_Pos) /*!< TPI FIFO0: ETM1 Mask */
+
+#define TPI_FIFO0_ETM0_Pos 0U /*!< TPI FIFO0: ETM0 Position */
+#define TPI_FIFO0_ETM0_Msk (0xFFUL /*<< TPI_FIFO0_ETM0_Pos*/) /*!< TPI FIFO0: ETM0 Mask */
+
+/* TPI ITATBCTR2 Register Definitions */
+#define TPI_ITATBCTR2_ATREADY2_Pos 0U /*!< TPI ITATBCTR2: ATREADY2 Position */
+#define TPI_ITATBCTR2_ATREADY2_Msk (0x1UL /*<< TPI_ITATBCTR2_ATREADY2_Pos*/) /*!< TPI ITATBCTR2: ATREADY2 Mask */
+
+#define TPI_ITATBCTR2_ATREADY1_Pos 0U /*!< TPI ITATBCTR2: ATREADY1 Position */
+#define TPI_ITATBCTR2_ATREADY1_Msk (0x1UL /*<< TPI_ITATBCTR2_ATREADY1_Pos*/) /*!< TPI ITATBCTR2: ATREADY1 Mask */
+
+/* TPI Integration ITM Data Register Definitions (FIFO1) */
+#define TPI_FIFO1_ITM_ATVALID_Pos 29U /*!< TPI FIFO1: ITM_ATVALID Position */
+#define TPI_FIFO1_ITM_ATVALID_Msk (0x3UL << TPI_FIFO1_ITM_ATVALID_Pos) /*!< TPI FIFO1: ITM_ATVALID Mask */
+
+#define TPI_FIFO1_ITM_bytecount_Pos 27U /*!< TPI FIFO1: ITM_bytecount Position */
+#define TPI_FIFO1_ITM_bytecount_Msk (0x3UL << TPI_FIFO1_ITM_bytecount_Pos) /*!< TPI FIFO1: ITM_bytecount Mask */
+
+#define TPI_FIFO1_ETM_ATVALID_Pos 26U /*!< TPI FIFO1: ETM_ATVALID Position */
+#define TPI_FIFO1_ETM_ATVALID_Msk (0x3UL << TPI_FIFO1_ETM_ATVALID_Pos) /*!< TPI FIFO1: ETM_ATVALID Mask */
+
+#define TPI_FIFO1_ETM_bytecount_Pos 24U /*!< TPI FIFO1: ETM_bytecount Position */
+#define TPI_FIFO1_ETM_bytecount_Msk (0x3UL << TPI_FIFO1_ETM_bytecount_Pos) /*!< TPI FIFO1: ETM_bytecount Mask */
+
+#define TPI_FIFO1_ITM2_Pos 16U /*!< TPI FIFO1: ITM2 Position */
+#define TPI_FIFO1_ITM2_Msk (0xFFUL << TPI_FIFO1_ITM2_Pos) /*!< TPI FIFO1: ITM2 Mask */
+
+#define TPI_FIFO1_ITM1_Pos 8U /*!< TPI FIFO1: ITM1 Position */
+#define TPI_FIFO1_ITM1_Msk (0xFFUL << TPI_FIFO1_ITM1_Pos) /*!< TPI FIFO1: ITM1 Mask */
+
+#define TPI_FIFO1_ITM0_Pos 0U /*!< TPI FIFO1: ITM0 Position */
+#define TPI_FIFO1_ITM0_Msk (0xFFUL /*<< TPI_FIFO1_ITM0_Pos*/) /*!< TPI FIFO1: ITM0 Mask */
+
+/* TPI ITATBCTR0 Register Definitions */
+#define TPI_ITATBCTR0_ATREADY2_Pos 0U /*!< TPI ITATBCTR0: ATREADY2 Position */
+#define TPI_ITATBCTR0_ATREADY2_Msk (0x1UL /*<< TPI_ITATBCTR0_ATREADY2_Pos*/) /*!< TPI ITATBCTR0: ATREADY2 Mask */
+
+#define TPI_ITATBCTR0_ATREADY1_Pos 0U /*!< TPI ITATBCTR0: ATREADY1 Position */
+#define TPI_ITATBCTR0_ATREADY1_Msk (0x1UL /*<< TPI_ITATBCTR0_ATREADY1_Pos*/) /*!< TPI ITATBCTR0: ATREADY1 Mask */
+
+/* TPI Integration Mode Control Register Definitions */
+#define TPI_ITCTRL_Mode_Pos 0U /*!< TPI ITCTRL: Mode Position */
+#define TPI_ITCTRL_Mode_Msk (0x3UL /*<< TPI_ITCTRL_Mode_Pos*/) /*!< TPI ITCTRL: Mode Mask */
+
+/* TPI DEVID Register Definitions */
+#define TPI_DEVID_NRZVALID_Pos 11U /*!< TPI DEVID: NRZVALID Position */
+#define TPI_DEVID_NRZVALID_Msk (0x1UL << TPI_DEVID_NRZVALID_Pos) /*!< TPI DEVID: NRZVALID Mask */
+
+#define TPI_DEVID_MANCVALID_Pos 10U /*!< TPI DEVID: MANCVALID Position */
+#define TPI_DEVID_MANCVALID_Msk (0x1UL << TPI_DEVID_MANCVALID_Pos) /*!< TPI DEVID: MANCVALID Mask */
+
+#define TPI_DEVID_PTINVALID_Pos 9U /*!< TPI DEVID: PTINVALID Position */
+#define TPI_DEVID_PTINVALID_Msk (0x1UL << TPI_DEVID_PTINVALID_Pos) /*!< TPI DEVID: PTINVALID Mask */
+
+#define TPI_DEVID_MinBufSz_Pos 6U /*!< TPI DEVID: MinBufSz Position */
+#define TPI_DEVID_MinBufSz_Msk (0x7UL << TPI_DEVID_MinBufSz_Pos) /*!< TPI DEVID: MinBufSz Mask */
+
+#define TPI_DEVID_AsynClkIn_Pos 5U /*!< TPI DEVID: AsynClkIn Position */
+#define TPI_DEVID_AsynClkIn_Msk (0x1UL << TPI_DEVID_AsynClkIn_Pos) /*!< TPI DEVID: AsynClkIn Mask */
+
+#define TPI_DEVID_NrTraceInput_Pos 0U /*!< TPI DEVID: NrTraceInput Position */
+#define TPI_DEVID_NrTraceInput_Msk (0x1FUL /*<< TPI_DEVID_NrTraceInput_Pos*/) /*!< TPI DEVID: NrTraceInput Mask */
+
+/* TPI DEVTYPE Register Definitions */
+#define TPI_DEVTYPE_SubType_Pos 4U /*!< TPI DEVTYPE: SubType Position */
+#define TPI_DEVTYPE_SubType_Msk (0xFUL /*<< TPI_DEVTYPE_SubType_Pos*/) /*!< TPI DEVTYPE: SubType Mask */
+
+#define TPI_DEVTYPE_MajorType_Pos 0U /*!< TPI DEVTYPE: MajorType Position */
+#define TPI_DEVTYPE_MajorType_Msk (0xFUL << TPI_DEVTYPE_MajorType_Pos) /*!< TPI DEVTYPE: MajorType Mask */
+
+/*@}*/ /* end of group CMSIS_TPI */
+
+#if defined(__MPU_PRESENT) && (__MPU_PRESENT == 1U)
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_MPU Memory Protection Unit (MPU)
+ \brief Type definitions for the Memory Protection Unit (MPU)
+ @{
+ */
+
+/**
+ \brief Structure type to access the Memory Protection Unit (MPU).
+ */
+typedef struct {
+ __IM uint32_t TYPE; /*!< Offset: 0x000 (R/ ) MPU Type Register */
+ __IOM uint32_t CTRL; /*!< Offset: 0x004 (R/W) MPU Control Register */
+ __IOM uint32_t RNR; /*!< Offset: 0x008 (R/W) MPU Region RNRber Register */
+ __IOM uint32_t RBAR; /*!< Offset: 0x00C (R/W) MPU Region Base Address Register */
+ __IOM uint32_t RASR; /*!< Offset: 0x010 (R/W) MPU Region Attribute and Size Register */
+ __IOM uint32_t RBAR_A1; /*!< Offset: 0x014 (R/W) MPU Alias 1 Region Base Address Register */
+ __IOM uint32_t RASR_A1; /*!< Offset: 0x018 (R/W) MPU Alias 1 Region Attribute and Size Register */
+ __IOM uint32_t RBAR_A2; /*!< Offset: 0x01C (R/W) MPU Alias 2 Region Base Address Register */
+ __IOM uint32_t RASR_A2; /*!< Offset: 0x020 (R/W) MPU Alias 2 Region Attribute and Size Register */
+ __IOM uint32_t RBAR_A3; /*!< Offset: 0x024 (R/W) MPU Alias 3 Region Base Address Register */
+ __IOM uint32_t RASR_A3; /*!< Offset: 0x028 (R/W) MPU Alias 3 Region Attribute and Size Register */
+} MPU_Type;
+
+/* MPU Type Register Definitions */
+#define MPU_TYPE_IREGION_Pos 16U /*!< MPU TYPE: IREGION Position */
+#define MPU_TYPE_IREGION_Msk (0xFFUL << MPU_TYPE_IREGION_Pos) /*!< MPU TYPE: IREGION Mask */
+
+#define MPU_TYPE_DREGION_Pos 8U /*!< MPU TYPE: DREGION Position */
+#define MPU_TYPE_DREGION_Msk (0xFFUL << MPU_TYPE_DREGION_Pos) /*!< MPU TYPE: DREGION Mask */
+
+#define MPU_TYPE_SEPARATE_Pos 0U /*!< MPU TYPE: SEPARATE Position */
+#define MPU_TYPE_SEPARATE_Msk (1UL /*<< MPU_TYPE_SEPARATE_Pos*/) /*!< MPU TYPE: SEPARATE Mask */
+
+/* MPU Control Register Definitions */
+#define MPU_CTRL_PRIVDEFENA_Pos 2U /*!< MPU CTRL: PRIVDEFENA Position */
+#define MPU_CTRL_PRIVDEFENA_Msk (1UL << MPU_CTRL_PRIVDEFENA_Pos) /*!< MPU CTRL: PRIVDEFENA Mask */
+
+#define MPU_CTRL_HFNMIENA_Pos 1U /*!< MPU CTRL: HFNMIENA Position */
+#define MPU_CTRL_HFNMIENA_Msk (1UL << MPU_CTRL_HFNMIENA_Pos) /*!< MPU CTRL: HFNMIENA Mask */
+
+#define MPU_CTRL_ENABLE_Pos 0U /*!< MPU CTRL: ENABLE Position */
+#define MPU_CTRL_ENABLE_Msk (1UL /*<< MPU_CTRL_ENABLE_Pos*/) /*!< MPU CTRL: ENABLE Mask */
+
+/* MPU Region Number Register Definitions */
+#define MPU_RNR_REGION_Pos 0U /*!< MPU RNR: REGION Position */
+#define MPU_RNR_REGION_Msk (0xFFUL /*<< MPU_RNR_REGION_Pos*/) /*!< MPU RNR: REGION Mask */
+
+/* MPU Region Base Address Register Definitions */
+#define MPU_RBAR_ADDR_Pos 5U /*!< MPU RBAR: ADDR Position */
+#define MPU_RBAR_ADDR_Msk (0x7FFFFFFUL << MPU_RBAR_ADDR_Pos) /*!< MPU RBAR: ADDR Mask */
+
+#define MPU_RBAR_VALID_Pos 4U /*!< MPU RBAR: VALID Position */
+#define MPU_RBAR_VALID_Msk (1UL << MPU_RBAR_VALID_Pos) /*!< MPU RBAR: VALID Mask */
+
+#define MPU_RBAR_REGION_Pos 0U /*!< MPU RBAR: REGION Position */
+#define MPU_RBAR_REGION_Msk (0xFUL /*<< MPU_RBAR_REGION_Pos*/) /*!< MPU RBAR: REGION Mask */
+
+/* MPU Region Attribute and Size Register Definitions */
+#define MPU_RASR_ATTRS_Pos 16U /*!< MPU RASR: MPU Region Attribute field Position */
+#define MPU_RASR_ATTRS_Msk (0xFFFFUL << MPU_RASR_ATTRS_Pos) /*!< MPU RASR: MPU Region Attribute field Mask */
+
+#define MPU_RASR_XN_Pos 28U /*!< MPU RASR: ATTRS.XN Position */
+#define MPU_RASR_XN_Msk (1UL << MPU_RASR_XN_Pos) /*!< MPU RASR: ATTRS.XN Mask */
+
+#define MPU_RASR_AP_Pos 24U /*!< MPU RASR: ATTRS.AP Position */
+#define MPU_RASR_AP_Msk (0x7UL << MPU_RASR_AP_Pos) /*!< MPU RASR: ATTRS.AP Mask */
+
+#define MPU_RASR_TEX_Pos 19U /*!< MPU RASR: ATTRS.TEX Position */
+#define MPU_RASR_TEX_Msk (0x7UL << MPU_RASR_TEX_Pos) /*!< MPU RASR: ATTRS.TEX Mask */
+
+#define MPU_RASR_S_Pos 18U /*!< MPU RASR: ATTRS.S Position */
+#define MPU_RASR_S_Msk (1UL << MPU_RASR_S_Pos) /*!< MPU RASR: ATTRS.S Mask */
+
+#define MPU_RASR_C_Pos 17U /*!< MPU RASR: ATTRS.C Position */
+#define MPU_RASR_C_Msk (1UL << MPU_RASR_C_Pos) /*!< MPU RASR: ATTRS.C Mask */
+
+#define MPU_RASR_B_Pos 16U /*!< MPU RASR: ATTRS.B Position */
+#define MPU_RASR_B_Msk (1UL << MPU_RASR_B_Pos) /*!< MPU RASR: ATTRS.B Mask */
+
+#define MPU_RASR_SRD_Pos 8U /*!< MPU RASR: Sub-Region Disable Position */
+#define MPU_RASR_SRD_Msk (0xFFUL << MPU_RASR_SRD_Pos) /*!< MPU RASR: Sub-Region Disable Mask */
+
+#define MPU_RASR_SIZE_Pos 1U /*!< MPU RASR: Region Size Field Position */
+#define MPU_RASR_SIZE_Msk (0x1FUL << MPU_RASR_SIZE_Pos) /*!< MPU RASR: Region Size Field Mask */
+
+#define MPU_RASR_ENABLE_Pos 0U /*!< MPU RASR: Region enable bit Position */
+#define MPU_RASR_ENABLE_Msk (1UL /*<< MPU_RASR_ENABLE_Pos*/) /*!< MPU RASR: Region enable bit Disable Mask */
+
+/*@} end of group CMSIS_MPU */
+#endif
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
+ \brief Type definitions for the Core Debug Registers
+ @{
+ */
+
+/**
+ \brief Structure type to access the Core Debug Register (CoreDebug).
+ */
+typedef struct {
+ __IOM uint32_t DHCSR; /*!< Offset: 0x000 (R/W) Debug Halting Control and Status Register */
+ __OM uint32_t DCRSR; /*!< Offset: 0x004 ( /W) Debug Core Register Selector Register */
+ __IOM uint32_t DCRDR; /*!< Offset: 0x008 (R/W) Debug Core Register Data Register */
+ __IOM uint32_t DEMCR; /*!< Offset: 0x00C (R/W) Debug Exception and Monitor Control Register */
+} CoreDebug_Type;
+
+/* Debug Halting Control and Status Register Definitions */
+#define CoreDebug_DHCSR_DBGKEY_Pos 16U /*!< CoreDebug DHCSR: DBGKEY Position */
+#define CoreDebug_DHCSR_DBGKEY_Msk (0xFFFFUL << CoreDebug_DHCSR_DBGKEY_Pos) /*!< CoreDebug DHCSR: DBGKEY Mask */
+
+#define CoreDebug_DHCSR_S_RESET_ST_Pos 25U /*!< CoreDebug DHCSR: S_RESET_ST Position */
+#define CoreDebug_DHCSR_S_RESET_ST_Msk (1UL << CoreDebug_DHCSR_S_RESET_ST_Pos) /*!< CoreDebug DHCSR: S_RESET_ST Mask */
+
+#define CoreDebug_DHCSR_S_RETIRE_ST_Pos 24U /*!< CoreDebug DHCSR: S_RETIRE_ST Position */
+#define CoreDebug_DHCSR_S_RETIRE_ST_Msk (1UL << CoreDebug_DHCSR_S_RETIRE_ST_Pos) /*!< CoreDebug DHCSR: S_RETIRE_ST Mask */
+
+#define CoreDebug_DHCSR_S_LOCKUP_Pos 19U /*!< CoreDebug DHCSR: S_LOCKUP Position */
+#define CoreDebug_DHCSR_S_LOCKUP_Msk (1UL << CoreDebug_DHCSR_S_LOCKUP_Pos) /*!< CoreDebug DHCSR: S_LOCKUP Mask */
+
+#define CoreDebug_DHCSR_S_SLEEP_Pos 18U /*!< CoreDebug DHCSR: S_SLEEP Position */
+#define CoreDebug_DHCSR_S_SLEEP_Msk (1UL << CoreDebug_DHCSR_S_SLEEP_Pos) /*!< CoreDebug DHCSR: S_SLEEP Mask */
+
+#define CoreDebug_DHCSR_S_HALT_Pos 17U /*!< CoreDebug DHCSR: S_HALT Position */
+#define CoreDebug_DHCSR_S_HALT_Msk (1UL << CoreDebug_DHCSR_S_HALT_Pos) /*!< CoreDebug DHCSR: S_HALT Mask */
+
+#define CoreDebug_DHCSR_S_REGRDY_Pos 16U /*!< CoreDebug DHCSR: S_REGRDY Position */
+#define CoreDebug_DHCSR_S_REGRDY_Msk (1UL << CoreDebug_DHCSR_S_REGRDY_Pos) /*!< CoreDebug DHCSR: S_REGRDY Mask */
+
+#define CoreDebug_DHCSR_C_SNAPSTALL_Pos 5U /*!< CoreDebug DHCSR: C_SNAPSTALL Position */
+#define CoreDebug_DHCSR_C_SNAPSTALL_Msk (1UL << CoreDebug_DHCSR_C_SNAPSTALL_Pos) /*!< CoreDebug DHCSR: C_SNAPSTALL Mask */
+
+#define CoreDebug_DHCSR_C_MASKINTS_Pos 3U /*!< CoreDebug DHCSR: C_MASKINTS Position */
+#define CoreDebug_DHCSR_C_MASKINTS_Msk (1UL << CoreDebug_DHCSR_C_MASKINTS_Pos) /*!< CoreDebug DHCSR: C_MASKINTS Mask */
+
+#define CoreDebug_DHCSR_C_STEP_Pos 2U /*!< CoreDebug DHCSR: C_STEP Position */
+#define CoreDebug_DHCSR_C_STEP_Msk (1UL << CoreDebug_DHCSR_C_STEP_Pos) /*!< CoreDebug DHCSR: C_STEP Mask */
+
+#define CoreDebug_DHCSR_C_HALT_Pos 1U /*!< CoreDebug DHCSR: C_HALT Position */
+#define CoreDebug_DHCSR_C_HALT_Msk (1UL << CoreDebug_DHCSR_C_HALT_Pos) /*!< CoreDebug DHCSR: C_HALT Mask */
+
+#define CoreDebug_DHCSR_C_DEBUGEN_Pos 0U /*!< CoreDebug DHCSR: C_DEBUGEN Position */
+#define CoreDebug_DHCSR_C_DEBUGEN_Msk (1UL /*<< CoreDebug_DHCSR_C_DEBUGEN_Pos*/) /*!< CoreDebug DHCSR: C_DEBUGEN Mask */
+
+/* Debug Core Register Selector Register Definitions */
+#define CoreDebug_DCRSR_REGWnR_Pos 16U /*!< CoreDebug DCRSR: REGWnR Position */
+#define CoreDebug_DCRSR_REGWnR_Msk (1UL << CoreDebug_DCRSR_REGWnR_Pos) /*!< CoreDebug DCRSR: REGWnR Mask */
+
+#define CoreDebug_DCRSR_REGSEL_Pos 0U /*!< CoreDebug DCRSR: REGSEL Position */
+#define CoreDebug_DCRSR_REGSEL_Msk (0x1FUL /*<< CoreDebug_DCRSR_REGSEL_Pos*/) /*!< CoreDebug DCRSR: REGSEL Mask */
+
+/* Debug Exception and Monitor Control Register Definitions */
+#define CoreDebug_DEMCR_TRCENA_Pos 24U /*!< CoreDebug DEMCR: TRCENA Position */
+#define CoreDebug_DEMCR_TRCENA_Msk (1UL << CoreDebug_DEMCR_TRCENA_Pos) /*!< CoreDebug DEMCR: TRCENA Mask */
+
+#define CoreDebug_DEMCR_MON_REQ_Pos 19U /*!< CoreDebug DEMCR: MON_REQ Position */
+#define CoreDebug_DEMCR_MON_REQ_Msk (1UL << CoreDebug_DEMCR_MON_REQ_Pos) /*!< CoreDebug DEMCR: MON_REQ Mask */
+
+#define CoreDebug_DEMCR_MON_STEP_Pos 18U /*!< CoreDebug DEMCR: MON_STEP Position */
+#define CoreDebug_DEMCR_MON_STEP_Msk (1UL << CoreDebug_DEMCR_MON_STEP_Pos) /*!< CoreDebug DEMCR: MON_STEP Mask */
+
+#define CoreDebug_DEMCR_MON_PEND_Pos 17U /*!< CoreDebug DEMCR: MON_PEND Position */
+#define CoreDebug_DEMCR_MON_PEND_Msk (1UL << CoreDebug_DEMCR_MON_PEND_Pos) /*!< CoreDebug DEMCR: MON_PEND Mask */
+
+#define CoreDebug_DEMCR_MON_EN_Pos 16U /*!< CoreDebug DEMCR: MON_EN Position */
+#define CoreDebug_DEMCR_MON_EN_Msk (1UL << CoreDebug_DEMCR_MON_EN_Pos) /*!< CoreDebug DEMCR: MON_EN Mask */
+
+#define CoreDebug_DEMCR_VC_HARDERR_Pos 10U /*!< CoreDebug DEMCR: VC_HARDERR Position */
+#define CoreDebug_DEMCR_VC_HARDERR_Msk (1UL << CoreDebug_DEMCR_VC_HARDERR_Pos) /*!< CoreDebug DEMCR: VC_HARDERR Mask */
+
+#define CoreDebug_DEMCR_VC_INTERR_Pos 9U /*!< CoreDebug DEMCR: VC_INTERR Position */
+#define CoreDebug_DEMCR_VC_INTERR_Msk (1UL << CoreDebug_DEMCR_VC_INTERR_Pos) /*!< CoreDebug DEMCR: VC_INTERR Mask */
+
+#define CoreDebug_DEMCR_VC_BUSERR_Pos 8U /*!< CoreDebug DEMCR: VC_BUSERR Position */
+#define CoreDebug_DEMCR_VC_BUSERR_Msk (1UL << CoreDebug_DEMCR_VC_BUSERR_Pos) /*!< CoreDebug DEMCR: VC_BUSERR Mask */
+
+#define CoreDebug_DEMCR_VC_STATERR_Pos 7U /*!< CoreDebug DEMCR: VC_STATERR Position */
+#define CoreDebug_DEMCR_VC_STATERR_Msk (1UL << CoreDebug_DEMCR_VC_STATERR_Pos) /*!< CoreDebug DEMCR: VC_STATERR Mask */
+
+#define CoreDebug_DEMCR_VC_CHKERR_Pos 6U /*!< CoreDebug DEMCR: VC_CHKERR Position */
+#define CoreDebug_DEMCR_VC_CHKERR_Msk (1UL << CoreDebug_DEMCR_VC_CHKERR_Pos) /*!< CoreDebug DEMCR: VC_CHKERR Mask */
+
+#define CoreDebug_DEMCR_VC_NOCPERR_Pos 5U /*!< CoreDebug DEMCR: VC_NOCPERR Position */
+#define CoreDebug_DEMCR_VC_NOCPERR_Msk (1UL << CoreDebug_DEMCR_VC_NOCPERR_Pos) /*!< CoreDebug DEMCR: VC_NOCPERR Mask */
+
+#define CoreDebug_DEMCR_VC_MMERR_Pos 4U /*!< CoreDebug DEMCR: VC_MMERR Position */
+#define CoreDebug_DEMCR_VC_MMERR_Msk (1UL << CoreDebug_DEMCR_VC_MMERR_Pos) /*!< CoreDebug DEMCR: VC_MMERR Mask */
+
+#define CoreDebug_DEMCR_VC_CORERESET_Pos 0U /*!< CoreDebug DEMCR: VC_CORERESET Position */
+#define CoreDebug_DEMCR_VC_CORERESET_Msk (1UL /*<< CoreDebug_DEMCR_VC_CORERESET_Pos*/) /*!< CoreDebug DEMCR: VC_CORERESET Mask */
+
+/*@} end of group CMSIS_CoreDebug */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_core_bitfield Core register bit field macros
+ \brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
+ @{
+ */
+
+/**
+ \brief Mask and shift a bit field value for use in a register bit range.
+ \param[in] field Name of the register bit field.
+ \param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
+ \return Masked and shifted value.
+*/
+#define _VAL2FLD(field, value) (((uint32_t)(value) << field##_Pos) & field##_Msk)
+
+/**
+ \brief Mask and shift a register value to extract a bit filed value.
+ \param[in] field Name of the register bit field.
+ \param[in] value Value of register. This parameter is interpreted as an uint32_t type.
+ \return Masked and shifted bit field value.
+*/
+#define _FLD2VAL(field, value) (((uint32_t)(value)&field##_Msk) >> field##_Pos)
+
+/*@} end of group CMSIS_core_bitfield */
+
+/**
+ \ingroup CMSIS_core_register
+ \defgroup CMSIS_core_base Core Definitions
+ \brief Definitions for base addresses, unions, and structures.
+ @{
+ */
+
+/* Memory mapping of Core Hardware */
+#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
+#define ITM_BASE (0xE0000000UL) /*!< ITM Base Address */
+#define DWT_BASE (0xE0001000UL) /*!< DWT Base Address */
+#define TPI_BASE (0xE0040000UL) /*!< TPI Base Address */
+#define CoreDebug_BASE (0xE000EDF0UL) /*!< Core Debug Base Address */
+#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
+#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
+#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
+
+#define SCnSCB ((SCnSCB_Type *)SCS_BASE) /*!< System control Register not in SCB */
+#define SCB ((SCB_Type *)SCB_BASE) /*!< SCB configuration struct */
+#define SysTick ((SysTick_Type *)SysTick_BASE) /*!< SysTick configuration struct */
+#define NVIC ((NVIC_Type *)NVIC_BASE) /*!< NVIC configuration struct */
+#define ITM ((ITM_Type *)ITM_BASE) /*!< ITM configuration struct */
+#define DWT ((DWT_Type *)DWT_BASE) /*!< DWT configuration struct */
+#define TPI ((TPI_Type *)TPI_BASE) /*!< TPI configuration struct */
+#define CoreDebug ((CoreDebug_Type *)CoreDebug_BASE) /*!< Core Debug configuration struct */
+
+#if defined(__MPU_PRESENT) && (__MPU_PRESENT == 1U)
+#define MPU_BASE (SCS_BASE + 0x0D90UL) /*!< Memory Protection Unit */
+#define MPU ((MPU_Type *)MPU_BASE) /*!< Memory Protection Unit */
+#endif
+
+/*@} */
+
+/*******************************************************************************
+ * Hardware Abstraction Layer
+ Core Function Interface contains:
+ - Core NVIC Functions
+ - Core SysTick Functions
+ - Core Debug Functions
+ - Core Register Access Functions
+ ******************************************************************************/
+/**
+ \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
+*/
+
+/* ########################## NVIC functions #################################### */
+/**
+ \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_NVICFunctions NVIC Functions
+ \brief Functions that manage interrupts and exceptions via the NVIC.
+ @{
+ */
+
+#ifdef CMSIS_NVIC_VIRTUAL
+#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
+#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
+#endif
+#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
+#else
+#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
+#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
+#define NVIC_EnableIRQ __NVIC_EnableIRQ
+#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
+#define NVIC_DisableIRQ __NVIC_DisableIRQ
+#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
+#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
+#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
+#define NVIC_GetActive __NVIC_GetActive
+#define NVIC_SetPriority __NVIC_SetPriority
+#define NVIC_GetPriority __NVIC_GetPriority
+#define NVIC_SystemReset __NVIC_SystemReset
+#endif /* CMSIS_NVIC_VIRTUAL */
+
+#ifdef CMSIS_VECTAB_VIRTUAL
+#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
+#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
+#endif
+#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
+#else
+#define NVIC_SetVector __NVIC_SetVector
+#define NVIC_GetVector __NVIC_GetVector
+#endif /* (CMSIS_VECTAB_VIRTUAL) */
+
+#define NVIC_USER_IRQ_OFFSET 16
+
+/* The following EXC_RETURN values are saved the LR on exception entry */
+#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
+#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
+#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
+
+/**
+ \brief Set Priority Grouping
+ \details Sets the priority grouping field using the required unlock sequence.
+ The parameter PriorityGroup is assigned to the field SCB->AIRCR [10:8] PRIGROUP field.
+ Only values from 0..7 are used.
+ In case of a conflict between priority grouping and available
+ priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
+ \param [in] PriorityGroup Priority grouping field.
+ */
+__STATIC_INLINE void __NVIC_SetPriorityGrouping(uint32_t PriorityGroup) {
+ uint32_t reg_value;
+ uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
+
+ reg_value = SCB->AIRCR; /* read old register configuration */
+ reg_value &= ~((uint32_t)(SCB_AIRCR_VECTKEY_Msk | SCB_AIRCR_PRIGROUP_Msk)); /* clear bits to change */
+ reg_value = (reg_value | ((uint32_t)0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | (PriorityGroupTmp << 8U)); /* Insert write key and priorty group */
+ SCB->AIRCR = reg_value;
+}
+
+/**
+ \brief Get Priority Grouping
+ \details Reads the priority grouping field from the NVIC Interrupt Controller.
+ \return Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field).
+ */
+__STATIC_INLINE uint32_t __NVIC_GetPriorityGrouping(void) { return ((uint32_t)((SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) >> SCB_AIRCR_PRIGROUP_Pos)); }
+
+/**
+ \brief Enable Interrupt
+ \details Enables a device specific interrupt in the NVIC interrupt controller.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ISER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ }
+}
+
+/**
+ \brief Get Interrupt Enable status
+ \details Returns a device specific interrupt enable status from the NVIC interrupt controller.
+ \param [in] IRQn Device specific interrupt number.
+ \return 0 Interrupt is not enabled.
+ \return 1 Interrupt is enabled.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ return ((uint32_t)(((NVIC->ISER[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
+ } else {
+ return (0U);
+ }
+}
+
+/**
+ \brief Disable Interrupt
+ \details Disables a device specific interrupt in the NVIC interrupt controller.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ICER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ __DSB();
+ __ISB();
+ }
+}
+
+/**
+ \brief Get Pending Interrupt
+ \details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
+ \param [in] IRQn Device specific interrupt number.
+ \return 0 Interrupt status is not pending.
+ \return 1 Interrupt status is pending.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ return ((uint32_t)(((NVIC->ISPR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
+ } else {
+ return (0U);
+ }
+}
+
+/**
+ \brief Set Pending Interrupt
+ \details Sets the pending bit of a device specific interrupt in the NVIC pending register.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ISPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ }
+}
+
+/**
+ \brief Clear Pending Interrupt
+ \details Clears the pending bit of a device specific interrupt in the NVIC pending register.
+ \param [in] IRQn Device specific interrupt number.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->ICPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
+ }
+}
+
+/**
+ \brief Get Active Interrupt
+ \details Reads the active register in the NVIC and returns the active bit for the device specific interrupt.
+ \param [in] IRQn Device specific interrupt number.
+ \return 0 Interrupt status is not active.
+ \return 1 Interrupt status is active.
+ \note IRQn must not be negative.
+ */
+__STATIC_INLINE uint32_t __NVIC_GetActive(IRQn_Type IRQn) {
+ if ((int32_t)(IRQn) >= 0) {
+ return ((uint32_t)(((NVIC->IABR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
+ } else {
+ return (0U);
+ }
+}
+
+/**
+ \brief Set Interrupt Priority
+ \details Sets the priority of a device specific interrupt or a processor exception.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ \param [in] IRQn Interrupt number.
+ \param [in] priority Priority to set.
+ \note The priority cannot be set for every processor exception.
+ */
+__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) {
+ if ((int32_t)(IRQn) >= 0) {
+ NVIC->IP[((uint32_t)IRQn)] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL);
+ } else {
+ SCB->SHP[(((uint32_t)IRQn) & 0xFUL) - 4UL] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL);
+ }
+}
+
+/**
+ \brief Get Interrupt Priority
+ \details Reads the priority of a device specific interrupt or a processor exception.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ \param [in] IRQn Interrupt number.
+ \return Interrupt Priority.
+ Value is aligned automatically to the implemented priority bits of the microcontroller.
+ */
+__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn) {
+
+ if ((int32_t)(IRQn) >= 0) {
+ return (((uint32_t)NVIC->IP[((uint32_t)IRQn)] >> (8U - __NVIC_PRIO_BITS)));
+ } else {
+ return (((uint32_t)SCB->SHP[(((uint32_t)IRQn) & 0xFUL) - 4UL] >> (8U - __NVIC_PRIO_BITS)));
+ }
+}
+
+/**
+ \brief Encode Priority
+ \details Encodes the priority for an interrupt with the given priority group,
+ preemptive priority value, and subpriority value.
+ In case of a conflict between priority grouping and available
+ priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
+ \param [in] PriorityGroup Used priority group.
+ \param [in] PreemptPriority Preemptive priority value (starting from 0).
+ \param [in] SubPriority Subpriority value (starting from 0).
+ \return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
+ */
+__STATIC_INLINE uint32_t NVIC_EncodePriority(uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority) {
+ uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
+ uint32_t PreemptPriorityBits;
+ uint32_t SubPriorityBits;
+
+ PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
+ SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
+
+ return (((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) | ((SubPriority & (uint32_t)((1UL << (SubPriorityBits)) - 1UL))));
+}
+
+/**
+ \brief Decode Priority
+ \details Decodes an interrupt priority value with a given priority group to
+ preemptive priority value and subpriority value.
+ In case of a conflict between priority grouping and available
+ priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
+ \param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
+ \param [in] PriorityGroup Used priority group.
+ \param [out] pPreemptPriority Preemptive priority value (starting from 0).
+ \param [out] pSubPriority Subpriority value (starting from 0).
+ */
+__STATIC_INLINE void NVIC_DecodePriority(uint32_t Priority, uint32_t PriorityGroup, uint32_t *const pPreemptPriority, uint32_t *const pSubPriority) {
+ uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
+ uint32_t PreemptPriorityBits;
+ uint32_t SubPriorityBits;
+
+ PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
+ SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
+
+ *pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
+ *pSubPriority = (Priority) & (uint32_t)((1UL << (SubPriorityBits)) - 1UL);
+}
+
+/**
+ \brief Set Interrupt Vector
+ \details Sets an interrupt vector in SRAM based interrupt vector table.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ VTOR must been relocated to SRAM before.
+ \param [in] IRQn Interrupt number
+ \param [in] vector Address of interrupt handler function
+ */
+__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) {
+ uint32_t *vectors = (uint32_t *)SCB->VTOR;
+ vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector;
+}
+
+/**
+ \brief Get Interrupt Vector
+ \details Reads an interrupt vector from interrupt vector table.
+ The interrupt number can be positive to specify a device specific interrupt,
+ or negative to specify a processor exception.
+ \param [in] IRQn Interrupt number.
+ \return Address of interrupt handler function
+ */
+__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn) {
+ uint32_t *vectors = (uint32_t *)SCB->VTOR;
+ return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET];
+}
+
+/**
+ \brief System Reset
+ \details Initiates a system reset request to reset the MCU.
+ */
+__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void) {
+ __DSB(); /* Ensure all outstanding memory accesses included
+ buffered write are completed before reset */
+ SCB->AIRCR = (uint32_t)((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | (SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) | SCB_AIRCR_SYSRESETREQ_Msk); /* Keep priority group unchanged */
+ __DSB(); /* Ensure completion of memory access */
+
+ for (;;) /* wait until reset */
+ {
+ __NOP();
+ }
+}
+
+/*@} end of CMSIS_Core_NVICFunctions */
+
+/* ########################## FPU functions #################################### */
+/**
+ \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_FpuFunctions FPU Functions
+ \brief Function that provides FPU type.
+ @{
+ */
+
+/**
+ \brief get FPU type
+ \details returns the FPU type
+ \returns
+ - \b 0: No FPU
+ - \b 1: Single precision FPU
+ - \b 2: Double + Single precision FPU
+ */
+__STATIC_INLINE uint32_t SCB_GetFPUType(void) { return 0U; /* No FPU */ }
+
+/*@} end of CMSIS_Core_FpuFunctions */
+
+/* ################################## SysTick function ############################################ */
+/**
+ \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_SysTickFunctions SysTick Functions
+ \brief Functions that configure the System.
+ @{
+ */
+
+#if defined(__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
+
+/**
+ \brief System Tick Configuration
+ \details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
+ Counter is in free running mode to generate periodic interrupts.
+ \param [in] ticks Number of ticks between two interrupts.
+ \return 0 Function succeeded.
+ \return 1 Function failed.
+ \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
+ function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
+ must contain a vendor-specific implementation of this function.
+ */
+__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks) {
+ if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) {
+ return (1UL); /* Reload value impossible */
+ }
+
+ SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
+ NVIC_SetPriority(SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
+ SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
+ SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
+ return (0UL); /* Function successful */
+}
+
+#endif
+
+/*@} end of CMSIS_Core_SysTickFunctions */
+
+/* ##################################### Debug In/Output function ########################################### */
+/**
+ \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_core_DebugFunctions ITM Functions
+ \brief Functions that access the ITM debug interface.
+ @{
+ */
+
+extern volatile int32_t ITM_RxBuffer; /*!< External variable to receive characters. */
+#define ITM_RXBUFFER_EMPTY ((int32_t)0x5AA55AA5U) /*!< Value identifying \ref ITM_RxBuffer is ready for next character. */
+
+/**
+ \brief ITM Send Character
+ \details Transmits a character via the ITM channel 0, and
+ \li Just returns when no debugger is connected that has booked the output.
+ \li Is blocking when a debugger is connected, but the previous character sent has not been transmitted.
+ \param [in] ch Character to transmit.
+ \returns Character to transmit.
+ */
+__STATIC_INLINE uint32_t ITM_SendChar(uint32_t ch) {
+ if (((ITM->TCR & ITM_TCR_ITMENA_Msk) != 0UL) && /* ITM enabled */
+ ((ITM->TER & 1UL) != 0UL)) /* ITM Port #0 enabled */
+ {
+ while (ITM->PORT[0U].u32 == 0UL) {
+ __NOP();
+ }
+ ITM->PORT[0U].u8 = (uint8_t)ch;
+ }
+ return (ch);
+}
+
+/**
+ \brief ITM Receive Character
+ \details Inputs a character via the external variable \ref ITM_RxBuffer.
+ \return Received character.
+ \return -1 No character pending.
+ */
+__STATIC_INLINE int32_t ITM_ReceiveChar(void) {
+ int32_t ch = -1; /* no character available */
+
+ if (ITM_RxBuffer != ITM_RXBUFFER_EMPTY) {
+ ch = ITM_RxBuffer;
+ ITM_RxBuffer = ITM_RXBUFFER_EMPTY; /* ready for next character */
+ }
+
+ return (ch);
+}
+
+/**
+ \brief ITM Check Character
+ \details Checks whether a character is pending for reading in the variable \ref ITM_RxBuffer.
+ \return 0 No character available.
+ \return 1 Character available.
+ */
+__STATIC_INLINE int32_t ITM_CheckChar(void) {
+
+ if (ITM_RxBuffer == ITM_RXBUFFER_EMPTY) {
+ return (0); /* no character available */
+ } else {
+ return (1); /* character available */
+ }
+}
+
+/*@} end of CMSIS_core_DebugFunctions */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __CORE_SC300_H_DEPENDANT */
+
+#endif /* __CMSIS_GENERIC */
diff --git a/source/Core/BSP/MHP30/Vendor/CMSIS/Include/tz_context.h b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/tz_context.h new file mode 100644 index 00000000..4d754241 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/CMSIS/Include/tz_context.h @@ -0,0 +1,70 @@ +/******************************************************************************
+ * @file tz_context.h
+ * @brief Context Management for Armv8-M TrustZone
+ * @version V1.0.1
+ * @date 10. January 2018
+ ******************************************************************************/
+/*
+ * Copyright (c) 2017-2018 Arm Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#if defined(__ICCARM__)
+#pragma system_include /* treat file as system include file for MISRA check */
+#elif defined(__clang__)
+#pragma clang system_header /* treat file as system include file */
+#endif
+
+#ifndef TZ_CONTEXT_H
+#define TZ_CONTEXT_H
+
+#include <stdint.h>
+
+#ifndef TZ_MODULEID_T
+#define TZ_MODULEID_T
+/// \details Data type that identifies secure software modules called by a process.
+typedef uint32_t TZ_ModuleId_t;
+#endif
+
+/// \details TZ Memory ID identifies an allocated memory slot.
+typedef uint32_t TZ_MemoryId_t;
+
+/// Initialize secure context memory system
+/// \return execution status (1: success, 0: error)
+uint32_t TZ_InitContextSystem_S(void);
+
+/// Allocate context memory for calling secure software modules in TrustZone
+/// \param[in] module identifies software modules called from non-secure mode
+/// \return value != 0 id TrustZone memory slot identifier
+/// \return value 0 no memory available or internal error
+TZ_MemoryId_t TZ_AllocModuleContext_S(TZ_ModuleId_t module);
+
+/// Free context memory that was previously allocated with \ref TZ_AllocModuleContext_S
+/// \param[in] id TrustZone memory slot identifier
+/// \return execution status (1: success, 0: error)
+uint32_t TZ_FreeModuleContext_S(TZ_MemoryId_t id);
+
+/// Load secure context (called on RTOS thread context switch)
+/// \param[in] id TrustZone memory slot identifier
+/// \return execution status (1: success, 0: error)
+uint32_t TZ_LoadContext_S(TZ_MemoryId_t id);
+
+/// Store secure context (called on RTOS thread context switch)
+/// \param[in] id TrustZone memory slot identifier
+/// \return execution status (1: success, 0: error)
+uint32_t TZ_StoreContext_S(TZ_MemoryId_t id);
+
+#endif // TZ_CONTEXT_H
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/Legacy/stm32_hal_legacy.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/Legacy/stm32_hal_legacy.h new file mode 100644 index 00000000..18329db8 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/Legacy/stm32_hal_legacy.h @@ -0,0 +1,3798 @@ +/**
+ ******************************************************************************
+ * @file stm32_hal_legacy.h
+ * @author MCD Application Team
+ * @brief This file contains aliases definition for the STM32Cube HAL constants
+ * macros and functions maintained for legacy purpose.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2019 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef STM32_HAL_LEGACY
+#define STM32_HAL_LEGACY
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+/* Exported types ------------------------------------------------------------*/
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup HAL_AES_Aliased_Defines HAL CRYP Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define AES_FLAG_RDERR CRYP_FLAG_RDERR
+#define AES_FLAG_WRERR CRYP_FLAG_WRERR
+#define AES_CLEARFLAG_CCF CRYP_CLEARFLAG_CCF
+#define AES_CLEARFLAG_RDERR CRYP_CLEARFLAG_RDERR
+#define AES_CLEARFLAG_WRERR CRYP_CLEARFLAG_WRERR
+/**
+ * @}
+ */
+
+/** @defgroup HAL_ADC_Aliased_Defines HAL ADC Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define ADC_RESOLUTION12b ADC_RESOLUTION_12B
+#define ADC_RESOLUTION10b ADC_RESOLUTION_10B
+#define ADC_RESOLUTION8b ADC_RESOLUTION_8B
+#define ADC_RESOLUTION6b ADC_RESOLUTION_6B
+#define OVR_DATA_OVERWRITTEN ADC_OVR_DATA_OVERWRITTEN
+#define OVR_DATA_PRESERVED ADC_OVR_DATA_PRESERVED
+#define EOC_SINGLE_CONV ADC_EOC_SINGLE_CONV
+#define EOC_SEQ_CONV ADC_EOC_SEQ_CONV
+#define EOC_SINGLE_SEQ_CONV ADC_EOC_SINGLE_SEQ_CONV
+#define REGULAR_GROUP ADC_REGULAR_GROUP
+#define INJECTED_GROUP ADC_INJECTED_GROUP
+#define REGULAR_INJECTED_GROUP ADC_REGULAR_INJECTED_GROUP
+#define AWD_EVENT ADC_AWD_EVENT
+#define AWD1_EVENT ADC_AWD1_EVENT
+#define AWD2_EVENT ADC_AWD2_EVENT
+#define AWD3_EVENT ADC_AWD3_EVENT
+#define OVR_EVENT ADC_OVR_EVENT
+#define JQOVF_EVENT ADC_JQOVF_EVENT
+#define ALL_CHANNELS ADC_ALL_CHANNELS
+#define REGULAR_CHANNELS ADC_REGULAR_CHANNELS
+#define INJECTED_CHANNELS ADC_INJECTED_CHANNELS
+#define SYSCFG_FLAG_SENSOR_ADC ADC_FLAG_SENSOR
+#define SYSCFG_FLAG_VREF_ADC ADC_FLAG_VREFINT
+#define ADC_CLOCKPRESCALER_PCLK_DIV1 ADC_CLOCK_SYNC_PCLK_DIV1
+#define ADC_CLOCKPRESCALER_PCLK_DIV2 ADC_CLOCK_SYNC_PCLK_DIV2
+#define ADC_CLOCKPRESCALER_PCLK_DIV4 ADC_CLOCK_SYNC_PCLK_DIV4
+#define ADC_CLOCKPRESCALER_PCLK_DIV6 ADC_CLOCK_SYNC_PCLK_DIV6
+#define ADC_CLOCKPRESCALER_PCLK_DIV8 ADC_CLOCK_SYNC_PCLK_DIV8
+#define ADC_EXTERNALTRIG0_T6_TRGO ADC_EXTERNALTRIGCONV_T6_TRGO
+#define ADC_EXTERNALTRIG1_T21_CC2 ADC_EXTERNALTRIGCONV_T21_CC2
+#define ADC_EXTERNALTRIG2_T2_TRGO ADC_EXTERNALTRIGCONV_T2_TRGO
+#define ADC_EXTERNALTRIG3_T2_CC4 ADC_EXTERNALTRIGCONV_T2_CC4
+#define ADC_EXTERNALTRIG4_T22_TRGO ADC_EXTERNALTRIGCONV_T22_TRGO
+#define ADC_EXTERNALTRIG7_EXT_IT11 ADC_EXTERNALTRIGCONV_EXT_IT11
+#define ADC_CLOCK_ASYNC ADC_CLOCK_ASYNC_DIV1
+#define ADC_EXTERNALTRIG_EDGE_NONE ADC_EXTERNALTRIGCONVEDGE_NONE
+#define ADC_EXTERNALTRIG_EDGE_RISING ADC_EXTERNALTRIGCONVEDGE_RISING
+#define ADC_EXTERNALTRIG_EDGE_FALLING ADC_EXTERNALTRIGCONVEDGE_FALLING
+#define ADC_EXTERNALTRIG_EDGE_RISINGFALLING ADC_EXTERNALTRIGCONVEDGE_RISINGFALLING
+#define ADC_SAMPLETIME_2CYCLE_5 ADC_SAMPLETIME_2CYCLES_5
+
+#define HAL_ADC_STATE_BUSY_REG HAL_ADC_STATE_REG_BUSY
+#define HAL_ADC_STATE_BUSY_INJ HAL_ADC_STATE_INJ_BUSY
+#define HAL_ADC_STATE_EOC_REG HAL_ADC_STATE_REG_EOC
+#define HAL_ADC_STATE_EOC_INJ HAL_ADC_STATE_INJ_EOC
+#define HAL_ADC_STATE_ERROR HAL_ADC_STATE_ERROR_INTERNAL
+#define HAL_ADC_STATE_BUSY HAL_ADC_STATE_BUSY_INTERNAL
+#define HAL_ADC_STATE_AWD HAL_ADC_STATE_AWD1
+
+#if defined(STM32H7)
+#define ADC_CHANNEL_VBAT_DIV4 ADC_CHANNEL_VBAT
+#endif /* STM32H7 */
+/**
+ * @}
+ */
+
+/** @defgroup HAL_CEC_Aliased_Defines HAL CEC Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+#define __HAL_CEC_GET_IT __HAL_CEC_GET_FLAG
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_COMP_Aliased_Defines HAL COMP Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define COMP_WINDOWMODE_DISABLED COMP_WINDOWMODE_DISABLE
+#define COMP_WINDOWMODE_ENABLED COMP_WINDOWMODE_ENABLE
+#define COMP_EXTI_LINE_COMP1_EVENT COMP_EXTI_LINE_COMP1
+#define COMP_EXTI_LINE_COMP2_EVENT COMP_EXTI_LINE_COMP2
+#define COMP_EXTI_LINE_COMP3_EVENT COMP_EXTI_LINE_COMP3
+#define COMP_EXTI_LINE_COMP4_EVENT COMP_EXTI_LINE_COMP4
+#define COMP_EXTI_LINE_COMP5_EVENT COMP_EXTI_LINE_COMP5
+#define COMP_EXTI_LINE_COMP6_EVENT COMP_EXTI_LINE_COMP6
+#define COMP_EXTI_LINE_COMP7_EVENT COMP_EXTI_LINE_COMP7
+#if defined(STM32L0)
+#define COMP_LPTIMCONNECTION_ENABLED ((uint32_t)0x00000003U) /*!< COMPX output generic naming: connected to LPTIM input 1 for COMP1, LPTIM input 2 for COMP2 */
+#endif
+#define COMP_OUTPUT_COMP6TIM2OCREFCLR COMP_OUTPUT_COMP6_TIM2OCREFCLR
+#if defined(STM32F373xC) || defined(STM32F378xx)
+#define COMP_OUTPUT_TIM3IC1 COMP_OUTPUT_COMP1_TIM3IC1
+#define COMP_OUTPUT_TIM3OCREFCLR COMP_OUTPUT_COMP1_TIM3OCREFCLR
+#endif /* STM32F373xC || STM32F378xx */
+
+#if defined(STM32L0) || defined(STM32L4)
+#define COMP_WINDOWMODE_ENABLE COMP_WINDOWMODE_COMP1_INPUT_PLUS_COMMON
+
+#define COMP_NONINVERTINGINPUT_IO1 COMP_INPUT_PLUS_IO1
+#define COMP_NONINVERTINGINPUT_IO2 COMP_INPUT_PLUS_IO2
+#define COMP_NONINVERTINGINPUT_IO3 COMP_INPUT_PLUS_IO3
+#define COMP_NONINVERTINGINPUT_IO4 COMP_INPUT_PLUS_IO4
+#define COMP_NONINVERTINGINPUT_IO5 COMP_INPUT_PLUS_IO5
+#define COMP_NONINVERTINGINPUT_IO6 COMP_INPUT_PLUS_IO6
+
+#define COMP_INVERTINGINPUT_1_4VREFINT COMP_INPUT_MINUS_1_4VREFINT
+#define COMP_INVERTINGINPUT_1_2VREFINT COMP_INPUT_MINUS_1_2VREFINT
+#define COMP_INVERTINGINPUT_3_4VREFINT COMP_INPUT_MINUS_3_4VREFINT
+#define COMP_INVERTINGINPUT_VREFINT COMP_INPUT_MINUS_VREFINT
+#define COMP_INVERTINGINPUT_DAC1_CH1 COMP_INPUT_MINUS_DAC1_CH1
+#define COMP_INVERTINGINPUT_DAC1_CH2 COMP_INPUT_MINUS_DAC1_CH2
+#define COMP_INVERTINGINPUT_DAC1 COMP_INPUT_MINUS_DAC1_CH1
+#define COMP_INVERTINGINPUT_DAC2 COMP_INPUT_MINUS_DAC1_CH2
+#define COMP_INVERTINGINPUT_IO1 COMP_INPUT_MINUS_IO1
+#if defined(STM32L0)
+/* Issue fixed on STM32L0 COMP driver: only 2 dedicated IO (IO1 and IO2), */
+/* IO2 was wrongly assigned to IO shared with DAC and IO3 was corresponding */
+/* to the second dedicated IO (only for COMP2). */
+#define COMP_INVERTINGINPUT_IO2 COMP_INPUT_MINUS_DAC1_CH2
+#define COMP_INVERTINGINPUT_IO3 COMP_INPUT_MINUS_IO2
+#else
+#define COMP_INVERTINGINPUT_IO2 COMP_INPUT_MINUS_IO2
+#define COMP_INVERTINGINPUT_IO3 COMP_INPUT_MINUS_IO3
+#endif
+#define COMP_INVERTINGINPUT_IO4 COMP_INPUT_MINUS_IO4
+#define COMP_INVERTINGINPUT_IO5 COMP_INPUT_MINUS_IO5
+
+#define COMP_OUTPUTLEVEL_LOW COMP_OUTPUT_LEVEL_LOW
+#define COMP_OUTPUTLEVEL_HIGH COMP_OUTPUT_LEVEL_HIGH
+
+/* Note: Literal "COMP_FLAG_LOCK" kept for legacy purpose. */
+/* To check COMP lock state, use macro "__HAL_COMP_IS_LOCKED()". */
+#if defined(COMP_CSR_LOCK)
+#define COMP_FLAG_LOCK COMP_CSR_LOCK
+#elif defined(COMP_CSR_COMP1LOCK)
+#define COMP_FLAG_LOCK COMP_CSR_COMP1LOCK
+#elif defined(COMP_CSR_COMPxLOCK)
+#define COMP_FLAG_LOCK COMP_CSR_COMPxLOCK
+#endif
+
+#if defined(STM32L4)
+#define COMP_BLANKINGSRCE_TIM1OC5 COMP_BLANKINGSRC_TIM1_OC5_COMP1
+#define COMP_BLANKINGSRCE_TIM2OC3 COMP_BLANKINGSRC_TIM2_OC3_COMP1
+#define COMP_BLANKINGSRCE_TIM3OC3 COMP_BLANKINGSRC_TIM3_OC3_COMP1
+#define COMP_BLANKINGSRCE_TIM3OC4 COMP_BLANKINGSRC_TIM3_OC4_COMP2
+#define COMP_BLANKINGSRCE_TIM8OC5 COMP_BLANKINGSRC_TIM8_OC5_COMP2
+#define COMP_BLANKINGSRCE_TIM15OC1 COMP_BLANKINGSRC_TIM15_OC1_COMP2
+#define COMP_BLANKINGSRCE_NONE COMP_BLANKINGSRC_NONE
+#endif
+
+#if defined(STM32L0)
+#define COMP_MODE_HIGHSPEED COMP_POWERMODE_MEDIUMSPEED
+#define COMP_MODE_LOWSPEED COMP_POWERMODE_ULTRALOWPOWER
+#else
+#define COMP_MODE_HIGHSPEED COMP_POWERMODE_HIGHSPEED
+#define COMP_MODE_MEDIUMSPEED COMP_POWERMODE_MEDIUMSPEED
+#define COMP_MODE_LOWPOWER COMP_POWERMODE_LOWPOWER
+#define COMP_MODE_ULTRALOWPOWER COMP_POWERMODE_ULTRALOWPOWER
+#endif
+
+#endif
+/**
+ * @}
+ */
+
+/** @defgroup HAL_CORTEX_Aliased_Defines HAL CORTEX Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define __HAL_CORTEX_SYSTICKCLK_CONFIG HAL_SYSTICK_CLKSourceConfig
+/**
+ * @}
+ */
+
+/** @defgroup HAL_CRC_Aliased_Defines HAL CRC Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+#define CRC_OUTPUTDATA_INVERSION_DISABLED CRC_OUTPUTDATA_INVERSION_DISABLE
+#define CRC_OUTPUTDATA_INVERSION_ENABLED CRC_OUTPUTDATA_INVERSION_ENABLE
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_DAC_Aliased_Defines HAL DAC Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+#define DAC1_CHANNEL_1 DAC_CHANNEL_1
+#define DAC1_CHANNEL_2 DAC_CHANNEL_2
+#define DAC2_CHANNEL_1 DAC_CHANNEL_1
+#define DAC_WAVE_NONE 0x00000000U
+#define DAC_WAVE_NOISE DAC_CR_WAVE1_0
+#define DAC_WAVE_TRIANGLE DAC_CR_WAVE1_1
+#define DAC_WAVEGENERATION_NONE DAC_WAVE_NONE
+#define DAC_WAVEGENERATION_NOISE DAC_WAVE_NOISE
+#define DAC_WAVEGENERATION_TRIANGLE DAC_WAVE_TRIANGLE
+
+#if defined(STM32G4) || defined(STM32H7)
+#define DAC_CHIPCONNECT_DISABLE DAC_CHIPCONNECT_EXTERNAL
+#define DAC_CHIPCONNECT_ENABLE DAC_CHIPCONNECT_INTERNAL
+#endif
+
+#if defined(STM32L1) || defined(STM32L4) || defined(STM32G0) || defined(STM32L5) || defined(STM32H7) || defined(STM32F4) || defined(STM32G4)
+#define HAL_DAC_MSP_INIT_CB_ID HAL_DAC_MSPINIT_CB_ID
+#define HAL_DAC_MSP_DEINIT_CB_ID HAL_DAC_MSPDEINIT_CB_ID
+#endif
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_DMA_Aliased_Defines HAL DMA Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define HAL_REMAPDMA_ADC_DMA_CH2 DMA_REMAP_ADC_DMA_CH2
+#define HAL_REMAPDMA_USART1_TX_DMA_CH4 DMA_REMAP_USART1_TX_DMA_CH4
+#define HAL_REMAPDMA_USART1_RX_DMA_CH5 DMA_REMAP_USART1_RX_DMA_CH5
+#define HAL_REMAPDMA_TIM16_DMA_CH4 DMA_REMAP_TIM16_DMA_CH4
+#define HAL_REMAPDMA_TIM17_DMA_CH2 DMA_REMAP_TIM17_DMA_CH2
+#define HAL_REMAPDMA_USART3_DMA_CH32 DMA_REMAP_USART3_DMA_CH32
+#define HAL_REMAPDMA_TIM16_DMA_CH6 DMA_REMAP_TIM16_DMA_CH6
+#define HAL_REMAPDMA_TIM17_DMA_CH7 DMA_REMAP_TIM17_DMA_CH7
+#define HAL_REMAPDMA_SPI2_DMA_CH67 DMA_REMAP_SPI2_DMA_CH67
+#define HAL_REMAPDMA_USART2_DMA_CH67 DMA_REMAP_USART2_DMA_CH67
+#define HAL_REMAPDMA_I2C1_DMA_CH76 DMA_REMAP_I2C1_DMA_CH76
+#define HAL_REMAPDMA_TIM1_DMA_CH6 DMA_REMAP_TIM1_DMA_CH6
+#define HAL_REMAPDMA_TIM2_DMA_CH7 DMA_REMAP_TIM2_DMA_CH7
+#define HAL_REMAPDMA_TIM3_DMA_CH6 DMA_REMAP_TIM3_DMA_CH6
+
+#define IS_HAL_REMAPDMA IS_DMA_REMAP
+#define __HAL_REMAPDMA_CHANNEL_ENABLE __HAL_DMA_REMAP_CHANNEL_ENABLE
+#define __HAL_REMAPDMA_CHANNEL_DISABLE __HAL_DMA_REMAP_CHANNEL_DISABLE
+
+#if defined(STM32L4)
+
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI0 HAL_DMAMUX1_REQ_GEN_EXTI0
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI1 HAL_DMAMUX1_REQ_GEN_EXTI1
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI2 HAL_DMAMUX1_REQ_GEN_EXTI2
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI3 HAL_DMAMUX1_REQ_GEN_EXTI3
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI4 HAL_DMAMUX1_REQ_GEN_EXTI4
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI5 HAL_DMAMUX1_REQ_GEN_EXTI5
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI6 HAL_DMAMUX1_REQ_GEN_EXTI6
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI7 HAL_DMAMUX1_REQ_GEN_EXTI7
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI8 HAL_DMAMUX1_REQ_GEN_EXTI8
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI9 HAL_DMAMUX1_REQ_GEN_EXTI9
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI10 HAL_DMAMUX1_REQ_GEN_EXTI10
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI11 HAL_DMAMUX1_REQ_GEN_EXTI11
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI12 HAL_DMAMUX1_REQ_GEN_EXTI12
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI13 HAL_DMAMUX1_REQ_GEN_EXTI13
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI14 HAL_DMAMUX1_REQ_GEN_EXTI14
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI15 HAL_DMAMUX1_REQ_GEN_EXTI15
+#define HAL_DMAMUX1_REQUEST_GEN_DMAMUX1_CH0_EVT HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH0_EVT
+#define HAL_DMAMUX1_REQUEST_GEN_DMAMUX1_CH1_EVT HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH1_EVT
+#define HAL_DMAMUX1_REQUEST_GEN_DMAMUX1_CH2_EVT HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH2_EVT
+#define HAL_DMAMUX1_REQUEST_GEN_DMAMUX1_CH3_EVT HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH3_EVT
+#define HAL_DMAMUX1_REQUEST_GEN_LPTIM1_OUT HAL_DMAMUX1_REQ_GEN_LPTIM1_OUT
+#define HAL_DMAMUX1_REQUEST_GEN_LPTIM2_OUT HAL_DMAMUX1_REQ_GEN_LPTIM2_OUT
+#define HAL_DMAMUX1_REQUEST_GEN_DSI_TE HAL_DMAMUX1_REQ_GEN_DSI_TE
+#define HAL_DMAMUX1_REQUEST_GEN_DSI_EOT HAL_DMAMUX1_REQ_GEN_DSI_EOT
+#define HAL_DMAMUX1_REQUEST_GEN_DMA2D_EOT HAL_DMAMUX1_REQ_GEN_DMA2D_EOT
+#define HAL_DMAMUX1_REQUEST_GEN_LTDC_IT HAL_DMAMUX1_REQ_GEN_LTDC_IT
+
+#define HAL_DMAMUX_REQUEST_GEN_NO_EVENT HAL_DMAMUX_REQ_GEN_NO_EVENT
+#define HAL_DMAMUX_REQUEST_GEN_RISING HAL_DMAMUX_REQ_GEN_RISING
+#define HAL_DMAMUX_REQUEST_GEN_FALLING HAL_DMAMUX_REQ_GEN_FALLING
+#define HAL_DMAMUX_REQUEST_GEN_RISING_FALLING HAL_DMAMUX_REQ_GEN_RISING_FALLING
+
+#if defined(STM32L4R5xx) || defined(STM32L4R9xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
+#define DMA_REQUEST_DCMI_PSSI DMA_REQUEST_DCMI
+#endif
+
+#endif /* STM32L4 */
+
+#if defined(STM32G0)
+#define DMA_REQUEST_DAC1_CHANNEL1 DMA_REQUEST_DAC1_CH1
+#define DMA_REQUEST_DAC1_CHANNEL2 DMA_REQUEST_DAC1_CH2
+#define DMA_REQUEST_TIM16_TRIG_COM DMA_REQUEST_TIM16_COM
+#define DMA_REQUEST_TIM17_TRIG_COM DMA_REQUEST_TIM17_COM
+
+#define LL_DMAMUX_REQ_TIM16_TRIG_COM LL_DMAMUX_REQ_TIM16_COM
+#define LL_DMAMUX_REQ_TIM17_TRIG_COM LL_DMAMUX_REQ_TIM17_COM
+#endif
+
+#if defined(STM32H7)
+
+#define DMA_REQUEST_DAC1 DMA_REQUEST_DAC1_CH1
+#define DMA_REQUEST_DAC2 DMA_REQUEST_DAC1_CH2
+
+#define BDMA_REQUEST_LP_UART1_RX BDMA_REQUEST_LPUART1_RX
+#define BDMA_REQUEST_LP_UART1_TX BDMA_REQUEST_LPUART1_TX
+
+#define HAL_DMAMUX1_REQUEST_GEN_DMAMUX1_CH0_EVT HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH0_EVT
+#define HAL_DMAMUX1_REQUEST_GEN_DMAMUX1_CH1_EVT HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH1_EVT
+#define HAL_DMAMUX1_REQUEST_GEN_DMAMUX1_CH2_EVT HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH2_EVT
+#define HAL_DMAMUX1_REQUEST_GEN_LPTIM1_OUT HAL_DMAMUX1_REQ_GEN_LPTIM1_OUT
+#define HAL_DMAMUX1_REQUEST_GEN_LPTIM2_OUT HAL_DMAMUX1_REQ_GEN_LPTIM2_OUT
+#define HAL_DMAMUX1_REQUEST_GEN_LPTIM3_OUT HAL_DMAMUX1_REQ_GEN_LPTIM3_OUT
+#define HAL_DMAMUX1_REQUEST_GEN_EXTI0 HAL_DMAMUX1_REQ_GEN_EXTI0
+#define HAL_DMAMUX1_REQUEST_GEN_TIM12_TRGO HAL_DMAMUX1_REQ_GEN_TIM12_TRGO
+
+#define HAL_DMAMUX2_REQUEST_GEN_DMAMUX2_CH0_EVT HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH0_EVT
+#define HAL_DMAMUX2_REQUEST_GEN_DMAMUX2_CH1_EVT HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH1_EVT
+#define HAL_DMAMUX2_REQUEST_GEN_DMAMUX2_CH2_EVT HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH2_EVT
+#define HAL_DMAMUX2_REQUEST_GEN_DMAMUX2_CH3_EVT HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH3_EVT
+#define HAL_DMAMUX2_REQUEST_GEN_DMAMUX2_CH4_EVT HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH4_EVT
+#define HAL_DMAMUX2_REQUEST_GEN_DMAMUX2_CH5_EVT HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH5_EVT
+#define HAL_DMAMUX2_REQUEST_GEN_DMAMUX2_CH6_EVT HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH6_EVT
+#define HAL_DMAMUX2_REQUEST_GEN_LPUART1_RX_WKUP HAL_DMAMUX2_REQ_GEN_LPUART1_RX_WKUP
+#define HAL_DMAMUX2_REQUEST_GEN_LPUART1_TX_WKUP HAL_DMAMUX2_REQ_GEN_LPUART1_TX_WKUP
+#define HAL_DMAMUX2_REQUEST_GEN_LPTIM2_WKUP HAL_DMAMUX2_REQ_GEN_LPTIM2_WKUP
+#define HAL_DMAMUX2_REQUEST_GEN_LPTIM2_OUT HAL_DMAMUX2_REQ_GEN_LPTIM2_OUT
+#define HAL_DMAMUX2_REQUEST_GEN_LPTIM3_WKUP HAL_DMAMUX2_REQ_GEN_LPTIM3_WKUP
+#define HAL_DMAMUX2_REQUEST_GEN_LPTIM3_OUT HAL_DMAMUX2_REQ_GEN_LPTIM3_OUT
+#define HAL_DMAMUX2_REQUEST_GEN_LPTIM4_WKUP HAL_DMAMUX2_REQ_GEN_LPTIM4_WKUP
+#define HAL_DMAMUX2_REQUEST_GEN_LPTIM5_WKUP HAL_DMAMUX2_REQ_GEN_LPTIM5_WKUP
+#define HAL_DMAMUX2_REQUEST_GEN_I2C4_WKUP HAL_DMAMUX2_REQ_GEN_I2C4_WKUP
+#define HAL_DMAMUX2_REQUEST_GEN_SPI6_WKUP HAL_DMAMUX2_REQ_GEN_SPI6_WKUP
+#define HAL_DMAMUX2_REQUEST_GEN_COMP1_OUT HAL_DMAMUX2_REQ_GEN_COMP1_OUT
+#define HAL_DMAMUX2_REQUEST_GEN_COMP2_OUT HAL_DMAMUX2_REQ_GEN_COMP2_OUT
+#define HAL_DMAMUX2_REQUEST_GEN_RTC_WKUP HAL_DMAMUX2_REQ_GEN_RTC_WKUP
+#define HAL_DMAMUX2_REQUEST_GEN_EXTI0 HAL_DMAMUX2_REQ_GEN_EXTI0
+#define HAL_DMAMUX2_REQUEST_GEN_EXTI2 HAL_DMAMUX2_REQ_GEN_EXTI2
+#define HAL_DMAMUX2_REQUEST_GEN_I2C4_IT_EVT HAL_DMAMUX2_REQ_GEN_I2C4_IT_EVT
+#define HAL_DMAMUX2_REQUEST_GEN_SPI6_IT HAL_DMAMUX2_REQ_GEN_SPI6_IT
+#define HAL_DMAMUX2_REQUEST_GEN_LPUART1_TX_IT HAL_DMAMUX2_REQ_GEN_LPUART1_TX_IT
+#define HAL_DMAMUX2_REQUEST_GEN_LPUART1_RX_IT HAL_DMAMUX2_REQ_GEN_LPUART1_RX_IT
+#define HAL_DMAMUX2_REQUEST_GEN_ADC3_IT HAL_DMAMUX2_REQ_GEN_ADC3_IT
+#define HAL_DMAMUX2_REQUEST_GEN_ADC3_AWD1_OUT HAL_DMAMUX2_REQ_GEN_ADC3_AWD1_OUT
+#define HAL_DMAMUX2_REQUEST_GEN_BDMA_CH0_IT HAL_DMAMUX2_REQ_GEN_BDMA_CH0_IT
+#define HAL_DMAMUX2_REQUEST_GEN_BDMA_CH1_IT HAL_DMAMUX2_REQ_GEN_BDMA_CH1_IT
+
+#define HAL_DMAMUX_REQUEST_GEN_NO_EVENT HAL_DMAMUX_REQ_GEN_NO_EVENT
+#define HAL_DMAMUX_REQUEST_GEN_RISING HAL_DMAMUX_REQ_GEN_RISING
+#define HAL_DMAMUX_REQUEST_GEN_FALLING HAL_DMAMUX_REQ_GEN_FALLING
+#define HAL_DMAMUX_REQUEST_GEN_RISING_FALLING HAL_DMAMUX_REQ_GEN_RISING_FALLING
+
+#define DFSDM_FILTER_EXT_TRIG_LPTIM1 DFSDM_FILTER_EXT_TRIG_LPTIM1_OUT
+#define DFSDM_FILTER_EXT_TRIG_LPTIM2 DFSDM_FILTER_EXT_TRIG_LPTIM2_OUT
+#define DFSDM_FILTER_EXT_TRIG_LPTIM3 DFSDM_FILTER_EXT_TRIG_LPTIM3_OUT
+
+#define DAC_TRIGGER_LP1_OUT DAC_TRIGGER_LPTIM1_OUT
+#define DAC_TRIGGER_LP2_OUT DAC_TRIGGER_LPTIM2_OUT
+
+#endif /* STM32H7 */
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_FLASH_Aliased_Defines HAL FLASH Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+#define TYPEPROGRAM_BYTE FLASH_TYPEPROGRAM_BYTE
+#define TYPEPROGRAM_HALFWORD FLASH_TYPEPROGRAM_HALFWORD
+#define TYPEPROGRAM_WORD FLASH_TYPEPROGRAM_WORD
+#define TYPEPROGRAM_DOUBLEWORD FLASH_TYPEPROGRAM_DOUBLEWORD
+#define TYPEERASE_SECTORS FLASH_TYPEERASE_SECTORS
+#define TYPEERASE_PAGES FLASH_TYPEERASE_PAGES
+#define TYPEERASE_PAGEERASE FLASH_TYPEERASE_PAGES
+#define TYPEERASE_MASSERASE FLASH_TYPEERASE_MASSERASE
+#define WRPSTATE_DISABLE OB_WRPSTATE_DISABLE
+#define WRPSTATE_ENABLE OB_WRPSTATE_ENABLE
+#define HAL_FLASH_TIMEOUT_VALUE FLASH_TIMEOUT_VALUE
+#define OBEX_PCROP OPTIONBYTE_PCROP
+#define OBEX_BOOTCONFIG OPTIONBYTE_BOOTCONFIG
+#define PCROPSTATE_DISABLE OB_PCROP_STATE_DISABLE
+#define PCROPSTATE_ENABLE OB_PCROP_STATE_ENABLE
+#define TYPEERASEDATA_BYTE FLASH_TYPEERASEDATA_BYTE
+#define TYPEERASEDATA_HALFWORD FLASH_TYPEERASEDATA_HALFWORD
+#define TYPEERASEDATA_WORD FLASH_TYPEERASEDATA_WORD
+#define TYPEPROGRAMDATA_BYTE FLASH_TYPEPROGRAMDATA_BYTE
+#define TYPEPROGRAMDATA_HALFWORD FLASH_TYPEPROGRAMDATA_HALFWORD
+#define TYPEPROGRAMDATA_WORD FLASH_TYPEPROGRAMDATA_WORD
+#define TYPEPROGRAMDATA_FASTBYTE FLASH_TYPEPROGRAMDATA_FASTBYTE
+#define TYPEPROGRAMDATA_FASTHALFWORD FLASH_TYPEPROGRAMDATA_FASTHALFWORD
+#define TYPEPROGRAMDATA_FASTWORD FLASH_TYPEPROGRAMDATA_FASTWORD
+#define PAGESIZE FLASH_PAGE_SIZE
+#define TYPEPROGRAM_FASTBYTE FLASH_TYPEPROGRAM_BYTE
+#define TYPEPROGRAM_FASTHALFWORD FLASH_TYPEPROGRAM_HALFWORD
+#define TYPEPROGRAM_FASTWORD FLASH_TYPEPROGRAM_WORD
+#define VOLTAGE_RANGE_1 FLASH_VOLTAGE_RANGE_1
+#define VOLTAGE_RANGE_2 FLASH_VOLTAGE_RANGE_2
+#define VOLTAGE_RANGE_3 FLASH_VOLTAGE_RANGE_3
+#define VOLTAGE_RANGE_4 FLASH_VOLTAGE_RANGE_4
+#define TYPEPROGRAM_FAST FLASH_TYPEPROGRAM_FAST
+#define TYPEPROGRAM_FAST_AND_LAST FLASH_TYPEPROGRAM_FAST_AND_LAST
+#define WRPAREA_BANK1_AREAA OB_WRPAREA_BANK1_AREAA
+#define WRPAREA_BANK1_AREAB OB_WRPAREA_BANK1_AREAB
+#define WRPAREA_BANK2_AREAA OB_WRPAREA_BANK2_AREAA
+#define WRPAREA_BANK2_AREAB OB_WRPAREA_BANK2_AREAB
+#define IWDG_STDBY_FREEZE OB_IWDG_STDBY_FREEZE
+#define IWDG_STDBY_ACTIVE OB_IWDG_STDBY_RUN
+#define IWDG_STOP_FREEZE OB_IWDG_STOP_FREEZE
+#define IWDG_STOP_ACTIVE OB_IWDG_STOP_RUN
+#define FLASH_ERROR_NONE HAL_FLASH_ERROR_NONE
+#define FLASH_ERROR_RD HAL_FLASH_ERROR_RD
+#define FLASH_ERROR_PG HAL_FLASH_ERROR_PROG
+#define FLASH_ERROR_PGP HAL_FLASH_ERROR_PGS
+#define FLASH_ERROR_WRP HAL_FLASH_ERROR_WRP
+#define FLASH_ERROR_OPTV HAL_FLASH_ERROR_OPTV
+#define FLASH_ERROR_OPTVUSR HAL_FLASH_ERROR_OPTVUSR
+#define FLASH_ERROR_PROG HAL_FLASH_ERROR_PROG
+#define FLASH_ERROR_OP HAL_FLASH_ERROR_OPERATION
+#define FLASH_ERROR_PGA HAL_FLASH_ERROR_PGA
+#define FLASH_ERROR_SIZE HAL_FLASH_ERROR_SIZE
+#define FLASH_ERROR_SIZ HAL_FLASH_ERROR_SIZE
+#define FLASH_ERROR_PGS HAL_FLASH_ERROR_PGS
+#define FLASH_ERROR_MIS HAL_FLASH_ERROR_MIS
+#define FLASH_ERROR_FAST HAL_FLASH_ERROR_FAST
+#define FLASH_ERROR_FWWERR HAL_FLASH_ERROR_FWWERR
+#define FLASH_ERROR_NOTZERO HAL_FLASH_ERROR_NOTZERO
+#define FLASH_ERROR_OPERATION HAL_FLASH_ERROR_OPERATION
+#define FLASH_ERROR_ERS HAL_FLASH_ERROR_ERS
+#define OB_WDG_SW OB_IWDG_SW
+#define OB_WDG_HW OB_IWDG_HW
+#define OB_SDADC12_VDD_MONITOR_SET OB_SDACD_VDD_MONITOR_SET
+#define OB_SDADC12_VDD_MONITOR_RESET OB_SDACD_VDD_MONITOR_RESET
+#define OB_RAM_PARITY_CHECK_SET OB_SRAM_PARITY_SET
+#define OB_RAM_PARITY_CHECK_RESET OB_SRAM_PARITY_RESET
+#define IS_OB_SDADC12_VDD_MONITOR IS_OB_SDACD_VDD_MONITOR
+#define OB_RDP_LEVEL0 OB_RDP_LEVEL_0
+#define OB_RDP_LEVEL1 OB_RDP_LEVEL_1
+#define OB_RDP_LEVEL2 OB_RDP_LEVEL_2
+#if defined(STM32G0)
+#define OB_BOOT_LOCK_DISABLE OB_BOOT_ENTRY_FORCED_NONE
+#define OB_BOOT_LOCK_ENABLE OB_BOOT_ENTRY_FORCED_FLASH
+#else
+#define OB_BOOT_ENTRY_FORCED_NONE OB_BOOT_LOCK_DISABLE
+#define OB_BOOT_ENTRY_FORCED_FLASH OB_BOOT_LOCK_ENABLE
+#endif
+#if defined(STM32H7)
+#define FLASH_FLAG_SNECCE_BANK1RR FLASH_FLAG_SNECCERR_BANK1
+#define FLASH_FLAG_DBECCE_BANK1RR FLASH_FLAG_DBECCERR_BANK1
+#define FLASH_FLAG_STRBER_BANK1R FLASH_FLAG_STRBERR_BANK1
+#define FLASH_FLAG_SNECCE_BANK2RR FLASH_FLAG_SNECCERR_BANK2
+#define FLASH_FLAG_DBECCE_BANK2RR FLASH_FLAG_DBECCERR_BANK2
+#define FLASH_FLAG_STRBER_BANK2R FLASH_FLAG_STRBERR_BANK2
+#define FLASH_FLAG_WDW FLASH_FLAG_WBNE
+#define OB_WRP_SECTOR_All OB_WRP_SECTOR_ALL
+#endif /* STM32H7 */
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_JPEG_Aliased_Macros HAL JPEG Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#if defined(STM32H7)
+#define __HAL_RCC_JPEG_CLK_ENABLE __HAL_RCC_JPGDECEN_CLK_ENABLE
+#define __HAL_RCC_JPEG_CLK_DISABLE __HAL_RCC_JPGDECEN_CLK_DISABLE
+#define __HAL_RCC_JPEG_FORCE_RESET __HAL_RCC_JPGDECRST_FORCE_RESET
+#define __HAL_RCC_JPEG_RELEASE_RESET __HAL_RCC_JPGDECRST_RELEASE_RESET
+#define __HAL_RCC_JPEG_CLK_SLEEP_ENABLE __HAL_RCC_JPGDEC_CLK_SLEEP_ENABLE
+#define __HAL_RCC_JPEG_CLK_SLEEP_DISABLE __HAL_RCC_JPGDEC_CLK_SLEEP_DISABLE
+#endif /* STM32H7 */
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SYSCFG_Aliased_Defines HAL SYSCFG Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+#define HAL_SYSCFG_FASTMODEPLUS_I2C_PA9 I2C_FASTMODEPLUS_PA9
+#define HAL_SYSCFG_FASTMODEPLUS_I2C_PA10 I2C_FASTMODEPLUS_PA10
+#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB6 I2C_FASTMODEPLUS_PB6
+#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB7 I2C_FASTMODEPLUS_PB7
+#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB8 I2C_FASTMODEPLUS_PB8
+#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB9 I2C_FASTMODEPLUS_PB9
+#define HAL_SYSCFG_FASTMODEPLUS_I2C1 I2C_FASTMODEPLUS_I2C1
+#define HAL_SYSCFG_FASTMODEPLUS_I2C2 I2C_FASTMODEPLUS_I2C2
+#define HAL_SYSCFG_FASTMODEPLUS_I2C3 I2C_FASTMODEPLUS_I2C3
+#if defined(STM32G4)
+
+#define HAL_SYSCFG_EnableIOAnalogSwitchBooster HAL_SYSCFG_EnableIOSwitchBooster
+#define HAL_SYSCFG_DisableIOAnalogSwitchBooster HAL_SYSCFG_DisableIOSwitchBooster
+#define HAL_SYSCFG_EnableIOAnalogSwitchVDD HAL_SYSCFG_EnableIOSwitchVDD
+#define HAL_SYSCFG_DisableIOAnalogSwitchVDD HAL_SYSCFG_DisableIOSwitchVDD
+#endif /* STM32G4 */
+/**
+ * @}
+ */
+
+/** @defgroup LL_FMC_Aliased_Defines LL FMC Aliased Defines maintained for compatibility purpose
+ * @{
+ */
+#if defined(STM32L4) || defined(STM32F7) || defined(STM32H7) || defined(STM32G4)
+#define FMC_NAND_PCC_WAIT_FEATURE_DISABLE FMC_NAND_WAIT_FEATURE_DISABLE
+#define FMC_NAND_PCC_WAIT_FEATURE_ENABLE FMC_NAND_WAIT_FEATURE_ENABLE
+#define FMC_NAND_PCC_MEM_BUS_WIDTH_8 FMC_NAND_MEM_BUS_WIDTH_8
+#define FMC_NAND_PCC_MEM_BUS_WIDTH_16 FMC_NAND_MEM_BUS_WIDTH_16
+#elif defined(STM32F1) || defined(STM32F2) || defined(STM32F3) || defined(STM32F4)
+#define FMC_NAND_WAIT_FEATURE_DISABLE FMC_NAND_PCC_WAIT_FEATURE_DISABLE
+#define FMC_NAND_WAIT_FEATURE_ENABLE FMC_NAND_PCC_WAIT_FEATURE_ENABLE
+#define FMC_NAND_MEM_BUS_WIDTH_8 FMC_NAND_PCC_MEM_BUS_WIDTH_8
+#define FMC_NAND_MEM_BUS_WIDTH_16 FMC_NAND_PCC_MEM_BUS_WIDTH_16
+#endif
+/**
+ * @}
+ */
+
+/** @defgroup LL_FSMC_Aliased_Defines LL FSMC Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+#define FSMC_NORSRAM_TYPEDEF FSMC_NORSRAM_TypeDef
+#define FSMC_NORSRAM_EXTENDED_TYPEDEF FSMC_NORSRAM_EXTENDED_TypeDef
+/**
+ * @}
+ */
+
+/** @defgroup HAL_GPIO_Aliased_Macros HAL GPIO Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define GET_GPIO_SOURCE GPIO_GET_INDEX
+#define GET_GPIO_INDEX GPIO_GET_INDEX
+
+#if defined(STM32F4)
+#define GPIO_AF12_SDMMC GPIO_AF12_SDIO
+#define GPIO_AF12_SDMMC1 GPIO_AF12_SDIO
+#endif
+
+#if defined(STM32F7)
+#define GPIO_AF12_SDIO GPIO_AF12_SDMMC1
+#define GPIO_AF12_SDMMC GPIO_AF12_SDMMC1
+#endif
+
+#if defined(STM32L4)
+#define GPIO_AF12_SDIO GPIO_AF12_SDMMC1
+#define GPIO_AF12_SDMMC GPIO_AF12_SDMMC1
+#endif
+
+#if defined(STM32H7)
+#define GPIO_AF7_SDIO1 GPIO_AF7_SDMMC1
+#define GPIO_AF8_SDIO1 GPIO_AF8_SDMMC1
+#define GPIO_AF12_SDIO1 GPIO_AF12_SDMMC1
+#define GPIO_AF9_SDIO2 GPIO_AF9_SDMMC2
+#define GPIO_AF10_SDIO2 GPIO_AF10_SDMMC2
+#define GPIO_AF11_SDIO2 GPIO_AF11_SDMMC2
+
+#if defined(STM32H743xx) || defined(STM32H753xx) || defined(STM32H750xx) || defined(STM32H742xx) || defined(STM32H745xx) || defined(STM32H755xx) || defined(STM32H747xx) || defined(STM32H757xx)
+#define GPIO_AF10_OTG2_HS GPIO_AF10_OTG2_FS
+#define GPIO_AF10_OTG1_FS GPIO_AF10_OTG1_HS
+#define GPIO_AF12_OTG2_FS GPIO_AF12_OTG1_FS
+#endif /*STM32H743xx || STM32H753xx || STM32H750xx || STM32H742xx || STM32H745xx || STM32H755xx || STM32H747xx || STM32H757xx */
+#endif /* STM32H7 */
+
+#define GPIO_AF0_LPTIM GPIO_AF0_LPTIM1
+#define GPIO_AF1_LPTIM GPIO_AF1_LPTIM1
+#define GPIO_AF2_LPTIM GPIO_AF2_LPTIM1
+
+#if defined(STM32L0) || defined(STM32L4) || defined(STM32F4) || defined(STM32F2) || defined(STM32F7) || defined(STM32G4) || defined(STM32H7)
+#define GPIO_SPEED_LOW GPIO_SPEED_FREQ_LOW
+#define GPIO_SPEED_MEDIUM GPIO_SPEED_FREQ_MEDIUM
+#define GPIO_SPEED_FAST GPIO_SPEED_FREQ_HIGH
+#define GPIO_SPEED_HIGH GPIO_SPEED_FREQ_VERY_HIGH
+#endif /* STM32L0 || STM32L4 || STM32F4 || STM32F2 || STM32F7 || STM32G4 || STM32H7*/
+
+#if defined(STM32L1)
+#define GPIO_SPEED_VERY_LOW GPIO_SPEED_FREQ_LOW
+#define GPIO_SPEED_LOW GPIO_SPEED_FREQ_MEDIUM
+#define GPIO_SPEED_MEDIUM GPIO_SPEED_FREQ_HIGH
+#define GPIO_SPEED_HIGH GPIO_SPEED_FREQ_VERY_HIGH
+#endif /* STM32L1 */
+
+#if defined(STM32F0) || defined(STM32F3) || defined(STM32F1)
+#define GPIO_SPEED_LOW GPIO_SPEED_FREQ_LOW
+#define GPIO_SPEED_MEDIUM GPIO_SPEED_FREQ_MEDIUM
+#define GPIO_SPEED_HIGH GPIO_SPEED_FREQ_HIGH
+#endif /* STM32F0 || STM32F3 || STM32F1 */
+
+#define GPIO_AF6_DFSDM GPIO_AF6_DFSDM1
+/**
+ * @}
+ */
+
+/** @defgroup HAL_HRTIM_Aliased_Macros HAL HRTIM Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define HRTIM_TIMDELAYEDPROTECTION_DISABLED HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DISABLED
+#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDOUT1_EEV68 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDOUT1_EEV6
+#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDOUT2_EEV68 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDOUT2_EEV6
+#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDBOTH_EEV68 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDBOTH_EEV6
+#define HRTIM_TIMDELAYEDPROTECTION_BALANCED_EEV68 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_BALANCED_EEV6
+#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDOUT1_DEEV79 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDOUT1_DEEV7
+#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDOUT2_DEEV79 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDOUT2_DEEV7
+#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDBOTH_EEV79 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDBOTH_EEV7
+#define HRTIM_TIMDELAYEDPROTECTION_BALANCED_EEV79 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_BALANCED_EEV7
+
+#define __HAL_HRTIM_SetCounter __HAL_HRTIM_SETCOUNTER
+#define __HAL_HRTIM_GetCounter __HAL_HRTIM_GETCOUNTER
+#define __HAL_HRTIM_SetPeriod __HAL_HRTIM_SETPERIOD
+#define __HAL_HRTIM_GetPeriod __HAL_HRTIM_GETPERIOD
+#define __HAL_HRTIM_SetClockPrescaler __HAL_HRTIM_SETCLOCKPRESCALER
+#define __HAL_HRTIM_GetClockPrescaler __HAL_HRTIM_GETCLOCKPRESCALER
+#define __HAL_HRTIM_SetCompare __HAL_HRTIM_SETCOMPARE
+#define __HAL_HRTIM_GetCompare __HAL_HRTIM_GETCOMPARE
+
+#if defined(STM32G4)
+#define HAL_HRTIM_ExternalEventCounterConfig HAL_HRTIM_ExtEventCounterConfig
+#define HAL_HRTIM_ExternalEventCounterEnable HAL_HRTIM_ExtEventCounterEnable
+#define HAL_HRTIM_ExternalEventCounterDisable HAL_HRTIM_ExtEventCounterDisable
+#define HAL_HRTIM_ExternalEventCounterReset HAL_HRTIM_ExtEventCounterReset
+#define HRTIM_TIMEEVENT_A HRTIM_EVENTCOUNTER_A
+#define HRTIM_TIMEEVENT_B HRTIM_EVENTCOUNTER_B
+#define HRTIM_TIMEEVENTRESETMODE_UNCONDITIONAL HRTIM_EVENTCOUNTER_RSTMODE_UNCONDITIONAL
+#define HRTIM_TIMEEVENTRESETMODE_CONDITIONAL HRTIM_EVENTCOUNTER_RSTMODE_CONDITIONAL
+#endif /* STM32G4 */
+
+#if defined(STM32H7)
+#define HRTIM_OUTPUTSET_TIMAEV1_TIMBCMP1 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTSET_TIMAEV2_TIMBCMP2 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTSET_TIMAEV3_TIMCCMP2 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTSET_TIMAEV4_TIMCCMP3 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTSET_TIMAEV5_TIMDCMP1 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTSET_TIMAEV6_TIMDCMP2 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTSET_TIMAEV7_TIMECMP3 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTSET_TIMAEV8_TIMECMP4 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTSET_TIMAEV9_TIMFCMP4 HRTIM_OUTPUTSET_TIMEV_9
+#define HRTIM_OUTPUTSET_TIMBEV1_TIMACMP1 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTSET_TIMBEV2_TIMACMP2 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTSET_TIMBEV3_TIMCCMP3 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTSET_TIMBEV4_TIMCCMP4 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTSET_TIMBEV5_TIMDCMP3 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTSET_TIMBEV6_TIMDCMP4 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTSET_TIMBEV7_TIMECMP1 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTSET_TIMBEV8_TIMECMP2 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTSET_TIMBEV9_TIMFCMP3 HRTIM_OUTPUTSET_TIMEV_9
+#define HRTIM_OUTPUTSET_TIMCEV1_TIMACMP1 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTSET_TIMCEV2_TIMACMP2 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTSET_TIMCEV3_TIMBCMP2 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTSET_TIMCEV4_TIMBCMP3 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTSET_TIMCEV5_TIMDCMP2 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTSET_TIMCEV6_TIMDCMP4 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTSET_TIMCEV7_TIMECMP3 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTSET_TIMCEV8_TIMECMP4 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTSET_TIMCEV9_TIMFCMP2 HRTIM_OUTPUTSET_TIMEV_9
+#define HRTIM_OUTPUTSET_TIMDEV1_TIMACMP1 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTSET_TIMDEV2_TIMACMP4 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTSET_TIMDEV3_TIMBCMP2 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTSET_TIMDEV4_TIMBCMP4 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTSET_TIMDEV5_TIMCCMP4 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTSET_TIMDEV6_TIMECMP1 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTSET_TIMDEV7_TIMECMP4 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTSET_TIMDEV8_TIMFCMP1 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTSET_TIMDEV9_TIMFCMP3 HRTIM_OUTPUTSET_TIMEV_9
+#define HRTIM_OUTPUTSET_TIMEEV1_TIMACMP4 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTSET_TIMEEV2_TIMBCMP3 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTSET_TIMEEV3_TIMBCMP4 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTSET_TIMEEV4_TIMCCMP1 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTSET_TIMEEV5_TIMDCMP2 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTSET_TIMEEV6_TIMDCMP1 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTSET_TIMEEV7_TIMDCMP2 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTSET_TIMEEV8_TIMFCMP3 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTSET_TIMEEV9_TIMFCMP4 HRTIM_OUTPUTSET_TIMEV_9
+#define HRTIM_OUTPUTSET_TIMFEV1_TIMACMP3 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTSET_TIMFEV2_TIMBCMP1 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTSET_TIMFEV3_TIMBCMP4 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTSET_TIMFEV4_TIMCCMP1 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTSET_TIMFEV5_TIMCCMP4 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTSET_TIMFEV6_TIMDCMP3 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTSET_TIMFEV7_TIMDCMP4 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTSET_TIMFEV8_TIMECMP2 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTSET_TIMFEV9_TIMECMP3 HRTIM_OUTPUTSET_TIMEV_9
+
+#define HRTIM_OUTPUTRESET_TIMAEV1_TIMBCMP1 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTRESET_TIMAEV2_TIMBCMP2 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTRESET_TIMAEV3_TIMCCMP2 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTRESET_TIMAEV4_TIMCCMP3 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTRESET_TIMAEV5_TIMDCMP1 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTRESET_TIMAEV6_TIMDCMP2 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTRESET_TIMAEV7_TIMECMP3 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTRESET_TIMAEV8_TIMECMP4 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTRESET_TIMAEV9_TIMFCMP4 HRTIM_OUTPUTSET_TIMEV_9
+#define HRTIM_OUTPUTRESET_TIMBEV1_TIMACMP1 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTRESET_TIMBEV2_TIMACMP2 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTRESET_TIMBEV3_TIMCCMP3 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTRESET_TIMBEV4_TIMCCMP4 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTRESET_TIMBEV5_TIMDCMP3 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTRESET_TIMBEV6_TIMDCMP4 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTRESET_TIMBEV7_TIMECMP1 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTRESET_TIMBEV8_TIMECMP2 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTRESET_TIMBEV9_TIMFCMP3 HRTIM_OUTPUTSET_TIMEV_9
+#define HRTIM_OUTPUTRESET_TIMCEV1_TIMACMP1 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTRESET_TIMCEV2_TIMACMP2 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTRESET_TIMCEV3_TIMBCMP2 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTRESET_TIMCEV4_TIMBCMP3 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTRESET_TIMCEV5_TIMDCMP2 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTRESET_TIMCEV6_TIMDCMP4 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTRESET_TIMCEV7_TIMECMP3 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTRESET_TIMCEV8_TIMECMP4 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTRESET_TIMCEV9_TIMFCMP2 HRTIM_OUTPUTSET_TIMEV_9
+#define HRTIM_OUTPUTRESET_TIMDEV1_TIMACMP1 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTRESET_TIMDEV2_TIMACMP4 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTRESET_TIMDEV3_TIMBCMP2 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTRESET_TIMDEV4_TIMBCMP4 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTRESET_TIMDEV5_TIMCCMP4 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTRESET_TIMDEV6_TIMECMP1 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTRESET_TIMDEV7_TIMECMP4 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTRESET_TIMDEV8_TIMFCMP1 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTRESET_TIMDEV9_TIMFCMP3 HRTIM_OUTPUTSET_TIMEV_9
+#define HRTIM_OUTPUTRESET_TIMEEV1_TIMACMP4 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTRESET_TIMEEV2_TIMBCMP3 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTRESET_TIMEEV3_TIMBCMP4 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTRESET_TIMEEV4_TIMCCMP1 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTRESET_TIMEEV5_TIMDCMP2 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTRESET_TIMEEV6_TIMDCMP1 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTRESET_TIMEEV7_TIMDCMP2 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTRESET_TIMEEV8_TIMFCMP3 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTRESET_TIMEEV9_TIMFCMP4 HRTIM_OUTPUTSET_TIMEV_9
+#define HRTIM_OUTPUTRESET_TIMFEV1_TIMACMP3 HRTIM_OUTPUTSET_TIMEV_1
+#define HRTIM_OUTPUTRESET_TIMFEV2_TIMBCMP1 HRTIM_OUTPUTSET_TIMEV_2
+#define HRTIM_OUTPUTRESET_TIMFEV3_TIMBCMP4 HRTIM_OUTPUTSET_TIMEV_3
+#define HRTIM_OUTPUTRESET_TIMFEV4_TIMCCMP1 HRTIM_OUTPUTSET_TIMEV_4
+#define HRTIM_OUTPUTRESET_TIMFEV5_TIMCCMP4 HRTIM_OUTPUTSET_TIMEV_5
+#define HRTIM_OUTPUTRESET_TIMFEV6_TIMDCMP3 HRTIM_OUTPUTSET_TIMEV_6
+#define HRTIM_OUTPUTRESET_TIMFEV7_TIMDCMP4 HRTIM_OUTPUTSET_TIMEV_7
+#define HRTIM_OUTPUTRESET_TIMFEV8_TIMECMP2 HRTIM_OUTPUTSET_TIMEV_8
+#define HRTIM_OUTPUTRESET_TIMFEV9_TIMECMP3 HRTIM_OUTPUTSET_TIMEV_9
+#endif /* STM32H7 */
+
+#if defined(STM32F3)
+/** @brief Constants defining available sources associated to external events.
+ */
+#define HRTIM_EVENTSRC_1 (0x00000000U)
+#define HRTIM_EVENTSRC_2 (HRTIM_EECR1_EE1SRC_0)
+#define HRTIM_EVENTSRC_3 (HRTIM_EECR1_EE1SRC_1)
+#define HRTIM_EVENTSRC_4 (HRTIM_EECR1_EE1SRC_1 | HRTIM_EECR1_EE1SRC_0)
+
+/** @brief Constants defining the events that can be selected to configure the
+ * set/reset crossbar of a timer output
+ */
+#define HRTIM_OUTPUTSET_TIMEV_1 (HRTIM_SET1R_TIMEVNT1)
+#define HRTIM_OUTPUTSET_TIMEV_2 (HRTIM_SET1R_TIMEVNT2)
+#define HRTIM_OUTPUTSET_TIMEV_3 (HRTIM_SET1R_TIMEVNT3)
+#define HRTIM_OUTPUTSET_TIMEV_4 (HRTIM_SET1R_TIMEVNT4)
+#define HRTIM_OUTPUTSET_TIMEV_5 (HRTIM_SET1R_TIMEVNT5)
+#define HRTIM_OUTPUTSET_TIMEV_6 (HRTIM_SET1R_TIMEVNT6)
+#define HRTIM_OUTPUTSET_TIMEV_7 (HRTIM_SET1R_TIMEVNT7)
+#define HRTIM_OUTPUTSET_TIMEV_8 (HRTIM_SET1R_TIMEVNT8)
+#define HRTIM_OUTPUTSET_TIMEV_9 (HRTIM_SET1R_TIMEVNT9)
+
+#define HRTIM_OUTPUTRESET_TIMEV_1 (HRTIM_RST1R_TIMEVNT1)
+#define HRTIM_OUTPUTRESET_TIMEV_2 (HRTIM_RST1R_TIMEVNT2)
+#define HRTIM_OUTPUTRESET_TIMEV_3 (HRTIM_RST1R_TIMEVNT3)
+#define HRTIM_OUTPUTRESET_TIMEV_4 (HRTIM_RST1R_TIMEVNT4)
+#define HRTIM_OUTPUTRESET_TIMEV_5 (HRTIM_RST1R_TIMEVNT5)
+#define HRTIM_OUTPUTRESET_TIMEV_6 (HRTIM_RST1R_TIMEVNT6)
+#define HRTIM_OUTPUTRESET_TIMEV_7 (HRTIM_RST1R_TIMEVNT7)
+#define HRTIM_OUTPUTRESET_TIMEV_8 (HRTIM_RST1R_TIMEVNT8)
+#define HRTIM_OUTPUTRESET_TIMEV_9 (HRTIM_RST1R_TIMEVNT9)
+
+/** @brief Constants defining the event filtering applied to external events
+ * by a timer
+ */
+#define HRTIM_TIMEVENTFILTER_NONE (0x00000000U)
+#define HRTIM_TIMEVENTFILTER_BLANKINGCMP1 (HRTIM_EEFR1_EE1FLTR_0)
+#define HRTIM_TIMEVENTFILTER_BLANKINGCMP2 (HRTIM_EEFR1_EE1FLTR_1)
+#define HRTIM_TIMEVENTFILTER_BLANKINGCMP3 (HRTIM_EEFR1_EE1FLTR_1 | HRTIM_EEFR1_EE1FLTR_0)
+#define HRTIM_TIMEVENTFILTER_BLANKINGCMP4 (HRTIM_EEFR1_EE1FLTR_2)
+#define HRTIM_TIMEVENTFILTER_BLANKINGFLTR1 (HRTIM_EEFR1_EE1FLTR_2 | HRTIM_EEFR1_EE1FLTR_0)
+#define HRTIM_TIMEVENTFILTER_BLANKINGFLTR2 (HRTIM_EEFR1_EE1FLTR_2 | HRTIM_EEFR1_EE1FLTR_1)
+#define HRTIM_TIMEVENTFILTER_BLANKINGFLTR3 (HRTIM_EEFR1_EE1FLTR_2 | HRTIM_EEFR1_EE1FLTR_1 | HRTIM_EEFR1_EE1FLTR_0)
+#define HRTIM_TIMEVENTFILTER_BLANKINGFLTR4 (HRTIM_EEFR1_EE1FLTR_3)
+#define HRTIM_TIMEVENTFILTER_BLANKINGFLTR5 (HRTIM_EEFR1_EE1FLTR_3 | HRTIM_EEFR1_EE1FLTR_0)
+#define HRTIM_TIMEVENTFILTER_BLANKINGFLTR6 (HRTIM_EEFR1_EE1FLTR_3 | HRTIM_EEFR1_EE1FLTR_1)
+#define HRTIM_TIMEVENTFILTER_BLANKINGFLTR7 (HRTIM_EEFR1_EE1FLTR_3 | HRTIM_EEFR1_EE1FLTR_1 | HRTIM_EEFR1_EE1FLTR_0)
+#define HRTIM_TIMEVENTFILTER_BLANKINGFLTR8 (HRTIM_EEFR1_EE1FLTR_3 | HRTIM_EEFR1_EE1FLTR_2)
+#define HRTIM_TIMEVENTFILTER_WINDOWINGCMP2 (HRTIM_EEFR1_EE1FLTR_3 | HRTIM_EEFR1_EE1FLTR_2 | HRTIM_EEFR1_EE1FLTR_0)
+#define HRTIM_TIMEVENTFILTER_WINDOWINGCMP3 (HRTIM_EEFR1_EE1FLTR_3 | HRTIM_EEFR1_EE1FLTR_2 | HRTIM_EEFR1_EE1FLTR_1)
+#define HRTIM_TIMEVENTFILTER_WINDOWINGTIM (HRTIM_EEFR1_EE1FLTR_3 | HRTIM_EEFR1_EE1FLTR_2 | HRTIM_EEFR1_EE1FLTR_1 | HRTIM_EEFR1_EE1FLTR_0)
+
+/** @brief Constants defining the DLL calibration periods (in micro seconds)
+ */
+#define HRTIM_CALIBRATIONRATE_7300 0x00000000U
+#define HRTIM_CALIBRATIONRATE_910 (HRTIM_DLLCR_CALRTE_0)
+#define HRTIM_CALIBRATIONRATE_114 (HRTIM_DLLCR_CALRTE_1)
+#define HRTIM_CALIBRATIONRATE_14 (HRTIM_DLLCR_CALRTE_1 | HRTIM_DLLCR_CALRTE_0)
+
+#endif /* STM32F3 */
+/**
+ * @}
+ */
+
+/** @defgroup HAL_I2C_Aliased_Defines HAL I2C Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define I2C_DUALADDRESS_DISABLED I2C_DUALADDRESS_DISABLE
+#define I2C_DUALADDRESS_ENABLED I2C_DUALADDRESS_ENABLE
+#define I2C_GENERALCALL_DISABLED I2C_GENERALCALL_DISABLE
+#define I2C_GENERALCALL_ENABLED I2C_GENERALCALL_ENABLE
+#define I2C_NOSTRETCH_DISABLED I2C_NOSTRETCH_DISABLE
+#define I2C_NOSTRETCH_ENABLED I2C_NOSTRETCH_ENABLE
+#define I2C_ANALOGFILTER_ENABLED I2C_ANALOGFILTER_ENABLE
+#define I2C_ANALOGFILTER_DISABLED I2C_ANALOGFILTER_DISABLE
+#if defined(STM32F0) || defined(STM32F1) || defined(STM32F3) || defined(STM32G0) || defined(STM32L4) || defined(STM32L1) || defined(STM32F7)
+#define HAL_I2C_STATE_MEM_BUSY_TX HAL_I2C_STATE_BUSY_TX
+#define HAL_I2C_STATE_MEM_BUSY_RX HAL_I2C_STATE_BUSY_RX
+#define HAL_I2C_STATE_MASTER_BUSY_TX HAL_I2C_STATE_BUSY_TX
+#define HAL_I2C_STATE_MASTER_BUSY_RX HAL_I2C_STATE_BUSY_RX
+#define HAL_I2C_STATE_SLAVE_BUSY_TX HAL_I2C_STATE_BUSY_TX
+#define HAL_I2C_STATE_SLAVE_BUSY_RX HAL_I2C_STATE_BUSY_RX
+#endif
+/**
+ * @}
+ */
+
+/** @defgroup HAL_IRDA_Aliased_Defines HAL IRDA Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define IRDA_ONE_BIT_SAMPLE_DISABLED IRDA_ONE_BIT_SAMPLE_DISABLE
+#define IRDA_ONE_BIT_SAMPLE_ENABLED IRDA_ONE_BIT_SAMPLE_ENABLE
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_IWDG_Aliased_Defines HAL IWDG Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define KR_KEY_RELOAD IWDG_KEY_RELOAD
+#define KR_KEY_ENABLE IWDG_KEY_ENABLE
+#define KR_KEY_EWA IWDG_KEY_WRITE_ACCESS_ENABLE
+#define KR_KEY_DWA IWDG_KEY_WRITE_ACCESS_DISABLE
+/**
+ * @}
+ */
+
+/** @defgroup HAL_LPTIM_Aliased_Defines HAL LPTIM Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+#define LPTIM_CLOCKSAMPLETIME_DIRECTTRANSISTION LPTIM_CLOCKSAMPLETIME_DIRECTTRANSITION
+#define LPTIM_CLOCKSAMPLETIME_2TRANSISTIONS LPTIM_CLOCKSAMPLETIME_2TRANSITIONS
+#define LPTIM_CLOCKSAMPLETIME_4TRANSISTIONS LPTIM_CLOCKSAMPLETIME_4TRANSITIONS
+#define LPTIM_CLOCKSAMPLETIME_8TRANSISTIONS LPTIM_CLOCKSAMPLETIME_8TRANSITIONS
+
+#define LPTIM_CLOCKPOLARITY_RISINGEDGE LPTIM_CLOCKPOLARITY_RISING
+#define LPTIM_CLOCKPOLARITY_FALLINGEDGE LPTIM_CLOCKPOLARITY_FALLING
+#define LPTIM_CLOCKPOLARITY_BOTHEDGES LPTIM_CLOCKPOLARITY_RISING_FALLING
+
+#define LPTIM_TRIGSAMPLETIME_DIRECTTRANSISTION LPTIM_TRIGSAMPLETIME_DIRECTTRANSITION
+#define LPTIM_TRIGSAMPLETIME_2TRANSISTIONS LPTIM_TRIGSAMPLETIME_2TRANSITIONS
+#define LPTIM_TRIGSAMPLETIME_4TRANSISTIONS LPTIM_TRIGSAMPLETIME_4TRANSITIONS
+#define LPTIM_TRIGSAMPLETIME_8TRANSISTIONS LPTIM_TRIGSAMPLETIME_8TRANSITIONS
+
+/* The following 3 definition have also been present in a temporary version of lptim.h */
+/* They need to be renamed also to the right name, just in case */
+#define LPTIM_TRIGSAMPLETIME_2TRANSITION LPTIM_TRIGSAMPLETIME_2TRANSITIONS
+#define LPTIM_TRIGSAMPLETIME_4TRANSITION LPTIM_TRIGSAMPLETIME_4TRANSITIONS
+#define LPTIM_TRIGSAMPLETIME_8TRANSITION LPTIM_TRIGSAMPLETIME_8TRANSITIONS
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_NAND_Aliased_Defines HAL NAND Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define HAL_NAND_Read_Page HAL_NAND_Read_Page_8b
+#define HAL_NAND_Write_Page HAL_NAND_Write_Page_8b
+#define HAL_NAND_Read_SpareArea HAL_NAND_Read_SpareArea_8b
+#define HAL_NAND_Write_SpareArea HAL_NAND_Write_SpareArea_8b
+
+#define NAND_AddressTypedef NAND_AddressTypeDef
+
+#define __ARRAY_ADDRESS ARRAY_ADDRESS
+#define __ADDR_1st_CYCLE ADDR_1ST_CYCLE
+#define __ADDR_2nd_CYCLE ADDR_2ND_CYCLE
+#define __ADDR_3rd_CYCLE ADDR_3RD_CYCLE
+#define __ADDR_4th_CYCLE ADDR_4TH_CYCLE
+/**
+ * @}
+ */
+
+/** @defgroup HAL_NOR_Aliased_Defines HAL NOR Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define NOR_StatusTypedef HAL_NOR_StatusTypeDef
+#define NOR_SUCCESS HAL_NOR_STATUS_SUCCESS
+#define NOR_ONGOING HAL_NOR_STATUS_ONGOING
+#define NOR_ERROR HAL_NOR_STATUS_ERROR
+#define NOR_TIMEOUT HAL_NOR_STATUS_TIMEOUT
+
+#define __NOR_WRITE NOR_WRITE
+#define __NOR_ADDR_SHIFT NOR_ADDR_SHIFT
+/**
+ * @}
+ */
+
+/** @defgroup HAL_OPAMP_Aliased_Defines HAL OPAMP Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+#define OPAMP_NONINVERTINGINPUT_VP0 OPAMP_NONINVERTINGINPUT_IO0
+#define OPAMP_NONINVERTINGINPUT_VP1 OPAMP_NONINVERTINGINPUT_IO1
+#define OPAMP_NONINVERTINGINPUT_VP2 OPAMP_NONINVERTINGINPUT_IO2
+#define OPAMP_NONINVERTINGINPUT_VP3 OPAMP_NONINVERTINGINPUT_IO3
+
+#define OPAMP_SEC_NONINVERTINGINPUT_VP0 OPAMP_SEC_NONINVERTINGINPUT_IO0
+#define OPAMP_SEC_NONINVERTINGINPUT_VP1 OPAMP_SEC_NONINVERTINGINPUT_IO1
+#define OPAMP_SEC_NONINVERTINGINPUT_VP2 OPAMP_SEC_NONINVERTINGINPUT_IO2
+#define OPAMP_SEC_NONINVERTINGINPUT_VP3 OPAMP_SEC_NONINVERTINGINPUT_IO3
+
+#define OPAMP_INVERTINGINPUT_VM0 OPAMP_INVERTINGINPUT_IO0
+#define OPAMP_INVERTINGINPUT_VM1 OPAMP_INVERTINGINPUT_IO1
+
+#define IOPAMP_INVERTINGINPUT_VM0 OPAMP_INVERTINGINPUT_IO0
+#define IOPAMP_INVERTINGINPUT_VM1 OPAMP_INVERTINGINPUT_IO1
+
+#define OPAMP_SEC_INVERTINGINPUT_VM0 OPAMP_SEC_INVERTINGINPUT_IO0
+#define OPAMP_SEC_INVERTINGINPUT_VM1 OPAMP_SEC_INVERTINGINPUT_IO1
+
+#define OPAMP_INVERTINGINPUT_VINM OPAMP_SEC_INVERTINGINPUT_IO1
+
+#define OPAMP_PGACONNECT_NO OPAMP_PGA_CONNECT_INVERTINGINPUT_NO
+#define OPAMP_PGACONNECT_VM0 OPAMP_PGA_CONNECT_INVERTINGINPUT_IO0
+#define OPAMP_PGACONNECT_VM1 OPAMP_PGA_CONNECT_INVERTINGINPUT_IO1
+
+#if defined(STM32L1) || defined(STM32L4) || defined(STM32L5) || defined(STM32H7) || defined(STM32G4)
+#define HAL_OPAMP_MSP_INIT_CB_ID HAL_OPAMP_MSPINIT_CB_ID
+#define HAL_OPAMP_MSP_DEINIT_CB_ID HAL_OPAMP_MSPDEINIT_CB_ID
+#endif
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_I2S_Aliased_Defines HAL I2S Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define I2S_STANDARD_PHILLIPS I2S_STANDARD_PHILIPS
+
+#if defined(STM32H7)
+#define I2S_IT_TXE I2S_IT_TXP
+#define I2S_IT_RXNE I2S_IT_RXP
+
+#define I2S_FLAG_TXE I2S_FLAG_TXP
+#define I2S_FLAG_RXNE I2S_FLAG_RXP
+#endif
+
+#if defined(STM32F7)
+#define I2S_CLOCK_SYSCLK I2S_CLOCK_PLL
+#endif
+/**
+ * @}
+ */
+
+/** @defgroup HAL_PCCARD_Aliased_Defines HAL PCCARD Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+/* Compact Flash-ATA registers description */
+#define CF_DATA ATA_DATA
+#define CF_SECTOR_COUNT ATA_SECTOR_COUNT
+#define CF_SECTOR_NUMBER ATA_SECTOR_NUMBER
+#define CF_CYLINDER_LOW ATA_CYLINDER_LOW
+#define CF_CYLINDER_HIGH ATA_CYLINDER_HIGH
+#define CF_CARD_HEAD ATA_CARD_HEAD
+#define CF_STATUS_CMD ATA_STATUS_CMD
+#define CF_STATUS_CMD_ALTERNATE ATA_STATUS_CMD_ALTERNATE
+#define CF_COMMON_DATA_AREA ATA_COMMON_DATA_AREA
+
+/* Compact Flash-ATA commands */
+#define CF_READ_SECTOR_CMD ATA_READ_SECTOR_CMD
+#define CF_WRITE_SECTOR_CMD ATA_WRITE_SECTOR_CMD
+#define CF_ERASE_SECTOR_CMD ATA_ERASE_SECTOR_CMD
+#define CF_IDENTIFY_CMD ATA_IDENTIFY_CMD
+
+#define PCCARD_StatusTypedef HAL_PCCARD_StatusTypeDef
+#define PCCARD_SUCCESS HAL_PCCARD_STATUS_SUCCESS
+#define PCCARD_ONGOING HAL_PCCARD_STATUS_ONGOING
+#define PCCARD_ERROR HAL_PCCARD_STATUS_ERROR
+#define PCCARD_TIMEOUT HAL_PCCARD_STATUS_TIMEOUT
+/**
+ * @}
+ */
+
+/** @defgroup HAL_RTC_Aliased_Defines HAL RTC Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+#define FORMAT_BIN RTC_FORMAT_BIN
+#define FORMAT_BCD RTC_FORMAT_BCD
+
+#define RTC_ALARMSUBSECONDMASK_None RTC_ALARMSUBSECONDMASK_NONE
+#define RTC_TAMPERERASEBACKUP_DISABLED RTC_TAMPER_ERASE_BACKUP_DISABLE
+#define RTC_TAMPERMASK_FLAG_DISABLED RTC_TAMPERMASK_FLAG_DISABLE
+#define RTC_TAMPERMASK_FLAG_ENABLED RTC_TAMPERMASK_FLAG_ENABLE
+
+#define RTC_MASKTAMPERFLAG_DISABLED RTC_TAMPERMASK_FLAG_DISABLE
+#define RTC_MASKTAMPERFLAG_ENABLED RTC_TAMPERMASK_FLAG_ENABLE
+#define RTC_TAMPERERASEBACKUP_ENABLED RTC_TAMPER_ERASE_BACKUP_ENABLE
+#define RTC_TAMPER1_2_INTERRUPT RTC_ALL_TAMPER_INTERRUPT
+#define RTC_TAMPER1_2_3_INTERRUPT RTC_ALL_TAMPER_INTERRUPT
+
+#define RTC_TIMESTAMPPIN_PC13 RTC_TIMESTAMPPIN_DEFAULT
+#define RTC_TIMESTAMPPIN_PA0 RTC_TIMESTAMPPIN_POS1
+#define RTC_TIMESTAMPPIN_PI8 RTC_TIMESTAMPPIN_POS1
+#define RTC_TIMESTAMPPIN_PC1 RTC_TIMESTAMPPIN_POS2
+
+#define RTC_OUTPUT_REMAP_PC13 RTC_OUTPUT_REMAP_NONE
+#define RTC_OUTPUT_REMAP_PB14 RTC_OUTPUT_REMAP_POS1
+#define RTC_OUTPUT_REMAP_PB2 RTC_OUTPUT_REMAP_POS1
+
+#define RTC_TAMPERPIN_PC13 RTC_TAMPERPIN_DEFAULT
+#define RTC_TAMPERPIN_PA0 RTC_TAMPERPIN_POS1
+#define RTC_TAMPERPIN_PI8 RTC_TAMPERPIN_POS1
+
+#if defined(STM32H7)
+#define RTC_TAMPCR_TAMPXE RTC_TAMPER_X
+#define RTC_TAMPCR_TAMPXIE RTC_TAMPER_X_INTERRUPT
+
+#define RTC_TAMPER1_INTERRUPT RTC_IT_TAMP1
+#define RTC_TAMPER2_INTERRUPT RTC_IT_TAMP2
+#define RTC_TAMPER3_INTERRUPT RTC_IT_TAMP3
+#define RTC_ALL_TAMPER_INTERRUPT RTC_IT_TAMPALL
+#endif /* STM32H7 */
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SMARTCARD_Aliased_Defines HAL SMARTCARD Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define SMARTCARD_NACK_ENABLED SMARTCARD_NACK_ENABLE
+#define SMARTCARD_NACK_DISABLED SMARTCARD_NACK_DISABLE
+
+#define SMARTCARD_ONEBIT_SAMPLING_DISABLED SMARTCARD_ONE_BIT_SAMPLE_DISABLE
+#define SMARTCARD_ONEBIT_SAMPLING_ENABLED SMARTCARD_ONE_BIT_SAMPLE_ENABLE
+#define SMARTCARD_ONEBIT_SAMPLING_DISABLE SMARTCARD_ONE_BIT_SAMPLE_DISABLE
+#define SMARTCARD_ONEBIT_SAMPLING_ENABLE SMARTCARD_ONE_BIT_SAMPLE_ENABLE
+
+#define SMARTCARD_TIMEOUT_DISABLED SMARTCARD_TIMEOUT_DISABLE
+#define SMARTCARD_TIMEOUT_ENABLED SMARTCARD_TIMEOUT_ENABLE
+
+#define SMARTCARD_LASTBIT_DISABLED SMARTCARD_LASTBIT_DISABLE
+#define SMARTCARD_LASTBIT_ENABLED SMARTCARD_LASTBIT_ENABLE
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SMBUS_Aliased_Defines HAL SMBUS Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define SMBUS_DUALADDRESS_DISABLED SMBUS_DUALADDRESS_DISABLE
+#define SMBUS_DUALADDRESS_ENABLED SMBUS_DUALADDRESS_ENABLE
+#define SMBUS_GENERALCALL_DISABLED SMBUS_GENERALCALL_DISABLE
+#define SMBUS_GENERALCALL_ENABLED SMBUS_GENERALCALL_ENABLE
+#define SMBUS_NOSTRETCH_DISABLED SMBUS_NOSTRETCH_DISABLE
+#define SMBUS_NOSTRETCH_ENABLED SMBUS_NOSTRETCH_ENABLE
+#define SMBUS_ANALOGFILTER_ENABLED SMBUS_ANALOGFILTER_ENABLE
+#define SMBUS_ANALOGFILTER_DISABLED SMBUS_ANALOGFILTER_DISABLE
+#define SMBUS_PEC_DISABLED SMBUS_PEC_DISABLE
+#define SMBUS_PEC_ENABLED SMBUS_PEC_ENABLE
+#define HAL_SMBUS_STATE_SLAVE_LISTEN HAL_SMBUS_STATE_LISTEN
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SPI_Aliased_Defines HAL SPI Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define SPI_TIMODE_DISABLED SPI_TIMODE_DISABLE
+#define SPI_TIMODE_ENABLED SPI_TIMODE_ENABLE
+
+#define SPI_CRCCALCULATION_DISABLED SPI_CRCCALCULATION_DISABLE
+#define SPI_CRCCALCULATION_ENABLED SPI_CRCCALCULATION_ENABLE
+
+#define SPI_NSS_PULSE_DISABLED SPI_NSS_PULSE_DISABLE
+#define SPI_NSS_PULSE_ENABLED SPI_NSS_PULSE_ENABLE
+
+#if defined(STM32H7)
+
+#define SPI_FLAG_TXE SPI_FLAG_TXP
+#define SPI_FLAG_RXNE SPI_FLAG_RXP
+
+#define SPI_IT_TXE SPI_IT_TXP
+#define SPI_IT_RXNE SPI_IT_RXP
+
+#define SPI_FRLVL_EMPTY SPI_RX_FIFO_0PACKET
+#define SPI_FRLVL_QUARTER_FULL SPI_RX_FIFO_1PACKET
+#define SPI_FRLVL_HALF_FULL SPI_RX_FIFO_2PACKET
+#define SPI_FRLVL_FULL SPI_RX_FIFO_3PACKET
+
+#endif /* STM32H7 */
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_TIM_Aliased_Defines HAL TIM Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define CCER_CCxE_MASK TIM_CCER_CCxE_MASK
+#define CCER_CCxNE_MASK TIM_CCER_CCxNE_MASK
+
+#define TIM_DMABase_CR1 TIM_DMABASE_CR1
+#define TIM_DMABase_CR2 TIM_DMABASE_CR2
+#define TIM_DMABase_SMCR TIM_DMABASE_SMCR
+#define TIM_DMABase_DIER TIM_DMABASE_DIER
+#define TIM_DMABase_SR TIM_DMABASE_SR
+#define TIM_DMABase_EGR TIM_DMABASE_EGR
+#define TIM_DMABase_CCMR1 TIM_DMABASE_CCMR1
+#define TIM_DMABase_CCMR2 TIM_DMABASE_CCMR2
+#define TIM_DMABase_CCER TIM_DMABASE_CCER
+#define TIM_DMABase_CNT TIM_DMABASE_CNT
+#define TIM_DMABase_PSC TIM_DMABASE_PSC
+#define TIM_DMABase_ARR TIM_DMABASE_ARR
+#define TIM_DMABase_RCR TIM_DMABASE_RCR
+#define TIM_DMABase_CCR1 TIM_DMABASE_CCR1
+#define TIM_DMABase_CCR2 TIM_DMABASE_CCR2
+#define TIM_DMABase_CCR3 TIM_DMABASE_CCR3
+#define TIM_DMABase_CCR4 TIM_DMABASE_CCR4
+#define TIM_DMABase_BDTR TIM_DMABASE_BDTR
+#define TIM_DMABase_DCR TIM_DMABASE_DCR
+#define TIM_DMABase_DMAR TIM_DMABASE_DMAR
+#define TIM_DMABase_OR1 TIM_DMABASE_OR1
+#define TIM_DMABase_CCMR3 TIM_DMABASE_CCMR3
+#define TIM_DMABase_CCR5 TIM_DMABASE_CCR5
+#define TIM_DMABase_CCR6 TIM_DMABASE_CCR6
+#define TIM_DMABase_OR2 TIM_DMABASE_OR2
+#define TIM_DMABase_OR3 TIM_DMABASE_OR3
+#define TIM_DMABase_OR TIM_DMABASE_OR
+
+#define TIM_EventSource_Update TIM_EVENTSOURCE_UPDATE
+#define TIM_EventSource_CC1 TIM_EVENTSOURCE_CC1
+#define TIM_EventSource_CC2 TIM_EVENTSOURCE_CC2
+#define TIM_EventSource_CC3 TIM_EVENTSOURCE_CC3
+#define TIM_EventSource_CC4 TIM_EVENTSOURCE_CC4
+#define TIM_EventSource_COM TIM_EVENTSOURCE_COM
+#define TIM_EventSource_Trigger TIM_EVENTSOURCE_TRIGGER
+#define TIM_EventSource_Break TIM_EVENTSOURCE_BREAK
+#define TIM_EventSource_Break2 TIM_EVENTSOURCE_BREAK2
+
+#define TIM_DMABurstLength_1Transfer TIM_DMABURSTLENGTH_1TRANSFER
+#define TIM_DMABurstLength_2Transfers TIM_DMABURSTLENGTH_2TRANSFERS
+#define TIM_DMABurstLength_3Transfers TIM_DMABURSTLENGTH_3TRANSFERS
+#define TIM_DMABurstLength_4Transfers TIM_DMABURSTLENGTH_4TRANSFERS
+#define TIM_DMABurstLength_5Transfers TIM_DMABURSTLENGTH_5TRANSFERS
+#define TIM_DMABurstLength_6Transfers TIM_DMABURSTLENGTH_6TRANSFERS
+#define TIM_DMABurstLength_7Transfers TIM_DMABURSTLENGTH_7TRANSFERS
+#define TIM_DMABurstLength_8Transfers TIM_DMABURSTLENGTH_8TRANSFERS
+#define TIM_DMABurstLength_9Transfers TIM_DMABURSTLENGTH_9TRANSFERS
+#define TIM_DMABurstLength_10Transfers TIM_DMABURSTLENGTH_10TRANSFERS
+#define TIM_DMABurstLength_11Transfers TIM_DMABURSTLENGTH_11TRANSFERS
+#define TIM_DMABurstLength_12Transfers TIM_DMABURSTLENGTH_12TRANSFERS
+#define TIM_DMABurstLength_13Transfers TIM_DMABURSTLENGTH_13TRANSFERS
+#define TIM_DMABurstLength_14Transfers TIM_DMABURSTLENGTH_14TRANSFERS
+#define TIM_DMABurstLength_15Transfers TIM_DMABURSTLENGTH_15TRANSFERS
+#define TIM_DMABurstLength_16Transfers TIM_DMABURSTLENGTH_16TRANSFERS
+#define TIM_DMABurstLength_17Transfers TIM_DMABURSTLENGTH_17TRANSFERS
+#define TIM_DMABurstLength_18Transfers TIM_DMABURSTLENGTH_18TRANSFERS
+
+#if defined(STM32L0)
+#define TIM22_TI1_GPIO1 TIM22_TI1_GPIO
+#define TIM22_TI1_GPIO2 TIM22_TI1_GPIO
+#endif
+
+#if defined(STM32F3)
+#define IS_TIM_HALL_INTERFACE_INSTANCE IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE
+#endif
+
+#if defined(STM32H7)
+#define TIM_TIM1_ETR_COMP1_OUT TIM_TIM1_ETR_COMP1
+#define TIM_TIM1_ETR_COMP2_OUT TIM_TIM1_ETR_COMP2
+#define TIM_TIM8_ETR_COMP1_OUT TIM_TIM8_ETR_COMP1
+#define TIM_TIM8_ETR_COMP2_OUT TIM_TIM8_ETR_COMP2
+#define TIM_TIM2_ETR_COMP1_OUT TIM_TIM2_ETR_COMP1
+#define TIM_TIM2_ETR_COMP2_OUT TIM_TIM2_ETR_COMP2
+#define TIM_TIM3_ETR_COMP1_OUT TIM_TIM3_ETR_COMP1
+#define TIM_TIM1_TI1_COMP1_OUT TIM_TIM1_TI1_COMP1
+#define TIM_TIM8_TI1_COMP2_OUT TIM_TIM8_TI1_COMP2
+#define TIM_TIM2_TI4_COMP1_OUT TIM_TIM2_TI4_COMP1
+#define TIM_TIM2_TI4_COMP2_OUT TIM_TIM2_TI4_COMP2
+#define TIM_TIM2_TI4_COMP1COMP2_OUT TIM_TIM2_TI4_COMP1_COMP2
+#define TIM_TIM3_TI1_COMP1_OUT TIM_TIM3_TI1_COMP1
+#define TIM_TIM3_TI1_COMP2_OUT TIM_TIM3_TI1_COMP2
+#define TIM_TIM3_TI1_COMP1COMP2_OUT TIM_TIM3_TI1_COMP1_COMP2
+#endif
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_TSC_Aliased_Defines HAL TSC Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define TSC_SYNC_POL_FALL TSC_SYNC_POLARITY_FALLING
+#define TSC_SYNC_POL_RISE_HIGH TSC_SYNC_POLARITY_RISING
+/**
+ * @}
+ */
+
+/** @defgroup HAL_UART_Aliased_Defines HAL UART Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define UART_ONEBIT_SAMPLING_DISABLED UART_ONE_BIT_SAMPLE_DISABLE
+#define UART_ONEBIT_SAMPLING_ENABLED UART_ONE_BIT_SAMPLE_ENABLE
+#define UART_ONE_BIT_SAMPLE_DISABLED UART_ONE_BIT_SAMPLE_DISABLE
+#define UART_ONE_BIT_SAMPLE_ENABLED UART_ONE_BIT_SAMPLE_ENABLE
+
+#define __HAL_UART_ONEBIT_ENABLE __HAL_UART_ONE_BIT_SAMPLE_ENABLE
+#define __HAL_UART_ONEBIT_DISABLE __HAL_UART_ONE_BIT_SAMPLE_DISABLE
+
+#define __DIV_SAMPLING16 UART_DIV_SAMPLING16
+#define __DIVMANT_SAMPLING16 UART_DIVMANT_SAMPLING16
+#define __DIVFRAQ_SAMPLING16 UART_DIVFRAQ_SAMPLING16
+#define __UART_BRR_SAMPLING16 UART_BRR_SAMPLING16
+
+#define __DIV_SAMPLING8 UART_DIV_SAMPLING8
+#define __DIVMANT_SAMPLING8 UART_DIVMANT_SAMPLING8
+#define __DIVFRAQ_SAMPLING8 UART_DIVFRAQ_SAMPLING8
+#define __UART_BRR_SAMPLING8 UART_BRR_SAMPLING8
+
+#define __DIV_LPUART UART_DIV_LPUART
+
+#define UART_WAKEUPMETHODE_IDLELINE UART_WAKEUPMETHOD_IDLELINE
+#define UART_WAKEUPMETHODE_ADDRESSMARK UART_WAKEUPMETHOD_ADDRESSMARK
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_USART_Aliased_Defines HAL USART Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+#define USART_CLOCK_DISABLED USART_CLOCK_DISABLE
+#define USART_CLOCK_ENABLED USART_CLOCK_ENABLE
+
+#define USARTNACK_ENABLED USART_NACK_ENABLE
+#define USARTNACK_DISABLED USART_NACK_DISABLE
+/**
+ * @}
+ */
+
+/** @defgroup HAL_WWDG_Aliased_Defines HAL WWDG Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define CFR_BASE WWDG_CFR_BASE
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_CAN_Aliased_Defines HAL CAN Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define CAN_FilterFIFO0 CAN_FILTER_FIFO0
+#define CAN_FilterFIFO1 CAN_FILTER_FIFO1
+#define CAN_IT_RQCP0 CAN_IT_TME
+#define CAN_IT_RQCP1 CAN_IT_TME
+#define CAN_IT_RQCP2 CAN_IT_TME
+#define INAK_TIMEOUT CAN_TIMEOUT_VALUE
+#define SLAK_TIMEOUT CAN_TIMEOUT_VALUE
+#define CAN_TXSTATUS_FAILED ((uint8_t)0x00U)
+#define CAN_TXSTATUS_OK ((uint8_t)0x01U)
+#define CAN_TXSTATUS_PENDING ((uint8_t)0x02U)
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_ETH_Aliased_Defines HAL ETH Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+#define VLAN_TAG ETH_VLAN_TAG
+#define MIN_ETH_PAYLOAD ETH_MIN_ETH_PAYLOAD
+#define MAX_ETH_PAYLOAD ETH_MAX_ETH_PAYLOAD
+#define JUMBO_FRAME_PAYLOAD ETH_JUMBO_FRAME_PAYLOAD
+#define MACMIIAR_CR_MASK ETH_MACMIIAR_CR_MASK
+#define MACCR_CLEAR_MASK ETH_MACCR_CLEAR_MASK
+#define MACFCR_CLEAR_MASK ETH_MACFCR_CLEAR_MASK
+#define DMAOMR_CLEAR_MASK ETH_DMAOMR_CLEAR_MASK
+
+#define ETH_MMCCR 0x00000100U
+#define ETH_MMCRIR 0x00000104U
+#define ETH_MMCTIR 0x00000108U
+#define ETH_MMCRIMR 0x0000010CU
+#define ETH_MMCTIMR 0x00000110U
+#define ETH_MMCTGFSCCR 0x0000014CU
+#define ETH_MMCTGFMSCCR 0x00000150U
+#define ETH_MMCTGFCR 0x00000168U
+#define ETH_MMCRFCECR 0x00000194U
+#define ETH_MMCRFAECR 0x00000198U
+#define ETH_MMCRGUFCR 0x000001C4U
+
+#define ETH_MAC_TXFIFO_FULL 0x02000000U /* Tx FIFO full */
+#define ETH_MAC_TXFIFONOT_EMPTY 0x01000000U /* Tx FIFO not empty */
+#define ETH_MAC_TXFIFO_WRITE_ACTIVE 0x00400000U /* Tx FIFO write active */
+#define ETH_MAC_TXFIFO_IDLE 0x00000000U /* Tx FIFO read status: Idle */
+#define ETH_MAC_TXFIFO_READ 0x00100000U /* Tx FIFO read status: Read (transferring data to the MAC transmitter) */
+#define ETH_MAC_TXFIFO_WAITING 0x00200000U /* Tx FIFO read status: Waiting for TxStatus from MAC transmitter */
+#define ETH_MAC_TXFIFO_WRITING 0x00300000U /* Tx FIFO read status: Writing the received TxStatus or flushing the TxFIFO */
+#define ETH_MAC_TRANSMISSION_PAUSE 0x00080000U /* MAC transmitter in pause */
+#define ETH_MAC_TRANSMITFRAMECONTROLLER_IDLE 0x00000000U /* MAC transmit frame controller: Idle */
+#define ETH_MAC_TRANSMITFRAMECONTROLLER_WAITING 0x00020000U /* MAC transmit frame controller: Waiting for Status of previous frame or IFG/backoff period to be over */
+#define ETH_MAC_TRANSMITFRAMECONTROLLER_GENRATING_PCF 0x00040000U /* MAC transmit frame controller: Generating and transmitting a Pause control frame (in full duplex mode) */
+#define ETH_MAC_TRANSMITFRAMECONTROLLER_TRANSFERRING 0x00060000U /* MAC transmit frame controller: Transferring input frame for transmission */
+#define ETH_MAC_MII_TRANSMIT_ACTIVE 0x00010000U /* MAC MII transmit engine active */
+#define ETH_MAC_RXFIFO_EMPTY 0x00000000U /* Rx FIFO fill level: empty */
+#define ETH_MAC_RXFIFO_BELOW_THRESHOLD 0x00000100U /* Rx FIFO fill level: fill-level below flow-control de-activate threshold */
+#define ETH_MAC_RXFIFO_ABOVE_THRESHOLD 0x00000200U /* Rx FIFO fill level: fill-level above flow-control activate threshold */
+#define ETH_MAC_RXFIFO_FULL 0x00000300U /* Rx FIFO fill level: full */
+#if defined(STM32F1)
+#else
+#define ETH_MAC_READCONTROLLER_IDLE 0x00000000U /* Rx FIFO read controller IDLE state */
+#define ETH_MAC_READCONTROLLER_READING_DATA 0x00000020U /* Rx FIFO read controller Reading frame data */
+#define ETH_MAC_READCONTROLLER_READING_STATUS 0x00000040U /* Rx FIFO read controller Reading frame status (or time-stamp) */
+#endif
+#define ETH_MAC_READCONTROLLER_FLUSHING 0x00000060U /* Rx FIFO read controller Flushing the frame data and status */
+#define ETH_MAC_RXFIFO_WRITE_ACTIVE 0x00000010U /* Rx FIFO write controller active */
+#define ETH_MAC_SMALL_FIFO_NOTACTIVE 0x00000000U /* MAC small FIFO read / write controllers not active */
+#define ETH_MAC_SMALL_FIFO_READ_ACTIVE 0x00000002U /* MAC small FIFO read controller active */
+#define ETH_MAC_SMALL_FIFO_WRITE_ACTIVE 0x00000004U /* MAC small FIFO write controller active */
+#define ETH_MAC_SMALL_FIFO_RW_ACTIVE 0x00000006U /* MAC small FIFO read / write controllers active */
+#define ETH_MAC_MII_RECEIVE_PROTOCOL_ACTIVE 0x00000001U /* MAC MII receive protocol engine active */
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_DCMI_Aliased_Defines HAL DCMI Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define HAL_DCMI_ERROR_OVF HAL_DCMI_ERROR_OVR
+#define DCMI_IT_OVF DCMI_IT_OVR
+#define DCMI_FLAG_OVFRI DCMI_FLAG_OVRRI
+#define DCMI_FLAG_OVFMI DCMI_FLAG_OVRMI
+
+#define HAL_DCMI_ConfigCROP HAL_DCMI_ConfigCrop
+#define HAL_DCMI_EnableCROP HAL_DCMI_EnableCrop
+#define HAL_DCMI_DisableCROP HAL_DCMI_DisableCrop
+
+/**
+ * @}
+ */
+
+#if defined(STM32L4) || defined(STM32F7) || defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) || defined(STM32F469xx) || defined(STM32F479xx) \
+ || defined(STM32H7)
+/** @defgroup HAL_DMA2D_Aliased_Defines HAL DMA2D Aliased Defines maintained for legacy purpose
+ * @{
+ */
+#define DMA2D_ARGB8888 DMA2D_OUTPUT_ARGB8888
+#define DMA2D_RGB888 DMA2D_OUTPUT_RGB888
+#define DMA2D_RGB565 DMA2D_OUTPUT_RGB565
+#define DMA2D_ARGB1555 DMA2D_OUTPUT_ARGB1555
+#define DMA2D_ARGB4444 DMA2D_OUTPUT_ARGB4444
+
+#define CM_ARGB8888 DMA2D_INPUT_ARGB8888
+#define CM_RGB888 DMA2D_INPUT_RGB888
+#define CM_RGB565 DMA2D_INPUT_RGB565
+#define CM_ARGB1555 DMA2D_INPUT_ARGB1555
+#define CM_ARGB4444 DMA2D_INPUT_ARGB4444
+#define CM_L8 DMA2D_INPUT_L8
+#define CM_AL44 DMA2D_INPUT_AL44
+#define CM_AL88 DMA2D_INPUT_AL88
+#define CM_L4 DMA2D_INPUT_L4
+#define CM_A8 DMA2D_INPUT_A8
+#define CM_A4 DMA2D_INPUT_A4
+/**
+ * @}
+ */
+#endif /* STM32L4 || STM32F7 || STM32F4 || STM32H7 */
+
+/** @defgroup HAL_PPP_Aliased_Defines HAL PPP Aliased Defines maintained for legacy purpose
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup HAL_CRYP_Aliased_Functions HAL CRYP Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#define HAL_CRYP_ComputationCpltCallback HAL_CRYPEx_ComputationCpltCallback
+/**
+ * @}
+ */
+
+/** @defgroup HAL_HASH_Aliased_Functions HAL HASH Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#define HAL_HASH_STATETypeDef HAL_HASH_StateTypeDef
+#define HAL_HASHPhaseTypeDef HAL_HASH_PhaseTypeDef
+#define HAL_HMAC_MD5_Finish HAL_HASH_MD5_Finish
+#define HAL_HMAC_SHA1_Finish HAL_HASH_SHA1_Finish
+#define HAL_HMAC_SHA224_Finish HAL_HASH_SHA224_Finish
+#define HAL_HMAC_SHA256_Finish HAL_HASH_SHA256_Finish
+
+/*HASH Algorithm Selection*/
+
+#define HASH_AlgoSelection_SHA1 HASH_ALGOSELECTION_SHA1
+#define HASH_AlgoSelection_SHA224 HASH_ALGOSELECTION_SHA224
+#define HASH_AlgoSelection_SHA256 HASH_ALGOSELECTION_SHA256
+#define HASH_AlgoSelection_MD5 HASH_ALGOSELECTION_MD5
+
+#define HASH_AlgoMode_HASH HASH_ALGOMODE_HASH
+#define HASH_AlgoMode_HMAC HASH_ALGOMODE_HMAC
+
+#define HASH_HMACKeyType_ShortKey HASH_HMAC_KEYTYPE_SHORTKEY
+#define HASH_HMACKeyType_LongKey HASH_HMAC_KEYTYPE_LONGKEY
+
+#if defined(STM32L4) || defined(STM32L5) || defined(STM32F2) || defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
+
+#define HAL_HASH_MD5_Accumulate HAL_HASH_MD5_Accmlt
+#define HAL_HASH_MD5_Accumulate_End HAL_HASH_MD5_Accmlt_End
+#define HAL_HASH_MD5_Accumulate_IT HAL_HASH_MD5_Accmlt_IT
+#define HAL_HASH_MD5_Accumulate_End_IT HAL_HASH_MD5_Accmlt_End_IT
+
+#define HAL_HASH_SHA1_Accumulate HAL_HASH_SHA1_Accmlt
+#define HAL_HASH_SHA1_Accumulate_End HAL_HASH_SHA1_Accmlt_End
+#define HAL_HASH_SHA1_Accumulate_IT HAL_HASH_SHA1_Accmlt_IT
+#define HAL_HASH_SHA1_Accumulate_End_IT HAL_HASH_SHA1_Accmlt_End_IT
+
+#define HAL_HASHEx_SHA224_Accumulate HAL_HASHEx_SHA224_Accmlt
+#define HAL_HASHEx_SHA224_Accumulate_End HAL_HASHEx_SHA224_Accmlt_End
+#define HAL_HASHEx_SHA224_Accumulate_IT HAL_HASHEx_SHA224_Accmlt_IT
+#define HAL_HASHEx_SHA224_Accumulate_End_IT HAL_HASHEx_SHA224_Accmlt_End_IT
+
+#define HAL_HASHEx_SHA256_Accumulate HAL_HASHEx_SHA256_Accmlt
+#define HAL_HASHEx_SHA256_Accumulate_End HAL_HASHEx_SHA256_Accmlt_End
+#define HAL_HASHEx_SHA256_Accumulate_IT HAL_HASHEx_SHA256_Accmlt_IT
+#define HAL_HASHEx_SHA256_Accumulate_End_IT HAL_HASHEx_SHA256_Accmlt_End_IT
+
+#endif /* STM32L4 || STM32L5 || STM32F2 || STM32F4 || STM32F7 || STM32H7 */
+/**
+ * @}
+ */
+
+/** @defgroup HAL_Aliased_Functions HAL Generic Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#define HAL_EnableDBGSleepMode HAL_DBGMCU_EnableDBGSleepMode
+#define HAL_DisableDBGSleepMode HAL_DBGMCU_DisableDBGSleepMode
+#define HAL_EnableDBGStopMode HAL_DBGMCU_EnableDBGStopMode
+#define HAL_DisableDBGStopMode HAL_DBGMCU_DisableDBGStopMode
+#define HAL_EnableDBGStandbyMode HAL_DBGMCU_EnableDBGStandbyMode
+#define HAL_DisableDBGStandbyMode HAL_DBGMCU_DisableDBGStandbyMode
+#define HAL_DBG_LowPowerConfig(Periph, cmd) (((cmd) == ENABLE) ? HAL_DBGMCU_DBG_EnableLowPowerConfig(Periph) : HAL_DBGMCU_DBG_DisableLowPowerConfig(Periph))
+#define HAL_VREFINT_OutputSelect HAL_SYSCFG_VREFINT_OutputSelect
+#define HAL_Lock_Cmd(cmd) (((cmd) == ENABLE) ? HAL_SYSCFG_Enable_Lock_VREFINT() : HAL_SYSCFG_Disable_Lock_VREFINT())
+#if defined(STM32L0)
+#else
+#define HAL_VREFINT_Cmd(cmd) (((cmd) == ENABLE) ? HAL_SYSCFG_EnableVREFINT() : HAL_SYSCFG_DisableVREFINT())
+#endif
+#define HAL_ADC_EnableBuffer_Cmd(cmd) (((cmd) == ENABLE) ? HAL_ADCEx_EnableVREFINT() : HAL_ADCEx_DisableVREFINT())
+#define HAL_ADC_EnableBufferSensor_Cmd(cmd) (((cmd) == ENABLE) ? HAL_ADCEx_EnableVREFINTTempSensor() : HAL_ADCEx_DisableVREFINTTempSensor())
+#if defined(STM32H7A3xx) || defined(STM32H7B3xx) || defined(STM32H7B0xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xxQ) || defined(STM32H7B0xxQ)
+#define HAL_EnableSRDomainDBGStopMode HAL_EnableDomain3DBGStopMode
+#define HAL_DisableSRDomainDBGStopMode HAL_DisableDomain3DBGStopMode
+#define HAL_EnableSRDomainDBGStandbyMode HAL_EnableDomain3DBGStandbyMode
+#define HAL_DisableSRDomainDBGStandbyMode HAL_DisableDomain3DBGStandbyMode
+#endif /* STM32H7A3xx || STM32H7B3xx || STM32H7B0xx || STM32H7A3xxQ || STM32H7B3xxQ || STM32H7B0xxQ */
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_FLASH_Aliased_Functions HAL FLASH Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#define FLASH_HalfPageProgram HAL_FLASHEx_HalfPageProgram
+#define FLASH_EnableRunPowerDown HAL_FLASHEx_EnableRunPowerDown
+#define FLASH_DisableRunPowerDown HAL_FLASHEx_DisableRunPowerDown
+#define HAL_DATA_EEPROMEx_Unlock HAL_FLASHEx_DATAEEPROM_Unlock
+#define HAL_DATA_EEPROMEx_Lock HAL_FLASHEx_DATAEEPROM_Lock
+#define HAL_DATA_EEPROMEx_Erase HAL_FLASHEx_DATAEEPROM_Erase
+#define HAL_DATA_EEPROMEx_Program HAL_FLASHEx_DATAEEPROM_Program
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_I2C_Aliased_Functions HAL I2C Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#define HAL_I2CEx_AnalogFilter_Config HAL_I2CEx_ConfigAnalogFilter
+#define HAL_I2CEx_DigitalFilter_Config HAL_I2CEx_ConfigDigitalFilter
+#define HAL_FMPI2CEx_AnalogFilter_Config HAL_FMPI2CEx_ConfigAnalogFilter
+#define HAL_FMPI2CEx_DigitalFilter_Config HAL_FMPI2CEx_ConfigDigitalFilter
+
+#define HAL_I2CFastModePlusConfig(SYSCFG_I2CFastModePlus, cmd) (((cmd) == ENABLE) ? HAL_I2CEx_EnableFastModePlus(SYSCFG_I2CFastModePlus) : HAL_I2CEx_DisableFastModePlus(SYSCFG_I2CFastModePlus))
+
+#if defined(STM32H7) || defined(STM32WB) || defined(STM32G0) || defined(STM32F0) || defined(STM32F1) || defined(STM32F2) || defined(STM32F3) || defined(STM32F4) || defined(STM32F7) \
+ || defined(STM32L0) || defined(STM32L4) || defined(STM32L5) || defined(STM32G4) || defined(STM32L1)
+#define HAL_I2C_Master_Sequential_Transmit_IT HAL_I2C_Master_Seq_Transmit_IT
+#define HAL_I2C_Master_Sequential_Receive_IT HAL_I2C_Master_Seq_Receive_IT
+#define HAL_I2C_Slave_Sequential_Transmit_IT HAL_I2C_Slave_Seq_Transmit_IT
+#define HAL_I2C_Slave_Sequential_Receive_IT HAL_I2C_Slave_Seq_Receive_IT
+#endif /* STM32H7 || STM32WB || STM32G0 || STM32F0 || STM32F1 || STM32F2 || STM32F3 || STM32F4 || STM32F7 || STM32L0 || STM32L4 || STM32L5 || STM32G4 || STM32L1 */
+#if defined(STM32H7) || defined(STM32WB) || defined(STM32G0) || defined(STM32F4) || defined(STM32F7) || defined(STM32L0) || defined(STM32L4) || defined(STM32L5) || defined(STM32G4) || defined(STM32L1)
+#define HAL_I2C_Master_Sequential_Transmit_DMA HAL_I2C_Master_Seq_Transmit_DMA
+#define HAL_I2C_Master_Sequential_Receive_DMA HAL_I2C_Master_Seq_Receive_DMA
+#define HAL_I2C_Slave_Sequential_Transmit_DMA HAL_I2C_Slave_Seq_Transmit_DMA
+#define HAL_I2C_Slave_Sequential_Receive_DMA HAL_I2C_Slave_Seq_Receive_DMA
+#endif /* STM32H7 || STM32WB || STM32G0 || STM32F4 || STM32F7 || STM32L0 || STM32L4 || STM32L5 || STM32G4 || STM32L1 */
+
+#if defined(STM32F4)
+#define HAL_FMPI2C_Master_Sequential_Transmit_IT HAL_FMPI2C_Master_Seq_Transmit_IT
+#define HAL_FMPI2C_Master_Sequential_Receive_IT HAL_FMPI2C_Master_Seq_Receive_IT
+#define HAL_FMPI2C_Slave_Sequential_Transmit_IT HAL_FMPI2C_Slave_Seq_Transmit_IT
+#define HAL_FMPI2C_Slave_Sequential_Receive_IT HAL_FMPI2C_Slave_Seq_Receive_IT
+#define HAL_FMPI2C_Master_Sequential_Transmit_DMA HAL_FMPI2C_Master_Seq_Transmit_DMA
+#define HAL_FMPI2C_Master_Sequential_Receive_DMA HAL_FMPI2C_Master_Seq_Receive_DMA
+#define HAL_FMPI2C_Slave_Sequential_Transmit_DMA HAL_FMPI2C_Slave_Seq_Transmit_DMA
+#define HAL_FMPI2C_Slave_Sequential_Receive_DMA HAL_FMPI2C_Slave_Seq_Receive_DMA
+#endif /* STM32F4 */
+ /**
+ * @}
+ */
+
+/** @defgroup HAL_PWR_Aliased HAL PWR Aliased maintained for legacy purpose
+ * @{
+ */
+
+#if defined(STM32G0)
+#define HAL_PWR_ConfigPVD HAL_PWREx_ConfigPVD
+#define HAL_PWR_EnablePVD HAL_PWREx_EnablePVD
+#define HAL_PWR_DisablePVD HAL_PWREx_DisablePVD
+#define HAL_PWR_PVD_IRQHandler HAL_PWREx_PVD_IRQHandler
+#endif
+#define HAL_PWR_PVDConfig HAL_PWR_ConfigPVD
+#define HAL_PWR_DisableBkUpReg HAL_PWREx_DisableBkUpReg
+#define HAL_PWR_DisableFlashPowerDown HAL_PWREx_DisableFlashPowerDown
+#define HAL_PWR_DisableVddio2Monitor HAL_PWREx_DisableVddio2Monitor
+#define HAL_PWR_EnableBkUpReg HAL_PWREx_EnableBkUpReg
+#define HAL_PWR_EnableFlashPowerDown HAL_PWREx_EnableFlashPowerDown
+#define HAL_PWR_EnableVddio2Monitor HAL_PWREx_EnableVddio2Monitor
+#define HAL_PWR_PVD_PVM_IRQHandler HAL_PWREx_PVD_PVM_IRQHandler
+#define HAL_PWR_PVDLevelConfig HAL_PWR_ConfigPVD
+#define HAL_PWR_Vddio2Monitor_IRQHandler HAL_PWREx_Vddio2Monitor_IRQHandler
+#define HAL_PWR_Vddio2MonitorCallback HAL_PWREx_Vddio2MonitorCallback
+#define HAL_PWREx_ActivateOverDrive HAL_PWREx_EnableOverDrive
+#define HAL_PWREx_DeactivateOverDrive HAL_PWREx_DisableOverDrive
+#define HAL_PWREx_DisableSDADCAnalog HAL_PWREx_DisableSDADC
+#define HAL_PWREx_EnableSDADCAnalog HAL_PWREx_EnableSDADC
+#define HAL_PWREx_PVMConfig HAL_PWREx_ConfigPVM
+
+#define PWR_MODE_NORMAL PWR_PVD_MODE_NORMAL
+#define PWR_MODE_IT_RISING PWR_PVD_MODE_IT_RISING
+#define PWR_MODE_IT_FALLING PWR_PVD_MODE_IT_FALLING
+#define PWR_MODE_IT_RISING_FALLING PWR_PVD_MODE_IT_RISING_FALLING
+#define PWR_MODE_EVENT_RISING PWR_PVD_MODE_EVENT_RISING
+#define PWR_MODE_EVENT_FALLING PWR_PVD_MODE_EVENT_FALLING
+#define PWR_MODE_EVENT_RISING_FALLING PWR_PVD_MODE_EVENT_RISING_FALLING
+
+#define CR_OFFSET_BB PWR_CR_OFFSET_BB
+#define CSR_OFFSET_BB PWR_CSR_OFFSET_BB
+#define PMODE_BIT_NUMBER VOS_BIT_NUMBER
+#define CR_PMODE_BB CR_VOS_BB
+
+#define DBP_BitNumber DBP_BIT_NUMBER
+#define PVDE_BitNumber PVDE_BIT_NUMBER
+#define PMODE_BitNumber PMODE_BIT_NUMBER
+#define EWUP_BitNumber EWUP_BIT_NUMBER
+#define FPDS_BitNumber FPDS_BIT_NUMBER
+#define ODEN_BitNumber ODEN_BIT_NUMBER
+#define ODSWEN_BitNumber ODSWEN_BIT_NUMBER
+#define MRLVDS_BitNumber MRLVDS_BIT_NUMBER
+#define LPLVDS_BitNumber LPLVDS_BIT_NUMBER
+#define BRE_BitNumber BRE_BIT_NUMBER
+
+#define PWR_MODE_EVT PWR_PVD_MODE_NORMAL
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SMBUS_Aliased_Functions HAL SMBUS Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#define HAL_SMBUS_Slave_Listen_IT HAL_SMBUS_EnableListen_IT
+#define HAL_SMBUS_SlaveAddrCallback HAL_SMBUS_AddrCallback
+#define HAL_SMBUS_SlaveListenCpltCallback HAL_SMBUS_ListenCpltCallback
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SPI_Aliased_Functions HAL SPI Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#define HAL_SPI_FlushRxFifo HAL_SPIEx_FlushRxFifo
+/**
+ * @}
+ */
+
+/** @defgroup HAL_TIM_Aliased_Functions HAL TIM Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#define HAL_TIM_DMADelayPulseCplt TIM_DMADelayPulseCplt
+#define HAL_TIM_DMAError TIM_DMAError
+#define HAL_TIM_DMACaptureCplt TIM_DMACaptureCplt
+#define HAL_TIMEx_DMACommutationCplt TIMEx_DMACommutationCplt
+#if defined(STM32H7) || defined(STM32G0) || defined(STM32F0) || defined(STM32F1) || defined(STM32F2) || defined(STM32F3) || defined(STM32F4) || defined(STM32F7) || defined(STM32L0) || defined(STM32L4)
+#define HAL_TIM_SlaveConfigSynchronization HAL_TIM_SlaveConfigSynchro
+#define HAL_TIM_SlaveConfigSynchronization_IT HAL_TIM_SlaveConfigSynchro_IT
+#define HAL_TIMEx_CommutationCallback HAL_TIMEx_CommutCallback
+#define HAL_TIMEx_ConfigCommutationEvent HAL_TIMEx_ConfigCommutEvent
+#define HAL_TIMEx_ConfigCommutationEvent_IT HAL_TIMEx_ConfigCommutEvent_IT
+#define HAL_TIMEx_ConfigCommutationEvent_DMA HAL_TIMEx_ConfigCommutEvent_DMA
+#endif /* STM32H7 || STM32G0 || STM32F0 || STM32F1 || STM32F2 || STM32F3 || STM32F4 || STM32F7 || STM32L0 */
+/**
+ * @}
+ */
+
+/** @defgroup HAL_UART_Aliased_Functions HAL UART Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#define HAL_UART_WakeupCallback HAL_UARTEx_WakeupCallback
+/**
+ * @}
+ */
+
+/** @defgroup HAL_LTDC_Aliased_Functions HAL LTDC Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#define HAL_LTDC_LineEvenCallback HAL_LTDC_LineEventCallback
+#define HAL_LTDC_Relaod HAL_LTDC_Reload
+#define HAL_LTDC_StructInitFromVideoConfig HAL_LTDCEx_StructInitFromVideoConfig
+#define HAL_LTDC_StructInitFromAdaptedCommandConfig HAL_LTDCEx_StructInitFromAdaptedCommandConfig
+/**
+ * @}
+ */
+
+/** @defgroup HAL_PPP_Aliased_Functions HAL PPP Aliased Functions maintained for legacy purpose
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macros ------------------------------------------------------------*/
+
+/** @defgroup HAL_AES_Aliased_Macros HAL CRYP Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define AES_IT_CC CRYP_IT_CC
+#define AES_IT_ERR CRYP_IT_ERR
+#define AES_FLAG_CCF CRYP_FLAG_CCF
+/**
+ * @}
+ */
+
+/** @defgroup HAL_Aliased_Macros HAL Generic Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define __HAL_GET_BOOT_MODE __HAL_SYSCFG_GET_BOOT_MODE
+#define __HAL_REMAPMEMORY_FLASH __HAL_SYSCFG_REMAPMEMORY_FLASH
+#define __HAL_REMAPMEMORY_SYSTEMFLASH __HAL_SYSCFG_REMAPMEMORY_SYSTEMFLASH
+#define __HAL_REMAPMEMORY_SRAM __HAL_SYSCFG_REMAPMEMORY_SRAM
+#define __HAL_REMAPMEMORY_FMC __HAL_SYSCFG_REMAPMEMORY_FMC
+#define __HAL_REMAPMEMORY_FMC_SDRAM __HAL_SYSCFG_REMAPMEMORY_FMC_SDRAM
+#define __HAL_REMAPMEMORY_FSMC __HAL_SYSCFG_REMAPMEMORY_FSMC
+#define __HAL_REMAPMEMORY_QUADSPI __HAL_SYSCFG_REMAPMEMORY_QUADSPI
+#define __HAL_FMC_BANK __HAL_SYSCFG_FMC_BANK
+#define __HAL_GET_FLAG __HAL_SYSCFG_GET_FLAG
+#define __HAL_CLEAR_FLAG __HAL_SYSCFG_CLEAR_FLAG
+#define __HAL_VREFINT_OUT_ENABLE __HAL_SYSCFG_VREFINT_OUT_ENABLE
+#define __HAL_VREFINT_OUT_DISABLE __HAL_SYSCFG_VREFINT_OUT_DISABLE
+#define __HAL_SYSCFG_SRAM2_WRP_ENABLE __HAL_SYSCFG_SRAM2_WRP_0_31_ENABLE
+
+#define SYSCFG_FLAG_VREF_READY SYSCFG_FLAG_VREFINT_READY
+#define SYSCFG_FLAG_RC48 RCC_FLAG_HSI48
+#define IS_SYSCFG_FASTMODEPLUS_CONFIG IS_I2C_FASTMODEPLUS
+#define UFB_MODE_BitNumber UFB_MODE_BIT_NUMBER
+#define CMP_PD_BitNumber CMP_PD_BIT_NUMBER
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_ADC_Aliased_Macros HAL ADC Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define __ADC_ENABLE __HAL_ADC_ENABLE
+#define __ADC_DISABLE __HAL_ADC_DISABLE
+#define __HAL_ADC_ENABLING_CONDITIONS ADC_ENABLING_CONDITIONS
+#define __HAL_ADC_DISABLING_CONDITIONS ADC_DISABLING_CONDITIONS
+#define __HAL_ADC_IS_ENABLED ADC_IS_ENABLE
+#define __ADC_IS_ENABLED ADC_IS_ENABLE
+#define __HAL_ADC_IS_SOFTWARE_START_REGULAR ADC_IS_SOFTWARE_START_REGULAR
+#define __HAL_ADC_IS_SOFTWARE_START_INJECTED ADC_IS_SOFTWARE_START_INJECTED
+#define __HAL_ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED
+#define __HAL_ADC_IS_CONVERSION_ONGOING_REGULAR ADC_IS_CONVERSION_ONGOING_REGULAR
+#define __HAL_ADC_IS_CONVERSION_ONGOING_INJECTED ADC_IS_CONVERSION_ONGOING_INJECTED
+#define __HAL_ADC_IS_CONVERSION_ONGOING ADC_IS_CONVERSION_ONGOING
+#define __HAL_ADC_CLEAR_ERRORCODE ADC_CLEAR_ERRORCODE
+
+#define __HAL_ADC_GET_RESOLUTION ADC_GET_RESOLUTION
+#define __HAL_ADC_JSQR_RK ADC_JSQR_RK
+#define __HAL_ADC_CFGR_AWD1CH ADC_CFGR_AWD1CH_SHIFT
+#define __HAL_ADC_CFGR_AWD23CR ADC_CFGR_AWD23CR
+#define __HAL_ADC_CFGR_INJECT_AUTO_CONVERSION ADC_CFGR_INJECT_AUTO_CONVERSION
+#define __HAL_ADC_CFGR_INJECT_CONTEXT_QUEUE ADC_CFGR_INJECT_CONTEXT_QUEUE
+#define __HAL_ADC_CFGR_INJECT_DISCCONTINUOUS ADC_CFGR_INJECT_DISCCONTINUOUS
+#define __HAL_ADC_CFGR_REG_DISCCONTINUOUS ADC_CFGR_REG_DISCCONTINUOUS
+#define __HAL_ADC_CFGR_DISCONTINUOUS_NUM ADC_CFGR_DISCONTINUOUS_NUM
+#define __HAL_ADC_CFGR_AUTOWAIT ADC_CFGR_AUTOWAIT
+#define __HAL_ADC_CFGR_CONTINUOUS ADC_CFGR_CONTINUOUS
+#define __HAL_ADC_CFGR_OVERRUN ADC_CFGR_OVERRUN
+#define __HAL_ADC_CFGR_DMACONTREQ ADC_CFGR_DMACONTREQ
+#define __HAL_ADC_CFGR_EXTSEL ADC_CFGR_EXTSEL_SET
+#define __HAL_ADC_JSQR_JEXTSEL ADC_JSQR_JEXTSEL_SET
+#define __HAL_ADC_OFR_CHANNEL ADC_OFR_CHANNEL
+#define __HAL_ADC_DIFSEL_CHANNEL ADC_DIFSEL_CHANNEL
+#define __HAL_ADC_CALFACT_DIFF_SET ADC_CALFACT_DIFF_SET
+#define __HAL_ADC_CALFACT_DIFF_GET ADC_CALFACT_DIFF_GET
+#define __HAL_ADC_TRX_HIGHTHRESHOLD ADC_TRX_HIGHTHRESHOLD
+
+#define __HAL_ADC_OFFSET_SHIFT_RESOLUTION ADC_OFFSET_SHIFT_RESOLUTION
+#define __HAL_ADC_AWD1THRESHOLD_SHIFT_RESOLUTION ADC_AWD1THRESHOLD_SHIFT_RESOLUTION
+#define __HAL_ADC_AWD23THRESHOLD_SHIFT_RESOLUTION ADC_AWD23THRESHOLD_SHIFT_RESOLUTION
+#define __HAL_ADC_COMMON_REGISTER ADC_COMMON_REGISTER
+#define __HAL_ADC_COMMON_CCR_MULTI ADC_COMMON_CCR_MULTI
+#define __HAL_ADC_MULTIMODE_IS_ENABLED ADC_MULTIMODE_IS_ENABLE
+#define __ADC_MULTIMODE_IS_ENABLED ADC_MULTIMODE_IS_ENABLE
+#define __HAL_ADC_NONMULTIMODE_OR_MULTIMODEMASTER ADC_NONMULTIMODE_OR_MULTIMODEMASTER
+#define __HAL_ADC_COMMON_ADC_OTHER ADC_COMMON_ADC_OTHER
+#define __HAL_ADC_MULTI_SLAVE ADC_MULTI_SLAVE
+
+#define __HAL_ADC_SQR1_L ADC_SQR1_L_SHIFT
+#define __HAL_ADC_JSQR_JL ADC_JSQR_JL_SHIFT
+#define __HAL_ADC_JSQR_RK_JL ADC_JSQR_RK_JL
+#define __HAL_ADC_CR1_DISCONTINUOUS_NUM ADC_CR1_DISCONTINUOUS_NUM
+#define __HAL_ADC_CR1_SCAN ADC_CR1_SCAN_SET
+#define __HAL_ADC_CONVCYCLES_MAX_RANGE ADC_CONVCYCLES_MAX_RANGE
+#define __HAL_ADC_CLOCK_PRESCALER_RANGE ADC_CLOCK_PRESCALER_RANGE
+#define __HAL_ADC_GET_CLOCK_PRESCALER ADC_GET_CLOCK_PRESCALER
+
+#define __HAL_ADC_SQR1 ADC_SQR1
+#define __HAL_ADC_SMPR1 ADC_SMPR1
+#define __HAL_ADC_SMPR2 ADC_SMPR2
+#define __HAL_ADC_SQR3_RK ADC_SQR3_RK
+#define __HAL_ADC_SQR2_RK ADC_SQR2_RK
+#define __HAL_ADC_SQR1_RK ADC_SQR1_RK
+#define __HAL_ADC_CR2_CONTINUOUS ADC_CR2_CONTINUOUS
+#define __HAL_ADC_CR1_DISCONTINUOUS ADC_CR1_DISCONTINUOUS
+#define __HAL_ADC_CR1_SCANCONV ADC_CR1_SCANCONV
+#define __HAL_ADC_CR2_EOCSelection ADC_CR2_EOCSelection
+#define __HAL_ADC_CR2_DMAContReq ADC_CR2_DMAContReq
+#define __HAL_ADC_JSQR ADC_JSQR
+
+#define __HAL_ADC_CHSELR_CHANNEL ADC_CHSELR_CHANNEL
+#define __HAL_ADC_CFGR1_REG_DISCCONTINUOUS ADC_CFGR1_REG_DISCCONTINUOUS
+#define __HAL_ADC_CFGR1_AUTOOFF ADC_CFGR1_AUTOOFF
+#define __HAL_ADC_CFGR1_AUTOWAIT ADC_CFGR1_AUTOWAIT
+#define __HAL_ADC_CFGR1_CONTINUOUS ADC_CFGR1_CONTINUOUS
+#define __HAL_ADC_CFGR1_OVERRUN ADC_CFGR1_OVERRUN
+#define __HAL_ADC_CFGR1_SCANDIR ADC_CFGR1_SCANDIR
+#define __HAL_ADC_CFGR1_DMACONTREQ ADC_CFGR1_DMACONTREQ
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_DAC_Aliased_Macros HAL DAC Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define __HAL_DHR12R1_ALIGNEMENT DAC_DHR12R1_ALIGNMENT
+#define __HAL_DHR12R2_ALIGNEMENT DAC_DHR12R2_ALIGNMENT
+#define __HAL_DHR12RD_ALIGNEMENT DAC_DHR12RD_ALIGNMENT
+#define IS_DAC_GENERATE_WAVE IS_DAC_WAVE
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_DBGMCU_Aliased_Macros HAL DBGMCU Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define __HAL_FREEZE_TIM1_DBGMCU __HAL_DBGMCU_FREEZE_TIM1
+#define __HAL_UNFREEZE_TIM1_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM1
+#define __HAL_FREEZE_TIM2_DBGMCU __HAL_DBGMCU_FREEZE_TIM2
+#define __HAL_UNFREEZE_TIM2_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM2
+#define __HAL_FREEZE_TIM3_DBGMCU __HAL_DBGMCU_FREEZE_TIM3
+#define __HAL_UNFREEZE_TIM3_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM3
+#define __HAL_FREEZE_TIM4_DBGMCU __HAL_DBGMCU_FREEZE_TIM4
+#define __HAL_UNFREEZE_TIM4_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM4
+#define __HAL_FREEZE_TIM5_DBGMCU __HAL_DBGMCU_FREEZE_TIM5
+#define __HAL_UNFREEZE_TIM5_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM5
+#define __HAL_FREEZE_TIM6_DBGMCU __HAL_DBGMCU_FREEZE_TIM6
+#define __HAL_UNFREEZE_TIM6_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM6
+#define __HAL_FREEZE_TIM7_DBGMCU __HAL_DBGMCU_FREEZE_TIM7
+#define __HAL_UNFREEZE_TIM7_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM7
+#define __HAL_FREEZE_TIM8_DBGMCU __HAL_DBGMCU_FREEZE_TIM8
+#define __HAL_UNFREEZE_TIM8_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM8
+
+#define __HAL_FREEZE_TIM9_DBGMCU __HAL_DBGMCU_FREEZE_TIM9
+#define __HAL_UNFREEZE_TIM9_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM9
+#define __HAL_FREEZE_TIM10_DBGMCU __HAL_DBGMCU_FREEZE_TIM10
+#define __HAL_UNFREEZE_TIM10_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM10
+#define __HAL_FREEZE_TIM11_DBGMCU __HAL_DBGMCU_FREEZE_TIM11
+#define __HAL_UNFREEZE_TIM11_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM11
+#define __HAL_FREEZE_TIM12_DBGMCU __HAL_DBGMCU_FREEZE_TIM12
+#define __HAL_UNFREEZE_TIM12_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM12
+#define __HAL_FREEZE_TIM13_DBGMCU __HAL_DBGMCU_FREEZE_TIM13
+#define __HAL_UNFREEZE_TIM13_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM13
+#define __HAL_FREEZE_TIM14_DBGMCU __HAL_DBGMCU_FREEZE_TIM14
+#define __HAL_UNFREEZE_TIM14_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM14
+#define __HAL_FREEZE_CAN2_DBGMCU __HAL_DBGMCU_FREEZE_CAN2
+#define __HAL_UNFREEZE_CAN2_DBGMCU __HAL_DBGMCU_UNFREEZE_CAN2
+
+#define __HAL_FREEZE_TIM15_DBGMCU __HAL_DBGMCU_FREEZE_TIM15
+#define __HAL_UNFREEZE_TIM15_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM15
+#define __HAL_FREEZE_TIM16_DBGMCU __HAL_DBGMCU_FREEZE_TIM16
+#define __HAL_UNFREEZE_TIM16_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM16
+#define __HAL_FREEZE_TIM17_DBGMCU __HAL_DBGMCU_FREEZE_TIM17
+#define __HAL_UNFREEZE_TIM17_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM17
+#define __HAL_FREEZE_RTC_DBGMCU __HAL_DBGMCU_FREEZE_RTC
+#define __HAL_UNFREEZE_RTC_DBGMCU __HAL_DBGMCU_UNFREEZE_RTC
+#if defined(STM32H7)
+#define __HAL_FREEZE_WWDG_DBGMCU __HAL_DBGMCU_FREEZE_WWDG1
+#define __HAL_UNFREEZE_WWDG_DBGMCU __HAL_DBGMCU_UnFreeze_WWDG1
+#define __HAL_FREEZE_IWDG_DBGMCU __HAL_DBGMCU_FREEZE_IWDG1
+#define __HAL_UNFREEZE_IWDG_DBGMCU __HAL_DBGMCU_UnFreeze_IWDG1
+#else
+#define __HAL_FREEZE_WWDG_DBGMCU __HAL_DBGMCU_FREEZE_WWDG
+#define __HAL_UNFREEZE_WWDG_DBGMCU __HAL_DBGMCU_UNFREEZE_WWDG
+#define __HAL_FREEZE_IWDG_DBGMCU __HAL_DBGMCU_FREEZE_IWDG
+#define __HAL_UNFREEZE_IWDG_DBGMCU __HAL_DBGMCU_UNFREEZE_IWDG
+#endif /* STM32H7 */
+#define __HAL_FREEZE_I2C1_TIMEOUT_DBGMCU __HAL_DBGMCU_FREEZE_I2C1_TIMEOUT
+#define __HAL_UNFREEZE_I2C1_TIMEOUT_DBGMCU __HAL_DBGMCU_UNFREEZE_I2C1_TIMEOUT
+#define __HAL_FREEZE_I2C2_TIMEOUT_DBGMCU __HAL_DBGMCU_FREEZE_I2C2_TIMEOUT
+#define __HAL_UNFREEZE_I2C2_TIMEOUT_DBGMCU __HAL_DBGMCU_UNFREEZE_I2C2_TIMEOUT
+#define __HAL_FREEZE_I2C3_TIMEOUT_DBGMCU __HAL_DBGMCU_FREEZE_I2C3_TIMEOUT
+#define __HAL_UNFREEZE_I2C3_TIMEOUT_DBGMCU __HAL_DBGMCU_UNFREEZE_I2C3_TIMEOUT
+#define __HAL_FREEZE_CAN1_DBGMCU __HAL_DBGMCU_FREEZE_CAN1
+#define __HAL_UNFREEZE_CAN1_DBGMCU __HAL_DBGMCU_UNFREEZE_CAN1
+#define __HAL_FREEZE_LPTIM1_DBGMCU __HAL_DBGMCU_FREEZE_LPTIM1
+#define __HAL_UNFREEZE_LPTIM1_DBGMCU __HAL_DBGMCU_UNFREEZE_LPTIM1
+#define __HAL_FREEZE_LPTIM2_DBGMCU __HAL_DBGMCU_FREEZE_LPTIM2
+#define __HAL_UNFREEZE_LPTIM2_DBGMCU __HAL_DBGMCU_UNFREEZE_LPTIM2
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_COMP_Aliased_Macros HAL COMP Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#if defined(STM32F3)
+#define COMP_START __HAL_COMP_ENABLE
+#define COMP_STOP __HAL_COMP_DISABLE
+#define COMP_LOCK __HAL_COMP_LOCK
+
+#if defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx) || defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx)
+#define __HAL_COMP_EXTI_RISING_IT_ENABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_RISING_EDGE() : __HAL_COMP_COMP6_EXTI_ENABLE_RISING_EDGE())
+#define __HAL_COMP_EXTI_RISING_IT_DISABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_RISING_EDGE() : __HAL_COMP_COMP6_EXTI_DISABLE_RISING_EDGE())
+#define __HAL_COMP_EXTI_FALLING_IT_ENABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_FALLING_EDGE() : __HAL_COMP_COMP6_EXTI_ENABLE_FALLING_EDGE())
+#define __HAL_COMP_EXTI_FALLING_IT_DISABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_FALLING_EDGE() : __HAL_COMP_COMP6_EXTI_DISABLE_FALLING_EDGE())
+#define __HAL_COMP_EXTI_ENABLE_IT(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_IT() : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_IT() : __HAL_COMP_COMP6_EXTI_ENABLE_IT())
+#define __HAL_COMP_EXTI_DISABLE_IT(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_IT() : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_IT() : __HAL_COMP_COMP6_EXTI_DISABLE_IT())
+#define __HAL_COMP_EXTI_GET_FLAG(__FLAG__) \
+ (((__FLAG__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_GET_FLAG() : ((__FLAG__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_GET_FLAG() : __HAL_COMP_COMP6_EXTI_GET_FLAG())
+#define __HAL_COMP_EXTI_CLEAR_FLAG(__FLAG__) \
+ (((__FLAG__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_CLEAR_FLAG() : ((__FLAG__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_CLEAR_FLAG() : __HAL_COMP_COMP6_EXTI_CLEAR_FLAG())
+#endif
+#if defined(STM32F302xE) || defined(STM32F302xC)
+#define __HAL_COMP_EXTI_RISING_IT_ENABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_ENABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_RISING_EDGE() : __HAL_COMP_COMP6_EXTI_ENABLE_RISING_EDGE())
+#define __HAL_COMP_EXTI_RISING_IT_DISABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_DISABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_RISING_EDGE() : __HAL_COMP_COMP6_EXTI_DISABLE_RISING_EDGE())
+#define __HAL_COMP_EXTI_FALLING_IT_ENABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_ENABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_FALLING_EDGE() : __HAL_COMP_COMP6_EXTI_ENABLE_FALLING_EDGE())
+#define __HAL_COMP_EXTI_FALLING_IT_DISABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_DISABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_FALLING_EDGE() : __HAL_COMP_COMP6_EXTI_DISABLE_FALLING_EDGE())
+#define __HAL_COMP_EXTI_ENABLE_IT(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_ENABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_IT() : __HAL_COMP_COMP6_EXTI_ENABLE_IT())
+#define __HAL_COMP_EXTI_DISABLE_IT(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_DISABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_IT() : __HAL_COMP_COMP6_EXTI_DISABLE_IT())
+#define __HAL_COMP_EXTI_GET_FLAG(__FLAG__) \
+ (((__FLAG__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_GET_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_GET_FLAG() : ((__FLAG__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_GET_FLAG() : __HAL_COMP_COMP6_EXTI_GET_FLAG())
+#define __HAL_COMP_EXTI_CLEAR_FLAG(__FLAG__) \
+ (((__FLAG__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_CLEAR_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_CLEAR_FLAG() : ((__FLAG__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_CLEAR_FLAG() : __HAL_COMP_COMP6_EXTI_CLEAR_FLAG())
+#endif
+#if defined(STM32F303xE) || defined(STM32F398xx) || defined(STM32F303xC) || defined(STM32F358xx)
+#define __HAL_COMP_EXTI_RISING_IT_ENABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_ENABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) \
+ ? __HAL_COMP_COMP2_EXTI_ENABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) \
+ ? __HAL_COMP_COMP3_EXTI_ENABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_ENABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_ENABLE_RISING_EDGE() \
+ : __HAL_COMP_COMP7_EXTI_ENABLE_RISING_EDGE())
+#define __HAL_COMP_EXTI_RISING_IT_DISABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_DISABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) \
+ ? __HAL_COMP_COMP2_EXTI_DISABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) \
+ ? __HAL_COMP_COMP3_EXTI_DISABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_DISABLE_RISING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_DISABLE_RISING_EDGE() \
+ : __HAL_COMP_COMP7_EXTI_DISABLE_RISING_EDGE())
+#define __HAL_COMP_EXTI_FALLING_IT_ENABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_ENABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) \
+ ? __HAL_COMP_COMP2_EXTI_ENABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) \
+ ? __HAL_COMP_COMP3_EXTI_ENABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_ENABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_ENABLE_FALLING_EDGE() \
+ : __HAL_COMP_COMP7_EXTI_ENABLE_FALLING_EDGE())
+#define __HAL_COMP_EXTI_FALLING_IT_DISABLE(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_DISABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) \
+ ? __HAL_COMP_COMP2_EXTI_DISABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) \
+ ? __HAL_COMP_COMP3_EXTI_DISABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_DISABLE_FALLING_EDGE() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_DISABLE_FALLING_EDGE() \
+ : __HAL_COMP_COMP7_EXTI_DISABLE_FALLING_EDGE())
+#define __HAL_COMP_EXTI_ENABLE_IT(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_ENABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) \
+ ? __HAL_COMP_COMP2_EXTI_ENABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) \
+ ? __HAL_COMP_COMP3_EXTI_ENABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) \
+ ? __HAL_COMP_COMP4_EXTI_ENABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_ENABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_ENABLE_IT() : __HAL_COMP_COMP7_EXTI_ENABLE_IT())
+#define __HAL_COMP_EXTI_DISABLE_IT(__EXTILINE__) \
+ (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_DISABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) \
+ ? __HAL_COMP_COMP2_EXTI_DISABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) \
+ ? __HAL_COMP_COMP3_EXTI_DISABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) \
+ ? __HAL_COMP_COMP4_EXTI_DISABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_DISABLE_IT() \
+ : ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_DISABLE_IT() : __HAL_COMP_COMP7_EXTI_DISABLE_IT())
+#define __HAL_COMP_EXTI_GET_FLAG(__FLAG__) \
+ (((__FLAG__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_GET_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP2) \
+ ? __HAL_COMP_COMP2_EXTI_GET_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP3) \
+ ? __HAL_COMP_COMP3_EXTI_GET_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP4) \
+ ? __HAL_COMP_COMP4_EXTI_GET_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_GET_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_GET_FLAG() : __HAL_COMP_COMP7_EXTI_GET_FLAG())
+#define __HAL_COMP_EXTI_CLEAR_FLAG(__FLAG__) \
+ (((__FLAG__) == COMP_EXTI_LINE_COMP1) \
+ ? __HAL_COMP_COMP1_EXTI_CLEAR_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP2) \
+ ? __HAL_COMP_COMP2_EXTI_CLEAR_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP3) \
+ ? __HAL_COMP_COMP3_EXTI_CLEAR_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP4) \
+ ? __HAL_COMP_COMP4_EXTI_CLEAR_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_CLEAR_FLAG() \
+ : ((__FLAG__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_CLEAR_FLAG() : __HAL_COMP_COMP7_EXTI_CLEAR_FLAG())
+#endif
+#if defined(STM32F373xC) || defined(STM32F378xx)
+#define __HAL_COMP_EXTI_RISING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_RISING_EDGE() : __HAL_COMP_COMP2_EXTI_ENABLE_RISING_EDGE())
+#define __HAL_COMP_EXTI_RISING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_RISING_EDGE() : __HAL_COMP_COMP2_EXTI_DISABLE_RISING_EDGE())
+#define __HAL_COMP_EXTI_FALLING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_FALLING_EDGE() : __HAL_COMP_COMP2_EXTI_ENABLE_FALLING_EDGE())
+#define __HAL_COMP_EXTI_FALLING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_FALLING_EDGE() : __HAL_COMP_COMP2_EXTI_DISABLE_FALLING_EDGE())
+#define __HAL_COMP_EXTI_ENABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_IT() : __HAL_COMP_COMP2_EXTI_ENABLE_IT())
+#define __HAL_COMP_EXTI_DISABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_IT() : __HAL_COMP_COMP2_EXTI_DISABLE_IT())
+#define __HAL_COMP_EXTI_GET_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_GET_FLAG() : __HAL_COMP_COMP2_EXTI_GET_FLAG())
+#define __HAL_COMP_EXTI_CLEAR_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_CLEAR_FLAG() : __HAL_COMP_COMP2_EXTI_CLEAR_FLAG())
+#endif
+#else
+#define __HAL_COMP_EXTI_RISING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_RISING_EDGE() : __HAL_COMP_COMP2_EXTI_ENABLE_RISING_EDGE())
+#define __HAL_COMP_EXTI_RISING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_RISING_EDGE() : __HAL_COMP_COMP2_EXTI_DISABLE_RISING_EDGE())
+#define __HAL_COMP_EXTI_FALLING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_FALLING_EDGE() : __HAL_COMP_COMP2_EXTI_ENABLE_FALLING_EDGE())
+#define __HAL_COMP_EXTI_FALLING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_FALLING_EDGE() : __HAL_COMP_COMP2_EXTI_DISABLE_FALLING_EDGE())
+#define __HAL_COMP_EXTI_ENABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_IT() : __HAL_COMP_COMP2_EXTI_ENABLE_IT())
+#define __HAL_COMP_EXTI_DISABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_IT() : __HAL_COMP_COMP2_EXTI_DISABLE_IT())
+#define __HAL_COMP_EXTI_GET_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_GET_FLAG() : __HAL_COMP_COMP2_EXTI_GET_FLAG())
+#define __HAL_COMP_EXTI_CLEAR_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_CLEAR_FLAG() : __HAL_COMP_COMP2_EXTI_CLEAR_FLAG())
+#endif
+
+#define __HAL_COMP_GET_EXTI_LINE COMP_GET_EXTI_LINE
+
+#if defined(STM32L0) || defined(STM32L4)
+/* Note: On these STM32 families, the only argument of this macro */
+/* is COMP_FLAG_LOCK. */
+/* This macro is replaced by __HAL_COMP_IS_LOCKED with only HAL handle */
+/* argument. */
+#define __HAL_COMP_GET_FLAG(__HANDLE__, __FLAG__) (__HAL_COMP_IS_LOCKED(__HANDLE__))
+#endif
+/**
+ * @}
+ */
+
+#if defined(STM32L0) || defined(STM32L4)
+/** @defgroup HAL_COMP_Aliased_Functions HAL COMP Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#define HAL_COMP_Start_IT HAL_COMP_Start /* Function considered as legacy as EXTI event or IT configuration is done into HAL_COMP_Init() */
+#define HAL_COMP_Stop_IT HAL_COMP_Stop /* Function considered as legacy as EXTI event or IT configuration is done into HAL_COMP_Init() */
+/**
+ * @}
+ */
+#endif
+
+/** @defgroup HAL_DAC_Aliased_Macros HAL DAC Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define IS_DAC_WAVE(WAVE) (((WAVE) == DAC_WAVE_NONE) || ((WAVE) == DAC_WAVE_NOISE) || ((WAVE) == DAC_WAVE_TRIANGLE))
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_FLASH_Aliased_Macros HAL FLASH Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define IS_WRPAREA IS_OB_WRPAREA
+#define IS_TYPEPROGRAM IS_FLASH_TYPEPROGRAM
+#define IS_TYPEPROGRAMFLASH IS_FLASH_TYPEPROGRAM
+#define IS_TYPEERASE IS_FLASH_TYPEERASE
+#define IS_NBSECTORS IS_FLASH_NBSECTORS
+#define IS_OB_WDG_SOURCE IS_OB_IWDG_SOURCE
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_I2C_Aliased_Macros HAL I2C Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define __HAL_I2C_RESET_CR2 I2C_RESET_CR2
+#define __HAL_I2C_GENERATE_START I2C_GENERATE_START
+#if defined(STM32F1)
+#define __HAL_I2C_FREQ_RANGE I2C_FREQRANGE
+#else
+#define __HAL_I2C_FREQ_RANGE I2C_FREQ_RANGE
+#endif /* STM32F1 */
+#define __HAL_I2C_RISE_TIME I2C_RISE_TIME
+#define __HAL_I2C_SPEED_STANDARD I2C_SPEED_STANDARD
+#define __HAL_I2C_SPEED_FAST I2C_SPEED_FAST
+#define __HAL_I2C_SPEED I2C_SPEED
+#define __HAL_I2C_7BIT_ADD_WRITE I2C_7BIT_ADD_WRITE
+#define __HAL_I2C_7BIT_ADD_READ I2C_7BIT_ADD_READ
+#define __HAL_I2C_10BIT_ADDRESS I2C_10BIT_ADDRESS
+#define __HAL_I2C_10BIT_HEADER_WRITE I2C_10BIT_HEADER_WRITE
+#define __HAL_I2C_10BIT_HEADER_READ I2C_10BIT_HEADER_READ
+#define __HAL_I2C_MEM_ADD_MSB I2C_MEM_ADD_MSB
+#define __HAL_I2C_MEM_ADD_LSB I2C_MEM_ADD_LSB
+#define __HAL_I2C_FREQRANGE I2C_FREQRANGE
+/**
+ * @}
+ */
+
+/** @defgroup HAL_I2S_Aliased_Macros HAL I2S Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define IS_I2S_INSTANCE IS_I2S_ALL_INSTANCE
+#define IS_I2S_INSTANCE_EXT IS_I2S_ALL_INSTANCE_EXT
+
+#if defined(STM32H7)
+#define __HAL_I2S_CLEAR_FREFLAG __HAL_I2S_CLEAR_TIFREFLAG
+#endif
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_IRDA_Aliased_Macros HAL IRDA Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define __IRDA_DISABLE __HAL_IRDA_DISABLE
+#define __IRDA_ENABLE __HAL_IRDA_ENABLE
+
+#define __HAL_IRDA_GETCLOCKSOURCE IRDA_GETCLOCKSOURCE
+#define __HAL_IRDA_MASK_COMPUTATION IRDA_MASK_COMPUTATION
+#define __IRDA_GETCLOCKSOURCE IRDA_GETCLOCKSOURCE
+#define __IRDA_MASK_COMPUTATION IRDA_MASK_COMPUTATION
+
+#define IS_IRDA_ONEBIT_SAMPLE IS_IRDA_ONE_BIT_SAMPLE
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_IWDG_Aliased_Macros HAL IWDG Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define __HAL_IWDG_ENABLE_WRITE_ACCESS IWDG_ENABLE_WRITE_ACCESS
+#define __HAL_IWDG_DISABLE_WRITE_ACCESS IWDG_DISABLE_WRITE_ACCESS
+/**
+ * @}
+ */
+
+/** @defgroup HAL_LPTIM_Aliased_Macros HAL LPTIM Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define __HAL_LPTIM_ENABLE_INTERRUPT __HAL_LPTIM_ENABLE_IT
+#define __HAL_LPTIM_DISABLE_INTERRUPT __HAL_LPTIM_DISABLE_IT
+#define __HAL_LPTIM_GET_ITSTATUS __HAL_LPTIM_GET_IT_SOURCE
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_OPAMP_Aliased_Macros HAL OPAMP Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define __OPAMP_CSR_OPAXPD OPAMP_CSR_OPAXPD
+#define __OPAMP_CSR_S3SELX OPAMP_CSR_S3SELX
+#define __OPAMP_CSR_S4SELX OPAMP_CSR_S4SELX
+#define __OPAMP_CSR_S5SELX OPAMP_CSR_S5SELX
+#define __OPAMP_CSR_S6SELX OPAMP_CSR_S6SELX
+#define __OPAMP_CSR_OPAXCAL_L OPAMP_CSR_OPAXCAL_L
+#define __OPAMP_CSR_OPAXCAL_H OPAMP_CSR_OPAXCAL_H
+#define __OPAMP_CSR_OPAXLPM OPAMP_CSR_OPAXLPM
+#define __OPAMP_CSR_ALL_SWITCHES OPAMP_CSR_ALL_SWITCHES
+#define __OPAMP_CSR_ANAWSELX OPAMP_CSR_ANAWSELX
+#define __OPAMP_CSR_OPAXCALOUT OPAMP_CSR_OPAXCALOUT
+#define __OPAMP_OFFSET_TRIM_BITSPOSITION OPAMP_OFFSET_TRIM_BITSPOSITION
+#define __OPAMP_OFFSET_TRIM_SET OPAMP_OFFSET_TRIM_SET
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_PWR_Aliased_Macros HAL PWR Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define __HAL_PVD_EVENT_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_EVENT
+#define __HAL_PVD_EVENT_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_EVENT
+#define __HAL_PVD_EXTI_FALLINGTRIGGER_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE
+#define __HAL_PVD_EXTI_FALLINGTRIGGER_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE
+#define __HAL_PVD_EXTI_RISINGTRIGGER_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE
+#define __HAL_PVD_EXTI_RISINGTRIGGER_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE
+#define __HAL_PVM_EVENT_DISABLE __HAL_PWR_PVM_EVENT_DISABLE
+#define __HAL_PVM_EVENT_ENABLE __HAL_PWR_PVM_EVENT_ENABLE
+#define __HAL_PVM_EXTI_FALLINGTRIGGER_DISABLE __HAL_PWR_PVM_EXTI_FALLINGTRIGGER_DISABLE
+#define __HAL_PVM_EXTI_FALLINGTRIGGER_ENABLE __HAL_PWR_PVM_EXTI_FALLINGTRIGGER_ENABLE
+#define __HAL_PVM_EXTI_RISINGTRIGGER_DISABLE __HAL_PWR_PVM_EXTI_RISINGTRIGGER_DISABLE
+#define __HAL_PVM_EXTI_RISINGTRIGGER_ENABLE __HAL_PWR_PVM_EXTI_RISINGTRIGGER_ENABLE
+#define __HAL_PWR_INTERNALWAKEUP_DISABLE HAL_PWREx_DisableInternalWakeUpLine
+#define __HAL_PWR_INTERNALWAKEUP_ENABLE HAL_PWREx_EnableInternalWakeUpLine
+#define __HAL_PWR_PULL_UP_DOWN_CONFIG_DISABLE HAL_PWREx_DisablePullUpPullDownConfig
+#define __HAL_PWR_PULL_UP_DOWN_CONFIG_ENABLE HAL_PWREx_EnablePullUpPullDownConfig
+#define __HAL_PWR_PVD_EXTI_CLEAR_EGDE_TRIGGER() \
+ do { \
+ __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE(); \
+ __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE(); \
+ } while (0)
+#define __HAL_PWR_PVD_EXTI_EVENT_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_EVENT
+#define __HAL_PWR_PVD_EXTI_EVENT_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_EVENT
+#define __HAL_PWR_PVD_EXTI_FALLINGTRIGGER_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE
+#define __HAL_PWR_PVD_EXTI_FALLINGTRIGGER_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE
+#define __HAL_PWR_PVD_EXTI_RISINGTRIGGER_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE
+#define __HAL_PWR_PVD_EXTI_RISINGTRIGGER_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE
+#define __HAL_PWR_PVD_EXTI_SET_FALLING_EGDE_TRIGGER __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE
+#define __HAL_PWR_PVD_EXTI_SET_RISING_EDGE_TRIGGER __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE
+#define __HAL_PWR_PVM_DISABLE() \
+ do { \
+ HAL_PWREx_DisablePVM1(); \
+ HAL_PWREx_DisablePVM2(); \
+ HAL_PWREx_DisablePVM3(); \
+ HAL_PWREx_DisablePVM4(); \
+ } while (0)
+#define __HAL_PWR_PVM_ENABLE() \
+ do { \
+ HAL_PWREx_EnablePVM1(); \
+ HAL_PWREx_EnablePVM2(); \
+ HAL_PWREx_EnablePVM3(); \
+ HAL_PWREx_EnablePVM4(); \
+ } while (0)
+#define __HAL_PWR_SRAM2CONTENT_PRESERVE_DISABLE HAL_PWREx_DisableSRAM2ContentRetention
+#define __HAL_PWR_SRAM2CONTENT_PRESERVE_ENABLE HAL_PWREx_EnableSRAM2ContentRetention
+#define __HAL_PWR_VDDIO2_DISABLE HAL_PWREx_DisableVddIO2
+#define __HAL_PWR_VDDIO2_ENABLE HAL_PWREx_EnableVddIO2
+#define __HAL_PWR_VDDIO2_EXTI_CLEAR_EGDE_TRIGGER __HAL_PWR_VDDIO2_EXTI_DISABLE_FALLING_EDGE
+#define __HAL_PWR_VDDIO2_EXTI_SET_FALLING_EGDE_TRIGGER __HAL_PWR_VDDIO2_EXTI_ENABLE_FALLING_EDGE
+#define __HAL_PWR_VDDUSB_DISABLE HAL_PWREx_DisableVddUSB
+#define __HAL_PWR_VDDUSB_ENABLE HAL_PWREx_EnableVddUSB
+
+#if defined(STM32F4)
+#define __HAL_PVD_EXTI_ENABLE_IT(PWR_EXTI_LINE_PVD) __HAL_PWR_PVD_EXTI_ENABLE_IT()
+#define __HAL_PVD_EXTI_DISABLE_IT(PWR_EXTI_LINE_PVD) __HAL_PWR_PVD_EXTI_DISABLE_IT()
+#define __HAL_PVD_EXTI_GET_FLAG(PWR_EXTI_LINE_PVD) __HAL_PWR_PVD_EXTI_GET_FLAG()
+#define __HAL_PVD_EXTI_CLEAR_FLAG(PWR_EXTI_LINE_PVD) __HAL_PWR_PVD_EXTI_CLEAR_FLAG()
+#define __HAL_PVD_EXTI_GENERATE_SWIT(PWR_EXTI_LINE_PVD) __HAL_PWR_PVD_EXTI_GENERATE_SWIT()
+#else
+#define __HAL_PVD_EXTI_CLEAR_FLAG __HAL_PWR_PVD_EXTI_CLEAR_FLAG
+#define __HAL_PVD_EXTI_DISABLE_IT __HAL_PWR_PVD_EXTI_DISABLE_IT
+#define __HAL_PVD_EXTI_ENABLE_IT __HAL_PWR_PVD_EXTI_ENABLE_IT
+#define __HAL_PVD_EXTI_GENERATE_SWIT __HAL_PWR_PVD_EXTI_GENERATE_SWIT
+#define __HAL_PVD_EXTI_GET_FLAG __HAL_PWR_PVD_EXTI_GET_FLAG
+#endif /* STM32F4 */
+/**
+ * @}
+ */
+
+/** @defgroup HAL_RCC_Aliased HAL RCC Aliased maintained for legacy purpose
+ * @{
+ */
+
+#define RCC_StopWakeUpClock_MSI RCC_STOP_WAKEUPCLOCK_MSI
+#define RCC_StopWakeUpClock_HSI RCC_STOP_WAKEUPCLOCK_HSI
+
+#define HAL_RCC_CCSCallback HAL_RCC_CSSCallback
+#define HAL_RC48_EnableBuffer_Cmd(cmd) (((cmd) == ENABLE) ? HAL_RCCEx_EnableHSI48_VREFINT() : HAL_RCCEx_DisableHSI48_VREFINT())
+
+#define __ADC_CLK_DISABLE __HAL_RCC_ADC_CLK_DISABLE
+#define __ADC_CLK_ENABLE __HAL_RCC_ADC_CLK_ENABLE
+#define __ADC_CLK_SLEEP_DISABLE __HAL_RCC_ADC_CLK_SLEEP_DISABLE
+#define __ADC_CLK_SLEEP_ENABLE __HAL_RCC_ADC_CLK_SLEEP_ENABLE
+#define __ADC_FORCE_RESET __HAL_RCC_ADC_FORCE_RESET
+#define __ADC_RELEASE_RESET __HAL_RCC_ADC_RELEASE_RESET
+#define __ADC1_CLK_DISABLE __HAL_RCC_ADC1_CLK_DISABLE
+#define __ADC1_CLK_ENABLE __HAL_RCC_ADC1_CLK_ENABLE
+#define __ADC1_FORCE_RESET __HAL_RCC_ADC1_FORCE_RESET
+#define __ADC1_RELEASE_RESET __HAL_RCC_ADC1_RELEASE_RESET
+#define __ADC1_CLK_SLEEP_ENABLE __HAL_RCC_ADC1_CLK_SLEEP_ENABLE
+#define __ADC1_CLK_SLEEP_DISABLE __HAL_RCC_ADC1_CLK_SLEEP_DISABLE
+#define __ADC2_CLK_DISABLE __HAL_RCC_ADC2_CLK_DISABLE
+#define __ADC2_CLK_ENABLE __HAL_RCC_ADC2_CLK_ENABLE
+#define __ADC2_FORCE_RESET __HAL_RCC_ADC2_FORCE_RESET
+#define __ADC2_RELEASE_RESET __HAL_RCC_ADC2_RELEASE_RESET
+#define __ADC3_CLK_DISABLE __HAL_RCC_ADC3_CLK_DISABLE
+#define __ADC3_CLK_ENABLE __HAL_RCC_ADC3_CLK_ENABLE
+#define __ADC3_FORCE_RESET __HAL_RCC_ADC3_FORCE_RESET
+#define __ADC3_RELEASE_RESET __HAL_RCC_ADC3_RELEASE_RESET
+#define __AES_CLK_DISABLE __HAL_RCC_AES_CLK_DISABLE
+#define __AES_CLK_ENABLE __HAL_RCC_AES_CLK_ENABLE
+#define __AES_CLK_SLEEP_DISABLE __HAL_RCC_AES_CLK_SLEEP_DISABLE
+#define __AES_CLK_SLEEP_ENABLE __HAL_RCC_AES_CLK_SLEEP_ENABLE
+#define __AES_FORCE_RESET __HAL_RCC_AES_FORCE_RESET
+#define __AES_RELEASE_RESET __HAL_RCC_AES_RELEASE_RESET
+#define __CRYP_CLK_SLEEP_ENABLE __HAL_RCC_CRYP_CLK_SLEEP_ENABLE
+#define __CRYP_CLK_SLEEP_DISABLE __HAL_RCC_CRYP_CLK_SLEEP_DISABLE
+#define __CRYP_CLK_ENABLE __HAL_RCC_CRYP_CLK_ENABLE
+#define __CRYP_CLK_DISABLE __HAL_RCC_CRYP_CLK_DISABLE
+#define __CRYP_FORCE_RESET __HAL_RCC_CRYP_FORCE_RESET
+#define __CRYP_RELEASE_RESET __HAL_RCC_CRYP_RELEASE_RESET
+#define __AFIO_CLK_DISABLE __HAL_RCC_AFIO_CLK_DISABLE
+#define __AFIO_CLK_ENABLE __HAL_RCC_AFIO_CLK_ENABLE
+#define __AFIO_FORCE_RESET __HAL_RCC_AFIO_FORCE_RESET
+#define __AFIO_RELEASE_RESET __HAL_RCC_AFIO_RELEASE_RESET
+#define __AHB_FORCE_RESET __HAL_RCC_AHB_FORCE_RESET
+#define __AHB_RELEASE_RESET __HAL_RCC_AHB_RELEASE_RESET
+#define __AHB1_FORCE_RESET __HAL_RCC_AHB1_FORCE_RESET
+#define __AHB1_RELEASE_RESET __HAL_RCC_AHB1_RELEASE_RESET
+#define __AHB2_FORCE_RESET __HAL_RCC_AHB2_FORCE_RESET
+#define __AHB2_RELEASE_RESET __HAL_RCC_AHB2_RELEASE_RESET
+#define __AHB3_FORCE_RESET __HAL_RCC_AHB3_FORCE_RESET
+#define __AHB3_RELEASE_RESET __HAL_RCC_AHB3_RELEASE_RESET
+#define __APB1_FORCE_RESET __HAL_RCC_APB1_FORCE_RESET
+#define __APB1_RELEASE_RESET __HAL_RCC_APB1_RELEASE_RESET
+#define __APB2_FORCE_RESET __HAL_RCC_APB2_FORCE_RESET
+#define __APB2_RELEASE_RESET __HAL_RCC_APB2_RELEASE_RESET
+#define __BKP_CLK_DISABLE __HAL_RCC_BKP_CLK_DISABLE
+#define __BKP_CLK_ENABLE __HAL_RCC_BKP_CLK_ENABLE
+#define __BKP_FORCE_RESET __HAL_RCC_BKP_FORCE_RESET
+#define __BKP_RELEASE_RESET __HAL_RCC_BKP_RELEASE_RESET
+#define __CAN1_CLK_DISABLE __HAL_RCC_CAN1_CLK_DISABLE
+#define __CAN1_CLK_ENABLE __HAL_RCC_CAN1_CLK_ENABLE
+#define __CAN1_CLK_SLEEP_DISABLE __HAL_RCC_CAN1_CLK_SLEEP_DISABLE
+#define __CAN1_CLK_SLEEP_ENABLE __HAL_RCC_CAN1_CLK_SLEEP_ENABLE
+#define __CAN1_FORCE_RESET __HAL_RCC_CAN1_FORCE_RESET
+#define __CAN1_RELEASE_RESET __HAL_RCC_CAN1_RELEASE_RESET
+#define __CAN_CLK_DISABLE __HAL_RCC_CAN1_CLK_DISABLE
+#define __CAN_CLK_ENABLE __HAL_RCC_CAN1_CLK_ENABLE
+#define __CAN_FORCE_RESET __HAL_RCC_CAN1_FORCE_RESET
+#define __CAN_RELEASE_RESET __HAL_RCC_CAN1_RELEASE_RESET
+#define __CAN2_CLK_DISABLE __HAL_RCC_CAN2_CLK_DISABLE
+#define __CAN2_CLK_ENABLE __HAL_RCC_CAN2_CLK_ENABLE
+#define __CAN2_FORCE_RESET __HAL_RCC_CAN2_FORCE_RESET
+#define __CAN2_RELEASE_RESET __HAL_RCC_CAN2_RELEASE_RESET
+#define __CEC_CLK_DISABLE __HAL_RCC_CEC_CLK_DISABLE
+#define __CEC_CLK_ENABLE __HAL_RCC_CEC_CLK_ENABLE
+#define __COMP_CLK_DISABLE __HAL_RCC_COMP_CLK_DISABLE
+#define __COMP_CLK_ENABLE __HAL_RCC_COMP_CLK_ENABLE
+#define __COMP_FORCE_RESET __HAL_RCC_COMP_FORCE_RESET
+#define __COMP_RELEASE_RESET __HAL_RCC_COMP_RELEASE_RESET
+#define __COMP_CLK_SLEEP_ENABLE __HAL_RCC_COMP_CLK_SLEEP_ENABLE
+#define __COMP_CLK_SLEEP_DISABLE __HAL_RCC_COMP_CLK_SLEEP_DISABLE
+#define __CEC_FORCE_RESET __HAL_RCC_CEC_FORCE_RESET
+#define __CEC_RELEASE_RESET __HAL_RCC_CEC_RELEASE_RESET
+#define __CRC_CLK_DISABLE __HAL_RCC_CRC_CLK_DISABLE
+#define __CRC_CLK_ENABLE __HAL_RCC_CRC_CLK_ENABLE
+#define __CRC_CLK_SLEEP_DISABLE __HAL_RCC_CRC_CLK_SLEEP_DISABLE
+#define __CRC_CLK_SLEEP_ENABLE __HAL_RCC_CRC_CLK_SLEEP_ENABLE
+#define __CRC_FORCE_RESET __HAL_RCC_CRC_FORCE_RESET
+#define __CRC_RELEASE_RESET __HAL_RCC_CRC_RELEASE_RESET
+#define __DAC_CLK_DISABLE __HAL_RCC_DAC_CLK_DISABLE
+#define __DAC_CLK_ENABLE __HAL_RCC_DAC_CLK_ENABLE
+#define __DAC_FORCE_RESET __HAL_RCC_DAC_FORCE_RESET
+#define __DAC_RELEASE_RESET __HAL_RCC_DAC_RELEASE_RESET
+#define __DAC1_CLK_DISABLE __HAL_RCC_DAC1_CLK_DISABLE
+#define __DAC1_CLK_ENABLE __HAL_RCC_DAC1_CLK_ENABLE
+#define __DAC1_CLK_SLEEP_DISABLE __HAL_RCC_DAC1_CLK_SLEEP_DISABLE
+#define __DAC1_CLK_SLEEP_ENABLE __HAL_RCC_DAC1_CLK_SLEEP_ENABLE
+#define __DAC1_FORCE_RESET __HAL_RCC_DAC1_FORCE_RESET
+#define __DAC1_RELEASE_RESET __HAL_RCC_DAC1_RELEASE_RESET
+#define __DBGMCU_CLK_ENABLE __HAL_RCC_DBGMCU_CLK_ENABLE
+#define __DBGMCU_CLK_DISABLE __HAL_RCC_DBGMCU_CLK_DISABLE
+#define __DBGMCU_FORCE_RESET __HAL_RCC_DBGMCU_FORCE_RESET
+#define __DBGMCU_RELEASE_RESET __HAL_RCC_DBGMCU_RELEASE_RESET
+#define __DFSDM_CLK_DISABLE __HAL_RCC_DFSDM_CLK_DISABLE
+#define __DFSDM_CLK_ENABLE __HAL_RCC_DFSDM_CLK_ENABLE
+#define __DFSDM_CLK_SLEEP_DISABLE __HAL_RCC_DFSDM_CLK_SLEEP_DISABLE
+#define __DFSDM_CLK_SLEEP_ENABLE __HAL_RCC_DFSDM_CLK_SLEEP_ENABLE
+#define __DFSDM_FORCE_RESET __HAL_RCC_DFSDM_FORCE_RESET
+#define __DFSDM_RELEASE_RESET __HAL_RCC_DFSDM_RELEASE_RESET
+#define __DMA1_CLK_DISABLE __HAL_RCC_DMA1_CLK_DISABLE
+#define __DMA1_CLK_ENABLE __HAL_RCC_DMA1_CLK_ENABLE
+#define __DMA1_CLK_SLEEP_DISABLE __HAL_RCC_DMA1_CLK_SLEEP_DISABLE
+#define __DMA1_CLK_SLEEP_ENABLE __HAL_RCC_DMA1_CLK_SLEEP_ENABLE
+#define __DMA1_FORCE_RESET __HAL_RCC_DMA1_FORCE_RESET
+#define __DMA1_RELEASE_RESET __HAL_RCC_DMA1_RELEASE_RESET
+#define __DMA2_CLK_DISABLE __HAL_RCC_DMA2_CLK_DISABLE
+#define __DMA2_CLK_ENABLE __HAL_RCC_DMA2_CLK_ENABLE
+#define __DMA2_CLK_SLEEP_DISABLE __HAL_RCC_DMA2_CLK_SLEEP_DISABLE
+#define __DMA2_CLK_SLEEP_ENABLE __HAL_RCC_DMA2_CLK_SLEEP_ENABLE
+#define __DMA2_FORCE_RESET __HAL_RCC_DMA2_FORCE_RESET
+#define __DMA2_RELEASE_RESET __HAL_RCC_DMA2_RELEASE_RESET
+#define __ETHMAC_CLK_DISABLE __HAL_RCC_ETHMAC_CLK_DISABLE
+#define __ETHMAC_CLK_ENABLE __HAL_RCC_ETHMAC_CLK_ENABLE
+#define __ETHMAC_FORCE_RESET __HAL_RCC_ETHMAC_FORCE_RESET
+#define __ETHMAC_RELEASE_RESET __HAL_RCC_ETHMAC_RELEASE_RESET
+#define __ETHMACRX_CLK_DISABLE __HAL_RCC_ETHMACRX_CLK_DISABLE
+#define __ETHMACRX_CLK_ENABLE __HAL_RCC_ETHMACRX_CLK_ENABLE
+#define __ETHMACTX_CLK_DISABLE __HAL_RCC_ETHMACTX_CLK_DISABLE
+#define __ETHMACTX_CLK_ENABLE __HAL_RCC_ETHMACTX_CLK_ENABLE
+#define __FIREWALL_CLK_DISABLE __HAL_RCC_FIREWALL_CLK_DISABLE
+#define __FIREWALL_CLK_ENABLE __HAL_RCC_FIREWALL_CLK_ENABLE
+#define __FLASH_CLK_DISABLE __HAL_RCC_FLASH_CLK_DISABLE
+#define __FLASH_CLK_ENABLE __HAL_RCC_FLASH_CLK_ENABLE
+#define __FLASH_CLK_SLEEP_DISABLE __HAL_RCC_FLASH_CLK_SLEEP_DISABLE
+#define __FLASH_CLK_SLEEP_ENABLE __HAL_RCC_FLASH_CLK_SLEEP_ENABLE
+#define __FLASH_FORCE_RESET __HAL_RCC_FLASH_FORCE_RESET
+#define __FLASH_RELEASE_RESET __HAL_RCC_FLASH_RELEASE_RESET
+#define __FLITF_CLK_DISABLE __HAL_RCC_FLITF_CLK_DISABLE
+#define __FLITF_CLK_ENABLE __HAL_RCC_FLITF_CLK_ENABLE
+#define __FLITF_FORCE_RESET __HAL_RCC_FLITF_FORCE_RESET
+#define __FLITF_RELEASE_RESET __HAL_RCC_FLITF_RELEASE_RESET
+#define __FLITF_CLK_SLEEP_ENABLE __HAL_RCC_FLITF_CLK_SLEEP_ENABLE
+#define __FLITF_CLK_SLEEP_DISABLE __HAL_RCC_FLITF_CLK_SLEEP_DISABLE
+#define __FMC_CLK_DISABLE __HAL_RCC_FMC_CLK_DISABLE
+#define __FMC_CLK_ENABLE __HAL_RCC_FMC_CLK_ENABLE
+#define __FMC_CLK_SLEEP_DISABLE __HAL_RCC_FMC_CLK_SLEEP_DISABLE
+#define __FMC_CLK_SLEEP_ENABLE __HAL_RCC_FMC_CLK_SLEEP_ENABLE
+#define __FMC_FORCE_RESET __HAL_RCC_FMC_FORCE_RESET
+#define __FMC_RELEASE_RESET __HAL_RCC_FMC_RELEASE_RESET
+#define __FSMC_CLK_DISABLE __HAL_RCC_FSMC_CLK_DISABLE
+#define __FSMC_CLK_ENABLE __HAL_RCC_FSMC_CLK_ENABLE
+#define __GPIOA_CLK_DISABLE __HAL_RCC_GPIOA_CLK_DISABLE
+#define __GPIOA_CLK_ENABLE __HAL_RCC_GPIOA_CLK_ENABLE
+#define __GPIOA_CLK_SLEEP_DISABLE __HAL_RCC_GPIOA_CLK_SLEEP_DISABLE
+#define __GPIOA_CLK_SLEEP_ENABLE __HAL_RCC_GPIOA_CLK_SLEEP_ENABLE
+#define __GPIOA_FORCE_RESET __HAL_RCC_GPIOA_FORCE_RESET
+#define __GPIOA_RELEASE_RESET __HAL_RCC_GPIOA_RELEASE_RESET
+#define __GPIOB_CLK_DISABLE __HAL_RCC_GPIOB_CLK_DISABLE
+#define __GPIOB_CLK_ENABLE __HAL_RCC_GPIOB_CLK_ENABLE
+#define __GPIOB_CLK_SLEEP_DISABLE __HAL_RCC_GPIOB_CLK_SLEEP_DISABLE
+#define __GPIOB_CLK_SLEEP_ENABLE __HAL_RCC_GPIOB_CLK_SLEEP_ENABLE
+#define __GPIOB_FORCE_RESET __HAL_RCC_GPIOB_FORCE_RESET
+#define __GPIOB_RELEASE_RESET __HAL_RCC_GPIOB_RELEASE_RESET
+#define __GPIOC_CLK_DISABLE __HAL_RCC_GPIOC_CLK_DISABLE
+#define __GPIOC_CLK_ENABLE __HAL_RCC_GPIOC_CLK_ENABLE
+#define __GPIOC_CLK_SLEEP_DISABLE __HAL_RCC_GPIOC_CLK_SLEEP_DISABLE
+#define __GPIOC_CLK_SLEEP_ENABLE __HAL_RCC_GPIOC_CLK_SLEEP_ENABLE
+#define __GPIOC_FORCE_RESET __HAL_RCC_GPIOC_FORCE_RESET
+#define __GPIOC_RELEASE_RESET __HAL_RCC_GPIOC_RELEASE_RESET
+#define __GPIOD_CLK_DISABLE __HAL_RCC_GPIOD_CLK_DISABLE
+#define __GPIOD_CLK_ENABLE __HAL_RCC_GPIOD_CLK_ENABLE
+#define __GPIOD_CLK_SLEEP_DISABLE __HAL_RCC_GPIOD_CLK_SLEEP_DISABLE
+#define __GPIOD_CLK_SLEEP_ENABLE __HAL_RCC_GPIOD_CLK_SLEEP_ENABLE
+#define __GPIOD_FORCE_RESET __HAL_RCC_GPIOD_FORCE_RESET
+#define __GPIOD_RELEASE_RESET __HAL_RCC_GPIOD_RELEASE_RESET
+#define __GPIOE_CLK_DISABLE __HAL_RCC_GPIOE_CLK_DISABLE
+#define __GPIOE_CLK_ENABLE __HAL_RCC_GPIOE_CLK_ENABLE
+#define __GPIOE_CLK_SLEEP_DISABLE __HAL_RCC_GPIOE_CLK_SLEEP_DISABLE
+#define __GPIOE_CLK_SLEEP_ENABLE __HAL_RCC_GPIOE_CLK_SLEEP_ENABLE
+#define __GPIOE_FORCE_RESET __HAL_RCC_GPIOE_FORCE_RESET
+#define __GPIOE_RELEASE_RESET __HAL_RCC_GPIOE_RELEASE_RESET
+#define __GPIOF_CLK_DISABLE __HAL_RCC_GPIOF_CLK_DISABLE
+#define __GPIOF_CLK_ENABLE __HAL_RCC_GPIOF_CLK_ENABLE
+#define __GPIOF_CLK_SLEEP_DISABLE __HAL_RCC_GPIOF_CLK_SLEEP_DISABLE
+#define __GPIOF_CLK_SLEEP_ENABLE __HAL_RCC_GPIOF_CLK_SLEEP_ENABLE
+#define __GPIOF_FORCE_RESET __HAL_RCC_GPIOF_FORCE_RESET
+#define __GPIOF_RELEASE_RESET __HAL_RCC_GPIOF_RELEASE_RESET
+#define __GPIOG_CLK_DISABLE __HAL_RCC_GPIOG_CLK_DISABLE
+#define __GPIOG_CLK_ENABLE __HAL_RCC_GPIOG_CLK_ENABLE
+#define __GPIOG_CLK_SLEEP_DISABLE __HAL_RCC_GPIOG_CLK_SLEEP_DISABLE
+#define __GPIOG_CLK_SLEEP_ENABLE __HAL_RCC_GPIOG_CLK_SLEEP_ENABLE
+#define __GPIOG_FORCE_RESET __HAL_RCC_GPIOG_FORCE_RESET
+#define __GPIOG_RELEASE_RESET __HAL_RCC_GPIOG_RELEASE_RESET
+#define __GPIOH_CLK_DISABLE __HAL_RCC_GPIOH_CLK_DISABLE
+#define __GPIOH_CLK_ENABLE __HAL_RCC_GPIOH_CLK_ENABLE
+#define __GPIOH_CLK_SLEEP_DISABLE __HAL_RCC_GPIOH_CLK_SLEEP_DISABLE
+#define __GPIOH_CLK_SLEEP_ENABLE __HAL_RCC_GPIOH_CLK_SLEEP_ENABLE
+#define __GPIOH_FORCE_RESET __HAL_RCC_GPIOH_FORCE_RESET
+#define __GPIOH_RELEASE_RESET __HAL_RCC_GPIOH_RELEASE_RESET
+#define __I2C1_CLK_DISABLE __HAL_RCC_I2C1_CLK_DISABLE
+#define __I2C1_CLK_ENABLE __HAL_RCC_I2C1_CLK_ENABLE
+#define __I2C1_CLK_SLEEP_DISABLE __HAL_RCC_I2C1_CLK_SLEEP_DISABLE
+#define __I2C1_CLK_SLEEP_ENABLE __HAL_RCC_I2C1_CLK_SLEEP_ENABLE
+#define __I2C1_FORCE_RESET __HAL_RCC_I2C1_FORCE_RESET
+#define __I2C1_RELEASE_RESET __HAL_RCC_I2C1_RELEASE_RESET
+#define __I2C2_CLK_DISABLE __HAL_RCC_I2C2_CLK_DISABLE
+#define __I2C2_CLK_ENABLE __HAL_RCC_I2C2_CLK_ENABLE
+#define __I2C2_CLK_SLEEP_DISABLE __HAL_RCC_I2C2_CLK_SLEEP_DISABLE
+#define __I2C2_CLK_SLEEP_ENABLE __HAL_RCC_I2C2_CLK_SLEEP_ENABLE
+#define __I2C2_FORCE_RESET __HAL_RCC_I2C2_FORCE_RESET
+#define __I2C2_RELEASE_RESET __HAL_RCC_I2C2_RELEASE_RESET
+#define __I2C3_CLK_DISABLE __HAL_RCC_I2C3_CLK_DISABLE
+#define __I2C3_CLK_ENABLE __HAL_RCC_I2C3_CLK_ENABLE
+#define __I2C3_CLK_SLEEP_DISABLE __HAL_RCC_I2C3_CLK_SLEEP_DISABLE
+#define __I2C3_CLK_SLEEP_ENABLE __HAL_RCC_I2C3_CLK_SLEEP_ENABLE
+#define __I2C3_FORCE_RESET __HAL_RCC_I2C3_FORCE_RESET
+#define __I2C3_RELEASE_RESET __HAL_RCC_I2C3_RELEASE_RESET
+#define __LCD_CLK_DISABLE __HAL_RCC_LCD_CLK_DISABLE
+#define __LCD_CLK_ENABLE __HAL_RCC_LCD_CLK_ENABLE
+#define __LCD_CLK_SLEEP_DISABLE __HAL_RCC_LCD_CLK_SLEEP_DISABLE
+#define __LCD_CLK_SLEEP_ENABLE __HAL_RCC_LCD_CLK_SLEEP_ENABLE
+#define __LCD_FORCE_RESET __HAL_RCC_LCD_FORCE_RESET
+#define __LCD_RELEASE_RESET __HAL_RCC_LCD_RELEASE_RESET
+#define __LPTIM1_CLK_DISABLE __HAL_RCC_LPTIM1_CLK_DISABLE
+#define __LPTIM1_CLK_ENABLE __HAL_RCC_LPTIM1_CLK_ENABLE
+#define __LPTIM1_CLK_SLEEP_DISABLE __HAL_RCC_LPTIM1_CLK_SLEEP_DISABLE
+#define __LPTIM1_CLK_SLEEP_ENABLE __HAL_RCC_LPTIM1_CLK_SLEEP_ENABLE
+#define __LPTIM1_FORCE_RESET __HAL_RCC_LPTIM1_FORCE_RESET
+#define __LPTIM1_RELEASE_RESET __HAL_RCC_LPTIM1_RELEASE_RESET
+#define __LPTIM2_CLK_DISABLE __HAL_RCC_LPTIM2_CLK_DISABLE
+#define __LPTIM2_CLK_ENABLE __HAL_RCC_LPTIM2_CLK_ENABLE
+#define __LPTIM2_CLK_SLEEP_DISABLE __HAL_RCC_LPTIM2_CLK_SLEEP_DISABLE
+#define __LPTIM2_CLK_SLEEP_ENABLE __HAL_RCC_LPTIM2_CLK_SLEEP_ENABLE
+#define __LPTIM2_FORCE_RESET __HAL_RCC_LPTIM2_FORCE_RESET
+#define __LPTIM2_RELEASE_RESET __HAL_RCC_LPTIM2_RELEASE_RESET
+#define __LPUART1_CLK_DISABLE __HAL_RCC_LPUART1_CLK_DISABLE
+#define __LPUART1_CLK_ENABLE __HAL_RCC_LPUART1_CLK_ENABLE
+#define __LPUART1_CLK_SLEEP_DISABLE __HAL_RCC_LPUART1_CLK_SLEEP_DISABLE
+#define __LPUART1_CLK_SLEEP_ENABLE __HAL_RCC_LPUART1_CLK_SLEEP_ENABLE
+#define __LPUART1_FORCE_RESET __HAL_RCC_LPUART1_FORCE_RESET
+#define __LPUART1_RELEASE_RESET __HAL_RCC_LPUART1_RELEASE_RESET
+#define __OPAMP_CLK_DISABLE __HAL_RCC_OPAMP_CLK_DISABLE
+#define __OPAMP_CLK_ENABLE __HAL_RCC_OPAMP_CLK_ENABLE
+#define __OPAMP_CLK_SLEEP_DISABLE __HAL_RCC_OPAMP_CLK_SLEEP_DISABLE
+#define __OPAMP_CLK_SLEEP_ENABLE __HAL_RCC_OPAMP_CLK_SLEEP_ENABLE
+#define __OPAMP_FORCE_RESET __HAL_RCC_OPAMP_FORCE_RESET
+#define __OPAMP_RELEASE_RESET __HAL_RCC_OPAMP_RELEASE_RESET
+#define __OTGFS_CLK_DISABLE __HAL_RCC_OTGFS_CLK_DISABLE
+#define __OTGFS_CLK_ENABLE __HAL_RCC_OTGFS_CLK_ENABLE
+#define __OTGFS_CLK_SLEEP_DISABLE __HAL_RCC_OTGFS_CLK_SLEEP_DISABLE
+#define __OTGFS_CLK_SLEEP_ENABLE __HAL_RCC_OTGFS_CLK_SLEEP_ENABLE
+#define __OTGFS_FORCE_RESET __HAL_RCC_OTGFS_FORCE_RESET
+#define __OTGFS_RELEASE_RESET __HAL_RCC_OTGFS_RELEASE_RESET
+#define __PWR_CLK_DISABLE __HAL_RCC_PWR_CLK_DISABLE
+#define __PWR_CLK_ENABLE __HAL_RCC_PWR_CLK_ENABLE
+#define __PWR_CLK_SLEEP_DISABLE __HAL_RCC_PWR_CLK_SLEEP_DISABLE
+#define __PWR_CLK_SLEEP_ENABLE __HAL_RCC_PWR_CLK_SLEEP_ENABLE
+#define __PWR_FORCE_RESET __HAL_RCC_PWR_FORCE_RESET
+#define __PWR_RELEASE_RESET __HAL_RCC_PWR_RELEASE_RESET
+#define __QSPI_CLK_DISABLE __HAL_RCC_QSPI_CLK_DISABLE
+#define __QSPI_CLK_ENABLE __HAL_RCC_QSPI_CLK_ENABLE
+#define __QSPI_CLK_SLEEP_DISABLE __HAL_RCC_QSPI_CLK_SLEEP_DISABLE
+#define __QSPI_CLK_SLEEP_ENABLE __HAL_RCC_QSPI_CLK_SLEEP_ENABLE
+#define __QSPI_FORCE_RESET __HAL_RCC_QSPI_FORCE_RESET
+#define __QSPI_RELEASE_RESET __HAL_RCC_QSPI_RELEASE_RESET
+
+#if defined(STM32WB)
+#define __HAL_RCC_QSPI_CLK_DISABLE __HAL_RCC_QUADSPI_CLK_DISABLE
+#define __HAL_RCC_QSPI_CLK_ENABLE __HAL_RCC_QUADSPI_CLK_ENABLE
+#define __HAL_RCC_QSPI_CLK_SLEEP_DISABLE __HAL_RCC_QUADSPI_CLK_SLEEP_DISABLE
+#define __HAL_RCC_QSPI_CLK_SLEEP_ENABLE __HAL_RCC_QUADSPI_CLK_SLEEP_ENABLE
+#define __HAL_RCC_QSPI_FORCE_RESET __HAL_RCC_QUADSPI_FORCE_RESET
+#define __HAL_RCC_QSPI_RELEASE_RESET __HAL_RCC_QUADSPI_RELEASE_RESET
+#define __HAL_RCC_QSPI_IS_CLK_ENABLED __HAL_RCC_QUADSPI_IS_CLK_ENABLED
+#define __HAL_RCC_QSPI_IS_CLK_DISABLED __HAL_RCC_QUADSPI_IS_CLK_DISABLED
+#define __HAL_RCC_QSPI_IS_CLK_SLEEP_ENABLED __HAL_RCC_QUADSPI_IS_CLK_SLEEP_ENABLED
+#define __HAL_RCC_QSPI_IS_CLK_SLEEP_DISABLED __HAL_RCC_QUADSPI_IS_CLK_SLEEP_DISABLED
+#define QSPI_IRQHandler QUADSPI_IRQHandler
+#endif /* __HAL_RCC_QUADSPI_CLK_ENABLE */
+
+#define __RNG_CLK_DISABLE __HAL_RCC_RNG_CLK_DISABLE
+#define __RNG_CLK_ENABLE __HAL_RCC_RNG_CLK_ENABLE
+#define __RNG_CLK_SLEEP_DISABLE __HAL_RCC_RNG_CLK_SLEEP_DISABLE
+#define __RNG_CLK_SLEEP_ENABLE __HAL_RCC_RNG_CLK_SLEEP_ENABLE
+#define __RNG_FORCE_RESET __HAL_RCC_RNG_FORCE_RESET
+#define __RNG_RELEASE_RESET __HAL_RCC_RNG_RELEASE_RESET
+#define __SAI1_CLK_DISABLE __HAL_RCC_SAI1_CLK_DISABLE
+#define __SAI1_CLK_ENABLE __HAL_RCC_SAI1_CLK_ENABLE
+#define __SAI1_CLK_SLEEP_DISABLE __HAL_RCC_SAI1_CLK_SLEEP_DISABLE
+#define __SAI1_CLK_SLEEP_ENABLE __HAL_RCC_SAI1_CLK_SLEEP_ENABLE
+#define __SAI1_FORCE_RESET __HAL_RCC_SAI1_FORCE_RESET
+#define __SAI1_RELEASE_RESET __HAL_RCC_SAI1_RELEASE_RESET
+#define __SAI2_CLK_DISABLE __HAL_RCC_SAI2_CLK_DISABLE
+#define __SAI2_CLK_ENABLE __HAL_RCC_SAI2_CLK_ENABLE
+#define __SAI2_CLK_SLEEP_DISABLE __HAL_RCC_SAI2_CLK_SLEEP_DISABLE
+#define __SAI2_CLK_SLEEP_ENABLE __HAL_RCC_SAI2_CLK_SLEEP_ENABLE
+#define __SAI2_FORCE_RESET __HAL_RCC_SAI2_FORCE_RESET
+#define __SAI2_RELEASE_RESET __HAL_RCC_SAI2_RELEASE_RESET
+#define __SDIO_CLK_DISABLE __HAL_RCC_SDIO_CLK_DISABLE
+#define __SDIO_CLK_ENABLE __HAL_RCC_SDIO_CLK_ENABLE
+#define __SDMMC_CLK_DISABLE __HAL_RCC_SDMMC_CLK_DISABLE
+#define __SDMMC_CLK_ENABLE __HAL_RCC_SDMMC_CLK_ENABLE
+#define __SDMMC_CLK_SLEEP_DISABLE __HAL_RCC_SDMMC_CLK_SLEEP_DISABLE
+#define __SDMMC_CLK_SLEEP_ENABLE __HAL_RCC_SDMMC_CLK_SLEEP_ENABLE
+#define __SDMMC_FORCE_RESET __HAL_RCC_SDMMC_FORCE_RESET
+#define __SDMMC_RELEASE_RESET __HAL_RCC_SDMMC_RELEASE_RESET
+#define __SPI1_CLK_DISABLE __HAL_RCC_SPI1_CLK_DISABLE
+#define __SPI1_CLK_ENABLE __HAL_RCC_SPI1_CLK_ENABLE
+#define __SPI1_CLK_SLEEP_DISABLE __HAL_RCC_SPI1_CLK_SLEEP_DISABLE
+#define __SPI1_CLK_SLEEP_ENABLE __HAL_RCC_SPI1_CLK_SLEEP_ENABLE
+#define __SPI1_FORCE_RESET __HAL_RCC_SPI1_FORCE_RESET
+#define __SPI1_RELEASE_RESET __HAL_RCC_SPI1_RELEASE_RESET
+#define __SPI2_CLK_DISABLE __HAL_RCC_SPI2_CLK_DISABLE
+#define __SPI2_CLK_ENABLE __HAL_RCC_SPI2_CLK_ENABLE
+#define __SPI2_CLK_SLEEP_DISABLE __HAL_RCC_SPI2_CLK_SLEEP_DISABLE
+#define __SPI2_CLK_SLEEP_ENABLE __HAL_RCC_SPI2_CLK_SLEEP_ENABLE
+#define __SPI2_FORCE_RESET __HAL_RCC_SPI2_FORCE_RESET
+#define __SPI2_RELEASE_RESET __HAL_RCC_SPI2_RELEASE_RESET
+#define __SPI3_CLK_DISABLE __HAL_RCC_SPI3_CLK_DISABLE
+#define __SPI3_CLK_ENABLE __HAL_RCC_SPI3_CLK_ENABLE
+#define __SPI3_CLK_SLEEP_DISABLE __HAL_RCC_SPI3_CLK_SLEEP_DISABLE
+#define __SPI3_CLK_SLEEP_ENABLE __HAL_RCC_SPI3_CLK_SLEEP_ENABLE
+#define __SPI3_FORCE_RESET __HAL_RCC_SPI3_FORCE_RESET
+#define __SPI3_RELEASE_RESET __HAL_RCC_SPI3_RELEASE_RESET
+#define __SRAM_CLK_DISABLE __HAL_RCC_SRAM_CLK_DISABLE
+#define __SRAM_CLK_ENABLE __HAL_RCC_SRAM_CLK_ENABLE
+#define __SRAM1_CLK_SLEEP_DISABLE __HAL_RCC_SRAM1_CLK_SLEEP_DISABLE
+#define __SRAM1_CLK_SLEEP_ENABLE __HAL_RCC_SRAM1_CLK_SLEEP_ENABLE
+#define __SRAM2_CLK_SLEEP_DISABLE __HAL_RCC_SRAM2_CLK_SLEEP_DISABLE
+#define __SRAM2_CLK_SLEEP_ENABLE __HAL_RCC_SRAM2_CLK_SLEEP_ENABLE
+#define __SWPMI1_CLK_DISABLE __HAL_RCC_SWPMI1_CLK_DISABLE
+#define __SWPMI1_CLK_ENABLE __HAL_RCC_SWPMI1_CLK_ENABLE
+#define __SWPMI1_CLK_SLEEP_DISABLE __HAL_RCC_SWPMI1_CLK_SLEEP_DISABLE
+#define __SWPMI1_CLK_SLEEP_ENABLE __HAL_RCC_SWPMI1_CLK_SLEEP_ENABLE
+#define __SWPMI1_FORCE_RESET __HAL_RCC_SWPMI1_FORCE_RESET
+#define __SWPMI1_RELEASE_RESET __HAL_RCC_SWPMI1_RELEASE_RESET
+#define __SYSCFG_CLK_DISABLE __HAL_RCC_SYSCFG_CLK_DISABLE
+#define __SYSCFG_CLK_ENABLE __HAL_RCC_SYSCFG_CLK_ENABLE
+#define __SYSCFG_CLK_SLEEP_DISABLE __HAL_RCC_SYSCFG_CLK_SLEEP_DISABLE
+#define __SYSCFG_CLK_SLEEP_ENABLE __HAL_RCC_SYSCFG_CLK_SLEEP_ENABLE
+#define __SYSCFG_FORCE_RESET __HAL_RCC_SYSCFG_FORCE_RESET
+#define __SYSCFG_RELEASE_RESET __HAL_RCC_SYSCFG_RELEASE_RESET
+#define __TIM1_CLK_DISABLE __HAL_RCC_TIM1_CLK_DISABLE
+#define __TIM1_CLK_ENABLE __HAL_RCC_TIM1_CLK_ENABLE
+#define __TIM1_CLK_SLEEP_DISABLE __HAL_RCC_TIM1_CLK_SLEEP_DISABLE
+#define __TIM1_CLK_SLEEP_ENABLE __HAL_RCC_TIM1_CLK_SLEEP_ENABLE
+#define __TIM1_FORCE_RESET __HAL_RCC_TIM1_FORCE_RESET
+#define __TIM1_RELEASE_RESET __HAL_RCC_TIM1_RELEASE_RESET
+#define __TIM10_CLK_DISABLE __HAL_RCC_TIM10_CLK_DISABLE
+#define __TIM10_CLK_ENABLE __HAL_RCC_TIM10_CLK_ENABLE
+#define __TIM10_FORCE_RESET __HAL_RCC_TIM10_FORCE_RESET
+#define __TIM10_RELEASE_RESET __HAL_RCC_TIM10_RELEASE_RESET
+#define __TIM11_CLK_DISABLE __HAL_RCC_TIM11_CLK_DISABLE
+#define __TIM11_CLK_ENABLE __HAL_RCC_TIM11_CLK_ENABLE
+#define __TIM11_FORCE_RESET __HAL_RCC_TIM11_FORCE_RESET
+#define __TIM11_RELEASE_RESET __HAL_RCC_TIM11_RELEASE_RESET
+#define __TIM12_CLK_DISABLE __HAL_RCC_TIM12_CLK_DISABLE
+#define __TIM12_CLK_ENABLE __HAL_RCC_TIM12_CLK_ENABLE
+#define __TIM12_FORCE_RESET __HAL_RCC_TIM12_FORCE_RESET
+#define __TIM12_RELEASE_RESET __HAL_RCC_TIM12_RELEASE_RESET
+#define __TIM13_CLK_DISABLE __HAL_RCC_TIM13_CLK_DISABLE
+#define __TIM13_CLK_ENABLE __HAL_RCC_TIM13_CLK_ENABLE
+#define __TIM13_FORCE_RESET __HAL_RCC_TIM13_FORCE_RESET
+#define __TIM13_RELEASE_RESET __HAL_RCC_TIM13_RELEASE_RESET
+#define __TIM14_CLK_DISABLE __HAL_RCC_TIM14_CLK_DISABLE
+#define __TIM14_CLK_ENABLE __HAL_RCC_TIM14_CLK_ENABLE
+#define __TIM14_FORCE_RESET __HAL_RCC_TIM14_FORCE_RESET
+#define __TIM14_RELEASE_RESET __HAL_RCC_TIM14_RELEASE_RESET
+#define __TIM15_CLK_DISABLE __HAL_RCC_TIM15_CLK_DISABLE
+#define __TIM15_CLK_ENABLE __HAL_RCC_TIM15_CLK_ENABLE
+#define __TIM15_CLK_SLEEP_DISABLE __HAL_RCC_TIM15_CLK_SLEEP_DISABLE
+#define __TIM15_CLK_SLEEP_ENABLE __HAL_RCC_TIM15_CLK_SLEEP_ENABLE
+#define __TIM15_FORCE_RESET __HAL_RCC_TIM15_FORCE_RESET
+#define __TIM15_RELEASE_RESET __HAL_RCC_TIM15_RELEASE_RESET
+#define __TIM16_CLK_DISABLE __HAL_RCC_TIM16_CLK_DISABLE
+#define __TIM16_CLK_ENABLE __HAL_RCC_TIM16_CLK_ENABLE
+#define __TIM16_CLK_SLEEP_DISABLE __HAL_RCC_TIM16_CLK_SLEEP_DISABLE
+#define __TIM16_CLK_SLEEP_ENABLE __HAL_RCC_TIM16_CLK_SLEEP_ENABLE
+#define __TIM16_FORCE_RESET __HAL_RCC_TIM16_FORCE_RESET
+#define __TIM16_RELEASE_RESET __HAL_RCC_TIM16_RELEASE_RESET
+#define __TIM17_CLK_DISABLE __HAL_RCC_TIM17_CLK_DISABLE
+#define __TIM17_CLK_ENABLE __HAL_RCC_TIM17_CLK_ENABLE
+#define __TIM17_CLK_SLEEP_DISABLE __HAL_RCC_TIM17_CLK_SLEEP_DISABLE
+#define __TIM17_CLK_SLEEP_ENABLE __HAL_RCC_TIM17_CLK_SLEEP_ENABLE
+#define __TIM17_FORCE_RESET __HAL_RCC_TIM17_FORCE_RESET
+#define __TIM17_RELEASE_RESET __HAL_RCC_TIM17_RELEASE_RESET
+#define __TIM2_CLK_DISABLE __HAL_RCC_TIM2_CLK_DISABLE
+#define __TIM2_CLK_ENABLE __HAL_RCC_TIM2_CLK_ENABLE
+#define __TIM2_CLK_SLEEP_DISABLE __HAL_RCC_TIM2_CLK_SLEEP_DISABLE
+#define __TIM2_CLK_SLEEP_ENABLE __HAL_RCC_TIM2_CLK_SLEEP_ENABLE
+#define __TIM2_FORCE_RESET __HAL_RCC_TIM2_FORCE_RESET
+#define __TIM2_RELEASE_RESET __HAL_RCC_TIM2_RELEASE_RESET
+#define __TIM3_CLK_DISABLE __HAL_RCC_TIM3_CLK_DISABLE
+#define __TIM3_CLK_ENABLE __HAL_RCC_TIM3_CLK_ENABLE
+#define __TIM3_CLK_SLEEP_DISABLE __HAL_RCC_TIM3_CLK_SLEEP_DISABLE
+#define __TIM3_CLK_SLEEP_ENABLE __HAL_RCC_TIM3_CLK_SLEEP_ENABLE
+#define __TIM3_FORCE_RESET __HAL_RCC_TIM3_FORCE_RESET
+#define __TIM3_RELEASE_RESET __HAL_RCC_TIM3_RELEASE_RESET
+#define __TIM4_CLK_DISABLE __HAL_RCC_TIM4_CLK_DISABLE
+#define __TIM4_CLK_ENABLE __HAL_RCC_TIM4_CLK_ENABLE
+#define __TIM4_CLK_SLEEP_DISABLE __HAL_RCC_TIM4_CLK_SLEEP_DISABLE
+#define __TIM4_CLK_SLEEP_ENABLE __HAL_RCC_TIM4_CLK_SLEEP_ENABLE
+#define __TIM4_FORCE_RESET __HAL_RCC_TIM4_FORCE_RESET
+#define __TIM4_RELEASE_RESET __HAL_RCC_TIM4_RELEASE_RESET
+#define __TIM5_CLK_DISABLE __HAL_RCC_TIM5_CLK_DISABLE
+#define __TIM5_CLK_ENABLE __HAL_RCC_TIM5_CLK_ENABLE
+#define __TIM5_CLK_SLEEP_DISABLE __HAL_RCC_TIM5_CLK_SLEEP_DISABLE
+#define __TIM5_CLK_SLEEP_ENABLE __HAL_RCC_TIM5_CLK_SLEEP_ENABLE
+#define __TIM5_FORCE_RESET __HAL_RCC_TIM5_FORCE_RESET
+#define __TIM5_RELEASE_RESET __HAL_RCC_TIM5_RELEASE_RESET
+#define __TIM6_CLK_DISABLE __HAL_RCC_TIM6_CLK_DISABLE
+#define __TIM6_CLK_ENABLE __HAL_RCC_TIM6_CLK_ENABLE
+#define __TIM6_CLK_SLEEP_DISABLE __HAL_RCC_TIM6_CLK_SLEEP_DISABLE
+#define __TIM6_CLK_SLEEP_ENABLE __HAL_RCC_TIM6_CLK_SLEEP_ENABLE
+#define __TIM6_FORCE_RESET __HAL_RCC_TIM6_FORCE_RESET
+#define __TIM6_RELEASE_RESET __HAL_RCC_TIM6_RELEASE_RESET
+#define __TIM7_CLK_DISABLE __HAL_RCC_TIM7_CLK_DISABLE
+#define __TIM7_CLK_ENABLE __HAL_RCC_TIM7_CLK_ENABLE
+#define __TIM7_CLK_SLEEP_DISABLE __HAL_RCC_TIM7_CLK_SLEEP_DISABLE
+#define __TIM7_CLK_SLEEP_ENABLE __HAL_RCC_TIM7_CLK_SLEEP_ENABLE
+#define __TIM7_FORCE_RESET __HAL_RCC_TIM7_FORCE_RESET
+#define __TIM7_RELEASE_RESET __HAL_RCC_TIM7_RELEASE_RESET
+#define __TIM8_CLK_DISABLE __HAL_RCC_TIM8_CLK_DISABLE
+#define __TIM8_CLK_ENABLE __HAL_RCC_TIM8_CLK_ENABLE
+#define __TIM8_CLK_SLEEP_DISABLE __HAL_RCC_TIM8_CLK_SLEEP_DISABLE
+#define __TIM8_CLK_SLEEP_ENABLE __HAL_RCC_TIM8_CLK_SLEEP_ENABLE
+#define __TIM8_FORCE_RESET __HAL_RCC_TIM8_FORCE_RESET
+#define __TIM8_RELEASE_RESET __HAL_RCC_TIM8_RELEASE_RESET
+#define __TIM9_CLK_DISABLE __HAL_RCC_TIM9_CLK_DISABLE
+#define __TIM9_CLK_ENABLE __HAL_RCC_TIM9_CLK_ENABLE
+#define __TIM9_FORCE_RESET __HAL_RCC_TIM9_FORCE_RESET
+#define __TIM9_RELEASE_RESET __HAL_RCC_TIM9_RELEASE_RESET
+#define __TSC_CLK_DISABLE __HAL_RCC_TSC_CLK_DISABLE
+#define __TSC_CLK_ENABLE __HAL_RCC_TSC_CLK_ENABLE
+#define __TSC_CLK_SLEEP_DISABLE __HAL_RCC_TSC_CLK_SLEEP_DISABLE
+#define __TSC_CLK_SLEEP_ENABLE __HAL_RCC_TSC_CLK_SLEEP_ENABLE
+#define __TSC_FORCE_RESET __HAL_RCC_TSC_FORCE_RESET
+#define __TSC_RELEASE_RESET __HAL_RCC_TSC_RELEASE_RESET
+#define __UART4_CLK_DISABLE __HAL_RCC_UART4_CLK_DISABLE
+#define __UART4_CLK_ENABLE __HAL_RCC_UART4_CLK_ENABLE
+#define __UART4_CLK_SLEEP_DISABLE __HAL_RCC_UART4_CLK_SLEEP_DISABLE
+#define __UART4_CLK_SLEEP_ENABLE __HAL_RCC_UART4_CLK_SLEEP_ENABLE
+#define __UART4_FORCE_RESET __HAL_RCC_UART4_FORCE_RESET
+#define __UART4_RELEASE_RESET __HAL_RCC_UART4_RELEASE_RESET
+#define __UART5_CLK_DISABLE __HAL_RCC_UART5_CLK_DISABLE
+#define __UART5_CLK_ENABLE __HAL_RCC_UART5_CLK_ENABLE
+#define __UART5_CLK_SLEEP_DISABLE __HAL_RCC_UART5_CLK_SLEEP_DISABLE
+#define __UART5_CLK_SLEEP_ENABLE __HAL_RCC_UART5_CLK_SLEEP_ENABLE
+#define __UART5_FORCE_RESET __HAL_RCC_UART5_FORCE_RESET
+#define __UART5_RELEASE_RESET __HAL_RCC_UART5_RELEASE_RESET
+#define __USART1_CLK_DISABLE __HAL_RCC_USART1_CLK_DISABLE
+#define __USART1_CLK_ENABLE __HAL_RCC_USART1_CLK_ENABLE
+#define __USART1_CLK_SLEEP_DISABLE __HAL_RCC_USART1_CLK_SLEEP_DISABLE
+#define __USART1_CLK_SLEEP_ENABLE __HAL_RCC_USART1_CLK_SLEEP_ENABLE
+#define __USART1_FORCE_RESET __HAL_RCC_USART1_FORCE_RESET
+#define __USART1_RELEASE_RESET __HAL_RCC_USART1_RELEASE_RESET
+#define __USART2_CLK_DISABLE __HAL_RCC_USART2_CLK_DISABLE
+#define __USART2_CLK_ENABLE __HAL_RCC_USART2_CLK_ENABLE
+#define __USART2_CLK_SLEEP_DISABLE __HAL_RCC_USART2_CLK_SLEEP_DISABLE
+#define __USART2_CLK_SLEEP_ENABLE __HAL_RCC_USART2_CLK_SLEEP_ENABLE
+#define __USART2_FORCE_RESET __HAL_RCC_USART2_FORCE_RESET
+#define __USART2_RELEASE_RESET __HAL_RCC_USART2_RELEASE_RESET
+#define __USART3_CLK_DISABLE __HAL_RCC_USART3_CLK_DISABLE
+#define __USART3_CLK_ENABLE __HAL_RCC_USART3_CLK_ENABLE
+#define __USART3_CLK_SLEEP_DISABLE __HAL_RCC_USART3_CLK_SLEEP_DISABLE
+#define __USART3_CLK_SLEEP_ENABLE __HAL_RCC_USART3_CLK_SLEEP_ENABLE
+#define __USART3_FORCE_RESET __HAL_RCC_USART3_FORCE_RESET
+#define __USART3_RELEASE_RESET __HAL_RCC_USART3_RELEASE_RESET
+#define __USART4_CLK_DISABLE __HAL_RCC_UART4_CLK_DISABLE
+#define __USART4_CLK_ENABLE __HAL_RCC_UART4_CLK_ENABLE
+#define __USART4_CLK_SLEEP_ENABLE __HAL_RCC_UART4_CLK_SLEEP_ENABLE
+#define __USART4_CLK_SLEEP_DISABLE __HAL_RCC_UART4_CLK_SLEEP_DISABLE
+#define __USART4_FORCE_RESET __HAL_RCC_UART4_FORCE_RESET
+#define __USART4_RELEASE_RESET __HAL_RCC_UART4_RELEASE_RESET
+#define __USART5_CLK_DISABLE __HAL_RCC_UART5_CLK_DISABLE
+#define __USART5_CLK_ENABLE __HAL_RCC_UART5_CLK_ENABLE
+#define __USART5_CLK_SLEEP_ENABLE __HAL_RCC_UART5_CLK_SLEEP_ENABLE
+#define __USART5_CLK_SLEEP_DISABLE __HAL_RCC_UART5_CLK_SLEEP_DISABLE
+#define __USART5_FORCE_RESET __HAL_RCC_UART5_FORCE_RESET
+#define __USART5_RELEASE_RESET __HAL_RCC_UART5_RELEASE_RESET
+#define __USART7_CLK_DISABLE __HAL_RCC_UART7_CLK_DISABLE
+#define __USART7_CLK_ENABLE __HAL_RCC_UART7_CLK_ENABLE
+#define __USART7_FORCE_RESET __HAL_RCC_UART7_FORCE_RESET
+#define __USART7_RELEASE_RESET __HAL_RCC_UART7_RELEASE_RESET
+#define __USART8_CLK_DISABLE __HAL_RCC_UART8_CLK_DISABLE
+#define __USART8_CLK_ENABLE __HAL_RCC_UART8_CLK_ENABLE
+#define __USART8_FORCE_RESET __HAL_RCC_UART8_FORCE_RESET
+#define __USART8_RELEASE_RESET __HAL_RCC_UART8_RELEASE_RESET
+#define __USB_CLK_DISABLE __HAL_RCC_USB_CLK_DISABLE
+#define __USB_CLK_ENABLE __HAL_RCC_USB_CLK_ENABLE
+#define __USB_FORCE_RESET __HAL_RCC_USB_FORCE_RESET
+#define __USB_CLK_SLEEP_ENABLE __HAL_RCC_USB_CLK_SLEEP_ENABLE
+#define __USB_CLK_SLEEP_DISABLE __HAL_RCC_USB_CLK_SLEEP_DISABLE
+#define __USB_OTG_FS_CLK_DISABLE __HAL_RCC_USB_OTG_FS_CLK_DISABLE
+#define __USB_OTG_FS_CLK_ENABLE __HAL_RCC_USB_OTG_FS_CLK_ENABLE
+#define __USB_RELEASE_RESET __HAL_RCC_USB_RELEASE_RESET
+
+#if defined(STM32H7)
+#define __HAL_RCC_WWDG_CLK_DISABLE __HAL_RCC_WWDG1_CLK_DISABLE
+#define __HAL_RCC_WWDG_CLK_ENABLE __HAL_RCC_WWDG1_CLK_ENABLE
+#define __HAL_RCC_WWDG_CLK_SLEEP_DISABLE __HAL_RCC_WWDG1_CLK_SLEEP_DISABLE
+#define __HAL_RCC_WWDG_CLK_SLEEP_ENABLE __HAL_RCC_WWDG1_CLK_SLEEP_ENABLE
+
+#define __HAL_RCC_WWDG_FORCE_RESET ((void)0U) /* Not available on the STM32H7*/
+#define __HAL_RCC_WWDG_RELEASE_RESET ((void)0U) /* Not available on the STM32H7*/
+
+#define __HAL_RCC_WWDG_IS_CLK_ENABLED __HAL_RCC_WWDG1_IS_CLK_ENABLED
+#define __HAL_RCC_WWDG_IS_CLK_DISABLED __HAL_RCC_WWDG1_IS_CLK_DISABLED
+#endif
+
+#define __WWDG_CLK_DISABLE __HAL_RCC_WWDG_CLK_DISABLE
+#define __WWDG_CLK_ENABLE __HAL_RCC_WWDG_CLK_ENABLE
+#define __WWDG_CLK_SLEEP_DISABLE __HAL_RCC_WWDG_CLK_SLEEP_DISABLE
+#define __WWDG_CLK_SLEEP_ENABLE __HAL_RCC_WWDG_CLK_SLEEP_ENABLE
+#define __WWDG_FORCE_RESET __HAL_RCC_WWDG_FORCE_RESET
+#define __WWDG_RELEASE_RESET __HAL_RCC_WWDG_RELEASE_RESET
+
+#define __TIM21_CLK_ENABLE __HAL_RCC_TIM21_CLK_ENABLE
+#define __TIM21_CLK_DISABLE __HAL_RCC_TIM21_CLK_DISABLE
+#define __TIM21_FORCE_RESET __HAL_RCC_TIM21_FORCE_RESET
+#define __TIM21_RELEASE_RESET __HAL_RCC_TIM21_RELEASE_RESET
+#define __TIM21_CLK_SLEEP_ENABLE __HAL_RCC_TIM21_CLK_SLEEP_ENABLE
+#define __TIM21_CLK_SLEEP_DISABLE __HAL_RCC_TIM21_CLK_SLEEP_DISABLE
+#define __TIM22_CLK_ENABLE __HAL_RCC_TIM22_CLK_ENABLE
+#define __TIM22_CLK_DISABLE __HAL_RCC_TIM22_CLK_DISABLE
+#define __TIM22_FORCE_RESET __HAL_RCC_TIM22_FORCE_RESET
+#define __TIM22_RELEASE_RESET __HAL_RCC_TIM22_RELEASE_RESET
+#define __TIM22_CLK_SLEEP_ENABLE __HAL_RCC_TIM22_CLK_SLEEP_ENABLE
+#define __TIM22_CLK_SLEEP_DISABLE __HAL_RCC_TIM22_CLK_SLEEP_DISABLE
+#define __CRS_CLK_DISABLE __HAL_RCC_CRS_CLK_DISABLE
+#define __CRS_CLK_ENABLE __HAL_RCC_CRS_CLK_ENABLE
+#define __CRS_CLK_SLEEP_DISABLE __HAL_RCC_CRS_CLK_SLEEP_DISABLE
+#define __CRS_CLK_SLEEP_ENABLE __HAL_RCC_CRS_CLK_SLEEP_ENABLE
+#define __CRS_FORCE_RESET __HAL_RCC_CRS_FORCE_RESET
+#define __CRS_RELEASE_RESET __HAL_RCC_CRS_RELEASE_RESET
+#define __RCC_BACKUPRESET_FORCE __HAL_RCC_BACKUPRESET_FORCE
+#define __RCC_BACKUPRESET_RELEASE __HAL_RCC_BACKUPRESET_RELEASE
+
+#define __USB_OTG_FS_FORCE_RESET __HAL_RCC_USB_OTG_FS_FORCE_RESET
+#define __USB_OTG_FS_RELEASE_RESET __HAL_RCC_USB_OTG_FS_RELEASE_RESET
+#define __USB_OTG_FS_CLK_SLEEP_ENABLE __HAL_RCC_USB_OTG_FS_CLK_SLEEP_ENABLE
+#define __USB_OTG_FS_CLK_SLEEP_DISABLE __HAL_RCC_USB_OTG_FS_CLK_SLEEP_DISABLE
+#define __USB_OTG_HS_CLK_DISABLE __HAL_RCC_USB_OTG_HS_CLK_DISABLE
+#define __USB_OTG_HS_CLK_ENABLE __HAL_RCC_USB_OTG_HS_CLK_ENABLE
+#define __USB_OTG_HS_ULPI_CLK_ENABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_ENABLE
+#define __USB_OTG_HS_ULPI_CLK_DISABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_DISABLE
+#define __TIM9_CLK_SLEEP_ENABLE __HAL_RCC_TIM9_CLK_SLEEP_ENABLE
+#define __TIM9_CLK_SLEEP_DISABLE __HAL_RCC_TIM9_CLK_SLEEP_DISABLE
+#define __TIM10_CLK_SLEEP_ENABLE __HAL_RCC_TIM10_CLK_SLEEP_ENABLE
+#define __TIM10_CLK_SLEEP_DISABLE __HAL_RCC_TIM10_CLK_SLEEP_DISABLE
+#define __TIM11_CLK_SLEEP_ENABLE __HAL_RCC_TIM11_CLK_SLEEP_ENABLE
+#define __TIM11_CLK_SLEEP_DISABLE __HAL_RCC_TIM11_CLK_SLEEP_DISABLE
+#define __ETHMACPTP_CLK_SLEEP_ENABLE __HAL_RCC_ETHMACPTP_CLK_SLEEP_ENABLE
+#define __ETHMACPTP_CLK_SLEEP_DISABLE __HAL_RCC_ETHMACPTP_CLK_SLEEP_DISABLE
+#define __ETHMACPTP_CLK_ENABLE __HAL_RCC_ETHMACPTP_CLK_ENABLE
+#define __ETHMACPTP_CLK_DISABLE __HAL_RCC_ETHMACPTP_CLK_DISABLE
+#define __HASH_CLK_ENABLE __HAL_RCC_HASH_CLK_ENABLE
+#define __HASH_FORCE_RESET __HAL_RCC_HASH_FORCE_RESET
+#define __HASH_RELEASE_RESET __HAL_RCC_HASH_RELEASE_RESET
+#define __HASH_CLK_SLEEP_ENABLE __HAL_RCC_HASH_CLK_SLEEP_ENABLE
+#define __HASH_CLK_SLEEP_DISABLE __HAL_RCC_HASH_CLK_SLEEP_DISABLE
+#define __HASH_CLK_DISABLE __HAL_RCC_HASH_CLK_DISABLE
+#define __SPI5_CLK_ENABLE __HAL_RCC_SPI5_CLK_ENABLE
+#define __SPI5_CLK_DISABLE __HAL_RCC_SPI5_CLK_DISABLE
+#define __SPI5_FORCE_RESET __HAL_RCC_SPI5_FORCE_RESET
+#define __SPI5_RELEASE_RESET __HAL_RCC_SPI5_RELEASE_RESET
+#define __SPI5_CLK_SLEEP_ENABLE __HAL_RCC_SPI5_CLK_SLEEP_ENABLE
+#define __SPI5_CLK_SLEEP_DISABLE __HAL_RCC_SPI5_CLK_SLEEP_DISABLE
+#define __SPI6_CLK_ENABLE __HAL_RCC_SPI6_CLK_ENABLE
+#define __SPI6_CLK_DISABLE __HAL_RCC_SPI6_CLK_DISABLE
+#define __SPI6_FORCE_RESET __HAL_RCC_SPI6_FORCE_RESET
+#define __SPI6_RELEASE_RESET __HAL_RCC_SPI6_RELEASE_RESET
+#define __SPI6_CLK_SLEEP_ENABLE __HAL_RCC_SPI6_CLK_SLEEP_ENABLE
+#define __SPI6_CLK_SLEEP_DISABLE __HAL_RCC_SPI6_CLK_SLEEP_DISABLE
+#define __LTDC_CLK_ENABLE __HAL_RCC_LTDC_CLK_ENABLE
+#define __LTDC_CLK_DISABLE __HAL_RCC_LTDC_CLK_DISABLE
+#define __LTDC_FORCE_RESET __HAL_RCC_LTDC_FORCE_RESET
+#define __LTDC_RELEASE_RESET __HAL_RCC_LTDC_RELEASE_RESET
+#define __LTDC_CLK_SLEEP_ENABLE __HAL_RCC_LTDC_CLK_SLEEP_ENABLE
+#define __ETHMAC_CLK_SLEEP_ENABLE __HAL_RCC_ETHMAC_CLK_SLEEP_ENABLE
+#define __ETHMAC_CLK_SLEEP_DISABLE __HAL_RCC_ETHMAC_CLK_SLEEP_DISABLE
+#define __ETHMACTX_CLK_SLEEP_ENABLE __HAL_RCC_ETHMACTX_CLK_SLEEP_ENABLE
+#define __ETHMACTX_CLK_SLEEP_DISABLE __HAL_RCC_ETHMACTX_CLK_SLEEP_DISABLE
+#define __ETHMACRX_CLK_SLEEP_ENABLE __HAL_RCC_ETHMACRX_CLK_SLEEP_ENABLE
+#define __ETHMACRX_CLK_SLEEP_DISABLE __HAL_RCC_ETHMACRX_CLK_SLEEP_DISABLE
+#define __TIM12_CLK_SLEEP_ENABLE __HAL_RCC_TIM12_CLK_SLEEP_ENABLE
+#define __TIM12_CLK_SLEEP_DISABLE __HAL_RCC_TIM12_CLK_SLEEP_DISABLE
+#define __TIM13_CLK_SLEEP_ENABLE __HAL_RCC_TIM13_CLK_SLEEP_ENABLE
+#define __TIM13_CLK_SLEEP_DISABLE __HAL_RCC_TIM13_CLK_SLEEP_DISABLE
+#define __TIM14_CLK_SLEEP_ENABLE __HAL_RCC_TIM14_CLK_SLEEP_ENABLE
+#define __TIM14_CLK_SLEEP_DISABLE __HAL_RCC_TIM14_CLK_SLEEP_DISABLE
+#define __BKPSRAM_CLK_ENABLE __HAL_RCC_BKPSRAM_CLK_ENABLE
+#define __BKPSRAM_CLK_DISABLE __HAL_RCC_BKPSRAM_CLK_DISABLE
+#define __BKPSRAM_CLK_SLEEP_ENABLE __HAL_RCC_BKPSRAM_CLK_SLEEP_ENABLE
+#define __BKPSRAM_CLK_SLEEP_DISABLE __HAL_RCC_BKPSRAM_CLK_SLEEP_DISABLE
+#define __CCMDATARAMEN_CLK_ENABLE __HAL_RCC_CCMDATARAMEN_CLK_ENABLE
+#define __CCMDATARAMEN_CLK_DISABLE __HAL_RCC_CCMDATARAMEN_CLK_DISABLE
+#define __USART6_CLK_ENABLE __HAL_RCC_USART6_CLK_ENABLE
+#define __USART6_CLK_DISABLE __HAL_RCC_USART6_CLK_DISABLE
+#define __USART6_FORCE_RESET __HAL_RCC_USART6_FORCE_RESET
+#define __USART6_RELEASE_RESET __HAL_RCC_USART6_RELEASE_RESET
+#define __USART6_CLK_SLEEP_ENABLE __HAL_RCC_USART6_CLK_SLEEP_ENABLE
+#define __USART6_CLK_SLEEP_DISABLE __HAL_RCC_USART6_CLK_SLEEP_DISABLE
+#define __SPI4_CLK_ENABLE __HAL_RCC_SPI4_CLK_ENABLE
+#define __SPI4_CLK_DISABLE __HAL_RCC_SPI4_CLK_DISABLE
+#define __SPI4_FORCE_RESET __HAL_RCC_SPI4_FORCE_RESET
+#define __SPI4_RELEASE_RESET __HAL_RCC_SPI4_RELEASE_RESET
+#define __SPI4_CLK_SLEEP_ENABLE __HAL_RCC_SPI4_CLK_SLEEP_ENABLE
+#define __SPI4_CLK_SLEEP_DISABLE __HAL_RCC_SPI4_CLK_SLEEP_DISABLE
+#define __GPIOI_CLK_ENABLE __HAL_RCC_GPIOI_CLK_ENABLE
+#define __GPIOI_CLK_DISABLE __HAL_RCC_GPIOI_CLK_DISABLE
+#define __GPIOI_FORCE_RESET __HAL_RCC_GPIOI_FORCE_RESET
+#define __GPIOI_RELEASE_RESET __HAL_RCC_GPIOI_RELEASE_RESET
+#define __GPIOI_CLK_SLEEP_ENABLE __HAL_RCC_GPIOI_CLK_SLEEP_ENABLE
+#define __GPIOI_CLK_SLEEP_DISABLE __HAL_RCC_GPIOI_CLK_SLEEP_DISABLE
+#define __GPIOJ_CLK_ENABLE __HAL_RCC_GPIOJ_CLK_ENABLE
+#define __GPIOJ_CLK_DISABLE __HAL_RCC_GPIOJ_CLK_DISABLE
+#define __GPIOJ_FORCE_RESET __HAL_RCC_GPIOJ_FORCE_RESET
+#define __GPIOJ_RELEASE_RESET __HAL_RCC_GPIOJ_RELEASE_RESET
+#define __GPIOJ_CLK_SLEEP_ENABLE __HAL_RCC_GPIOJ_CLK_SLEEP_ENABLE
+#define __GPIOJ_CLK_SLEEP_DISABLE __HAL_RCC_GPIOJ_CLK_SLEEP_DISABLE
+#define __GPIOK_CLK_ENABLE __HAL_RCC_GPIOK_CLK_ENABLE
+#define __GPIOK_CLK_DISABLE __HAL_RCC_GPIOK_CLK_DISABLE
+#define __GPIOK_RELEASE_RESET __HAL_RCC_GPIOK_RELEASE_RESET
+#define __GPIOK_CLK_SLEEP_ENABLE __HAL_RCC_GPIOK_CLK_SLEEP_ENABLE
+#define __GPIOK_CLK_SLEEP_DISABLE __HAL_RCC_GPIOK_CLK_SLEEP_DISABLE
+#define __ETH_CLK_ENABLE __HAL_RCC_ETH_CLK_ENABLE
+#define __ETH_CLK_DISABLE __HAL_RCC_ETH_CLK_DISABLE
+#define __DCMI_CLK_ENABLE __HAL_RCC_DCMI_CLK_ENABLE
+#define __DCMI_CLK_DISABLE __HAL_RCC_DCMI_CLK_DISABLE
+#define __DCMI_FORCE_RESET __HAL_RCC_DCMI_FORCE_RESET
+#define __DCMI_RELEASE_RESET __HAL_RCC_DCMI_RELEASE_RESET
+#define __DCMI_CLK_SLEEP_ENABLE __HAL_RCC_DCMI_CLK_SLEEP_ENABLE
+#define __DCMI_CLK_SLEEP_DISABLE __HAL_RCC_DCMI_CLK_SLEEP_DISABLE
+#define __UART7_CLK_ENABLE __HAL_RCC_UART7_CLK_ENABLE
+#define __UART7_CLK_DISABLE __HAL_RCC_UART7_CLK_DISABLE
+#define __UART7_RELEASE_RESET __HAL_RCC_UART7_RELEASE_RESET
+#define __UART7_FORCE_RESET __HAL_RCC_UART7_FORCE_RESET
+#define __UART7_CLK_SLEEP_ENABLE __HAL_RCC_UART7_CLK_SLEEP_ENABLE
+#define __UART7_CLK_SLEEP_DISABLE __HAL_RCC_UART7_CLK_SLEEP_DISABLE
+#define __UART8_CLK_ENABLE __HAL_RCC_UART8_CLK_ENABLE
+#define __UART8_CLK_DISABLE __HAL_RCC_UART8_CLK_DISABLE
+#define __UART8_FORCE_RESET __HAL_RCC_UART8_FORCE_RESET
+#define __UART8_RELEASE_RESET __HAL_RCC_UART8_RELEASE_RESET
+#define __UART8_CLK_SLEEP_ENABLE __HAL_RCC_UART8_CLK_SLEEP_ENABLE
+#define __UART8_CLK_SLEEP_DISABLE __HAL_RCC_UART8_CLK_SLEEP_DISABLE
+#define __OTGHS_CLK_SLEEP_ENABLE __HAL_RCC_USB_OTG_HS_CLK_SLEEP_ENABLE
+#define __OTGHS_CLK_SLEEP_DISABLE __HAL_RCC_USB_OTG_HS_CLK_SLEEP_DISABLE
+#define __OTGHS_FORCE_RESET __HAL_RCC_USB_OTG_HS_FORCE_RESET
+#define __OTGHS_RELEASE_RESET __HAL_RCC_USB_OTG_HS_RELEASE_RESET
+#define __OTGHSULPI_CLK_SLEEP_ENABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_ENABLE
+#define __OTGHSULPI_CLK_SLEEP_DISABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_DISABLE
+#define __HAL_RCC_OTGHS_CLK_SLEEP_ENABLE __HAL_RCC_USB_OTG_HS_CLK_SLEEP_ENABLE
+#define __HAL_RCC_OTGHS_CLK_SLEEP_DISABLE __HAL_RCC_USB_OTG_HS_CLK_SLEEP_DISABLE
+#define __HAL_RCC_OTGHS_IS_CLK_SLEEP_ENABLED __HAL_RCC_USB_OTG_HS_IS_CLK_SLEEP_ENABLED
+#define __HAL_RCC_OTGHS_IS_CLK_SLEEP_DISABLED __HAL_RCC_USB_OTG_HS_IS_CLK_SLEEP_DISABLED
+#define __HAL_RCC_OTGHS_FORCE_RESET __HAL_RCC_USB_OTG_HS_FORCE_RESET
+#define __HAL_RCC_OTGHS_RELEASE_RESET __HAL_RCC_USB_OTG_HS_RELEASE_RESET
+#define __HAL_RCC_OTGHSULPI_CLK_SLEEP_ENABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_ENABLE
+#define __HAL_RCC_OTGHSULPI_CLK_SLEEP_DISABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_DISABLE
+#define __HAL_RCC_OTGHSULPI_IS_CLK_SLEEP_ENABLED __HAL_RCC_USB_OTG_HS_ULPI_IS_CLK_SLEEP_ENABLED
+#define __HAL_RCC_OTGHSULPI_IS_CLK_SLEEP_DISABLED __HAL_RCC_USB_OTG_HS_ULPI_IS_CLK_SLEEP_DISABLED
+#define __SRAM3_CLK_SLEEP_ENABLE __HAL_RCC_SRAM3_CLK_SLEEP_ENABLE
+#define __CAN2_CLK_SLEEP_ENABLE __HAL_RCC_CAN2_CLK_SLEEP_ENABLE
+#define __CAN2_CLK_SLEEP_DISABLE __HAL_RCC_CAN2_CLK_SLEEP_DISABLE
+#define __DAC_CLK_SLEEP_ENABLE __HAL_RCC_DAC_CLK_SLEEP_ENABLE
+#define __DAC_CLK_SLEEP_DISABLE __HAL_RCC_DAC_CLK_SLEEP_DISABLE
+#define __ADC2_CLK_SLEEP_ENABLE __HAL_RCC_ADC2_CLK_SLEEP_ENABLE
+#define __ADC2_CLK_SLEEP_DISABLE __HAL_RCC_ADC2_CLK_SLEEP_DISABLE
+#define __ADC3_CLK_SLEEP_ENABLE __HAL_RCC_ADC3_CLK_SLEEP_ENABLE
+#define __ADC3_CLK_SLEEP_DISABLE __HAL_RCC_ADC3_CLK_SLEEP_DISABLE
+#define __FSMC_FORCE_RESET __HAL_RCC_FSMC_FORCE_RESET
+#define __FSMC_RELEASE_RESET __HAL_RCC_FSMC_RELEASE_RESET
+#define __FSMC_CLK_SLEEP_ENABLE __HAL_RCC_FSMC_CLK_SLEEP_ENABLE
+#define __FSMC_CLK_SLEEP_DISABLE __HAL_RCC_FSMC_CLK_SLEEP_DISABLE
+#define __SDIO_FORCE_RESET __HAL_RCC_SDIO_FORCE_RESET
+#define __SDIO_RELEASE_RESET __HAL_RCC_SDIO_RELEASE_RESET
+#define __SDIO_CLK_SLEEP_DISABLE __HAL_RCC_SDIO_CLK_SLEEP_DISABLE
+#define __SDIO_CLK_SLEEP_ENABLE __HAL_RCC_SDIO_CLK_SLEEP_ENABLE
+#define __DMA2D_CLK_ENABLE __HAL_RCC_DMA2D_CLK_ENABLE
+#define __DMA2D_CLK_DISABLE __HAL_RCC_DMA2D_CLK_DISABLE
+#define __DMA2D_FORCE_RESET __HAL_RCC_DMA2D_FORCE_RESET
+#define __DMA2D_RELEASE_RESET __HAL_RCC_DMA2D_RELEASE_RESET
+#define __DMA2D_CLK_SLEEP_ENABLE __HAL_RCC_DMA2D_CLK_SLEEP_ENABLE
+#define __DMA2D_CLK_SLEEP_DISABLE __HAL_RCC_DMA2D_CLK_SLEEP_DISABLE
+
+/* alias define maintained for legacy */
+#define __HAL_RCC_OTGFS_FORCE_RESET __HAL_RCC_USB_OTG_FS_FORCE_RESET
+#define __HAL_RCC_OTGFS_RELEASE_RESET __HAL_RCC_USB_OTG_FS_RELEASE_RESET
+
+#define __ADC12_CLK_ENABLE __HAL_RCC_ADC12_CLK_ENABLE
+#define __ADC12_CLK_DISABLE __HAL_RCC_ADC12_CLK_DISABLE
+#define __ADC34_CLK_ENABLE __HAL_RCC_ADC34_CLK_ENABLE
+#define __ADC34_CLK_DISABLE __HAL_RCC_ADC34_CLK_DISABLE
+#define __DAC2_CLK_ENABLE __HAL_RCC_DAC2_CLK_ENABLE
+#define __DAC2_CLK_DISABLE __HAL_RCC_DAC2_CLK_DISABLE
+#define __TIM18_CLK_ENABLE __HAL_RCC_TIM18_CLK_ENABLE
+#define __TIM18_CLK_DISABLE __HAL_RCC_TIM18_CLK_DISABLE
+#define __TIM19_CLK_ENABLE __HAL_RCC_TIM19_CLK_ENABLE
+#define __TIM19_CLK_DISABLE __HAL_RCC_TIM19_CLK_DISABLE
+#define __TIM20_CLK_ENABLE __HAL_RCC_TIM20_CLK_ENABLE
+#define __TIM20_CLK_DISABLE __HAL_RCC_TIM20_CLK_DISABLE
+#define __HRTIM1_CLK_ENABLE __HAL_RCC_HRTIM1_CLK_ENABLE
+#define __HRTIM1_CLK_DISABLE __HAL_RCC_HRTIM1_CLK_DISABLE
+#define __SDADC1_CLK_ENABLE __HAL_RCC_SDADC1_CLK_ENABLE
+#define __SDADC2_CLK_ENABLE __HAL_RCC_SDADC2_CLK_ENABLE
+#define __SDADC3_CLK_ENABLE __HAL_RCC_SDADC3_CLK_ENABLE
+#define __SDADC1_CLK_DISABLE __HAL_RCC_SDADC1_CLK_DISABLE
+#define __SDADC2_CLK_DISABLE __HAL_RCC_SDADC2_CLK_DISABLE
+#define __SDADC3_CLK_DISABLE __HAL_RCC_SDADC3_CLK_DISABLE
+
+#define __ADC12_FORCE_RESET __HAL_RCC_ADC12_FORCE_RESET
+#define __ADC12_RELEASE_RESET __HAL_RCC_ADC12_RELEASE_RESET
+#define __ADC34_FORCE_RESET __HAL_RCC_ADC34_FORCE_RESET
+#define __ADC34_RELEASE_RESET __HAL_RCC_ADC34_RELEASE_RESET
+#define __DAC2_FORCE_RESET __HAL_RCC_DAC2_FORCE_RESET
+#define __DAC2_RELEASE_RESET __HAL_RCC_DAC2_RELEASE_RESET
+#define __TIM18_FORCE_RESET __HAL_RCC_TIM18_FORCE_RESET
+#define __TIM18_RELEASE_RESET __HAL_RCC_TIM18_RELEASE_RESET
+#define __TIM19_FORCE_RESET __HAL_RCC_TIM19_FORCE_RESET
+#define __TIM19_RELEASE_RESET __HAL_RCC_TIM19_RELEASE_RESET
+#define __TIM20_FORCE_RESET __HAL_RCC_TIM20_FORCE_RESET
+#define __TIM20_RELEASE_RESET __HAL_RCC_TIM20_RELEASE_RESET
+#define __HRTIM1_FORCE_RESET __HAL_RCC_HRTIM1_FORCE_RESET
+#define __HRTIM1_RELEASE_RESET __HAL_RCC_HRTIM1_RELEASE_RESET
+#define __SDADC1_FORCE_RESET __HAL_RCC_SDADC1_FORCE_RESET
+#define __SDADC2_FORCE_RESET __HAL_RCC_SDADC2_FORCE_RESET
+#define __SDADC3_FORCE_RESET __HAL_RCC_SDADC3_FORCE_RESET
+#define __SDADC1_RELEASE_RESET __HAL_RCC_SDADC1_RELEASE_RESET
+#define __SDADC2_RELEASE_RESET __HAL_RCC_SDADC2_RELEASE_RESET
+#define __SDADC3_RELEASE_RESET __HAL_RCC_SDADC3_RELEASE_RESET
+
+#define __ADC1_IS_CLK_ENABLED __HAL_RCC_ADC1_IS_CLK_ENABLED
+#define __ADC1_IS_CLK_DISABLED __HAL_RCC_ADC1_IS_CLK_DISABLED
+#define __ADC12_IS_CLK_ENABLED __HAL_RCC_ADC12_IS_CLK_ENABLED
+#define __ADC12_IS_CLK_DISABLED __HAL_RCC_ADC12_IS_CLK_DISABLED
+#define __ADC34_IS_CLK_ENABLED __HAL_RCC_ADC34_IS_CLK_ENABLED
+#define __ADC34_IS_CLK_DISABLED __HAL_RCC_ADC34_IS_CLK_DISABLED
+#define __CEC_IS_CLK_ENABLED __HAL_RCC_CEC_IS_CLK_ENABLED
+#define __CEC_IS_CLK_DISABLED __HAL_RCC_CEC_IS_CLK_DISABLED
+#define __CRC_IS_CLK_ENABLED __HAL_RCC_CRC_IS_CLK_ENABLED
+#define __CRC_IS_CLK_DISABLED __HAL_RCC_CRC_IS_CLK_DISABLED
+#define __DAC1_IS_CLK_ENABLED __HAL_RCC_DAC1_IS_CLK_ENABLED
+#define __DAC1_IS_CLK_DISABLED __HAL_RCC_DAC1_IS_CLK_DISABLED
+#define __DAC2_IS_CLK_ENABLED __HAL_RCC_DAC2_IS_CLK_ENABLED
+#define __DAC2_IS_CLK_DISABLED __HAL_RCC_DAC2_IS_CLK_DISABLED
+#define __DMA1_IS_CLK_ENABLED __HAL_RCC_DMA1_IS_CLK_ENABLED
+#define __DMA1_IS_CLK_DISABLED __HAL_RCC_DMA1_IS_CLK_DISABLED
+#define __DMA2_IS_CLK_ENABLED __HAL_RCC_DMA2_IS_CLK_ENABLED
+#define __DMA2_IS_CLK_DISABLED __HAL_RCC_DMA2_IS_CLK_DISABLED
+#define __FLITF_IS_CLK_ENABLED __HAL_RCC_FLITF_IS_CLK_ENABLED
+#define __FLITF_IS_CLK_DISABLED __HAL_RCC_FLITF_IS_CLK_DISABLED
+#define __FMC_IS_CLK_ENABLED __HAL_RCC_FMC_IS_CLK_ENABLED
+#define __FMC_IS_CLK_DISABLED __HAL_RCC_FMC_IS_CLK_DISABLED
+#define __GPIOA_IS_CLK_ENABLED __HAL_RCC_GPIOA_IS_CLK_ENABLED
+#define __GPIOA_IS_CLK_DISABLED __HAL_RCC_GPIOA_IS_CLK_DISABLED
+#define __GPIOB_IS_CLK_ENABLED __HAL_RCC_GPIOB_IS_CLK_ENABLED
+#define __GPIOB_IS_CLK_DISABLED __HAL_RCC_GPIOB_IS_CLK_DISABLED
+#define __GPIOC_IS_CLK_ENABLED __HAL_RCC_GPIOC_IS_CLK_ENABLED
+#define __GPIOC_IS_CLK_DISABLED __HAL_RCC_GPIOC_IS_CLK_DISABLED
+#define __GPIOD_IS_CLK_ENABLED __HAL_RCC_GPIOD_IS_CLK_ENABLED
+#define __GPIOD_IS_CLK_DISABLED __HAL_RCC_GPIOD_IS_CLK_DISABLED
+#define __GPIOE_IS_CLK_ENABLED __HAL_RCC_GPIOE_IS_CLK_ENABLED
+#define __GPIOE_IS_CLK_DISABLED __HAL_RCC_GPIOE_IS_CLK_DISABLED
+#define __GPIOF_IS_CLK_ENABLED __HAL_RCC_GPIOF_IS_CLK_ENABLED
+#define __GPIOF_IS_CLK_DISABLED __HAL_RCC_GPIOF_IS_CLK_DISABLED
+#define __GPIOG_IS_CLK_ENABLED __HAL_RCC_GPIOG_IS_CLK_ENABLED
+#define __GPIOG_IS_CLK_DISABLED __HAL_RCC_GPIOG_IS_CLK_DISABLED
+#define __GPIOH_IS_CLK_ENABLED __HAL_RCC_GPIOH_IS_CLK_ENABLED
+#define __GPIOH_IS_CLK_DISABLED __HAL_RCC_GPIOH_IS_CLK_DISABLED
+#define __HRTIM1_IS_CLK_ENABLED __HAL_RCC_HRTIM1_IS_CLK_ENABLED
+#define __HRTIM1_IS_CLK_DISABLED __HAL_RCC_HRTIM1_IS_CLK_DISABLED
+#define __I2C1_IS_CLK_ENABLED __HAL_RCC_I2C1_IS_CLK_ENABLED
+#define __I2C1_IS_CLK_DISABLED __HAL_RCC_I2C1_IS_CLK_DISABLED
+#define __I2C2_IS_CLK_ENABLED __HAL_RCC_I2C2_IS_CLK_ENABLED
+#define __I2C2_IS_CLK_DISABLED __HAL_RCC_I2C2_IS_CLK_DISABLED
+#define __I2C3_IS_CLK_ENABLED __HAL_RCC_I2C3_IS_CLK_ENABLED
+#define __I2C3_IS_CLK_DISABLED __HAL_RCC_I2C3_IS_CLK_DISABLED
+#define __PWR_IS_CLK_ENABLED __HAL_RCC_PWR_IS_CLK_ENABLED
+#define __PWR_IS_CLK_DISABLED __HAL_RCC_PWR_IS_CLK_DISABLED
+#define __SYSCFG_IS_CLK_ENABLED __HAL_RCC_SYSCFG_IS_CLK_ENABLED
+#define __SYSCFG_IS_CLK_DISABLED __HAL_RCC_SYSCFG_IS_CLK_DISABLED
+#define __SPI1_IS_CLK_ENABLED __HAL_RCC_SPI1_IS_CLK_ENABLED
+#define __SPI1_IS_CLK_DISABLED __HAL_RCC_SPI1_IS_CLK_DISABLED
+#define __SPI2_IS_CLK_ENABLED __HAL_RCC_SPI2_IS_CLK_ENABLED
+#define __SPI2_IS_CLK_DISABLED __HAL_RCC_SPI2_IS_CLK_DISABLED
+#define __SPI3_IS_CLK_ENABLED __HAL_RCC_SPI3_IS_CLK_ENABLED
+#define __SPI3_IS_CLK_DISABLED __HAL_RCC_SPI3_IS_CLK_DISABLED
+#define __SPI4_IS_CLK_ENABLED __HAL_RCC_SPI4_IS_CLK_ENABLED
+#define __SPI4_IS_CLK_DISABLED __HAL_RCC_SPI4_IS_CLK_DISABLED
+#define __SDADC1_IS_CLK_ENABLED __HAL_RCC_SDADC1_IS_CLK_ENABLED
+#define __SDADC1_IS_CLK_DISABLED __HAL_RCC_SDADC1_IS_CLK_DISABLED
+#define __SDADC2_IS_CLK_ENABLED __HAL_RCC_SDADC2_IS_CLK_ENABLED
+#define __SDADC2_IS_CLK_DISABLED __HAL_RCC_SDADC2_IS_CLK_DISABLED
+#define __SDADC3_IS_CLK_ENABLED __HAL_RCC_SDADC3_IS_CLK_ENABLED
+#define __SDADC3_IS_CLK_DISABLED __HAL_RCC_SDADC3_IS_CLK_DISABLED
+#define __SRAM_IS_CLK_ENABLED __HAL_RCC_SRAM_IS_CLK_ENABLED
+#define __SRAM_IS_CLK_DISABLED __HAL_RCC_SRAM_IS_CLK_DISABLED
+#define __TIM1_IS_CLK_ENABLED __HAL_RCC_TIM1_IS_CLK_ENABLED
+#define __TIM1_IS_CLK_DISABLED __HAL_RCC_TIM1_IS_CLK_DISABLED
+#define __TIM2_IS_CLK_ENABLED __HAL_RCC_TIM2_IS_CLK_ENABLED
+#define __TIM2_IS_CLK_DISABLED __HAL_RCC_TIM2_IS_CLK_DISABLED
+#define __TIM3_IS_CLK_ENABLED __HAL_RCC_TIM3_IS_CLK_ENABLED
+#define __TIM3_IS_CLK_DISABLED __HAL_RCC_TIM3_IS_CLK_DISABLED
+#define __TIM4_IS_CLK_ENABLED __HAL_RCC_TIM4_IS_CLK_ENABLED
+#define __TIM4_IS_CLK_DISABLED __HAL_RCC_TIM4_IS_CLK_DISABLED
+#define __TIM5_IS_CLK_ENABLED __HAL_RCC_TIM5_IS_CLK_ENABLED
+#define __TIM5_IS_CLK_DISABLED __HAL_RCC_TIM5_IS_CLK_DISABLED
+#define __TIM6_IS_CLK_ENABLED __HAL_RCC_TIM6_IS_CLK_ENABLED
+#define __TIM6_IS_CLK_DISABLED __HAL_RCC_TIM6_IS_CLK_DISABLED
+#define __TIM7_IS_CLK_ENABLED __HAL_RCC_TIM7_IS_CLK_ENABLED
+#define __TIM7_IS_CLK_DISABLED __HAL_RCC_TIM7_IS_CLK_DISABLED
+#define __TIM8_IS_CLK_ENABLED __HAL_RCC_TIM8_IS_CLK_ENABLED
+#define __TIM8_IS_CLK_DISABLED __HAL_RCC_TIM8_IS_CLK_DISABLED
+#define __TIM12_IS_CLK_ENABLED __HAL_RCC_TIM12_IS_CLK_ENABLED
+#define __TIM12_IS_CLK_DISABLED __HAL_RCC_TIM12_IS_CLK_DISABLED
+#define __TIM13_IS_CLK_ENABLED __HAL_RCC_TIM13_IS_CLK_ENABLED
+#define __TIM13_IS_CLK_DISABLED __HAL_RCC_TIM13_IS_CLK_DISABLED
+#define __TIM14_IS_CLK_ENABLED __HAL_RCC_TIM14_IS_CLK_ENABLED
+#define __TIM14_IS_CLK_DISABLED __HAL_RCC_TIM14_IS_CLK_DISABLED
+#define __TIM15_IS_CLK_ENABLED __HAL_RCC_TIM15_IS_CLK_ENABLED
+#define __TIM15_IS_CLK_DISABLED __HAL_RCC_TIM15_IS_CLK_DISABLED
+#define __TIM16_IS_CLK_ENABLED __HAL_RCC_TIM16_IS_CLK_ENABLED
+#define __TIM16_IS_CLK_DISABLED __HAL_RCC_TIM16_IS_CLK_DISABLED
+#define __TIM17_IS_CLK_ENABLED __HAL_RCC_TIM17_IS_CLK_ENABLED
+#define __TIM17_IS_CLK_DISABLED __HAL_RCC_TIM17_IS_CLK_DISABLED
+#define __TIM18_IS_CLK_ENABLED __HAL_RCC_TIM18_IS_CLK_ENABLED
+#define __TIM18_IS_CLK_DISABLED __HAL_RCC_TIM18_IS_CLK_DISABLED
+#define __TIM19_IS_CLK_ENABLED __HAL_RCC_TIM19_IS_CLK_ENABLED
+#define __TIM19_IS_CLK_DISABLED __HAL_RCC_TIM19_IS_CLK_DISABLED
+#define __TIM20_IS_CLK_ENABLED __HAL_RCC_TIM20_IS_CLK_ENABLED
+#define __TIM20_IS_CLK_DISABLED __HAL_RCC_TIM20_IS_CLK_DISABLED
+#define __TSC_IS_CLK_ENABLED __HAL_RCC_TSC_IS_CLK_ENABLED
+#define __TSC_IS_CLK_DISABLED __HAL_RCC_TSC_IS_CLK_DISABLED
+#define __UART4_IS_CLK_ENABLED __HAL_RCC_UART4_IS_CLK_ENABLED
+#define __UART4_IS_CLK_DISABLED __HAL_RCC_UART4_IS_CLK_DISABLED
+#define __UART5_IS_CLK_ENABLED __HAL_RCC_UART5_IS_CLK_ENABLED
+#define __UART5_IS_CLK_DISABLED __HAL_RCC_UART5_IS_CLK_DISABLED
+#define __USART1_IS_CLK_ENABLED __HAL_RCC_USART1_IS_CLK_ENABLED
+#define __USART1_IS_CLK_DISABLED __HAL_RCC_USART1_IS_CLK_DISABLED
+#define __USART2_IS_CLK_ENABLED __HAL_RCC_USART2_IS_CLK_ENABLED
+#define __USART2_IS_CLK_DISABLED __HAL_RCC_USART2_IS_CLK_DISABLED
+#define __USART3_IS_CLK_ENABLED __HAL_RCC_USART3_IS_CLK_ENABLED
+#define __USART3_IS_CLK_DISABLED __HAL_RCC_USART3_IS_CLK_DISABLED
+#define __USB_IS_CLK_ENABLED __HAL_RCC_USB_IS_CLK_ENABLED
+#define __USB_IS_CLK_DISABLED __HAL_RCC_USB_IS_CLK_DISABLED
+#define __WWDG_IS_CLK_ENABLED __HAL_RCC_WWDG_IS_CLK_ENABLED
+#define __WWDG_IS_CLK_DISABLED __HAL_RCC_WWDG_IS_CLK_DISABLED
+
+#if defined(STM32L1)
+#define __HAL_RCC_CRYP_CLK_DISABLE __HAL_RCC_AES_CLK_DISABLE
+#define __HAL_RCC_CRYP_CLK_ENABLE __HAL_RCC_AES_CLK_ENABLE
+#define __HAL_RCC_CRYP_CLK_SLEEP_DISABLE __HAL_RCC_AES_CLK_SLEEP_DISABLE
+#define __HAL_RCC_CRYP_CLK_SLEEP_ENABLE __HAL_RCC_AES_CLK_SLEEP_ENABLE
+#define __HAL_RCC_CRYP_FORCE_RESET __HAL_RCC_AES_FORCE_RESET
+#define __HAL_RCC_CRYP_RELEASE_RESET __HAL_RCC_AES_RELEASE_RESET
+#endif /* STM32L1 */
+
+#if defined(STM32F4)
+#define __HAL_RCC_SDMMC1_FORCE_RESET __HAL_RCC_SDIO_FORCE_RESET
+#define __HAL_RCC_SDMMC1_RELEASE_RESET __HAL_RCC_SDIO_RELEASE_RESET
+#define __HAL_RCC_SDMMC1_CLK_SLEEP_ENABLE __HAL_RCC_SDIO_CLK_SLEEP_ENABLE
+#define __HAL_RCC_SDMMC1_CLK_SLEEP_DISABLE __HAL_RCC_SDIO_CLK_SLEEP_DISABLE
+#define __HAL_RCC_SDMMC1_CLK_ENABLE __HAL_RCC_SDIO_CLK_ENABLE
+#define __HAL_RCC_SDMMC1_CLK_DISABLE __HAL_RCC_SDIO_CLK_DISABLE
+#define __HAL_RCC_SDMMC1_IS_CLK_ENABLED __HAL_RCC_SDIO_IS_CLK_ENABLED
+#define __HAL_RCC_SDMMC1_IS_CLK_DISABLED __HAL_RCC_SDIO_IS_CLK_DISABLED
+#define Sdmmc1ClockSelection SdioClockSelection
+#define RCC_PERIPHCLK_SDMMC1 RCC_PERIPHCLK_SDIO
+#define RCC_SDMMC1CLKSOURCE_CLK48 RCC_SDIOCLKSOURCE_CK48
+#define RCC_SDMMC1CLKSOURCE_SYSCLK RCC_SDIOCLKSOURCE_SYSCLK
+#define __HAL_RCC_SDMMC1_CONFIG __HAL_RCC_SDIO_CONFIG
+#define __HAL_RCC_GET_SDMMC1_SOURCE __HAL_RCC_GET_SDIO_SOURCE
+#endif
+
+#if defined(STM32F7) || defined(STM32L4)
+#define __HAL_RCC_SDIO_FORCE_RESET __HAL_RCC_SDMMC1_FORCE_RESET
+#define __HAL_RCC_SDIO_RELEASE_RESET __HAL_RCC_SDMMC1_RELEASE_RESET
+#define __HAL_RCC_SDIO_CLK_SLEEP_ENABLE __HAL_RCC_SDMMC1_CLK_SLEEP_ENABLE
+#define __HAL_RCC_SDIO_CLK_SLEEP_DISABLE __HAL_RCC_SDMMC1_CLK_SLEEP_DISABLE
+#define __HAL_RCC_SDIO_CLK_ENABLE __HAL_RCC_SDMMC1_CLK_ENABLE
+#define __HAL_RCC_SDIO_CLK_DISABLE __HAL_RCC_SDMMC1_CLK_DISABLE
+#define __HAL_RCC_SDIO_IS_CLK_ENABLED __HAL_RCC_SDMMC1_IS_CLK_ENABLED
+#define __HAL_RCC_SDIO_IS_CLK_DISABLED __HAL_RCC_SDMMC1_IS_CLK_DISABLED
+#define SdioClockSelection Sdmmc1ClockSelection
+#define RCC_PERIPHCLK_SDIO RCC_PERIPHCLK_SDMMC1
+#define __HAL_RCC_SDIO_CONFIG __HAL_RCC_SDMMC1_CONFIG
+#define __HAL_RCC_GET_SDIO_SOURCE __HAL_RCC_GET_SDMMC1_SOURCE
+#endif
+
+#if defined(STM32F7)
+#define RCC_SDIOCLKSOURCE_CLK48 RCC_SDMMC1CLKSOURCE_CLK48
+#define RCC_SDIOCLKSOURCE_SYSCLK RCC_SDMMC1CLKSOURCE_SYSCLK
+#endif
+
+#if defined(STM32H7)
+#define __HAL_RCC_USB_OTG_HS_CLK_ENABLE() __HAL_RCC_USB1_OTG_HS_CLK_ENABLE()
+#define __HAL_RCC_USB_OTG_HS_ULPI_CLK_ENABLE() __HAL_RCC_USB1_OTG_HS_ULPI_CLK_ENABLE()
+#define __HAL_RCC_USB_OTG_HS_CLK_DISABLE() __HAL_RCC_USB1_OTG_HS_CLK_DISABLE()
+#define __HAL_RCC_USB_OTG_HS_ULPI_CLK_DISABLE() __HAL_RCC_USB1_OTG_HS_ULPI_CLK_DISABLE()
+#define __HAL_RCC_USB_OTG_HS_FORCE_RESET() __HAL_RCC_USB1_OTG_HS_FORCE_RESET()
+#define __HAL_RCC_USB_OTG_HS_RELEASE_RESET() __HAL_RCC_USB1_OTG_HS_RELEASE_RESET()
+#define __HAL_RCC_USB_OTG_HS_CLK_SLEEP_ENABLE() __HAL_RCC_USB1_OTG_HS_CLK_SLEEP_ENABLE()
+#define __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_ENABLE() __HAL_RCC_USB1_OTG_HS_ULPI_CLK_SLEEP_ENABLE()
+#define __HAL_RCC_USB_OTG_HS_CLK_SLEEP_DISABLE() __HAL_RCC_USB1_OTG_HS_CLK_SLEEP_DISABLE()
+#define __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_DISABLE() __HAL_RCC_USB1_OTG_HS_ULPI_CLK_SLEEP_DISABLE()
+
+#define __HAL_RCC_USB_OTG_FS_CLK_ENABLE() __HAL_RCC_USB2_OTG_FS_CLK_ENABLE()
+#define __HAL_RCC_USB_OTG_FS_ULPI_CLK_ENABLE() __HAL_RCC_USB2_OTG_FS_ULPI_CLK_ENABLE()
+#define __HAL_RCC_USB_OTG_FS_CLK_DISABLE() __HAL_RCC_USB2_OTG_FS_CLK_DISABLE()
+#define __HAL_RCC_USB_OTG_FS_ULPI_CLK_DISABLE() __HAL_RCC_USB2_OTG_FS_ULPI_CLK_DISABLE()
+#define __HAL_RCC_USB_OTG_FS_FORCE_RESET() __HAL_RCC_USB2_OTG_FS_FORCE_RESET()
+#define __HAL_RCC_USB_OTG_FS_RELEASE_RESET() __HAL_RCC_USB2_OTG_FS_RELEASE_RESET()
+#define __HAL_RCC_USB_OTG_FS_CLK_SLEEP_ENABLE() __HAL_RCC_USB2_OTG_FS_CLK_SLEEP_ENABLE()
+#define __HAL_RCC_USB_OTG_FS_ULPI_CLK_SLEEP_ENABLE() __HAL_RCC_USB2_OTG_FS_ULPI_CLK_SLEEP_ENABLE()
+#define __HAL_RCC_USB_OTG_FS_CLK_SLEEP_DISABLE() __HAL_RCC_USB2_OTG_FS_CLK_SLEEP_DISABLE()
+#define __HAL_RCC_USB_OTG_FS_ULPI_CLK_SLEEP_DISABLE() __HAL_RCC_USB2_OTG_FS_ULPI_CLK_SLEEP_DISABLE()
+#endif
+
+#define __HAL_RCC_I2SCLK __HAL_RCC_I2S_CONFIG
+#define __HAL_RCC_I2SCLK_CONFIG __HAL_RCC_I2S_CONFIG
+
+#define __RCC_PLLSRC RCC_GET_PLL_OSCSOURCE
+
+#define IS_RCC_MSIRANGE IS_RCC_MSI_CLOCK_RANGE
+#define IS_RCC_RTCCLK_SOURCE IS_RCC_RTCCLKSOURCE
+#define IS_RCC_SYSCLK_DIV IS_RCC_HCLK
+#define IS_RCC_HCLK_DIV IS_RCC_PCLK
+#define IS_RCC_PERIPHCLK IS_RCC_PERIPHCLOCK
+
+#define RCC_IT_HSI14 RCC_IT_HSI14RDY
+
+#define RCC_IT_CSSLSE RCC_IT_LSECSS
+#define RCC_IT_CSSHSE RCC_IT_CSS
+
+#define RCC_PLLMUL_3 RCC_PLL_MUL3
+#define RCC_PLLMUL_4 RCC_PLL_MUL4
+#define RCC_PLLMUL_6 RCC_PLL_MUL6
+#define RCC_PLLMUL_8 RCC_PLL_MUL8
+#define RCC_PLLMUL_12 RCC_PLL_MUL12
+#define RCC_PLLMUL_16 RCC_PLL_MUL16
+#define RCC_PLLMUL_24 RCC_PLL_MUL24
+#define RCC_PLLMUL_32 RCC_PLL_MUL32
+#define RCC_PLLMUL_48 RCC_PLL_MUL48
+
+#define RCC_PLLDIV_2 RCC_PLL_DIV2
+#define RCC_PLLDIV_3 RCC_PLL_DIV3
+#define RCC_PLLDIV_4 RCC_PLL_DIV4
+
+#define IS_RCC_MCOSOURCE IS_RCC_MCO1SOURCE
+#define __HAL_RCC_MCO_CONFIG __HAL_RCC_MCO1_CONFIG
+#define RCC_MCO_NODIV RCC_MCODIV_1
+#define RCC_MCO_DIV1 RCC_MCODIV_1
+#define RCC_MCO_DIV2 RCC_MCODIV_2
+#define RCC_MCO_DIV4 RCC_MCODIV_4
+#define RCC_MCO_DIV8 RCC_MCODIV_8
+#define RCC_MCO_DIV16 RCC_MCODIV_16
+#define RCC_MCO_DIV32 RCC_MCODIV_32
+#define RCC_MCO_DIV64 RCC_MCODIV_64
+#define RCC_MCO_DIV128 RCC_MCODIV_128
+#define RCC_MCOSOURCE_NONE RCC_MCO1SOURCE_NOCLOCK
+#define RCC_MCOSOURCE_LSI RCC_MCO1SOURCE_LSI
+#define RCC_MCOSOURCE_LSE RCC_MCO1SOURCE_LSE
+#define RCC_MCOSOURCE_SYSCLK RCC_MCO1SOURCE_SYSCLK
+#define RCC_MCOSOURCE_HSI RCC_MCO1SOURCE_HSI
+#define RCC_MCOSOURCE_HSI14 RCC_MCO1SOURCE_HSI14
+#define RCC_MCOSOURCE_HSI48 RCC_MCO1SOURCE_HSI48
+#define RCC_MCOSOURCE_HSE RCC_MCO1SOURCE_HSE
+#define RCC_MCOSOURCE_PLLCLK_DIV1 RCC_MCO1SOURCE_PLLCLK
+#define RCC_MCOSOURCE_PLLCLK_NODIV RCC_MCO1SOURCE_PLLCLK
+#define RCC_MCOSOURCE_PLLCLK_DIV2 RCC_MCO1SOURCE_PLLCLK_DIV2
+
+#if defined(STM32L4) || defined(STM32WB) || defined(STM32G0) || defined(STM32G4) || defined(STM32L5)
+#define RCC_RTCCLKSOURCE_NO_CLK RCC_RTCCLKSOURCE_NONE
+#else
+#define RCC_RTCCLKSOURCE_NONE RCC_RTCCLKSOURCE_NO_CLK
+#endif
+
+#define RCC_USBCLK_PLLSAI1 RCC_USBCLKSOURCE_PLLSAI1
+#define RCC_USBCLK_PLL RCC_USBCLKSOURCE_PLL
+#define RCC_USBCLK_MSI RCC_USBCLKSOURCE_MSI
+#define RCC_USBCLKSOURCE_PLLCLK RCC_USBCLKSOURCE_PLL
+#define RCC_USBPLLCLK_DIV1 RCC_USBCLKSOURCE_PLL
+#define RCC_USBPLLCLK_DIV1_5 RCC_USBCLKSOURCE_PLL_DIV1_5
+#define RCC_USBPLLCLK_DIV2 RCC_USBCLKSOURCE_PLL_DIV2
+#define RCC_USBPLLCLK_DIV3 RCC_USBCLKSOURCE_PLL_DIV3
+
+#define HSION_BitNumber RCC_HSION_BIT_NUMBER
+#define HSION_BITNUMBER RCC_HSION_BIT_NUMBER
+#define HSEON_BitNumber RCC_HSEON_BIT_NUMBER
+#define HSEON_BITNUMBER RCC_HSEON_BIT_NUMBER
+#define MSION_BITNUMBER RCC_MSION_BIT_NUMBER
+#define CSSON_BitNumber RCC_CSSON_BIT_NUMBER
+#define CSSON_BITNUMBER RCC_CSSON_BIT_NUMBER
+#define PLLON_BitNumber RCC_PLLON_BIT_NUMBER
+#define PLLON_BITNUMBER RCC_PLLON_BIT_NUMBER
+#define PLLI2SON_BitNumber RCC_PLLI2SON_BIT_NUMBER
+#define I2SSRC_BitNumber RCC_I2SSRC_BIT_NUMBER
+#define RTCEN_BitNumber RCC_RTCEN_BIT_NUMBER
+#define RTCEN_BITNUMBER RCC_RTCEN_BIT_NUMBER
+#define BDRST_BitNumber RCC_BDRST_BIT_NUMBER
+#define BDRST_BITNUMBER RCC_BDRST_BIT_NUMBER
+#define RTCRST_BITNUMBER RCC_RTCRST_BIT_NUMBER
+#define LSION_BitNumber RCC_LSION_BIT_NUMBER
+#define LSION_BITNUMBER RCC_LSION_BIT_NUMBER
+#define LSEON_BitNumber RCC_LSEON_BIT_NUMBER
+#define LSEON_BITNUMBER RCC_LSEON_BIT_NUMBER
+#define LSEBYP_BITNUMBER RCC_LSEBYP_BIT_NUMBER
+#define PLLSAION_BitNumber RCC_PLLSAION_BIT_NUMBER
+#define TIMPRE_BitNumber RCC_TIMPRE_BIT_NUMBER
+#define RMVF_BitNumber RCC_RMVF_BIT_NUMBER
+#define RMVF_BITNUMBER RCC_RMVF_BIT_NUMBER
+#define RCC_CR2_HSI14TRIM_BitNumber RCC_HSI14TRIM_BIT_NUMBER
+#define CR_BYTE2_ADDRESS RCC_CR_BYTE2_ADDRESS
+#define CIR_BYTE1_ADDRESS RCC_CIR_BYTE1_ADDRESS
+#define CIR_BYTE2_ADDRESS RCC_CIR_BYTE2_ADDRESS
+#define BDCR_BYTE0_ADDRESS RCC_BDCR_BYTE0_ADDRESS
+#define DBP_TIMEOUT_VALUE RCC_DBP_TIMEOUT_VALUE
+#define LSE_TIMEOUT_VALUE RCC_LSE_TIMEOUT_VALUE
+
+#define CR_HSION_BB RCC_CR_HSION_BB
+#define CR_CSSON_BB RCC_CR_CSSON_BB
+#define CR_PLLON_BB RCC_CR_PLLON_BB
+#define CR_PLLI2SON_BB RCC_CR_PLLI2SON_BB
+#define CR_MSION_BB RCC_CR_MSION_BB
+#define CSR_LSION_BB RCC_CSR_LSION_BB
+#define CSR_LSEON_BB RCC_CSR_LSEON_BB
+#define CSR_LSEBYP_BB RCC_CSR_LSEBYP_BB
+#define CSR_RTCEN_BB RCC_CSR_RTCEN_BB
+#define CSR_RTCRST_BB RCC_CSR_RTCRST_BB
+#define CFGR_I2SSRC_BB RCC_CFGR_I2SSRC_BB
+#define BDCR_RTCEN_BB RCC_BDCR_RTCEN_BB
+#define BDCR_BDRST_BB RCC_BDCR_BDRST_BB
+#define CR_HSEON_BB RCC_CR_HSEON_BB
+#define CSR_RMVF_BB RCC_CSR_RMVF_BB
+#define CR_PLLSAION_BB RCC_CR_PLLSAION_BB
+#define DCKCFGR_TIMPRE_BB RCC_DCKCFGR_TIMPRE_BB
+
+#define __HAL_RCC_CRS_ENABLE_FREQ_ERROR_COUNTER __HAL_RCC_CRS_FREQ_ERROR_COUNTER_ENABLE
+#define __HAL_RCC_CRS_DISABLE_FREQ_ERROR_COUNTER __HAL_RCC_CRS_FREQ_ERROR_COUNTER_DISABLE
+#define __HAL_RCC_CRS_ENABLE_AUTOMATIC_CALIB __HAL_RCC_CRS_AUTOMATIC_CALIB_ENABLE
+#define __HAL_RCC_CRS_DISABLE_AUTOMATIC_CALIB __HAL_RCC_CRS_AUTOMATIC_CALIB_DISABLE
+#define __HAL_RCC_CRS_CALCULATE_RELOADVALUE __HAL_RCC_CRS_RELOADVALUE_CALCULATE
+
+#define __HAL_RCC_GET_IT_SOURCE __HAL_RCC_GET_IT
+
+#define RCC_CRS_SYNCWARM RCC_CRS_SYNCWARN
+#define RCC_CRS_TRIMOV RCC_CRS_TRIMOVF
+
+#define RCC_PERIPHCLK_CK48 RCC_PERIPHCLK_CLK48
+#define RCC_CK48CLKSOURCE_PLLQ RCC_CLK48CLKSOURCE_PLLQ
+#define RCC_CK48CLKSOURCE_PLLSAIP RCC_CLK48CLKSOURCE_PLLSAIP
+#define RCC_CK48CLKSOURCE_PLLI2SQ RCC_CLK48CLKSOURCE_PLLI2SQ
+#define IS_RCC_CK48CLKSOURCE IS_RCC_CLK48CLKSOURCE
+#define RCC_SDIOCLKSOURCE_CK48 RCC_SDIOCLKSOURCE_CLK48
+
+#define __HAL_RCC_DFSDM_CLK_ENABLE __HAL_RCC_DFSDM1_CLK_ENABLE
+#define __HAL_RCC_DFSDM_CLK_DISABLE __HAL_RCC_DFSDM1_CLK_DISABLE
+#define __HAL_RCC_DFSDM_IS_CLK_ENABLED __HAL_RCC_DFSDM1_IS_CLK_ENABLED
+#define __HAL_RCC_DFSDM_IS_CLK_DISABLED __HAL_RCC_DFSDM1_IS_CLK_DISABLED
+#define __HAL_RCC_DFSDM_FORCE_RESET __HAL_RCC_DFSDM1_FORCE_RESET
+#define __HAL_RCC_DFSDM_RELEASE_RESET __HAL_RCC_DFSDM1_RELEASE_RESET
+#define __HAL_RCC_DFSDM_CLK_SLEEP_ENABLE __HAL_RCC_DFSDM1_CLK_SLEEP_ENABLE
+#define __HAL_RCC_DFSDM_CLK_SLEEP_DISABLE __HAL_RCC_DFSDM1_CLK_SLEEP_DISABLE
+#define __HAL_RCC_DFSDM_IS_CLK_SLEEP_ENABLED __HAL_RCC_DFSDM1_IS_CLK_SLEEP_ENABLED
+#define __HAL_RCC_DFSDM_IS_CLK_SLEEP_DISABLED __HAL_RCC_DFSDM1_IS_CLK_SLEEP_DISABLED
+#define DfsdmClockSelection Dfsdm1ClockSelection
+#define RCC_PERIPHCLK_DFSDM RCC_PERIPHCLK_DFSDM1
+#define RCC_DFSDMCLKSOURCE_PCLK RCC_DFSDM1CLKSOURCE_PCLK2
+#define RCC_DFSDMCLKSOURCE_SYSCLK RCC_DFSDM1CLKSOURCE_SYSCLK
+#define __HAL_RCC_DFSDM_CONFIG __HAL_RCC_DFSDM1_CONFIG
+#define __HAL_RCC_GET_DFSDM_SOURCE __HAL_RCC_GET_DFSDM1_SOURCE
+#define RCC_DFSDM1CLKSOURCE_PCLK RCC_DFSDM1CLKSOURCE_PCLK2
+#define RCC_SWPMI1CLKSOURCE_PCLK RCC_SWPMI1CLKSOURCE_PCLK1
+#define RCC_LPTIM1CLKSOURCE_PCLK RCC_LPTIM1CLKSOURCE_PCLK1
+#define RCC_LPTIM2CLKSOURCE_PCLK RCC_LPTIM2CLKSOURCE_PCLK1
+
+#define RCC_DFSDM1AUDIOCLKSOURCE_I2SAPB1 RCC_DFSDM1AUDIOCLKSOURCE_I2S1
+#define RCC_DFSDM1AUDIOCLKSOURCE_I2SAPB2 RCC_DFSDM1AUDIOCLKSOURCE_I2S2
+#define RCC_DFSDM2AUDIOCLKSOURCE_I2SAPB1 RCC_DFSDM2AUDIOCLKSOURCE_I2S1
+#define RCC_DFSDM2AUDIOCLKSOURCE_I2SAPB2 RCC_DFSDM2AUDIOCLKSOURCE_I2S2
+#define RCC_DFSDM1CLKSOURCE_APB2 RCC_DFSDM1CLKSOURCE_PCLK2
+#define RCC_DFSDM2CLKSOURCE_APB2 RCC_DFSDM2CLKSOURCE_PCLK2
+#define RCC_FMPI2C1CLKSOURCE_APB RCC_FMPI2C1CLKSOURCE_PCLK1
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_RNG_Aliased_Macros HAL RNG Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define HAL_RNG_ReadyCallback(__HANDLE__) HAL_RNG_ReadyDataCallback((__HANDLE__), uint32_t random32bit)
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_RTC_Aliased_Macros HAL RTC Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#if defined(STM32G0) || defined(STM32L5) || defined(STM32L412xx) || defined(STM32L422xx) || defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32G4)
+#else
+#define __HAL_RTC_CLEAR_FLAG __HAL_RTC_EXTI_CLEAR_FLAG
+#endif
+#define __HAL_RTC_DISABLE_IT __HAL_RTC_EXTI_DISABLE_IT
+#define __HAL_RTC_ENABLE_IT __HAL_RTC_EXTI_ENABLE_IT
+
+#if defined(STM32F1)
+#define __HAL_RTC_EXTI_CLEAR_FLAG(RTC_EXTI_LINE_ALARM_EVENT) __HAL_RTC_ALARM_EXTI_CLEAR_FLAG()
+
+#define __HAL_RTC_EXTI_ENABLE_IT(RTC_EXTI_LINE_ALARM_EVENT) __HAL_RTC_ALARM_EXTI_ENABLE_IT()
+
+#define __HAL_RTC_EXTI_DISABLE_IT(RTC_EXTI_LINE_ALARM_EVENT) __HAL_RTC_ALARM_EXTI_DISABLE_IT()
+
+#define __HAL_RTC_EXTI_GET_FLAG(RTC_EXTI_LINE_ALARM_EVENT) __HAL_RTC_ALARM_EXTI_GET_FLAG()
+
+#define __HAL_RTC_EXTI_GENERATE_SWIT(RTC_EXTI_LINE_ALARM_EVENT) __HAL_RTC_ALARM_EXTI_GENERATE_SWIT()
+#else
+#define __HAL_RTC_EXTI_CLEAR_FLAG(__EXTI_LINE__) \
+ (((__EXTI_LINE__) == RTC_EXTI_LINE_ALARM_EVENT) ? __HAL_RTC_ALARM_EXTI_CLEAR_FLAG() \
+ : (((__EXTI_LINE__) == RTC_EXTI_LINE_WAKEUPTIMER_EVENT) ? __HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG() : __HAL_RTC_TAMPER_TIMESTAMP_EXTI_CLEAR_FLAG()))
+#define __HAL_RTC_EXTI_ENABLE_IT(__EXTI_LINE__) \
+ (((__EXTI_LINE__) == RTC_EXTI_LINE_ALARM_EVENT) ? __HAL_RTC_ALARM_EXTI_ENABLE_IT() \
+ : (((__EXTI_LINE__) == RTC_EXTI_LINE_WAKEUPTIMER_EVENT) ? __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_IT() : __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT()))
+#define __HAL_RTC_EXTI_DISABLE_IT(__EXTI_LINE__) \
+ (((__EXTI_LINE__) == RTC_EXTI_LINE_ALARM_EVENT) ? __HAL_RTC_ALARM_EXTI_DISABLE_IT() \
+ : (((__EXTI_LINE__) == RTC_EXTI_LINE_WAKEUPTIMER_EVENT) ? __HAL_RTC_WAKEUPTIMER_EXTI_DISABLE_IT() : __HAL_RTC_TAMPER_TIMESTAMP_EXTI_DISABLE_IT()))
+#define __HAL_RTC_EXTI_GET_FLAG(__EXTI_LINE__) \
+ (((__EXTI_LINE__) == RTC_EXTI_LINE_ALARM_EVENT) ? __HAL_RTC_ALARM_EXTI_GET_FLAG() \
+ : (((__EXTI_LINE__) == RTC_EXTI_LINE_WAKEUPTIMER_EVENT) ? __HAL_RTC_WAKEUPTIMER_EXTI_GET_FLAG() : __HAL_RTC_TAMPER_TIMESTAMP_EXTI_GET_FLAG()))
+#define __HAL_RTC_EXTI_GENERATE_SWIT(__EXTI_LINE__) \
+ (((__EXTI_LINE__) == RTC_EXTI_LINE_ALARM_EVENT) \
+ ? __HAL_RTC_ALARM_EXTI_GENERATE_SWIT() \
+ : (((__EXTI_LINE__) == RTC_EXTI_LINE_WAKEUPTIMER_EVENT) ? __HAL_RTC_WAKEUPTIMER_EXTI_GENERATE_SWIT() : __HAL_RTC_TAMPER_TIMESTAMP_EXTI_GENERATE_SWIT()))
+#endif /* STM32F1 */
+
+#define IS_ALARM IS_RTC_ALARM
+#define IS_ALARM_MASK IS_RTC_ALARM_MASK
+#define IS_TAMPER IS_RTC_TAMPER
+#define IS_TAMPER_ERASE_MODE IS_RTC_TAMPER_ERASE_MODE
+#define IS_TAMPER_FILTER IS_RTC_TAMPER_FILTER
+#define IS_TAMPER_INTERRUPT IS_RTC_TAMPER_INTERRUPT
+#define IS_TAMPER_MASKFLAG_STATE IS_RTC_TAMPER_MASKFLAG_STATE
+#define IS_TAMPER_PRECHARGE_DURATION IS_RTC_TAMPER_PRECHARGE_DURATION
+#define IS_TAMPER_PULLUP_STATE IS_RTC_TAMPER_PULLUP_STATE
+#define IS_TAMPER_SAMPLING_FREQ IS_RTC_TAMPER_SAMPLING_FREQ
+#define IS_TAMPER_TIMESTAMPONTAMPER_DETECTION IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION
+#define IS_TAMPER_TRIGGER IS_RTC_TAMPER_TRIGGER
+#define IS_WAKEUP_CLOCK IS_RTC_WAKEUP_CLOCK
+#define IS_WAKEUP_COUNTER IS_RTC_WAKEUP_COUNTER
+
+#define __RTC_WRITEPROTECTION_ENABLE __HAL_RTC_WRITEPROTECTION_ENABLE
+#define __RTC_WRITEPROTECTION_DISABLE __HAL_RTC_WRITEPROTECTION_DISABLE
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SD_Aliased_Macros HAL SD Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define SD_OCR_CID_CSD_OVERWRIETE SD_OCR_CID_CSD_OVERWRITE
+#define SD_CMD_SD_APP_STAUS SD_CMD_SD_APP_STATUS
+
+#if defined(STM32F4) || defined(STM32F2)
+#define SD_SDMMC_DISABLED SD_SDIO_DISABLED
+#define SD_SDMMC_FUNCTION_BUSY SD_SDIO_FUNCTION_BUSY
+#define SD_SDMMC_FUNCTION_FAILED SD_SDIO_FUNCTION_FAILED
+#define SD_SDMMC_UNKNOWN_FUNCTION SD_SDIO_UNKNOWN_FUNCTION
+#define SD_CMD_SDMMC_SEN_OP_COND SD_CMD_SDIO_SEN_OP_COND
+#define SD_CMD_SDMMC_RW_DIRECT SD_CMD_SDIO_RW_DIRECT
+#define SD_CMD_SDMMC_RW_EXTENDED SD_CMD_SDIO_RW_EXTENDED
+#define __HAL_SD_SDMMC_ENABLE __HAL_SD_SDIO_ENABLE
+#define __HAL_SD_SDMMC_DISABLE __HAL_SD_SDIO_DISABLE
+#define __HAL_SD_SDMMC_DMA_ENABLE __HAL_SD_SDIO_DMA_ENABLE
+#define __HAL_SD_SDMMC_DMA_DISABLE __HAL_SD_SDIO_DMA_DISABL
+#define __HAL_SD_SDMMC_ENABLE_IT __HAL_SD_SDIO_ENABLE_IT
+#define __HAL_SD_SDMMC_DISABLE_IT __HAL_SD_SDIO_DISABLE_IT
+#define __HAL_SD_SDMMC_GET_FLAG __HAL_SD_SDIO_GET_FLAG
+#define __HAL_SD_SDMMC_CLEAR_FLAG __HAL_SD_SDIO_CLEAR_FLAG
+#define __HAL_SD_SDMMC_GET_IT __HAL_SD_SDIO_GET_IT
+#define __HAL_SD_SDMMC_CLEAR_IT __HAL_SD_SDIO_CLEAR_IT
+#define SDMMC_STATIC_FLAGS SDIO_STATIC_FLAGS
+#define SDMMC_CMD0TIMEOUT SDIO_CMD0TIMEOUT
+#define SD_SDMMC_SEND_IF_COND SD_SDIO_SEND_IF_COND
+/* alias CMSIS */
+#define SDMMC1_IRQn SDIO_IRQn
+#define SDMMC1_IRQHandler SDIO_IRQHandler
+#endif
+
+#if defined(STM32F7) || defined(STM32L4)
+#define SD_SDIO_DISABLED SD_SDMMC_DISABLED
+#define SD_SDIO_FUNCTION_BUSY SD_SDMMC_FUNCTION_BUSY
+#define SD_SDIO_FUNCTION_FAILED SD_SDMMC_FUNCTION_FAILED
+#define SD_SDIO_UNKNOWN_FUNCTION SD_SDMMC_UNKNOWN_FUNCTION
+#define SD_CMD_SDIO_SEN_OP_COND SD_CMD_SDMMC_SEN_OP_COND
+#define SD_CMD_SDIO_RW_DIRECT SD_CMD_SDMMC_RW_DIRECT
+#define SD_CMD_SDIO_RW_EXTENDED SD_CMD_SDMMC_RW_EXTENDED
+#define __HAL_SD_SDIO_ENABLE __HAL_SD_SDMMC_ENABLE
+#define __HAL_SD_SDIO_DISABLE __HAL_SD_SDMMC_DISABLE
+#define __HAL_SD_SDIO_DMA_ENABLE __HAL_SD_SDMMC_DMA_ENABLE
+#define __HAL_SD_SDIO_DMA_DISABL __HAL_SD_SDMMC_DMA_DISABLE
+#define __HAL_SD_SDIO_ENABLE_IT __HAL_SD_SDMMC_ENABLE_IT
+#define __HAL_SD_SDIO_DISABLE_IT __HAL_SD_SDMMC_DISABLE_IT
+#define __HAL_SD_SDIO_GET_FLAG __HAL_SD_SDMMC_GET_FLAG
+#define __HAL_SD_SDIO_CLEAR_FLAG __HAL_SD_SDMMC_CLEAR_FLAG
+#define __HAL_SD_SDIO_GET_IT __HAL_SD_SDMMC_GET_IT
+#define __HAL_SD_SDIO_CLEAR_IT __HAL_SD_SDMMC_CLEAR_IT
+#define SDIO_STATIC_FLAGS SDMMC_STATIC_FLAGS
+#define SDIO_CMD0TIMEOUT SDMMC_CMD0TIMEOUT
+#define SD_SDIO_SEND_IF_COND SD_SDMMC_SEND_IF_COND
+/* alias CMSIS for compatibilities */
+#define SDIO_IRQn SDMMC1_IRQn
+#define SDIO_IRQHandler SDMMC1_IRQHandler
+#endif
+
+#if defined(STM32F7) || defined(STM32F4) || defined(STM32F2) || defined(STM32L4) || defined(STM32H7)
+#define HAL_SD_CardCIDTypedef HAL_SD_CardCIDTypeDef
+#define HAL_SD_CardCSDTypedef HAL_SD_CardCSDTypeDef
+#define HAL_SD_CardStatusTypedef HAL_SD_CardStatusTypeDef
+#define HAL_SD_CardStateTypedef HAL_SD_CardStateTypeDef
+#endif
+
+#if defined(STM32H7) || defined(STM32L5)
+#define HAL_MMCEx_Read_DMADoubleBuffer0CpltCallback HAL_MMCEx_Read_DMADoubleBuf0CpltCallback
+#define HAL_MMCEx_Read_DMADoubleBuffer1CpltCallback HAL_MMCEx_Read_DMADoubleBuf1CpltCallback
+#define HAL_MMCEx_Write_DMADoubleBuffer0CpltCallback HAL_MMCEx_Write_DMADoubleBuf0CpltCallback
+#define HAL_MMCEx_Write_DMADoubleBuffer1CpltCallback HAL_MMCEx_Write_DMADoubleBuf1CpltCallback
+#define HAL_SDEx_Read_DMADoubleBuffer0CpltCallback HAL_SDEx_Read_DMADoubleBuf0CpltCallback
+#define HAL_SDEx_Read_DMADoubleBuffer1CpltCallback HAL_SDEx_Read_DMADoubleBuf1CpltCallback
+#define HAL_SDEx_Write_DMADoubleBuffer0CpltCallback HAL_SDEx_Write_DMADoubleBuf0CpltCallback
+#define HAL_SDEx_Write_DMADoubleBuffer1CpltCallback HAL_SDEx_Write_DMADoubleBuf1CpltCallback
+#define HAL_SD_DriveTransciver_1_8V_Callback HAL_SD_DriveTransceiver_1_8V_Callback
+#endif
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SMARTCARD_Aliased_Macros HAL SMARTCARD Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define __SMARTCARD_ENABLE_IT __HAL_SMARTCARD_ENABLE_IT
+#define __SMARTCARD_DISABLE_IT __HAL_SMARTCARD_DISABLE_IT
+#define __SMARTCARD_ENABLE __HAL_SMARTCARD_ENABLE
+#define __SMARTCARD_DISABLE __HAL_SMARTCARD_DISABLE
+#define __SMARTCARD_DMA_REQUEST_ENABLE __HAL_SMARTCARD_DMA_REQUEST_ENABLE
+#define __SMARTCARD_DMA_REQUEST_DISABLE __HAL_SMARTCARD_DMA_REQUEST_DISABLE
+
+#define __HAL_SMARTCARD_GETCLOCKSOURCE SMARTCARD_GETCLOCKSOURCE
+#define __SMARTCARD_GETCLOCKSOURCE SMARTCARD_GETCLOCKSOURCE
+
+#define IS_SMARTCARD_ONEBIT_SAMPLING IS_SMARTCARD_ONE_BIT_SAMPLE
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SMBUS_Aliased_Macros HAL SMBUS Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define __HAL_SMBUS_RESET_CR1 SMBUS_RESET_CR1
+#define __HAL_SMBUS_RESET_CR2 SMBUS_RESET_CR2
+#define __HAL_SMBUS_GENERATE_START SMBUS_GENERATE_START
+#define __HAL_SMBUS_GET_ADDR_MATCH SMBUS_GET_ADDR_MATCH
+#define __HAL_SMBUS_GET_DIR SMBUS_GET_DIR
+#define __HAL_SMBUS_GET_STOP_MODE SMBUS_GET_STOP_MODE
+#define __HAL_SMBUS_GET_PEC_MODE SMBUS_GET_PEC_MODE
+#define __HAL_SMBUS_GET_ALERT_ENABLED SMBUS_GET_ALERT_ENABLED
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SPI_Aliased_Macros HAL SPI Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define __HAL_SPI_1LINE_TX SPI_1LINE_TX
+#define __HAL_SPI_1LINE_RX SPI_1LINE_RX
+#define __HAL_SPI_RESET_CRC SPI_RESET_CRC
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_UART_Aliased_Macros HAL UART Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define __HAL_UART_GETCLOCKSOURCE UART_GETCLOCKSOURCE
+#define __HAL_UART_MASK_COMPUTATION UART_MASK_COMPUTATION
+#define __UART_GETCLOCKSOURCE UART_GETCLOCKSOURCE
+#define __UART_MASK_COMPUTATION UART_MASK_COMPUTATION
+
+#define IS_UART_WAKEUPMETHODE IS_UART_WAKEUPMETHOD
+
+#define IS_UART_ONEBIT_SAMPLE IS_UART_ONE_BIT_SAMPLE
+#define IS_UART_ONEBIT_SAMPLING IS_UART_ONE_BIT_SAMPLE
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_USART_Aliased_Macros HAL USART Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define __USART_ENABLE_IT __HAL_USART_ENABLE_IT
+#define __USART_DISABLE_IT __HAL_USART_DISABLE_IT
+#define __USART_ENABLE __HAL_USART_ENABLE
+#define __USART_DISABLE __HAL_USART_DISABLE
+
+#define __HAL_USART_GETCLOCKSOURCE USART_GETCLOCKSOURCE
+#define __USART_GETCLOCKSOURCE USART_GETCLOCKSOURCE
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_USB_Aliased_Macros HAL USB Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define USB_EXTI_LINE_WAKEUP USB_WAKEUP_EXTI_LINE
+
+#define USB_FS_EXTI_TRIGGER_RISING_EDGE USB_OTG_FS_WAKEUP_EXTI_RISING_EDGE
+#define USB_FS_EXTI_TRIGGER_FALLING_EDGE USB_OTG_FS_WAKEUP_EXTI_FALLING_EDGE
+#define USB_FS_EXTI_TRIGGER_BOTH_EDGE USB_OTG_FS_WAKEUP_EXTI_RISING_FALLING_EDGE
+#define USB_FS_EXTI_LINE_WAKEUP USB_OTG_FS_WAKEUP_EXTI_LINE
+
+#define USB_HS_EXTI_TRIGGER_RISING_EDGE USB_OTG_HS_WAKEUP_EXTI_RISING_EDGE
+#define USB_HS_EXTI_TRIGGER_FALLING_EDGE USB_OTG_HS_WAKEUP_EXTI_FALLING_EDGE
+#define USB_HS_EXTI_TRIGGER_BOTH_EDGE USB_OTG_HS_WAKEUP_EXTI_RISING_FALLING_EDGE
+#define USB_HS_EXTI_LINE_WAKEUP USB_OTG_HS_WAKEUP_EXTI_LINE
+
+#define __HAL_USB_EXTI_ENABLE_IT __HAL_USB_WAKEUP_EXTI_ENABLE_IT
+#define __HAL_USB_EXTI_DISABLE_IT __HAL_USB_WAKEUP_EXTI_DISABLE_IT
+#define __HAL_USB_EXTI_GET_FLAG __HAL_USB_WAKEUP_EXTI_GET_FLAG
+#define __HAL_USB_EXTI_CLEAR_FLAG __HAL_USB_WAKEUP_EXTI_CLEAR_FLAG
+#define __HAL_USB_EXTI_SET_RISING_EDGE_TRIGGER __HAL_USB_WAKEUP_EXTI_ENABLE_RISING_EDGE
+#define __HAL_USB_EXTI_SET_FALLING_EDGE_TRIGGER __HAL_USB_WAKEUP_EXTI_ENABLE_FALLING_EDGE
+#define __HAL_USB_EXTI_SET_FALLINGRISING_TRIGGER __HAL_USB_WAKEUP_EXTI_ENABLE_RISING_FALLING_EDGE
+
+#define __HAL_USB_FS_EXTI_ENABLE_IT __HAL_USB_OTG_FS_WAKEUP_EXTI_ENABLE_IT
+#define __HAL_USB_FS_EXTI_DISABLE_IT __HAL_USB_OTG_FS_WAKEUP_EXTI_DISABLE_IT
+#define __HAL_USB_FS_EXTI_GET_FLAG __HAL_USB_OTG_FS_WAKEUP_EXTI_GET_FLAG
+#define __HAL_USB_FS_EXTI_CLEAR_FLAG __HAL_USB_OTG_FS_WAKEUP_EXTI_CLEAR_FLAG
+#define __HAL_USB_FS_EXTI_SET_RISING_EGDE_TRIGGER __HAL_USB_OTG_FS_WAKEUP_EXTI_ENABLE_RISING_EDGE
+#define __HAL_USB_FS_EXTI_SET_FALLING_EGDE_TRIGGER __HAL_USB_OTG_FS_WAKEUP_EXTI_ENABLE_FALLING_EDGE
+#define __HAL_USB_FS_EXTI_SET_FALLINGRISING_TRIGGER __HAL_USB_OTG_FS_WAKEUP_EXTI_ENABLE_RISING_FALLING_EDGE
+#define __HAL_USB_FS_EXTI_GENERATE_SWIT __HAL_USB_OTG_FS_WAKEUP_EXTI_GENERATE_SWIT
+
+#define __HAL_USB_HS_EXTI_ENABLE_IT __HAL_USB_OTG_HS_WAKEUP_EXTI_ENABLE_IT
+#define __HAL_USB_HS_EXTI_DISABLE_IT __HAL_USB_OTG_HS_WAKEUP_EXTI_DISABLE_IT
+#define __HAL_USB_HS_EXTI_GET_FLAG __HAL_USB_OTG_HS_WAKEUP_EXTI_GET_FLAG
+#define __HAL_USB_HS_EXTI_CLEAR_FLAG __HAL_USB_OTG_HS_WAKEUP_EXTI_CLEAR_FLAG
+#define __HAL_USB_HS_EXTI_SET_RISING_EGDE_TRIGGER __HAL_USB_OTG_HS_WAKEUP_EXTI_ENABLE_RISING_EDGE
+#define __HAL_USB_HS_EXTI_SET_FALLING_EGDE_TRIGGER __HAL_USB_OTG_HS_WAKEUP_EXTI_ENABLE_FALLING_EDGE
+#define __HAL_USB_HS_EXTI_SET_FALLINGRISING_TRIGGER __HAL_USB_OTG_HS_WAKEUP_EXTI_ENABLE_RISING_FALLING_EDGE
+#define __HAL_USB_HS_EXTI_GENERATE_SWIT __HAL_USB_OTG_HS_WAKEUP_EXTI_GENERATE_SWIT
+
+#define HAL_PCD_ActiveRemoteWakeup HAL_PCD_ActivateRemoteWakeup
+#define HAL_PCD_DeActiveRemoteWakeup HAL_PCD_DeActivateRemoteWakeup
+
+#define HAL_PCD_SetTxFiFo HAL_PCDEx_SetTxFiFo
+#define HAL_PCD_SetRxFiFo HAL_PCDEx_SetRxFiFo
+/**
+ * @}
+ */
+
+/** @defgroup HAL_TIM_Aliased_Macros HAL TIM Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define __HAL_TIM_SetICPrescalerValue TIM_SET_ICPRESCALERVALUE
+#define __HAL_TIM_ResetICPrescalerValue TIM_RESET_ICPRESCALERVALUE
+
+#define TIM_GET_ITSTATUS __HAL_TIM_GET_IT_SOURCE
+#define TIM_GET_CLEAR_IT __HAL_TIM_CLEAR_IT
+
+#define __HAL_TIM_GET_ITSTATUS __HAL_TIM_GET_IT_SOURCE
+
+#define __HAL_TIM_DIRECTION_STATUS __HAL_TIM_IS_TIM_COUNTING_DOWN
+#define __HAL_TIM_PRESCALER __HAL_TIM_SET_PRESCALER
+#define __HAL_TIM_SetCounter __HAL_TIM_SET_COUNTER
+#define __HAL_TIM_GetCounter __HAL_TIM_GET_COUNTER
+#define __HAL_TIM_SetAutoreload __HAL_TIM_SET_AUTORELOAD
+#define __HAL_TIM_GetAutoreload __HAL_TIM_GET_AUTORELOAD
+#define __HAL_TIM_SetClockDivision __HAL_TIM_SET_CLOCKDIVISION
+#define __HAL_TIM_GetClockDivision __HAL_TIM_GET_CLOCKDIVISION
+#define __HAL_TIM_SetICPrescaler __HAL_TIM_SET_ICPRESCALER
+#define __HAL_TIM_GetICPrescaler __HAL_TIM_GET_ICPRESCALER
+#define __HAL_TIM_SetCompare __HAL_TIM_SET_COMPARE
+#define __HAL_TIM_GetCompare __HAL_TIM_GET_COMPARE
+
+#define TIM_BREAKINPUTSOURCE_DFSDM TIM_BREAKINPUTSOURCE_DFSDM1
+/**
+ * @}
+ */
+
+/** @defgroup HAL_ETH_Aliased_Macros HAL ETH Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+#define __HAL_ETH_EXTI_ENABLE_IT __HAL_ETH_WAKEUP_EXTI_ENABLE_IT
+#define __HAL_ETH_EXTI_DISABLE_IT __HAL_ETH_WAKEUP_EXTI_DISABLE_IT
+#define __HAL_ETH_EXTI_GET_FLAG __HAL_ETH_WAKEUP_EXTI_GET_FLAG
+#define __HAL_ETH_EXTI_CLEAR_FLAG __HAL_ETH_WAKEUP_EXTI_CLEAR_FLAG
+#define __HAL_ETH_EXTI_SET_RISING_EGDE_TRIGGER __HAL_ETH_WAKEUP_EXTI_ENABLE_RISING_EDGE_TRIGGER
+#define __HAL_ETH_EXTI_SET_FALLING_EGDE_TRIGGER __HAL_ETH_WAKEUP_EXTI_ENABLE_FALLING_EDGE_TRIGGER
+#define __HAL_ETH_EXTI_SET_FALLINGRISING_TRIGGER __HAL_ETH_WAKEUP_EXTI_ENABLE_FALLINGRISING_TRIGGER
+
+#define ETH_PROMISCIOUSMODE_ENABLE ETH_PROMISCUOUS_MODE_ENABLE
+#define ETH_PROMISCIOUSMODE_DISABLE ETH_PROMISCUOUS_MODE_DISABLE
+#define IS_ETH_PROMISCIOUS_MODE IS_ETH_PROMISCUOUS_MODE
+/**
+ * @}
+ */
+
+/** @defgroup HAL_LTDC_Aliased_Macros HAL LTDC Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define __HAL_LTDC_LAYER LTDC_LAYER
+#define __HAL_LTDC_RELOAD_CONFIG __HAL_LTDC_RELOAD_IMMEDIATE_CONFIG
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SAI_Aliased_Macros HAL SAI Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#define SAI_OUTPUTDRIVE_DISABLED SAI_OUTPUTDRIVE_DISABLE
+#define SAI_OUTPUTDRIVE_ENABLED SAI_OUTPUTDRIVE_ENABLE
+#define SAI_MASTERDIVIDER_ENABLED SAI_MASTERDIVIDER_ENABLE
+#define SAI_MASTERDIVIDER_DISABLED SAI_MASTERDIVIDER_DISABLE
+#define SAI_STREOMODE SAI_STEREOMODE
+#define SAI_FIFOStatus_Empty SAI_FIFOSTATUS_EMPTY
+#define SAI_FIFOStatus_Less1QuarterFull SAI_FIFOSTATUS_LESS1QUARTERFULL
+#define SAI_FIFOStatus_1QuarterFull SAI_FIFOSTATUS_1QUARTERFULL
+#define SAI_FIFOStatus_HalfFull SAI_FIFOSTATUS_HALFFULL
+#define SAI_FIFOStatus_3QuartersFull SAI_FIFOSTATUS_3QUARTERFULL
+#define SAI_FIFOStatus_Full SAI_FIFOSTATUS_FULL
+#define IS_SAI_BLOCK_MONO_STREO_MODE IS_SAI_BLOCK_MONO_STEREO_MODE
+#define SAI_SYNCHRONOUS_EXT SAI_SYNCHRONOUS_EXT_SAI1
+#define SAI_SYNCEXT_IN_ENABLE SAI_SYNCEXT_OUTBLOCKA_ENABLE
+/**
+ * @}
+ */
+
+/** @defgroup HAL_SPDIFRX_Aliased_Macros HAL SPDIFRX Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#if defined(STM32H7)
+#define HAL_SPDIFRX_ReceiveControlFlow HAL_SPDIFRX_ReceiveCtrlFlow
+#define HAL_SPDIFRX_ReceiveControlFlow_IT HAL_SPDIFRX_ReceiveCtrlFlow_IT
+#define HAL_SPDIFRX_ReceiveControlFlow_DMA HAL_SPDIFRX_ReceiveCtrlFlow_DMA
+#endif
+/**
+ * @}
+ */
+
+/** @defgroup HAL_HRTIM_Aliased_Functions HAL HRTIM Aliased Functions maintained for legacy purpose
+ * @{
+ */
+#if defined(STM32H7) || defined(STM32G4) || defined(STM32F3)
+#define HAL_HRTIM_WaveformCounterStart_IT HAL_HRTIM_WaveformCountStart_IT
+#define HAL_HRTIM_WaveformCounterStart_DMA HAL_HRTIM_WaveformCountStart_DMA
+#define HAL_HRTIM_WaveformCounterStart HAL_HRTIM_WaveformCountStart
+#define HAL_HRTIM_WaveformCounterStop_IT HAL_HRTIM_WaveformCountStop_IT
+#define HAL_HRTIM_WaveformCounterStop_DMA HAL_HRTIM_WaveformCountStop_DMA
+#define HAL_HRTIM_WaveformCounterStop HAL_HRTIM_WaveformCountStop
+#endif
+/**
+ * @}
+ */
+
+/** @defgroup HAL_QSPI_Aliased_Macros HAL QSPI Aliased Macros maintained for legacy purpose
+ * @{
+ */
+#if defined(STM32L4) || defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
+#define HAL_QPSI_TIMEOUT_DEFAULT_VALUE HAL_QSPI_TIMEOUT_DEFAULT_VALUE
+#endif /* STM32L4 || STM32F4 || STM32F7 */
+/**
+ * @}
+ */
+
+/** @defgroup HAL_PPP_Aliased_Macros HAL PPP Aliased Macros maintained for legacy purpose
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* STM32_HAL_LEGACY */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal.h new file mode 100644 index 00000000..cf05660d --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal.h @@ -0,0 +1,349 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal.h
+ * @author MCD Application Team
+ * @brief This file contains all the functions prototypes for the HAL
+ * module driver.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_H
+#define __STM32F1xx_HAL_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_conf.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup HAL
+ * @{
+ */
+
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup HAL_Exported_Constants HAL Exported Constants
+ * @{
+ */
+
+/** @defgroup HAL_TICK_FREQ Tick Frequency
+ * @{
+ */
+typedef enum { HAL_TICK_FREQ_10HZ = 100U, HAL_TICK_FREQ_100HZ = 10U, HAL_TICK_FREQ_1KHZ = 1U, HAL_TICK_FREQ_DEFAULT = HAL_TICK_FREQ_1KHZ } HAL_TickFreqTypeDef;
+/**
+ * @}
+ */
+/* Exported types ------------------------------------------------------------*/
+extern volatile uint32_t uwTick;
+extern uint32_t uwTickPrio;
+extern HAL_TickFreqTypeDef uwTickFreq;
+
+/**
+ * @}
+ */
+/* Exported macro ------------------------------------------------------------*/
+/** @defgroup HAL_Exported_Macros HAL Exported Macros
+ * @{
+ */
+
+/** @defgroup DBGMCU_Freeze_Unfreeze Freeze Unfreeze Peripherals in Debug mode
+ * @brief Freeze/Unfreeze Peripherals in Debug mode
+ * Note: On devices STM32F10xx8 and STM32F10xxB,
+ * STM32F101xC/D/E and STM32F103xC/D/E,
+ * STM32F101xF/G and STM32F103xF/G
+ * STM32F10xx4 and STM32F10xx6
+ * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
+ * debug mode (not accessible by the user software in normal mode).
+ * Refer to errata sheet of these devices for more details.
+ * @{
+ */
+
+/* Peripherals on APB1 */
+/**
+ * @brief TIM2 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM2() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM2_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM2() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM2_STOP)
+
+/**
+ * @brief TIM3 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM3() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM3_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM3() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM3_STOP)
+
+#if defined(DBGMCU_CR_DBG_TIM4_STOP)
+/**
+ * @brief TIM4 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM4() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM4_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM4() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM4_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM5_STOP)
+/**
+ * @brief TIM5 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM5() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM5_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM5() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM5_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM6_STOP)
+/**
+ * @brief TIM6 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM6() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM6_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM6() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM6_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM7_STOP)
+/**
+ * @brief TIM7 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM7() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM7_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM7() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM7_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM12_STOP)
+/**
+ * @brief TIM12 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM12() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM12_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM12() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM12_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM13_STOP)
+/**
+ * @brief TIM13 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM13() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM13_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM13() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM13_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM14_STOP)
+/**
+ * @brief TIM14 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM14() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM14_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM14() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM14_STOP)
+#endif
+
+/**
+ * @brief WWDG Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_WWDG() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_WWDG_STOP)
+#define __HAL_DBGMCU_UNFREEZE_WWDG() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_WWDG_STOP)
+
+/**
+ * @brief IWDG Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_IWDG() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_IWDG_STOP)
+#define __HAL_DBGMCU_UNFREEZE_IWDG() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_IWDG_STOP)
+
+/**
+ * @brief I2C1 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_I2C1_TIMEOUT() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT)
+#define __HAL_DBGMCU_UNFREEZE_I2C1_TIMEOUT() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT)
+
+#if defined(DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT)
+/**
+ * @brief I2C2 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_I2C2_TIMEOUT() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT)
+#define __HAL_DBGMCU_UNFREEZE_I2C2_TIMEOUT() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT)
+#endif
+
+#if defined(DBGMCU_CR_DBG_CAN1_STOP)
+/**
+ * @brief CAN1 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_CAN1() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_CAN1_STOP)
+#define __HAL_DBGMCU_UNFREEZE_CAN1() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_CAN1_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_CAN2_STOP)
+/**
+ * @brief CAN2 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_CAN2() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_CAN2_STOP)
+#define __HAL_DBGMCU_UNFREEZE_CAN2() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_CAN2_STOP)
+#endif
+
+/* Peripherals on APB2 */
+#if defined(DBGMCU_CR_DBG_TIM1_STOP)
+/**
+ * @brief TIM1 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM1() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM1_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM1() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM1_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM8_STOP)
+/**
+ * @brief TIM8 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM8() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM8_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM8() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM8_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM9_STOP)
+/**
+ * @brief TIM9 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM9() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM9_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM9() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM9_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM10_STOP)
+/**
+ * @brief TIM10 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM10() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM10_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM10() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM10_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM11_STOP)
+/**
+ * @brief TIM11 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM11() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM11_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM11() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM11_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM15_STOP)
+/**
+ * @brief TIM15 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM15() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM15_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM15() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM15_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM16_STOP)
+/**
+ * @brief TIM16 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM16() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM16_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM16() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM16_STOP)
+#endif
+
+#if defined(DBGMCU_CR_DBG_TIM17_STOP)
+/**
+ * @brief TIM17 Peripherals Debug mode
+ */
+#define __HAL_DBGMCU_FREEZE_TIM17() SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM17_STOP)
+#define __HAL_DBGMCU_UNFREEZE_TIM17() CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_TIM17_STOP)
+#endif
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_Private_Macros HAL Private Macros
+ * @{
+ */
+#define IS_TICKFREQ(FREQ) (((FREQ) == HAL_TICK_FREQ_10HZ) || ((FREQ) == HAL_TICK_FREQ_100HZ) || ((FREQ) == HAL_TICK_FREQ_1KHZ))
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup HAL_Exported_Functions
+ * @{
+ */
+/** @addtogroup HAL_Exported_Functions_Group1
+ * @{
+ */
+/* Initialization and de-initialization functions ******************************/
+HAL_StatusTypeDef HAL_Init(void);
+HAL_StatusTypeDef HAL_DeInit(void);
+void HAL_MspInit(void);
+void HAL_MspDeInit(void);
+HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority);
+/**
+ * @}
+ */
+
+/** @addtogroup HAL_Exported_Functions_Group2
+ * @{
+ */
+/* Peripheral Control functions ************************************************/
+void HAL_IncTick(void);
+void HAL_Delay(uint32_t Delay);
+uint32_t HAL_GetTick(void);
+uint32_t HAL_GetTickPrio(void);
+HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq);
+HAL_TickFreqTypeDef HAL_GetTickFreq(void);
+void HAL_SuspendTick(void);
+void HAL_ResumeTick(void);
+uint32_t HAL_GetHalVersion(void);
+uint32_t HAL_GetREVID(void);
+uint32_t HAL_GetDEVID(void);
+uint32_t HAL_GetUIDw0(void);
+uint32_t HAL_GetUIDw1(void);
+uint32_t HAL_GetUIDw2(void);
+void HAL_DBGMCU_EnableDBGSleepMode(void);
+void HAL_DBGMCU_DisableDBGSleepMode(void);
+void HAL_DBGMCU_EnableDBGStopMode(void);
+void HAL_DBGMCU_DisableDBGStopMode(void);
+void HAL_DBGMCU_EnableDBGStandbyMode(void);
+void HAL_DBGMCU_DisableDBGStandbyMode(void);
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/* Private types -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/** @defgroup HAL_Private_Variables HAL Private Variables
+ * @{
+ */
+/**
+ * @}
+ */
+/* Private constants ---------------------------------------------------------*/
+/** @defgroup HAL_Private_Constants HAL Private Constants
+ * @{
+ */
+/**
+ * @}
+ */
+/* Private macros ------------------------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32F1xx_HAL_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc.h new file mode 100644 index 00000000..72dd294f --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc.h @@ -0,0 +1,911 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_adc.h
+ * @author MCD Application Team
+ * @brief Header file containing functions prototypes of ADC HAL library.
+ ******************************************************************************
+ * @attention
+ *
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_ADC_H
+#define __STM32F1xx_HAL_ADC_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup ADC
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+/** @defgroup ADC_Exported_Types ADC Exported Types
+ * @{
+ */
+
+/**
+ * @brief Structure definition of ADC and regular group initialization
+ * @note Parameters of this structure are shared within 2 scopes:
+ * - Scope entire ADC (affects regular and injected groups): DataAlign, ScanConvMode.
+ * - Scope regular group: ContinuousConvMode, NbrOfConversion, DiscontinuousConvMode, NbrOfDiscConversion, ExternalTrigConvEdge, ExternalTrigConv.
+ * @note The setting of these parameters with function HAL_ADC_Init() is conditioned to ADC state.
+ * ADC can be either disabled or enabled without conversion on going on regular group.
+ */
+typedef struct {
+ uint32_t DataAlign; /*!< Specifies ADC data alignment to right (MSB on register bit 11 and LSB on register bit 0) (default setting)
+ or to left (if regular group: MSB on register bit 15 and LSB on register bit 4, if injected group (MSB kept as signed value due to potential negative value after offset
+ application): MSB on register bit 14 and LSB on register bit 3). This parameter can be a value of @ref ADC_Data_align */
+ uint32_t ScanConvMode; /*!< Configures the sequencer of regular and injected groups.
+ This parameter can be associated to parameter 'DiscontinuousConvMode' to have main sequence subdivided in successive parts.
+ If disabled: Conversion is performed in single mode (one channel converted, the one defined in rank 1).
+ Parameters 'NbrOfConversion' and 'InjectedNbrOfConversion' are discarded (equivalent to set to 1).
+ If enabled: Conversions are performed in sequence mode (multiple ranks defined by 'NbrOfConversion'/'InjectedNbrOfConversion' and each channel rank).
+ Scan direction is upward: from rank1 to rank 'n'.
+ This parameter can be a value of @ref ADC_Scan_mode
+ Note: For regular group, this parameter should be enabled in conversion either by polling (HAL_ADC_Start with Discontinuous mode and NbrOfDiscConversion=1)
+ or by DMA (HAL_ADC_Start_DMA), but not by interruption (HAL_ADC_Start_IT): in scan mode, interruption is triggered only on the
+ the last conversion of the sequence. All previous conversions would be overwritten by the last one.
+ Injected group used with scan mode has not this constraint: each rank has its own result register, no data is overwritten. */
+ FunctionalState ContinuousConvMode; /*!< Specifies whether the conversion is performed in single mode (one conversion) or continuous mode for regular group,
+ after the selected trigger occurred (software start or external trigger).
+ This parameter can be set to ENABLE or DISABLE. */
+ uint32_t NbrOfConversion; /*!< Specifies the number of ranks that will be converted within the regular group sequencer.
+ To use regular group sequencer and convert several ranks, parameter 'ScanConvMode' must be enabled.
+ This parameter must be a number between Min_Data = 1 and Max_Data = 16. */
+ FunctionalState
+ DiscontinuousConvMode; /*!< Specifies whether the conversions sequence of regular group is performed in Complete-sequence/Discontinuous-sequence (main sequence subdivided in successive parts).
+ Discontinuous mode is used only if sequencer is enabled (parameter 'ScanConvMode'). If sequencer is disabled, this parameter is discarded.
+ Discontinuous mode can be enabled only if continuous mode is disabled. If continuous mode is enabled, this parameter setting is discarded.
+ This parameter can be set to ENABLE or DISABLE. */
+ uint32_t NbrOfDiscConversion; /*!< Specifies the number of discontinuous conversions in which the main sequence of regular group (parameter NbrOfConversion) will be subdivided.
+ If parameter 'DiscontinuousConvMode' is disabled, this parameter is discarded.
+ This parameter must be a number between Min_Data = 1 and Max_Data = 8. */
+ uint32_t ExternalTrigConv; /*!< Selects the external event used to trigger the conversion start of regular group.
+ If set to ADC_SOFTWARE_START, external triggers are disabled.
+ If set to external trigger source, triggering is on event rising edge.
+ This parameter can be a value of @ref ADC_External_trigger_source_Regular */
+} ADC_InitTypeDef;
+
+/**
+ * @brief Structure definition of ADC channel for regular group
+ * @note The setting of these parameters with function HAL_ADC_ConfigChannel() is conditioned to ADC state.
+ * ADC can be either disabled or enabled without conversion on going on regular group.
+ */
+typedef struct {
+ uint32_t
+ Channel; /*!< Specifies the channel to configure into ADC regular group.
+ This parameter can be a value of @ref ADC_channels
+ Note: Depending on devices, some channels may not be available on package pins. Refer to device datasheet for channels availability.
+ Note: On STM32F1 devices with several ADC: Only ADC1 can access internal measurement channels (VrefInt/TempSensor)
+ Note: On STM32F10xx8 and STM32F10xxB devices: A low-amplitude voltage glitch may be generated (on ADC input 0) on the PA0 pin, when the ADC is converting with injection
+ trigger. It is advised to distribute the analog channels so that Channel 0 is configured as an injected channel. Refer to errata sheet of these devices for more details. */
+ uint32_t Rank; /*!< Specifies the rank in the regular group sequencer
+ This parameter can be a value of @ref ADC_regular_rank
+ Note: In case of need to disable a channel or change order of conversion sequencer, rank containing a previous channel setting can be overwritten by the new channel setting (or
+ parameter number of conversions can be adjusted) */
+ uint32_t SamplingTime; /*!< Sampling time value to be set for the selected channel.
+ Unit: ADC clock cycles
+ Conversion time is the addition of sampling time and processing time (12.5 ADC clock cycles at ADC resolution 12 bits).
+ This parameter can be a value of @ref ADC_sampling_times
+ Caution: This parameter updates the parameter property of the channel, that can be used into regular and/or injected groups.
+ If this same channel has been previously configured in the other group (regular/injected), it will be updated to last setting.
+ Note: In case of usage of internal measurement channels (VrefInt/TempSensor),
+ sampling time constraints must be respected (sampling time can be adjusted in function of ADC clock frequency and sampling time setting)
+ Refer to device datasheet for timings values, parameters TS_vrefint, TS_temp (values rough order: 5us to 17.1us min). */
+} ADC_ChannelConfTypeDef;
+
+/**
+ * @brief ADC Configuration analog watchdog definition
+ * @note The setting of these parameters with function is conditioned to ADC state.
+ * ADC state can be either disabled or enabled without conversion on going on regular and injected groups.
+ */
+typedef struct {
+ uint32_t WatchdogMode; /*!< Configures the ADC analog watchdog mode: single/all channels, regular/injected group.
+ This parameter can be a value of @ref ADC_analog_watchdog_mode. */
+ uint32_t Channel; /*!< Selects which ADC channel to monitor by analog watchdog.
+ This parameter has an effect only if watchdog mode is configured on single channel (parameter WatchdogMode)
+ This parameter can be a value of @ref ADC_channels. */
+ FunctionalState ITMode; /*!< Specifies whether the analog watchdog is configured in interrupt or polling mode.
+ This parameter can be set to ENABLE or DISABLE */
+ uint32_t HighThreshold; /*!< Configures the ADC analog watchdog High threshold value.
+ This parameter must be a number between Min_Data = 0x000 and Max_Data = 0xFFF. */
+ uint32_t LowThreshold; /*!< Configures the ADC analog watchdog High threshold value.
+ This parameter must be a number between Min_Data = 0x000 and Max_Data = 0xFFF. */
+ uint32_t WatchdogNumber; /*!< Reserved for future use, can be set to 0 */
+} ADC_AnalogWDGConfTypeDef;
+
+/**
+ * @brief HAL ADC state machine: ADC states definition (bitfields)
+ */
+/* States of ADC global scope */
+#define HAL_ADC_STATE_RESET 0x00000000U /*!< ADC not yet initialized or disabled */
+#define HAL_ADC_STATE_READY 0x00000001U /*!< ADC peripheral ready for use */
+#define HAL_ADC_STATE_BUSY_INTERNAL 0x00000002U /*!< ADC is busy to internal process (initialization, calibration) */
+#define HAL_ADC_STATE_TIMEOUT 0x00000004U /*!< TimeOut occurrence */
+
+/* States of ADC errors */
+#define HAL_ADC_STATE_ERROR_INTERNAL 0x00000010U /*!< Internal error occurrence */
+#define HAL_ADC_STATE_ERROR_CONFIG 0x00000020U /*!< Configuration error occurrence */
+#define HAL_ADC_STATE_ERROR_DMA 0x00000040U /*!< DMA error occurrence */
+
+/* States of ADC group regular */
+#define HAL_ADC_STATE_REG_BUSY \
+ 0x00000100U /*!< A conversion on group regular is ongoing or can occur (either by continuous mode, \
+ external trigger, low power auto power-on, multimode ADC master control) */
+#define HAL_ADC_STATE_REG_EOC 0x00000200U /*!< Conversion data available on group regular */
+#define HAL_ADC_STATE_REG_OVR 0x00000400U /*!< Not available on STM32F1 device: Overrun occurrence */
+#define HAL_ADC_STATE_REG_EOSMP 0x00000800U /*!< Not available on STM32F1 device: End Of Sampling flag raised */
+
+/* States of ADC group injected */
+#define HAL_ADC_STATE_INJ_BUSY \
+ 0x00001000U /*!< A conversion on group injected is ongoing or can occur (either by auto-injection mode, \
+ external trigger, low power auto power-on, multimode ADC master control) */
+#define HAL_ADC_STATE_INJ_EOC 0x00002000U /*!< Conversion data available on group injected */
+#define HAL_ADC_STATE_INJ_JQOVF 0x00004000U /*!< Not available on STM32F1 device: Injected queue overflow occurrence */
+
+/* States of ADC analog watchdogs */
+#define HAL_ADC_STATE_AWD1 0x00010000U /*!< Out-of-window occurrence of analog watchdog 1 */
+#define HAL_ADC_STATE_AWD2 0x00020000U /*!< Not available on STM32F1 device: Out-of-window occurrence of analog watchdog 2 */
+#define HAL_ADC_STATE_AWD3 0x00040000U /*!< Not available on STM32F1 device: Out-of-window occurrence of analog watchdog 3 */
+
+/* States of ADC multi-mode */
+#define HAL_ADC_STATE_MULTIMODE_SLAVE 0x00100000U /*!< ADC in multimode slave state, controlled by another ADC master ( */
+
+/**
+ * @brief ADC handle Structure definition
+ */
+typedef struct __ADC_HandleTypeDef {
+ ADC_TypeDef *Instance; /*!< Register base address */
+
+ ADC_InitTypeDef Init; /*!< ADC required parameters */
+
+ DMA_HandleTypeDef *DMA_Handle; /*!< Pointer DMA Handler */
+
+ HAL_LockTypeDef Lock; /*!< ADC locking object */
+
+ __IO uint32_t State; /*!< ADC communication state (bitmap of ADC states) */
+
+ __IO uint32_t ErrorCode; /*!< ADC Error code */
+
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ void (*ConvCpltCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC conversion complete callback */
+ void (*ConvHalfCpltCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC conversion DMA half-transfer callback */
+ void (*LevelOutOfWindowCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC analog watchdog 1 callback */
+ void (*ErrorCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC error callback */
+ void (*InjectedConvCpltCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC group injected conversion complete callback */ /*!< ADC end of sampling callback */
+ void (*MspInitCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC Msp Init callback */
+ void (*MspDeInitCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC Msp DeInit callback */
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+} ADC_HandleTypeDef;
+
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+/**
+ * @brief HAL ADC Callback ID enumeration definition
+ */
+typedef enum {
+ HAL_ADC_CONVERSION_COMPLETE_CB_ID = 0x00U, /*!< ADC conversion complete callback ID */
+ HAL_ADC_CONVERSION_HALF_CB_ID = 0x01U, /*!< ADC conversion DMA half-transfer callback ID */
+ HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID = 0x02U, /*!< ADC analog watchdog 1 callback ID */
+ HAL_ADC_ERROR_CB_ID = 0x03U, /*!< ADC error callback ID */
+ HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID = 0x04U, /*!< ADC group injected conversion complete callback ID */
+ HAL_ADC_MSPINIT_CB_ID = 0x09U, /*!< ADC Msp Init callback ID */
+ HAL_ADC_MSPDEINIT_CB_ID = 0x0AU /*!< ADC Msp DeInit callback ID */
+} HAL_ADC_CallbackIDTypeDef;
+
+/**
+ * @brief HAL ADC Callback pointer definition
+ */
+typedef void (*pADC_CallbackTypeDef)(ADC_HandleTypeDef *hadc); /*!< pointer to a ADC callback function */
+
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup ADC_Exported_Constants ADC Exported Constants
+ * @{
+ */
+
+/** @defgroup ADC_Error_Code ADC Error Code
+ * @{
+ */
+#define HAL_ADC_ERROR_NONE 0x00U /*!< No error */
+#define HAL_ADC_ERROR_INTERNAL \
+ 0x01U /*!< ADC IP internal error: if problem of clocking, \
+ enable/disable, erroneous state */
+#define HAL_ADC_ERROR_OVR 0x02U /*!< Overrun error */
+#define HAL_ADC_ERROR_DMA 0x04U /*!< DMA transfer error */
+
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+#define HAL_ADC_ERROR_INVALID_CALLBACK (0x10U) /*!< Invalid Callback error */
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Data_align ADC data alignment
+ * @{
+ */
+#define ADC_DATAALIGN_RIGHT 0x00000000U
+#define ADC_DATAALIGN_LEFT ((uint32_t)ADC_CR2_ALIGN)
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Scan_mode ADC scan mode
+ * @{
+ */
+/* Note: Scan mode values are not among binary choices ENABLE/DISABLE for */
+/* compatibility with other STM32 devices having a sequencer with */
+/* additional options. */
+#define ADC_SCAN_DISABLE 0x00000000U
+#define ADC_SCAN_ENABLE ((uint32_t)ADC_CR1_SCAN)
+/**
+ * @}
+ */
+
+/** @defgroup ADC_External_trigger_edge_Regular ADC external trigger enable for regular group
+ * @{
+ */
+#define ADC_EXTERNALTRIGCONVEDGE_NONE 0x00000000U
+#define ADC_EXTERNALTRIGCONVEDGE_RISING ((uint32_t)ADC_CR2_EXTTRIG)
+/**
+ * @}
+ */
+
+/** @defgroup ADC_channels ADC channels
+ * @{
+ */
+/* Note: Depending on devices, some channels may not be available on package */
+/* pins. Refer to device datasheet for channels availability. */
+#define ADC_CHANNEL_0 0x00000000U
+#define ADC_CHANNEL_1 ((uint32_t)(ADC_SQR3_SQ1_0))
+#define ADC_CHANNEL_2 ((uint32_t)(ADC_SQR3_SQ1_1))
+#define ADC_CHANNEL_3 ((uint32_t)(ADC_SQR3_SQ1_1 | ADC_SQR3_SQ1_0))
+#define ADC_CHANNEL_4 ((uint32_t)(ADC_SQR3_SQ1_2))
+#define ADC_CHANNEL_5 ((uint32_t)(ADC_SQR3_SQ1_2 | ADC_SQR3_SQ1_0))
+#define ADC_CHANNEL_6 ((uint32_t)(ADC_SQR3_SQ1_2 | ADC_SQR3_SQ1_1))
+#define ADC_CHANNEL_7 ((uint32_t)(ADC_SQR3_SQ1_2 | ADC_SQR3_SQ1_1 | ADC_SQR3_SQ1_0))
+#define ADC_CHANNEL_8 ((uint32_t)(ADC_SQR3_SQ1_3))
+#define ADC_CHANNEL_9 ((uint32_t)(ADC_SQR3_SQ1_3 | ADC_SQR3_SQ1_0))
+#define ADC_CHANNEL_10 ((uint32_t)(ADC_SQR3_SQ1_3 | ADC_SQR3_SQ1_1))
+#define ADC_CHANNEL_11 ((uint32_t)(ADC_SQR3_SQ1_3 | ADC_SQR3_SQ1_1 | ADC_SQR3_SQ1_0))
+#define ADC_CHANNEL_12 ((uint32_t)(ADC_SQR3_SQ1_3 | ADC_SQR3_SQ1_2))
+#define ADC_CHANNEL_13 ((uint32_t)(ADC_SQR3_SQ1_3 | ADC_SQR3_SQ1_2 | ADC_SQR3_SQ1_0))
+#define ADC_CHANNEL_14 ((uint32_t)(ADC_SQR3_SQ1_3 | ADC_SQR3_SQ1_2 | ADC_SQR3_SQ1_1))
+#define ADC_CHANNEL_15 ((uint32_t)(ADC_SQR3_SQ1_3 | ADC_SQR3_SQ1_2 | ADC_SQR3_SQ1_1 | ADC_SQR3_SQ1_0))
+#define ADC_CHANNEL_16 ((uint32_t)(ADC_SQR3_SQ1_4))
+#define ADC_CHANNEL_17 ((uint32_t)(ADC_SQR3_SQ1_4 | ADC_SQR3_SQ1_0))
+
+#define ADC_CHANNEL_TEMPSENSOR ADC_CHANNEL_16 /* ADC internal channel (no connection on device pin) */
+#define ADC_CHANNEL_VREFINT ADC_CHANNEL_17 /* ADC internal channel (no connection on device pin) */
+/**
+ * @}
+ */
+
+/** @defgroup ADC_sampling_times ADC sampling times
+ * @{
+ */
+#define ADC_SAMPLETIME_1CYCLE_5 0x00000000U /*!< Sampling time 1.5 ADC clock cycle */
+#define ADC_SAMPLETIME_7CYCLES_5 ((uint32_t)(ADC_SMPR2_SMP0_0)) /*!< Sampling time 7.5 ADC clock cycles */
+#define ADC_SAMPLETIME_13CYCLES_5 ((uint32_t)(ADC_SMPR2_SMP0_1)) /*!< Sampling time 13.5 ADC clock cycles */
+#define ADC_SAMPLETIME_28CYCLES_5 ((uint32_t)(ADC_SMPR2_SMP0_1 | ADC_SMPR2_SMP0_0)) /*!< Sampling time 28.5 ADC clock cycles */
+#define ADC_SAMPLETIME_41CYCLES_5 ((uint32_t)(ADC_SMPR2_SMP0_2)) /*!< Sampling time 41.5 ADC clock cycles */
+#define ADC_SAMPLETIME_55CYCLES_5 ((uint32_t)(ADC_SMPR2_SMP0_2 | ADC_SMPR2_SMP0_0)) /*!< Sampling time 55.5 ADC clock cycles */
+#define ADC_SAMPLETIME_71CYCLES_5 ((uint32_t)(ADC_SMPR2_SMP0_2 | ADC_SMPR2_SMP0_1)) /*!< Sampling time 71.5 ADC clock cycles */
+#define ADC_SAMPLETIME_239CYCLES_5 ((uint32_t)(ADC_SMPR2_SMP0_2 | ADC_SMPR2_SMP0_1 | ADC_SMPR2_SMP0_0)) /*!< Sampling time 239.5 ADC clock cycles */
+/**
+ * @}
+ */
+
+/** @defgroup ADC_regular_rank ADC rank into regular group
+ * @{
+ */
+#define ADC_REGULAR_RANK_1 0x00000001U
+#define ADC_REGULAR_RANK_2 0x00000002U
+#define ADC_REGULAR_RANK_3 0x00000003U
+#define ADC_REGULAR_RANK_4 0x00000004U
+#define ADC_REGULAR_RANK_5 0x00000005U
+#define ADC_REGULAR_RANK_6 0x00000006U
+#define ADC_REGULAR_RANK_7 0x00000007U
+#define ADC_REGULAR_RANK_8 0x00000008U
+#define ADC_REGULAR_RANK_9 0x00000009U
+#define ADC_REGULAR_RANK_10 0x0000000AU
+#define ADC_REGULAR_RANK_11 0x0000000BU
+#define ADC_REGULAR_RANK_12 0x0000000CU
+#define ADC_REGULAR_RANK_13 0x0000000DU
+#define ADC_REGULAR_RANK_14 0x0000000EU
+#define ADC_REGULAR_RANK_15 0x0000000FU
+#define ADC_REGULAR_RANK_16 0x00000010U
+/**
+ * @}
+ */
+
+/** @defgroup ADC_analog_watchdog_mode ADC analog watchdog mode
+ * @{
+ */
+#define ADC_ANALOGWATCHDOG_NONE 0x00000000U
+#define ADC_ANALOGWATCHDOG_SINGLE_REG ((uint32_t)(ADC_CR1_AWDSGL | ADC_CR1_AWDEN))
+#define ADC_ANALOGWATCHDOG_SINGLE_INJEC ((uint32_t)(ADC_CR1_AWDSGL | ADC_CR1_JAWDEN))
+#define ADC_ANALOGWATCHDOG_SINGLE_REGINJEC ((uint32_t)(ADC_CR1_AWDSGL | ADC_CR1_AWDEN | ADC_CR1_JAWDEN))
+#define ADC_ANALOGWATCHDOG_ALL_REG ((uint32_t)ADC_CR1_AWDEN)
+#define ADC_ANALOGWATCHDOG_ALL_INJEC ((uint32_t)ADC_CR1_JAWDEN)
+#define ADC_ANALOGWATCHDOG_ALL_REGINJEC ((uint32_t)(ADC_CR1_AWDEN | ADC_CR1_JAWDEN))
+/**
+ * @}
+ */
+
+/** @defgroup ADC_conversion_group ADC conversion group
+ * @{
+ */
+#define ADC_REGULAR_GROUP ((uint32_t)(ADC_FLAG_EOC))
+#define ADC_INJECTED_GROUP ((uint32_t)(ADC_FLAG_JEOC))
+#define ADC_REGULAR_INJECTED_GROUP ((uint32_t)(ADC_FLAG_EOC | ADC_FLAG_JEOC))
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Event_type ADC Event type
+ * @{
+ */
+#define ADC_AWD_EVENT ((uint32_t)ADC_FLAG_AWD) /*!< ADC Analog watchdog event */
+
+#define ADC_AWD1_EVENT ADC_AWD_EVENT /*!< ADC Analog watchdog 1 event: Alternate naming for compatibility with other STM32 devices having several analog watchdogs */
+/**
+ * @}
+ */
+
+/** @defgroup ADC_interrupts_definition ADC interrupts definition
+ * @{
+ */
+#define ADC_IT_EOC ADC_CR1_EOCIE /*!< ADC End of Regular Conversion interrupt source */
+#define ADC_IT_JEOC ADC_CR1_JEOCIE /*!< ADC End of Injected Conversion interrupt source */
+#define ADC_IT_AWD ADC_CR1_AWDIE /*!< ADC Analog watchdog interrupt source */
+/**
+ * @}
+ */
+
+/** @defgroup ADC_flags_definition ADC flags definition
+ * @{
+ */
+#define ADC_FLAG_STRT ADC_SR_STRT /*!< ADC Regular group start flag */
+#define ADC_FLAG_JSTRT ADC_SR_JSTRT /*!< ADC Injected group start flag */
+#define ADC_FLAG_EOC ADC_SR_EOC /*!< ADC End of Regular conversion flag */
+#define ADC_FLAG_JEOC ADC_SR_JEOC /*!< ADC End of Injected conversion flag */
+#define ADC_FLAG_AWD ADC_SR_AWD /*!< ADC Analog watchdog flag */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Private constants ---------------------------------------------------------*/
+
+/** @addtogroup ADC_Private_Constants ADC Private Constants
+ * @{
+ */
+
+/** @defgroup ADC_conversion_cycles ADC conversion cycles
+ * @{
+ */
+/* ADC conversion cycles (unit: ADC clock cycles) */
+/* (selected sampling time + conversion time of 12.5 ADC clock cycles, with */
+/* resolution 12 bits) */
+#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_1CYCLE5 14U
+#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_7CYCLES5 20U
+#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_13CYCLES5 26U
+#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_28CYCLES5 41U
+#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_41CYCLES5 54U
+#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_55CYCLES5 68U
+#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_71CYCLES5 84U
+#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_239CYCLES5 252U
+/**
+ * @}
+ */
+
+/** @defgroup ADC_sampling_times_all_channels ADC sampling times all channels
+ * @{
+ */
+#define ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT2 \
+ (ADC_SMPR2_SMP9_2 | ADC_SMPR2_SMP8_2 | ADC_SMPR2_SMP7_2 | ADC_SMPR2_SMP6_2 | ADC_SMPR2_SMP5_2 | ADC_SMPR2_SMP4_2 | ADC_SMPR2_SMP3_2 | ADC_SMPR2_SMP2_2 | ADC_SMPR2_SMP1_2 | ADC_SMPR2_SMP0_2)
+#define ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT2 \
+ (ADC_SMPR1_SMP17_2 | ADC_SMPR1_SMP16_2 | ADC_SMPR1_SMP15_2 | ADC_SMPR1_SMP14_2 | ADC_SMPR1_SMP13_2 | ADC_SMPR1_SMP12_2 | ADC_SMPR1_SMP11_2 | ADC_SMPR1_SMP10_2)
+
+#define ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT1 \
+ (ADC_SMPR2_SMP9_1 | ADC_SMPR2_SMP8_1 | ADC_SMPR2_SMP7_1 | ADC_SMPR2_SMP6_1 | ADC_SMPR2_SMP5_1 | ADC_SMPR2_SMP4_1 | ADC_SMPR2_SMP3_1 | ADC_SMPR2_SMP2_1 | ADC_SMPR2_SMP1_1 | ADC_SMPR2_SMP0_1)
+#define ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT1 \
+ (ADC_SMPR1_SMP17_1 | ADC_SMPR1_SMP16_1 | ADC_SMPR1_SMP15_1 | ADC_SMPR1_SMP14_1 | ADC_SMPR1_SMP13_1 | ADC_SMPR1_SMP12_1 | ADC_SMPR1_SMP11_1 | ADC_SMPR1_SMP10_1)
+
+#define ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT0 \
+ (ADC_SMPR2_SMP9_0 | ADC_SMPR2_SMP8_0 | ADC_SMPR2_SMP7_0 | ADC_SMPR2_SMP6_0 | ADC_SMPR2_SMP5_0 | ADC_SMPR2_SMP4_0 | ADC_SMPR2_SMP3_0 | ADC_SMPR2_SMP2_0 | ADC_SMPR2_SMP1_0 | ADC_SMPR2_SMP0_0)
+#define ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT0 \
+ (ADC_SMPR1_SMP17_0 | ADC_SMPR1_SMP16_0 | ADC_SMPR1_SMP15_0 | ADC_SMPR1_SMP14_0 | ADC_SMPR1_SMP13_0 | ADC_SMPR1_SMP12_0 | ADC_SMPR1_SMP11_0 | ADC_SMPR1_SMP10_0)
+
+#define ADC_SAMPLETIME_1CYCLE5_SMPR2ALLCHANNELS 0x00000000U
+#define ADC_SAMPLETIME_7CYCLES5_SMPR2ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT0)
+#define ADC_SAMPLETIME_13CYCLES5_SMPR2ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT1)
+#define ADC_SAMPLETIME_28CYCLES5_SMPR2ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT1 | ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT0)
+#define ADC_SAMPLETIME_41CYCLES5_SMPR2ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT2)
+#define ADC_SAMPLETIME_55CYCLES5_SMPR2ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT2 | ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT0)
+#define ADC_SAMPLETIME_71CYCLES5_SMPR2ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT2 | ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT1)
+#define ADC_SAMPLETIME_239CYCLES5_SMPR2ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT2 | ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT1 | ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT0)
+
+#define ADC_SAMPLETIME_1CYCLE5_SMPR1ALLCHANNELS 0x00000000U
+#define ADC_SAMPLETIME_7CYCLES5_SMPR1ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT0)
+#define ADC_SAMPLETIME_13CYCLES5_SMPR1ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT1)
+#define ADC_SAMPLETIME_28CYCLES5_SMPR1ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT1 | ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT0)
+#define ADC_SAMPLETIME_41CYCLES5_SMPR1ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT2)
+#define ADC_SAMPLETIME_55CYCLES5_SMPR1ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT2 | ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT0)
+#define ADC_SAMPLETIME_71CYCLES5_SMPR1ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT2 | ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT1)
+#define ADC_SAMPLETIME_239CYCLES5_SMPR1ALLCHANNELS (ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT2 | ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT1 | ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT0)
+/**
+ * @}
+ */
+
+/* Combination of all post-conversion flags bits: EOC/EOS, JEOC/JEOS, OVR, AWDx */
+#define ADC_FLAG_POSTCONV_ALL (ADC_FLAG_EOC | ADC_FLAG_JEOC | ADC_FLAG_AWD)
+
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+
+/** @defgroup ADC_Exported_Macros ADC Exported Macros
+ * @{
+ */
+/* Macro for internal HAL driver usage, and possibly can be used into code of */
+/* final user. */
+
+/**
+ * @brief Enable the ADC peripheral
+ * @note ADC enable requires a delay for ADC stabilization time
+ * (refer to device datasheet, parameter tSTAB)
+ * @note On STM32F1, if ADC is already enabled this macro trigs a conversion
+ * SW start on regular group.
+ * @param __HANDLE__: ADC handle
+ * @retval None
+ */
+#define __HAL_ADC_ENABLE(__HANDLE__) (SET_BIT((__HANDLE__)->Instance->CR2, (ADC_CR2_ADON)))
+
+/**
+ * @brief Disable the ADC peripheral
+ * @param __HANDLE__: ADC handle
+ * @retval None
+ */
+#define __HAL_ADC_DISABLE(__HANDLE__) (CLEAR_BIT((__HANDLE__)->Instance->CR2, (ADC_CR2_ADON)))
+
+/** @brief Enable the ADC end of conversion interrupt.
+ * @param __HANDLE__: ADC handle
+ * @param __INTERRUPT__: ADC Interrupt
+ * This parameter can be any combination of the following values:
+ * @arg ADC_IT_EOC: ADC End of Regular Conversion interrupt source
+ * @arg ADC_IT_JEOC: ADC End of Injected Conversion interrupt source
+ * @arg ADC_IT_AWD: ADC Analog watchdog interrupt source
+ * @retval None
+ */
+#define __HAL_ADC_ENABLE_IT(__HANDLE__, __INTERRUPT__) (SET_BIT((__HANDLE__)->Instance->CR1, (__INTERRUPT__)))
+
+/** @brief Disable the ADC end of conversion interrupt.
+ * @param __HANDLE__: ADC handle
+ * @param __INTERRUPT__: ADC Interrupt
+ * This parameter can be any combination of the following values:
+ * @arg ADC_IT_EOC: ADC End of Regular Conversion interrupt source
+ * @arg ADC_IT_JEOC: ADC End of Injected Conversion interrupt source
+ * @arg ADC_IT_AWD: ADC Analog watchdog interrupt source
+ * @retval None
+ */
+#define __HAL_ADC_DISABLE_IT(__HANDLE__, __INTERRUPT__) (CLEAR_BIT((__HANDLE__)->Instance->CR1, (__INTERRUPT__)))
+
+/** @brief Checks if the specified ADC interrupt source is enabled or disabled.
+ * @param __HANDLE__: ADC handle
+ * @param __INTERRUPT__: ADC interrupt source to check
+ * This parameter can be any combination of the following values:
+ * @arg ADC_IT_EOC: ADC End of Regular Conversion interrupt source
+ * @arg ADC_IT_JEOC: ADC End of Injected Conversion interrupt source
+ * @arg ADC_IT_AWD: ADC Analog watchdog interrupt source
+ * @retval None
+ */
+#define __HAL_ADC_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->CR1 & (__INTERRUPT__)) == (__INTERRUPT__))
+
+/** @brief Get the selected ADC's flag status.
+ * @param __HANDLE__: ADC handle
+ * @param __FLAG__: ADC flag
+ * This parameter can be any combination of the following values:
+ * @arg ADC_FLAG_STRT: ADC Regular group start flag
+ * @arg ADC_FLAG_JSTRT: ADC Injected group start flag
+ * @arg ADC_FLAG_EOC: ADC End of Regular conversion flag
+ * @arg ADC_FLAG_JEOC: ADC End of Injected conversion flag
+ * @arg ADC_FLAG_AWD: ADC Analog watchdog flag
+ * @retval None
+ */
+#define __HAL_ADC_GET_FLAG(__HANDLE__, __FLAG__) ((((__HANDLE__)->Instance->SR) & (__FLAG__)) == (__FLAG__))
+
+/** @brief Clear the ADC's pending flags
+ * @param __HANDLE__: ADC handle
+ * @param __FLAG__: ADC flag
+ * This parameter can be any combination of the following values:
+ * @arg ADC_FLAG_STRT: ADC Regular group start flag
+ * @arg ADC_FLAG_JSTRT: ADC Injected group start flag
+ * @arg ADC_FLAG_EOC: ADC End of Regular conversion flag
+ * @arg ADC_FLAG_JEOC: ADC End of Injected conversion flag
+ * @arg ADC_FLAG_AWD: ADC Analog watchdog flag
+ * @retval None
+ */
+#define __HAL_ADC_CLEAR_FLAG(__HANDLE__, __FLAG__) (WRITE_REG((__HANDLE__)->Instance->SR, ~(__FLAG__)))
+
+/** @brief Reset ADC handle state
+ * @param __HANDLE__: ADC handle
+ * @retval None
+ */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+#define __HAL_ADC_RESET_HANDLE_STATE(__HANDLE__) \
+ do { \
+ (__HANDLE__)->State = HAL_ADC_STATE_RESET; \
+ (__HANDLE__)->MspInitCallback = NULL; \
+ (__HANDLE__)->MspDeInitCallback = NULL; \
+ } while (0)
+#else
+#define __HAL_ADC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_ADC_STATE_RESET)
+#endif
+
+/**
+ * @}
+ */
+
+/* Private macro ------------------------------------------------------------*/
+
+/** @defgroup ADC_Private_Macros ADC Private Macros
+ * @{
+ */
+/* Macro reserved for internal HAL driver usage, not intended to be used in */
+/* code of final user. */
+
+/**
+ * @brief Verification of ADC state: enabled or disabled
+ * @param __HANDLE__: ADC handle
+ * @retval SET (ADC enabled) or RESET (ADC disabled)
+ */
+#define ADC_IS_ENABLE(__HANDLE__) (((((__HANDLE__)->Instance->CR2 & ADC_CR2_ADON) == ADC_CR2_ADON)) ? SET : RESET)
+
+/**
+ * @brief Test if conversion trigger of regular group is software start
+ * or external trigger.
+ * @param __HANDLE__: ADC handle
+ * @retval SET (software start) or RESET (external trigger)
+ */
+#define ADC_IS_SOFTWARE_START_REGULAR(__HANDLE__) (READ_BIT((__HANDLE__)->Instance->CR2, ADC_CR2_EXTSEL) == ADC_SOFTWARE_START)
+
+/**
+ * @brief Test if conversion trigger of injected group is software start
+ * or external trigger.
+ * @param __HANDLE__: ADC handle
+ * @retval SET (software start) or RESET (external trigger)
+ */
+#define ADC_IS_SOFTWARE_START_INJECTED(__HANDLE__) (READ_BIT((__HANDLE__)->Instance->CR2, ADC_CR2_JEXTSEL) == ADC_INJECTED_SOFTWARE_START)
+
+/**
+ * @brief Simultaneously clears and sets specific bits of the handle State
+ * @note: ADC_STATE_CLR_SET() macro is merely aliased to generic macro MODIFY_REG(),
+ * the first parameter is the ADC handle State, the second parameter is the
+ * bit field to clear, the third and last parameter is the bit field to set.
+ * @retval None
+ */
+#define ADC_STATE_CLR_SET MODIFY_REG
+
+/**
+ * @brief Clear ADC error code (set it to error code: "no error")
+ * @param __HANDLE__: ADC handle
+ * @retval None
+ */
+#define ADC_CLEAR_ERRORCODE(__HANDLE__) ((__HANDLE__)->ErrorCode = HAL_ADC_ERROR_NONE)
+
+/**
+ * @brief Set ADC number of conversions into regular channel sequence length.
+ * @param _NbrOfConversion_: Regular channel sequence length
+ * @retval None
+ */
+#define ADC_SQR1_L_SHIFT(_NbrOfConversion_) (((_NbrOfConversion_) - (uint8_t)1) << ADC_SQR1_L_Pos)
+
+/**
+ * @brief Set the ADC's sample time for channel numbers between 10 and 18.
+ * @param _SAMPLETIME_: Sample time parameter.
+ * @param _CHANNELNB_: Channel number.
+ * @retval None
+ */
+#define ADC_SMPR1(_SAMPLETIME_, _CHANNELNB_) ((_SAMPLETIME_) << (ADC_SMPR1_SMP11_Pos * ((_CHANNELNB_)-10)))
+
+/**
+ * @brief Set the ADC's sample time for channel numbers between 0 and 9.
+ * @param _SAMPLETIME_: Sample time parameter.
+ * @param _CHANNELNB_: Channel number.
+ * @retval None
+ */
+#define ADC_SMPR2(_SAMPLETIME_, _CHANNELNB_) ((_SAMPLETIME_) << (ADC_SMPR2_SMP1_Pos * (_CHANNELNB_)))
+
+/**
+ * @brief Set the selected regular channel rank for rank between 1 and 6.
+ * @param _CHANNELNB_: Channel number.
+ * @param _RANKNB_: Rank number.
+ * @retval None
+ */
+#define ADC_SQR3_RK(_CHANNELNB_, _RANKNB_) ((_CHANNELNB_) << (ADC_SQR3_SQ2_Pos * ((_RANKNB_)-1)))
+
+/**
+ * @brief Set the selected regular channel rank for rank between 7 and 12.
+ * @param _CHANNELNB_: Channel number.
+ * @param _RANKNB_: Rank number.
+ * @retval None
+ */
+#define ADC_SQR2_RK(_CHANNELNB_, _RANKNB_) ((_CHANNELNB_) << (ADC_SQR2_SQ8_Pos * ((_RANKNB_)-7)))
+
+/**
+ * @brief Set the selected regular channel rank for rank between 13 and 16.
+ * @param _CHANNELNB_: Channel number.
+ * @param _RANKNB_: Rank number.
+ * @retval None
+ */
+#define ADC_SQR1_RK(_CHANNELNB_, _RANKNB_) ((_CHANNELNB_) << (ADC_SQR1_SQ14_Pos * ((_RANKNB_)-13)))
+
+/**
+ * @brief Set the injected sequence length.
+ * @param _JSQR_JL_: Sequence length.
+ * @retval None
+ */
+#define ADC_JSQR_JL_SHIFT(_JSQR_JL_) (((_JSQR_JL_)-1) << ADC_JSQR_JL_Pos)
+
+/**
+ * @brief Set the selected injected channel rank
+ * Note: on STM32F1 devices, channel rank position in JSQR register
+ * is depending on total number of ranks selected into
+ * injected sequencer (ranks sequence starting from 4-JL)
+ * @param _CHANNELNB_: Channel number.
+ * @param _RANKNB_: Rank number.
+ * @param _JSQR_JL_: Sequence length.
+ * @retval None
+ */
+#define ADC_JSQR_RK_JL(_CHANNELNB_, _RANKNB_, _JSQR_JL_) ((_CHANNELNB_) << (ADC_JSQR_JSQ2_Pos * ((4 - ((_JSQR_JL_) - (_RANKNB_))) - 1)))
+
+/**
+ * @brief Enable ADC continuous conversion mode.
+ * @param _CONTINUOUS_MODE_: Continuous mode.
+ * @retval None
+ */
+#define ADC_CR2_CONTINUOUS(_CONTINUOUS_MODE_) ((_CONTINUOUS_MODE_) << ADC_CR2_CONT_Pos)
+
+/**
+ * @brief Configures the number of discontinuous conversions for the regular group channels.
+ * @param _NBR_DISCONTINUOUS_CONV_: Number of discontinuous conversions.
+ * @retval None
+ */
+#define ADC_CR1_DISCONTINUOUS_NUM(_NBR_DISCONTINUOUS_CONV_) (((_NBR_DISCONTINUOUS_CONV_)-1) << ADC_CR1_DISCNUM_Pos)
+
+/**
+ * @brief Enable ADC scan mode to convert multiple ranks with sequencer.
+ * @param _SCAN_MODE_: Scan conversion mode.
+ * @retval None
+ */
+/* Note: Scan mode is compared to ENABLE for legacy purpose, this parameter */
+/* is equivalent to ADC_SCAN_ENABLE. */
+#define ADC_CR1_SCAN_SET(_SCAN_MODE_) ((((_SCAN_MODE_) == ADC_SCAN_ENABLE) || ((_SCAN_MODE_) == ENABLE)) ? (ADC_SCAN_ENABLE) : (ADC_SCAN_DISABLE))
+
+/**
+ * @brief Get the maximum ADC conversion cycles on all channels.
+ * Returns the selected sampling time + conversion time (12.5 ADC clock cycles)
+ * Approximation of sampling time within 4 ranges, returns the highest value:
+ * below 7.5 cycles {1.5 cycle; 7.5 cycles},
+ * between 13.5 cycles and 28.5 cycles {13.5 cycles; 28.5 cycles}
+ * between 41.5 cycles and 71.5 cycles {41.5 cycles; 55.5 cycles; 71.5cycles}
+ * equal to 239.5 cycles
+ * Unit: ADC clock cycles
+ * @param __HANDLE__: ADC handle
+ * @retval ADC conversion cycles on all channels
+ */
+#define ADC_CONVCYCLES_MAX_RANGE(__HANDLE__) \
+ (((((__HANDLE__)->Instance->SMPR2 & ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT2) == RESET) && (((__HANDLE__)->Instance->SMPR1 & ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT2) == RESET)) \
+ ? \
+ \
+ (((((__HANDLE__)->Instance->SMPR2 & ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT1) == RESET) && (((__HANDLE__)->Instance->SMPR1 & ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT1) == RESET)) \
+ ? ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_7CYCLES5 \
+ : ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_28CYCLES5) \
+ : ((((((__HANDLE__)->Instance->SMPR2 & ADC_SAMPLETIME_ALLCHANNELS_SMPR2BIT1) == RESET) && (((__HANDLE__)->Instance->SMPR1 & ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT1) == RESET)) \
+ || ((((__HANDLE__)->Instance->SMPR2 & ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT0) == RESET) && (((__HANDLE__)->Instance->SMPR1 & ADC_SAMPLETIME_ALLCHANNELS_SMPR1BIT0) == RESET))) \
+ ? ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_71CYCLES5 \
+ : ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_239CYCLES5))
+
+#define IS_ADC_DATA_ALIGN(ALIGN) (((ALIGN) == ADC_DATAALIGN_RIGHT) || ((ALIGN) == ADC_DATAALIGN_LEFT))
+
+#define IS_ADC_SCAN_MODE(SCAN_MODE) (((SCAN_MODE) == ADC_SCAN_DISABLE) || ((SCAN_MODE) == ADC_SCAN_ENABLE))
+
+#define IS_ADC_EXTTRIG_EDGE(EDGE) (((EDGE) == ADC_EXTERNALTRIGCONVEDGE_NONE) || ((EDGE) == ADC_EXTERNALTRIGCONVEDGE_RISING))
+
+#define IS_ADC_CHANNEL(CHANNEL) \
+ (((CHANNEL) == ADC_CHANNEL_0) || ((CHANNEL) == ADC_CHANNEL_1) || ((CHANNEL) == ADC_CHANNEL_2) || ((CHANNEL) == ADC_CHANNEL_3) || ((CHANNEL) == ADC_CHANNEL_4) || ((CHANNEL) == ADC_CHANNEL_5) \
+ || ((CHANNEL) == ADC_CHANNEL_6) || ((CHANNEL) == ADC_CHANNEL_7) || ((CHANNEL) == ADC_CHANNEL_8) || ((CHANNEL) == ADC_CHANNEL_9) || ((CHANNEL) == ADC_CHANNEL_10) || ((CHANNEL) == ADC_CHANNEL_11) \
+ || ((CHANNEL) == ADC_CHANNEL_12) || ((CHANNEL) == ADC_CHANNEL_13) || ((CHANNEL) == ADC_CHANNEL_14) || ((CHANNEL) == ADC_CHANNEL_15) || ((CHANNEL) == ADC_CHANNEL_16) \
+ || ((CHANNEL) == ADC_CHANNEL_17))
+
+#define IS_ADC_SAMPLE_TIME(TIME) \
+ (((TIME) == ADC_SAMPLETIME_1CYCLE_5) || ((TIME) == ADC_SAMPLETIME_7CYCLES_5) || ((TIME) == ADC_SAMPLETIME_13CYCLES_5) || ((TIME) == ADC_SAMPLETIME_28CYCLES_5) \
+ || ((TIME) == ADC_SAMPLETIME_41CYCLES_5) || ((TIME) == ADC_SAMPLETIME_55CYCLES_5) || ((TIME) == ADC_SAMPLETIME_71CYCLES_5) || ((TIME) == ADC_SAMPLETIME_239CYCLES_5))
+
+#define IS_ADC_REGULAR_RANK(CHANNEL) \
+ (((CHANNEL) == ADC_REGULAR_RANK_1) || ((CHANNEL) == ADC_REGULAR_RANK_2) || ((CHANNEL) == ADC_REGULAR_RANK_3) || ((CHANNEL) == ADC_REGULAR_RANK_4) || ((CHANNEL) == ADC_REGULAR_RANK_5) \
+ || ((CHANNEL) == ADC_REGULAR_RANK_6) || ((CHANNEL) == ADC_REGULAR_RANK_7) || ((CHANNEL) == ADC_REGULAR_RANK_8) || ((CHANNEL) == ADC_REGULAR_RANK_9) || ((CHANNEL) == ADC_REGULAR_RANK_10) \
+ || ((CHANNEL) == ADC_REGULAR_RANK_11) || ((CHANNEL) == ADC_REGULAR_RANK_12) || ((CHANNEL) == ADC_REGULAR_RANK_13) || ((CHANNEL) == ADC_REGULAR_RANK_14) || ((CHANNEL) == ADC_REGULAR_RANK_15) \
+ || ((CHANNEL) == ADC_REGULAR_RANK_16))
+
+#define IS_ADC_ANALOG_WATCHDOG_MODE(WATCHDOG) \
+ (((WATCHDOG) == ADC_ANALOGWATCHDOG_NONE) || ((WATCHDOG) == ADC_ANALOGWATCHDOG_SINGLE_REG) || ((WATCHDOG) == ADC_ANALOGWATCHDOG_SINGLE_INJEC) || ((WATCHDOG) == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC) \
+ || ((WATCHDOG) == ADC_ANALOGWATCHDOG_ALL_REG) || ((WATCHDOG) == ADC_ANALOGWATCHDOG_ALL_INJEC) || ((WATCHDOG) == ADC_ANALOGWATCHDOG_ALL_REGINJEC))
+
+#define IS_ADC_CONVERSION_GROUP(CONVERSION) (((CONVERSION) == ADC_REGULAR_GROUP) || ((CONVERSION) == ADC_INJECTED_GROUP) || ((CONVERSION) == ADC_REGULAR_INJECTED_GROUP))
+
+#define IS_ADC_EVENT_TYPE(EVENT) ((EVENT) == ADC_AWD_EVENT)
+
+/** @defgroup ADC_range_verification ADC range verification
+ * For a unique ADC resolution: 12 bits
+ * @{
+ */
+#define IS_ADC_RANGE(ADC_VALUE) ((ADC_VALUE) <= 0x0FFFU)
+/**
+ * @}
+ */
+
+/** @defgroup ADC_regular_nb_conv_verification ADC regular nb conv verification
+ * @{
+ */
+#define IS_ADC_REGULAR_NB_CONV(LENGTH) (((LENGTH) >= 1U) && ((LENGTH) <= 16U))
+/**
+ * @}
+ */
+
+/** @defgroup ADC_regular_discontinuous_mode_number_verification ADC regular discontinuous mode number verification
+ * @{
+ */
+#define IS_ADC_REGULAR_DISCONT_NUMBER(NUMBER) (((NUMBER) >= 1U) && ((NUMBER) <= 8U))
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Include ADC HAL Extension module */
+#include "stm32f1xx_hal_adc_ex.h"
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup ADC_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup ADC_Exported_Functions_Group1
+ * @{
+ */
+
+/* Initialization and de-initialization functions **********************************/
+HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc);
+HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc);
+void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc);
+void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc);
+
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+/* Callbacks Register/UnRegister functions ***********************************/
+HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback);
+HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+/* IO operation functions *****************************************************/
+
+/** @addtogroup ADC_Exported_Functions_Group2
+ * @{
+ */
+
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc);
+HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc);
+HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout);
+HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout);
+
+/* Non-blocking mode: Interruption */
+HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc);
+HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc);
+
+/* Non-blocking mode: DMA */
+HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length);
+HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc);
+
+/* ADC retrieve conversion value intended to be used with polling or interruption */
+uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef *hadc);
+
+/* ADC IRQHandler and Callbacks used in non-blocking modes (Interruption and DMA) */
+void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc);
+void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc);
+void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc);
+void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc);
+void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc);
+/**
+ * @}
+ */
+
+/* Peripheral Control functions ***********************************************/
+/** @addtogroup ADC_Exported_Functions_Group3
+ * @{
+ */
+HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, ADC_ChannelConfTypeDef *sConfig);
+HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, ADC_AnalogWDGConfTypeDef *AnalogWDGConfig);
+/**
+ * @}
+ */
+
+/* Peripheral State functions *************************************************/
+/** @addtogroup ADC_Exported_Functions_Group4
+ * @{
+ */
+uint32_t HAL_ADC_GetState(ADC_HandleTypeDef *hadc);
+uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc);
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Internal HAL driver functions **********************************************/
+/** @addtogroup ADC_Private_Functions
+ * @{
+ */
+HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc);
+HAL_StatusTypeDef ADC_ConversionStop_Disable(ADC_HandleTypeDef *hadc);
+void ADC_StabilizationTime(uint32_t DelayUs);
+void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma);
+void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma);
+void ADC_DMAError(DMA_HandleTypeDef *hdma);
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32F1xx_HAL_ADC_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc_ex.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc_ex.h new file mode 100644 index 00000000..3b8e19d6 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc_ex.h @@ -0,0 +1,607 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_adc_ex.h
+ * @author MCD Application Team
+ * @brief Header file of ADC HAL extension module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_ADC_EX_H
+#define __STM32F1xx_HAL_ADC_EX_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup ADCEx
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+/** @defgroup ADCEx_Exported_Types ADCEx Exported Types
+ * @{
+ */
+
+/**
+ * @brief ADC Configuration injected Channel structure definition
+ * @note Parameters of this structure are shared within 2 scopes:
+ * - Scope channel: InjectedChannel, InjectedRank, InjectedSamplingTime, InjectedOffset
+ * - Scope injected group (affects all channels of injected group): InjectedNbrOfConversion, InjectedDiscontinuousConvMode,
+ * AutoInjectedConv, ExternalTrigInjecConvEdge, ExternalTrigInjecConv.
+ * @note The setting of these parameters with function HAL_ADCEx_InjectedConfigChannel() is conditioned to ADC state.
+ * ADC state can be either:
+ * - For all parameters: ADC disabled (this is the only possible ADC state to modify parameter 'ExternalTrigInjecConv')
+ * - For all except parameters 'ExternalTrigInjecConv': ADC enabled without conversion on going on injected group.
+ */
+typedef struct {
+ uint32_t InjectedChannel; /*!< Selection of ADC channel to configure
+ This parameter can be a value of @ref ADC_channels
+ Note: Depending on devices, some channels may not be available on package pins. Refer to device datasheet for channels availability.
+ Note: On STM32F1 devices with several ADC: Only ADC1 can access internal measurement channels (VrefInt/TempSensor)
+ Note: On STM32F10xx8 and STM32F10xxB devices: A low-amplitude voltage glitch may be generated (on ADC input 0) on the PA0 pin, when the ADC is converting with
+ injection trigger. It is advised to distribute the analog channels so that Channel 0 is configured as an injected channel.
+ Refer to errata sheet of these devices for more details. */
+ uint32_t InjectedRank; /*!< Rank in the injected group sequencer
+ This parameter must be a value of @ref ADCEx_injected_rank
+ Note: In case of need to disable a channel or change order of conversion sequencer, rank containing a previous channel setting can be overwritten by the new channel
+ setting (or parameter number of conversions can be adjusted) */
+ uint32_t InjectedSamplingTime; /*!< Sampling time value to be set for the selected channel.
+ Unit: ADC clock cycles
+ Conversion time is the addition of sampling time and processing time (12.5 ADC clock cycles at ADC resolution 12 bits).
+ This parameter can be a value of @ref ADC_sampling_times
+ Caution: This parameter updates the parameter property of the channel, that can be used into regular and/or injected groups.
+ If this same channel has been previously configured in the other group (regular/injected), it will be updated to last setting.
+ Note: In case of usage of internal measurement channels (VrefInt/TempSensor),
+ sampling time constraints must be respected (sampling time can be adjusted in function of ADC clock frequency and sampling time setting)
+ Refer to device datasheet for timings values, parameters TS_vrefint, TS_temp (values rough order: 5us to 17.1us min). */
+ uint32_t InjectedOffset; /*!< Defines the offset to be subtracted from the raw converted data (for channels set on injected group only).
+ Offset value must be a positive number.
+ Depending of ADC resolution selected (12, 10, 8 or 6 bits),
+ this parameter must be a number between Min_Data = 0x000 and Max_Data = 0xFFF, 0x3FF, 0xFF or 0x3F respectively. */
+ uint32_t InjectedNbrOfConversion; /*!< Specifies the number of ranks that will be converted within the injected group sequencer.
+ To use the injected group sequencer and convert several ranks, parameter 'ScanConvMode' must be enabled.
+ This parameter must be a number between Min_Data = 1 and Max_Data = 4.
+ Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to
+ configure a channel on injected group can impact the configuration of other channels previously set. */
+ FunctionalState InjectedDiscontinuousConvMode; /*!< Specifies whether the conversions sequence of injected group is performed in Complete-sequence/Discontinuous-sequence (main sequence subdivided in
+ successive parts). Discontinuous mode is used only if sequencer is enabled (parameter 'ScanConvMode'). If sequencer is disabled, this parameter is
+ discarded. Discontinuous mode can be enabled only if continuous mode is disabled. If continuous mode is enabled, this parameter setting is
+ discarded. This parameter can be set to ENABLE or DISABLE. Note: For injected group, number of discontinuous ranks increment is fixed to one-by-one.
+ Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to
+ configure a channel on injected group can impact the configuration of other channels previously set. */
+ FunctionalState AutoInjectedConv; /*!< Enables or disables the selected ADC automatic injected group conversion after regular one
+ This parameter can be set to ENABLE or DISABLE.
+ Note: To use Automatic injected conversion, discontinuous mode must be disabled ('DiscontinuousConvMode' and 'InjectedDiscontinuousConvMode' set to DISABLE)
+ Note: To use Automatic injected conversion, injected group external triggers must be disabled ('ExternalTrigInjecConv' set to ADC_SOFTWARE_START)
+ Note: In case of DMA used with regular group: if DMA configured in normal mode (single shot) JAUTO will be stopped upon DMA transfer complete.
+ To maintain JAUTO always enabled, DMA must be configured in circular mode.
+ Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to
+ configure a channel on injected group can impact the configuration of other channels previously set. */
+ uint32_t ExternalTrigInjecConv; /*!< Selects the external event used to trigger the conversion start of injected group.
+ If set to ADC_INJECTED_SOFTWARE_START, external triggers are disabled.
+ If set to external trigger source, triggering is on event rising edge.
+ This parameter can be a value of @ref ADCEx_External_trigger_source_Injected
+ Note: This parameter must be modified when ADC is disabled (before ADC start conversion or after ADC stop conversion).
+ If ADC is enabled, this parameter setting is bypassed without error reporting (as it can be the expected behaviour in case of another parameter update on
+ the fly) Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to
+ configure a channel on injected group can impact the configuration of other channels previously set. */
+} ADC_InjectionConfTypeDef;
+
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+/**
+ * @brief Structure definition of ADC multimode
+ * @note The setting of these parameters with function HAL_ADCEx_MultiModeConfigChannel() is conditioned to ADCs state (both ADCs of the common group).
+ * State of ADCs of the common group must be: disabled.
+ */
+typedef struct {
+ uint32_t Mode; /*!< Configures the ADC to operate in independent or multi mode.
+ This parameter can be a value of @ref ADCEx_Common_mode
+ Note: In dual mode, a change of channel configuration generates a restart that can produce a loss of synchronization. It is recommended to disable dual mode before any
+ configuration change. Note: In case of simultaneous mode used: Exactly the same sampling time should be configured for the 2 channels that will be sampled simultaneously by ACD1
+ and ADC2. Note: In case of interleaved mode used: To avoid overlap between conversions, maximum sampling time allowed is 7 ADC clock cycles for fast interleaved mode and 14 ADC
+ clock cycles for slow interleaved mode. Note: Some multimode parameters are fixed on STM32F1 and can be configured on other STM32 devices with several ADC (multimode configuration
+ structure can have additional parameters). The equivalences are:
+ - Parameter 'DMAAccessMode': On STM32F1, this parameter is fixed to 1 DMA channel (one DMA channel for both ADC, DMA of ADC master). On other STM32 devices with several
+ ADC, this is equivalent to parameter 'ADC_DMAACCESSMODE_12_10_BITS'.
+ - Parameter 'TwoSamplingDelay': On STM32F1, this parameter is fixed to 7 or 14 ADC clock cycles depending on fast or slow interleaved mode selected. On other STM32
+ devices with several ADC, this is equivalent to parameter 'ADC_TWOSAMPLINGDELAY_7CYCLES' (for fast interleaved mode). */
+
+} ADC_MultiModeTypeDef;
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup ADCEx_Exported_Constants ADCEx Exported Constants
+ * @{
+ */
+
+/** @defgroup ADCEx_injected_rank ADCEx rank into injected group
+ * @{
+ */
+#define ADC_INJECTED_RANK_1 0x00000001U
+#define ADC_INJECTED_RANK_2 0x00000002U
+#define ADC_INJECTED_RANK_3 0x00000003U
+#define ADC_INJECTED_RANK_4 0x00000004U
+/**
+ * @}
+ */
+
+/** @defgroup ADCEx_External_trigger_edge_Injected ADCEx external trigger enable for injected group
+ * @{
+ */
+#define ADC_EXTERNALTRIGINJECCONV_EDGE_NONE 0x00000000U
+#define ADC_EXTERNALTRIGINJECCONV_EDGE_RISING ((uint32_t)ADC_CR2_JEXTTRIG)
+/**
+ * @}
+ */
+
+/** @defgroup ADC_External_trigger_source_Regular ADC External trigger selection for regular group
+ * @{
+ */
+/*!< List of external triggers with generic trigger name, independently of */
+/* ADC target, sorted by trigger name: */
+
+/*!< External triggers of regular group for ADC1&ADC2 only */
+#define ADC_EXTERNALTRIGCONV_T1_CC1 ADC1_2_EXTERNALTRIG_T1_CC1
+#define ADC_EXTERNALTRIGCONV_T1_CC2 ADC1_2_EXTERNALTRIG_T1_CC2
+#define ADC_EXTERNALTRIGCONV_T2_CC2 ADC1_2_EXTERNALTRIG_T2_CC2
+#define ADC_EXTERNALTRIGCONV_T3_TRGO ADC1_2_EXTERNALTRIG_T3_TRGO
+#define ADC_EXTERNALTRIGCONV_T4_CC4 ADC1_2_EXTERNALTRIG_T4_CC4
+#define ADC_EXTERNALTRIGCONV_EXT_IT11 ADC1_2_EXTERNALTRIG_EXT_IT11
+
+#if defined(STM32F103xE) || defined(STM32F103xG)
+/*!< External triggers of regular group for ADC3 only */
+#define ADC_EXTERNALTRIGCONV_T2_CC3 ADC3_EXTERNALTRIG_T2_CC3
+#define ADC_EXTERNALTRIGCONV_T3_CC1 ADC3_EXTERNALTRIG_T3_CC1
+#define ADC_EXTERNALTRIGCONV_T5_CC1 ADC3_EXTERNALTRIG_T5_CC1
+#define ADC_EXTERNALTRIGCONV_T5_CC3 ADC3_EXTERNALTRIG_T5_CC3
+#define ADC_EXTERNALTRIGCONV_T8_CC1 ADC3_EXTERNALTRIG_T8_CC1
+#endif /* STM32F103xE || defined STM32F103xG */
+
+/*!< External triggers of regular group for all ADC instances */
+#define ADC_EXTERNALTRIGCONV_T1_CC3 ADC1_2_3_EXTERNALTRIG_T1_CC3
+
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+/*!< Note: TIM8_TRGO is available on ADC1 and ADC2 only in high-density and */
+/* XL-density devices. */
+/* To use it on ADC or ADC2, a remap of trigger must be done from */
+/* EXTI line 11 to TIM8_TRGO with macro: */
+/* __HAL_AFIO_REMAP_ADC1_ETRGREG_ENABLE() */
+/* __HAL_AFIO_REMAP_ADC2_ETRGREG_ENABLE() */
+
+/* Note for internal constant value management: If TIM8_TRGO is available, */
+/* its definition is set to value for ADC1&ADC2 by default and changed to */
+/* value for ADC3 by HAL ADC driver if ADC3 is selected. */
+#define ADC_EXTERNALTRIGCONV_T8_TRGO ADC1_2_EXTERNALTRIG_T8_TRGO
+#endif /* STM32F101xE || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+
+#define ADC_SOFTWARE_START ADC1_2_3_SWSTART
+/**
+ * @}
+ */
+
+/** @defgroup ADCEx_External_trigger_source_Injected ADCEx External trigger selection for injected group
+ * @{
+ */
+/*!< List of external triggers with generic trigger name, independently of */
+/* ADC target, sorted by trigger name: */
+
+/*!< External triggers of injected group for ADC1&ADC2 only */
+#define ADC_EXTERNALTRIGINJECCONV_T2_TRGO ADC1_2_EXTERNALTRIGINJEC_T2_TRGO
+#define ADC_EXTERNALTRIGINJECCONV_T2_CC1 ADC1_2_EXTERNALTRIGINJEC_T2_CC1
+#define ADC_EXTERNALTRIGINJECCONV_T3_CC4 ADC1_2_EXTERNALTRIGINJEC_T3_CC4
+#define ADC_EXTERNALTRIGINJECCONV_T4_TRGO ADC1_2_EXTERNALTRIGINJEC_T4_TRGO
+#define ADC_EXTERNALTRIGINJECCONV_EXT_IT15 ADC1_2_EXTERNALTRIGINJEC_EXT_IT15
+
+#if defined(STM32F103xE) || defined(STM32F103xG)
+/*!< External triggers of injected group for ADC3 only */
+#define ADC_EXTERNALTRIGINJECCONV_T4_CC3 ADC3_EXTERNALTRIGINJEC_T4_CC3
+#define ADC_EXTERNALTRIGINJECCONV_T8_CC2 ADC3_EXTERNALTRIGINJEC_T8_CC2
+#define ADC_EXTERNALTRIGINJECCONV_T5_TRGO ADC3_EXTERNALTRIGINJEC_T5_TRGO
+#define ADC_EXTERNALTRIGINJECCONV_T5_CC4 ADC3_EXTERNALTRIGINJEC_T5_CC4
+#endif /* STM32F103xE || defined STM32F103xG */
+
+/*!< External triggers of injected group for all ADC instances */
+#define ADC_EXTERNALTRIGINJECCONV_T1_CC4 ADC1_2_3_EXTERNALTRIGINJEC_T1_CC4
+#define ADC_EXTERNALTRIGINJECCONV_T1_TRGO ADC1_2_3_EXTERNALTRIGINJEC_T1_TRGO
+
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+/*!< Note: TIM8_CC4 is available on ADC1 and ADC2 only in high-density and */
+/* XL-density devices. */
+/* To use it on ADC1 or ADC2, a remap of trigger must be done from */
+/* EXTI line 11 to TIM8_CC4 with macro: */
+/* __HAL_AFIO_REMAP_ADC1_ETRGINJ_ENABLE() */
+/* __HAL_AFIO_REMAP_ADC2_ETRGINJ_ENABLE() */
+
+/* Note for internal constant value management: If TIM8_CC4 is available, */
+/* its definition is set to value for ADC1&ADC2 by default and changed to */
+/* value for ADC3 by HAL ADC driver if ADC3 is selected. */
+#define ADC_EXTERNALTRIGINJECCONV_T8_CC4 ADC1_2_EXTERNALTRIGINJEC_T8_CC4
+#endif /* STM32F101xE || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+
+#define ADC_INJECTED_SOFTWARE_START ADC1_2_3_JSWSTART
+/**
+ * @}
+ */
+
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+/** @defgroup ADCEx_Common_mode ADC Extended Dual ADC Mode
+ * @{
+ */
+#define ADC_MODE_INDEPENDENT 0x00000000U /*!< ADC dual mode disabled (ADC independent mode) */
+#define ADC_DUALMODE_REGSIMULT_INJECSIMULT ((uint32_t)(ADC_CR1_DUALMOD_0)) /*!< ADC dual mode enabled: Combined regular simultaneous + injected simultaneous mode, on groups regular and injected */
+#define ADC_DUALMODE_REGSIMULT_ALTERTRIG ((uint32_t)(ADC_CR1_DUALMOD_1)) /*!< ADC dual mode enabled: Combined regular simultaneous + alternate trigger mode, on groups regular and injected */
+#define ADC_DUALMODE_INJECSIMULT_INTERLFAST \
+ ((uint32_t)(ADC_CR1_DUALMOD_1 | ADC_CR1_DUALMOD_0)) /*!< ADC dual mode enabled: Combined injected simultaneous + fast interleaved mode, on groups regular and injected (delay between ADC sampling \
+ phases: 7 ADC clock cycles (equivalent to parameter "TwoSamplingDelay" set to "ADC_TWOSAMPLINGDELAY_7CYCLES" on other STM32 devices)) */
+#define ADC_DUALMODE_INJECSIMULT_INTERLSLOW \
+ ((uint32_t)(ADC_CR1_DUALMOD_2)) /*!< ADC dual mode enabled: Combined injected simultaneous + slow Interleaved mode, on groups regular and injected (delay between ADC sampling phases: 14 ADC clock \
+ cycles (equivalent to parameter "TwoSamplingDelay" set to "ADC_TWOSAMPLINGDELAY_7CYCLES" on other STM32 devices)) */
+#define ADC_DUALMODE_INJECSIMULT ((uint32_t)(ADC_CR1_DUALMOD_2 | ADC_CR1_DUALMOD_0)) /*!< ADC dual mode enabled: Injected simultaneous mode, on group injected */
+#define ADC_DUALMODE_REGSIMULT ((uint32_t)(ADC_CR1_DUALMOD_2 | ADC_CR1_DUALMOD_1)) /*!< ADC dual mode enabled: Regular simultaneous mode, on group regular */
+#define ADC_DUALMODE_INTERLFAST \
+ ((uint32_t)(ADC_CR1_DUALMOD_2 | ADC_CR1_DUALMOD_1 | ADC_CR1_DUALMOD_0)) /*!< ADC dual mode enabled: Fast interleaved mode, on group regular (delay between ADC sampling phases: 7 ADC clock cycles \
+ (equivalent to parameter "TwoSamplingDelay" set to "ADC_TWOSAMPLINGDELAY_7CYCLES" on other STM32 devices)) */
+#define ADC_DUALMODE_INTERLSLOW \
+ ((uint32_t)(ADC_CR1_DUALMOD_3)) /*!< ADC dual mode enabled: Slow interleaved mode, on group regular (delay between ADC sampling phases: 14 ADC clock cycles (equivalent to parameter \
+ "TwoSamplingDelay" set to "ADC_TWOSAMPLINGDELAY_7CYCLES" on other STM32 devices)) */
+#define ADC_DUALMODE_ALTERTRIG ((uint32_t)(ADC_CR1_DUALMOD_3 | ADC_CR1_DUALMOD_0)) /*!< ADC dual mode enabled: Alternate trigger mode, on group injected */
+/**
+ * @}
+ */
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+
+/**
+ * @}
+ */
+
+/* Private constants ---------------------------------------------------------*/
+
+/** @addtogroup ADCEx_Private_Constants ADCEx Private Constants
+ * @{
+ */
+
+/** @defgroup ADCEx_Internal_HAL_driver_Ext_trig_src_Regular ADC Extended Internal HAL driver trigger selection for regular group
+ * @{
+ */
+/* List of external triggers of regular group for ADC1, ADC2, ADC3 (if ADC */
+/* instance is available on the selected device). */
+/* (used internally by HAL driver. To not use into HAL structure parameters) */
+
+/* External triggers of regular group for ADC1&ADC2 (if ADCx available) */
+#define ADC1_2_EXTERNALTRIG_T1_CC1 0x00000000U
+#define ADC1_2_EXTERNALTRIG_T1_CC2 ((uint32_t)(ADC_CR2_EXTSEL_0))
+#define ADC1_2_EXTERNALTRIG_T2_CC2 ((uint32_t)(ADC_CR2_EXTSEL_1 | ADC_CR2_EXTSEL_0))
+#define ADC1_2_EXTERNALTRIG_T3_TRGO ((uint32_t)(ADC_CR2_EXTSEL_2))
+#define ADC1_2_EXTERNALTRIG_T4_CC4 ((uint32_t)(ADC_CR2_EXTSEL_2 | ADC_CR2_EXTSEL_0))
+#define ADC1_2_EXTERNALTRIG_EXT_IT11 ((uint32_t)(ADC_CR2_EXTSEL_2 | ADC_CR2_EXTSEL_1))
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F103xG)
+/* Note: TIM8_TRGO is available on ADC1 and ADC2 only in high-density and */
+/* XL-density devices. */
+#define ADC1_2_EXTERNALTRIG_T8_TRGO ADC1_2_EXTERNALTRIG_EXT_IT11
+#endif
+
+#if defined(STM32F103xE) || defined(STM32F103xG)
+/* External triggers of regular group for ADC3 */
+#define ADC3_EXTERNALTRIG_T3_CC1 ADC1_2_EXTERNALTRIG_T1_CC1
+#define ADC3_EXTERNALTRIG_T2_CC3 ADC1_2_EXTERNALTRIG_T1_CC2
+#define ADC3_EXTERNALTRIG_T8_CC1 ADC1_2_EXTERNALTRIG_T2_CC2
+#define ADC3_EXTERNALTRIG_T8_TRGO ADC1_2_EXTERNALTRIG_T3_TRGO
+#define ADC3_EXTERNALTRIG_T5_CC1 ADC1_2_EXTERNALTRIG_T4_CC4
+#define ADC3_EXTERNALTRIG_T5_CC3 ADC1_2_EXTERNALTRIG_EXT_IT11
+#endif
+
+/* External triggers of regular group for ADC1&ADC2&ADC3 (if ADCx available) */
+#define ADC1_2_3_EXTERNALTRIG_T1_CC3 ((uint32_t)(ADC_CR2_EXTSEL_1))
+#define ADC1_2_3_SWSTART ((uint32_t)(ADC_CR2_EXTSEL_2 | ADC_CR2_EXTSEL_1 | ADC_CR2_EXTSEL_0))
+/**
+ * @}
+ */
+
+/** @defgroup ADCEx_Internal_HAL_driver_Ext_trig_src_Injected ADC Extended Internal HAL driver trigger selection for injected group
+ * @{
+ */
+/* List of external triggers of injected group for ADC1, ADC2, ADC3 (if ADC */
+/* instance is available on the selected device). */
+/* (used internally by HAL driver. To not use into HAL structure parameters) */
+
+/* External triggers of injected group for ADC1&ADC2 (if ADCx available) */
+#define ADC1_2_EXTERNALTRIGINJEC_T2_TRGO ((uint32_t)(ADC_CR2_JEXTSEL_1))
+#define ADC1_2_EXTERNALTRIGINJEC_T2_CC1 ((uint32_t)(ADC_CR2_JEXTSEL_1 | ADC_CR2_JEXTSEL_0))
+#define ADC1_2_EXTERNALTRIGINJEC_T3_CC4 ((uint32_t)(ADC_CR2_JEXTSEL_2))
+#define ADC1_2_EXTERNALTRIGINJEC_T4_TRGO ((uint32_t)(ADC_CR2_JEXTSEL_2 | ADC_CR2_JEXTSEL_0))
+#define ADC1_2_EXTERNALTRIGINJEC_EXT_IT15 ((uint32_t)(ADC_CR2_JEXTSEL_2 | ADC_CR2_JEXTSEL_1))
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F103xG)
+/* Note: TIM8_CC4 is available on ADC1 and ADC2 only in high-density and */
+/* XL-density devices. */
+#define ADC1_2_EXTERNALTRIGINJEC_T8_CC4 ADC1_2_EXTERNALTRIGINJEC_EXT_IT15
+#endif
+
+#if defined(STM32F103xE) || defined(STM32F103xG)
+/* External triggers of injected group for ADC3 */
+#define ADC3_EXTERNALTRIGINJEC_T4_CC3 ADC1_2_EXTERNALTRIGINJEC_T2_TRGO
+#define ADC3_EXTERNALTRIGINJEC_T8_CC2 ADC1_2_EXTERNALTRIGINJEC_T2_CC1
+#define ADC3_EXTERNALTRIGINJEC_T8_CC4 ADC1_2_EXTERNALTRIGINJEC_T3_CC4
+#define ADC3_EXTERNALTRIGINJEC_T5_TRGO ADC1_2_EXTERNALTRIGINJEC_T4_TRGO
+#define ADC3_EXTERNALTRIGINJEC_T5_CC4 ADC1_2_EXTERNALTRIGINJEC_EXT_IT15
+#endif /* STM32F103xE || defined STM32F103xG */
+
+/* External triggers of injected group for ADC1&ADC2&ADC3 (if ADCx available) */
+#define ADC1_2_3_EXTERNALTRIGINJEC_T1_TRGO 0x00000000U
+#define ADC1_2_3_EXTERNALTRIGINJEC_T1_CC4 ((uint32_t)(ADC_CR2_JEXTSEL_0))
+#define ADC1_2_3_JSWSTART ((uint32_t)(ADC_CR2_JEXTSEL_2 | ADC_CR2_JEXTSEL_1 | ADC_CR2_JEXTSEL_0))
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+
+/* Private macro -------------------------------------------------------------*/
+
+/** @defgroup ADCEx_Private_Macro ADCEx Private Macro
+ * @{
+ */
+/* Macro reserved for internal HAL driver usage, not intended to be used in */
+/* code of final user. */
+
+/**
+ * @brief For devices with 3 ADCs: Defines the external trigger source
+ * for regular group according to ADC into common group ADC1&ADC2 or
+ * ADC3 (some triggers with same source have different value to
+ * be programmed into ADC EXTSEL bits of CR2 register).
+ * For devices with 2 ADCs or less: this macro makes no change.
+ * @param __HANDLE__: ADC handle
+ * @param __EXT_TRIG_CONV__: External trigger selected for regular group.
+ * @retval External trigger to be programmed into EXTSEL bits of CR2 register
+ */
+#if defined(STM32F103xE) || defined(STM32F103xG)
+#define ADC_CFGR_EXTSEL(__HANDLE__, __EXT_TRIG_CONV__) \
+ (((((__HANDLE__)->Instance) == ADC3)) ? (((__EXT_TRIG_CONV__) == ADC_EXTERNALTRIGCONV_T8_TRGO) ? (ADC3_EXTERNALTRIG_T8_TRGO) : (__EXT_TRIG_CONV__)) : (__EXT_TRIG_CONV__))
+#else
+#define ADC_CFGR_EXTSEL(__HANDLE__, __EXT_TRIG_CONV__) (__EXT_TRIG_CONV__)
+#endif /* STM32F103xE || STM32F103xG */
+
+/**
+ * @brief For devices with 3 ADCs: Defines the external trigger source
+ * for injected group according to ADC into common group ADC1&ADC2 or
+ * ADC3 (some triggers with same source have different value to
+ * be programmed into ADC JEXTSEL bits of CR2 register).
+ * For devices with 2 ADCs or less: this macro makes no change.
+ * @param __HANDLE__: ADC handle
+ * @param __EXT_TRIG_INJECTCONV__: External trigger selected for injected group.
+ * @retval External trigger to be programmed into JEXTSEL bits of CR2 register
+ */
+#if defined(STM32F103xE) || defined(STM32F103xG)
+#define ADC_CFGR_JEXTSEL(__HANDLE__, __EXT_TRIG_INJECTCONV__) \
+ (((((__HANDLE__)->Instance) == ADC3)) ? (((__EXT_TRIG_INJECTCONV__) == ADC_EXTERNALTRIGINJECCONV_T8_CC4) ? (ADC3_EXTERNALTRIGINJEC_T8_CC4) : (__EXT_TRIG_INJECTCONV__)) : (__EXT_TRIG_INJECTCONV__))
+#else
+#define ADC_CFGR_JEXTSEL(__HANDLE__, __EXT_TRIG_INJECTCONV__) (__EXT_TRIG_INJECTCONV__)
+#endif /* STM32F103xE || STM32F103xG */
+
+/**
+ * @brief Verification if multimode is enabled for the selected ADC (multimode ADC master or ADC slave) (applicable for devices with several ADCs)
+ * @param __HANDLE__: ADC handle
+ * @retval Multimode state: RESET if multimode is disabled, other value if multimode is enabled
+ */
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+#define ADC_MULTIMODE_IS_ENABLE(__HANDLE__) (((((__HANDLE__)->Instance) == ADC1) || (((__HANDLE__)->Instance) == ADC2)) ? (ADC1->CR1 & ADC_CR1_DUALMOD) : (RESET))
+#else
+#define ADC_MULTIMODE_IS_ENABLE(__HANDLE__) (RESET)
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+
+/**
+ * @brief Verification of condition for ADC start conversion: ADC must be in non-multimode, or multimode with handle of ADC master (applicable for devices with several ADCs)
+ * @param __HANDLE__: ADC handle
+ * @retval None
+ */
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+#define ADC_NONMULTIMODE_OR_MULTIMODEMASTER(__HANDLE__) (((((__HANDLE__)->Instance) == ADC2)) ? ((ADC1->CR1 & ADC_CR1_DUALMOD) == RESET) : (!RESET))
+#else
+#define ADC_NONMULTIMODE_OR_MULTIMODEMASTER(__HANDLE__) (!RESET)
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+
+/**
+ * @brief Check ADC multimode setting: In case of multimode, check whether ADC master of the selected ADC has feature auto-injection enabled (applicable for devices with several ADCs)
+ * @param __HANDLE__: ADC handle
+ * @retval None
+ */
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+#define ADC_MULTIMODE_AUTO_INJECTED(__HANDLE__) (((((__HANDLE__)->Instance) == ADC1) || (((__HANDLE__)->Instance) == ADC2)) ? (ADC1->CR1 & ADC_CR1_JAUTO) : (RESET))
+#else
+#define ADC_MULTIMODE_AUTO_INJECTED(__HANDLE__) (RESET)
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+/**
+ * @brief Set handle of the other ADC sharing the common multimode settings
+ * @param __HANDLE__: ADC handle
+ * @param __HANDLE_OTHER_ADC__: other ADC handle
+ * @retval None
+ */
+#define ADC_COMMON_ADC_OTHER(__HANDLE__, __HANDLE_OTHER_ADC__) ((__HANDLE_OTHER_ADC__)->Instance = ADC2)
+
+/**
+ * @brief Set handle of the ADC slave associated to the ADC master
+ * On STM32F1 devices, ADC slave is always ADC2 (this can be different
+ * on other STM32 devices)
+ * @param __HANDLE_MASTER__: ADC master handle
+ * @param __HANDLE_SLAVE__: ADC slave handle
+ * @retval None
+ */
+#define ADC_MULTI_SLAVE(__HANDLE_MASTER__, __HANDLE_SLAVE__) ((__HANDLE_SLAVE__)->Instance = ADC2)
+
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+
+#define IS_ADC_INJECTED_RANK(CHANNEL) (((CHANNEL) == ADC_INJECTED_RANK_1) || ((CHANNEL) == ADC_INJECTED_RANK_2) || ((CHANNEL) == ADC_INJECTED_RANK_3) || ((CHANNEL) == ADC_INJECTED_RANK_4))
+
+#define IS_ADC_EXTTRIGINJEC_EDGE(EDGE) (((EDGE) == ADC_EXTERNALTRIGINJECCONV_EDGE_NONE) || ((EDGE) == ADC_EXTERNALTRIGINJECCONV_EDGE_RISING))
+
+/** @defgroup ADCEx_injected_nb_conv_verification ADCEx injected nb conv verification
+ * @{
+ */
+#define IS_ADC_INJECTED_NB_CONV(LENGTH) (((LENGTH) >= 1U) && ((LENGTH) <= 4U))
+/**
+ * @}
+ */
+
+#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F101x6) || defined(STM32F101xB) || defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) \
+ || defined(STM32F105xC) || defined(STM32F107xC)
+#define IS_ADC_EXTTRIG(REGTRIG) \
+ (((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC1) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC2) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T2_CC2) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T3_TRGO) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T4_CC4) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_EXT_IT11) || ((REGTRIG) == ADC_SOFTWARE_START))
+#endif
+#if defined(STM32F101xE)
+#define IS_ADC_EXTTRIG(REGTRIG) \
+ (((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC1) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC2) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T2_CC2) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T3_TRGO) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T4_CC4) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_EXT_IT11) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T8_TRGO) || ((REGTRIG) == ADC_SOFTWARE_START))
+#endif
+#if defined(STM32F101xG)
+#define IS_ADC_EXTTRIG(REGTRIG) \
+ (((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC1) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC2) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T2_CC2) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T3_TRGO) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T4_CC4) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_EXT_IT11) || ((REGTRIG) == ADC_SOFTWARE_START))
+#endif
+#if defined(STM32F103xE) || defined(STM32F103xG)
+#define IS_ADC_EXTTRIG(REGTRIG) \
+ (((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC1) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC2) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T2_CC2) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T3_TRGO) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T4_CC4) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_EXT_IT11) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T3_CC1) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T2_CC3) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T8_CC1) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T5_CC1) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T5_CC3) || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC3) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGCONV_T8_TRGO) || ((REGTRIG) == ADC_SOFTWARE_START))
+#endif
+
+#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F101x6) || defined(STM32F101xB) || defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) \
+ || defined(STM32F105xC) || defined(STM32F107xC)
+#define IS_ADC_EXTTRIGINJEC(REGTRIG) \
+ (((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_TRGO) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_CC1) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T3_CC4) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T4_TRGO) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_EXT_IT15) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_CC4) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_TRGO) || ((REGTRIG) == ADC_INJECTED_SOFTWARE_START))
+#endif
+#if defined(STM32F101xE)
+#define IS_ADC_EXTTRIGINJEC(REGTRIG) \
+ (((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_TRGO) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_CC1) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T3_CC4) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T4_TRGO) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_EXT_IT15) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_CC4) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_TRGO) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T8_CC4) || ((REGTRIG) == ADC_INJECTED_SOFTWARE_START))
+#endif
+#if defined(STM32F101xG)
+#define IS_ADC_EXTTRIGINJEC(REGTRIG) \
+ (((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_TRGO) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_CC1) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T3_CC4) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T4_TRGO) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_EXT_IT15) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_CC4) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_TRGO) || ((REGTRIG) == ADC_INJECTED_SOFTWARE_START))
+#endif
+#if defined(STM32F103xE) || defined(STM32F103xG)
+#define IS_ADC_EXTTRIGINJEC(REGTRIG) \
+ (((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_TRGO) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T2_CC1) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T3_CC4) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T4_TRGO) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T5_CC4) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_EXT_IT15) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T4_CC3) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T8_CC2) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T5_TRGO) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T5_CC4) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_CC4) || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T1_TRGO) \
+ || ((REGTRIG) == ADC_EXTERNALTRIGINJECCONV_T8_CC4) || ((REGTRIG) == ADC_INJECTED_SOFTWARE_START))
+#endif
+
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+#define IS_ADC_MODE(MODE) \
+ (((MODE) == ADC_MODE_INDEPENDENT) || ((MODE) == ADC_DUALMODE_REGSIMULT_INJECSIMULT) || ((MODE) == ADC_DUALMODE_REGSIMULT_ALTERTRIG) || ((MODE) == ADC_DUALMODE_INJECSIMULT_INTERLFAST) \
+ || ((MODE) == ADC_DUALMODE_INJECSIMULT_INTERLSLOW) || ((MODE) == ADC_DUALMODE_INJECSIMULT) || ((MODE) == ADC_DUALMODE_REGSIMULT) || ((MODE) == ADC_DUALMODE_INTERLFAST) \
+ || ((MODE) == ADC_DUALMODE_INTERLSLOW) || ((MODE) == ADC_DUALMODE_ALTERTRIG))
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup ADCEx_Exported_Functions
+ * @{
+ */
+
+/* IO operation functions *****************************************************/
+/** @addtogroup ADCEx_Exported_Functions_Group1
+ * @{
+ */
+
+/* ADC calibration */
+HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef *hadc);
+
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef *hadc);
+HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef *hadc);
+HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout);
+
+/* Non-blocking mode: Interruption */
+HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef *hadc);
+HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef *hadc);
+
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+/* ADC multimode */
+HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length);
+HAL_StatusTypeDef HAL_ADCEx_MultiModeStop_DMA(ADC_HandleTypeDef *hadc);
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+
+/* ADC retrieve conversion value intended to be used with polling or interruption */
+uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef *hadc, uint32_t InjectedRank);
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef *hadc);
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+
+/* ADC IRQHandler and Callbacks used in non-blocking modes (Interruption) */
+void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef *hadc);
+/**
+ * @}
+ */
+
+/* Peripheral Control functions ***********************************************/
+/** @addtogroup ADCEx_Exported_Functions_Group2
+ * @{
+ */
+HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef *hadc, ADC_InjectionConfTypeDef *sConfigInjected);
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+HAL_StatusTypeDef HAL_ADCEx_MultiModeConfigChannel(ADC_HandleTypeDef *hadc, ADC_MultiModeTypeDef *multimode);
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32F1xx_HAL_ADC_EX_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_cortex.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_cortex.h new file mode 100644 index 00000000..ea9b60f0 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_cortex.h @@ -0,0 +1,372 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_cortex.h
+ * @author MCD Application Team
+ * @brief Header file of CORTEX HAL module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_CORTEX_H
+#define __STM32F1xx_HAL_CORTEX_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup CORTEX
+ * @{
+ */
+/* Exported types ------------------------------------------------------------*/
+/** @defgroup CORTEX_Exported_Types Cortex Exported Types
+ * @{
+ */
+
+#if (__MPU_PRESENT == 1U)
+/** @defgroup CORTEX_MPU_Region_Initialization_Structure_definition MPU Region Initialization Structure Definition
+ * @brief MPU Region initialization structure
+ * @{
+ */
+typedef struct {
+ uint8_t Enable; /*!< Specifies the status of the region.
+ This parameter can be a value of @ref CORTEX_MPU_Region_Enable */
+ uint8_t Number; /*!< Specifies the number of the region to protect.
+ This parameter can be a value of @ref CORTEX_MPU_Region_Number */
+ uint32_t BaseAddress; /*!< Specifies the base address of the region to protect. */
+ uint8_t Size; /*!< Specifies the size of the region to protect.
+ This parameter can be a value of @ref CORTEX_MPU_Region_Size */
+ uint8_t SubRegionDisable; /*!< Specifies the number of the subregion protection to disable.
+ This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF */
+ uint8_t TypeExtField; /*!< Specifies the TEX field level.
+ This parameter can be a value of @ref CORTEX_MPU_TEX_Levels */
+ uint8_t AccessPermission; /*!< Specifies the region access permission type.
+ This parameter can be a value of @ref CORTEX_MPU_Region_Permission_Attributes */
+ uint8_t DisableExec; /*!< Specifies the instruction access status.
+ This parameter can be a value of @ref CORTEX_MPU_Instruction_Access */
+ uint8_t IsShareable; /*!< Specifies the shareability status of the protected region.
+ This parameter can be a value of @ref CORTEX_MPU_Access_Shareable */
+ uint8_t IsCacheable; /*!< Specifies the cacheable status of the region protected.
+ This parameter can be a value of @ref CORTEX_MPU_Access_Cacheable */
+ uint8_t IsBufferable; /*!< Specifies the bufferable status of the protected region.
+ This parameter can be a value of @ref CORTEX_MPU_Access_Bufferable */
+} MPU_Region_InitTypeDef;
+/**
+ * @}
+ */
+#endif /* __MPU_PRESENT */
+
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup CORTEX_Exported_Constants CORTEX Exported Constants
+ * @{
+ */
+
+/** @defgroup CORTEX_Preemption_Priority_Group CORTEX Preemption Priority Group
+ * @{
+ */
+#define NVIC_PRIORITYGROUP_0 \
+ 0x00000007U /*!< 0 bits for pre-emption priority \
+ 4 bits for subpriority */
+#define NVIC_PRIORITYGROUP_1 \
+ 0x00000006U /*!< 1 bits for pre-emption priority \
+ 3 bits for subpriority */
+#define NVIC_PRIORITYGROUP_2 \
+ 0x00000005U /*!< 2 bits for pre-emption priority \
+ 2 bits for subpriority */
+#define NVIC_PRIORITYGROUP_3 \
+ 0x00000004U /*!< 3 bits for pre-emption priority \
+ 1 bits for subpriority */
+#define NVIC_PRIORITYGROUP_4 \
+ 0x00000003U /*!< 4 bits for pre-emption priority \
+ 0 bits for subpriority */
+/**
+ * @}
+ */
+
+/** @defgroup CORTEX_SysTick_clock_source CORTEX _SysTick clock source
+ * @{
+ */
+#define SYSTICK_CLKSOURCE_HCLK_DIV8 0x00000000U
+#define SYSTICK_CLKSOURCE_HCLK 0x00000004U
+
+/**
+ * @}
+ */
+
+#if (__MPU_PRESENT == 1)
+/** @defgroup CORTEX_MPU_HFNMI_PRIVDEF_Control MPU HFNMI and PRIVILEGED Access control
+ * @{
+ */
+#define MPU_HFNMI_PRIVDEF_NONE 0x00000000U
+#define MPU_HARDFAULT_NMI MPU_CTRL_HFNMIENA_Msk
+#define MPU_PRIVILEGED_DEFAULT MPU_CTRL_PRIVDEFENA_Msk
+#define MPU_HFNMI_PRIVDEF (MPU_CTRL_HFNMIENA_Msk | MPU_CTRL_PRIVDEFENA_Msk)
+
+/**
+ * @}
+ */
+
+/** @defgroup CORTEX_MPU_Region_Enable CORTEX MPU Region Enable
+ * @{
+ */
+#define MPU_REGION_ENABLE ((uint8_t)0x01)
+#define MPU_REGION_DISABLE ((uint8_t)0x00)
+/**
+ * @}
+ */
+
+/** @defgroup CORTEX_MPU_Instruction_Access CORTEX MPU Instruction Access
+ * @{
+ */
+#define MPU_INSTRUCTION_ACCESS_ENABLE ((uint8_t)0x00)
+#define MPU_INSTRUCTION_ACCESS_DISABLE ((uint8_t)0x01)
+/**
+ * @}
+ */
+
+/** @defgroup CORTEX_MPU_Access_Shareable CORTEX MPU Instruction Access Shareable
+ * @{
+ */
+#define MPU_ACCESS_SHAREABLE ((uint8_t)0x01)
+#define MPU_ACCESS_NOT_SHAREABLE ((uint8_t)0x00)
+/**
+ * @}
+ */
+
+/** @defgroup CORTEX_MPU_Access_Cacheable CORTEX MPU Instruction Access Cacheable
+ * @{
+ */
+#define MPU_ACCESS_CACHEABLE ((uint8_t)0x01)
+#define MPU_ACCESS_NOT_CACHEABLE ((uint8_t)0x00)
+/**
+ * @}
+ */
+
+/** @defgroup CORTEX_MPU_Access_Bufferable CORTEX MPU Instruction Access Bufferable
+ * @{
+ */
+#define MPU_ACCESS_BUFFERABLE ((uint8_t)0x01)
+#define MPU_ACCESS_NOT_BUFFERABLE ((uint8_t)0x00)
+/**
+ * @}
+ */
+
+/** @defgroup CORTEX_MPU_TEX_Levels MPU TEX Levels
+ * @{
+ */
+#define MPU_TEX_LEVEL0 ((uint8_t)0x00)
+#define MPU_TEX_LEVEL1 ((uint8_t)0x01)
+#define MPU_TEX_LEVEL2 ((uint8_t)0x02)
+/**
+ * @}
+ */
+
+/** @defgroup CORTEX_MPU_Region_Size CORTEX MPU Region Size
+ * @{
+ */
+#define MPU_REGION_SIZE_32B ((uint8_t)0x04)
+#define MPU_REGION_SIZE_64B ((uint8_t)0x05)
+#define MPU_REGION_SIZE_128B ((uint8_t)0x06)
+#define MPU_REGION_SIZE_256B ((uint8_t)0x07)
+#define MPU_REGION_SIZE_512B ((uint8_t)0x08)
+#define MPU_REGION_SIZE_1KB ((uint8_t)0x09)
+#define MPU_REGION_SIZE_2KB ((uint8_t)0x0A)
+#define MPU_REGION_SIZE_4KB ((uint8_t)0x0B)
+#define MPU_REGION_SIZE_8KB ((uint8_t)0x0C)
+#define MPU_REGION_SIZE_16KB ((uint8_t)0x0D)
+#define MPU_REGION_SIZE_32KB ((uint8_t)0x0E)
+#define MPU_REGION_SIZE_64KB ((uint8_t)0x0F)
+#define MPU_REGION_SIZE_128KB ((uint8_t)0x10)
+#define MPU_REGION_SIZE_256KB ((uint8_t)0x11)
+#define MPU_REGION_SIZE_512KB ((uint8_t)0x12)
+#define MPU_REGION_SIZE_1MB ((uint8_t)0x13)
+#define MPU_REGION_SIZE_2MB ((uint8_t)0x14)
+#define MPU_REGION_SIZE_4MB ((uint8_t)0x15)
+#define MPU_REGION_SIZE_8MB ((uint8_t)0x16)
+#define MPU_REGION_SIZE_16MB ((uint8_t)0x17)
+#define MPU_REGION_SIZE_32MB ((uint8_t)0x18)
+#define MPU_REGION_SIZE_64MB ((uint8_t)0x19)
+#define MPU_REGION_SIZE_128MB ((uint8_t)0x1A)
+#define MPU_REGION_SIZE_256MB ((uint8_t)0x1B)
+#define MPU_REGION_SIZE_512MB ((uint8_t)0x1C)
+#define MPU_REGION_SIZE_1GB ((uint8_t)0x1D)
+#define MPU_REGION_SIZE_2GB ((uint8_t)0x1E)
+#define MPU_REGION_SIZE_4GB ((uint8_t)0x1F)
+/**
+ * @}
+ */
+
+/** @defgroup CORTEX_MPU_Region_Permission_Attributes CORTEX MPU Region Permission Attributes
+ * @{
+ */
+#define MPU_REGION_NO_ACCESS ((uint8_t)0x00)
+#define MPU_REGION_PRIV_RW ((uint8_t)0x01)
+#define MPU_REGION_PRIV_RW_URO ((uint8_t)0x02)
+#define MPU_REGION_FULL_ACCESS ((uint8_t)0x03)
+#define MPU_REGION_PRIV_RO ((uint8_t)0x05)
+#define MPU_REGION_PRIV_RO_URO ((uint8_t)0x06)
+/**
+ * @}
+ */
+
+/** @defgroup CORTEX_MPU_Region_Number CORTEX MPU Region Number
+ * @{
+ */
+#define MPU_REGION_NUMBER0 ((uint8_t)0x00)
+#define MPU_REGION_NUMBER1 ((uint8_t)0x01)
+#define MPU_REGION_NUMBER2 ((uint8_t)0x02)
+#define MPU_REGION_NUMBER3 ((uint8_t)0x03)
+#define MPU_REGION_NUMBER4 ((uint8_t)0x04)
+#define MPU_REGION_NUMBER5 ((uint8_t)0x05)
+#define MPU_REGION_NUMBER6 ((uint8_t)0x06)
+#define MPU_REGION_NUMBER7 ((uint8_t)0x07)
+/**
+ * @}
+ */
+#endif /* __MPU_PRESENT */
+
+/**
+ * @}
+ */
+
+/* Exported Macros -----------------------------------------------------------*/
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup CORTEX_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup CORTEX_Exported_Functions_Group1
+ * @{
+ */
+/* Initialization and de-initialization functions *****************************/
+void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup);
+void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority);
+void HAL_NVIC_EnableIRQ(IRQn_Type IRQn);
+void HAL_NVIC_DisableIRQ(IRQn_Type IRQn);
+void HAL_NVIC_SystemReset(void);
+uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb);
+/**
+ * @}
+ */
+
+/** @addtogroup CORTEX_Exported_Functions_Group2
+ * @{
+ */
+/* Peripheral Control functions ***********************************************/
+uint32_t HAL_NVIC_GetPriorityGrouping(void);
+void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t *pPreemptPriority, uint32_t *pSubPriority);
+uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn);
+void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn);
+void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn);
+uint32_t HAL_NVIC_GetActive(IRQn_Type IRQn);
+void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource);
+void HAL_SYSTICK_IRQHandler(void);
+void HAL_SYSTICK_Callback(void);
+
+#if (__MPU_PRESENT == 1U)
+void HAL_MPU_Enable(uint32_t MPU_Control);
+void HAL_MPU_Disable(void);
+void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init);
+#endif /* __MPU_PRESENT */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Private types -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private constants ---------------------------------------------------------*/
+/* Private macros ------------------------------------------------------------*/
+/** @defgroup CORTEX_Private_Macros CORTEX Private Macros
+ * @{
+ */
+#define IS_NVIC_PRIORITY_GROUP(GROUP) \
+ (((GROUP) == NVIC_PRIORITYGROUP_0) || ((GROUP) == NVIC_PRIORITYGROUP_1) || ((GROUP) == NVIC_PRIORITYGROUP_2) || ((GROUP) == NVIC_PRIORITYGROUP_3) || ((GROUP) == NVIC_PRIORITYGROUP_4))
+
+#define IS_NVIC_PREEMPTION_PRIORITY(PRIORITY) ((PRIORITY) < 0x10U)
+
+#define IS_NVIC_SUB_PRIORITY(PRIORITY) ((PRIORITY) < 0x10U)
+
+#define IS_NVIC_DEVICE_IRQ(IRQ) ((IRQ) >= (IRQn_Type)0x00U)
+
+#define IS_SYSTICK_CLK_SOURCE(SOURCE) (((SOURCE) == SYSTICK_CLKSOURCE_HCLK) || ((SOURCE) == SYSTICK_CLKSOURCE_HCLK_DIV8))
+
+#if (__MPU_PRESENT == 1U)
+#define IS_MPU_REGION_ENABLE(STATE) (((STATE) == MPU_REGION_ENABLE) || ((STATE) == MPU_REGION_DISABLE))
+
+#define IS_MPU_INSTRUCTION_ACCESS(STATE) (((STATE) == MPU_INSTRUCTION_ACCESS_ENABLE) || ((STATE) == MPU_INSTRUCTION_ACCESS_DISABLE))
+
+#define IS_MPU_ACCESS_SHAREABLE(STATE) (((STATE) == MPU_ACCESS_SHAREABLE) || ((STATE) == MPU_ACCESS_NOT_SHAREABLE))
+
+#define IS_MPU_ACCESS_CACHEABLE(STATE) (((STATE) == MPU_ACCESS_CACHEABLE) || ((STATE) == MPU_ACCESS_NOT_CACHEABLE))
+
+#define IS_MPU_ACCESS_BUFFERABLE(STATE) (((STATE) == MPU_ACCESS_BUFFERABLE) || ((STATE) == MPU_ACCESS_NOT_BUFFERABLE))
+
+#define IS_MPU_TEX_LEVEL(TYPE) (((TYPE) == MPU_TEX_LEVEL0) || ((TYPE) == MPU_TEX_LEVEL1) || ((TYPE) == MPU_TEX_LEVEL2))
+
+#define IS_MPU_REGION_PERMISSION_ATTRIBUTE(TYPE) \
+ (((TYPE) == MPU_REGION_NO_ACCESS) || ((TYPE) == MPU_REGION_PRIV_RW) || ((TYPE) == MPU_REGION_PRIV_RW_URO) || ((TYPE) == MPU_REGION_FULL_ACCESS) || ((TYPE) == MPU_REGION_PRIV_RO) \
+ || ((TYPE) == MPU_REGION_PRIV_RO_URO))
+
+#define IS_MPU_REGION_NUMBER(NUMBER) \
+ (((NUMBER) == MPU_REGION_NUMBER0) || ((NUMBER) == MPU_REGION_NUMBER1) || ((NUMBER) == MPU_REGION_NUMBER2) || ((NUMBER) == MPU_REGION_NUMBER3) || ((NUMBER) == MPU_REGION_NUMBER4) \
+ || ((NUMBER) == MPU_REGION_NUMBER5) || ((NUMBER) == MPU_REGION_NUMBER6) || ((NUMBER) == MPU_REGION_NUMBER7))
+
+#define IS_MPU_REGION_SIZE(SIZE) \
+ (((SIZE) == MPU_REGION_SIZE_32B) || ((SIZE) == MPU_REGION_SIZE_64B) || ((SIZE) == MPU_REGION_SIZE_128B) || ((SIZE) == MPU_REGION_SIZE_256B) || ((SIZE) == MPU_REGION_SIZE_512B) \
+ || ((SIZE) == MPU_REGION_SIZE_1KB) || ((SIZE) == MPU_REGION_SIZE_2KB) || ((SIZE) == MPU_REGION_SIZE_4KB) || ((SIZE) == MPU_REGION_SIZE_8KB) || ((SIZE) == MPU_REGION_SIZE_16KB) \
+ || ((SIZE) == MPU_REGION_SIZE_32KB) || ((SIZE) == MPU_REGION_SIZE_64KB) || ((SIZE) == MPU_REGION_SIZE_128KB) || ((SIZE) == MPU_REGION_SIZE_256KB) || ((SIZE) == MPU_REGION_SIZE_512KB) \
+ || ((SIZE) == MPU_REGION_SIZE_1MB) || ((SIZE) == MPU_REGION_SIZE_2MB) || ((SIZE) == MPU_REGION_SIZE_4MB) || ((SIZE) == MPU_REGION_SIZE_8MB) || ((SIZE) == MPU_REGION_SIZE_16MB) \
+ || ((SIZE) == MPU_REGION_SIZE_32MB) || ((SIZE) == MPU_REGION_SIZE_64MB) || ((SIZE) == MPU_REGION_SIZE_128MB) || ((SIZE) == MPU_REGION_SIZE_256MB) || ((SIZE) == MPU_REGION_SIZE_512MB) \
+ || ((SIZE) == MPU_REGION_SIZE_1GB) || ((SIZE) == MPU_REGION_SIZE_2GB) || ((SIZE) == MPU_REGION_SIZE_4GB))
+
+#define IS_MPU_SUB_REGION_DISABLE(SUBREGION) ((SUBREGION) < (uint16_t)0x00FF)
+#endif /* __MPU_PRESENT */
+
+/**
+ * @}
+ */
+
+/* Private functions ---------------------------------------------------------*/
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32F1xx_HAL_CORTEX_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_def.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_def.h new file mode 100644 index 00000000..ab865d8c --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_def.h @@ -0,0 +1,203 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_def.h
+ * @author MCD Application Team
+ * @brief This file contains HAL common defines, enumeration, macros and
+ * structures definitions.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_DEF
+#define __STM32F1xx_HAL_DEF
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "Legacy/stm32_hal_legacy.h"
+#include "stm32f1xx.h"
+#include <stddef.h>
+
+/* Exported types ------------------------------------------------------------*/
+#ifndef USE_HAL_TIM_REGISTER_CALLBACKS
+#define USE_HAL_TIM_REGISTER_CALLBACKS 0
+#endif
+#ifndef USE_HAL_I2C_REGISTER_CALLBACKS
+#define USE_HAL_I2C_REGISTER_CALLBACKS 0
+#endif
+#ifndef USE_HAL_ADC_REGISTER_CALLBACKS
+#define USE_HAL_ADC_REGISTER_CALLBACKS 0
+#endif
+/**
+ * @brief HAL Status structures definition
+ */
+typedef enum { HAL_OK = 0x00U, HAL_ERROR = 0x01U, HAL_BUSY = 0x02U, HAL_TIMEOUT = 0x03U } HAL_StatusTypeDef;
+
+/**
+ * @brief HAL Lock structures definition
+ */
+typedef enum { HAL_UNLOCKED = 0x00U, HAL_LOCKED = 0x01U } HAL_LockTypeDef;
+
+/* Exported macro ------------------------------------------------------------*/
+#define HAL_MAX_DELAY 0xFFFFFFFFU
+
+#define HAL_IS_BIT_SET(REG, BIT) (((REG) & (BIT)) != 0U)
+#define HAL_IS_BIT_CLR(REG, BIT) (((REG) & (BIT)) == 0U)
+
+#define __HAL_LINKDMA(__HANDLE__, __PPP_DMA_FIELD__, __DMA_HANDLE__) \
+ do { \
+ (__HANDLE__)->__PPP_DMA_FIELD__ = &(__DMA_HANDLE__); \
+ (__DMA_HANDLE__).Parent = (__HANDLE__); \
+ } while (0U)
+
+#define UNUSED(X) (void)X /* To avoid gcc/g++ warnings */
+
+/** @brief Reset the Handle's State field.
+ * @param __HANDLE__ specifies the Peripheral Handle.
+ * @note This macro can be used for the following purpose:
+ * - When the Handle is declared as local variable; before passing it as parameter
+ * to HAL_PPP_Init() for the first time, it is mandatory to use this macro
+ * to set to 0 the Handle's "State" field.
+ * Otherwise, "State" field may have any random value and the first time the function
+ * HAL_PPP_Init() is called, the low level hardware initialization will be missed
+ * (i.e. HAL_PPP_MspInit() will not be executed).
+ * - When there is a need to reconfigure the low level hardware: instead of calling
+ * HAL_PPP_DeInit() then HAL_PPP_Init(), user can make a call to this macro then HAL_PPP_Init().
+ * In this later function, when the Handle's "State" field is set to 0, it will execute the function
+ * HAL_PPP_MspInit() which will reconfigure the low level hardware.
+ * @retval None
+ */
+#define __HAL_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = 0U)
+
+#if (USE_RTOS == 1U)
+/* Reserved for future use */
+#error "USE_RTOS should be 0 in the current HAL release"
+#else
+#define __HAL_LOCK(__HANDLE__) \
+ do { \
+ if ((__HANDLE__)->Lock == HAL_LOCKED) { \
+ return HAL_BUSY; \
+ } else { \
+ (__HANDLE__)->Lock = HAL_LOCKED; \
+ } \
+ } while (0U)
+
+#define __HAL_UNLOCK(__HANDLE__) \
+ do { \
+ (__HANDLE__)->Lock = HAL_UNLOCKED; \
+ } while (0U)
+#endif /* USE_RTOS */
+
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) /* ARM Compiler V6 */
+#ifndef __weak
+#define __weak __attribute__((weak))
+#endif
+#ifndef __packed
+#define __packed __attribute__((packed))
+#endif
+#elif defined(__GNUC__) && !defined(__CC_ARM) /* GNU Compiler */
+#ifndef __weak
+#define __weak __attribute__((weak))
+#endif /* __weak */
+#ifndef __packed
+#define __packed __attribute__((__packed__))
+#endif /* __packed */
+#endif /* __GNUC__ */
+
+/* Macro to get variable aligned on 4-bytes, for __ICCARM__ the directive "#pragma data_alignment=4" must be used instead */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) /* ARM Compiler V6 */
+#ifndef __ALIGN_BEGIN
+#define __ALIGN_BEGIN
+#endif
+#ifndef __ALIGN_END
+#define __ALIGN_END __attribute__((aligned(4)))
+#endif
+#elif defined(__GNUC__) && !defined(__CC_ARM) /* GNU Compiler */
+#ifndef __ALIGN_END
+#define __ALIGN_END __attribute__((aligned(4)))
+#endif /* __ALIGN_END */
+#ifndef __ALIGN_BEGIN
+#define __ALIGN_BEGIN
+#endif /* __ALIGN_BEGIN */
+#else
+#ifndef __ALIGN_END
+#define __ALIGN_END
+#endif /* __ALIGN_END */
+#ifndef __ALIGN_BEGIN
+#if defined(__CC_ARM) /* ARM Compiler V5*/
+#define __ALIGN_BEGIN __align(4)
+#elif defined(__ICCARM__) /* IAR Compiler */
+#define __ALIGN_BEGIN
+#endif /* __CC_ARM */
+#endif /* __ALIGN_BEGIN */
+#endif /* __GNUC__ */
+
+/**
+ * @brief __RAM_FUNC definition
+ */
+#if defined(__CC_ARM) || (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
+/* ARM Compiler V4/V5 and V6
+ --------------------------
+ RAM functions are defined using the toolchain options.
+ Functions that are executed in RAM should reside in a separate source module.
+ Using the 'Options for File' dialog you can simply change the 'Code / Const'
+ area of a module to a memory space in physical RAM.
+ Available memory areas are declared in the 'Target' tab of the 'Options for Target'
+ dialog.
+*/
+#define __RAM_FUNC
+
+#elif defined(__ICCARM__)
+/* ICCARM Compiler
+ ---------------
+ RAM functions are defined using a specific toolchain keyword "__ramfunc".
+*/
+#define __RAM_FUNC __ramfunc
+
+#elif defined(__GNUC__)
+/* GNU Compiler
+ ------------
+ RAM functions are defined using a specific toolchain attribute
+ "__attribute__((section(".RamFunc")))".
+*/
+#define __RAM_FUNC __attribute__((section(".RamFunc")))
+
+#endif
+
+/**
+ * @brief __NOINLINE definition
+ */
+#if defined(__CC_ARM) || (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) || defined(__GNUC__)
+/* ARM V4/V5 and V6 & GNU Compiler
+ -------------------------------
+*/
+#define __NOINLINE __attribute__((noinline))
+
+#elif defined(__ICCARM__)
+/* ICCARM Compiler
+ ---------------
+*/
+#define __NOINLINE _Pragma("optimize = no_inline")
+
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ___STM32F1xx_HAL_DEF */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma.h new file mode 100644 index 00000000..22f3f81c --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma.h @@ -0,0 +1,437 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_dma.h
+ * @author MCD Application Team
+ * @brief Header file of DMA HAL module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_DMA_H
+#define __STM32F1xx_HAL_DMA_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup DMA
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+
+/** @defgroup DMA_Exported_Types DMA Exported Types
+ * @{
+ */
+
+/**
+ * @brief DMA Configuration Structure definition
+ */
+typedef struct {
+ uint32_t Direction; /*!< Specifies if the data will be transferred from memory to peripheral,
+ from memory to memory or from peripheral to memory.
+ This parameter can be a value of @ref DMA_Data_transfer_direction */
+
+ uint32_t PeriphInc; /*!< Specifies whether the Peripheral address register should be incremented or not.
+ This parameter can be a value of @ref DMA_Peripheral_incremented_mode */
+
+ uint32_t MemInc; /*!< Specifies whether the memory address register should be incremented or not.
+ This parameter can be a value of @ref DMA_Memory_incremented_mode */
+
+ uint32_t PeriphDataAlignment; /*!< Specifies the Peripheral data width.
+ This parameter can be a value of @ref DMA_Peripheral_data_size */
+
+ uint32_t MemDataAlignment; /*!< Specifies the Memory data width.
+ This parameter can be a value of @ref DMA_Memory_data_size */
+
+ uint32_t Mode; /*!< Specifies the operation mode of the DMAy Channelx.
+ This parameter can be a value of @ref DMA_mode
+ @note The circular buffer mode cannot be used if the memory-to-memory
+ data transfer is configured on the selected Channel */
+
+ uint32_t Priority; /*!< Specifies the software priority for the DMAy Channelx.
+ This parameter can be a value of @ref DMA_Priority_level */
+} DMA_InitTypeDef;
+
+/**
+ * @brief HAL DMA State structures definition
+ */
+typedef enum {
+ HAL_DMA_STATE_RESET = 0x00U, /*!< DMA not yet initialized or disabled */
+ HAL_DMA_STATE_READY = 0x01U, /*!< DMA initialized and ready for use */
+ HAL_DMA_STATE_BUSY = 0x02U, /*!< DMA process is ongoing */
+ HAL_DMA_STATE_TIMEOUT = 0x03U /*!< DMA timeout state */
+} HAL_DMA_StateTypeDef;
+
+/**
+ * @brief HAL DMA Error Code structure definition
+ */
+typedef enum {
+ HAL_DMA_FULL_TRANSFER = 0x00U, /*!< Full transfer */
+ HAL_DMA_HALF_TRANSFER = 0x01U /*!< Half Transfer */
+} HAL_DMA_LevelCompleteTypeDef;
+
+/**
+ * @brief HAL DMA Callback ID structure definition
+ */
+typedef enum {
+ HAL_DMA_XFER_CPLT_CB_ID = 0x00U, /*!< Full transfer */
+ HAL_DMA_XFER_HALFCPLT_CB_ID = 0x01U, /*!< Half transfer */
+ HAL_DMA_XFER_ERROR_CB_ID = 0x02U, /*!< Error */
+ HAL_DMA_XFER_ABORT_CB_ID = 0x03U, /*!< Abort */
+ HAL_DMA_XFER_ALL_CB_ID = 0x04U /*!< All */
+
+} HAL_DMA_CallbackIDTypeDef;
+
+/**
+ * @brief DMA handle Structure definition
+ */
+typedef struct __DMA_HandleTypeDef {
+ DMA_Channel_TypeDef *Instance; /*!< Register base address */
+
+ DMA_InitTypeDef Init; /*!< DMA communication parameters */
+
+ HAL_LockTypeDef Lock; /*!< DMA locking object */
+
+ HAL_DMA_StateTypeDef State; /*!< DMA transfer state */
+
+ void *Parent; /*!< Parent object state */
+
+ void (*XferCpltCallback)(struct __DMA_HandleTypeDef *hdma); /*!< DMA transfer complete callback */
+
+ void (*XferHalfCpltCallback)(struct __DMA_HandleTypeDef *hdma); /*!< DMA Half transfer complete callback */
+
+ void (*XferErrorCallback)(struct __DMA_HandleTypeDef *hdma); /*!< DMA transfer error callback */
+
+ void (*XferAbortCallback)(struct __DMA_HandleTypeDef *hdma); /*!< DMA transfer abort callback */
+
+ __IO uint32_t ErrorCode; /*!< DMA Error code */
+
+ DMA_TypeDef *DmaBaseAddress; /*!< DMA Channel Base Address */
+
+ uint32_t ChannelIndex; /*!< DMA Channel Index */
+
+} DMA_HandleTypeDef;
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup DMA_Exported_Constants DMA Exported Constants
+ * @{
+ */
+
+/** @defgroup DMA_Error_Code DMA Error Code
+ * @{
+ */
+#define HAL_DMA_ERROR_NONE 0x00000000U /*!< No error */
+#define HAL_DMA_ERROR_TE 0x00000001U /*!< Transfer error */
+#define HAL_DMA_ERROR_NO_XFER 0x00000004U /*!< no ongoing transfer */
+#define HAL_DMA_ERROR_TIMEOUT 0x00000020U /*!< Timeout error */
+#define HAL_DMA_ERROR_NOT_SUPPORTED 0x00000100U /*!< Not supported mode */
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Data_transfer_direction DMA Data transfer direction
+ * @{
+ */
+#define DMA_PERIPH_TO_MEMORY 0x00000000U /*!< Peripheral to memory direction */
+#define DMA_MEMORY_TO_PERIPH ((uint32_t)DMA_CCR_DIR) /*!< Memory to peripheral direction */
+#define DMA_MEMORY_TO_MEMORY ((uint32_t)DMA_CCR_MEM2MEM) /*!< Memory to memory direction */
+
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Peripheral_incremented_mode DMA Peripheral incremented mode
+ * @{
+ */
+#define DMA_PINC_ENABLE ((uint32_t)DMA_CCR_PINC) /*!< Peripheral increment mode Enable */
+#define DMA_PINC_DISABLE 0x00000000U /*!< Peripheral increment mode Disable */
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Memory_incremented_mode DMA Memory incremented mode
+ * @{
+ */
+#define DMA_MINC_ENABLE ((uint32_t)DMA_CCR_MINC) /*!< Memory increment mode Enable */
+#define DMA_MINC_DISABLE 0x00000000U /*!< Memory increment mode Disable */
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Peripheral_data_size DMA Peripheral data size
+ * @{
+ */
+#define DMA_PDATAALIGN_BYTE 0x00000000U /*!< Peripheral data alignment: Byte */
+#define DMA_PDATAALIGN_HALFWORD ((uint32_t)DMA_CCR_PSIZE_0) /*!< Peripheral data alignment: HalfWord */
+#define DMA_PDATAALIGN_WORD ((uint32_t)DMA_CCR_PSIZE_1) /*!< Peripheral data alignment: Word */
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Memory_data_size DMA Memory data size
+ * @{
+ */
+#define DMA_MDATAALIGN_BYTE 0x00000000U /*!< Memory data alignment: Byte */
+#define DMA_MDATAALIGN_HALFWORD ((uint32_t)DMA_CCR_MSIZE_0) /*!< Memory data alignment: HalfWord */
+#define DMA_MDATAALIGN_WORD ((uint32_t)DMA_CCR_MSIZE_1) /*!< Memory data alignment: Word */
+/**
+ * @}
+ */
+
+/** @defgroup DMA_mode DMA mode
+ * @{
+ */
+#define DMA_NORMAL 0x00000000U /*!< Normal mode */
+#define DMA_CIRCULAR ((uint32_t)DMA_CCR_CIRC) /*!< Circular mode */
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Priority_level DMA Priority level
+ * @{
+ */
+#define DMA_PRIORITY_LOW 0x00000000U /*!< Priority level : Low */
+#define DMA_PRIORITY_MEDIUM ((uint32_t)DMA_CCR_PL_0) /*!< Priority level : Medium */
+#define DMA_PRIORITY_HIGH ((uint32_t)DMA_CCR_PL_1) /*!< Priority level : High */
+#define DMA_PRIORITY_VERY_HIGH ((uint32_t)DMA_CCR_PL) /*!< Priority level : Very_High */
+/**
+ * @}
+ */
+
+/** @defgroup DMA_interrupt_enable_definitions DMA interrupt enable definitions
+ * @{
+ */
+#define DMA_IT_TC ((uint32_t)DMA_CCR_TCIE)
+#define DMA_IT_HT ((uint32_t)DMA_CCR_HTIE)
+#define DMA_IT_TE ((uint32_t)DMA_CCR_TEIE)
+/**
+ * @}
+ */
+
+/** @defgroup DMA_flag_definitions DMA flag definitions
+ * @{
+ */
+#define DMA_FLAG_GL1 0x00000001U
+#define DMA_FLAG_TC1 0x00000002U
+#define DMA_FLAG_HT1 0x00000004U
+#define DMA_FLAG_TE1 0x00000008U
+#define DMA_FLAG_GL2 0x00000010U
+#define DMA_FLAG_TC2 0x00000020U
+#define DMA_FLAG_HT2 0x00000040U
+#define DMA_FLAG_TE2 0x00000080U
+#define DMA_FLAG_GL3 0x00000100U
+#define DMA_FLAG_TC3 0x00000200U
+#define DMA_FLAG_HT3 0x00000400U
+#define DMA_FLAG_TE3 0x00000800U
+#define DMA_FLAG_GL4 0x00001000U
+#define DMA_FLAG_TC4 0x00002000U
+#define DMA_FLAG_HT4 0x00004000U
+#define DMA_FLAG_TE4 0x00008000U
+#define DMA_FLAG_GL5 0x00010000U
+#define DMA_FLAG_TC5 0x00020000U
+#define DMA_FLAG_HT5 0x00040000U
+#define DMA_FLAG_TE5 0x00080000U
+#define DMA_FLAG_GL6 0x00100000U
+#define DMA_FLAG_TC6 0x00200000U
+#define DMA_FLAG_HT6 0x00400000U
+#define DMA_FLAG_TE6 0x00800000U
+#define DMA_FLAG_GL7 0x01000000U
+#define DMA_FLAG_TC7 0x02000000U
+#define DMA_FLAG_HT7 0x04000000U
+#define DMA_FLAG_TE7 0x08000000U
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macros -----------------------------------------------------------*/
+/** @defgroup DMA_Exported_Macros DMA Exported Macros
+ * @{
+ */
+
+/** @brief Reset DMA handle state.
+ * @param __HANDLE__: DMA handle
+ * @retval None
+ */
+#define __HAL_DMA_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_DMA_STATE_RESET)
+
+/**
+ * @brief Enable the specified DMA Channel.
+ * @param __HANDLE__: DMA handle
+ * @retval None
+ */
+#define __HAL_DMA_ENABLE(__HANDLE__) (SET_BIT((__HANDLE__)->Instance->CCR, DMA_CCR_EN))
+
+/**
+ * @brief Disable the specified DMA Channel.
+ * @param __HANDLE__: DMA handle
+ * @retval None
+ */
+#define __HAL_DMA_DISABLE(__HANDLE__) (CLEAR_BIT((__HANDLE__)->Instance->CCR, DMA_CCR_EN))
+
+/* Interrupt & Flag management */
+
+/**
+ * @brief Enables the specified DMA Channel interrupts.
+ * @param __HANDLE__: DMA handle
+ * @param __INTERRUPT__: specifies the DMA interrupt sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg DMA_IT_TC: Transfer complete interrupt mask
+ * @arg DMA_IT_HT: Half transfer complete interrupt mask
+ * @arg DMA_IT_TE: Transfer error interrupt mask
+ * @retval None
+ */
+#define __HAL_DMA_ENABLE_IT(__HANDLE__, __INTERRUPT__) (SET_BIT((__HANDLE__)->Instance->CCR, (__INTERRUPT__)))
+
+/**
+ * @brief Disable the specified DMA Channel interrupts.
+ * @param __HANDLE__: DMA handle
+ * @param __INTERRUPT__: specifies the DMA interrupt sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg DMA_IT_TC: Transfer complete interrupt mask
+ * @arg DMA_IT_HT: Half transfer complete interrupt mask
+ * @arg DMA_IT_TE: Transfer error interrupt mask
+ * @retval None
+ */
+#define __HAL_DMA_DISABLE_IT(__HANDLE__, __INTERRUPT__) (CLEAR_BIT((__HANDLE__)->Instance->CCR, (__INTERRUPT__)))
+
+/**
+ * @brief Check whether the specified DMA Channel interrupt is enabled or not.
+ * @param __HANDLE__: DMA handle
+ * @param __INTERRUPT__: specifies the DMA interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg DMA_IT_TC: Transfer complete interrupt mask
+ * @arg DMA_IT_HT: Half transfer complete interrupt mask
+ * @arg DMA_IT_TE: Transfer error interrupt mask
+ * @retval The state of DMA_IT (SET or RESET).
+ */
+#define __HAL_DMA_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CCR & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
+
+/**
+ * @brief Return the number of remaining data units in the current DMA Channel transfer.
+ * @param __HANDLE__: DMA handle
+ * @retval The number of remaining data units in the current DMA Channel transfer.
+ */
+#define __HAL_DMA_GET_COUNTER(__HANDLE__) ((__HANDLE__)->Instance->CNDTR)
+
+/**
+ * @}
+ */
+
+/* Include DMA HAL Extension module */
+#include "stm32f1xx_hal_dma_ex.h"
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup DMA_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup DMA_Exported_Functions_Group1
+ * @{
+ */
+/* Initialization and de-initialization functions *****************************/
+HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma);
+HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma);
+/**
+ * @}
+ */
+
+/** @addtogroup DMA_Exported_Functions_Group2
+ * @{
+ */
+/* IO operation functions *****************************************************/
+HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
+HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
+HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma);
+HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma);
+HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout);
+void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma);
+HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (*pCallback)(DMA_HandleTypeDef *_hdma));
+HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID);
+
+/**
+ * @}
+ */
+
+/** @addtogroup DMA_Exported_Functions_Group3
+ * @{
+ */
+/* Peripheral State and Error functions ***************************************/
+HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma);
+uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma);
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Private macros ------------------------------------------------------------*/
+/** @defgroup DMA_Private_Macros DMA Private Macros
+ * @{
+ */
+
+#define IS_DMA_DIRECTION(DIRECTION) (((DIRECTION) == DMA_PERIPH_TO_MEMORY) || ((DIRECTION) == DMA_MEMORY_TO_PERIPH) || ((DIRECTION) == DMA_MEMORY_TO_MEMORY))
+
+#define IS_DMA_BUFFER_SIZE(SIZE) (((SIZE) >= 0x1U) && ((SIZE) < 0x10000U))
+
+#define IS_DMA_PERIPHERAL_INC_STATE(STATE) (((STATE) == DMA_PINC_ENABLE) || ((STATE) == DMA_PINC_DISABLE))
+
+#define IS_DMA_MEMORY_INC_STATE(STATE) (((STATE) == DMA_MINC_ENABLE) || ((STATE) == DMA_MINC_DISABLE))
+
+#define IS_DMA_PERIPHERAL_DATA_SIZE(SIZE) (((SIZE) == DMA_PDATAALIGN_BYTE) || ((SIZE) == DMA_PDATAALIGN_HALFWORD) || ((SIZE) == DMA_PDATAALIGN_WORD))
+
+#define IS_DMA_MEMORY_DATA_SIZE(SIZE) (((SIZE) == DMA_MDATAALIGN_BYTE) || ((SIZE) == DMA_MDATAALIGN_HALFWORD) || ((SIZE) == DMA_MDATAALIGN_WORD))
+
+#define IS_DMA_MODE(MODE) (((MODE) == DMA_NORMAL) || ((MODE) == DMA_CIRCULAR))
+
+#define IS_DMA_PRIORITY(PRIORITY) (((PRIORITY) == DMA_PRIORITY_LOW) || ((PRIORITY) == DMA_PRIORITY_MEDIUM) || ((PRIORITY) == DMA_PRIORITY_HIGH) || ((PRIORITY) == DMA_PRIORITY_VERY_HIGH))
+
+/**
+ * @}
+ */
+
+/* Private functions ---------------------------------------------------------*/
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32F1xx_HAL_DMA_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma_ex.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma_ex.h new file mode 100644 index 00000000..c05897c2 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma_ex.h @@ -0,0 +1,320 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_dma_ex.h
+ * @author MCD Application Team
+ * @brief Header file of DMA HAL extension module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_DMA_EX_H
+#define __STM32F1xx_HAL_DMA_EX_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup DMAEx DMAEx
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+/* Exported constants --------------------------------------------------------*/
+/* Exported macro ------------------------------------------------------------*/
+/** @defgroup DMAEx_Exported_Macros DMA Extended Exported Macros
+ * @{
+ */
+/* Interrupt & Flag management */
+#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+/** @defgroup DMAEx_High_density_XL_density_Product_devices DMAEx High density and XL density product devices
+ * @{
+ */
+
+/**
+ * @brief Returns the current DMA Channel transfer complete flag.
+ * @param __HANDLE__: DMA handle
+ * @retval The specified transfer complete flag index.
+ */
+#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \
+ (((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1)) \
+ ? DMA_FLAG_TC1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2)) \
+ ? DMA_FLAG_TC2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3)) \
+ ? DMA_FLAG_TC3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4)) \
+ ? DMA_FLAG_TC4 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5)) \
+ ? DMA_FLAG_TC5 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6)) \
+ ? DMA_FLAG_TC6 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel7)) \
+ ? DMA_FLAG_TC7 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1)) \
+ ? DMA_FLAG_TC1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2)) \
+ ? DMA_FLAG_TC2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3)) \
+ ? DMA_FLAG_TC3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4)) ? DMA_FLAG_TC4 : DMA_FLAG_TC5)
+
+/**
+ * @brief Returns the current DMA Channel half transfer complete flag.
+ * @param __HANDLE__: DMA handle
+ * @retval The specified half transfer complete flag index.
+ */
+#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__) \
+ (((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1)) \
+ ? DMA_FLAG_HT1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2)) \
+ ? DMA_FLAG_HT2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3)) \
+ ? DMA_FLAG_HT3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4)) \
+ ? DMA_FLAG_HT4 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5)) \
+ ? DMA_FLAG_HT5 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6)) \
+ ? DMA_FLAG_HT6 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel7)) \
+ ? DMA_FLAG_HT7 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1)) \
+ ? DMA_FLAG_HT1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2)) \
+ ? DMA_FLAG_HT2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3)) \
+ ? DMA_FLAG_HT3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4)) ? DMA_FLAG_HT4 : DMA_FLAG_HT5)
+
+/**
+ * @brief Returns the current DMA Channel transfer error flag.
+ * @param __HANDLE__: DMA handle
+ * @retval The specified transfer error flag index.
+ */
+#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__) \
+ (((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1)) \
+ ? DMA_FLAG_TE1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2)) \
+ ? DMA_FLAG_TE2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3)) \
+ ? DMA_FLAG_TE3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4)) \
+ ? DMA_FLAG_TE4 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5)) \
+ ? DMA_FLAG_TE5 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6)) \
+ ? DMA_FLAG_TE6 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel7)) \
+ ? DMA_FLAG_TE7 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1)) \
+ ? DMA_FLAG_TE1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2)) \
+ ? DMA_FLAG_TE2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3)) \
+ ? DMA_FLAG_TE3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4)) ? DMA_FLAG_TE4 : DMA_FLAG_TE5)
+
+/**
+ * @brief Return the current DMA Channel Global interrupt flag.
+ * @param __HANDLE__: DMA handle
+ * @retval The specified transfer error flag index.
+ */
+#define __HAL_DMA_GET_GI_FLAG_INDEX(__HANDLE__) \
+ (((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1)) \
+ ? DMA_FLAG_GL1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2)) \
+ ? DMA_FLAG_GL2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3)) \
+ ? DMA_FLAG_GL3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4)) \
+ ? DMA_FLAG_GL4 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5)) \
+ ? DMA_FLAG_GL5 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6)) \
+ ? DMA_FLAG_GL6 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel7)) \
+ ? DMA_FLAG_GL7 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1)) \
+ ? DMA_FLAG_GL1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2)) \
+ ? DMA_FLAG_GL2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3)) \
+ ? DMA_FLAG_GL3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4)) ? DMA_FLAG_GL4 : DMA_FLAG_GL5)
+
+/**
+ * @brief Get the DMA Channel pending flags.
+ * @param __HANDLE__: DMA handle
+ * @param __FLAG__: Get the specified flag.
+ * This parameter can be any combination of the following values:
+ * @arg DMA_FLAG_TCx: Transfer complete flag
+ * @arg DMA_FLAG_HTx: Half transfer complete flag
+ * @arg DMA_FLAG_TEx: Transfer error flag
+ * Where x can be 1_7 or 1_5 (depending on DMA1 or DMA2) to select the DMA Channel flag.
+ * @retval The state of FLAG (SET or RESET).
+ */
+#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__) (((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Channel7) ? (DMA2->ISR & (__FLAG__)) : (DMA1->ISR & (__FLAG__)))
+
+/**
+ * @brief Clears the DMA Channel pending flags.
+ * @param __HANDLE__: DMA handle
+ * @param __FLAG__: specifies the flag to clear.
+ * This parameter can be any combination of the following values:
+ * @arg DMA_FLAG_TCx: Transfer complete flag
+ * @arg DMA_FLAG_HTx: Half transfer complete flag
+ * @arg DMA_FLAG_TEx: Transfer error flag
+ * Where x can be 1_7 or 1_5 (depending on DMA1 or DMA2) to select the DMA Channel flag.
+ * @retval None
+ */
+#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) (((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Channel7) ? (DMA2->IFCR = (__FLAG__)) : (DMA1->IFCR = (__FLAG__)))
+
+/**
+ * @}
+ */
+
+#else
+/** @defgroup DMA_Low_density_Medium_density_Product_devices DMA Low density and Medium density product devices
+ * @{
+ */
+
+/**
+ * @brief Returns the current DMA Channel transfer complete flag.
+ * @param __HANDLE__: DMA handle
+ * @retval The specified transfer complete flag index.
+ */
+#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \
+ (((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1)) \
+ ? DMA_FLAG_TC1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2)) \
+ ? DMA_FLAG_TC2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3)) \
+ ? DMA_FLAG_TC3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4)) \
+ ? DMA_FLAG_TC4 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5)) ? DMA_FLAG_TC5 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6)) ? DMA_FLAG_TC6 : DMA_FLAG_TC7)
+
+/**
+ * @brief Return the current DMA Channel half transfer complete flag.
+ * @param __HANDLE__: DMA handle
+ * @retval The specified half transfer complete flag index.
+ */
+#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__) \
+ (((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1)) \
+ ? DMA_FLAG_HT1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2)) \
+ ? DMA_FLAG_HT2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3)) \
+ ? DMA_FLAG_HT3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4)) \
+ ? DMA_FLAG_HT4 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5)) ? DMA_FLAG_HT5 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6)) ? DMA_FLAG_HT6 : DMA_FLAG_HT7)
+
+/**
+ * @brief Return the current DMA Channel transfer error flag.
+ * @param __HANDLE__: DMA handle
+ * @retval The specified transfer error flag index.
+ */
+#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__) \
+ (((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1)) \
+ ? DMA_FLAG_TE1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2)) \
+ ? DMA_FLAG_TE2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3)) \
+ ? DMA_FLAG_TE3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4)) \
+ ? DMA_FLAG_TE4 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5)) ? DMA_FLAG_TE5 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6)) ? DMA_FLAG_TE6 : DMA_FLAG_TE7)
+
+/**
+ * @brief Return the current DMA Channel Global interrupt flag.
+ * @param __HANDLE__: DMA handle
+ * @retval The specified transfer error flag index.
+ */
+#define __HAL_DMA_GET_GI_FLAG_INDEX(__HANDLE__) \
+ (((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1)) \
+ ? DMA_FLAG_GL1 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2)) \
+ ? DMA_FLAG_GL2 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3)) \
+ ? DMA_FLAG_GL3 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4)) \
+ ? DMA_FLAG_GL4 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5)) ? DMA_FLAG_GL5 \
+ : ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6)) ? DMA_FLAG_GL6 : DMA_FLAG_GL7)
+
+/**
+ * @brief Get the DMA Channel pending flags.
+ * @param __HANDLE__: DMA handle
+ * @param __FLAG__: Get the specified flag.
+ * This parameter can be any combination of the following values:
+ * @arg DMA_FLAG_TCx: Transfer complete flag
+ * @arg DMA_FLAG_HTx: Half transfer complete flag
+ * @arg DMA_FLAG_TEx: Transfer error flag
+ * @arg DMA_FLAG_GLx: Global interrupt flag
+ * Where x can be 1_7 to select the DMA Channel flag.
+ * @retval The state of FLAG (SET or RESET).
+ */
+
+#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__) (DMA1->ISR & (__FLAG__))
+
+/**
+ * @brief Clear the DMA Channel pending flags.
+ * @param __HANDLE__: DMA handle
+ * @param __FLAG__: specifies the flag to clear.
+ * This parameter can be any combination of the following values:
+ * @arg DMA_FLAG_TCx: Transfer complete flag
+ * @arg DMA_FLAG_HTx: Half transfer complete flag
+ * @arg DMA_FLAG_TEx: Transfer error flag
+ * @arg DMA_FLAG_GLx: Global interrupt flag
+ * Where x can be 1_7 to select the DMA Channel flag.
+ * @retval None
+ */
+#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) (DMA1->IFCR = (__FLAG__))
+
+/**
+ * @}
+ */
+
+#endif
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || */
+ /* STM32F103xG || STM32F105xC || STM32F107xC */
+
+#endif /* __STM32F1xx_HAL_DMA_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_exti.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_exti.h new file mode 100644 index 00000000..6d2a85da --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_exti.h @@ -0,0 +1,298 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_exti.h
+ * @author MCD Application Team
+ * @brief Header file of EXTI HAL module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2019 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef STM32F1xx_HAL_EXTI_H
+#define STM32F1xx_HAL_EXTI_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup EXTI EXTI
+ * @brief EXTI HAL module driver
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+
+/** @defgroup EXTI_Exported_Types EXTI Exported Types
+ * @{
+ */
+
+/**
+ * @brief HAL EXTI common Callback ID enumeration definition
+ */
+typedef enum { HAL_EXTI_COMMON_CB_ID = 0x00U } EXTI_CallbackIDTypeDef;
+
+/**
+ * @brief EXTI Handle structure definition
+ */
+typedef struct {
+ uint32_t Line; /*!< Exti line number */
+ void (*PendingCallback)(void); /*!< Exti pending callback */
+} EXTI_HandleTypeDef;
+
+/**
+ * @brief EXTI Configuration structure definition
+ */
+typedef struct {
+ uint32_t Line; /*!< The Exti line to be configured. This parameter
+ can be a value of @ref EXTI_Line */
+ uint32_t Mode; /*!< The Exit Mode to be configured for a core.
+ This parameter can be a combination of @ref EXTI_Mode */
+ uint32_t Trigger; /*!< The Exti Trigger to be configured. This parameter
+ can be a value of @ref EXTI_Trigger */
+ uint32_t GPIOSel; /*!< The Exti GPIO multiplexer selection to be configured.
+ This parameter is only possible for line 0 to 15. It
+ can be a value of @ref EXTI_GPIOSel */
+} EXTI_ConfigTypeDef;
+
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+/** @defgroup EXTI_Exported_Constants EXTI Exported Constants
+ * @{
+ */
+
+/** @defgroup EXTI_Line EXTI Line
+ * @{
+ */
+#define EXTI_LINE_0 (EXTI_GPIO | 0x00u) /*!< External interrupt line 0 */
+#define EXTI_LINE_1 (EXTI_GPIO | 0x01u) /*!< External interrupt line 1 */
+#define EXTI_LINE_2 (EXTI_GPIO | 0x02u) /*!< External interrupt line 2 */
+#define EXTI_LINE_3 (EXTI_GPIO | 0x03u) /*!< External interrupt line 3 */
+#define EXTI_LINE_4 (EXTI_GPIO | 0x04u) /*!< External interrupt line 4 */
+#define EXTI_LINE_5 (EXTI_GPIO | 0x05u) /*!< External interrupt line 5 */
+#define EXTI_LINE_6 (EXTI_GPIO | 0x06u) /*!< External interrupt line 6 */
+#define EXTI_LINE_7 (EXTI_GPIO | 0x07u) /*!< External interrupt line 7 */
+#define EXTI_LINE_8 (EXTI_GPIO | 0x08u) /*!< External interrupt line 8 */
+#define EXTI_LINE_9 (EXTI_GPIO | 0x09u) /*!< External interrupt line 9 */
+#define EXTI_LINE_10 (EXTI_GPIO | 0x0Au) /*!< External interrupt line 10 */
+#define EXTI_LINE_11 (EXTI_GPIO | 0x0Bu) /*!< External interrupt line 11 */
+#define EXTI_LINE_12 (EXTI_GPIO | 0x0Cu) /*!< External interrupt line 12 */
+#define EXTI_LINE_13 (EXTI_GPIO | 0x0Du) /*!< External interrupt line 13 */
+#define EXTI_LINE_14 (EXTI_GPIO | 0x0Eu) /*!< External interrupt line 14 */
+#define EXTI_LINE_15 (EXTI_GPIO | 0x0Fu) /*!< External interrupt line 15 */
+#define EXTI_LINE_16 (EXTI_CONFIG | 0x10u) /*!< External interrupt line 16 Connected to the PVD Output */
+#define EXTI_LINE_17 (EXTI_CONFIG | 0x11u) /*!< External interrupt line 17 Connected to the RTC Alarm event */
+#if defined(EXTI_IMR_IM18)
+#define EXTI_LINE_18 (EXTI_CONFIG | 0x12u) /*!< External interrupt line 18 Connected to the USB Wakeup from suspend event */
+#endif /* EXTI_IMR_IM18 */
+#if defined(EXTI_IMR_IM19)
+#define EXTI_LINE_19 (EXTI_CONFIG | 0x13u) /*!< External interrupt line 19 Connected to the Ethernet Wakeup event */
+#endif /* EXTI_IMR_IM19 */
+
+/**
+ * @}
+ */
+
+/** @defgroup EXTI_Mode EXTI Mode
+ * @{
+ */
+#define EXTI_MODE_NONE 0x00000000u
+#define EXTI_MODE_INTERRUPT 0x00000001u
+#define EXTI_MODE_EVENT 0x00000002u
+/**
+ * @}
+ */
+
+/** @defgroup EXTI_Trigger EXTI Trigger
+ * @{
+ */
+#define EXTI_TRIGGER_NONE 0x00000000u
+#define EXTI_TRIGGER_RISING 0x00000001u
+#define EXTI_TRIGGER_FALLING 0x00000002u
+#define EXTI_TRIGGER_RISING_FALLING (EXTI_TRIGGER_RISING | EXTI_TRIGGER_FALLING)
+/**
+ * @}
+ */
+
+/** @defgroup EXTI_GPIOSel EXTI GPIOSel
+ * @brief
+ * @{
+ */
+#define EXTI_GPIOA 0x00000000u
+#define EXTI_GPIOB 0x00000001u
+#define EXTI_GPIOC 0x00000002u
+#define EXTI_GPIOD 0x00000003u
+#if defined(GPIOE)
+#define EXTI_GPIOE 0x00000004u
+#endif /* GPIOE */
+#if defined(GPIOF)
+#define EXTI_GPIOF 0x00000005u
+#endif /* GPIOF */
+#if defined(GPIOG)
+#define EXTI_GPIOG 0x00000006u
+#endif /* GPIOG */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+/** @defgroup EXTI_Exported_Macros EXTI Exported Macros
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/* Private constants --------------------------------------------------------*/
+/** @defgroup EXTI_Private_Constants EXTI Private Constants
+ * @{
+ */
+/**
+ * @brief EXTI Line property definition
+ */
+#define EXTI_PROPERTY_SHIFT 24u
+#define EXTI_CONFIG (0x02uL << EXTI_PROPERTY_SHIFT)
+#define EXTI_GPIO ((0x04uL << EXTI_PROPERTY_SHIFT) | EXTI_CONFIG)
+#define EXTI_PROPERTY_MASK (EXTI_CONFIG | EXTI_GPIO)
+
+/**
+ * @brief EXTI bit usage
+ */
+#define EXTI_PIN_MASK 0x0000001Fu
+
+/**
+ * @brief EXTI Mask for interrupt & event mode
+ */
+#define EXTI_MODE_MASK (EXTI_MODE_EVENT | EXTI_MODE_INTERRUPT)
+
+/**
+ * @brief EXTI Mask for trigger possibilities
+ */
+#define EXTI_TRIGGER_MASK (EXTI_TRIGGER_RISING | EXTI_TRIGGER_FALLING)
+
+/**
+ * @brief EXTI Line number
+ */
+#if defined(EXTI_IMR_IM19)
+#define EXTI_LINE_NB 20UL
+#elif defined(EXTI_IMR_IM18)
+#define EXTI_LINE_NB 19UL
+#else /* EXTI_IMR_IM17 */
+#define EXTI_LINE_NB 18UL
+#endif /* EXTI_IMR_IM19 */
+/**
+ * @}
+ */
+
+/* Private macros ------------------------------------------------------------*/
+/** @defgroup EXTI_Private_Macros EXTI Private Macros
+ * @{
+ */
+#define IS_EXTI_LINE(__LINE__) \
+ ((((__LINE__) & ~(EXTI_PROPERTY_MASK | EXTI_PIN_MASK)) == 0x00u) && ((((__LINE__)&EXTI_PROPERTY_MASK) == EXTI_CONFIG) || (((__LINE__)&EXTI_PROPERTY_MASK) == EXTI_GPIO)) \
+ && (((__LINE__)&EXTI_PIN_MASK) < EXTI_LINE_NB))
+
+#define IS_EXTI_MODE(__LINE__) ((((__LINE__)&EXTI_MODE_MASK) != 0x00u) && (((__LINE__) & ~EXTI_MODE_MASK) == 0x00u))
+
+#define IS_EXTI_TRIGGER(__LINE__) (((__LINE__) & ~EXTI_TRIGGER_MASK) == 0x00u)
+
+#define IS_EXTI_PENDING_EDGE(__LINE__) ((__LINE__) == EXTI_TRIGGER_RISING_FALLING)
+
+#define IS_EXTI_CONFIG_LINE(__LINE__) (((__LINE__)&EXTI_CONFIG) != 0x00u)
+
+#if defined(GPIOG)
+#define IS_EXTI_GPIO_PORT(__PORT__) \
+ (((__PORT__) == EXTI_GPIOA) || ((__PORT__) == EXTI_GPIOB) || ((__PORT__) == EXTI_GPIOC) || ((__PORT__) == EXTI_GPIOD) || ((__PORT__) == EXTI_GPIOE) || ((__PORT__) == EXTI_GPIOF) \
+ || ((__PORT__) == EXTI_GPIOG))
+#elif defined(GPIOF)
+#define IS_EXTI_GPIO_PORT(__PORT__) \
+ (((__PORT__) == EXTI_GPIOA) || ((__PORT__) == EXTI_GPIOB) || ((__PORT__) == EXTI_GPIOC) || ((__PORT__) == EXTI_GPIOD) || ((__PORT__) == EXTI_GPIOE) || ((__PORT__) == EXTI_GPIOF))
+#elif defined(GPIOE)
+#define IS_EXTI_GPIO_PORT(__PORT__) (((__PORT__) == EXTI_GPIOA) || ((__PORT__) == EXTI_GPIOB) || ((__PORT__) == EXTI_GPIOC) || ((__PORT__) == EXTI_GPIOD) || ((__PORT__) == EXTI_GPIOE))
+#else
+#define IS_EXTI_GPIO_PORT(__PORT__) (((__PORT__) == EXTI_GPIOA) || ((__PORT__) == EXTI_GPIOB) || ((__PORT__) == EXTI_GPIOC) || ((__PORT__) == EXTI_GPIOD))
+#endif /* GPIOG */
+
+#define IS_EXTI_GPIO_PIN(__PIN__) ((__PIN__) < 16u)
+
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+/** @defgroup EXTI_Exported_Functions EXTI Exported Functions
+ * @brief EXTI Exported Functions
+ * @{
+ */
+
+/** @defgroup EXTI_Exported_Functions_Group1 Configuration functions
+ * @brief Configuration functions
+ * @{
+ */
+/* Configuration functions ****************************************************/
+HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig);
+HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig);
+HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti);
+HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, void (*pPendingCbfn)(void));
+HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine);
+/**
+ * @}
+ */
+
+/** @defgroup EXTI_Exported_Functions_Group2 IO operation functions
+ * @brief IO operation functions
+ * @{
+ */
+/* IO operation functions *****************************************************/
+void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti);
+uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge);
+void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge);
+void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti);
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* STM32F1xx_HAL_EXTI_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash.h new file mode 100644 index 00000000..53d8d570 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash.h @@ -0,0 +1,320 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_flash.h
+ * @author MCD Application Team
+ * @brief Header file of Flash HAL module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_FLASH_H
+#define __STM32F1xx_HAL_FLASH_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup FLASH
+ * @{
+ */
+
+/** @addtogroup FLASH_Private_Constants
+ * @{
+ */
+#define FLASH_TIMEOUT_VALUE 50000U /* 50 s */
+/**
+ * @}
+ */
+
+/** @addtogroup FLASH_Private_Macros
+ * @{
+ */
+
+#define IS_FLASH_TYPEPROGRAM(VALUE) (((VALUE) == FLASH_TYPEPROGRAM_HALFWORD) || ((VALUE) == FLASH_TYPEPROGRAM_WORD) || ((VALUE) == FLASH_TYPEPROGRAM_DOUBLEWORD))
+
+#if defined(FLASH_ACR_LATENCY)
+#define IS_FLASH_LATENCY(__LATENCY__) (((__LATENCY__) == FLASH_LATENCY_0) || ((__LATENCY__) == FLASH_LATENCY_1) || ((__LATENCY__) == FLASH_LATENCY_2))
+
+#else
+#define IS_FLASH_LATENCY(__LATENCY__) ((__LATENCY__) == FLASH_LATENCY_0)
+#endif /* FLASH_ACR_LATENCY */
+/**
+ * @}
+ */
+
+/* Exported types ------------------------------------------------------------*/
+/** @defgroup FLASH_Exported_Types FLASH Exported Types
+ * @{
+ */
+
+/**
+ * @brief FLASH Procedure structure definition
+ */
+typedef enum {
+ FLASH_PROC_NONE = 0U,
+ FLASH_PROC_PAGEERASE = 1U,
+ FLASH_PROC_MASSERASE = 2U,
+ FLASH_PROC_PROGRAMHALFWORD = 3U,
+ FLASH_PROC_PROGRAMWORD = 4U,
+ FLASH_PROC_PROGRAMDOUBLEWORD = 5U
+} FLASH_ProcedureTypeDef;
+
+/**
+ * @brief FLASH handle Structure definition
+ */
+typedef struct {
+ __IO FLASH_ProcedureTypeDef ProcedureOnGoing; /*!< Internal variable to indicate which procedure is ongoing or not in IT context */
+
+ __IO uint32_t DataRemaining; /*!< Internal variable to save the remaining pages to erase or half-word to program in IT context */
+
+ __IO uint32_t Address; /*!< Internal variable to save address selected for program or erase */
+
+ __IO uint64_t Data; /*!< Internal variable to save data to be programmed */
+
+ HAL_LockTypeDef Lock; /*!< FLASH locking object */
+
+ __IO uint32_t ErrorCode; /*!< FLASH error code
+ This parameter can be a value of @ref FLASH_Error_Codes */
+} FLASH_ProcessTypeDef;
+
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+/** @defgroup FLASH_Exported_Constants FLASH Exported Constants
+ * @{
+ */
+
+/** @defgroup FLASH_Error_Codes FLASH Error Codes
+ * @{
+ */
+
+#define HAL_FLASH_ERROR_NONE 0x00U /*!< No error */
+#define HAL_FLASH_ERROR_PROG 0x01U /*!< Programming error */
+#define HAL_FLASH_ERROR_WRP 0x02U /*!< Write protection error */
+#define HAL_FLASH_ERROR_OPTV 0x04U /*!< Option validity error */
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASH_Type_Program FLASH Type Program
+ * @{
+ */
+#define FLASH_TYPEPROGRAM_HALFWORD 0x01U /*!<Program a half-word (16-bit) at a specified address.*/
+#define FLASH_TYPEPROGRAM_WORD 0x02U /*!<Program a word (32-bit) at a specified address.*/
+#define FLASH_TYPEPROGRAM_DOUBLEWORD 0x03U /*!<Program a double word (64-bit) at a specified address*/
+
+/**
+ * @}
+ */
+
+#if defined(FLASH_ACR_LATENCY)
+/** @defgroup FLASH_Latency FLASH Latency
+ * @{
+ */
+#define FLASH_LATENCY_0 0x00000000U /*!< FLASH Zero Latency cycle */
+#define FLASH_LATENCY_1 FLASH_ACR_LATENCY_0 /*!< FLASH One Latency cycle */
+#define FLASH_LATENCY_2 FLASH_ACR_LATENCY_1 /*!< FLASH Two Latency cycles */
+
+/**
+ * @}
+ */
+
+#else
+/** @defgroup FLASH_Latency FLASH Latency
+ * @{
+ */
+#define FLASH_LATENCY_0 0x00000000U /*!< FLASH Zero Latency cycle */
+
+/**
+ * @}
+ */
+
+#endif /* FLASH_ACR_LATENCY */
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+
+/** @defgroup FLASH_Exported_Macros FLASH Exported Macros
+ * @brief macros to control FLASH features
+ * @{
+ */
+
+/** @defgroup FLASH_Half_Cycle FLASH Half Cycle
+ * @brief macros to handle FLASH half cycle
+ * @{
+ */
+
+/**
+ * @brief Enable the FLASH half cycle access.
+ * @note half cycle access can only be used with a low-frequency clock of less than
+ 8 MHz that can be obtained with the use of HSI or HSE but not of PLL.
+ * @retval None
+ */
+#define __HAL_FLASH_HALF_CYCLE_ACCESS_ENABLE() (FLASH->ACR |= FLASH_ACR_HLFCYA)
+
+/**
+ * @brief Disable the FLASH half cycle access.
+ * @note half cycle access can only be used with a low-frequency clock of less than
+ 8 MHz that can be obtained with the use of HSI or HSE but not of PLL.
+ * @retval None
+ */
+#define __HAL_FLASH_HALF_CYCLE_ACCESS_DISABLE() (FLASH->ACR &= (~FLASH_ACR_HLFCYA))
+
+/**
+ * @}
+ */
+
+#if defined(FLASH_ACR_LATENCY)
+/** @defgroup FLASH_EM_Latency FLASH Latency
+ * @brief macros to handle FLASH Latency
+ * @{
+ */
+
+/**
+ * @brief Set the FLASH Latency.
+ * @param __LATENCY__ FLASH Latency
+ * The value of this parameter depend on device used within the same series
+ * @retval None
+ */
+#define __HAL_FLASH_SET_LATENCY(__LATENCY__) (FLASH->ACR = (FLASH->ACR & (~FLASH_ACR_LATENCY)) | (__LATENCY__))
+
+/**
+ * @brief Get the FLASH Latency.
+ * @retval FLASH Latency
+ * The value of this parameter depend on device used within the same series
+ */
+#define __HAL_FLASH_GET_LATENCY() (READ_BIT((FLASH->ACR), FLASH_ACR_LATENCY))
+
+/**
+ * @}
+ */
+
+#endif /* FLASH_ACR_LATENCY */
+/** @defgroup FLASH_Prefetch FLASH Prefetch
+ * @brief macros to handle FLASH Prefetch buffer
+ * @{
+ */
+/**
+ * @brief Enable the FLASH prefetch buffer.
+ * @retval None
+ */
+#define __HAL_FLASH_PREFETCH_BUFFER_ENABLE() (FLASH->ACR |= FLASH_ACR_PRFTBE)
+
+/**
+ * @brief Disable the FLASH prefetch buffer.
+ * @retval None
+ */
+#define __HAL_FLASH_PREFETCH_BUFFER_DISABLE() (FLASH->ACR &= (~FLASH_ACR_PRFTBE))
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Include FLASH HAL Extended module */
+#include "stm32f1xx_hal_flash_ex.h"
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup FLASH_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup FLASH_Exported_Functions_Group1
+ * @{
+ */
+/* IO operation functions *****************************************************/
+HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data);
+HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data);
+
+/* FLASH IRQ handler function */
+void HAL_FLASH_IRQHandler(void);
+/* Callbacks in non blocking modes */
+void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue);
+void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue);
+
+/**
+ * @}
+ */
+
+/** @addtogroup FLASH_Exported_Functions_Group2
+ * @{
+ */
+/* Peripheral Control functions ***********************************************/
+HAL_StatusTypeDef HAL_FLASH_Unlock(void);
+HAL_StatusTypeDef HAL_FLASH_Lock(void);
+HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void);
+HAL_StatusTypeDef HAL_FLASH_OB_Lock(void);
+void HAL_FLASH_OB_Launch(void);
+
+/**
+ * @}
+ */
+
+/** @addtogroup FLASH_Exported_Functions_Group3
+ * @{
+ */
+/* Peripheral State and Error functions ***************************************/
+uint32_t HAL_FLASH_GetError(void);
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Private function -------------------------------------------------*/
+/** @addtogroup FLASH_Private_Functions
+ * @{
+ */
+HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout);
+#if defined(FLASH_BANK2_END)
+HAL_StatusTypeDef FLASH_WaitForLastOperationBank2(uint32_t Timeout);
+#endif /* FLASH_BANK2_END */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32F1xx_HAL_FLASH_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash_ex.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash_ex.h new file mode 100644 index 00000000..a757395e --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash_ex.h @@ -0,0 +1,775 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_flash_ex.h
+ * @author MCD Application Team
+ * @brief Header file of Flash HAL Extended module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_FLASH_EX_H
+#define __STM32F1xx_HAL_FLASH_EX_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup FLASHEx
+ * @{
+ */
+
+/** @addtogroup FLASHEx_Private_Constants
+ * @{
+ */
+
+#define FLASH_SIZE_DATA_REGISTER 0x1FFFF7E0U
+#define OBR_REG_INDEX 1U
+#define SR_FLAG_MASK ((uint32_t)(FLASH_SR_BSY | FLASH_SR_PGERR | FLASH_SR_WRPRTERR | FLASH_SR_EOP))
+
+/**
+ * @}
+ */
+
+/** @addtogroup FLASHEx_Private_Macros
+ * @{
+ */
+
+#define IS_FLASH_TYPEERASE(VALUE) (((VALUE) == FLASH_TYPEERASE_PAGES) || ((VALUE) == FLASH_TYPEERASE_MASSERASE))
+
+#define IS_OPTIONBYTE(VALUE) (((VALUE) <= (OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER | OPTIONBYTE_DATA)))
+
+#define IS_WRPSTATE(VALUE) (((VALUE) == OB_WRPSTATE_DISABLE) || ((VALUE) == OB_WRPSTATE_ENABLE))
+
+#define IS_OB_RDP_LEVEL(LEVEL) (((LEVEL) == OB_RDP_LEVEL_0) || ((LEVEL) == OB_RDP_LEVEL_1))
+
+#define IS_OB_DATA_ADDRESS(ADDRESS) (((ADDRESS) == OB_DATA_ADDRESS_DATA0) || ((ADDRESS) == OB_DATA_ADDRESS_DATA1))
+
+#define IS_OB_IWDG_SOURCE(SOURCE) (((SOURCE) == OB_IWDG_SW) || ((SOURCE) == OB_IWDG_HW))
+
+#define IS_OB_STOP_SOURCE(SOURCE) (((SOURCE) == OB_STOP_NO_RST) || ((SOURCE) == OB_STOP_RST))
+
+#define IS_OB_STDBY_SOURCE(SOURCE) (((SOURCE) == OB_STDBY_NO_RST) || ((SOURCE) == OB_STDBY_RST))
+
+#if defined(FLASH_BANK2_END)
+#define IS_OB_BOOT1(BOOT1) (((BOOT1) == OB_BOOT1_RESET) || ((BOOT1) == OB_BOOT1_SET))
+#endif /* FLASH_BANK2_END */
+
+/* Low Density */
+#if (defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F103x6))
+#define IS_FLASH_NB_PAGES(ADDRESS, NBPAGES) \
+ (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x20U) ? ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x08007FFFU) : ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x08003FFFU))
+#endif /* STM32F101x6 || STM32F102x6 || STM32F103x6 */
+
+/* Medium Density */
+#if (defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) || defined(STM32F103xB))
+#define IS_FLASH_NB_PAGES(ADDRESS, NBPAGES) \
+ (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x80U) \
+ ? ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x0801FFFFU) \
+ : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x40U) \
+ ? ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x0800FFFFU) \
+ : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x20U) ? ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x08007FFFU) : ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x08003FFFU))))
+#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB*/
+
+/* High Density */
+#if (defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F103xE))
+#define IS_FLASH_NB_PAGES(ADDRESS, NBPAGES) \
+ (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x200U) \
+ ? ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x0807FFFFU) \
+ : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x180U) ? ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x0805FFFFU) : ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x0803FFFFU)))
+#endif /* STM32F100xE || STM32F101xE || STM32F103xE */
+
+/* XL Density */
+#if defined(FLASH_BANK2_END)
+#define IS_FLASH_NB_PAGES(ADDRESS, NBPAGES) \
+ (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x400U) ? ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x080FFFFFU) : ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x080BFFFFU))
+#endif /* FLASH_BANK2_END */
+
+/* Connectivity Line */
+#if (defined(STM32F105xC) || defined(STM32F107xC))
+#define IS_FLASH_NB_PAGES(ADDRESS, NBPAGES) \
+ (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x100U) \
+ ? ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x0803FFFFU) \
+ : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x80U) ? ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x0801FFFFU) : ((ADDRESS) + ((NBPAGES)*FLASH_PAGE_SIZE) - 1 <= 0x0800FFFFU)))
+#endif /* STM32F105xC || STM32F107xC */
+
+#define IS_OB_WRP(PAGE) (((PAGE) != 0x0000000U))
+
+#if defined(FLASH_BANK2_END)
+#define IS_FLASH_BANK(BANK) (((BANK) == FLASH_BANK_1) || ((BANK) == FLASH_BANK_2) || ((BANK) == FLASH_BANK_BOTH))
+#else
+#define IS_FLASH_BANK(BANK) (((BANK) == FLASH_BANK_1))
+#endif /* FLASH_BANK2_END */
+
+/* Low Density */
+#if (defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F103x6))
+#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= FLASH_BASE) && (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x20U) ? ((ADDRESS) <= FLASH_BANK1_END) : ((ADDRESS) <= 0x08003FFFU)))
+
+#endif /* STM32F101x6 || STM32F102x6 || STM32F103x6 */
+
+/* Medium Density */
+#if (defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) || defined(STM32F103xB))
+#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) \
+ (((ADDRESS) >= FLASH_BASE) \
+ && (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x80U) \
+ ? ((ADDRESS) <= FLASH_BANK1_END) \
+ : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x40U) ? ((ADDRESS) <= 0x0800FFFF) \
+ : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x20U) ? ((ADDRESS) <= 0x08007FFF) : ((ADDRESS) <= 0x08003FFFU)))))
+
+#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB*/
+
+/* High Density */
+#if (defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F103xE))
+#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) \
+ (((ADDRESS) >= FLASH_BASE) \
+ && (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x200U) ? ((ADDRESS) <= FLASH_BANK1_END) \
+ : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x180U) ? ((ADDRESS) <= 0x0805FFFFU) : ((ADDRESS) <= 0x0803FFFFU))))
+
+#endif /* STM32F100xE || STM32F101xE || STM32F103xE */
+
+/* XL Density */
+#if defined(FLASH_BANK2_END)
+#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= FLASH_BASE) && (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x400U) ? ((ADDRESS) <= FLASH_BANK2_END) : ((ADDRESS) <= 0x080BFFFFU)))
+
+#endif /* FLASH_BANK2_END */
+
+/* Connectivity Line */
+#if (defined(STM32F105xC) || defined(STM32F107xC))
+#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) \
+ (((ADDRESS) >= FLASH_BASE) \
+ && (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x100U) ? ((ADDRESS) <= FLASH_BANK1_END) \
+ : (((*((uint16_t *)FLASH_SIZE_DATA_REGISTER)) == 0x80U) ? ((ADDRESS) <= 0x0801FFFFU) : ((ADDRESS) <= 0x0800FFFFU))))
+
+#endif /* STM32F105xC || STM32F107xC */
+
+/**
+ * @}
+ */
+
+/* Exported types ------------------------------------------------------------*/
+/** @defgroup FLASHEx_Exported_Types FLASHEx Exported Types
+ * @{
+ */
+
+/**
+ * @brief FLASH Erase structure definition
+ */
+typedef struct {
+ uint32_t TypeErase; /*!< TypeErase: Mass erase or page erase.
+ This parameter can be a value of @ref FLASHEx_Type_Erase */
+
+ uint32_t Banks; /*!< Select banks to erase when Mass erase is enabled.
+ This parameter must be a value of @ref FLASHEx_Banks */
+
+ uint32_t PageAddress; /*!< PageAdress: Initial FLASH page address to erase when mass erase is disabled
+ This parameter must be a number between Min_Data = 0x08000000 and Max_Data = FLASH_BANKx_END
+ (x = 1 or 2 depending on devices)*/
+
+ uint32_t NbPages; /*!< NbPages: Number of pagess to be erased.
+ This parameter must be a value between Min_Data = 1 and Max_Data = (max number of pages - value of initial page)*/
+
+} FLASH_EraseInitTypeDef;
+
+/**
+ * @brief FLASH Options bytes program structure definition
+ */
+typedef struct {
+ uint32_t OptionType; /*!< OptionType: Option byte to be configured.
+ This parameter can be a value of @ref FLASHEx_OB_Type */
+
+ uint32_t WRPState; /*!< WRPState: Write protection activation or deactivation.
+ This parameter can be a value of @ref FLASHEx_OB_WRP_State */
+
+ uint32_t WRPPage; /*!< WRPPage: specifies the page(s) to be write protected
+ This parameter can be a value of @ref FLASHEx_OB_Write_Protection */
+
+ uint32_t Banks; /*!< Select banks for WRP activation/deactivation of all sectors.
+ This parameter must be a value of @ref FLASHEx_Banks */
+
+ uint8_t RDPLevel; /*!< RDPLevel: Set the read protection level..
+ This parameter can be a value of @ref FLASHEx_OB_Read_Protection */
+
+#if defined(FLASH_BANK2_END)
+ uint8_t USERConfig; /*!< USERConfig: Program the FLASH User Option Byte:
+ IWDG / STOP / STDBY / BOOT1
+ This parameter can be a combination of @ref FLASHEx_OB_IWatchdog, @ref FLASHEx_OB_nRST_STOP,
+ @ref FLASHEx_OB_nRST_STDBY, @ref FLASHEx_OB_BOOT1 */
+#else
+ uint8_t USERConfig; /*!< USERConfig: Program the FLASH User Option Byte:
+ IWDG / STOP / STDBY
+ This parameter can be a combination of @ref FLASHEx_OB_IWatchdog, @ref FLASHEx_OB_nRST_STOP,
+ @ref FLASHEx_OB_nRST_STDBY */
+#endif /* FLASH_BANK2_END */
+
+ uint32_t DATAAddress; /*!< DATAAddress: Address of the option byte DATA to be programmed
+ This parameter can be a value of @ref FLASHEx_OB_Data_Address */
+
+ uint8_t DATAData; /*!< DATAData: Data to be stored in the option byte DATA
+ This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF */
+} FLASH_OBProgramInitTypeDef;
+
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+/** @defgroup FLASHEx_Exported_Constants FLASHEx Exported Constants
+ * @{
+ */
+
+/** @defgroup FLASHEx_Constants FLASH Constants
+ * @{
+ */
+
+/** @defgroup FLASHEx_Page_Size Page Size
+ * @{
+ */
+#if (defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F103x6) || defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) || defined(STM32F103xB))
+#define FLASH_PAGE_SIZE 0x400U
+#endif /* STM32F101x6 || STM32F102x6 || STM32F103x6 */
+ /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB */
+
+#if (defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC))
+#define FLASH_PAGE_SIZE 0x800U
+#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB */
+ /* STM32F101xG || STM32F103xG */
+ /* STM32F105xC || STM32F107xC */
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASHEx_Type_Erase Type Erase
+ * @{
+ */
+#define FLASH_TYPEERASE_PAGES 0x00U /*!<Pages erase only*/
+#define FLASH_TYPEERASE_MASSERASE 0x02U /*!<Flash mass erase activation*/
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASHEx_Banks Banks
+ * @{
+ */
+#if defined(FLASH_BANK2_END)
+#define FLASH_BANK_1 1U /*!< Bank 1 */
+#define FLASH_BANK_2 2U /*!< Bank 2 */
+#define FLASH_BANK_BOTH ((uint32_t)FLASH_BANK_1 | FLASH_BANK_2) /*!< Bank1 and Bank2 */
+
+#else
+#define FLASH_BANK_1 1U /*!< Bank 1 */
+#endif
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASHEx_OptionByte_Constants Option Byte Constants
+ * @{
+ */
+
+/** @defgroup FLASHEx_OB_Type Option Bytes Type
+ * @{
+ */
+#define OPTIONBYTE_WRP 0x01U /*!<WRP option byte configuration*/
+#define OPTIONBYTE_RDP 0x02U /*!<RDP option byte configuration*/
+#define OPTIONBYTE_USER 0x04U /*!<USER option byte configuration*/
+#define OPTIONBYTE_DATA 0x08U /*!<DATA option byte configuration*/
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASHEx_OB_WRP_State Option Byte WRP State
+ * @{
+ */
+#define OB_WRPSTATE_DISABLE 0x00U /*!<Disable the write protection of the desired pages*/
+#define OB_WRPSTATE_ENABLE 0x01U /*!<Enable the write protection of the desired pagess*/
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASHEx_OB_Write_Protection Option Bytes Write Protection
+ * @{
+ */
+/* STM32 Low and Medium density devices */
+#if defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F103x6) || defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) || defined(STM32F103xB)
+#define OB_WRP_PAGES0TO3 0x00000001U /*!< Write protection of page 0 to 3 */
+#define OB_WRP_PAGES4TO7 0x00000002U /*!< Write protection of page 4 to 7 */
+#define OB_WRP_PAGES8TO11 0x00000004U /*!< Write protection of page 8 to 11 */
+#define OB_WRP_PAGES12TO15 0x00000008U /*!< Write protection of page 12 to 15 */
+#define OB_WRP_PAGES16TO19 0x00000010U /*!< Write protection of page 16 to 19 */
+#define OB_WRP_PAGES20TO23 0x00000020U /*!< Write protection of page 20 to 23 */
+#define OB_WRP_PAGES24TO27 0x00000040U /*!< Write protection of page 24 to 27 */
+#define OB_WRP_PAGES28TO31 0x00000080U /*!< Write protection of page 28 to 31 */
+#endif /* STM32F101x6 || STM32F102x6 || STM32F103x6 */
+ /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB */
+
+/* STM32 Medium-density devices */
+#if defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) || defined(STM32F103xB)
+#define OB_WRP_PAGES32TO35 0x00000100U /*!< Write protection of page 32 to 35 */
+#define OB_WRP_PAGES36TO39 0x00000200U /*!< Write protection of page 36 to 39 */
+#define OB_WRP_PAGES40TO43 0x00000400U /*!< Write protection of page 40 to 43 */
+#define OB_WRP_PAGES44TO47 0x00000800U /*!< Write protection of page 44 to 47 */
+#define OB_WRP_PAGES48TO51 0x00001000U /*!< Write protection of page 48 to 51 */
+#define OB_WRP_PAGES52TO55 0x00002000U /*!< Write protection of page 52 to 55 */
+#define OB_WRP_PAGES56TO59 0x00004000U /*!< Write protection of page 56 to 59 */
+#define OB_WRP_PAGES60TO63 0x00008000U /*!< Write protection of page 60 to 63 */
+#define OB_WRP_PAGES64TO67 0x00010000U /*!< Write protection of page 64 to 67 */
+#define OB_WRP_PAGES68TO71 0x00020000U /*!< Write protection of page 68 to 71 */
+#define OB_WRP_PAGES72TO75 0x00040000U /*!< Write protection of page 72 to 75 */
+#define OB_WRP_PAGES76TO79 0x00080000U /*!< Write protection of page 76 to 79 */
+#define OB_WRP_PAGES80TO83 0x00100000U /*!< Write protection of page 80 to 83 */
+#define OB_WRP_PAGES84TO87 0x00200000U /*!< Write protection of page 84 to 87 */
+#define OB_WRP_PAGES88TO91 0x00400000U /*!< Write protection of page 88 to 91 */
+#define OB_WRP_PAGES92TO95 0x00800000U /*!< Write protection of page 92 to 95 */
+#define OB_WRP_PAGES96TO99 0x01000000U /*!< Write protection of page 96 to 99 */
+#define OB_WRP_PAGES100TO103 0x02000000U /*!< Write protection of page 100 to 103 */
+#define OB_WRP_PAGES104TO107 0x04000000U /*!< Write protection of page 104 to 107 */
+#define OB_WRP_PAGES108TO111 0x08000000U /*!< Write protection of page 108 to 111 */
+#define OB_WRP_PAGES112TO115 0x10000000U /*!< Write protection of page 112 to 115 */
+#define OB_WRP_PAGES116TO119 0x20000000U /*!< Write protection of page 115 to 119 */
+#define OB_WRP_PAGES120TO123 0x40000000U /*!< Write protection of page 120 to 123 */
+#define OB_WRP_PAGES124TO127 0x80000000U /*!< Write protection of page 124 to 127 */
+#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB */
+
+/* STM32 High-density, XL-density and Connectivity line devices */
+#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define OB_WRP_PAGES0TO1 0x00000001U /*!< Write protection of page 0 TO 1 */
+#define OB_WRP_PAGES2TO3 0x00000002U /*!< Write protection of page 2 TO 3 */
+#define OB_WRP_PAGES4TO5 0x00000004U /*!< Write protection of page 4 TO 5 */
+#define OB_WRP_PAGES6TO7 0x00000008U /*!< Write protection of page 6 TO 7 */
+#define OB_WRP_PAGES8TO9 0x00000010U /*!< Write protection of page 8 TO 9 */
+#define OB_WRP_PAGES10TO11 0x00000020U /*!< Write protection of page 10 TO 11 */
+#define OB_WRP_PAGES12TO13 0x00000040U /*!< Write protection of page 12 TO 13 */
+#define OB_WRP_PAGES14TO15 0x00000080U /*!< Write protection of page 14 TO 15 */
+#define OB_WRP_PAGES16TO17 0x00000100U /*!< Write protection of page 16 TO 17 */
+#define OB_WRP_PAGES18TO19 0x00000200U /*!< Write protection of page 18 TO 19 */
+#define OB_WRP_PAGES20TO21 0x00000400U /*!< Write protection of page 20 TO 21 */
+#define OB_WRP_PAGES22TO23 0x00000800U /*!< Write protection of page 22 TO 23 */
+#define OB_WRP_PAGES24TO25 0x00001000U /*!< Write protection of page 24 TO 25 */
+#define OB_WRP_PAGES26TO27 0x00002000U /*!< Write protection of page 26 TO 27 */
+#define OB_WRP_PAGES28TO29 0x00004000U /*!< Write protection of page 28 TO 29 */
+#define OB_WRP_PAGES30TO31 0x00008000U /*!< Write protection of page 30 TO 31 */
+#define OB_WRP_PAGES32TO33 0x00010000U /*!< Write protection of page 32 TO 33 */
+#define OB_WRP_PAGES34TO35 0x00020000U /*!< Write protection of page 34 TO 35 */
+#define OB_WRP_PAGES36TO37 0x00040000U /*!< Write protection of page 36 TO 37 */
+#define OB_WRP_PAGES38TO39 0x00080000U /*!< Write protection of page 38 TO 39 */
+#define OB_WRP_PAGES40TO41 0x00100000U /*!< Write protection of page 40 TO 41 */
+#define OB_WRP_PAGES42TO43 0x00200000U /*!< Write protection of page 42 TO 43 */
+#define OB_WRP_PAGES44TO45 0x00400000U /*!< Write protection of page 44 TO 45 */
+#define OB_WRP_PAGES46TO47 0x00800000U /*!< Write protection of page 46 TO 47 */
+#define OB_WRP_PAGES48TO49 0x01000000U /*!< Write protection of page 48 TO 49 */
+#define OB_WRP_PAGES50TO51 0x02000000U /*!< Write protection of page 50 TO 51 */
+#define OB_WRP_PAGES52TO53 0x04000000U /*!< Write protection of page 52 TO 53 */
+#define OB_WRP_PAGES54TO55 0x08000000U /*!< Write protection of page 54 TO 55 */
+#define OB_WRP_PAGES56TO57 0x10000000U /*!< Write protection of page 56 TO 57 */
+#define OB_WRP_PAGES58TO59 0x20000000U /*!< Write protection of page 58 TO 59 */
+#define OB_WRP_PAGES60TO61 0x40000000U /*!< Write protection of page 60 TO 61 */
+#define OB_WRP_PAGES62TO127 0x80000000U /*!< Write protection of page 62 TO 127 */
+#define OB_WRP_PAGES62TO255 0x80000000U /*!< Write protection of page 62 TO 255 */
+#define OB_WRP_PAGES62TO511 0x80000000U /*!< Write protection of page 62 TO 511 */
+#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB */
+ /* STM32F101xG || STM32F103xG */
+ /* STM32F105xC || STM32F107xC */
+
+#define OB_WRP_ALLPAGES 0xFFFFFFFFU /*!< Write protection of all Pages */
+
+/* Low Density */
+#if defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F103x6)
+#define OB_WRP_PAGES0TO31MASK 0x000000FFU
+#endif /* STM32F101x6 || STM32F102x6 || STM32F103x6 */
+
+/* Medium Density */
+#if defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F102xB) || defined(STM32F103xB)
+#define OB_WRP_PAGES0TO31MASK 0x000000FFU
+#define OB_WRP_PAGES32TO63MASK 0x0000FF00U
+#define OB_WRP_PAGES64TO95MASK 0x00FF0000U
+#define OB_WRP_PAGES96TO127MASK 0xFF000000U
+#endif /* STM32F100xB || STM32F101xB || STM32F102xB || STM32F103xB*/
+
+/* High Density */
+#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F103xE)
+#define OB_WRP_PAGES0TO15MASK 0x000000FFU
+#define OB_WRP_PAGES16TO31MASK 0x0000FF00U
+#define OB_WRP_PAGES32TO47MASK 0x00FF0000U
+#define OB_WRP_PAGES48TO255MASK 0xFF000000U
+#endif /* STM32F100xE || STM32F101xE || STM32F103xE */
+
+/* XL Density */
+#if defined(STM32F101xG) || defined(STM32F103xG)
+#define OB_WRP_PAGES0TO15MASK 0x000000FFU
+#define OB_WRP_PAGES16TO31MASK 0x0000FF00U
+#define OB_WRP_PAGES32TO47MASK 0x00FF0000U
+#define OB_WRP_PAGES48TO511MASK 0xFF000000U
+#endif /* STM32F101xG || STM32F103xG */
+
+/* Connectivity line devices */
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define OB_WRP_PAGES0TO15MASK 0x000000FFU
+#define OB_WRP_PAGES16TO31MASK 0x0000FF00U
+#define OB_WRP_PAGES32TO47MASK 0x00FF0000U
+#define OB_WRP_PAGES48TO127MASK 0xFF000000U
+#endif /* STM32F105xC || STM32F107xC */
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASHEx_OB_Read_Protection Option Byte Read Protection
+ * @{
+ */
+#define OB_RDP_LEVEL_0 ((uint8_t)0xA5)
+#define OB_RDP_LEVEL_1 ((uint8_t)0x00)
+/**
+ * @}
+ */
+
+/** @defgroup FLASHEx_OB_IWatchdog Option Byte IWatchdog
+ * @{
+ */
+#define OB_IWDG_SW ((uint16_t)0x0001) /*!< Software IWDG selected */
+#define OB_IWDG_HW ((uint16_t)0x0000) /*!< Hardware IWDG selected */
+/**
+ * @}
+ */
+
+/** @defgroup FLASHEx_OB_nRST_STOP Option Byte nRST STOP
+ * @{
+ */
+#define OB_STOP_NO_RST ((uint16_t)0x0002) /*!< No reset generated when entering in STOP */
+#define OB_STOP_RST ((uint16_t)0x0000) /*!< Reset generated when entering in STOP */
+/**
+ * @}
+ */
+
+/** @defgroup FLASHEx_OB_nRST_STDBY Option Byte nRST STDBY
+ * @{
+ */
+#define OB_STDBY_NO_RST ((uint16_t)0x0004) /*!< No reset generated when entering in STANDBY */
+#define OB_STDBY_RST ((uint16_t)0x0000) /*!< Reset generated when entering in STANDBY */
+/**
+ * @}
+ */
+
+#if defined(FLASH_BANK2_END)
+/** @defgroup FLASHEx_OB_BOOT1 Option Byte BOOT1
+ * @{
+ */
+#define OB_BOOT1_RESET ((uint16_t)0x0000) /*!< BOOT1 Reset */
+#define OB_BOOT1_SET ((uint16_t)0x0008) /*!< BOOT1 Set */
+/**
+ * @}
+ */
+#endif /* FLASH_BANK2_END */
+
+/** @defgroup FLASHEx_OB_Data_Address Option Byte Data Address
+ * @{
+ */
+#define OB_DATA_ADDRESS_DATA0 0x1FFFF804U
+#define OB_DATA_ADDRESS_DATA1 0x1FFFF806U
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup FLASHEx_Constants
+ * @{
+ */
+
+/** @defgroup FLASH_Flag_definition Flag definition
+ * @brief Flag definition
+ * @{
+ */
+#if defined(FLASH_BANK2_END)
+#define FLASH_FLAG_BSY FLASH_FLAG_BSY_BANK1 /*!< FLASH Bank1 Busy flag */
+#define FLASH_FLAG_PGERR FLASH_FLAG_PGERR_BANK1 /*!< FLASH Bank1 Programming error flag */
+#define FLASH_FLAG_WRPERR FLASH_FLAG_WRPERR_BANK1 /*!< FLASH Bank1 Write protected error flag */
+#define FLASH_FLAG_EOP FLASH_FLAG_EOP_BANK1 /*!< FLASH Bank1 End of Operation flag */
+
+#define FLASH_FLAG_BSY_BANK1 FLASH_SR_BSY /*!< FLASH Bank1 Busy flag */
+#define FLASH_FLAG_PGERR_BANK1 FLASH_SR_PGERR /*!< FLASH Bank1 Programming error flag */
+#define FLASH_FLAG_WRPERR_BANK1 FLASH_SR_WRPRTERR /*!< FLASH Bank1 Write protected error flag */
+#define FLASH_FLAG_EOP_BANK1 FLASH_SR_EOP /*!< FLASH Bank1 End of Operation flag */
+
+#define FLASH_FLAG_BSY_BANK2 (FLASH_SR2_BSY << 16U) /*!< FLASH Bank2 Busy flag */
+#define FLASH_FLAG_PGERR_BANK2 (FLASH_SR2_PGERR << 16U) /*!< FLASH Bank2 Programming error flag */
+#define FLASH_FLAG_WRPERR_BANK2 (FLASH_SR2_WRPRTERR << 16U) /*!< FLASH Bank2 Write protected error flag */
+#define FLASH_FLAG_EOP_BANK2 (FLASH_SR2_EOP << 16U) /*!< FLASH Bank2 End of Operation flag */
+
+#else
+
+#define FLASH_FLAG_BSY FLASH_SR_BSY /*!< FLASH Busy flag */
+#define FLASH_FLAG_PGERR FLASH_SR_PGERR /*!< FLASH Programming error flag */
+#define FLASH_FLAG_WRPERR FLASH_SR_WRPRTERR /*!< FLASH Write protected error flag */
+#define FLASH_FLAG_EOP FLASH_SR_EOP /*!< FLASH End of Operation flag */
+
+#endif
+#define FLASH_FLAG_OPTVERR ((OBR_REG_INDEX << 8U | FLASH_OBR_OPTERR)) /*!< Option Byte Error */
+/**
+ * @}
+ */
+
+/** @defgroup FLASH_Interrupt_definition Interrupt definition
+ * @brief FLASH Interrupt definition
+ * @{
+ */
+#if defined(FLASH_BANK2_END)
+#define FLASH_IT_EOP FLASH_IT_EOP_BANK1 /*!< End of FLASH Operation Interrupt source Bank1 */
+#define FLASH_IT_ERR FLASH_IT_ERR_BANK1 /*!< Error Interrupt source Bank1 */
+
+#define FLASH_IT_EOP_BANK1 FLASH_CR_EOPIE /*!< End of FLASH Operation Interrupt source Bank1 */
+#define FLASH_IT_ERR_BANK1 FLASH_CR_ERRIE /*!< Error Interrupt source Bank1 */
+
+#define FLASH_IT_EOP_BANK2 (FLASH_CR2_EOPIE << 16U) /*!< End of FLASH Operation Interrupt source Bank2 */
+#define FLASH_IT_ERR_BANK2 (FLASH_CR2_ERRIE << 16U) /*!< Error Interrupt source Bank2 */
+
+#else
+
+#define FLASH_IT_EOP FLASH_CR_EOPIE /*!< End of FLASH Operation Interrupt source */
+#define FLASH_IT_ERR FLASH_CR_ERRIE /*!< Error Interrupt source */
+
+#endif
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+/** @defgroup FLASHEx_Exported_Macros FLASHEx Exported Macros
+ * @{
+ */
+
+/** @defgroup FLASH_Interrupt Interrupt
+ * @brief macros to handle FLASH interrupts
+ * @{
+ */
+
+#if defined(FLASH_BANK2_END)
+/**
+ * @brief Enable the specified FLASH interrupt.
+ * @param __INTERRUPT__ FLASH interrupt
+ * This parameter can be any combination of the following values:
+ * @arg @ref FLASH_IT_EOP_BANK1 End of FLASH Operation Interrupt on bank1
+ * @arg @ref FLASH_IT_ERR_BANK1 Error Interrupt on bank1
+ * @arg @ref FLASH_IT_EOP_BANK2 End of FLASH Operation Interrupt on bank2
+ * @arg @ref FLASH_IT_ERR_BANK2 Error Interrupt on bank2
+ * @retval none
+ */
+#define __HAL_FLASH_ENABLE_IT(__INTERRUPT__) \
+ do { \
+ /* Enable Bank1 IT */ \
+ SET_BIT(FLASH->CR, ((__INTERRUPT__)&0x0000FFFFU)); \
+ /* Enable Bank2 IT */ \
+ SET_BIT(FLASH->CR2, ((__INTERRUPT__) >> 16U)); \
+ } while (0U)
+
+/**
+ * @brief Disable the specified FLASH interrupt.
+ * @param __INTERRUPT__ FLASH interrupt
+ * This parameter can be any combination of the following values:
+ * @arg @ref FLASH_IT_EOP_BANK1 End of FLASH Operation Interrupt on bank1
+ * @arg @ref FLASH_IT_ERR_BANK1 Error Interrupt on bank1
+ * @arg @ref FLASH_IT_EOP_BANK2 End of FLASH Operation Interrupt on bank2
+ * @arg @ref FLASH_IT_ERR_BANK2 Error Interrupt on bank2
+ * @retval none
+ */
+#define __HAL_FLASH_DISABLE_IT(__INTERRUPT__) \
+ do { \
+ /* Disable Bank1 IT */ \
+ CLEAR_BIT(FLASH->CR, ((__INTERRUPT__)&0x0000FFFFU)); \
+ /* Disable Bank2 IT */ \
+ CLEAR_BIT(FLASH->CR2, ((__INTERRUPT__) >> 16U)); \
+ } while (0U)
+
+/**
+ * @brief Get the specified FLASH flag status.
+ * @param __FLAG__ specifies the FLASH flag to check.
+ * This parameter can be one of the following values:
+ * @arg @ref FLASH_FLAG_EOP_BANK1 FLASH End of Operation flag on bank1
+ * @arg @ref FLASH_FLAG_WRPERR_BANK1 FLASH Write protected error flag on bank1
+ * @arg @ref FLASH_FLAG_PGERR_BANK1 FLASH Programming error flag on bank1
+ * @arg @ref FLASH_FLAG_BSY_BANK1 FLASH Busy flag on bank1
+ * @arg @ref FLASH_FLAG_EOP_BANK2 FLASH End of Operation flag on bank2
+ * @arg @ref FLASH_FLAG_WRPERR_BANK2 FLASH Write protected error flag on bank2
+ * @arg @ref FLASH_FLAG_PGERR_BANK2 FLASH Programming error flag on bank2
+ * @arg @ref FLASH_FLAG_BSY_BANK2 FLASH Busy flag on bank2
+ * @arg @ref FLASH_FLAG_OPTVERR Loaded OB and its complement do not match
+ * @retval The new state of __FLAG__ (SET or RESET).
+ */
+#define __HAL_FLASH_GET_FLAG(__FLAG__) \
+ (((__FLAG__) == FLASH_FLAG_OPTVERR) ? (FLASH->OBR & FLASH_OBR_OPTERR) : ((((__FLAG__)&SR_FLAG_MASK) != RESET) ? (FLASH->SR & ((__FLAG__)&SR_FLAG_MASK)) : (FLASH->SR2 & ((__FLAG__) >> 16U))))
+
+/**
+ * @brief Clear the specified FLASH flag.
+ * @param __FLAG__ specifies the FLASH flags to clear.
+ * This parameter can be any combination of the following values:
+ * @arg @ref FLASH_FLAG_EOP_BANK1 FLASH End of Operation flag on bank1
+ * @arg @ref FLASH_FLAG_WRPERR_BANK1 FLASH Write protected error flag on bank1
+ * @arg @ref FLASH_FLAG_PGERR_BANK1 FLASH Programming error flag on bank1
+ * @arg @ref FLASH_FLAG_BSY_BANK1 FLASH Busy flag on bank1
+ * @arg @ref FLASH_FLAG_EOP_BANK2 FLASH End of Operation flag on bank2
+ * @arg @ref FLASH_FLAG_WRPERR_BANK2 FLASH Write protected error flag on bank2
+ * @arg @ref FLASH_FLAG_PGERR_BANK2 FLASH Programming error flag on bank2
+ * @arg @ref FLASH_FLAG_BSY_BANK2 FLASH Busy flag on bank2
+ * @arg @ref FLASH_FLAG_OPTVERR Loaded OB and its complement do not match
+ * @retval none
+ */
+#define __HAL_FLASH_CLEAR_FLAG(__FLAG__) \
+ do { \
+ /* Clear FLASH_FLAG_OPTVERR flag */ \
+ if ((__FLAG__) == FLASH_FLAG_OPTVERR) { \
+ CLEAR_BIT(FLASH->OBR, FLASH_OBR_OPTERR); \
+ } else { \
+ /* Clear Flag in Bank1 */ \
+ if (((__FLAG__)&SR_FLAG_MASK) != RESET) { \
+ FLASH->SR = ((__FLAG__)&SR_FLAG_MASK); \
+ } \
+ /* Clear Flag in Bank2 */ \
+ if (((__FLAG__) >> 16U) != RESET) { \
+ FLASH->SR2 = ((__FLAG__) >> 16U); \
+ } \
+ } \
+ } while (0U)
+#else
+ /**
+ * @brief Enable the specified FLASH interrupt.
+ * @param __INTERRUPT__ FLASH interrupt
+ * This parameter can be any combination of the following values:
+ * @arg @ref FLASH_IT_EOP End of FLASH Operation Interrupt
+ * @arg @ref FLASH_IT_ERR Error Interrupt
+ * @retval none
+ */
+#define __HAL_FLASH_ENABLE_IT(__INTERRUPT__) (FLASH->CR |= (__INTERRUPT__))
+
+/**
+ * @brief Disable the specified FLASH interrupt.
+ * @param __INTERRUPT__ FLASH interrupt
+ * This parameter can be any combination of the following values:
+ * @arg @ref FLASH_IT_EOP End of FLASH Operation Interrupt
+ * @arg @ref FLASH_IT_ERR Error Interrupt
+ * @retval none
+ */
+#define __HAL_FLASH_DISABLE_IT(__INTERRUPT__) (FLASH->CR &= ~(__INTERRUPT__))
+
+/**
+ * @brief Get the specified FLASH flag status.
+ * @param __FLAG__ specifies the FLASH flag to check.
+ * This parameter can be one of the following values:
+ * @arg @ref FLASH_FLAG_EOP FLASH End of Operation flag
+ * @arg @ref FLASH_FLAG_WRPERR FLASH Write protected error flag
+ * @arg @ref FLASH_FLAG_PGERR FLASH Programming error flag
+ * @arg @ref FLASH_FLAG_BSY FLASH Busy flag
+ * @arg @ref FLASH_FLAG_OPTVERR Loaded OB and its complement do not match
+ * @retval The new state of __FLAG__ (SET or RESET).
+ */
+#define __HAL_FLASH_GET_FLAG(__FLAG__) (((__FLAG__) == FLASH_FLAG_OPTVERR) ? (FLASH->OBR & FLASH_OBR_OPTERR) : (FLASH->SR & (__FLAG__)))
+/**
+ * @brief Clear the specified FLASH flag.
+ * @param __FLAG__ specifies the FLASH flags to clear.
+ * This parameter can be any combination of the following values:
+ * @arg @ref FLASH_FLAG_EOP FLASH End of Operation flag
+ * @arg @ref FLASH_FLAG_WRPERR FLASH Write protected error flag
+ * @arg @ref FLASH_FLAG_PGERR FLASH Programming error flag
+ * @arg @ref FLASH_FLAG_OPTVERR Loaded OB and its complement do not match
+ * @retval none
+ */
+#define __HAL_FLASH_CLEAR_FLAG(__FLAG__) \
+ do { \
+ /* Clear FLASH_FLAG_OPTVERR flag */ \
+ if ((__FLAG__) == FLASH_FLAG_OPTVERR) { \
+ CLEAR_BIT(FLASH->OBR, FLASH_OBR_OPTERR); \
+ } else { \
+ /* Clear Flag in Bank1 */ \
+ FLASH->SR = (__FLAG__); \
+ } \
+ } while (0U)
+
+#endif
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup FLASHEx_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup FLASHEx_Exported_Functions_Group1
+ * @{
+ */
+/* IO operation functions *****************************************************/
+HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError);
+HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit);
+
+/**
+ * @}
+ */
+
+/** @addtogroup FLASHEx_Exported_Functions_Group2
+ * @{
+ */
+/* Peripheral Control functions ***********************************************/
+HAL_StatusTypeDef HAL_FLASHEx_OBErase(void);
+HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit);
+void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit);
+uint32_t HAL_FLASHEx_OBGetUserData(uint32_t DATAAdress);
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32F1xx_HAL_FLASH_EX_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio.h new file mode 100644 index 00000000..7cf0d76b --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio.h @@ -0,0 +1,293 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_gpio.h
+ * @author MCD Application Team
+ * @brief Header file of GPIO HAL module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef STM32F1xx_HAL_GPIO_H
+#define STM32F1xx_HAL_GPIO_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup GPIO
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+/** @defgroup GPIO_Exported_Types GPIO Exported Types
+ * @{
+ */
+
+/**
+ * @brief GPIO Init structure definition
+ */
+typedef struct {
+ uint32_t Pin; /*!< Specifies the GPIO pins to be configured.
+ This parameter can be any value of @ref GPIO_pins_define */
+
+ uint32_t Mode; /*!< Specifies the operating mode for the selected pins.
+ This parameter can be a value of @ref GPIO_mode_define */
+
+ uint32_t Pull; /*!< Specifies the Pull-up or Pull-Down activation for the selected pins.
+ This parameter can be a value of @ref GPIO_pull_define */
+
+ uint32_t Speed; /*!< Specifies the speed for the selected pins.
+ This parameter can be a value of @ref GPIO_speed_define */
+} GPIO_InitTypeDef;
+
+/**
+ * @brief GPIO Bit SET and Bit RESET enumeration
+ */
+typedef enum { GPIO_PIN_RESET = 0u, GPIO_PIN_SET } GPIO_PinState;
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup GPIO_Exported_Constants GPIO Exported Constants
+ * @{
+ */
+
+/** @defgroup GPIO_pins_define GPIO pins define
+ * @{
+ */
+#define GPIO_PIN_0 ((uint16_t)0x0001) /* Pin 0 selected */
+#define GPIO_PIN_1 ((uint16_t)0x0002) /* Pin 1 selected */
+#define GPIO_PIN_2 ((uint16_t)0x0004) /* Pin 2 selected */
+#define GPIO_PIN_3 ((uint16_t)0x0008) /* Pin 3 selected */
+#define GPIO_PIN_4 ((uint16_t)0x0010) /* Pin 4 selected */
+#define GPIO_PIN_5 ((uint16_t)0x0020) /* Pin 5 selected */
+#define GPIO_PIN_6 ((uint16_t)0x0040) /* Pin 6 selected */
+#define GPIO_PIN_7 ((uint16_t)0x0080) /* Pin 7 selected */
+#define GPIO_PIN_8 ((uint16_t)0x0100) /* Pin 8 selected */
+#define GPIO_PIN_9 ((uint16_t)0x0200) /* Pin 9 selected */
+#define GPIO_PIN_10 ((uint16_t)0x0400) /* Pin 10 selected */
+#define GPIO_PIN_11 ((uint16_t)0x0800) /* Pin 11 selected */
+#define GPIO_PIN_12 ((uint16_t)0x1000) /* Pin 12 selected */
+#define GPIO_PIN_13 ((uint16_t)0x2000) /* Pin 13 selected */
+#define GPIO_PIN_14 ((uint16_t)0x4000) /* Pin 14 selected */
+#define GPIO_PIN_15 ((uint16_t)0x8000) /* Pin 15 selected */
+#define GPIO_PIN_All ((uint16_t)0xFFFF) /* All pins selected */
+
+#define GPIO_PIN_MASK 0x0000FFFFu /* PIN mask for assert test */
+/**
+ * @}
+ */
+
+/** @defgroup GPIO_mode_define GPIO mode define
+ * @brief GPIO Configuration Mode
+ * Elements values convention: 0xX0yz00YZ
+ * - X : GPIO mode or EXTI Mode
+ * - y : External IT or Event trigger detection
+ * - z : IO configuration on External IT or Event
+ * - Y : Output type (Push Pull or Open Drain)
+ * - Z : IO Direction mode (Input, Output, Alternate or Analog)
+ * @{
+ */
+#define GPIO_MODE_INPUT 0x00000000u /*!< Input Floating Mode */
+#define GPIO_MODE_OUTPUT_PP 0x00000001u /*!< Output Push Pull Mode */
+#define GPIO_MODE_OUTPUT_OD 0x00000011u /*!< Output Open Drain Mode */
+#define GPIO_MODE_AF_PP 0x00000002u /*!< Alternate Function Push Pull Mode */
+#define GPIO_MODE_AF_OD 0x00000012u /*!< Alternate Function Open Drain Mode */
+#define GPIO_MODE_AF_INPUT GPIO_MODE_INPUT /*!< Alternate Function Input Mode */
+
+#define GPIO_MODE_ANALOG 0x00000003u /*!< Analog Mode */
+
+#define GPIO_MODE_IT_RISING 0x10110000u /*!< External Interrupt Mode with Rising edge trigger detection */
+#define GPIO_MODE_IT_FALLING 0x10210000u /*!< External Interrupt Mode with Falling edge trigger detection */
+#define GPIO_MODE_IT_RISING_FALLING 0x10310000u /*!< External Interrupt Mode with Rising/Falling edge trigger detection */
+
+#define GPIO_MODE_EVT_RISING 0x10120000u /*!< External Event Mode with Rising edge trigger detection */
+#define GPIO_MODE_EVT_FALLING 0x10220000u /*!< External Event Mode with Falling edge trigger detection */
+#define GPIO_MODE_EVT_RISING_FALLING 0x10320000u /*!< External Event Mode with Rising/Falling edge trigger detection */
+
+/**
+ * @}
+ */
+
+/** @defgroup GPIO_speed_define GPIO speed define
+ * @brief GPIO Output Maximum frequency
+ * @{
+ */
+#define GPIO_SPEED_FREQ_LOW (GPIO_CRL_MODE0_1) /*!< Low speed */
+#define GPIO_SPEED_FREQ_MEDIUM (GPIO_CRL_MODE0_0) /*!< Medium speed */
+#define GPIO_SPEED_FREQ_HIGH (GPIO_CRL_MODE0) /*!< High speed */
+
+/**
+ * @}
+ */
+
+/** @defgroup GPIO_pull_define GPIO pull define
+ * @brief GPIO Pull-Up or Pull-Down Activation
+ * @{
+ */
+#define GPIO_NOPULL 0x00000000u /*!< No Pull-up or Pull-down activation */
+#define GPIO_PULLUP 0x00000001u /*!< Pull-up activation */
+#define GPIO_PULLDOWN 0x00000002u /*!< Pull-down activation */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+/** @defgroup GPIO_Exported_Macros GPIO Exported Macros
+ * @{
+ */
+
+/**
+ * @brief Checks whether the specified EXTI line flag is set or not.
+ * @param __EXTI_LINE__: specifies the EXTI line flag to check.
+ * This parameter can be GPIO_PIN_x where x can be(0..15)
+ * @retval The new state of __EXTI_LINE__ (SET or RESET).
+ */
+#define __HAL_GPIO_EXTI_GET_FLAG(__EXTI_LINE__) (EXTI->PR & (__EXTI_LINE__))
+
+/**
+ * @brief Clears the EXTI's line pending flags.
+ * @param __EXTI_LINE__: specifies the EXTI lines flags to clear.
+ * This parameter can be any combination of GPIO_PIN_x where x can be (0..15)
+ * @retval None
+ */
+#define __HAL_GPIO_EXTI_CLEAR_FLAG(__EXTI_LINE__) (EXTI->PR = (__EXTI_LINE__))
+
+/**
+ * @brief Checks whether the specified EXTI line is asserted or not.
+ * @param __EXTI_LINE__: specifies the EXTI line to check.
+ * This parameter can be GPIO_PIN_x where x can be(0..15)
+ * @retval The new state of __EXTI_LINE__ (SET or RESET).
+ */
+#define __HAL_GPIO_EXTI_GET_IT(__EXTI_LINE__) (EXTI->PR & (__EXTI_LINE__))
+
+/**
+ * @brief Clears the EXTI's line pending bits.
+ * @param __EXTI_LINE__: specifies the EXTI lines to clear.
+ * This parameter can be any combination of GPIO_PIN_x where x can be (0..15)
+ * @retval None
+ */
+#define __HAL_GPIO_EXTI_CLEAR_IT(__EXTI_LINE__) (EXTI->PR = (__EXTI_LINE__))
+
+/**
+ * @brief Generates a Software interrupt on selected EXTI line.
+ * @param __EXTI_LINE__: specifies the EXTI line to check.
+ * This parameter can be GPIO_PIN_x where x can be(0..15)
+ * @retval None
+ */
+#define __HAL_GPIO_EXTI_GENERATE_SWIT(__EXTI_LINE__) (EXTI->SWIER |= (__EXTI_LINE__))
+/**
+ * @}
+ */
+
+/* Include GPIO HAL Extension module */
+#include "stm32f1xx_hal_gpio_ex.h"
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup GPIO_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup GPIO_Exported_Functions_Group1
+ * @{
+ */
+/* Initialization and de-initialization functions *****************************/
+void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init);
+void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin);
+/**
+ * @}
+ */
+
+/** @addtogroup GPIO_Exported_Functions_Group2
+ * @{
+ */
+/* IO operation functions *****************************************************/
+GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);
+void HAL_GPIO_WritePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState);
+void HAL_GPIO_TogglePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);
+HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);
+void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin);
+void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin);
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/* Private types -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private constants ---------------------------------------------------------*/
+/** @defgroup GPIO_Private_Constants GPIO Private Constants
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/* Private macros ------------------------------------------------------------*/
+/** @defgroup GPIO_Private_Macros GPIO Private Macros
+ * @{
+ */
+#define IS_GPIO_PIN_ACTION(ACTION) (((ACTION) == GPIO_PIN_RESET) || ((ACTION) == GPIO_PIN_SET))
+#define IS_GPIO_PIN(PIN) (((((uint32_t)PIN) & GPIO_PIN_MASK) != 0x00u) && ((((uint32_t)PIN) & ~GPIO_PIN_MASK) == 0x00u))
+#define IS_GPIO_MODE(MODE) \
+ (((MODE) == GPIO_MODE_INPUT) || ((MODE) == GPIO_MODE_OUTPUT_PP) || ((MODE) == GPIO_MODE_OUTPUT_OD) || ((MODE) == GPIO_MODE_AF_PP) || ((MODE) == GPIO_MODE_AF_OD) || ((MODE) == GPIO_MODE_IT_RISING) \
+ || ((MODE) == GPIO_MODE_IT_FALLING) || ((MODE) == GPIO_MODE_IT_RISING_FALLING) || ((MODE) == GPIO_MODE_EVT_RISING) || ((MODE) == GPIO_MODE_EVT_FALLING) || ((MODE) == GPIO_MODE_EVT_RISING_FALLING) \
+ || ((MODE) == GPIO_MODE_ANALOG))
+#define IS_GPIO_SPEED(SPEED) (((SPEED) == GPIO_SPEED_FREQ_LOW) || ((SPEED) == GPIO_SPEED_FREQ_MEDIUM) || ((SPEED) == GPIO_SPEED_FREQ_HIGH))
+#define IS_GPIO_PULL(PULL) (((PULL) == GPIO_NOPULL) || ((PULL) == GPIO_PULLUP) || ((PULL) == GPIO_PULLDOWN))
+/**
+ * @}
+ */
+
+/* Private functions ---------------------------------------------------------*/
+/** @defgroup GPIO_Private_Functions GPIO Private Functions
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* STM32F1xx_HAL_GPIO_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio_ex.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio_ex.h new file mode 100644 index 00000000..387ea593 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio_ex.h @@ -0,0 +1,881 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_gpio_ex.h
+ * @author MCD Application Team
+ * @brief Header file of GPIO HAL Extension module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef STM32F1xx_HAL_GPIO_EX_H
+#define STM32F1xx_HAL_GPIO_EX_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup GPIOEx GPIOEx
+ * @{
+ */
+/* Exported types ------------------------------------------------------------*/
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup GPIOEx_Exported_Constants GPIOEx Exported Constants
+ * @{
+ */
+
+/** @defgroup GPIOEx_EVENTOUT EVENTOUT Cortex Configuration
+ * @brief This section propose definition to use the Cortex EVENTOUT signal.
+ * @{
+ */
+
+/** @defgroup GPIOEx_EVENTOUT_PIN EVENTOUT Pin
+ * @{
+ */
+
+#define AFIO_EVENTOUT_PIN_0 AFIO_EVCR_PIN_PX0 /*!< EVENTOUT on pin 0 */
+#define AFIO_EVENTOUT_PIN_1 AFIO_EVCR_PIN_PX1 /*!< EVENTOUT on pin 1 */
+#define AFIO_EVENTOUT_PIN_2 AFIO_EVCR_PIN_PX2 /*!< EVENTOUT on pin 2 */
+#define AFIO_EVENTOUT_PIN_3 AFIO_EVCR_PIN_PX3 /*!< EVENTOUT on pin 3 */
+#define AFIO_EVENTOUT_PIN_4 AFIO_EVCR_PIN_PX4 /*!< EVENTOUT on pin 4 */
+#define AFIO_EVENTOUT_PIN_5 AFIO_EVCR_PIN_PX5 /*!< EVENTOUT on pin 5 */
+#define AFIO_EVENTOUT_PIN_6 AFIO_EVCR_PIN_PX6 /*!< EVENTOUT on pin 6 */
+#define AFIO_EVENTOUT_PIN_7 AFIO_EVCR_PIN_PX7 /*!< EVENTOUT on pin 7 */
+#define AFIO_EVENTOUT_PIN_8 AFIO_EVCR_PIN_PX8 /*!< EVENTOUT on pin 8 */
+#define AFIO_EVENTOUT_PIN_9 AFIO_EVCR_PIN_PX9 /*!< EVENTOUT on pin 9 */
+#define AFIO_EVENTOUT_PIN_10 AFIO_EVCR_PIN_PX10 /*!< EVENTOUT on pin 10 */
+#define AFIO_EVENTOUT_PIN_11 AFIO_EVCR_PIN_PX11 /*!< EVENTOUT on pin 11 */
+#define AFIO_EVENTOUT_PIN_12 AFIO_EVCR_PIN_PX12 /*!< EVENTOUT on pin 12 */
+#define AFIO_EVENTOUT_PIN_13 AFIO_EVCR_PIN_PX13 /*!< EVENTOUT on pin 13 */
+#define AFIO_EVENTOUT_PIN_14 AFIO_EVCR_PIN_PX14 /*!< EVENTOUT on pin 14 */
+#define AFIO_EVENTOUT_PIN_15 AFIO_EVCR_PIN_PX15 /*!< EVENTOUT on pin 15 */
+
+#define IS_AFIO_EVENTOUT_PIN(__PIN__) \
+ (((__PIN__) == AFIO_EVENTOUT_PIN_0) || ((__PIN__) == AFIO_EVENTOUT_PIN_1) || ((__PIN__) == AFIO_EVENTOUT_PIN_2) || ((__PIN__) == AFIO_EVENTOUT_PIN_3) || ((__PIN__) == AFIO_EVENTOUT_PIN_4) \
+ || ((__PIN__) == AFIO_EVENTOUT_PIN_5) || ((__PIN__) == AFIO_EVENTOUT_PIN_6) || ((__PIN__) == AFIO_EVENTOUT_PIN_7) || ((__PIN__) == AFIO_EVENTOUT_PIN_8) || ((__PIN__) == AFIO_EVENTOUT_PIN_9) \
+ || ((__PIN__) == AFIO_EVENTOUT_PIN_10) || ((__PIN__) == AFIO_EVENTOUT_PIN_11) || ((__PIN__) == AFIO_EVENTOUT_PIN_12) || ((__PIN__) == AFIO_EVENTOUT_PIN_13) || ((__PIN__) == AFIO_EVENTOUT_PIN_14) \
+ || ((__PIN__) == AFIO_EVENTOUT_PIN_15))
+/**
+ * @}
+ */
+
+/** @defgroup GPIOEx_EVENTOUT_PORT EVENTOUT Port
+ * @{
+ */
+
+#define AFIO_EVENTOUT_PORT_A AFIO_EVCR_PORT_PA /*!< EVENTOUT on port A */
+#define AFIO_EVENTOUT_PORT_B AFIO_EVCR_PORT_PB /*!< EVENTOUT on port B */
+#define AFIO_EVENTOUT_PORT_C AFIO_EVCR_PORT_PC /*!< EVENTOUT on port C */
+#define AFIO_EVENTOUT_PORT_D AFIO_EVCR_PORT_PD /*!< EVENTOUT on port D */
+#define AFIO_EVENTOUT_PORT_E AFIO_EVCR_PORT_PE /*!< EVENTOUT on port E */
+
+#define IS_AFIO_EVENTOUT_PORT(__PORT__) \
+ (((__PORT__) == AFIO_EVENTOUT_PORT_A) || ((__PORT__) == AFIO_EVENTOUT_PORT_B) || ((__PORT__) == AFIO_EVENTOUT_PORT_C) || ((__PORT__) == AFIO_EVENTOUT_PORT_D) || ((__PORT__) == AFIO_EVENTOUT_PORT_E))
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @defgroup GPIOEx_AFIO_AF_REMAPPING Alternate Function Remapping
+ * @brief This section propose definition to remap the alternate function to some other port/pins.
+ * @{
+ */
+
+/**
+ * @brief Enable the remapping of SPI1 alternate function NSS, SCK, MISO and MOSI.
+ * @note ENABLE: Remap (NSS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_SPI1_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_SPI1_REMAP)
+
+/**
+ * @brief Disable the remapping of SPI1 alternate function NSS, SCK, MISO and MOSI.
+ * @note DISABLE: No remap (NSS/PA4, SCK/PA5, MISO/PA6, MOSI/PA7)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_SPI1_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_SPI1_REMAP)
+
+/**
+ * @brief Enable the remapping of I2C1 alternate function SCL and SDA.
+ * @note ENABLE: Remap (SCL/PB8, SDA/PB9)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_I2C1_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_I2C1_REMAP)
+
+/**
+ * @brief Disable the remapping of I2C1 alternate function SCL and SDA.
+ * @note DISABLE: No remap (SCL/PB6, SDA/PB7)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_I2C1_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_I2C1_REMAP)
+
+/**
+ * @brief Enable the remapping of USART1 alternate function TX and RX.
+ * @note ENABLE: Remap (TX/PB6, RX/PB7)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_USART1_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_USART1_REMAP)
+
+/**
+ * @brief Disable the remapping of USART1 alternate function TX and RX.
+ * @note DISABLE: No remap (TX/PA9, RX/PA10)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_USART1_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_USART1_REMAP)
+
+/**
+ * @brief Enable the remapping of USART2 alternate function CTS, RTS, CK, TX and RX.
+ * @note ENABLE: Remap (CTS/PD3, RTS/PD4, TX/PD5, RX/PD6, CK/PD7)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_USART2_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_USART2_REMAP)
+
+/**
+ * @brief Disable the remapping of USART2 alternate function CTS, RTS, CK, TX and RX.
+ * @note DISABLE: No remap (CTS/PA0, RTS/PA1, TX/PA2, RX/PA3, CK/PA4)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_USART2_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_USART2_REMAP)
+
+/**
+ * @brief Enable the remapping of USART3 alternate function CTS, RTS, CK, TX and RX.
+ * @note ENABLE: Full remap (TX/PD8, RX/PD9, CK/PD10, CTS/PD11, RTS/PD12)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_USART3_ENABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_USART3_REMAP_FULLREMAP, AFIO_MAPR_USART3_REMAP_FULLREMAP)
+
+/**
+ * @brief Enable the remapping of USART3 alternate function CTS, RTS, CK, TX and RX.
+ * @note PARTIAL: Partial remap (TX/PC10, RX/PC11, CK/PC12, CTS/PB13, RTS/PB14)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_USART3_PARTIAL() AFIO_REMAP_PARTIAL(AFIO_MAPR_USART3_REMAP_PARTIALREMAP, AFIO_MAPR_USART3_REMAP_FULLREMAP)
+
+/**
+ * @brief Disable the remapping of USART3 alternate function CTS, RTS, CK, TX and RX.
+ * @note DISABLE: No remap (TX/PB10, RX/PB11, CK/PB12, CTS/PB13, RTS/PB14)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_USART3_DISABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_USART3_REMAP_NOREMAP, AFIO_MAPR_USART3_REMAP_FULLREMAP)
+
+/**
+ * @brief Enable the remapping of TIM1 alternate function channels 1 to 4, 1N to 3N, external trigger (ETR) and Break input (BKIN)
+ * @note ENABLE: Full remap (ETR/PE7, CH1/PE9, CH2/PE11, CH3/PE13, CH4/PE14, BKIN/PE15, CH1N/PE8, CH2N/PE10, CH3N/PE12)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM1_ENABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM1_REMAP_FULLREMAP, AFIO_MAPR_TIM1_REMAP_FULLREMAP)
+
+/**
+ * @brief Enable the remapping of TIM1 alternate function channels 1 to 4, 1N to 3N, external trigger (ETR) and Break input (BKIN)
+ * @note PARTIAL: Partial remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PA6, CH1N/PA7, CH2N/PB0, CH3N/PB1)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM1_PARTIAL() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM1_REMAP_PARTIALREMAP, AFIO_MAPR_TIM1_REMAP_FULLREMAP)
+
+/**
+ * @brief Disable the remapping of TIM1 alternate function channels 1 to 4, 1N to 3N, external trigger (ETR) and Break input (BKIN)
+ * @note DISABLE: No remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PB12, CH1N/PB13, CH2N/PB14, CH3N/PB15)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM1_DISABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM1_REMAP_NOREMAP, AFIO_MAPR_TIM1_REMAP_FULLREMAP)
+
+/**
+ * @brief Enable the remapping of TIM2 alternate function channels 1 to 4 and external trigger (ETR)
+ * @note ENABLE: Full remap (CH1/ETR/PA15, CH2/PB3, CH3/PB10, CH4/PB11)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM2_ENABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM2_REMAP_FULLREMAP, AFIO_MAPR_TIM2_REMAP_FULLREMAP)
+
+/**
+ * @brief Enable the remapping of TIM2 alternate function channels 1 to 4 and external trigger (ETR)
+ * @note PARTIAL_2: Partial remap (CH1/ETR/PA0, CH2/PA1, CH3/PB10, CH4/PB11)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM2_PARTIAL_2() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM2_REMAP_PARTIALREMAP2, AFIO_MAPR_TIM2_REMAP_FULLREMAP)
+
+/**
+ * @brief Enable the remapping of TIM2 alternate function channels 1 to 4 and external trigger (ETR)
+ * @note PARTIAL_1: Partial remap (CH1/ETR/PA15, CH2/PB3, CH3/PA2, CH4/PA3)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM2_PARTIAL_1() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM2_REMAP_PARTIALREMAP1, AFIO_MAPR_TIM2_REMAP_FULLREMAP)
+
+/**
+ * @brief Disable the remapping of TIM2 alternate function channels 1 to 4 and external trigger (ETR)
+ * @note DISABLE: No remap (CH1/ETR/PA0, CH2/PA1, CH3/PA2, CH4/PA3)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM2_DISABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM2_REMAP_NOREMAP, AFIO_MAPR_TIM2_REMAP_FULLREMAP)
+
+/**
+ * @brief Enable the remapping of TIM3 alternate function channels 1 to 4
+ * @note ENABLE: Full remap (CH1/PC6, CH2/PC7, CH3/PC8, CH4/PC9)
+ * @note TIM3_ETR on PE0 is not re-mapped.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM3_ENABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM3_REMAP_FULLREMAP, AFIO_MAPR_TIM3_REMAP_FULLREMAP)
+
+/**
+ * @brief Enable the remapping of TIM3 alternate function channels 1 to 4
+ * @note PARTIAL: Partial remap (CH1/PB4, CH2/PB5, CH3/PB0, CH4/PB1)
+ * @note TIM3_ETR on PE0 is not re-mapped.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM3_PARTIAL() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM3_REMAP_PARTIALREMAP, AFIO_MAPR_TIM3_REMAP_FULLREMAP)
+
+/**
+ * @brief Disable the remapping of TIM3 alternate function channels 1 to 4
+ * @note DISABLE: No remap (CH1/PA6, CH2/PA7, CH3/PB0, CH4/PB1)
+ * @note TIM3_ETR on PE0 is not re-mapped.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM3_DISABLE() AFIO_REMAP_PARTIAL(AFIO_MAPR_TIM3_REMAP_NOREMAP, AFIO_MAPR_TIM3_REMAP_FULLREMAP)
+
+/**
+ * @brief Enable the remapping of TIM4 alternate function channels 1 to 4.
+ * @note ENABLE: Full remap (TIM4_CH1/PD12, TIM4_CH2/PD13, TIM4_CH3/PD14, TIM4_CH4/PD15)
+ * @note TIM4_ETR on PE0 is not re-mapped.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM4_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_TIM4_REMAP)
+
+/**
+ * @brief Disable the remapping of TIM4 alternate function channels 1 to 4.
+ * @note DISABLE: No remap (TIM4_CH1/PB6, TIM4_CH2/PB7, TIM4_CH3/PB8, TIM4_CH4/PB9)
+ * @note TIM4_ETR on PE0 is not re-mapped.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM4_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_TIM4_REMAP)
+
+#if defined(AFIO_MAPR_CAN_REMAP_REMAP1)
+
+/**
+ * @brief Enable or disable the remapping of CAN alternate function CAN_RX and CAN_TX in devices with a single CAN interface.
+ * @note CASE 1: CAN_RX mapped to PA11, CAN_TX mapped to PA12
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_CAN1_1() AFIO_REMAP_PARTIAL(AFIO_MAPR_CAN_REMAP_REMAP1, AFIO_MAPR_CAN_REMAP)
+
+/**
+ * @brief Enable or disable the remapping of CAN alternate function CAN_RX and CAN_TX in devices with a single CAN interface.
+ * @note CASE 2: CAN_RX mapped to PB8, CAN_TX mapped to PB9 (not available on 36-pin package)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_CAN1_2() AFIO_REMAP_PARTIAL(AFIO_MAPR_CAN_REMAP_REMAP2, AFIO_MAPR_CAN_REMAP)
+
+/**
+ * @brief Enable or disable the remapping of CAN alternate function CAN_RX and CAN_TX in devices with a single CAN interface.
+ * @note CASE 3: CAN_RX mapped to PD0, CAN_TX mapped to PD1
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_CAN1_3() AFIO_REMAP_PARTIAL(AFIO_MAPR_CAN_REMAP_REMAP3, AFIO_MAPR_CAN_REMAP)
+
+#endif
+
+/**
+ * @brief Enable the remapping of PD0 and PD1. When the HSE oscillator is not used
+ * (application running on internal 8 MHz RC) PD0 and PD1 can be mapped on OSC_IN and
+ * OSC_OUT. This is available only on 36, 48 and 64 pins packages (PD0 and PD1 are available
+ * on 100-pin and 144-pin packages, no need for remapping).
+ * @note ENABLE: PD0 remapped on OSC_IN, PD1 remapped on OSC_OUT.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_PD01_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_PD01_REMAP)
+
+/**
+ * @brief Disable the remapping of PD0 and PD1. When the HSE oscillator is not used
+ * (application running on internal 8 MHz RC) PD0 and PD1 can be mapped on OSC_IN and
+ * OSC_OUT. This is available only on 36, 48 and 64 pins packages (PD0 and PD1 are available
+ * on 100-pin and 144-pin packages, no need for remapping).
+ * @note DISABLE: No remapping of PD0 and PD1
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_PD01_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_PD01_REMAP)
+
+#if defined(AFIO_MAPR_TIM5CH4_IREMAP)
+/**
+ * @brief Enable the remapping of TIM5CH4.
+ * @note ENABLE: LSI internal clock is connected to TIM5_CH4 input for calibration purpose.
+ * @note This function is available only in high density value line devices.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM5CH4_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_TIM5CH4_IREMAP)
+
+/**
+ * @brief Disable the remapping of TIM5CH4.
+ * @note DISABLE: TIM5_CH4 is connected to PA3
+ * @note This function is available only in high density value line devices.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM5CH4_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_TIM5CH4_IREMAP)
+#endif
+
+#if defined(AFIO_MAPR_ETH_REMAP)
+/**
+ * @brief Enable the remapping of Ethernet MAC connections with the PHY.
+ * @note ENABLE: Remap (RX_DV-CRS_DV/PD8, RXD0/PD9, RXD1/PD10, RXD2/PD11, RXD3/PD12)
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_ETH_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_ETH_REMAP)
+
+/**
+ * @brief Disable the remapping of Ethernet MAC connections with the PHY.
+ * @note DISABLE: No remap (RX_DV-CRS_DV/PA7, RXD0/PC4, RXD1/PC5, RXD2/PB0, RXD3/PB1)
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_ETH_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_ETH_REMAP)
+#endif
+
+#if defined(AFIO_MAPR_CAN2_REMAP)
+
+/**
+ * @brief Enable the remapping of CAN2 alternate function CAN2_RX and CAN2_TX.
+ * @note ENABLE: Remap (CAN2_RX/PB5, CAN2_TX/PB6)
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_CAN2_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_CAN2_REMAP)
+
+/**
+ * @brief Disable the remapping of CAN2 alternate function CAN2_RX and CAN2_TX.
+ * @note DISABLE: No remap (CAN2_RX/PB12, CAN2_TX/PB13)
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_CAN2_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_CAN2_REMAP)
+#endif
+
+#if defined(AFIO_MAPR_MII_RMII_SEL)
+/**
+ * @brief Configures the Ethernet MAC internally for use with an external MII or RMII PHY.
+ * @note ETH_RMII: Configure Ethernet MAC for connection with an RMII PHY
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_ETH_RMII() AFIO_REMAP_ENABLE(AFIO_MAPR_MII_RMII_SEL)
+
+/**
+ * @brief Configures the Ethernet MAC internally for use with an external MII or RMII PHY.
+ * @note ETH_MII: Configure Ethernet MAC for connection with an MII PHY
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_ETH_MII() AFIO_REMAP_DISABLE(AFIO_MAPR_MII_RMII_SEL)
+#endif
+
+/**
+ * @brief Enable the remapping of ADC1_ETRGINJ (ADC 1 External trigger injected conversion).
+ * @note ENABLE: ADC1 External Event injected conversion is connected to TIM8 Channel4.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_ADC1_ETRGINJ_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_ADC1_ETRGINJ_REMAP)
+
+/**
+ * @brief Disable the remapping of ADC1_ETRGINJ (ADC 1 External trigger injected conversion).
+ * @note DISABLE: ADC1 External trigger injected conversion is connected to EXTI15
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_ADC1_ETRGINJ_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_ADC1_ETRGINJ_REMAP)
+
+/**
+ * @brief Enable the remapping of ADC1_ETRGREG (ADC 1 External trigger regular conversion).
+ * @note ENABLE: ADC1 External Event regular conversion is connected to TIM8 TRG0.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_ADC1_ETRGREG_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_ADC1_ETRGREG_REMAP)
+
+/**
+ * @brief Disable the remapping of ADC1_ETRGREG (ADC 1 External trigger regular conversion).
+ * @note DISABLE: ADC1 External trigger regular conversion is connected to EXTI11
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_ADC1_ETRGREG_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_ADC1_ETRGREG_REMAP)
+
+#if defined(AFIO_MAPR_ADC2_ETRGINJ_REMAP)
+
+/**
+ * @brief Enable the remapping of ADC2_ETRGREG (ADC 2 External trigger injected conversion).
+ * @note ENABLE: ADC2 External Event injected conversion is connected to TIM8 Channel4.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_ADC2_ETRGINJ_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_ADC2_ETRGINJ_REMAP)
+
+/**
+ * @brief Disable the remapping of ADC2_ETRGREG (ADC 2 External trigger injected conversion).
+ * @note DISABLE: ADC2 External trigger injected conversion is connected to EXTI15
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_ADC2_ETRGINJ_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_ADC2_ETRGINJ_REMAP)
+#endif
+
+#if defined(AFIO_MAPR_ADC2_ETRGREG_REMAP)
+
+/**
+ * @brief Enable the remapping of ADC2_ETRGREG (ADC 2 External trigger regular conversion).
+ * @note ENABLE: ADC2 External Event regular conversion is connected to TIM8 TRG0.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_ADC2_ETRGREG_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_ADC2_ETRGREG_REMAP)
+
+/**
+ * @brief Disable the remapping of ADC2_ETRGREG (ADC 2 External trigger regular conversion).
+ * @note DISABLE: ADC2 External trigger regular conversion is connected to EXTI11
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_ADC2_ETRGREG_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_ADC2_ETRGREG_REMAP)
+#endif
+
+/**
+ * @brief Enable the Serial wire JTAG configuration
+ * @note ENABLE: Full SWJ (JTAG-DP + SW-DP): Reset State
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_SWJ_ENABLE() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_RESET)
+
+/**
+ * @brief Enable the Serial wire JTAG configuration
+ * @note NONJTRST: Full SWJ (JTAG-DP + SW-DP) but without NJTRST
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_SWJ_NONJTRST() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_NOJNTRST)
+
+/**
+ * @brief Enable the Serial wire JTAG configuration
+ * @note NOJTAG: JTAG-DP Disabled and SW-DP Enabled
+ * @retval None
+ */
+
+#define __HAL_AFIO_REMAP_SWJ_NOJTAG() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_JTAGDISABLE)
+
+/**
+ * @brief Disable the Serial wire JTAG configuration
+ * @note DISABLE: JTAG-DP Disabled and SW-DP Disabled
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_SWJ_DISABLE() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_DISABLE)
+
+#if defined(AFIO_MAPR_SPI3_REMAP)
+
+/**
+ * @brief Enable the remapping of SPI3 alternate functions SPI3_NSS/I2S3_WS, SPI3_SCK/I2S3_CK, SPI3_MISO, SPI3_MOSI/I2S3_SD.
+ * @note ENABLE: Remap (SPI3_NSS-I2S3_WS/PA4, SPI3_SCK-I2S3_CK/PC10, SPI3_MISO/PC11, SPI3_MOSI-I2S3_SD/PC12)
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_SPI3_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_SPI3_REMAP)
+
+/**
+ * @brief Disable the remapping of SPI3 alternate functions SPI3_NSS/I2S3_WS, SPI3_SCK/I2S3_CK, SPI3_MISO, SPI3_MOSI/I2S3_SD.
+ * @note DISABLE: No remap (SPI3_NSS-I2S3_WS/PA15, SPI3_SCK-I2S3_CK/PB3, SPI3_MISO/PB4, SPI3_MOSI-I2S3_SD/PB5).
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_SPI3_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_SPI3_REMAP)
+#endif
+
+#if defined(AFIO_MAPR_TIM2ITR1_IREMAP)
+
+/**
+ * @brief Control of TIM2_ITR1 internal mapping.
+ * @note TO_USB: Connect USB OTG SOF (Start of Frame) output to TIM2_ITR1 for calibration purposes.
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_TIM2ITR1_TO_USB() AFIO_REMAP_ENABLE(AFIO_MAPR_TIM2ITR1_IREMAP)
+
+/**
+ * @brief Control of TIM2_ITR1 internal mapping.
+ * @note TO_ETH: Connect TIM2_ITR1 internally to the Ethernet PTP output for calibration purposes.
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_TIM2ITR1_TO_ETH() AFIO_REMAP_DISABLE(AFIO_MAPR_TIM2ITR1_IREMAP)
+#endif
+
+#if defined(AFIO_MAPR_PTP_PPS_REMAP)
+
+/**
+ * @brief Enable the remapping of ADC2_ETRGREG (ADC 2 External trigger regular conversion).
+ * @note ENABLE: PTP_PPS is output on PB5 pin.
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_ETH_PTP_PPS_ENABLE() AFIO_REMAP_ENABLE(AFIO_MAPR_PTP_PPS_REMAP)
+
+/**
+ * @brief Disable the remapping of ADC2_ETRGREG (ADC 2 External trigger regular conversion).
+ * @note DISABLE: PTP_PPS not output on PB5 pin.
+ * @note This bit is available only in connectivity line devices and is reserved otherwise.
+ * @retval None
+ */
+#define __HAL_AFIO_ETH_PTP_PPS_DISABLE() AFIO_REMAP_DISABLE(AFIO_MAPR_PTP_PPS_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_TIM9_REMAP)
+
+/**
+ * @brief Enable the remapping of TIM9_CH1 and TIM9_CH2.
+ * @note ENABLE: Remap (TIM9_CH1 on PE5 and TIM9_CH2 on PE6).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM9_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM9_REMAP)
+
+/**
+ * @brief Disable the remapping of TIM9_CH1 and TIM9_CH2.
+ * @note DISABLE: No remap (TIM9_CH1 on PA2 and TIM9_CH2 on PA3).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM9_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM9_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_TIM10_REMAP)
+
+/**
+ * @brief Enable the remapping of TIM10_CH1.
+ * @note ENABLE: Remap (TIM10_CH1 on PF6).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM10_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM10_REMAP)
+
+/**
+ * @brief Disable the remapping of TIM10_CH1.
+ * @note DISABLE: No remap (TIM10_CH1 on PB8).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM10_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM10_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_TIM11_REMAP)
+/**
+ * @brief Enable the remapping of TIM11_CH1.
+ * @note ENABLE: Remap (TIM11_CH1 on PF7).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM11_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM11_REMAP)
+
+/**
+ * @brief Disable the remapping of TIM11_CH1.
+ * @note DISABLE: No remap (TIM11_CH1 on PB9).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM11_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM11_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_TIM13_REMAP)
+
+/**
+ * @brief Enable the remapping of TIM13_CH1.
+ * @note ENABLE: Remap STM32F100:(TIM13_CH1 on PF8). Others:(TIM13_CH1 on PB0).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM13_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM13_REMAP)
+
+/**
+ * @brief Disable the remapping of TIM13_CH1.
+ * @note DISABLE: No remap STM32F100:(TIM13_CH1 on PA6). Others:(TIM13_CH1 on PC8).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM13_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM13_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_TIM14_REMAP)
+
+/**
+ * @brief Enable the remapping of TIM14_CH1.
+ * @note ENABLE: Remap STM32F100:(TIM14_CH1 on PB1). Others:(TIM14_CH1 on PF9).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM14_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM14_REMAP)
+
+/**
+ * @brief Disable the remapping of TIM14_CH1.
+ * @note DISABLE: No remap STM32F100:(TIM14_CH1 on PC9). Others:(TIM14_CH1 on PA7).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM14_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM14_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_FSMC_NADV_REMAP)
+
+/**
+ * @brief Controls the use of the optional FSMC_NADV signal.
+ * @note DISCONNECTED: The NADV signal is not connected. The I/O pin can be used by another peripheral.
+ * @retval None
+ */
+#define __HAL_AFIO_FSMCNADV_DISCONNECTED() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_FSMC_NADV_REMAP)
+
+/**
+ * @brief Controls the use of the optional FSMC_NADV signal.
+ * @note CONNECTED: The NADV signal is connected to the output (default).
+ * @retval None
+ */
+#define __HAL_AFIO_FSMCNADV_CONNECTED() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_FSMC_NADV_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_TIM15_REMAP)
+
+/**
+ * @brief Enable the remapping of TIM15_CH1 and TIM15_CH2.
+ * @note ENABLE: Remap (TIM15_CH1 on PB14 and TIM15_CH2 on PB15).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM15_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM15_REMAP)
+
+/**
+ * @brief Disable the remapping of TIM15_CH1 and TIM15_CH2.
+ * @note DISABLE: No remap (TIM15_CH1 on PA2 and TIM15_CH2 on PA3).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM15_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM15_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_TIM16_REMAP)
+
+/**
+ * @brief Enable the remapping of TIM16_CH1.
+ * @note ENABLE: Remap (TIM16_CH1 on PA6).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM16_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM16_REMAP)
+
+/**
+ * @brief Disable the remapping of TIM16_CH1.
+ * @note DISABLE: No remap (TIM16_CH1 on PB8).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM16_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM16_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_TIM17_REMAP)
+
+/**
+ * @brief Enable the remapping of TIM17_CH1.
+ * @note ENABLE: Remap (TIM17_CH1 on PA7).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM17_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM17_REMAP)
+
+/**
+ * @brief Disable the remapping of TIM17_CH1.
+ * @note DISABLE: No remap (TIM17_CH1 on PB9).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM17_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM17_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_CEC_REMAP)
+
+/**
+ * @brief Enable the remapping of CEC.
+ * @note ENABLE: Remap (CEC on PB10).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_CEC_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_CEC_REMAP)
+
+/**
+ * @brief Disable the remapping of CEC.
+ * @note DISABLE: No remap (CEC on PB8).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_CEC_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_CEC_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_TIM1_DMA_REMAP)
+
+/**
+ * @brief Controls the mapping of the TIM1_CH1 TIM1_CH2 DMA requests onto the DMA1 channels.
+ * @note ENABLE: Remap (TIM1_CH1 DMA request/DMA1 Channel6, TIM1_CH2 DMA request/DMA1 Channel6)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM1DMA_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM1_DMA_REMAP)
+
+/**
+ * @brief Controls the mapping of the TIM1_CH1 TIM1_CH2 DMA requests onto the DMA1 channels.
+ * @note DISABLE: No remap (TIM1_CH1 DMA request/DMA1 Channel2, TIM1_CH2 DMA request/DMA1 Channel3).
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM1DMA_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM1_DMA_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_TIM67_DAC_DMA_REMAP)
+
+/**
+ * @brief Controls the mapping of the TIM6_DAC1 and TIM7_DAC2 DMA requests onto the DMA1 channels.
+ * @note ENABLE: Remap (TIM6_DAC1 DMA request/DMA1 Channel3, TIM7_DAC2 DMA request/DMA1 Channel4)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM67DACDMA_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM67_DAC_DMA_REMAP)
+
+/**
+ * @brief Controls the mapping of the TIM6_DAC1 and TIM7_DAC2 DMA requests onto the DMA1 channels.
+ * @note DISABLE: No remap (TIM6_DAC1 DMA request/DMA2 Channel3, TIM7_DAC2 DMA request/DMA2 Channel4)
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM67DACDMA_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM67_DAC_DMA_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_TIM12_REMAP)
+
+/**
+ * @brief Enable the remapping of TIM12_CH1 and TIM12_CH2.
+ * @note ENABLE: Remap (TIM12_CH1 on PB12 and TIM12_CH2 on PB13).
+ * @note This bit is available only in high density value line devices.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM12_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM12_REMAP)
+
+/**
+ * @brief Disable the remapping of TIM12_CH1 and TIM12_CH2.
+ * @note DISABLE: No remap (TIM12_CH1 on PC4 and TIM12_CH2 on PC5).
+ * @note This bit is available only in high density value line devices.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_TIM12_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_TIM12_REMAP)
+#endif
+
+#if defined(AFIO_MAPR2_MISC_REMAP)
+
+/**
+ * @brief Miscellaneous features remapping.
+ * This bit is set and cleared by software. It controls miscellaneous features.
+ * The DMA2 channel 5 interrupt position in the vector table.
+ * The timer selection for DAC trigger 3 (TSEL[2:0] = 011, for more details refer to the DAC_CR register).
+ * @note ENABLE: DMA2 channel 5 interrupt is mapped separately at position 60 and TIM15 TRGO event is
+ * selected as DAC Trigger 3, TIM15 triggers TIM1/3.
+ * @note This bit is available only in high density value line devices.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_MISC_ENABLE() SET_BIT(AFIO->MAPR2, AFIO_MAPR2_MISC_REMAP)
+
+/**
+ * @brief Miscellaneous features remapping.
+ * This bit is set and cleared by software. It controls miscellaneous features.
+ * The DMA2 channel 5 interrupt position in the vector table.
+ * The timer selection for DAC trigger 3 (TSEL[2:0] = 011, for more details refer to the DAC_CR register).
+ * @note DISABLE: DMA2 channel 5 interrupt is mapped with DMA2 channel 4 at position 59, TIM5 TRGO
+ * event is selected as DAC Trigger 3, TIM5 triggers TIM1/3.
+ * @note This bit is available only in high density value line devices.
+ * @retval None
+ */
+#define __HAL_AFIO_REMAP_MISC_DISABLE() CLEAR_BIT(AFIO->MAPR2, AFIO_MAPR2_MISC_REMAP)
+#endif
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @defgroup GPIOEx_Private_Macros GPIOEx Private Macros
+ * @{
+ */
+#if defined(STM32F101x6) || defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6)
+#define GPIO_GET_INDEX(__GPIOx__) (((__GPIOx__) == (GPIOA)) ? 0uL : ((__GPIOx__) == (GPIOB)) ? 1uL : ((__GPIOx__) == (GPIOC)) ? 2uL : 3uL)
+#elif defined(STM32F100xB) || defined(STM32F101xB) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC)
+#define GPIO_GET_INDEX(__GPIOx__) (((__GPIOx__) == (GPIOA)) ? 0uL : ((__GPIOx__) == (GPIOB)) ? 1uL : ((__GPIOx__) == (GPIOC)) ? 2uL : ((__GPIOx__) == (GPIOD)) ? 3uL : 4uL)
+#elif defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
+#define GPIO_GET_INDEX(__GPIOx__) \
+ (((__GPIOx__) == (GPIOA)) \
+ ? 0uL \
+ : ((__GPIOx__) == (GPIOB)) ? 1uL : ((__GPIOx__) == (GPIOC)) ? 2uL : ((__GPIOx__) == (GPIOD)) ? 3uL : ((__GPIOx__) == (GPIOE)) ? 4uL : ((__GPIOx__) == (GPIOF)) ? 5uL : 6uL)
+#endif
+
+#define AFIO_REMAP_ENABLE(REMAP_PIN) \
+ do { \
+ uint32_t tmpreg = AFIO->MAPR; \
+ tmpreg |= AFIO_MAPR_SWJ_CFG; \
+ tmpreg |= REMAP_PIN; \
+ AFIO->MAPR = tmpreg; \
+ } while (0u)
+
+#define AFIO_REMAP_DISABLE(REMAP_PIN) \
+ do { \
+ uint32_t tmpreg = AFIO->MAPR; \
+ tmpreg |= AFIO_MAPR_SWJ_CFG; \
+ tmpreg &= ~REMAP_PIN; \
+ AFIO->MAPR = tmpreg; \
+ } while (0u)
+
+#define AFIO_REMAP_PARTIAL(REMAP_PIN, REMAP_PIN_MASK) \
+ do { \
+ uint32_t tmpreg = AFIO->MAPR; \
+ tmpreg &= ~REMAP_PIN_MASK; \
+ tmpreg |= AFIO_MAPR_SWJ_CFG; \
+ tmpreg |= REMAP_PIN; \
+ AFIO->MAPR = tmpreg; \
+ } while (0u)
+
+#define AFIO_DBGAFR_CONFIG(DBGAFR_SWJCFG) \
+ do { \
+ uint32_t tmpreg = AFIO->MAPR; \
+ tmpreg &= ~AFIO_MAPR_SWJ_CFG_Msk; \
+ tmpreg |= DBGAFR_SWJCFG; \
+ AFIO->MAPR = tmpreg; \
+ } while (0u)
+
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+
+/** @addtogroup GPIOEx_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup GPIOEx_Exported_Functions_Group1
+ * @{
+ */
+void HAL_GPIOEx_ConfigEventout(uint32_t GPIO_PortSource, uint32_t GPIO_PinSource);
+void HAL_GPIOEx_EnableEventout(void);
+void HAL_GPIOEx_DisableEventout(void);
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* STM32F1xx_HAL_GPIO_EX_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_i2c.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_i2c.h new file mode 100644 index 00000000..576cf8e9 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_i2c.h @@ -0,0 +1,727 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_i2c.h
+ * @author MCD Application Team
+ * @brief Header file of I2C HAL module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_I2C_H
+#define __STM32F1xx_HAL_I2C_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup I2C
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+/** @defgroup I2C_Exported_Types I2C Exported Types
+ * @{
+ */
+
+/** @defgroup I2C_Configuration_Structure_definition I2C Configuration Structure definition
+ * @brief I2C Configuration Structure definition
+ * @{
+ */
+typedef struct {
+ uint32_t ClockSpeed; /*!< Specifies the clock frequency.
+ This parameter must be set to a value lower than 400kHz */
+
+ uint32_t DutyCycle; /*!< Specifies the I2C fast mode duty cycle.
+ This parameter can be a value of @ref I2C_duty_cycle_in_fast_mode */
+
+ uint32_t OwnAddress1; /*!< Specifies the first device own address.
+ This parameter can be a 7-bit or 10-bit address. */
+
+ uint32_t AddressingMode; /*!< Specifies if 7-bit or 10-bit addressing mode is selected.
+ This parameter can be a value of @ref I2C_addressing_mode */
+
+ uint32_t DualAddressMode; /*!< Specifies if dual addressing mode is selected.
+ This parameter can be a value of @ref I2C_dual_addressing_mode */
+
+ uint32_t OwnAddress2; /*!< Specifies the second device own address if dual addressing mode is selected
+ This parameter can be a 7-bit address. */
+
+ uint32_t GeneralCallMode; /*!< Specifies if general call mode is selected.
+ This parameter can be a value of @ref I2C_general_call_addressing_mode */
+
+ uint32_t NoStretchMode; /*!< Specifies if nostretch mode is selected.
+ This parameter can be a value of @ref I2C_nostretch_mode */
+
+} I2C_InitTypeDef;
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_state_structure_definition HAL state structure definition
+ * @brief HAL State structure definition
+ * @note HAL I2C State value coding follow below described bitmap :
+ * b7-b6 Error information
+ * 00 : No Error
+ * 01 : Abort (Abort user request on going)
+ * 10 : Timeout
+ * 11 : Error
+ * b5 Peripheral initilisation status
+ * 0 : Reset (Peripheral not initialized)
+ * 1 : Init done (Peripheral initialized and ready to use. HAL I2C Init function called)
+ * b4 (not used)
+ * x : Should be set to 0
+ * b3
+ * 0 : Ready or Busy (No Listen mode ongoing)
+ * 1 : Listen (Peripheral in Address Listen Mode)
+ * b2 Intrinsic process state
+ * 0 : Ready
+ * 1 : Busy (Peripheral busy with some configuration or internal operations)
+ * b1 Rx state
+ * 0 : Ready (no Rx operation ongoing)
+ * 1 : Busy (Rx operation ongoing)
+ * b0 Tx state
+ * 0 : Ready (no Tx operation ongoing)
+ * 1 : Busy (Tx operation ongoing)
+ * @{
+ */
+typedef enum {
+ HAL_I2C_STATE_RESET = 0x00U, /*!< Peripheral is not yet Initialized */
+ HAL_I2C_STATE_READY = 0x20U, /*!< Peripheral Initialized and ready for use */
+ HAL_I2C_STATE_BUSY = 0x24U, /*!< An internal process is ongoing */
+ HAL_I2C_STATE_BUSY_TX = 0x21U, /*!< Data Transmission process is ongoing */
+ HAL_I2C_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing */
+ HAL_I2C_STATE_LISTEN = 0x28U, /*!< Address Listen Mode is ongoing */
+ HAL_I2C_STATE_BUSY_TX_LISTEN = 0x29U, /*!< Address Listen Mode and Data Transmission
+ process is ongoing */
+ HAL_I2C_STATE_BUSY_RX_LISTEN = 0x2AU, /*!< Address Listen Mode and Data Reception
+ process is ongoing */
+ HAL_I2C_STATE_ABORT = 0x60U, /*!< Abort user request ongoing */
+ HAL_I2C_STATE_TIMEOUT = 0xA0U, /*!< Timeout state */
+ HAL_I2C_STATE_ERROR = 0xE0U /*!< Error */
+
+} HAL_I2C_StateTypeDef;
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_mode_structure_definition HAL mode structure definition
+ * @brief HAL Mode structure definition
+ * @note HAL I2C Mode value coding follow below described bitmap :\n
+ * b7 (not used)\n
+ * x : Should be set to 0\n
+ * b6\n
+ * 0 : None\n
+ * 1 : Memory (HAL I2C communication is in Memory Mode)\n
+ * b5\n
+ * 0 : None\n
+ * 1 : Slave (HAL I2C communication is in Slave Mode)\n
+ * b4\n
+ * 0 : None\n
+ * 1 : Master (HAL I2C communication is in Master Mode)\n
+ * b3-b2-b1-b0 (not used)\n
+ * xxxx : Should be set to 0000
+ * @{
+ */
+typedef enum {
+ HAL_I2C_MODE_NONE = 0x00U, /*!< No I2C communication on going */
+ HAL_I2C_MODE_MASTER = 0x10U, /*!< I2C communication is in Master Mode */
+ HAL_I2C_MODE_SLAVE = 0x20U, /*!< I2C communication is in Slave Mode */
+ HAL_I2C_MODE_MEM = 0x40U /*!< I2C communication is in Memory Mode */
+
+} HAL_I2C_ModeTypeDef;
+
+/**
+ * @}
+ */
+
+/** @defgroup I2C_Error_Code_definition I2C Error Code definition
+ * @brief I2C Error Code definition
+ * @{
+ */
+#define HAL_I2C_ERROR_NONE 0x00000000U /*!< No error */
+#define HAL_I2C_ERROR_BERR 0x00000001U /*!< BERR error */
+#define HAL_I2C_ERROR_ARLO 0x00000002U /*!< ARLO error */
+#define HAL_I2C_ERROR_AF 0x00000004U /*!< AF error */
+#define HAL_I2C_ERROR_OVR 0x00000008U /*!< OVR error */
+#define HAL_I2C_ERROR_DMA 0x00000010U /*!< DMA transfer error */
+#define HAL_I2C_ERROR_TIMEOUT 0x00000020U /*!< Timeout Error */
+#define HAL_I2C_ERROR_SIZE 0x00000040U /*!< Size Management error */
+#define HAL_I2C_ERROR_DMA_PARAM 0x00000080U /*!< DMA Parameter Error */
+#define HAL_I2C_WRONG_START 0x00000200U /*!< Wrong start Error */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+#define HAL_I2C_ERROR_INVALID_CALLBACK 0x00000100U /*!< Invalid Callback error */
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+/**
+ * @}
+ */
+
+/** @defgroup I2C_handle_Structure_definition I2C handle Structure definition
+ * @brief I2C handle Structure definition
+ * @{
+ */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+typedef struct __I2C_HandleTypeDef
+#else
+typedef struct
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+{
+ I2C_TypeDef *Instance; /*!< I2C registers base address */
+
+ I2C_InitTypeDef Init; /*!< I2C communication parameters */
+
+ uint8_t *pBuffPtr; /*!< Pointer to I2C transfer buffer */
+
+ uint16_t XferSize; /*!< I2C transfer size */
+
+ __IO uint16_t XferCount; /*!< I2C transfer counter */
+
+ __IO uint32_t XferOptions; /*!< I2C transfer options */
+
+ __IO uint32_t PreviousState; /*!< I2C communication Previous state and mode
+ context for internal usage */
+
+ DMA_HandleTypeDef *hdmatx; /*!< I2C Tx DMA handle parameters */
+
+ DMA_HandleTypeDef *hdmarx; /*!< I2C Rx DMA handle parameters */
+
+ HAL_LockTypeDef Lock; /*!< I2C locking object */
+
+ __IO HAL_I2C_StateTypeDef State; /*!< I2C communication state */
+
+ __IO HAL_I2C_ModeTypeDef Mode; /*!< I2C communication mode */
+
+ __IO uint32_t ErrorCode; /*!< I2C Error code */
+
+ __IO uint32_t Devaddress; /*!< I2C Target device address */
+
+ __IO uint32_t Memaddress; /*!< I2C Target memory address */
+
+ __IO uint32_t MemaddSize; /*!< I2C Target memory address size */
+
+ __IO uint32_t EventCount; /*!< I2C Event counter */
+#ifndef USE_HAL_I2C_REGISTER_CALLBACKS
+#define USE_HAL_I2C_REGISTER_CALLBACKS 0
+#endif
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ void (*MasterTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Master Tx Transfer completed callback */
+ void (*MasterRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Master Rx Transfer completed callback */
+ void (*SlaveTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Slave Tx Transfer completed callback */
+ void (*SlaveRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Slave Rx Transfer completed callback */
+ void (*ListenCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Listen Complete callback */
+ void (*MemTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Memory Tx Transfer completed callback */
+ void (*MemRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Memory Rx Transfer completed callback */
+ void (*ErrorCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Error callback */
+ void (*AbortCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Abort callback */
+
+ void (*AddrCallback)(struct __I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode); /*!< I2C Slave Address Match callback */
+
+ void (*MspInitCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Msp Init callback */
+ void (*MspDeInitCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Msp DeInit callback */
+
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+} I2C_HandleTypeDef;
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+/**
+ * @brief HAL I2C Callback ID enumeration definition
+ */
+typedef enum {
+ HAL_I2C_MASTER_TX_COMPLETE_CB_ID = 0x00U, /*!< I2C Master Tx Transfer completed callback ID */
+ HAL_I2C_MASTER_RX_COMPLETE_CB_ID = 0x01U, /*!< I2C Master Rx Transfer completed callback ID */
+ HAL_I2C_SLAVE_TX_COMPLETE_CB_ID = 0x02U, /*!< I2C Slave Tx Transfer completed callback ID */
+ HAL_I2C_SLAVE_RX_COMPLETE_CB_ID = 0x03U, /*!< I2C Slave Rx Transfer completed callback ID */
+ HAL_I2C_LISTEN_COMPLETE_CB_ID = 0x04U, /*!< I2C Listen Complete callback ID */
+ HAL_I2C_MEM_TX_COMPLETE_CB_ID = 0x05U, /*!< I2C Memory Tx Transfer callback ID */
+ HAL_I2C_MEM_RX_COMPLETE_CB_ID = 0x06U, /*!< I2C Memory Rx Transfer completed callback ID */
+ HAL_I2C_ERROR_CB_ID = 0x07U, /*!< I2C Error callback ID */
+ HAL_I2C_ABORT_CB_ID = 0x08U, /*!< I2C Abort callback ID */
+
+ HAL_I2C_MSPINIT_CB_ID = 0x09U, /*!< I2C Msp Init callback ID */
+ HAL_I2C_MSPDEINIT_CB_ID = 0x0AU /*!< I2C Msp DeInit callback ID */
+
+} HAL_I2C_CallbackIDTypeDef;
+
+/**
+ * @brief HAL I2C Callback pointer definition
+ */
+typedef void (*pI2C_CallbackTypeDef)(I2C_HandleTypeDef *hi2c); /*!< pointer to an I2C callback function */
+typedef void (*pI2C_AddrCallbackTypeDef)(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode); /*!< pointer to an I2C Address Match callback function */
+
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup I2C_Exported_Constants I2C Exported Constants
+ * @{
+ */
+
+/** @defgroup I2C_duty_cycle_in_fast_mode I2C duty cycle in fast mode
+ * @{
+ */
+#define I2C_DUTYCYCLE_2 0x00000000U
+#define I2C_DUTYCYCLE_16_9 I2C_CCR_DUTY
+/**
+ * @}
+ */
+
+/** @defgroup I2C_addressing_mode I2C addressing mode
+ * @{
+ */
+#define I2C_ADDRESSINGMODE_7BIT 0x00004000U
+#define I2C_ADDRESSINGMODE_10BIT (I2C_OAR1_ADDMODE | 0x00004000U)
+/**
+ * @}
+ */
+
+/** @defgroup I2C_dual_addressing_mode I2C dual addressing mode
+ * @{
+ */
+#define I2C_DUALADDRESS_DISABLE 0x00000000U
+#define I2C_DUALADDRESS_ENABLE I2C_OAR2_ENDUAL
+/**
+ * @}
+ */
+
+/** @defgroup I2C_general_call_addressing_mode I2C general call addressing mode
+ * @{
+ */
+#define I2C_GENERALCALL_DISABLE 0x00000000U
+#define I2C_GENERALCALL_ENABLE I2C_CR1_ENGC
+/**
+ * @}
+ */
+
+/** @defgroup I2C_nostretch_mode I2C nostretch mode
+ * @{
+ */
+#define I2C_NOSTRETCH_DISABLE 0x00000000U
+#define I2C_NOSTRETCH_ENABLE I2C_CR1_NOSTRETCH
+/**
+ * @}
+ */
+
+/** @defgroup I2C_Memory_Address_Size I2C Memory Address Size
+ * @{
+ */
+#define I2C_MEMADD_SIZE_8BIT 0x00000001U
+#define I2C_MEMADD_SIZE_16BIT 0x00000010U
+/**
+ * @}
+ */
+
+/** @defgroup I2C_XferDirection_definition I2C XferDirection definition
+ * @{
+ */
+#define I2C_DIRECTION_RECEIVE 0x00000000U
+#define I2C_DIRECTION_TRANSMIT 0x00000001U
+/**
+ * @}
+ */
+
+/** @defgroup I2C_XferOptions_definition I2C XferOptions definition
+ * @{
+ */
+#define I2C_FIRST_FRAME 0x00000001U
+#define I2C_FIRST_AND_NEXT_FRAME 0x00000002U
+#define I2C_NEXT_FRAME 0x00000004U
+#define I2C_FIRST_AND_LAST_FRAME 0x00000008U
+#define I2C_LAST_FRAME_NO_STOP 0x00000010U
+#define I2C_LAST_FRAME 0x00000020U
+
+/* List of XferOptions in usage of :
+ * 1- Restart condition in all use cases (direction change or not)
+ */
+#define I2C_OTHER_FRAME (0x00AA0000U)
+#define I2C_OTHER_AND_LAST_FRAME (0xAA000000U)
+/**
+ * @}
+ */
+
+/** @defgroup I2C_Interrupt_configuration_definition I2C Interrupt configuration definition
+ * @brief I2C Interrupt definition
+ * Elements values convention: 0xXXXXXXXX
+ * - XXXXXXXX : Interrupt control mask
+ * @{
+ */
+#define I2C_IT_BUF I2C_CR2_ITBUFEN
+#define I2C_IT_EVT I2C_CR2_ITEVTEN
+#define I2C_IT_ERR I2C_CR2_ITERREN
+/**
+ * @}
+ */
+
+/** @defgroup I2C_Flag_definition I2C Flag definition
+ * @{
+ */
+
+#define I2C_FLAG_OVR 0x00010800U
+#define I2C_FLAG_AF 0x00010400U
+#define I2C_FLAG_ARLO 0x00010200U
+#define I2C_FLAG_BERR 0x00010100U
+#define I2C_FLAG_TXE 0x00010080U
+#define I2C_FLAG_RXNE 0x00010040U
+#define I2C_FLAG_STOPF 0x00010010U
+#define I2C_FLAG_ADD10 0x00010008U
+#define I2C_FLAG_BTF 0x00010004U
+#define I2C_FLAG_ADDR 0x00010002U
+#define I2C_FLAG_SB 0x00010001U
+#define I2C_FLAG_DUALF 0x00100080U
+#define I2C_FLAG_GENCALL 0x00100010U
+#define I2C_FLAG_TRA 0x00100004U
+#define I2C_FLAG_BUSY 0x00100002U
+#define I2C_FLAG_MSL 0x00100001U
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macros -----------------------------------------------------------*/
+
+/** @defgroup I2C_Exported_Macros I2C Exported Macros
+ * @{
+ */
+
+/** @brief Reset I2C handle state.
+ * @param __HANDLE__ specifies the I2C Handle.
+ * @retval None
+ */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+#define __HAL_I2C_RESET_HANDLE_STATE(__HANDLE__) \
+ do { \
+ (__HANDLE__)->State = HAL_I2C_STATE_RESET; \
+ (__HANDLE__)->MspInitCallback = NULL; \
+ (__HANDLE__)->MspDeInitCallback = NULL; \
+ } while (0)
+#else
+#define __HAL_I2C_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_I2C_STATE_RESET)
+#endif
+
+/** @brief Enable or disable the specified I2C interrupts.
+ * @param __HANDLE__ specifies the I2C Handle.
+ * @param __INTERRUPT__ specifies the interrupt source to enable or disable.
+ * This parameter can be one of the following values:
+ * @arg I2C_IT_BUF: Buffer interrupt enable
+ * @arg I2C_IT_EVT: Event interrupt enable
+ * @arg I2C_IT_ERR: Error interrupt enable
+ * @retval None
+ */
+#define __HAL_I2C_ENABLE_IT(__HANDLE__, __INTERRUPT__) SET_BIT((__HANDLE__)->Instance->CR2, (__INTERRUPT__))
+#define __HAL_I2C_DISABLE_IT(__HANDLE__, __INTERRUPT__) CLEAR_BIT((__HANDLE__)->Instance->CR2, (__INTERRUPT__))
+
+/** @brief Checks if the specified I2C interrupt source is enabled or disabled.
+ * @param __HANDLE__ specifies the I2C Handle.
+ * @param __INTERRUPT__ specifies the I2C interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg I2C_IT_BUF: Buffer interrupt enable
+ * @arg I2C_IT_EVT: Event interrupt enable
+ * @arg I2C_IT_ERR: Error interrupt enable
+ * @retval The new state of __INTERRUPT__ (TRUE or FALSE).
+ */
+#define __HAL_I2C_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR2 & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
+
+/** @brief Checks whether the specified I2C flag is set or not.
+ * @param __HANDLE__ specifies the I2C Handle.
+ * @param __FLAG__ specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg I2C_FLAG_OVR: Overrun/Underrun flag
+ * @arg I2C_FLAG_AF: Acknowledge failure flag
+ * @arg I2C_FLAG_ARLO: Arbitration lost flag
+ * @arg I2C_FLAG_BERR: Bus error flag
+ * @arg I2C_FLAG_TXE: Data register empty flag
+ * @arg I2C_FLAG_RXNE: Data register not empty flag
+ * @arg I2C_FLAG_STOPF: Stop detection flag
+ * @arg I2C_FLAG_ADD10: 10-bit header sent flag
+ * @arg I2C_FLAG_BTF: Byte transfer finished flag
+ * @arg I2C_FLAG_ADDR: Address sent flag
+ * Address matched flag
+ * @arg I2C_FLAG_SB: Start bit flag
+ * @arg I2C_FLAG_DUALF: Dual flag
+ * @arg I2C_FLAG_GENCALL: General call header flag
+ * @arg I2C_FLAG_TRA: Transmitter/Receiver flag
+ * @arg I2C_FLAG_BUSY: Bus busy flag
+ * @arg I2C_FLAG_MSL: Master/Slave flag
+ * @retval The new state of __FLAG__ (TRUE or FALSE).
+ */
+#define __HAL_I2C_GET_FLAG(__HANDLE__, __FLAG__) \
+ ((((uint8_t)((__FLAG__) >> 16U)) == 0x01U) ? (((((__HANDLE__)->Instance->SR1) & ((__FLAG__)&I2C_FLAG_MASK)) == ((__FLAG__)&I2C_FLAG_MASK)) ? SET : RESET) \
+ : (((((__HANDLE__)->Instance->SR2) & ((__FLAG__)&I2C_FLAG_MASK)) == ((__FLAG__)&I2C_FLAG_MASK)) ? SET : RESET))
+
+/** @brief Clears the I2C pending flags which are cleared by writing 0 in a specific bit.
+ * @param __HANDLE__ specifies the I2C Handle.
+ * @param __FLAG__ specifies the flag to clear.
+ * This parameter can be any combination of the following values:
+ * @arg I2C_FLAG_OVR: Overrun/Underrun flag (Slave mode)
+ * @arg I2C_FLAG_AF: Acknowledge failure flag
+ * @arg I2C_FLAG_ARLO: Arbitration lost flag (Master mode)
+ * @arg I2C_FLAG_BERR: Bus error flag
+ * @retval None
+ */
+#define __HAL_I2C_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR1 = ~((__FLAG__)&I2C_FLAG_MASK))
+
+/** @brief Clears the I2C ADDR pending flag.
+ * @param __HANDLE__ specifies the I2C Handle.
+ * This parameter can be I2C where x: 1, 2, or 3 to select the I2C peripheral.
+ * @retval None
+ */
+#define __HAL_I2C_CLEAR_ADDRFLAG(__HANDLE__) \
+ do { \
+ __IO uint32_t tmpreg = 0x00U; \
+ tmpreg = (__HANDLE__)->Instance->SR1; \
+ tmpreg = (__HANDLE__)->Instance->SR2; \
+ UNUSED(tmpreg); \
+ } while (0)
+
+/** @brief Clears the I2C STOPF pending flag.
+ * @param __HANDLE__ specifies the I2C Handle.
+ * @retval None
+ */
+#define __HAL_I2C_CLEAR_STOPFLAG(__HANDLE__) \
+ do { \
+ __IO uint32_t tmpreg = 0x00U; \
+ tmpreg = (__HANDLE__)->Instance->SR1; \
+ SET_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE); \
+ UNUSED(tmpreg); \
+ } while (0)
+
+/** @brief Enable the specified I2C peripheral.
+ * @param __HANDLE__ specifies the I2C Handle.
+ * @retval None
+ */
+#define __HAL_I2C_ENABLE(__HANDLE__) SET_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE)
+
+/** @brief Disable the specified I2C peripheral.
+ * @param __HANDLE__ specifies the I2C Handle.
+ * @retval None
+ */
+#define __HAL_I2C_DISABLE(__HANDLE__) CLEAR_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE)
+
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup I2C_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @{
+ */
+/* Initialization and de-initialization functions******************************/
+HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c);
+HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c);
+
+/* Callbacks Register/UnRegister functions ***********************************/
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+HAL_StatusTypeDef HAL_I2C_RegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID, pI2C_CallbackTypeDef pCallback);
+HAL_StatusTypeDef HAL_I2C_UnRegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID);
+
+HAL_StatusTypeDef HAL_I2C_RegisterAddrCallback(I2C_HandleTypeDef *hi2c, pI2C_AddrCallbackTypeDef pCallback);
+HAL_StatusTypeDef HAL_I2C_UnRegisterAddrCallback(I2C_HandleTypeDef *hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+/**
+ * @}
+ */
+
+/** @addtogroup I2C_Exported_Functions_Group2 Input and Output operation functions
+ * @{
+ */
+/* IO operation functions ****************************************************/
+/******* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
+HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
+HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
+HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
+HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
+HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
+HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout);
+
+/******* Non-Blocking mode: Interrupt */
+HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
+HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
+HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
+HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
+HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
+HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
+
+HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
+HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
+HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
+HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
+HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c);
+HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c);
+HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress);
+
+/******* Non-Blocking mode: DMA */
+HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
+HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
+HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
+HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
+HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
+HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
+
+HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
+HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
+HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
+HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
+/**
+ * @}
+ */
+
+/** @addtogroup I2C_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks
+ * @{
+ */
+/******* I2C IRQHandler and Callbacks used in non blocking modes (Interrupt and DMA) */
+void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode);
+void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c);
+void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c);
+/**
+ * @}
+ */
+
+/** @addtogroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions
+ * @{
+ */
+/* Peripheral State, Mode and Error functions *********************************/
+HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c);
+HAL_I2C_ModeTypeDef HAL_I2C_GetMode(I2C_HandleTypeDef *hi2c);
+uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c);
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/* Private types -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private constants ---------------------------------------------------------*/
+/** @defgroup I2C_Private_Constants I2C Private Constants
+ * @{
+ */
+#define I2C_FLAG_MASK 0x0000FFFFU
+#define I2C_MIN_PCLK_FREQ_STANDARD 2000000U /*!< 2 MHz */
+#define I2C_MIN_PCLK_FREQ_FAST 4000000U /*!< 4 MHz */
+/**
+ * @}
+ */
+
+/* Private macros ------------------------------------------------------------*/
+/** @defgroup I2C_Private_Macros I2C Private Macros
+ * @{
+ */
+
+#define I2C_MIN_PCLK_FREQ(__PCLK__, __SPEED__) (((__SPEED__) <= 100000U) ? ((__PCLK__) < I2C_MIN_PCLK_FREQ_STANDARD) : ((__PCLK__) < I2C_MIN_PCLK_FREQ_FAST))
+#define I2C_CCR_CALCULATION(__PCLK__, __SPEED__, __COEFF__) (((((__PCLK__)-1U) / ((__SPEED__) * (__COEFF__))) + 1U) & I2C_CCR_CCR)
+#define I2C_FREQRANGE(__PCLK__) ((__PCLK__) / 1000000U)
+#define I2C_RISE_TIME(__FREQRANGE__, __SPEED__) (((__SPEED__) <= 100000U) ? ((__FREQRANGE__) + 1U) : ((((__FREQRANGE__)*300U) / 1000U) + 1U))
+#define I2C_SPEED_STANDARD(__PCLK__, __SPEED__) ((I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 2U) < 4U) ? 4U : I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 2U))
+#define I2C_SPEED_FAST(__PCLK__, __SPEED__, __DUTYCYCLE__) \
+ (((__DUTYCYCLE__) == I2C_DUTYCYCLE_2) ? I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 3U) : (I2C_CCR_CALCULATION((__PCLK__), (__SPEED__), 25U) | I2C_DUTYCYCLE_16_9))
+#define I2C_SPEED(__PCLK__, __SPEED__, __DUTYCYCLE__) \
+ (((__SPEED__) <= 100000U) ? (I2C_SPEED_STANDARD((__PCLK__), (__SPEED__))) \
+ : ((I2C_SPEED_FAST((__PCLK__), (__SPEED__), (__DUTYCYCLE__)) & I2C_CCR_CCR) == 0U) ? 1U : ((I2C_SPEED_FAST((__PCLK__), (__SPEED__), (__DUTYCYCLE__))) | I2C_CCR_FS))
+
+#define I2C_7BIT_ADD_WRITE(__ADDRESS__) ((uint8_t)((__ADDRESS__) & (uint8_t)(~I2C_OAR1_ADD0)))
+#define I2C_7BIT_ADD_READ(__ADDRESS__) ((uint8_t)((__ADDRESS__) | I2C_OAR1_ADD0))
+
+#define I2C_10BIT_ADDRESS(__ADDRESS__) ((uint8_t)((uint16_t)((__ADDRESS__) & (uint16_t)0x00FF)))
+#define I2C_10BIT_HEADER_WRITE(__ADDRESS__) ((uint8_t)((uint16_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)0x0300)) >> 7) | (uint16_t)0x00F0)))
+#define I2C_10BIT_HEADER_READ(__ADDRESS__) ((uint8_t)((uint16_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)0x0300)) >> 7) | (uint16_t)(0x00F1))))
+
+#define I2C_MEM_ADD_MSB(__ADDRESS__) ((uint8_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)0xFF00)) >> 8)))
+#define I2C_MEM_ADD_LSB(__ADDRESS__) ((uint8_t)((uint16_t)((__ADDRESS__) & (uint16_t)0x00FF)))
+
+/** @defgroup I2C_IS_RTC_Definitions I2C Private macros to check input parameters
+ * @{
+ */
+#define IS_I2C_DUTY_CYCLE(CYCLE) (((CYCLE) == I2C_DUTYCYCLE_2) || ((CYCLE) == I2C_DUTYCYCLE_16_9))
+#define IS_I2C_ADDRESSING_MODE(ADDRESS) (((ADDRESS) == I2C_ADDRESSINGMODE_7BIT) || ((ADDRESS) == I2C_ADDRESSINGMODE_10BIT))
+#define IS_I2C_DUAL_ADDRESS(ADDRESS) (((ADDRESS) == I2C_DUALADDRESS_DISABLE) || ((ADDRESS) == I2C_DUALADDRESS_ENABLE))
+#define IS_I2C_GENERAL_CALL(CALL) (((CALL) == I2C_GENERALCALL_DISABLE) || ((CALL) == I2C_GENERALCALL_ENABLE))
+#define IS_I2C_NO_STRETCH(STRETCH) (((STRETCH) == I2C_NOSTRETCH_DISABLE) || ((STRETCH) == I2C_NOSTRETCH_ENABLE))
+#define IS_I2C_MEMADD_SIZE(SIZE) (((SIZE) == I2C_MEMADD_SIZE_8BIT) || ((SIZE) == I2C_MEMADD_SIZE_16BIT))
+#define IS_I2C_CLOCK_SPEED(SPEED) (((SPEED) > 0U) && ((SPEED) <= 400000U))
+#define IS_I2C_OWN_ADDRESS1(ADDRESS1) (((ADDRESS1)&0xFFFFFC00U) == 0U)
+#define IS_I2C_OWN_ADDRESS2(ADDRESS2) (((ADDRESS2)&0xFFFFFF01U) == 0U)
+#define IS_I2C_TRANSFER_OPTIONS_REQUEST(REQUEST) \
+ (((REQUEST) == I2C_FIRST_FRAME) || ((REQUEST) == I2C_FIRST_AND_NEXT_FRAME) || ((REQUEST) == I2C_NEXT_FRAME) || ((REQUEST) == I2C_FIRST_AND_LAST_FRAME) || ((REQUEST) == I2C_LAST_FRAME) \
+ || ((REQUEST) == I2C_LAST_FRAME_NO_STOP) || IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(REQUEST))
+
+#define IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(REQUEST) (((REQUEST) == I2C_OTHER_FRAME) || ((REQUEST) == I2C_OTHER_AND_LAST_FRAME))
+
+#define I2C_CHECK_FLAG(__ISR__, __FLAG__) ((((__ISR__) & ((__FLAG__)&I2C_FLAG_MASK)) == ((__FLAG__)&I2C_FLAG_MASK)) ? SET : RESET)
+#define I2C_CHECK_IT_SOURCE(__CR1__, __IT__) ((((__CR1__) & (__IT__)) == (__IT__)) ? SET : RESET)
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Private functions ---------------------------------------------------------*/
+/** @defgroup I2C_Private_Functions I2C Private Functions
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32F1xx_HAL_I2C_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_iwdg.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_iwdg.h new file mode 100644 index 00000000..a2dd75a0 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_iwdg.h @@ -0,0 +1,214 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_iwdg.h
+ * @author MCD Application Team
+ * @brief Header file of IWDG HAL module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef STM32F1xx_HAL_IWDG_H
+#define STM32F1xx_HAL_IWDG_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup IWDG IWDG
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+/** @defgroup IWDG_Exported_Types IWDG Exported Types
+ * @{
+ */
+
+/**
+ * @brief IWDG Init structure definition
+ */
+typedef struct {
+ uint32_t Prescaler; /*!< Select the prescaler of the IWDG.
+ This parameter can be a value of @ref IWDG_Prescaler */
+
+ uint32_t Reload; /*!< Specifies the IWDG down-counter reload value.
+ This parameter must be a number between Min_Data = 0 and Max_Data = 0x0FFF */
+
+} IWDG_InitTypeDef;
+
+/**
+ * @brief IWDG Handle Structure definition
+ */
+typedef struct {
+ IWDG_TypeDef *Instance; /*!< Register base address */
+
+ IWDG_InitTypeDef Init; /*!< IWDG required parameters */
+} IWDG_HandleTypeDef;
+
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+/** @defgroup IWDG_Exported_Constants IWDG Exported Constants
+ * @{
+ */
+
+/** @defgroup IWDG_Prescaler IWDG Prescaler
+ * @{
+ */
+#define IWDG_PRESCALER_4 0x00000000U /*!< IWDG prescaler set to 4 */
+#define IWDG_PRESCALER_8 IWDG_PR_PR_0 /*!< IWDG prescaler set to 8 */
+#define IWDG_PRESCALER_16 IWDG_PR_PR_1 /*!< IWDG prescaler set to 16 */
+#define IWDG_PRESCALER_32 (IWDG_PR_PR_1 | IWDG_PR_PR_0) /*!< IWDG prescaler set to 32 */
+#define IWDG_PRESCALER_64 IWDG_PR_PR_2 /*!< IWDG prescaler set to 64 */
+#define IWDG_PRESCALER_128 (IWDG_PR_PR_2 | IWDG_PR_PR_0) /*!< IWDG prescaler set to 128 */
+#define IWDG_PRESCALER_256 (IWDG_PR_PR_2 | IWDG_PR_PR_1) /*!< IWDG prescaler set to 256 */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macros -----------------------------------------------------------*/
+/** @defgroup IWDG_Exported_Macros IWDG Exported Macros
+ * @{
+ */
+
+/**
+ * @brief Enable the IWDG peripheral.
+ * @param __HANDLE__ IWDG handle
+ * @retval None
+ */
+#define __HAL_IWDG_START(__HANDLE__) WRITE_REG((__HANDLE__)->Instance->KR, IWDG_KEY_ENABLE)
+
+/**
+ * @brief Reload IWDG counter with value defined in the reload register
+ * (write access to IWDG_PR and IWDG_RLR registers disabled).
+ * @param __HANDLE__ IWDG handle
+ * @retval None
+ */
+#define __HAL_IWDG_RELOAD_COUNTER(__HANDLE__) WRITE_REG((__HANDLE__)->Instance->KR, IWDG_KEY_RELOAD)
+
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+/** @defgroup IWDG_Exported_Functions IWDG Exported Functions
+ * @{
+ */
+
+/** @defgroup IWDG_Exported_Functions_Group1 Initialization and Start functions
+ * @{
+ */
+/* Initialization/Start functions ********************************************/
+HAL_StatusTypeDef HAL_IWDG_Init(IWDG_HandleTypeDef *hiwdg);
+/**
+ * @}
+ */
+
+/** @defgroup IWDG_Exported_Functions_Group2 IO operation functions
+ * @{
+ */
+/* I/O operation functions ****************************************************/
+HAL_StatusTypeDef HAL_IWDG_Refresh(IWDG_HandleTypeDef *hiwdg);
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Private constants ---------------------------------------------------------*/
+/** @defgroup IWDG_Private_Constants IWDG Private Constants
+ * @{
+ */
+
+/**
+ * @brief IWDG Key Register BitMask
+ */
+#define IWDG_KEY_RELOAD 0x0000AAAAU /*!< IWDG Reload Counter Enable */
+#define IWDG_KEY_ENABLE 0x0000CCCCU /*!< IWDG Peripheral Enable */
+#define IWDG_KEY_WRITE_ACCESS_ENABLE 0x00005555U /*!< IWDG KR Write Access Enable */
+#define IWDG_KEY_WRITE_ACCESS_DISABLE 0x00000000U /*!< IWDG KR Write Access Disable */
+
+/**
+ * @}
+ */
+
+/* Private macros ------------------------------------------------------------*/
+/** @defgroup IWDG_Private_Macros IWDG Private Macros
+ * @{
+ */
+
+/**
+ * @brief Enable write access to IWDG_PR and IWDG_RLR registers.
+ * @param __HANDLE__ IWDG handle
+ * @retval None
+ */
+#define IWDG_ENABLE_WRITE_ACCESS(__HANDLE__) WRITE_REG((__HANDLE__)->Instance->KR, IWDG_KEY_WRITE_ACCESS_ENABLE)
+
+/**
+ * @brief Disable write access to IWDG_PR and IWDG_RLR registers.
+ * @param __HANDLE__ IWDG handle
+ * @retval None
+ */
+#define IWDG_DISABLE_WRITE_ACCESS(__HANDLE__) WRITE_REG((__HANDLE__)->Instance->KR, IWDG_KEY_WRITE_ACCESS_DISABLE)
+
+/**
+ * @brief Check IWDG prescaler value.
+ * @param __PRESCALER__ IWDG prescaler value
+ * @retval None
+ */
+#define IS_IWDG_PRESCALER(__PRESCALER__) \
+ (((__PRESCALER__) == IWDG_PRESCALER_4) || ((__PRESCALER__) == IWDG_PRESCALER_8) || ((__PRESCALER__) == IWDG_PRESCALER_16) || ((__PRESCALER__) == IWDG_PRESCALER_32) \
+ || ((__PRESCALER__) == IWDG_PRESCALER_64) || ((__PRESCALER__) == IWDG_PRESCALER_128) || ((__PRESCALER__) == IWDG_PRESCALER_256))
+
+/**
+ * @brief Check IWDG reload value.
+ * @param __RELOAD__ IWDG reload value
+ * @retval None
+ */
+#define IS_IWDG_RELOAD(__RELOAD__) ((__RELOAD__) <= IWDG_RLR_RL)
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* STM32F1xx_HAL_IWDG_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_pwr.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_pwr.h new file mode 100644 index 00000000..ed668a90 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_pwr.h @@ -0,0 +1,372 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_pwr.h
+ * @author MCD Application Team
+ * @brief Header file of PWR HAL module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_PWR_H
+#define __STM32F1xx_HAL_PWR_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup PWR
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+
+/** @defgroup PWR_Exported_Types PWR Exported Types
+ * @{
+ */
+
+/**
+ * @brief PWR PVD configuration structure definition
+ */
+typedef struct {
+ uint32_t PVDLevel; /*!< PVDLevel: Specifies the PVD detection level.
+ This parameter can be a value of @ref PWR_PVD_detection_level */
+
+ uint32_t Mode; /*!< Mode: Specifies the operating mode for the selected pins.
+ This parameter can be a value of @ref PWR_PVD_Mode */
+} PWR_PVDTypeDef;
+
+/**
+ * @}
+ */
+
+/* Internal constants --------------------------------------------------------*/
+
+/** @addtogroup PWR_Private_Constants
+ * @{
+ */
+
+#define PWR_EXTI_LINE_PVD ((uint32_t)0x00010000) /*!< External interrupt line 16 Connected to the PVD EXTI Line */
+
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup PWR_Exported_Constants PWR Exported Constants
+ * @{
+ */
+
+/** @defgroup PWR_PVD_detection_level PWR PVD detection level
+ * @{
+ */
+#define PWR_PVDLEVEL_0 PWR_CR_PLS_2V2
+#define PWR_PVDLEVEL_1 PWR_CR_PLS_2V3
+#define PWR_PVDLEVEL_2 PWR_CR_PLS_2V4
+#define PWR_PVDLEVEL_3 PWR_CR_PLS_2V5
+#define PWR_PVDLEVEL_4 PWR_CR_PLS_2V6
+#define PWR_PVDLEVEL_5 PWR_CR_PLS_2V7
+#define PWR_PVDLEVEL_6 PWR_CR_PLS_2V8
+#define PWR_PVDLEVEL_7 PWR_CR_PLS_2V9
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_PVD_Mode PWR PVD Mode
+ * @{
+ */
+#define PWR_PVD_MODE_NORMAL 0x00000000U /*!< basic mode is used */
+#define PWR_PVD_MODE_IT_RISING 0x00010001U /*!< External Interrupt Mode with Rising edge trigger detection */
+#define PWR_PVD_MODE_IT_FALLING 0x00010002U /*!< External Interrupt Mode with Falling edge trigger detection */
+#define PWR_PVD_MODE_IT_RISING_FALLING 0x00010003U /*!< External Interrupt Mode with Rising/Falling edge trigger detection */
+#define PWR_PVD_MODE_EVENT_RISING 0x00020001U /*!< Event Mode with Rising edge trigger detection */
+#define PWR_PVD_MODE_EVENT_FALLING 0x00020002U /*!< Event Mode with Falling edge trigger detection */
+#define PWR_PVD_MODE_EVENT_RISING_FALLING 0x00020003U /*!< Event Mode with Rising/Falling edge trigger detection */
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_WakeUp_Pins PWR WakeUp Pins
+ * @{
+ */
+
+#define PWR_WAKEUP_PIN1 PWR_CSR_EWUP
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Regulator_state_in_SLEEP_STOP_mode PWR Regulator state in SLEEP/STOP mode
+ * @{
+ */
+#define PWR_MAINREGULATOR_ON 0x00000000U
+#define PWR_LOWPOWERREGULATOR_ON PWR_CR_LPDS
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_SLEEP_mode_entry PWR SLEEP mode entry
+ * @{
+ */
+#define PWR_SLEEPENTRY_WFI ((uint8_t)0x01)
+#define PWR_SLEEPENTRY_WFE ((uint8_t)0x02)
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_STOP_mode_entry PWR STOP mode entry
+ * @{
+ */
+#define PWR_STOPENTRY_WFI ((uint8_t)0x01)
+#define PWR_STOPENTRY_WFE ((uint8_t)0x02)
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Flag PWR Flag
+ * @{
+ */
+#define PWR_FLAG_WU PWR_CSR_WUF
+#define PWR_FLAG_SB PWR_CSR_SBF
+#define PWR_FLAG_PVDO PWR_CSR_PVDO
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+/** @defgroup PWR_Exported_Macros PWR Exported Macros
+ * @{
+ */
+
+/** @brief Check PWR flag is set or not.
+ * @param __FLAG__: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg PWR_FLAG_WU: Wake Up flag. This flag indicates that a wakeup event
+ * was received from the WKUP pin or from the RTC alarm
+ * An additional wakeup event is detected if the WKUP pin is enabled
+ * (by setting the EWUP bit) when the WKUP pin level is already high.
+ * @arg PWR_FLAG_SB: StandBy flag. This flag indicates that the system was
+ * resumed from StandBy mode.
+ * @arg PWR_FLAG_PVDO: PVD Output. This flag is valid only if PVD is enabled
+ * by the HAL_PWR_EnablePVD() function. The PVD is stopped by Standby mode
+ * For this reason, this bit is equal to 0 after Standby or reset
+ * until the PVDE bit is set.
+ * @retval The new state of __FLAG__ (TRUE or FALSE).
+ */
+#define __HAL_PWR_GET_FLAG(__FLAG__) ((PWR->CSR & (__FLAG__)) == (__FLAG__))
+
+/** @brief Clear the PWR's pending flags.
+ * @param __FLAG__: specifies the flag to clear.
+ * This parameter can be one of the following values:
+ * @arg PWR_FLAG_WU: Wake Up flag
+ * @arg PWR_FLAG_SB: StandBy flag
+ */
+#define __HAL_PWR_CLEAR_FLAG(__FLAG__) SET_BIT(PWR->CR, ((__FLAG__) << 2))
+
+/**
+ * @brief Enable interrupt on PVD Exti Line 16.
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_ENABLE_IT() SET_BIT(EXTI->IMR, PWR_EXTI_LINE_PVD)
+
+/**
+ * @brief Disable interrupt on PVD Exti Line 16.
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_DISABLE_IT() CLEAR_BIT(EXTI->IMR, PWR_EXTI_LINE_PVD)
+
+/**
+ * @brief Enable event on PVD Exti Line 16.
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_ENABLE_EVENT() SET_BIT(EXTI->EMR, PWR_EXTI_LINE_PVD)
+
+/**
+ * @brief Disable event on PVD Exti Line 16.
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_DISABLE_EVENT() CLEAR_BIT(EXTI->EMR, PWR_EXTI_LINE_PVD)
+
+/**
+ * @brief PVD EXTI line configuration: set falling edge trigger.
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE() SET_BIT(EXTI->FTSR, PWR_EXTI_LINE_PVD)
+
+/**
+ * @brief Disable the PVD Extended Interrupt Falling Trigger.
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE() CLEAR_BIT(EXTI->FTSR, PWR_EXTI_LINE_PVD)
+
+/**
+ * @brief PVD EXTI line configuration: set rising edge trigger.
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE() SET_BIT(EXTI->RTSR, PWR_EXTI_LINE_PVD)
+
+/**
+ * @brief Disable the PVD Extended Interrupt Rising Trigger.
+ * This parameter can be:
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE() CLEAR_BIT(EXTI->RTSR, PWR_EXTI_LINE_PVD)
+
+/**
+ * @brief PVD EXTI line configuration: set rising & falling edge trigger.
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_ENABLE_RISING_FALLING_EDGE() \
+ __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE(); \
+ __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
+
+/**
+ * @brief Disable the PVD Extended Interrupt Rising & Falling Trigger.
+ * This parameter can be:
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_DISABLE_RISING_FALLING_EDGE() \
+ __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE(); \
+ __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
+
+/**
+ * @brief Check whether the specified PVD EXTI interrupt flag is set or not.
+ * @retval EXTI PVD Line Status.
+ */
+#define __HAL_PWR_PVD_EXTI_GET_FLAG() (EXTI->PR & (PWR_EXTI_LINE_PVD))
+
+/**
+ * @brief Clear the PVD EXTI flag.
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_CLEAR_FLAG() (EXTI->PR = (PWR_EXTI_LINE_PVD))
+
+/**
+ * @brief Generate a Software interrupt on selected EXTI line.
+ * @retval None.
+ */
+#define __HAL_PWR_PVD_EXTI_GENERATE_SWIT() SET_BIT(EXTI->SWIER, PWR_EXTI_LINE_PVD)
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/** @defgroup PWR_Private_Macros PWR Private Macros
+ * @{
+ */
+#define IS_PWR_PVD_LEVEL(LEVEL) \
+ (((LEVEL) == PWR_PVDLEVEL_0) || ((LEVEL) == PWR_PVDLEVEL_1) || ((LEVEL) == PWR_PVDLEVEL_2) || ((LEVEL) == PWR_PVDLEVEL_3) || ((LEVEL) == PWR_PVDLEVEL_4) || ((LEVEL) == PWR_PVDLEVEL_5) \
+ || ((LEVEL) == PWR_PVDLEVEL_6) || ((LEVEL) == PWR_PVDLEVEL_7))
+
+#define IS_PWR_PVD_MODE(MODE) \
+ (((MODE) == PWR_PVD_MODE_IT_RISING) || ((MODE) == PWR_PVD_MODE_IT_FALLING) || ((MODE) == PWR_PVD_MODE_IT_RISING_FALLING) || ((MODE) == PWR_PVD_MODE_EVENT_RISING) \
+ || ((MODE) == PWR_PVD_MODE_EVENT_FALLING) || ((MODE) == PWR_PVD_MODE_EVENT_RISING_FALLING) || ((MODE) == PWR_PVD_MODE_NORMAL))
+
+#define IS_PWR_WAKEUP_PIN(PIN) (((PIN) == PWR_WAKEUP_PIN1))
+
+#define IS_PWR_REGULATOR(REGULATOR) (((REGULATOR) == PWR_MAINREGULATOR_ON) || ((REGULATOR) == PWR_LOWPOWERREGULATOR_ON))
+
+#define IS_PWR_SLEEP_ENTRY(ENTRY) (((ENTRY) == PWR_SLEEPENTRY_WFI) || ((ENTRY) == PWR_SLEEPENTRY_WFE))
+
+#define IS_PWR_STOP_ENTRY(ENTRY) (((ENTRY) == PWR_STOPENTRY_WFI) || ((ENTRY) == PWR_STOPENTRY_WFE))
+
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @addtogroup PWR_Exported_Functions PWR Exported Functions
+ * @{
+ */
+
+/** @addtogroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @{
+ */
+
+/* Initialization and de-initialization functions *******************************/
+void HAL_PWR_DeInit(void);
+void HAL_PWR_EnableBkUpAccess(void);
+void HAL_PWR_DisableBkUpAccess(void);
+
+/**
+ * @}
+ */
+
+/** @addtogroup PWR_Exported_Functions_Group2 Peripheral Control functions
+ * @{
+ */
+
+/* Peripheral Control functions ************************************************/
+void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD);
+/* #define HAL_PWR_ConfigPVD 12*/
+void HAL_PWR_EnablePVD(void);
+void HAL_PWR_DisablePVD(void);
+
+/* WakeUp pins configuration functions ****************************************/
+void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx);
+void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx);
+
+/* Low Power modes configuration functions ************************************/
+void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry);
+void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry);
+void HAL_PWR_EnterSTANDBYMode(void);
+
+void HAL_PWR_EnableSleepOnExit(void);
+void HAL_PWR_DisableSleepOnExit(void);
+void HAL_PWR_EnableSEVOnPend(void);
+void HAL_PWR_DisableSEVOnPend(void);
+
+void HAL_PWR_PVD_IRQHandler(void);
+void HAL_PWR_PVDCallback(void);
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32F1xx_HAL_PWR_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc.h new file mode 100644 index 00000000..f70171c6 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc.h @@ -0,0 +1,1355 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_rcc.h
+ * @author MCD Application Team
+ * @brief Header file of RCC HAL module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_RCC_H
+#define __STM32F1xx_HAL_RCC_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup RCC
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+
+/** @defgroup RCC_Exported_Types RCC Exported Types
+ * @{
+ */
+
+/**
+ * @brief RCC PLL configuration structure definition
+ */
+typedef struct {
+ uint32_t PLLState; /*!< PLLState: The new state of the PLL.
+ This parameter can be a value of @ref RCC_PLL_Config */
+
+ uint32_t PLLSource; /*!< PLLSource: PLL entry clock source.
+ This parameter must be a value of @ref RCC_PLL_Clock_Source */
+
+ uint32_t PLLMUL; /*!< PLLMUL: Multiplication factor for PLL VCO input clock
+ This parameter must be a value of @ref RCCEx_PLL_Multiplication_Factor */
+} RCC_PLLInitTypeDef;
+
+/**
+ * @brief RCC System, AHB and APB busses clock configuration structure definition
+ */
+typedef struct {
+ uint32_t ClockType; /*!< The clock to be configured.
+ This parameter can be a value of @ref RCC_System_Clock_Type */
+
+ uint32_t SYSCLKSource; /*!< The clock source (SYSCLKS) used as system clock.
+ This parameter can be a value of @ref RCC_System_Clock_Source */
+
+ uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK).
+ This parameter can be a value of @ref RCC_AHB_Clock_Source */
+
+ uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK).
+ This parameter can be a value of @ref RCC_APB1_APB2_Clock_Source */
+
+ uint32_t APB2CLKDivider; /*!< The APB2 clock (PCLK2) divider. This clock is derived from the AHB clock (HCLK).
+ This parameter can be a value of @ref RCC_APB1_APB2_Clock_Source */
+} RCC_ClkInitTypeDef;
+
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+/** @defgroup RCC_Exported_Constants RCC Exported Constants
+ * @{
+ */
+
+/** @defgroup RCC_PLL_Clock_Source PLL Clock Source
+ * @{
+ */
+
+#define RCC_PLLSOURCE_HSI_DIV2 0x00000000U /*!< HSI clock divided by 2 selected as PLL entry clock source */
+#define RCC_PLLSOURCE_HSE RCC_CFGR_PLLSRC /*!< HSE clock selected as PLL entry clock source */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Oscillator_Type Oscillator Type
+ * @{
+ */
+#define RCC_OSCILLATORTYPE_NONE 0x00000000U
+#define RCC_OSCILLATORTYPE_HSE 0x00000001U
+#define RCC_OSCILLATORTYPE_HSI 0x00000002U
+#define RCC_OSCILLATORTYPE_LSE 0x00000004U
+#define RCC_OSCILLATORTYPE_LSI 0x00000008U
+/**
+ * @}
+ */
+
+/** @defgroup RCC_HSE_Config HSE Config
+ * @{
+ */
+#define RCC_HSE_OFF 0x00000000U /*!< HSE clock deactivation */
+#define RCC_HSE_ON RCC_CR_HSEON /*!< HSE clock activation */
+#define RCC_HSE_BYPASS ((uint32_t)(RCC_CR_HSEBYP | RCC_CR_HSEON)) /*!< External clock source for HSE clock */
+/**
+ * @}
+ */
+
+/** @defgroup RCC_LSE_Config LSE Config
+ * @{
+ */
+#define RCC_LSE_OFF 0x00000000U /*!< LSE clock deactivation */
+#define RCC_LSE_ON RCC_BDCR_LSEON /*!< LSE clock activation */
+#define RCC_LSE_BYPASS ((uint32_t)(RCC_BDCR_LSEBYP | RCC_BDCR_LSEON)) /*!< External clock source for LSE clock */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_HSI_Config HSI Config
+ * @{
+ */
+#define RCC_HSI_OFF 0x00000000U /*!< HSI clock deactivation */
+#define RCC_HSI_ON RCC_CR_HSION /*!< HSI clock activation */
+
+#define RCC_HSICALIBRATION_DEFAULT 0x10U /* Default HSI calibration trimming value */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_LSI_Config LSI Config
+ * @{
+ */
+#define RCC_LSI_OFF 0x00000000U /*!< LSI clock deactivation */
+#define RCC_LSI_ON RCC_CSR_LSION /*!< LSI clock activation */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_PLL_Config PLL Config
+ * @{
+ */
+#define RCC_PLL_NONE 0x00000000U /*!< PLL is not configured */
+#define RCC_PLL_OFF 0x00000001U /*!< PLL deactivation */
+#define RCC_PLL_ON 0x00000002U /*!< PLL activation */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_System_Clock_Type System Clock Type
+ * @{
+ */
+#define RCC_CLOCKTYPE_SYSCLK 0x00000001U /*!< SYSCLK to configure */
+#define RCC_CLOCKTYPE_HCLK 0x00000002U /*!< HCLK to configure */
+#define RCC_CLOCKTYPE_PCLK1 0x00000004U /*!< PCLK1 to configure */
+#define RCC_CLOCKTYPE_PCLK2 0x00000008U /*!< PCLK2 to configure */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_System_Clock_Source System Clock Source
+ * @{
+ */
+#define RCC_SYSCLKSOURCE_HSI RCC_CFGR_SW_HSI /*!< HSI selected as system clock */
+#define RCC_SYSCLKSOURCE_HSE RCC_CFGR_SW_HSE /*!< HSE selected as system clock */
+#define RCC_SYSCLKSOURCE_PLLCLK RCC_CFGR_SW_PLL /*!< PLL selected as system clock */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_System_Clock_Source_Status System Clock Source Status
+ * @{
+ */
+#define RCC_SYSCLKSOURCE_STATUS_HSI RCC_CFGR_SWS_HSI /*!< HSI used as system clock */
+#define RCC_SYSCLKSOURCE_STATUS_HSE RCC_CFGR_SWS_HSE /*!< HSE used as system clock */
+#define RCC_SYSCLKSOURCE_STATUS_PLLCLK RCC_CFGR_SWS_PLL /*!< PLL used as system clock */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_AHB_Clock_Source AHB Clock Source
+ * @{
+ */
+#define RCC_SYSCLK_DIV1 RCC_CFGR_HPRE_DIV1 /*!< SYSCLK not divided */
+#define RCC_SYSCLK_DIV2 RCC_CFGR_HPRE_DIV2 /*!< SYSCLK divided by 2 */
+#define RCC_SYSCLK_DIV4 RCC_CFGR_HPRE_DIV4 /*!< SYSCLK divided by 4 */
+#define RCC_SYSCLK_DIV8 RCC_CFGR_HPRE_DIV8 /*!< SYSCLK divided by 8 */
+#define RCC_SYSCLK_DIV16 RCC_CFGR_HPRE_DIV16 /*!< SYSCLK divided by 16 */
+#define RCC_SYSCLK_DIV64 RCC_CFGR_HPRE_DIV64 /*!< SYSCLK divided by 64 */
+#define RCC_SYSCLK_DIV128 RCC_CFGR_HPRE_DIV128 /*!< SYSCLK divided by 128 */
+#define RCC_SYSCLK_DIV256 RCC_CFGR_HPRE_DIV256 /*!< SYSCLK divided by 256 */
+#define RCC_SYSCLK_DIV512 RCC_CFGR_HPRE_DIV512 /*!< SYSCLK divided by 512 */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_APB1_APB2_Clock_Source APB1 APB2 Clock Source
+ * @{
+ */
+#define RCC_HCLK_DIV1 RCC_CFGR_PPRE1_DIV1 /*!< HCLK not divided */
+#define RCC_HCLK_DIV2 RCC_CFGR_PPRE1_DIV2 /*!< HCLK divided by 2 */
+#define RCC_HCLK_DIV4 RCC_CFGR_PPRE1_DIV4 /*!< HCLK divided by 4 */
+#define RCC_HCLK_DIV8 RCC_CFGR_PPRE1_DIV8 /*!< HCLK divided by 8 */
+#define RCC_HCLK_DIV16 RCC_CFGR_PPRE1_DIV16 /*!< HCLK divided by 16 */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_RTC_Clock_Source RTC Clock Source
+ * @{
+ */
+#define RCC_RTCCLKSOURCE_NO_CLK 0x00000000U /*!< No clock */
+#define RCC_RTCCLKSOURCE_LSE RCC_BDCR_RTCSEL_LSE /*!< LSE oscillator clock used as RTC clock */
+#define RCC_RTCCLKSOURCE_LSI RCC_BDCR_RTCSEL_LSI /*!< LSI oscillator clock used as RTC clock */
+#define RCC_RTCCLKSOURCE_HSE_DIV128 RCC_BDCR_RTCSEL_HSE /*!< HSE oscillator clock divided by 128 used as RTC clock */
+/**
+ * @}
+ */
+
+/** @defgroup RCC_MCO_Index MCO Index
+ * @{
+ */
+#define RCC_MCO1 0x00000000U
+#define RCC_MCO RCC_MCO1 /*!< MCO1 to be compliant with other families with 2 MCOs*/
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_MCOx_Clock_Prescaler MCO Clock Prescaler
+ * @{
+ */
+#define RCC_MCODIV_1 0x00000000U
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Interrupt Interrupts
+ * @{
+ */
+#define RCC_IT_LSIRDY ((uint8_t)RCC_CIR_LSIRDYF) /*!< LSI Ready Interrupt flag */
+#define RCC_IT_LSERDY ((uint8_t)RCC_CIR_LSERDYF) /*!< LSE Ready Interrupt flag */
+#define RCC_IT_HSIRDY ((uint8_t)RCC_CIR_HSIRDYF) /*!< HSI Ready Interrupt flag */
+#define RCC_IT_HSERDY ((uint8_t)RCC_CIR_HSERDYF) /*!< HSE Ready Interrupt flag */
+#define RCC_IT_PLLRDY ((uint8_t)RCC_CIR_PLLRDYF) /*!< PLL Ready Interrupt flag */
+#define RCC_IT_CSS ((uint8_t)RCC_CIR_CSSF) /*!< Clock Security System Interrupt flag */
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Flag Flags
+ * Elements values convention: XXXYYYYYb
+ * - YYYYY : Flag position in the register
+ * - XXX : Register index
+ * - 001: CR register
+ * - 010: BDCR register
+ * - 011: CSR register
+ * @{
+ */
+/* Flags in the CR register */
+#define RCC_FLAG_HSIRDY ((uint8_t)((CR_REG_INDEX << 5U) | RCC_CR_HSIRDY_Pos)) /*!< Internal High Speed clock ready flag */
+#define RCC_FLAG_HSERDY ((uint8_t)((CR_REG_INDEX << 5U) | RCC_CR_HSERDY_Pos)) /*!< External High Speed clock ready flag */
+#define RCC_FLAG_PLLRDY ((uint8_t)((CR_REG_INDEX << 5U) | RCC_CR_PLLRDY_Pos)) /*!< PLL clock ready flag */
+
+/* Flags in the CSR register */
+#define RCC_FLAG_LSIRDY ((uint8_t)((CSR_REG_INDEX << 5U) | RCC_CSR_LSIRDY_Pos)) /*!< Internal Low Speed oscillator Ready */
+#define RCC_FLAG_PINRST ((uint8_t)((CSR_REG_INDEX << 5U) | RCC_CSR_PINRSTF_Pos)) /*!< PIN reset flag */
+#define RCC_FLAG_PORRST ((uint8_t)((CSR_REG_INDEX << 5U) | RCC_CSR_PORRSTF_Pos)) /*!< POR/PDR reset flag */
+#define RCC_FLAG_SFTRST ((uint8_t)((CSR_REG_INDEX << 5U) | RCC_CSR_SFTRSTF_Pos)) /*!< Software Reset flag */
+#define RCC_FLAG_IWDGRST ((uint8_t)((CSR_REG_INDEX << 5U) | RCC_CSR_IWDGRSTF_Pos)) /*!< Independent Watchdog reset flag */
+#define RCC_FLAG_WWDGRST ((uint8_t)((CSR_REG_INDEX << 5U) | RCC_CSR_WWDGRSTF_Pos)) /*!< Window watchdog reset flag */
+#define RCC_FLAG_LPWRRST ((uint8_t)((CSR_REG_INDEX << 5U) | RCC_CSR_LPWRRSTF_Pos)) /*!< Low-Power reset flag */
+
+/* Flags in the BDCR register */
+#define RCC_FLAG_LSERDY ((uint8_t)((BDCR_REG_INDEX << 5U) | RCC_BDCR_LSERDY_Pos)) /*!< External Low Speed oscillator Ready */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+
+/** @defgroup RCC_Exported_Macros RCC Exported Macros
+ * @{
+ */
+
+/** @defgroup RCC_Peripheral_Clock_Enable_Disable Peripheral Clock Enable Disable
+ * @brief Enable or disable the AHB1 peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+#define __HAL_RCC_DMA1_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_SRAM_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_SRAMEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_FLITF_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->AHBENR, RCC_AHBENR_FLITFEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FLITFEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_CRC_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_DMA1_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_DMA1EN))
+#define __HAL_RCC_SRAM_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_SRAMEN))
+#define __HAL_RCC_FLITF_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_FLITFEN))
+#define __HAL_RCC_CRC_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_CRCEN))
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_AHB_Peripheral_Clock_Enable_Disable_Status AHB Peripheral Clock Enable Disable Status
+ * @brief Get the enable or disable status of the AHB peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+
+#define __HAL_RCC_DMA1_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_DMA1EN)) != RESET)
+#define __HAL_RCC_DMA1_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_DMA1EN)) == RESET)
+#define __HAL_RCC_SRAM_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_SRAMEN)) != RESET)
+#define __HAL_RCC_SRAM_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_SRAMEN)) == RESET)
+#define __HAL_RCC_FLITF_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_FLITFEN)) != RESET)
+#define __HAL_RCC_FLITF_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_FLITFEN)) == RESET)
+#define __HAL_RCC_CRC_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_CRCEN)) != RESET)
+#define __HAL_RCC_CRC_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_CRCEN)) == RESET)
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_APB1_Clock_Enable_Disable APB1 Clock Enable Disable
+ * @brief Enable or disable the Low Speed APB (APB1) peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+#define __HAL_RCC_TIM2_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM2EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM2EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM3_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM3EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM3EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_WWDG_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_WWDGEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_WWDGEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_USART2_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_USART2EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_USART2EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_I2C1_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C1EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C1EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_BKP_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_BKPEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_BKPEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_PWR_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_PWREN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_PWREN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM2_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM2EN))
+#define __HAL_RCC_TIM3_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM3EN))
+#define __HAL_RCC_WWDG_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_WWDGEN))
+#define __HAL_RCC_USART2_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_USART2EN))
+#define __HAL_RCC_I2C1_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_I2C1EN))
+
+#define __HAL_RCC_BKP_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_BKPEN))
+#define __HAL_RCC_PWR_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_PWREN))
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_APB1_Peripheral_Clock_Enable_Disable_Status APB1 Peripheral Clock Enable Disable Status
+ * @brief Get the enable or disable status of the APB1 peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+
+#define __HAL_RCC_TIM2_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM2EN)) != RESET)
+#define __HAL_RCC_TIM2_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM2EN)) == RESET)
+#define __HAL_RCC_TIM3_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM3EN)) != RESET)
+#define __HAL_RCC_TIM3_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM3EN)) == RESET)
+#define __HAL_RCC_WWDG_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_WWDGEN)) != RESET)
+#define __HAL_RCC_WWDG_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_WWDGEN)) == RESET)
+#define __HAL_RCC_USART2_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_USART2EN)) != RESET)
+#define __HAL_RCC_USART2_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_USART2EN)) == RESET)
+#define __HAL_RCC_I2C1_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C1EN)) != RESET)
+#define __HAL_RCC_I2C1_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C1EN)) == RESET)
+#define __HAL_RCC_BKP_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_BKPEN)) != RESET)
+#define __HAL_RCC_BKP_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_BKPEN)) == RESET)
+#define __HAL_RCC_PWR_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_PWREN)) != RESET)
+#define __HAL_RCC_PWR_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_PWREN)) == RESET)
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_APB2_Clock_Enable_Disable APB2 Clock Enable Disable
+ * @brief Enable or disable the High Speed APB (APB2) peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+#define __HAL_RCC_AFIO_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_AFIOEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_AFIOEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_GPIOA_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPAEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPAEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_GPIOB_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPBEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPBEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_GPIOC_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPCEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPCEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_GPIOD_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_ADC1_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC1EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC1EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM1_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM1EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM1EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_SPI1_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI1EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI1EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_USART1_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_USART1EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_USART1EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_AFIO_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_AFIOEN))
+#define __HAL_RCC_GPIOA_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_IOPAEN))
+#define __HAL_RCC_GPIOB_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_IOPBEN))
+#define __HAL_RCC_GPIOC_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_IOPCEN))
+#define __HAL_RCC_GPIOD_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_IOPDEN))
+#define __HAL_RCC_ADC1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_ADC1EN))
+
+#define __HAL_RCC_TIM1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM1EN))
+#define __HAL_RCC_SPI1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SPI1EN))
+#define __HAL_RCC_USART1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_USART1EN))
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_APB2_Peripheral_Clock_Enable_Disable_Status APB2 Peripheral Clock Enable Disable Status
+ * @brief Get the enable or disable status of the APB2 peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+
+#define __HAL_RCC_AFIO_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_AFIOEN)) != RESET)
+#define __HAL_RCC_AFIO_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_AFIOEN)) == RESET)
+#define __HAL_RCC_GPIOA_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPAEN)) != RESET)
+#define __HAL_RCC_GPIOA_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPAEN)) == RESET)
+#define __HAL_RCC_GPIOB_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPBEN)) != RESET)
+#define __HAL_RCC_GPIOB_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPBEN)) == RESET)
+#define __HAL_RCC_GPIOC_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPCEN)) != RESET)
+#define __HAL_RCC_GPIOC_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPCEN)) == RESET)
+#define __HAL_RCC_GPIOD_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPDEN)) != RESET)
+#define __HAL_RCC_GPIOD_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPDEN)) == RESET)
+#define __HAL_RCC_ADC1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC1EN)) != RESET)
+#define __HAL_RCC_ADC1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC1EN)) == RESET)
+#define __HAL_RCC_TIM1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM1EN)) != RESET)
+#define __HAL_RCC_TIM1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM1EN)) == RESET)
+#define __HAL_RCC_SPI1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI1EN)) != RESET)
+#define __HAL_RCC_SPI1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI1EN)) == RESET)
+#define __HAL_RCC_USART1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_USART1EN)) != RESET)
+#define __HAL_RCC_USART1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_USART1EN)) == RESET)
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_APB1_Force_Release_Reset APB1 Force Release Reset
+ * @brief Force or release APB1 peripheral reset.
+ * @{
+ */
+#define __HAL_RCC_APB1_FORCE_RESET() (RCC->APB2RSTR = 0xFFFFFFFFU)
+#define __HAL_RCC_TIM2_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM2RST))
+#define __HAL_RCC_TIM3_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM3RST))
+#define __HAL_RCC_WWDG_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_WWDGRST))
+#define __HAL_RCC_USART2_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_USART2RST))
+#define __HAL_RCC_I2C1_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_I2C1RST))
+
+#define __HAL_RCC_BKP_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_BKPRST))
+#define __HAL_RCC_PWR_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_PWRRST))
+
+#define __HAL_RCC_APB1_RELEASE_RESET() (RCC->APB1RSTR = 0x00)
+#define __HAL_RCC_TIM2_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM2RST))
+#define __HAL_RCC_TIM3_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM3RST))
+#define __HAL_RCC_WWDG_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_WWDGRST))
+#define __HAL_RCC_USART2_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_USART2RST))
+#define __HAL_RCC_I2C1_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C1RST))
+
+#define __HAL_RCC_BKP_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_BKPRST))
+#define __HAL_RCC_PWR_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_PWRRST))
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_APB2_Force_Release_Reset APB2 Force Release Reset
+ * @brief Force or release APB2 peripheral reset.
+ * @{
+ */
+#define __HAL_RCC_APB2_FORCE_RESET() (RCC->APB2RSTR = 0xFFFFFFFFU)
+#define __HAL_RCC_AFIO_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_AFIORST))
+#define __HAL_RCC_GPIOA_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_IOPARST))
+#define __HAL_RCC_GPIOB_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_IOPBRST))
+#define __HAL_RCC_GPIOC_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_IOPCRST))
+#define __HAL_RCC_GPIOD_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_IOPDRST))
+#define __HAL_RCC_ADC1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_ADC1RST))
+
+#define __HAL_RCC_TIM1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM1RST))
+#define __HAL_RCC_SPI1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SPI1RST))
+#define __HAL_RCC_USART1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_USART1RST))
+
+#define __HAL_RCC_APB2_RELEASE_RESET() (RCC->APB2RSTR = 0x00)
+#define __HAL_RCC_AFIO_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_AFIORST))
+#define __HAL_RCC_GPIOA_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_IOPARST))
+#define __HAL_RCC_GPIOB_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_IOPBRST))
+#define __HAL_RCC_GPIOC_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_IOPCRST))
+#define __HAL_RCC_GPIOD_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_IOPDRST))
+#define __HAL_RCC_ADC1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_ADC1RST))
+
+#define __HAL_RCC_TIM1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM1RST))
+#define __HAL_RCC_SPI1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SPI1RST))
+#define __HAL_RCC_USART1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_USART1RST))
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_HSI_Configuration HSI Configuration
+ * @{
+ */
+
+/** @brief Macros to enable or disable the Internal High Speed oscillator (HSI).
+ * @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
+ * @note HSI can not be stopped if it is used as system clock source. In this case,
+ * you have to select another source of the system clock then stop the HSI.
+ * @note After enabling the HSI, the application software should wait on HSIRDY
+ * flag to be set indicating that HSI clock is stable and can be used as
+ * system clock source.
+ * @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
+ * clock cycles.
+ */
+#define __HAL_RCC_HSI_ENABLE() (*(__IO uint32_t *)RCC_CR_HSION_BB = ENABLE)
+#define __HAL_RCC_HSI_DISABLE() (*(__IO uint32_t *)RCC_CR_HSION_BB = DISABLE)
+
+/** @brief Macro to adjust the Internal High Speed oscillator (HSI) calibration value.
+ * @note The calibration is used to compensate for the variations in voltage
+ * and temperature that influence the frequency of the internal HSI RC.
+ * @param _HSICALIBRATIONVALUE_ specifies the calibration trimming value.
+ * (default is RCC_HSICALIBRATION_DEFAULT).
+ * This parameter must be a number between 0 and 0x1F.
+ */
+#define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(_HSICALIBRATIONVALUE_) (MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, (uint32_t)(_HSICALIBRATIONVALUE_) << RCC_CR_HSITRIM_Pos))
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_LSI_Configuration LSI Configuration
+ * @{
+ */
+
+/** @brief Macro to enable the Internal Low Speed oscillator (LSI).
+ * @note After enabling the LSI, the application software should wait on
+ * LSIRDY flag to be set indicating that LSI clock is stable and can
+ * be used to clock the IWDG and/or the RTC.
+ */
+#define __HAL_RCC_LSI_ENABLE() (*(__IO uint32_t *)RCC_CSR_LSION_BB = ENABLE)
+
+/** @brief Macro to disable the Internal Low Speed oscillator (LSI).
+ * @note LSI can not be disabled if the IWDG is running.
+ * @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
+ * clock cycles.
+ */
+#define __HAL_RCC_LSI_DISABLE() (*(__IO uint32_t *)RCC_CSR_LSION_BB = DISABLE)
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_HSE_Configuration HSE Configuration
+ * @{
+ */
+
+/**
+ * @brief Macro to configure the External High Speed oscillator (HSE).
+ * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
+ * supported by this macro. User should request a transition to HSE Off
+ * first and then HSE On or HSE Bypass.
+ * @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
+ * software should wait on HSERDY flag to be set indicating that HSE clock
+ * is stable and can be used to clock the PLL and/or system clock.
+ * @note HSE state can not be changed if it is used directly or through the
+ * PLL as system clock. In this case, you have to select another source
+ * of the system clock then change the HSE state (ex. disable it).
+ * @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
+ * @note This function reset the CSSON bit, so if the clock security system(CSS)
+ * was previously enabled you have to enable it again after calling this
+ * function.
+ * @param __STATE__ specifies the new state of the HSE.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_HSE_OFF turn OFF the HSE oscillator, HSERDY flag goes low after
+ * 6 HSE oscillator clock cycles.
+ * @arg @ref RCC_HSE_ON turn ON the HSE oscillator
+ * @arg @ref RCC_HSE_BYPASS HSE oscillator bypassed with external clock
+ */
+#define __HAL_RCC_HSE_CONFIG(__STATE__) \
+ do { \
+ if ((__STATE__) == RCC_HSE_ON) { \
+ SET_BIT(RCC->CR, RCC_CR_HSEON); \
+ } else if ((__STATE__) == RCC_HSE_OFF) { \
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \
+ } else if ((__STATE__) == RCC_HSE_BYPASS) { \
+ SET_BIT(RCC->CR, RCC_CR_HSEBYP); \
+ SET_BIT(RCC->CR, RCC_CR_HSEON); \
+ } else { \
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \
+ } \
+ } while (0U)
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_LSE_Configuration LSE Configuration
+ * @{
+ */
+
+/**
+ * @brief Macro to configure the External Low Speed oscillator (LSE).
+ * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not supported by this macro.
+ * @note As the LSE is in the Backup domain and write access is denied to
+ * this domain after reset, you have to enable write access using
+ * @ref HAL_PWR_EnableBkUpAccess() function before to configure the LSE
+ * (to be done once after reset).
+ * @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application
+ * software should wait on LSERDY flag to be set indicating that LSE clock
+ * is stable and can be used to clock the RTC.
+ * @param __STATE__ specifies the new state of the LSE.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_LSE_OFF turn OFF the LSE oscillator, LSERDY flag goes low after
+ * 6 LSE oscillator clock cycles.
+ * @arg @ref RCC_LSE_ON turn ON the LSE oscillator.
+ * @arg @ref RCC_LSE_BYPASS LSE oscillator bypassed with external clock.
+ */
+#define __HAL_RCC_LSE_CONFIG(__STATE__) \
+ do { \
+ if ((__STATE__) == RCC_LSE_ON) { \
+ SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
+ } else if ((__STATE__) == RCC_LSE_OFF) { \
+ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
+ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \
+ } else if ((__STATE__) == RCC_LSE_BYPASS) { \
+ SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \
+ SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
+ } else { \
+ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
+ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \
+ } \
+ } while (0U)
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_PLL_Configuration PLL Configuration
+ * @{
+ */
+
+/** @brief Macro to enable the main PLL.
+ * @note After enabling the main PLL, the application software should wait on
+ * PLLRDY flag to be set indicating that PLL clock is stable and can
+ * be used as system clock source.
+ * @note The main PLL is disabled by hardware when entering STOP and STANDBY modes.
+ */
+#define __HAL_RCC_PLL_ENABLE() (*(__IO uint32_t *)RCC_CR_PLLON_BB = ENABLE)
+
+/** @brief Macro to disable the main PLL.
+ * @note The main PLL can not be disabled if it is used as system clock source
+ */
+#define __HAL_RCC_PLL_DISABLE() (*(__IO uint32_t *)RCC_CR_PLLON_BB = DISABLE)
+
+/** @brief Macro to configure the main PLL clock source and multiplication factors.
+ * @note This function must be used only when the main PLL is disabled.
+ *
+ * @param __RCC_PLLSOURCE__ specifies the PLL entry clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_PLLSOURCE_HSI_DIV2 HSI oscillator clock selected as PLL clock entry
+ * @arg @ref RCC_PLLSOURCE_HSE HSE oscillator clock selected as PLL clock entry
+ * @param __PLLMUL__ specifies the multiplication factor for PLL VCO output clock
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_PLL_MUL4 PLLVCO = PLL clock entry x 4
+ * @arg @ref RCC_PLL_MUL6 PLLVCO = PLL clock entry x 6
+ @if STM32F105xC
+ * @arg @ref RCC_PLL_MUL6_5 PLLVCO = PLL clock entry x 6.5
+ @elseif STM32F107xC
+ * @arg @ref RCC_PLL_MUL6_5 PLLVCO = PLL clock entry x 6.5
+ @else
+ * @arg @ref RCC_PLL_MUL2 PLLVCO = PLL clock entry x 2
+ * @arg @ref RCC_PLL_MUL3 PLLVCO = PLL clock entry x 3
+ * @arg @ref RCC_PLL_MUL10 PLLVCO = PLL clock entry x 10
+ * @arg @ref RCC_PLL_MUL11 PLLVCO = PLL clock entry x 11
+ * @arg @ref RCC_PLL_MUL12 PLLVCO = PLL clock entry x 12
+ * @arg @ref RCC_PLL_MUL13 PLLVCO = PLL clock entry x 13
+ * @arg @ref RCC_PLL_MUL14 PLLVCO = PLL clock entry x 14
+ * @arg @ref RCC_PLL_MUL15 PLLVCO = PLL clock entry x 15
+ * @arg @ref RCC_PLL_MUL16 PLLVCO = PLL clock entry x 16
+ @endif
+ * @arg @ref RCC_PLL_MUL8 PLLVCO = PLL clock entry x 8
+ * @arg @ref RCC_PLL_MUL9 PLLVCO = PLL clock entry x 9
+ *
+ */
+#define __HAL_RCC_PLL_CONFIG(__RCC_PLLSOURCE__, __PLLMUL__) MODIFY_REG(RCC->CFGR, (RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL), ((__RCC_PLLSOURCE__) | (__PLLMUL__)))
+
+/** @brief Get oscillator clock selected as PLL input clock
+ * @retval The clock source used for PLL entry. The returned value can be one
+ * of the following:
+ * @arg @ref RCC_PLLSOURCE_HSI_DIV2 HSI oscillator clock selected as PLL input clock
+ * @arg @ref RCC_PLLSOURCE_HSE HSE oscillator clock selected as PLL input clock
+ */
+#define __HAL_RCC_GET_PLL_OSCSOURCE() ((uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLSRC)))
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Get_Clock_source Get Clock source
+ * @{
+ */
+
+/**
+ * @brief Macro to configure the system clock source.
+ * @param __SYSCLKSOURCE__ specifies the system clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_SYSCLKSOURCE_HSI HSI oscillator is used as system clock source.
+ * @arg @ref RCC_SYSCLKSOURCE_HSE HSE oscillator is used as system clock source.
+ * @arg @ref RCC_SYSCLKSOURCE_PLLCLK PLL output is used as system clock source.
+ */
+#define __HAL_RCC_SYSCLK_CONFIG(__SYSCLKSOURCE__) MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, (__SYSCLKSOURCE__))
+
+/** @brief Macro to get the clock source used as system clock.
+ * @retval The clock source used as system clock. The returned value can be one
+ * of the following:
+ * @arg @ref RCC_SYSCLKSOURCE_STATUS_HSI HSI used as system clock
+ * @arg @ref RCC_SYSCLKSOURCE_STATUS_HSE HSE used as system clock
+ * @arg @ref RCC_SYSCLKSOURCE_STATUS_PLLCLK PLL used as system clock
+ */
+#define __HAL_RCC_GET_SYSCLK_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_SWS)))
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_MCOx_Clock_Config RCC Extended MCOx Clock Config
+ * @{
+ */
+
+#if defined(RCC_CFGR_MCO_3)
+/** @brief Macro to configure the MCO clock.
+ * @param __MCOCLKSOURCE__ specifies the MCO clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock (SYSCLK) selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected by 2 selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected (for Ethernet) as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected (for Ethernet) as MCO clock
+ * @param __MCODIV__ specifies the MCO clock prescaler.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCODIV_1 No division applied on MCO clock source
+ */
+#else
+/** @brief Macro to configure the MCO clock.
+ * @param __MCOCLKSOURCE__ specifies the MCO clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock (SYSCLK) selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO clock
+ * @param __MCODIV__ specifies the MCO clock prescaler.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCODIV_1 No division applied on MCO clock source
+ */
+#endif
+
+#define __HAL_RCC_MCO1_CONFIG(__MCOCLKSOURCE__, __MCODIV__) MODIFY_REG(RCC->CFGR, RCC_CFGR_MCO, (__MCOCLKSOURCE__))
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_RTC_Clock_Configuration RCC RTC Clock Configuration
+ * @{
+ */
+
+/** @brief Macro to configure the RTC clock (RTCCLK).
+ * @note As the RTC clock configuration bits are in the Backup domain and write
+ * access is denied to this domain after reset, you have to enable write
+ * access using the Power Backup Access macro before to configure
+ * the RTC clock source (to be done once after reset).
+ * @note Once the RTC clock is configured it can't be changed unless the
+ * Backup domain is reset using @ref __HAL_RCC_BACKUPRESET_FORCE() macro, or by
+ * a Power On Reset (POR).
+ *
+ * @param __RTC_CLKSOURCE__ specifies the RTC clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_RTCCLKSOURCE_NO_CLK No clock selected as RTC clock
+ * @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock
+ * @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock
+ * @arg @ref RCC_RTCCLKSOURCE_HSE_DIV128 HSE divided by 128 selected as RTC clock
+ * @note If the LSE or LSI is used as RTC clock source, the RTC continues to
+ * work in STOP and STANDBY modes, and can be used as wakeup source.
+ * However, when the HSE clock is used as RTC clock source, the RTC
+ * cannot be used in STOP and STANDBY modes.
+ * @note The maximum input clock frequency for RTC is 1MHz (when using HSE as
+ * RTC clock source).
+ */
+#define __HAL_RCC_RTC_CONFIG(__RTC_CLKSOURCE__) MODIFY_REG(RCC->BDCR, RCC_BDCR_RTCSEL, (__RTC_CLKSOURCE__))
+
+/** @brief Macro to get the RTC clock source.
+ * @retval The clock source can be one of the following values:
+ * @arg @ref RCC_RTCCLKSOURCE_NO_CLK No clock selected as RTC clock
+ * @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock
+ * @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock
+ * @arg @ref RCC_RTCCLKSOURCE_HSE_DIV128 HSE divided by 128 selected as RTC clock
+ */
+#define __HAL_RCC_GET_RTC_SOURCE() (READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL))
+
+/** @brief Macro to enable the the RTC clock.
+ * @note These macros must be used only after the RTC clock source was selected.
+ */
+#define __HAL_RCC_RTC_ENABLE() (*(__IO uint32_t *)RCC_BDCR_RTCEN_BB = ENABLE)
+
+/** @brief Macro to disable the the RTC clock.
+ * @note These macros must be used only after the RTC clock source was selected.
+ */
+#define __HAL_RCC_RTC_DISABLE() (*(__IO uint32_t *)RCC_BDCR_RTCEN_BB = DISABLE)
+
+/** @brief Macro to force the Backup domain reset.
+ * @note This function resets the RTC peripheral (including the backup registers)
+ * and the RTC clock source selection in RCC_BDCR register.
+ */
+#define __HAL_RCC_BACKUPRESET_FORCE() (*(__IO uint32_t *)RCC_BDCR_BDRST_BB = ENABLE)
+
+/** @brief Macros to release the Backup domain reset.
+ */
+#define __HAL_RCC_BACKUPRESET_RELEASE() (*(__IO uint32_t *)RCC_BDCR_BDRST_BB = DISABLE)
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Flags_Interrupts_Management Flags Interrupts Management
+ * @brief macros to manage the specified RCC Flags and interrupts.
+ * @{
+ */
+
+/** @brief Enable RCC interrupt.
+ * @param __INTERRUPT__ specifies the RCC interrupt sources to be enabled.
+ * This parameter can be any combination of the following values:
+ * @arg @ref RCC_IT_LSIRDY LSI ready interrupt
+ * @arg @ref RCC_IT_LSERDY LSE ready interrupt
+ * @arg @ref RCC_IT_HSIRDY HSI ready interrupt
+ * @arg @ref RCC_IT_HSERDY HSE ready interrupt
+ * @arg @ref RCC_IT_PLLRDY main PLL ready interrupt
+ @if STM32F105xx
+ * @arg @ref RCC_IT_PLL2RDY Main PLL2 ready interrupt.
+ * @arg @ref RCC_IT_PLLI2S2RDY Main PLLI2S ready interrupt.
+ @elsif STM32F107xx
+ * @arg @ref RCC_IT_PLL2RDY Main PLL2 ready interrupt.
+ * @arg @ref RCC_IT_PLLI2S2RDY Main PLLI2S ready interrupt.
+ @endif
+ */
+#define __HAL_RCC_ENABLE_IT(__INTERRUPT__) (*(__IO uint8_t *)RCC_CIR_BYTE1_ADDRESS |= (__INTERRUPT__))
+
+/** @brief Disable RCC interrupt.
+ * @param __INTERRUPT__ specifies the RCC interrupt sources to be disabled.
+ * This parameter can be any combination of the following values:
+ * @arg @ref RCC_IT_LSIRDY LSI ready interrupt
+ * @arg @ref RCC_IT_LSERDY LSE ready interrupt
+ * @arg @ref RCC_IT_HSIRDY HSI ready interrupt
+ * @arg @ref RCC_IT_HSERDY HSE ready interrupt
+ * @arg @ref RCC_IT_PLLRDY main PLL ready interrupt
+ @if STM32F105xx
+ * @arg @ref RCC_IT_PLL2RDY Main PLL2 ready interrupt.
+ * @arg @ref RCC_IT_PLLI2S2RDY Main PLLI2S ready interrupt.
+ @elsif STM32F107xx
+ * @arg @ref RCC_IT_PLL2RDY Main PLL2 ready interrupt.
+ * @arg @ref RCC_IT_PLLI2S2RDY Main PLLI2S ready interrupt.
+ @endif
+ */
+#define __HAL_RCC_DISABLE_IT(__INTERRUPT__) (*(__IO uint8_t *)RCC_CIR_BYTE1_ADDRESS &= (uint8_t)(~(__INTERRUPT__)))
+
+/** @brief Clear the RCC's interrupt pending bits.
+ * @param __INTERRUPT__ specifies the interrupt pending bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg @ref RCC_IT_LSIRDY LSI ready interrupt.
+ * @arg @ref RCC_IT_LSERDY LSE ready interrupt.
+ * @arg @ref RCC_IT_HSIRDY HSI ready interrupt.
+ * @arg @ref RCC_IT_HSERDY HSE ready interrupt.
+ * @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt.
+ @if STM32F105xx
+ * @arg @ref RCC_IT_PLL2RDY Main PLL2 ready interrupt.
+ * @arg @ref RCC_IT_PLLI2S2RDY Main PLLI2S ready interrupt.
+ @elsif STM32F107xx
+ * @arg @ref RCC_IT_PLL2RDY Main PLL2 ready interrupt.
+ * @arg @ref RCC_IT_PLLI2S2RDY Main PLLI2S ready interrupt.
+ @endif
+ * @arg @ref RCC_IT_CSS Clock Security System interrupt
+ */
+#define __HAL_RCC_CLEAR_IT(__INTERRUPT__) (*(__IO uint8_t *)RCC_CIR_BYTE2_ADDRESS = (__INTERRUPT__))
+
+/** @brief Check the RCC's interrupt has occurred or not.
+ * @param __INTERRUPT__ specifies the RCC interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_IT_LSIRDY LSI ready interrupt.
+ * @arg @ref RCC_IT_LSERDY LSE ready interrupt.
+ * @arg @ref RCC_IT_HSIRDY HSI ready interrupt.
+ * @arg @ref RCC_IT_HSERDY HSE ready interrupt.
+ * @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt.
+ @if STM32F105xx
+ * @arg @ref RCC_IT_PLL2RDY Main PLL2 ready interrupt.
+ * @arg @ref RCC_IT_PLLI2S2RDY Main PLLI2S ready interrupt.
+ @elsif STM32F107xx
+ * @arg @ref RCC_IT_PLL2RDY Main PLL2 ready interrupt.
+ * @arg @ref RCC_IT_PLLI2S2RDY Main PLLI2S ready interrupt.
+ @endif
+ * @arg @ref RCC_IT_CSS Clock Security System interrupt
+ * @retval The new state of __INTERRUPT__ (TRUE or FALSE).
+ */
+#define __HAL_RCC_GET_IT(__INTERRUPT__) ((RCC->CIR & (__INTERRUPT__)) == (__INTERRUPT__))
+
+/** @brief Set RMVF bit to clear the reset flags.
+ * The reset flags are RCC_FLAG_PINRST, RCC_FLAG_PORRST, RCC_FLAG_SFTRST,
+ * RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST
+ */
+#define __HAL_RCC_CLEAR_RESET_FLAGS() (*(__IO uint32_t *)RCC_CSR_RMVF_BB = ENABLE)
+
+/** @brief Check RCC flag is set or not.
+ * @param __FLAG__ specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_FLAG_HSIRDY HSI oscillator clock ready.
+ * @arg @ref RCC_FLAG_HSERDY HSE oscillator clock ready.
+ * @arg @ref RCC_FLAG_PLLRDY Main PLL clock ready.
+ @if STM32F105xx
+ * @arg @ref RCC_FLAG_PLL2RDY Main PLL2 clock ready.
+ * @arg @ref RCC_FLAG_PLLI2SRDY Main PLLI2S clock ready.
+ @elsif STM32F107xx
+ * @arg @ref RCC_FLAG_PLL2RDY Main PLL2 clock ready.
+ * @arg @ref RCC_FLAG_PLLI2SRDY Main PLLI2S clock ready.
+ @endif
+ * @arg @ref RCC_FLAG_LSERDY LSE oscillator clock ready.
+ * @arg @ref RCC_FLAG_LSIRDY LSI oscillator clock ready.
+ * @arg @ref RCC_FLAG_PINRST Pin reset.
+ * @arg @ref RCC_FLAG_PORRST POR/PDR reset.
+ * @arg @ref RCC_FLAG_SFTRST Software reset.
+ * @arg @ref RCC_FLAG_IWDGRST Independent Watchdog reset.
+ * @arg @ref RCC_FLAG_WWDGRST Window Watchdog reset.
+ * @arg @ref RCC_FLAG_LPWRRST Low Power reset.
+ * @retval The new state of __FLAG__ (TRUE or FALSE).
+ */
+#define __HAL_RCC_GET_FLAG(__FLAG__) (((((__FLAG__) >> 5U) == CR_REG_INDEX) ? RCC->CR : ((((__FLAG__) >> 5U) == BDCR_REG_INDEX) ? RCC->BDCR : RCC->CSR)) & (1U << ((__FLAG__)&RCC_FLAG_MASK)))
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Include RCC HAL Extension module */
+#include "stm32f1xx_hal_rcc_ex.h"
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup RCC_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup RCC_Exported_Functions_Group1
+ * @{
+ */
+
+/* Initialization and de-initialization functions ******************************/
+HAL_StatusTypeDef HAL_RCC_DeInit(void);
+HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
+HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency);
+
+/**
+ * @}
+ */
+
+/** @addtogroup RCC_Exported_Functions_Group2
+ * @{
+ */
+
+/* Peripheral Control functions ************************************************/
+void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv);
+void HAL_RCC_EnableCSS(void);
+void HAL_RCC_DisableCSS(void);
+uint32_t HAL_RCC_GetSysClockFreq(void);
+uint32_t HAL_RCC_GetHCLKFreq(void);
+uint32_t HAL_RCC_GetPCLK1Freq(void);
+uint32_t HAL_RCC_GetPCLK2Freq(void);
+void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
+void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency);
+
+/* CSS NMI IRQ handler */
+void HAL_RCC_NMI_IRQHandler(void);
+
+/* User Callbacks in non blocking mode (IT mode) */
+void HAL_RCC_CSSCallback(void);
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup RCC_Private_Constants
+ * @{
+ */
+
+/** @defgroup RCC_Timeout RCC Timeout
+ * @{
+ */
+
+/* Disable Backup domain write protection state change timeout */
+#define RCC_DBP_TIMEOUT_VALUE 100U /* 100 ms */
+/* LSE state change timeout */
+#define RCC_LSE_TIMEOUT_VALUE LSE_STARTUP_TIMEOUT
+#define CLOCKSWITCH_TIMEOUT_VALUE 5000 /* 5 s */
+#define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT
+#define HSI_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
+#define LSI_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
+#define PLL_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Register_Offset Register offsets
+ * @{
+ */
+#define RCC_OFFSET (RCC_BASE - PERIPH_BASE)
+#define RCC_CR_OFFSET 0x00U
+#define RCC_CFGR_OFFSET 0x04U
+#define RCC_CIR_OFFSET 0x08U
+#define RCC_BDCR_OFFSET 0x20U
+#define RCC_CSR_OFFSET 0x24U
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_BitAddress_AliasRegion BitAddress AliasRegion
+ * @brief RCC registers bit address in the alias region
+ * @{
+ */
+#define RCC_CR_OFFSET_BB (RCC_OFFSET + RCC_CR_OFFSET)
+#define RCC_CFGR_OFFSET_BB (RCC_OFFSET + RCC_CFGR_OFFSET)
+#define RCC_CIR_OFFSET_BB (RCC_OFFSET + RCC_CIR_OFFSET)
+#define RCC_BDCR_OFFSET_BB (RCC_OFFSET + RCC_BDCR_OFFSET)
+#define RCC_CSR_OFFSET_BB (RCC_OFFSET + RCC_CSR_OFFSET)
+
+/* --- CR Register ---*/
+/* Alias word address of HSION bit */
+#define RCC_HSION_BIT_NUMBER RCC_CR_HSION_Pos
+#define RCC_CR_HSION_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_CR_OFFSET_BB * 32U) + (RCC_HSION_BIT_NUMBER * 4U)))
+/* Alias word address of HSEON bit */
+#define RCC_HSEON_BIT_NUMBER RCC_CR_HSEON_Pos
+#define RCC_CR_HSEON_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_CR_OFFSET_BB * 32U) + (RCC_HSEON_BIT_NUMBER * 4U)))
+/* Alias word address of CSSON bit */
+#define RCC_CSSON_BIT_NUMBER RCC_CR_CSSON_Pos
+#define RCC_CR_CSSON_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_CR_OFFSET_BB * 32U) + (RCC_CSSON_BIT_NUMBER * 4U)))
+/* Alias word address of PLLON bit */
+#define RCC_PLLON_BIT_NUMBER RCC_CR_PLLON_Pos
+#define RCC_CR_PLLON_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_CR_OFFSET_BB * 32U) + (RCC_PLLON_BIT_NUMBER * 4U)))
+
+/* --- CSR Register ---*/
+/* Alias word address of LSION bit */
+#define RCC_LSION_BIT_NUMBER RCC_CSR_LSION_Pos
+#define RCC_CSR_LSION_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_CSR_OFFSET_BB * 32U) + (RCC_LSION_BIT_NUMBER * 4U)))
+
+/* Alias word address of RMVF bit */
+#define RCC_RMVF_BIT_NUMBER RCC_CSR_RMVF_Pos
+#define RCC_CSR_RMVF_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_CSR_OFFSET_BB * 32U) + (RCC_RMVF_BIT_NUMBER * 4U)))
+
+/* --- BDCR Registers ---*/
+/* Alias word address of LSEON bit */
+#define RCC_LSEON_BIT_NUMBER RCC_BDCR_LSEON_Pos
+#define RCC_BDCR_LSEON_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_BDCR_OFFSET_BB * 32U) + (RCC_LSEON_BIT_NUMBER * 4U)))
+
+/* Alias word address of LSEON bit */
+#define RCC_LSEBYP_BIT_NUMBER RCC_BDCR_LSEBYP_Pos
+#define RCC_BDCR_LSEBYP_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_BDCR_OFFSET_BB * 32U) + (RCC_LSEBYP_BIT_NUMBER * 4U)))
+
+/* Alias word address of RTCEN bit */
+#define RCC_RTCEN_BIT_NUMBER RCC_BDCR_RTCEN_Pos
+#define RCC_BDCR_RTCEN_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_BDCR_OFFSET_BB * 32U) + (RCC_RTCEN_BIT_NUMBER * 4U)))
+
+/* Alias word address of BDRST bit */
+#define RCC_BDRST_BIT_NUMBER RCC_BDCR_BDRST_Pos
+#define RCC_BDCR_BDRST_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_BDCR_OFFSET_BB * 32U) + (RCC_BDRST_BIT_NUMBER * 4U)))
+
+/**
+ * @}
+ */
+
+/* CR register byte 2 (Bits[23:16]) base address */
+#define RCC_CR_BYTE2_ADDRESS ((uint32_t)(RCC_BASE + RCC_CR_OFFSET + 0x02U))
+
+/* CIR register byte 1 (Bits[15:8]) base address */
+#define RCC_CIR_BYTE1_ADDRESS ((uint32_t)(RCC_BASE + RCC_CIR_OFFSET + 0x01U))
+
+/* CIR register byte 2 (Bits[23:16]) base address */
+#define RCC_CIR_BYTE2_ADDRESS ((uint32_t)(RCC_BASE + RCC_CIR_OFFSET + 0x02U))
+
+/* Defines used for Flags */
+#define CR_REG_INDEX ((uint8_t)1)
+#define BDCR_REG_INDEX ((uint8_t)2)
+#define CSR_REG_INDEX ((uint8_t)3)
+
+#define RCC_FLAG_MASK ((uint8_t)0x1F)
+
+/**
+ * @}
+ */
+
+/** @addtogroup RCC_Private_Macros
+ * @{
+ */
+/** @defgroup RCC_Alias_For_Legacy Alias define maintained for legacy
+ * @{
+ */
+#define __HAL_RCC_SYSCFG_CLK_DISABLE __HAL_RCC_AFIO_CLK_DISABLE
+#define __HAL_RCC_SYSCFG_CLK_ENABLE __HAL_RCC_AFIO_CLK_ENABLE
+#define __HAL_RCC_SYSCFG_FORCE_RESET __HAL_RCC_AFIO_FORCE_RESET
+#define __HAL_RCC_SYSCFG_RELEASE_RESET __HAL_RCC_AFIO_RELEASE_RESET
+/**
+ * @}
+ */
+
+#define IS_RCC_PLLSOURCE(__SOURCE__) (((__SOURCE__) == RCC_PLLSOURCE_HSI_DIV2) || ((__SOURCE__) == RCC_PLLSOURCE_HSE))
+#define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) \
+ (((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || (((__OSCILLATOR__)&RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || (((__OSCILLATOR__)&RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) \
+ || (((__OSCILLATOR__)&RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) || (((__OSCILLATOR__)&RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE))
+#define IS_RCC_HSE(__HSE__) (((__HSE__) == RCC_HSE_OFF) || ((__HSE__) == RCC_HSE_ON) || ((__HSE__) == RCC_HSE_BYPASS))
+#define IS_RCC_LSE(__LSE__) (((__LSE__) == RCC_LSE_OFF) || ((__LSE__) == RCC_LSE_ON) || ((__LSE__) == RCC_LSE_BYPASS))
+#define IS_RCC_HSI(__HSI__) (((__HSI__) == RCC_HSI_OFF) || ((__HSI__) == RCC_HSI_ON))
+#define IS_RCC_CALIBRATION_VALUE(__VALUE__) ((__VALUE__) <= 0x1FU)
+#define IS_RCC_LSI(__LSI__) (((__LSI__) == RCC_LSI_OFF) || ((__LSI__) == RCC_LSI_ON))
+#define IS_RCC_PLL(__PLL__) (((__PLL__) == RCC_PLL_NONE) || ((__PLL__) == RCC_PLL_OFF) || ((__PLL__) == RCC_PLL_ON))
+
+#define IS_RCC_CLOCKTYPE(CLK) \
+ ((((CLK)&RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) || (((CLK)&RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) || (((CLK)&RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) \
+ || (((CLK)&RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2))
+#define IS_RCC_SYSCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_HSI) || ((__SOURCE__) == RCC_SYSCLKSOURCE_HSE) || ((__SOURCE__) == RCC_SYSCLKSOURCE_PLLCLK))
+#define IS_RCC_SYSCLKSOURCE_STATUS(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_STATUS_HSI) || ((__SOURCE__) == RCC_SYSCLKSOURCE_STATUS_HSE) || ((__SOURCE__) == RCC_SYSCLKSOURCE_STATUS_PLLCLK))
+#define IS_RCC_HCLK(__HCLK__) \
+ (((__HCLK__) == RCC_SYSCLK_DIV1) || ((__HCLK__) == RCC_SYSCLK_DIV2) || ((__HCLK__) == RCC_SYSCLK_DIV4) || ((__HCLK__) == RCC_SYSCLK_DIV8) || ((__HCLK__) == RCC_SYSCLK_DIV16) \
+ || ((__HCLK__) == RCC_SYSCLK_DIV64) || ((__HCLK__) == RCC_SYSCLK_DIV128) || ((__HCLK__) == RCC_SYSCLK_DIV256) || ((__HCLK__) == RCC_SYSCLK_DIV512))
+#define IS_RCC_PCLK(__PCLK__) (((__PCLK__) == RCC_HCLK_DIV1) || ((__PCLK__) == RCC_HCLK_DIV2) || ((__PCLK__) == RCC_HCLK_DIV4) || ((__PCLK__) == RCC_HCLK_DIV8) || ((__PCLK__) == RCC_HCLK_DIV16))
+#define IS_RCC_MCO(__MCO__) ((__MCO__) == RCC_MCO)
+#define IS_RCC_MCODIV(__DIV__) (((__DIV__) == RCC_MCODIV_1))
+#define IS_RCC_RTCCLKSOURCE(__SOURCE__) \
+ (((__SOURCE__) == RCC_RTCCLKSOURCE_NO_CLK) || ((__SOURCE__) == RCC_RTCCLKSOURCE_LSE) || ((__SOURCE__) == RCC_RTCCLKSOURCE_LSI) || ((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV128))
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32F1xx_HAL_RCC_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc_ex.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc_ex.h new file mode 100644 index 00000000..feb71c6d --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc_ex.h @@ -0,0 +1,1860 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_rcc_ex.h
+ * @author MCD Application Team
+ * @brief Header file of RCC HAL Extension module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F1xx_HAL_RCC_EX_H
+#define __STM32F1xx_HAL_RCC_EX_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup RCCEx
+ * @{
+ */
+
+/** @addtogroup RCCEx_Private_Constants
+ * @{
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+
+/* Alias word address of PLLI2SON bit */
+#define PLLI2SON_BITNUMBER RCC_CR_PLL3ON_Pos
+#define RCC_CR_PLLI2SON_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_CR_OFFSET_BB * 32U) + (PLLI2SON_BITNUMBER * 4U)))
+/* Alias word address of PLL2ON bit */
+#define PLL2ON_BITNUMBER RCC_CR_PLL2ON_Pos
+#define RCC_CR_PLL2ON_BB ((uint32_t)(PERIPH_BB_BASE + (RCC_CR_OFFSET_BB * 32U) + (PLL2ON_BITNUMBER * 4U)))
+
+#define PLLI2S_TIMEOUT_VALUE 100U /* 100 ms */
+#define PLL2_TIMEOUT_VALUE 100U /* 100 ms */
+
+#endif /* STM32F105xC || STM32F107xC */
+
+#define CR_REG_INDEX ((uint8_t)1)
+
+/**
+ * @}
+ */
+
+/** @addtogroup RCCEx_Private_Macros
+ * @{
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define IS_RCC_PREDIV1_SOURCE(__SOURCE__) (((__SOURCE__) == RCC_PREDIV1_SOURCE_HSE) || ((__SOURCE__) == RCC_PREDIV1_SOURCE_PLL2))
+#endif /* STM32F105xC || STM32F107xC */
+
+#if defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F100xB) || defined(STM32F100xE)
+#define IS_RCC_HSE_PREDIV(__DIV__) \
+ (((__DIV__) == RCC_HSE_PREDIV_DIV1) || ((__DIV__) == RCC_HSE_PREDIV_DIV2) || ((__DIV__) == RCC_HSE_PREDIV_DIV3) || ((__DIV__) == RCC_HSE_PREDIV_DIV4) || ((__DIV__) == RCC_HSE_PREDIV_DIV5) \
+ || ((__DIV__) == RCC_HSE_PREDIV_DIV6) || ((__DIV__) == RCC_HSE_PREDIV_DIV7) || ((__DIV__) == RCC_HSE_PREDIV_DIV8) || ((__DIV__) == RCC_HSE_PREDIV_DIV9) || ((__DIV__) == RCC_HSE_PREDIV_DIV10) \
+ || ((__DIV__) == RCC_HSE_PREDIV_DIV11) || ((__DIV__) == RCC_HSE_PREDIV_DIV12) || ((__DIV__) == RCC_HSE_PREDIV_DIV13) || ((__DIV__) == RCC_HSE_PREDIV_DIV14) || ((__DIV__) == RCC_HSE_PREDIV_DIV15) \
+ || ((__DIV__) == RCC_HSE_PREDIV_DIV16))
+
+#else
+#define IS_RCC_HSE_PREDIV(__DIV__) (((__DIV__) == RCC_HSE_PREDIV_DIV1) || ((__DIV__) == RCC_HSE_PREDIV_DIV2))
+#endif /* STM32F105xC || STM32F107xC || STM32F100xB || STM32F100xE */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define IS_RCC_PLL_MUL(__MUL__) \
+ (((__MUL__) == RCC_PLL_MUL4) || ((__MUL__) == RCC_PLL_MUL5) || ((__MUL__) == RCC_PLL_MUL6) || ((__MUL__) == RCC_PLL_MUL7) || ((__MUL__) == RCC_PLL_MUL8) || ((__MUL__) == RCC_PLL_MUL9) \
+ || ((__MUL__) == RCC_PLL_MUL6_5))
+
+#define IS_RCC_MCO1SOURCE(__SOURCE__) \
+ (((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || ((__SOURCE__) == RCC_MCO1SOURCE_HSI) || ((__SOURCE__) == RCC_MCO1SOURCE_HSE) || ((__SOURCE__) == RCC_MCO1SOURCE_PLLCLK) \
+ || ((__SOURCE__) == RCC_MCO1SOURCE_PLL2CLK) || ((__SOURCE__) == RCC_MCO1SOURCE_PLL3CLK) || ((__SOURCE__) == RCC_MCO1SOURCE_PLL3CLK_DIV2) || ((__SOURCE__) == RCC_MCO1SOURCE_EXT_HSE) \
+ || ((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK))
+
+#else
+#define IS_RCC_PLL_MUL(__MUL__) \
+ (((__MUL__) == RCC_PLL_MUL2) || ((__MUL__) == RCC_PLL_MUL3) || ((__MUL__) == RCC_PLL_MUL4) || ((__MUL__) == RCC_PLL_MUL5) || ((__MUL__) == RCC_PLL_MUL6) || ((__MUL__) == RCC_PLL_MUL7) \
+ || ((__MUL__) == RCC_PLL_MUL8) || ((__MUL__) == RCC_PLL_MUL9) || ((__MUL__) == RCC_PLL_MUL10) || ((__MUL__) == RCC_PLL_MUL11) || ((__MUL__) == RCC_PLL_MUL12) || ((__MUL__) == RCC_PLL_MUL13) \
+ || ((__MUL__) == RCC_PLL_MUL14) || ((__MUL__) == RCC_PLL_MUL15) || ((__MUL__) == RCC_PLL_MUL16))
+
+#define IS_RCC_MCO1SOURCE(__SOURCE__) \
+ (((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || ((__SOURCE__) == RCC_MCO1SOURCE_HSI) || ((__SOURCE__) == RCC_MCO1SOURCE_HSE) || ((__SOURCE__) == RCC_MCO1SOURCE_PLLCLK) \
+ || ((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK))
+
+#endif /* STM32F105xC || STM32F107xC*/
+
+#define IS_RCC_ADCPLLCLK_DIV(__ADCCLK__) (((__ADCCLK__) == RCC_ADCPCLK2_DIV2) || ((__ADCCLK__) == RCC_ADCPCLK2_DIV4) || ((__ADCCLK__) == RCC_ADCPCLK2_DIV6) || ((__ADCCLK__) == RCC_ADCPCLK2_DIV8))
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define IS_RCC_I2S2CLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_I2S2CLKSOURCE_SYSCLK) || ((__SOURCE__) == RCC_I2S2CLKSOURCE_PLLI2S_VCO))
+
+#define IS_RCC_I2S3CLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_I2S3CLKSOURCE_SYSCLK) || ((__SOURCE__) == RCC_I2S3CLKSOURCE_PLLI2S_VCO))
+
+#define IS_RCC_USBPLLCLK_DIV(__USBCLK__) (((__USBCLK__) == RCC_USBCLKSOURCE_PLL_DIV2) || ((__USBCLK__) == RCC_USBCLKSOURCE_PLL_DIV3))
+
+#define IS_RCC_PLLI2S_MUL(__MUL__) \
+ (((__MUL__) == RCC_PLLI2S_MUL8) || ((__MUL__) == RCC_PLLI2S_MUL9) || ((__MUL__) == RCC_PLLI2S_MUL10) || ((__MUL__) == RCC_PLLI2S_MUL11) || ((__MUL__) == RCC_PLLI2S_MUL12) \
+ || ((__MUL__) == RCC_PLLI2S_MUL13) || ((__MUL__) == RCC_PLLI2S_MUL14) || ((__MUL__) == RCC_PLLI2S_MUL16) || ((__MUL__) == RCC_PLLI2S_MUL20))
+
+#define IS_RCC_HSE_PREDIV2(__DIV__) \
+ (((__DIV__) == RCC_HSE_PREDIV2_DIV1) || ((__DIV__) == RCC_HSE_PREDIV2_DIV2) || ((__DIV__) == RCC_HSE_PREDIV2_DIV3) || ((__DIV__) == RCC_HSE_PREDIV2_DIV4) || ((__DIV__) == RCC_HSE_PREDIV2_DIV5) \
+ || ((__DIV__) == RCC_HSE_PREDIV2_DIV6) || ((__DIV__) == RCC_HSE_PREDIV2_DIV7) || ((__DIV__) == RCC_HSE_PREDIV2_DIV8) || ((__DIV__) == RCC_HSE_PREDIV2_DIV9) || ((__DIV__) == RCC_HSE_PREDIV2_DIV10) \
+ || ((__DIV__) == RCC_HSE_PREDIV2_DIV11) || ((__DIV__) == RCC_HSE_PREDIV2_DIV12) || ((__DIV__) == RCC_HSE_PREDIV2_DIV13) || ((__DIV__) == RCC_HSE_PREDIV2_DIV14) \
+ || ((__DIV__) == RCC_HSE_PREDIV2_DIV15) || ((__DIV__) == RCC_HSE_PREDIV2_DIV16))
+
+#define IS_RCC_PLL2(__PLL__) (((__PLL__) == RCC_PLL2_NONE) || ((__PLL__) == RCC_PLL2_OFF) || ((__PLL__) == RCC_PLL2_ON))
+
+#define IS_RCC_PLL2_MUL(__MUL__) \
+ (((__MUL__) == RCC_PLL2_MUL8) || ((__MUL__) == RCC_PLL2_MUL9) || ((__MUL__) == RCC_PLL2_MUL10) || ((__MUL__) == RCC_PLL2_MUL11) || ((__MUL__) == RCC_PLL2_MUL12) || ((__MUL__) == RCC_PLL2_MUL13) \
+ || ((__MUL__) == RCC_PLL2_MUL14) || ((__MUL__) == RCC_PLL2_MUL16) || ((__MUL__) == RCC_PLL2_MUL20))
+
+#define IS_RCC_PERIPHCLOCK(__SELECTION__) \
+ ((((__SELECTION__)&RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC) || (((__SELECTION__)&RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC) || (((__SELECTION__)&RCC_PERIPHCLK_I2S2) == RCC_PERIPHCLK_I2S2) \
+ || (((__SELECTION__)&RCC_PERIPHCLK_I2S3) == RCC_PERIPHCLK_I2S3) || (((__SELECTION__)&RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB))
+
+#elif defined(STM32F103xE) || defined(STM32F103xG)
+
+#define IS_RCC_I2S2CLKSOURCE(__SOURCE__) ((__SOURCE__) == RCC_I2S2CLKSOURCE_SYSCLK)
+
+#define IS_RCC_I2S3CLKSOURCE(__SOURCE__) ((__SOURCE__) == RCC_I2S3CLKSOURCE_SYSCLK)
+
+#define IS_RCC_PERIPHCLOCK(__SELECTION__) \
+ ((((__SELECTION__)&RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC) || (((__SELECTION__)&RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC) || (((__SELECTION__)&RCC_PERIPHCLK_I2S2) == RCC_PERIPHCLK_I2S2) \
+ || (((__SELECTION__)&RCC_PERIPHCLK_I2S3) == RCC_PERIPHCLK_I2S3) || (((__SELECTION__)&RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB))
+
+#elif defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB)
+
+#define IS_RCC_PERIPHCLOCK(__SELECTION__) \
+ ((((__SELECTION__)&RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC) || (((__SELECTION__)&RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC) || (((__SELECTION__)&RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB))
+
+#else
+
+#define IS_RCC_PERIPHCLOCK(__SELECTION__) ((((__SELECTION__)&RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC) || (((__SELECTION__)&RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC))
+
+#endif /* STM32F105xC || STM32F107xC */
+
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)
+
+#define IS_RCC_USBPLLCLK_DIV(__USBCLK__) (((__USBCLK__) == RCC_USBCLKSOURCE_PLL) || ((__USBCLK__) == RCC_USBCLKSOURCE_PLL_DIV1_5))
+
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG */
+
+/**
+ * @}
+ */
+
+/* Exported types ------------------------------------------------------------*/
+
+/** @defgroup RCCEx_Exported_Types RCCEx Exported Types
+ * @{
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+/**
+ * @brief RCC PLL2 configuration structure definition
+ */
+typedef struct {
+ uint32_t PLL2State; /*!< The new state of the PLL2.
+ This parameter can be a value of @ref RCCEx_PLL2_Config */
+
+ uint32_t PLL2MUL; /*!< PLL2MUL: Multiplication factor for PLL2 VCO input clock
+ This parameter must be a value of @ref RCCEx_PLL2_Multiplication_Factor*/
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ uint32_t HSEPrediv2Value; /*!< The Prediv2 factor value.
+ This parameter can be a value of @ref RCCEx_Prediv2_Factor */
+
+#endif /* STM32F105xC || STM32F107xC */
+} RCC_PLL2InitTypeDef;
+
+#endif /* STM32F105xC || STM32F107xC */
+
+/**
+ * @brief RCC Internal/External Oscillator (HSE, HSI, LSE and LSI) configuration structure definition
+ */
+typedef struct {
+ uint32_t OscillatorType; /*!< The oscillators to be configured.
+ This parameter can be a value of @ref RCC_Oscillator_Type */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ uint32_t Prediv1Source; /*!< The Prediv1 source value.
+ This parameter can be a value of @ref RCCEx_Prediv1_Source */
+#endif /* STM32F105xC || STM32F107xC */
+
+ uint32_t HSEState; /*!< The new state of the HSE.
+ This parameter can be a value of @ref RCC_HSE_Config */
+
+ uint32_t HSEPredivValue; /*!< The Prediv1 factor value (named PREDIV1 or PLLXTPRE in RM)
+ This parameter can be a value of @ref RCCEx_Prediv1_Factor */
+
+ uint32_t LSEState; /*!< The new state of the LSE.
+ This parameter can be a value of @ref RCC_LSE_Config */
+
+ uint32_t HSIState; /*!< The new state of the HSI.
+ This parameter can be a value of @ref RCC_HSI_Config */
+
+ uint32_t HSICalibrationValue; /*!< The HSI calibration trimming value (default is RCC_HSICALIBRATION_DEFAULT).
+ This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x1F */
+
+ uint32_t LSIState; /*!< The new state of the LSI.
+ This parameter can be a value of @ref RCC_LSI_Config */
+
+ RCC_PLLInitTypeDef PLL; /*!< PLL structure parameters */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ RCC_PLL2InitTypeDef PLL2; /*!< PLL2 structure parameters */
+#endif /* STM32F105xC || STM32F107xC */
+} RCC_OscInitTypeDef;
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+/**
+ * @brief RCC PLLI2S configuration structure definition
+ */
+typedef struct {
+ uint32_t PLLI2SMUL; /*!< PLLI2SMUL: Multiplication factor for PLLI2S VCO input clock
+ This parameter must be a value of @ref RCCEx_PLLI2S_Multiplication_Factor*/
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ uint32_t HSEPrediv2Value; /*!< The Prediv2 factor value.
+ This parameter can be a value of @ref RCCEx_Prediv2_Factor */
+
+#endif /* STM32F105xC || STM32F107xC */
+} RCC_PLLI2SInitTypeDef;
+#endif /* STM32F105xC || STM32F107xC */
+
+/**
+ * @brief RCC extended clocks structure definition
+ */
+typedef struct {
+ uint32_t PeriphClockSelection; /*!< The Extended Clock to be configured.
+ This parameter can be a value of @ref RCCEx_Periph_Clock_Selection */
+
+ uint32_t RTCClockSelection; /*!< specifies the RTC clock source.
+ This parameter can be a value of @ref RCC_RTC_Clock_Source */
+
+ uint32_t AdcClockSelection; /*!< ADC clock source
+ This parameter can be a value of @ref RCCEx_ADC_Prescaler */
+
+#if defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+ uint32_t I2s2ClockSelection; /*!< I2S2 clock source
+ This parameter can be a value of @ref RCCEx_I2S2_Clock_Source */
+
+ uint32_t I2s3ClockSelection; /*!< I2S3 clock source
+ This parameter can be a value of @ref RCCEx_I2S3_Clock_Source */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ RCC_PLLI2SInitTypeDef PLLI2S; /*!< PLL I2S structure parameters
+ This parameter will be used only when PLLI2S is selected as Clock Source I2S2 or I2S3 */
+
+#endif /* STM32F105xC || STM32F107xC */
+#endif /* STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+ uint32_t UsbClockSelection; /*!< USB clock source
+ This parameter can be a value of @ref RCCEx_USB_Prescaler */
+
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+} RCC_PeriphCLKInitTypeDef;
+
+/**
+ * @}
+ */
+
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup RCCEx_Exported_Constants RCCEx Exported Constants
+ * @{
+ */
+
+/** @defgroup RCCEx_Periph_Clock_Selection Periph Clock Selection
+ * @{
+ */
+#define RCC_PERIPHCLK_RTC 0x00000001U
+#define RCC_PERIPHCLK_ADC 0x00000002U
+#if defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define RCC_PERIPHCLK_I2S2 0x00000004U
+#define RCC_PERIPHCLK_I2S3 0x00000008U
+#endif /* STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define RCC_PERIPHCLK_USB 0x00000010U
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_ADC_Prescaler ADC Prescaler
+ * @{
+ */
+#define RCC_ADCPCLK2_DIV2 RCC_CFGR_ADCPRE_DIV2
+#define RCC_ADCPCLK2_DIV4 RCC_CFGR_ADCPRE_DIV4
+#define RCC_ADCPCLK2_DIV6 RCC_CFGR_ADCPRE_DIV6
+#define RCC_ADCPCLK2_DIV8 RCC_CFGR_ADCPRE_DIV8
+
+/**
+ * @}
+ */
+
+#if defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+/** @defgroup RCCEx_I2S2_Clock_Source I2S2 Clock Source
+ * @{
+ */
+#define RCC_I2S2CLKSOURCE_SYSCLK 0x00000000U
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define RCC_I2S2CLKSOURCE_PLLI2S_VCO RCC_CFGR2_I2S2SRC
+#endif /* STM32F105xC || STM32F107xC */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_I2S3_Clock_Source I2S3 Clock Source
+ * @{
+ */
+#define RCC_I2S3CLKSOURCE_SYSCLK 0x00000000U
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define RCC_I2S3CLKSOURCE_PLLI2S_VCO RCC_CFGR2_I2S3SRC
+#endif /* STM32F105xC || STM32F107xC */
+
+/**
+ * @}
+ */
+
+#endif /* STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)
+
+/** @defgroup RCCEx_USB_Prescaler USB Prescaler
+ * @{
+ */
+#define RCC_USBCLKSOURCE_PLL RCC_CFGR_USBPRE
+#define RCC_USBCLKSOURCE_PLL_DIV1_5 0x00000000U
+
+/**
+ * @}
+ */
+
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+/** @defgroup RCCEx_USB_Prescaler USB Prescaler
+ * @{
+ */
+#define RCC_USBCLKSOURCE_PLL_DIV2 RCC_CFGR_OTGFSPRE
+#define RCC_USBCLKSOURCE_PLL_DIV3 0x00000000U
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_PLLI2S_Multiplication_Factor PLLI2S Multiplication Factor
+ * @{
+ */
+
+#define RCC_PLLI2S_MUL8 RCC_CFGR2_PLL3MUL8 /*!< PLLI2S input clock * 8 */
+#define RCC_PLLI2S_MUL9 RCC_CFGR2_PLL3MUL9 /*!< PLLI2S input clock * 9 */
+#define RCC_PLLI2S_MUL10 RCC_CFGR2_PLL3MUL10 /*!< PLLI2S input clock * 10 */
+#define RCC_PLLI2S_MUL11 RCC_CFGR2_PLL3MUL11 /*!< PLLI2S input clock * 11 */
+#define RCC_PLLI2S_MUL12 RCC_CFGR2_PLL3MUL12 /*!< PLLI2S input clock * 12 */
+#define RCC_PLLI2S_MUL13 RCC_CFGR2_PLL3MUL13 /*!< PLLI2S input clock * 13 */
+#define RCC_PLLI2S_MUL14 RCC_CFGR2_PLL3MUL14 /*!< PLLI2S input clock * 14 */
+#define RCC_PLLI2S_MUL16 RCC_CFGR2_PLL3MUL16 /*!< PLLI2S input clock * 16 */
+#define RCC_PLLI2S_MUL20 RCC_CFGR2_PLL3MUL20 /*!< PLLI2S input clock * 20 */
+
+/**
+ * @}
+ */
+#endif /* STM32F105xC || STM32F107xC */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+/** @defgroup RCCEx_Prediv1_Source Prediv1 Source
+ * @{
+ */
+
+#define RCC_PREDIV1_SOURCE_HSE RCC_CFGR2_PREDIV1SRC_HSE
+#define RCC_PREDIV1_SOURCE_PLL2 RCC_CFGR2_PREDIV1SRC_PLL2
+
+/**
+ * @}
+ */
+#endif /* STM32F105xC || STM32F107xC */
+
+/** @defgroup RCCEx_Prediv1_Factor HSE Prediv1 Factor
+ * @{
+ */
+
+#define RCC_HSE_PREDIV_DIV1 0x00000000U
+
+#if defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F100xB) || defined(STM32F100xE)
+#define RCC_HSE_PREDIV_DIV2 RCC_CFGR2_PREDIV1_DIV2
+#define RCC_HSE_PREDIV_DIV3 RCC_CFGR2_PREDIV1_DIV3
+#define RCC_HSE_PREDIV_DIV4 RCC_CFGR2_PREDIV1_DIV4
+#define RCC_HSE_PREDIV_DIV5 RCC_CFGR2_PREDIV1_DIV5
+#define RCC_HSE_PREDIV_DIV6 RCC_CFGR2_PREDIV1_DIV6
+#define RCC_HSE_PREDIV_DIV7 RCC_CFGR2_PREDIV1_DIV7
+#define RCC_HSE_PREDIV_DIV8 RCC_CFGR2_PREDIV1_DIV8
+#define RCC_HSE_PREDIV_DIV9 RCC_CFGR2_PREDIV1_DIV9
+#define RCC_HSE_PREDIV_DIV10 RCC_CFGR2_PREDIV1_DIV10
+#define RCC_HSE_PREDIV_DIV11 RCC_CFGR2_PREDIV1_DIV11
+#define RCC_HSE_PREDIV_DIV12 RCC_CFGR2_PREDIV1_DIV12
+#define RCC_HSE_PREDIV_DIV13 RCC_CFGR2_PREDIV1_DIV13
+#define RCC_HSE_PREDIV_DIV14 RCC_CFGR2_PREDIV1_DIV14
+#define RCC_HSE_PREDIV_DIV15 RCC_CFGR2_PREDIV1_DIV15
+#define RCC_HSE_PREDIV_DIV16 RCC_CFGR2_PREDIV1_DIV16
+#else
+#define RCC_HSE_PREDIV_DIV2 RCC_CFGR_PLLXTPRE
+#endif /* STM32F105xC || STM32F107xC || STM32F100xB || STM32F100xE */
+
+/**
+ * @}
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+/** @defgroup RCCEx_Prediv2_Factor HSE Prediv2 Factor
+ * @{
+ */
+
+#define RCC_HSE_PREDIV2_DIV1 RCC_CFGR2_PREDIV2_DIV1 /*!< PREDIV2 input clock not divided */
+#define RCC_HSE_PREDIV2_DIV2 RCC_CFGR2_PREDIV2_DIV2 /*!< PREDIV2 input clock divided by 2 */
+#define RCC_HSE_PREDIV2_DIV3 RCC_CFGR2_PREDIV2_DIV3 /*!< PREDIV2 input clock divided by 3 */
+#define RCC_HSE_PREDIV2_DIV4 RCC_CFGR2_PREDIV2_DIV4 /*!< PREDIV2 input clock divided by 4 */
+#define RCC_HSE_PREDIV2_DIV5 RCC_CFGR2_PREDIV2_DIV5 /*!< PREDIV2 input clock divided by 5 */
+#define RCC_HSE_PREDIV2_DIV6 RCC_CFGR2_PREDIV2_DIV6 /*!< PREDIV2 input clock divided by 6 */
+#define RCC_HSE_PREDIV2_DIV7 RCC_CFGR2_PREDIV2_DIV7 /*!< PREDIV2 input clock divided by 7 */
+#define RCC_HSE_PREDIV2_DIV8 RCC_CFGR2_PREDIV2_DIV8 /*!< PREDIV2 input clock divided by 8 */
+#define RCC_HSE_PREDIV2_DIV9 RCC_CFGR2_PREDIV2_DIV9 /*!< PREDIV2 input clock divided by 9 */
+#define RCC_HSE_PREDIV2_DIV10 RCC_CFGR2_PREDIV2_DIV10 /*!< PREDIV2 input clock divided by 10 */
+#define RCC_HSE_PREDIV2_DIV11 RCC_CFGR2_PREDIV2_DIV11 /*!< PREDIV2 input clock divided by 11 */
+#define RCC_HSE_PREDIV2_DIV12 RCC_CFGR2_PREDIV2_DIV12 /*!< PREDIV2 input clock divided by 12 */
+#define RCC_HSE_PREDIV2_DIV13 RCC_CFGR2_PREDIV2_DIV13 /*!< PREDIV2 input clock divided by 13 */
+#define RCC_HSE_PREDIV2_DIV14 RCC_CFGR2_PREDIV2_DIV14 /*!< PREDIV2 input clock divided by 14 */
+#define RCC_HSE_PREDIV2_DIV15 RCC_CFGR2_PREDIV2_DIV15 /*!< PREDIV2 input clock divided by 15 */
+#define RCC_HSE_PREDIV2_DIV16 RCC_CFGR2_PREDIV2_DIV16 /*!< PREDIV2 input clock divided by 16 */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_PLL2_Config PLL Config
+ * @{
+ */
+#define RCC_PLL2_NONE 0x00000000U
+#define RCC_PLL2_OFF 0x00000001U
+#define RCC_PLL2_ON 0x00000002U
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_PLL2_Multiplication_Factor PLL2 Multiplication Factor
+ * @{
+ */
+
+#define RCC_PLL2_MUL8 RCC_CFGR2_PLL2MUL8 /*!< PLL2 input clock * 8 */
+#define RCC_PLL2_MUL9 RCC_CFGR2_PLL2MUL9 /*!< PLL2 input clock * 9 */
+#define RCC_PLL2_MUL10 RCC_CFGR2_PLL2MUL10 /*!< PLL2 input clock * 10 */
+#define RCC_PLL2_MUL11 RCC_CFGR2_PLL2MUL11 /*!< PLL2 input clock * 11 */
+#define RCC_PLL2_MUL12 RCC_CFGR2_PLL2MUL12 /*!< PLL2 input clock * 12 */
+#define RCC_PLL2_MUL13 RCC_CFGR2_PLL2MUL13 /*!< PLL2 input clock * 13 */
+#define RCC_PLL2_MUL14 RCC_CFGR2_PLL2MUL14 /*!< PLL2 input clock * 14 */
+#define RCC_PLL2_MUL16 RCC_CFGR2_PLL2MUL16 /*!< PLL2 input clock * 16 */
+#define RCC_PLL2_MUL20 RCC_CFGR2_PLL2MUL20 /*!< PLL2 input clock * 20 */
+
+/**
+ * @}
+ */
+
+#endif /* STM32F105xC || STM32F107xC */
+
+/** @defgroup RCCEx_PLL_Multiplication_Factor PLL Multiplication Factor
+ * @{
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#else
+#define RCC_PLL_MUL2 RCC_CFGR_PLLMULL2
+#define RCC_PLL_MUL3 RCC_CFGR_PLLMULL3
+#endif /* STM32F105xC || STM32F107xC */
+#define RCC_PLL_MUL4 RCC_CFGR_PLLMULL4
+#define RCC_PLL_MUL5 RCC_CFGR_PLLMULL5
+#define RCC_PLL_MUL6 RCC_CFGR_PLLMULL6
+#define RCC_PLL_MUL7 RCC_CFGR_PLLMULL7
+#define RCC_PLL_MUL8 RCC_CFGR_PLLMULL8
+#define RCC_PLL_MUL9 RCC_CFGR_PLLMULL9
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define RCC_PLL_MUL6_5 RCC_CFGR_PLLMULL6_5
+#else
+#define RCC_PLL_MUL10 RCC_CFGR_PLLMULL10
+#define RCC_PLL_MUL11 RCC_CFGR_PLLMULL11
+#define RCC_PLL_MUL12 RCC_CFGR_PLLMULL12
+#define RCC_PLL_MUL13 RCC_CFGR_PLLMULL13
+#define RCC_PLL_MUL14 RCC_CFGR_PLLMULL14
+#define RCC_PLL_MUL15 RCC_CFGR_PLLMULL15
+#define RCC_PLL_MUL16 RCC_CFGR_PLLMULL16
+#endif /* STM32F105xC || STM32F107xC */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_MCO1_Clock_Source MCO1 Clock Source
+ * @{
+ */
+#define RCC_MCO1SOURCE_NOCLOCK ((uint32_t)RCC_CFGR_MCO_NOCLOCK)
+#define RCC_MCO1SOURCE_SYSCLK ((uint32_t)RCC_CFGR_MCO_SYSCLK)
+#define RCC_MCO1SOURCE_HSI ((uint32_t)RCC_CFGR_MCO_HSI)
+#define RCC_MCO1SOURCE_HSE ((uint32_t)RCC_CFGR_MCO_HSE)
+#define RCC_MCO1SOURCE_PLLCLK ((uint32_t)RCC_CFGR_MCO_PLLCLK_DIV2)
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define RCC_MCO1SOURCE_PLL2CLK ((uint32_t)RCC_CFGR_MCO_PLL2CLK)
+#define RCC_MCO1SOURCE_PLL3CLK_DIV2 ((uint32_t)RCC_CFGR_MCO_PLL3CLK_DIV2)
+#define RCC_MCO1SOURCE_EXT_HSE ((uint32_t)RCC_CFGR_MCO_EXT_HSE)
+#define RCC_MCO1SOURCE_PLL3CLK ((uint32_t)RCC_CFGR_MCO_PLL3CLK)
+#endif /* STM32F105xC || STM32F107xC*/
+/**
+ * @}
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+/** @defgroup RCCEx_Interrupt RCCEx Interrupt
+ * @{
+ */
+#define RCC_IT_PLL2RDY ((uint8_t)RCC_CIR_PLL2RDYF)
+#define RCC_IT_PLLI2SRDY ((uint8_t)RCC_CIR_PLL3RDYF)
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_Flag RCCEx Flag
+ * Elements values convention: 0XXYYYYYb
+ * - YYYYY : Flag position in the register
+ * - XX : Register index
+ * - 01: CR register
+ * @{
+ */
+/* Flags in the CR register */
+#define RCC_FLAG_PLL2RDY ((uint8_t)((CR_REG_INDEX << 5U) | RCC_CR_PLL2RDY_Pos))
+#define RCC_FLAG_PLLI2SRDY ((uint8_t)((CR_REG_INDEX << 5U) | RCC_CR_PLL3RDY_Pos))
+/**
+ * @}
+ */
+#endif /* STM32F105xC || STM32F107xC*/
+
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+/** @defgroup RCCEx_Exported_Macros RCCEx Exported Macros
+ * @{
+ */
+
+/** @defgroup RCCEx_Peripheral_Clock_Enable_Disable Peripheral Clock Enable Disable
+ * @brief Enable or disable the AHB1 peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F100xE)
+#define __HAL_RCC_DMA2_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->AHBENR, RCC_AHBENR_DMA2EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA2EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_DMA2_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_DMA2EN))
+#endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG || STM32F105xC || STM32F107xC || STM32F100xE */
+
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG) || defined(STM32F100xE)
+#define __HAL_RCC_FSMC_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_FSMC_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_FSMCEN))
+#endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG || STM32F100xE */
+
+#if defined(STM32F103xE) || defined(STM32F103xG)
+#define __HAL_RCC_SDIO_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->AHBENR, RCC_AHBENR_SDIOEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_SDIOEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_SDIO_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_SDIOEN))
+#endif /* STM32F103xE || STM32F103xG */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_USB_OTG_FS_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->AHBENR, RCC_AHBENR_OTGFSEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_OTGFSEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_USB_OTG_FS_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_OTGFSEN))
+#endif /* STM32F105xC || STM32F107xC*/
+
+#if defined(STM32F107xC)
+#define __HAL_RCC_ETHMAC_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->AHBENR, RCC_AHBENR_ETHMACEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_ETHMACEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_ETHMACTX_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->AHBENR, RCC_AHBENR_ETHMACTXEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_ETHMACTXEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_ETHMACRX_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->AHBENR, RCC_AHBENR_ETHMACRXEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_ETHMACRXEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_ETHMAC_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_ETHMACEN))
+#define __HAL_RCC_ETHMACTX_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_ETHMACTXEN))
+#define __HAL_RCC_ETHMACRX_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_ETHMACRXEN))
+
+/**
+ * @brief Enable ETHERNET clock.
+ */
+#define __HAL_RCC_ETH_CLK_ENABLE() \
+ do { \
+ __HAL_RCC_ETHMAC_CLK_ENABLE(); \
+ __HAL_RCC_ETHMACTX_CLK_ENABLE(); \
+ __HAL_RCC_ETHMACRX_CLK_ENABLE(); \
+ } while (0U)
+/**
+ * @brief Disable ETHERNET clock.
+ */
+#define __HAL_RCC_ETH_CLK_DISABLE() \
+ do { \
+ __HAL_RCC_ETHMACTX_CLK_DISABLE(); \
+ __HAL_RCC_ETHMACRX_CLK_DISABLE(); \
+ __HAL_RCC_ETHMAC_CLK_DISABLE(); \
+ } while (0U)
+
+#endif /* STM32F107xC*/
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_AHB1_Peripheral_Clock_Enable_Disable_Status AHB1 Peripheral Clock Enable Disable Status
+ * @brief Get the enable or disable status of the AHB1 peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F100xE)
+#define __HAL_RCC_DMA2_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_DMA2EN)) != RESET)
+#define __HAL_RCC_DMA2_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_DMA2EN)) == RESET)
+#endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG || STM32F105xC || STM32F107xC || STM32F100xE */
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG) || defined(STM32F100xE)
+#define __HAL_RCC_FSMC_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_FSMCEN)) != RESET)
+#define __HAL_RCC_FSMC_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_FSMCEN)) == RESET)
+#endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG || STM32F100xE */
+#if defined(STM32F103xE) || defined(STM32F103xG)
+#define __HAL_RCC_SDIO_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_SDIOEN)) != RESET)
+#define __HAL_RCC_SDIO_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_SDIOEN)) == RESET)
+#endif /* STM32F103xE || STM32F103xG */
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_USB_OTG_FS_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_OTGFSEN)) != RESET)
+#define __HAL_RCC_USB_OTG_FS_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_OTGFSEN)) == RESET)
+#endif /* STM32F105xC || STM32F107xC*/
+#if defined(STM32F107xC)
+#define __HAL_RCC_ETHMAC_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_ETHMACEN)) != RESET)
+#define __HAL_RCC_ETHMAC_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_ETHMACEN)) == RESET)
+#define __HAL_RCC_ETHMACTX_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_ETHMACTXEN)) != RESET)
+#define __HAL_RCC_ETHMACTX_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_ETHMACTXEN)) == RESET)
+#define __HAL_RCC_ETHMACRX_IS_CLK_ENABLED() ((RCC->AHBENR & (RCC_AHBENR_ETHMACRXEN)) != RESET)
+#define __HAL_RCC_ETHMACRX_IS_CLK_DISABLED() ((RCC->AHBENR & (RCC_AHBENR_ETHMACRXEN)) == RESET)
+#endif /* STM32F107xC*/
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_APB1_Clock_Enable_Disable APB1 Clock Enable Disable
+ * @brief Enable or disable the Low Speed APB (APB1) peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_CAN1_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_CAN1EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_CAN1EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_CAN1_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_CAN1EN))
+#endif /* STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+
+#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F101xB) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F102xB) || defined(STM32F103xB) || defined(STM32F103xE) \
+ || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_TIM4_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM4EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM4EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_SPI2_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_SPI2EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_SPI2EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_USART3_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_USART3EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_USART3EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_I2C2_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C2EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C2EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM4_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM4EN))
+#define __HAL_RCC_SPI2_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_SPI2EN))
+#define __HAL_RCC_USART3_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_USART3EN))
+#define __HAL_RCC_I2C2_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_I2C2EN))
+#endif /* STM32F100xB || STM32F101xB || STM32F101xE || (...) || STM32F105xC || STM32F107xC */
+
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)
+#define __HAL_RCC_USB_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_USBEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_USBEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_USB_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_USBEN))
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG */
+
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_TIM5_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM5EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM5EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM6_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM6EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM6EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM7_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM7EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM7EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_SPI3_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_SPI3EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_SPI3EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_UART4_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_UART4EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_UART4EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_UART5_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_UART5EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_UART5EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_DAC_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_DACEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_DACEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM5_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM5EN))
+#define __HAL_RCC_TIM6_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM6EN))
+#define __HAL_RCC_TIM7_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM7EN))
+#define __HAL_RCC_SPI3_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_SPI3EN))
+#define __HAL_RCC_UART4_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_UART4EN))
+#define __HAL_RCC_UART5_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_UART5EN))
+#define __HAL_RCC_DAC_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_DACEN))
+#endif /* STM32F101xE || STM32F103xE || STM32F101xG || (...) || STM32F105xC || STM32F107xC */
+
+#if defined(STM32F100xB) || defined(STM32F100xE)
+#define __HAL_RCC_TIM6_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM6EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM6EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM7_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM7EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM7EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_DAC_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_DACEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_DACEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_CEC_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_CECEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_CECEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM6_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM6EN))
+#define __HAL_RCC_TIM7_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM7EN))
+#define __HAL_RCC_DAC_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_DACEN))
+#define __HAL_RCC_CEC_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_CECEN))
+#endif /* STM32F100xB || STM32F100xE */
+
+#ifdef STM32F100xE
+#define __HAL_RCC_TIM5_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM5EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM5EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM12_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM12EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM12EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM13_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM13EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM13EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM14_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM14EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM14EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_SPI3_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_SPI3EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_SPI3EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_UART4_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_UART4EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_UART4EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_UART5_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_UART5EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_UART5EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM5_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM5EN))
+#define __HAL_RCC_TIM12_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM12EN))
+#define __HAL_RCC_TIM13_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM13EN))
+#define __HAL_RCC_TIM14_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM14EN))
+#define __HAL_RCC_SPI3_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_SPI3EN))
+#define __HAL_RCC_UART4_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_UART4EN))
+#define __HAL_RCC_UART5_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_UART5EN))
+#endif /* STM32F100xE */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_CAN2_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_CAN2EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_CAN2EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_CAN2_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_CAN2EN))
+#endif /* STM32F105xC || STM32F107xC */
+
+#if defined(STM32F101xG) || defined(STM32F103xG)
+#define __HAL_RCC_TIM12_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM12EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM12EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM13_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM13EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM13EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM14_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM14EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM14EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM12_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM12EN))
+#define __HAL_RCC_TIM13_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM13EN))
+#define __HAL_RCC_TIM14_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM14EN))
+#endif /* STM32F101xG || STM32F103xG*/
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_APB1_Peripheral_Clock_Enable_Disable_Status APB1 Peripheral Clock Enable Disable Status
+ * @brief Get the enable or disable status of the APB1 peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_CAN1_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CAN1EN)) != RESET)
+#define __HAL_RCC_CAN1_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CAN1EN)) == RESET)
+#endif /* STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F101xB) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F102xB) || defined(STM32F103xB) || defined(STM32F103xE) \
+ || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_TIM4_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM4EN)) != RESET)
+#define __HAL_RCC_TIM4_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM4EN)) == RESET)
+#define __HAL_RCC_SPI2_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_SPI2EN)) != RESET)
+#define __HAL_RCC_SPI2_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_SPI2EN)) == RESET)
+#define __HAL_RCC_USART3_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_USART3EN)) != RESET)
+#define __HAL_RCC_USART3_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_USART3EN)) == RESET)
+#define __HAL_RCC_I2C2_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C2EN)) != RESET)
+#define __HAL_RCC_I2C2_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C2EN)) == RESET)
+#endif /* STM32F100xB || STM32F101xB || STM32F101xE || (...) || STM32F105xC || STM32F107xC */
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)
+#define __HAL_RCC_USB_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_USBEN)) != RESET)
+#define __HAL_RCC_USB_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_USBEN)) == RESET)
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG */
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_TIM5_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM5EN)) != RESET)
+#define __HAL_RCC_TIM5_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM5EN)) == RESET)
+#define __HAL_RCC_TIM6_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM6EN)) != RESET)
+#define __HAL_RCC_TIM6_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM6EN)) == RESET)
+#define __HAL_RCC_TIM7_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM7EN)) != RESET)
+#define __HAL_RCC_TIM7_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM7EN)) == RESET)
+#define __HAL_RCC_SPI3_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_SPI3EN)) != RESET)
+#define __HAL_RCC_SPI3_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_SPI3EN)) == RESET)
+#define __HAL_RCC_UART4_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART4EN)) != RESET)
+#define __HAL_RCC_UART4_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART4EN)) == RESET)
+#define __HAL_RCC_UART5_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART5EN)) != RESET)
+#define __HAL_RCC_UART5_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART5EN)) == RESET)
+#define __HAL_RCC_DAC_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_DACEN)) != RESET)
+#define __HAL_RCC_DAC_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_DACEN)) == RESET)
+#endif /* STM32F101xE || STM32F103xE || STM32F101xG || (...) || STM32F105xC || STM32F107xC */
+#if defined(STM32F100xB) || defined(STM32F100xE)
+#define __HAL_RCC_TIM6_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM6EN)) != RESET)
+#define __HAL_RCC_TIM6_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM6EN)) == RESET)
+#define __HAL_RCC_TIM7_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM7EN)) != RESET)
+#define __HAL_RCC_TIM7_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM7EN)) == RESET)
+#define __HAL_RCC_DAC_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_DACEN)) != RESET)
+#define __HAL_RCC_DAC_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_DACEN)) == RESET)
+#define __HAL_RCC_CEC_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CECEN)) != RESET)
+#define __HAL_RCC_CEC_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CECEN)) == RESET)
+#endif /* STM32F100xB || STM32F100xE */
+#ifdef STM32F100xE
+#define __HAL_RCC_TIM5_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM5EN)) != RESET)
+#define __HAL_RCC_TIM5_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM5EN)) == RESET)
+#define __HAL_RCC_TIM12_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM12EN)) != RESET)
+#define __HAL_RCC_TIM12_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM12EN)) == RESET)
+#define __HAL_RCC_TIM13_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM13EN)) != RESET)
+#define __HAL_RCC_TIM13_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM13EN)) == RESET)
+#define __HAL_RCC_TIM14_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM14EN)) != RESET)
+#define __HAL_RCC_TIM14_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM14EN)) == RESET)
+#define __HAL_RCC_SPI3_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_SPI3EN)) != RESET)
+#define __HAL_RCC_SPI3_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_SPI3EN)) == RESET)
+#define __HAL_RCC_UART4_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART4EN)) != RESET)
+#define __HAL_RCC_UART4_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART4EN)) == RESET)
+#define __HAL_RCC_UART5_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART5EN)) != RESET)
+#define __HAL_RCC_UART5_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART5EN)) == RESET)
+#define __HAL_RCC_CAN2_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CAN2EN)) != RESET)
+#define __HAL_RCC_CAN2_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CAN2EN)) == RESET)
+#endif /* STM32F100xE */
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_TIM12_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM12EN)) != RESET)
+#define __HAL_RCC_TIM12_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM12EN)) == RESET)
+#endif /* STM32F105xC || STM32F107xC */
+#if defined(STM32F101xG) || defined(STM32F103xG)
+#define __HAL_RCC_TIM13_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM13EN)) != RESET)
+#define __HAL_RCC_TIM13_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM13EN)) == RESET)
+#define __HAL_RCC_TIM14_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM14EN)) != RESET)
+#define __HAL_RCC_TIM14_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM14EN)) == RESET)
+#endif /* STM32F101xG || STM32F103xG*/
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_APB2_Clock_Enable_Disable APB2 Clock Enable Disable
+ * @brief Enable or disable the High Speed APB (APB2) peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+
+#if defined(STM32F101xG) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+#define __HAL_RCC_ADC2_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC2EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC2EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_ADC2_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_ADC2EN))
+#endif /* STM32F101xG || STM32F103x6 || STM32F103xB || STM32F105xC || STM32F107xC || STM32F103xE || STM32F103xG */
+
+#if defined(STM32F100xB) || defined(STM32F100xE)
+#define __HAL_RCC_TIM15_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM15EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM15EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM16_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM16EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM16EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM17_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM17EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM17EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM15_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM15EN))
+#define __HAL_RCC_TIM16_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM16EN))
+#define __HAL_RCC_TIM17_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM17EN))
+#endif /* STM32F100xB || STM32F100xE */
+
+#if defined(STM32F100xE) || defined(STM32F101xB) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F100xB) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) \
+ || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_GPIOE_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPEEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPEEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_GPIOE_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_IOPEEN))
+#endif /* STM32F101x6 || STM32F101xB || STM32F101xE || (...) || STM32F105xC || STM32F107xC */
+
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG)
+#define __HAL_RCC_GPIOF_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPFEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPFEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_GPIOG_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPGEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPGEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_GPIOF_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_IOPFEN))
+#define __HAL_RCC_GPIOG_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_IOPGEN))
+#endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG*/
+
+#if defined(STM32F103xE) || defined(STM32F103xG)
+#define __HAL_RCC_TIM8_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM8EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM8EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_ADC3_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC3EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC3EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM8_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM8EN))
+#define __HAL_RCC_ADC3_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_ADC3EN))
+#endif /* STM32F103xE || STM32F103xG */
+
+#if defined(STM32F100xE)
+#define __HAL_RCC_GPIOF_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPFEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPFEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_GPIOG_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPGEN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPGEN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_GPIOF_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_IOPFEN))
+#define __HAL_RCC_GPIOG_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_IOPGEN))
+#endif /* STM32F100xE */
+
+#if defined(STM32F101xG) || defined(STM32F103xG)
+#define __HAL_RCC_TIM9_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM9EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM9EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM10_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM10EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM10EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM11_CLK_ENABLE() \
+ do { \
+ __IO uint32_t tmpreg; \
+ SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM11EN); \
+ /* Delay after an RCC peripheral clock enabling */ \
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM11EN); \
+ UNUSED(tmpreg); \
+ } while (0U)
+
+#define __HAL_RCC_TIM9_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM9EN))
+#define __HAL_RCC_TIM10_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM10EN))
+#define __HAL_RCC_TIM11_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM11EN))
+#endif /* STM32F101xG || STM32F103xG */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_APB2_Peripheral_Clock_Enable_Disable_Status APB2 Peripheral Clock Enable Disable Status
+ * @brief Get the enable or disable status of the APB2 peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @{
+ */
+
+#if defined(STM32F101xG) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+#define __HAL_RCC_ADC2_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC2EN)) != RESET)
+#define __HAL_RCC_ADC2_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC2EN)) == RESET)
+#endif /* STM32F101xG || STM32F103x6 || STM32F103xB || STM32F105xC || STM32F107xC || STM32F103xE || STM32F103xG */
+#if defined(STM32F100xB) || defined(STM32F100xE)
+#define __HAL_RCC_TIM15_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM15EN)) != RESET)
+#define __HAL_RCC_TIM15_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM15EN)) == RESET)
+#define __HAL_RCC_TIM16_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM16EN)) != RESET)
+#define __HAL_RCC_TIM16_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM16EN)) == RESET)
+#define __HAL_RCC_TIM17_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM17EN)) != RESET)
+#define __HAL_RCC_TIM17_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM17EN)) == RESET)
+#endif /* STM32F100xB || STM32F100xE */
+#if defined(STM32F100xE) || defined(STM32F101xB) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F100xB) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) \
+ || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_GPIOE_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPEEN)) != RESET)
+#define __HAL_RCC_GPIOE_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPEEN)) == RESET)
+#endif /* STM32F101x6 || STM32F101xB || STM32F101xE || (...) || STM32F105xC || STM32F107xC */
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG)
+#define __HAL_RCC_GPIOF_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPFEN)) != RESET)
+#define __HAL_RCC_GPIOF_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPFEN)) == RESET)
+#define __HAL_RCC_GPIOG_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPGEN)) != RESET)
+#define __HAL_RCC_GPIOG_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPGEN)) == RESET)
+#endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG*/
+#if defined(STM32F103xE) || defined(STM32F103xG)
+#define __HAL_RCC_TIM8_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM8EN)) != RESET)
+#define __HAL_RCC_TIM8_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM8EN)) == RESET)
+#define __HAL_RCC_ADC3_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC3EN)) != RESET)
+#define __HAL_RCC_ADC3_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC3EN)) == RESET)
+#endif /* STM32F103xE || STM32F103xG */
+#if defined(STM32F100xE)
+#define __HAL_RCC_GPIOF_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPFEN)) != RESET)
+#define __HAL_RCC_GPIOF_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPFEN)) == RESET)
+#define __HAL_RCC_GPIOG_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPGEN)) != RESET)
+#define __HAL_RCC_GPIOG_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_IOPGEN)) == RESET)
+#endif /* STM32F100xE */
+#if defined(STM32F101xG) || defined(STM32F103xG)
+#define __HAL_RCC_TIM9_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM9EN)) != RESET)
+#define __HAL_RCC_TIM9_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM9EN)) == RESET)
+#define __HAL_RCC_TIM10_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM10EN)) != RESET)
+#define __HAL_RCC_TIM10_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM10EN)) == RESET)
+#define __HAL_RCC_TIM11_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM11EN)) != RESET)
+#define __HAL_RCC_TIM11_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM11EN)) == RESET)
+#endif /* STM32F101xG || STM32F103xG */
+
+/**
+ * @}
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+/** @defgroup RCCEx_Peripheral_Clock_Force_Release Peripheral Clock Force Release
+ * @brief Force or release AHB peripheral reset.
+ * @{
+ */
+#define __HAL_RCC_AHB_FORCE_RESET() (RCC->AHBRSTR = 0xFFFFFFFFU)
+#define __HAL_RCC_USB_OTG_FS_FORCE_RESET() (RCC->AHBRSTR |= (RCC_AHBRSTR_OTGFSRST))
+#if defined(STM32F107xC)
+#define __HAL_RCC_ETHMAC_FORCE_RESET() (RCC->AHBRSTR |= (RCC_AHBRSTR_ETHMACRST))
+#endif /* STM32F107xC */
+
+#define __HAL_RCC_AHB_RELEASE_RESET() (RCC->AHBRSTR = 0x00)
+#define __HAL_RCC_USB_OTG_FS_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_OTGFSRST))
+#if defined(STM32F107xC)
+#define __HAL_RCC_ETHMAC_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_ETHMACRST))
+#endif /* STM32F107xC */
+
+/**
+ * @}
+ */
+#endif /* STM32F105xC || STM32F107xC */
+
+/** @defgroup RCCEx_APB1_Force_Release_Reset APB1 Force Release Reset
+ * @brief Force or release APB1 peripheral reset.
+ * @{
+ */
+
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_CAN1_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_CAN1RST))
+
+#define __HAL_RCC_CAN1_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_CAN1RST))
+#endif /* STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+
+#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F101xB) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F102xB) || defined(STM32F103xB) || defined(STM32F103xE) \
+ || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_TIM4_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM4RST))
+#define __HAL_RCC_SPI2_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_SPI2RST))
+#define __HAL_RCC_USART3_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_USART3RST))
+#define __HAL_RCC_I2C2_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_I2C2RST))
+
+#define __HAL_RCC_TIM4_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM4RST))
+#define __HAL_RCC_SPI2_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_SPI2RST))
+#define __HAL_RCC_USART3_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_USART3RST))
+#define __HAL_RCC_I2C2_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C2RST))
+#endif /* STM32F100xB || STM32F101xB || STM32F101xE || (...) || STM32F105xC || STM32F107xC */
+
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)
+#define __HAL_RCC_USB_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_USBRST))
+#define __HAL_RCC_USB_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_USBRST))
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG */
+
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_TIM5_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM5RST))
+#define __HAL_RCC_TIM6_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM6RST))
+#define __HAL_RCC_TIM7_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM7RST))
+#define __HAL_RCC_SPI3_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_SPI3RST))
+#define __HAL_RCC_UART4_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_UART4RST))
+#define __HAL_RCC_UART5_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_UART5RST))
+#define __HAL_RCC_DAC_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_DACRST))
+
+#define __HAL_RCC_TIM5_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM5RST))
+#define __HAL_RCC_TIM6_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM6RST))
+#define __HAL_RCC_TIM7_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM7RST))
+#define __HAL_RCC_SPI3_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_SPI3RST))
+#define __HAL_RCC_UART4_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_UART4RST))
+#define __HAL_RCC_UART5_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_UART5RST))
+#define __HAL_RCC_DAC_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_DACRST))
+#endif /* STM32F101xE || STM32F103xE || STM32F101xG || (...) || STM32F105xC || STM32F107xC */
+
+#if defined(STM32F100xB) || defined(STM32F100xE)
+#define __HAL_RCC_TIM6_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM6RST))
+#define __HAL_RCC_TIM7_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM7RST))
+#define __HAL_RCC_DAC_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_DACRST))
+#define __HAL_RCC_CEC_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_CECRST))
+
+#define __HAL_RCC_TIM6_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM6RST))
+#define __HAL_RCC_TIM7_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM7RST))
+#define __HAL_RCC_DAC_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_DACRST))
+#define __HAL_RCC_CEC_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_CECRST))
+#endif /* STM32F100xB || STM32F100xE */
+
+#if defined(STM32F100xE)
+#define __HAL_RCC_TIM5_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM5RST))
+#define __HAL_RCC_TIM12_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM12RST))
+#define __HAL_RCC_TIM13_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM13RST))
+#define __HAL_RCC_TIM14_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM14RST))
+#define __HAL_RCC_SPI3_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_SPI3RST))
+#define __HAL_RCC_UART4_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_UART4RST))
+#define __HAL_RCC_UART5_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_UART5RST))
+
+#define __HAL_RCC_TIM5_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM5RST))
+#define __HAL_RCC_TIM12_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM12RST))
+#define __HAL_RCC_TIM13_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM13RST))
+#define __HAL_RCC_TIM14_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM14RST))
+#define __HAL_RCC_SPI3_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_SPI3RST))
+#define __HAL_RCC_UART4_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_UART4RST))
+#define __HAL_RCC_UART5_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_UART5RST))
+#endif /* STM32F100xE */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_CAN2_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_CAN2RST))
+
+#define __HAL_RCC_CAN2_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_CAN2RST))
+#endif /* STM32F105xC || STM32F107xC */
+
+#if defined(STM32F101xG) || defined(STM32F103xG)
+#define __HAL_RCC_TIM12_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM12RST))
+#define __HAL_RCC_TIM13_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM13RST))
+#define __HAL_RCC_TIM14_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM14RST))
+
+#define __HAL_RCC_TIM12_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM12RST))
+#define __HAL_RCC_TIM13_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM13RST))
+#define __HAL_RCC_TIM14_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM14RST))
+#endif /* STM32F101xG || STM32F103xG */
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_APB2_Force_Release_Reset APB2 Force Release Reset
+ * @brief Force or release APB2 peripheral reset.
+ * @{
+ */
+
+#if defined(STM32F101xG) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+#define __HAL_RCC_ADC2_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_ADC2RST))
+
+#define __HAL_RCC_ADC2_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_ADC2RST))
+#endif /* STM32F101xG || STM32F103x6 || STM32F103xB || STM32F105xC || STM32F107xC || STM32F103xE || STM32F103xG */
+
+#if defined(STM32F100xB) || defined(STM32F100xE)
+#define __HAL_RCC_TIM15_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM15RST))
+#define __HAL_RCC_TIM16_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM16RST))
+#define __HAL_RCC_TIM17_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM17RST))
+
+#define __HAL_RCC_TIM15_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM15RST))
+#define __HAL_RCC_TIM16_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM16RST))
+#define __HAL_RCC_TIM17_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM17RST))
+#endif /* STM32F100xB || STM32F100xE */
+
+#if defined(STM32F100xE) || defined(STM32F101xB) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F100xB) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) \
+ || defined(STM32F105xC) || defined(STM32F107xC)
+#define __HAL_RCC_GPIOE_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_IOPERST))
+
+#define __HAL_RCC_GPIOE_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_IOPERST))
+#endif /* STM32F101x6 || STM32F101xB || STM32F101xE || (...) || STM32F105xC || STM32F107xC */
+
+#if defined(STM32F101xE) || defined(STM32F103xE) || defined(STM32F101xG) || defined(STM32F103xG)
+#define __HAL_RCC_GPIOF_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_IOPFRST))
+#define __HAL_RCC_GPIOG_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_IOPGRST))
+
+#define __HAL_RCC_GPIOF_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_IOPFRST))
+#define __HAL_RCC_GPIOG_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_IOPGRST))
+#endif /* STM32F101xE || STM32F103xE || STM32F101xG || STM32F103xG*/
+
+#if defined(STM32F103xE) || defined(STM32F103xG)
+#define __HAL_RCC_TIM8_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM8RST))
+#define __HAL_RCC_ADC3_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_ADC3RST))
+
+#define __HAL_RCC_TIM8_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM8RST))
+#define __HAL_RCC_ADC3_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_ADC3RST))
+#endif /* STM32F103xE || STM32F103xG */
+
+#if defined(STM32F100xE)
+#define __HAL_RCC_GPIOF_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_IOPFRST))
+#define __HAL_RCC_GPIOG_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_IOPGRST))
+
+#define __HAL_RCC_GPIOF_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_IOPFRST))
+#define __HAL_RCC_GPIOG_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_IOPGRST))
+#endif /* STM32F100xE */
+
+#if defined(STM32F101xG) || defined(STM32F103xG)
+#define __HAL_RCC_TIM9_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM9RST))
+#define __HAL_RCC_TIM10_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM10RST))
+#define __HAL_RCC_TIM11_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM11RST))
+
+#define __HAL_RCC_TIM9_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM9RST))
+#define __HAL_RCC_TIM10_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM10RST))
+#define __HAL_RCC_TIM11_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM11RST))
+#endif /* STM32F101xG || STM32F103xG*/
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_HSE_Configuration HSE Configuration
+ * @{
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F100xB) || defined(STM32F100xE)
+/**
+ * @brief Macro to configure the External High Speed oscillator (HSE) Predivision factor for PLL.
+ * @note Predivision factor can not be changed if PLL is used as system clock
+ * In this case, you have to select another source of the system clock, disable the PLL and
+ * then change the HSE predivision factor.
+ * @param __HSE_PREDIV_VALUE__ specifies the division value applied to HSE.
+ * This parameter must be a number between RCC_HSE_PREDIV_DIV1 and RCC_HSE_PREDIV_DIV16.
+ */
+#define __HAL_RCC_HSE_PREDIV_CONFIG(__HSE_PREDIV_VALUE__) MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV1, (uint32_t)(__HSE_PREDIV_VALUE__))
+#else
+/**
+ * @brief Macro to configure the External High Speed oscillator (HSE) Predivision factor for PLL.
+ * @note Predivision factor can not be changed if PLL is used as system clock
+ * In this case, you have to select another source of the system clock, disable the PLL and
+ * then change the HSE predivision factor.
+ * @param __HSE_PREDIV_VALUE__ specifies the division value applied to HSE.
+ * This parameter must be a number between RCC_HSE_PREDIV_DIV1 and RCC_HSE_PREDIV_DIV2.
+ */
+#define __HAL_RCC_HSE_PREDIV_CONFIG(__HSE_PREDIV_VALUE__) MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLXTPRE, (uint32_t)(__HSE_PREDIV_VALUE__))
+
+#endif /* STM32F105xC || STM32F107xC */
+
+#if defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F100xB) || defined(STM32F100xE)
+/**
+ * @brief Macro to get prediv1 factor for PLL.
+ */
+#define __HAL_RCC_HSE_GET_PREDIV() READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1)
+
+#else
+/**
+ * @brief Macro to get prediv1 factor for PLL.
+ */
+#define __HAL_RCC_HSE_GET_PREDIV() READ_BIT(RCC->CFGR, RCC_CFGR_PLLXTPRE)
+
+#endif /* STM32F105xC || STM32F107xC || STM32F100xB || STM32F100xE */
+
+/**
+ * @}
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+/** @defgroup RCCEx_PLLI2S_Configuration PLLI2S Configuration
+ * @{
+ */
+
+/** @brief Macros to enable the main PLLI2S.
+ * @note After enabling the main PLLI2S, the application software should wait on
+ * PLLI2SRDY flag to be set indicating that PLLI2S clock is stable and can
+ * be used as system clock source.
+ * @note The main PLLI2S is disabled by hardware when entering STOP and STANDBY modes.
+ */
+#define __HAL_RCC_PLLI2S_ENABLE() (*(__IO uint32_t *)RCC_CR_PLLI2SON_BB = ENABLE)
+
+/** @brief Macros to disable the main PLLI2S.
+ * @note The main PLLI2S is disabled by hardware when entering STOP and STANDBY modes.
+ */
+#define __HAL_RCC_PLLI2S_DISABLE() (*(__IO uint32_t *)RCC_CR_PLLI2SON_BB = DISABLE)
+
+/** @brief macros to configure the main PLLI2S multiplication factor.
+ * @note This function must be used only when the main PLLI2S is disabled.
+ *
+ * @param __PLLI2SMUL__ specifies the multiplication factor for PLLI2S VCO output clock
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_PLLI2S_MUL8 PLLI2SVCO = PLLI2S clock entry x 8
+ * @arg @ref RCC_PLLI2S_MUL9 PLLI2SVCO = PLLI2S clock entry x 9
+ * @arg @ref RCC_PLLI2S_MUL10 PLLI2SVCO = PLLI2S clock entry x 10
+ * @arg @ref RCC_PLLI2S_MUL11 PLLI2SVCO = PLLI2S clock entry x 11
+ * @arg @ref RCC_PLLI2S_MUL12 PLLI2SVCO = PLLI2S clock entry x 12
+ * @arg @ref RCC_PLLI2S_MUL13 PLLI2SVCO = PLLI2S clock entry x 13
+ * @arg @ref RCC_PLLI2S_MUL14 PLLI2SVCO = PLLI2S clock entry x 14
+ * @arg @ref RCC_PLLI2S_MUL16 PLLI2SVCO = PLLI2S clock entry x 16
+ * @arg @ref RCC_PLLI2S_MUL20 PLLI2SVCO = PLLI2S clock entry x 20
+ *
+ */
+#define __HAL_RCC_PLLI2S_CONFIG(__PLLI2SMUL__) MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PLL3MUL, (__PLLI2SMUL__))
+
+/**
+ * @}
+ */
+
+#endif /* STM32F105xC || STM32F107xC */
+
+/** @defgroup RCCEx_Peripheral_Configuration Peripheral Configuration
+ * @brief Macros to configure clock source of different peripherals.
+ * @{
+ */
+
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)
+/** @brief Macro to configure the USB clock.
+ * @param __USBCLKSOURCE__ specifies the USB clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_USBCLKSOURCE_PLL PLL clock divided by 1 selected as USB clock
+ * @arg @ref RCC_USBCLKSOURCE_PLL_DIV1_5 PLL clock divided by 1.5 selected as USB clock
+ */
+#define __HAL_RCC_USB_CONFIG(__USBCLKSOURCE__) MODIFY_REG(RCC->CFGR, RCC_CFGR_USBPRE, (uint32_t)(__USBCLKSOURCE__))
+
+/** @brief Macro to get the USB clock (USBCLK).
+ * @retval The clock source can be one of the following values:
+ * @arg @ref RCC_USBCLKSOURCE_PLL PLL clock divided by 1 selected as USB clock
+ * @arg @ref RCC_USBCLKSOURCE_PLL_DIV1_5 PLL clock divided by 1.5 selected as USB clock
+ */
+#define __HAL_RCC_GET_USB_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_USBPRE)))
+
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+
+/** @brief Macro to configure the USB OTSclock.
+ * @param __USBCLKSOURCE__ specifies the USB clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_USBCLKSOURCE_PLL_DIV2 PLL clock divided by 2 selected as USB OTG FS clock
+ * @arg @ref RCC_USBCLKSOURCE_PLL_DIV3 PLL clock divided by 3 selected as USB OTG FS clock
+ */
+#define __HAL_RCC_USB_CONFIG(__USBCLKSOURCE__) MODIFY_REG(RCC->CFGR, RCC_CFGR_OTGFSPRE, (uint32_t)(__USBCLKSOURCE__))
+
+/** @brief Macro to get the USB clock (USBCLK).
+ * @retval The clock source can be one of the following values:
+ * @arg @ref RCC_USBCLKSOURCE_PLL_DIV2 PLL clock divided by 2 selected as USB OTG FS clock
+ * @arg @ref RCC_USBCLKSOURCE_PLL_DIV3 PLL clock divided by 3 selected as USB OTG FS clock
+ */
+#define __HAL_RCC_GET_USB_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_OTGFSPRE)))
+
+#endif /* STM32F105xC || STM32F107xC */
+
+/** @brief Macro to configure the ADCx clock (x=1 to 3 depending on devices).
+ * @param __ADCCLKSOURCE__ specifies the ADC clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_ADCPCLK2_DIV2 PCLK2 clock divided by 2 selected as ADC clock
+ * @arg @ref RCC_ADCPCLK2_DIV4 PCLK2 clock divided by 4 selected as ADC clock
+ * @arg @ref RCC_ADCPCLK2_DIV6 PCLK2 clock divided by 6 selected as ADC clock
+ * @arg @ref RCC_ADCPCLK2_DIV8 PCLK2 clock divided by 8 selected as ADC clock
+ */
+#define __HAL_RCC_ADC_CONFIG(__ADCCLKSOURCE__) MODIFY_REG(RCC->CFGR, RCC_CFGR_ADCPRE, (uint32_t)(__ADCCLKSOURCE__))
+
+/** @brief Macro to get the ADC clock (ADCxCLK, x=1 to 3 depending on devices).
+ * @retval The clock source can be one of the following values:
+ * @arg @ref RCC_ADCPCLK2_DIV2 PCLK2 clock divided by 2 selected as ADC clock
+ * @arg @ref RCC_ADCPCLK2_DIV4 PCLK2 clock divided by 4 selected as ADC clock
+ * @arg @ref RCC_ADCPCLK2_DIV6 PCLK2 clock divided by 6 selected as ADC clock
+ * @arg @ref RCC_ADCPCLK2_DIV8 PCLK2 clock divided by 8 selected as ADC clock
+ */
+#define __HAL_RCC_GET_ADC_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_ADCPRE)))
+
+/**
+ * @}
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+
+/** @addtogroup RCCEx_HSE_Configuration
+ * @{
+ */
+
+/**
+ * @brief Macro to configure the PLL2 & PLLI2S Predivision factor.
+ * @note Predivision factor can not be changed if PLL2 is used indirectly as system clock
+ * In this case, you have to select another source of the system clock, disable the PLL2 and PLLI2S and
+ * then change the PREDIV2 factor.
+ * @param __HSE_PREDIV2_VALUE__ specifies the PREDIV2 value applied to PLL2 & PLLI2S.
+ * This parameter must be a number between RCC_HSE_PREDIV2_DIV1 and RCC_HSE_PREDIV2_DIV16.
+ */
+#define __HAL_RCC_HSE_PREDIV2_CONFIG(__HSE_PREDIV2_VALUE__) MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV2, (uint32_t)(__HSE_PREDIV2_VALUE__))
+
+/**
+ * @brief Macro to get prediv2 factor for PLL2 & PLL3.
+ */
+#define __HAL_RCC_HSE_GET_PREDIV2() READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV2)
+
+/**
+ * @}
+ */
+
+/** @addtogroup RCCEx_PLLI2S_Configuration
+ * @{
+ */
+
+/** @brief Macros to enable the main PLL2.
+ * @note After enabling the main PLL2, the application software should wait on
+ * PLL2RDY flag to be set indicating that PLL2 clock is stable and can
+ * be used as system clock source.
+ * @note The main PLL2 is disabled by hardware when entering STOP and STANDBY modes.
+ */
+#define __HAL_RCC_PLL2_ENABLE() (*(__IO uint32_t *)RCC_CR_PLL2ON_BB = ENABLE)
+
+/** @brief Macros to disable the main PLL2.
+ * @note The main PLL2 can not be disabled if it is used indirectly as system clock source
+ * @note The main PLL2 is disabled by hardware when entering STOP and STANDBY modes.
+ */
+#define __HAL_RCC_PLL2_DISABLE() (*(__IO uint32_t *)RCC_CR_PLL2ON_BB = DISABLE)
+
+/** @brief macros to configure the main PLL2 multiplication factor.
+ * @note This function must be used only when the main PLL2 is disabled.
+ *
+ * @param __PLL2MUL__ specifies the multiplication factor for PLL2 VCO output clock
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_PLL2_MUL8 PLL2VCO = PLL2 clock entry x 8
+ * @arg @ref RCC_PLL2_MUL9 PLL2VCO = PLL2 clock entry x 9
+ * @arg @ref RCC_PLL2_MUL10 PLL2VCO = PLL2 clock entry x 10
+ * @arg @ref RCC_PLL2_MUL11 PLL2VCO = PLL2 clock entry x 11
+ * @arg @ref RCC_PLL2_MUL12 PLL2VCO = PLL2 clock entry x 12
+ * @arg @ref RCC_PLL2_MUL13 PLL2VCO = PLL2 clock entry x 13
+ * @arg @ref RCC_PLL2_MUL14 PLL2VCO = PLL2 clock entry x 14
+ * @arg @ref RCC_PLL2_MUL16 PLL2VCO = PLL2 clock entry x 16
+ * @arg @ref RCC_PLL2_MUL20 PLL2VCO = PLL2 clock entry x 20
+ *
+ */
+#define __HAL_RCC_PLL2_CONFIG(__PLL2MUL__) MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PLL2MUL, (__PLL2MUL__))
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_I2S_Configuration I2S Configuration
+ * @brief Macros to configure clock source of I2S peripherals.
+ * @{
+ */
+
+/** @brief Macro to configure the I2S2 clock.
+ * @param __I2S2CLKSOURCE__ specifies the I2S2 clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_I2S2CLKSOURCE_SYSCLK system clock selected as I2S3 clock entry
+ * @arg @ref RCC_I2S2CLKSOURCE_PLLI2S_VCO PLLI2S VCO clock selected as I2S3 clock entry
+ */
+#define __HAL_RCC_I2S2_CONFIG(__I2S2CLKSOURCE__) MODIFY_REG(RCC->CFGR2, RCC_CFGR2_I2S2SRC, (uint32_t)(__I2S2CLKSOURCE__))
+
+/** @brief Macro to get the I2S2 clock (I2S2CLK).
+ * @retval The clock source can be one of the following values:
+ * @arg @ref RCC_I2S2CLKSOURCE_SYSCLK system clock selected as I2S3 clock entry
+ * @arg @ref RCC_I2S2CLKSOURCE_PLLI2S_VCO PLLI2S VCO clock selected as I2S3 clock entry
+ */
+#define __HAL_RCC_GET_I2S2_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR2, RCC_CFGR2_I2S2SRC)))
+
+/** @brief Macro to configure the I2S3 clock.
+ * @param __I2S2CLKSOURCE__ specifies the I2S3 clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_I2S3CLKSOURCE_SYSCLK system clock selected as I2S3 clock entry
+ * @arg @ref RCC_I2S3CLKSOURCE_PLLI2S_VCO PLLI2S VCO clock selected as I2S3 clock entry
+ */
+#define __HAL_RCC_I2S3_CONFIG(__I2S2CLKSOURCE__) MODIFY_REG(RCC->CFGR2, RCC_CFGR2_I2S3SRC, (uint32_t)(__I2S2CLKSOURCE__))
+
+/** @brief Macro to get the I2S3 clock (I2S3CLK).
+ * @retval The clock source can be one of the following values:
+ * @arg @ref RCC_I2S3CLKSOURCE_SYSCLK system clock selected as I2S3 clock entry
+ * @arg @ref RCC_I2S3CLKSOURCE_PLLI2S_VCO PLLI2S VCO clock selected as I2S3 clock entry
+ */
+#define __HAL_RCC_GET_I2S3_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR2, RCC_CFGR2_I2S3SRC)))
+
+/**
+ * @}
+ */
+
+#endif /* STM32F105xC || STM32F107xC */
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup RCCEx_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup RCCEx_Exported_Functions_Group1
+ * @{
+ */
+
+HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit);
+void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit);
+uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk);
+
+/**
+ * @}
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+/** @addtogroup RCCEx_Exported_Functions_Group2
+ * @{
+ */
+HAL_StatusTypeDef HAL_RCCEx_EnablePLLI2S(RCC_PLLI2SInitTypeDef *PLLI2SInit);
+HAL_StatusTypeDef HAL_RCCEx_DisablePLLI2S(void);
+
+/**
+ * @}
+ */
+
+/** @addtogroup RCCEx_Exported_Functions_Group3
+ * @{
+ */
+HAL_StatusTypeDef HAL_RCCEx_EnablePLL2(RCC_PLL2InitTypeDef *PLL2Init);
+HAL_StatusTypeDef HAL_RCCEx_DisablePLL2(void);
+
+/**
+ * @}
+ */
+#endif /* STM32F105xC || STM32F107xC */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32F1xx_HAL_RCC_EX_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h new file mode 100644 index 00000000..129d0287 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h @@ -0,0 +1,2024 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_tim.h
+ * @author MCD Application Team
+ * @brief Header file of TIM HAL module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef STM32F1xx_HAL_TIM_H
+#define STM32F1xx_HAL_TIM_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup TIM
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+/** @defgroup TIM_Exported_Types TIM Exported Types
+ * @{
+ */
+
+/**
+ * @brief TIM Time base Configuration Structure definition
+ */
+typedef struct {
+ uint32_t Prescaler; /*!< Specifies the prescaler value used to divide the TIM clock.
+ This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */
+
+ uint32_t CounterMode; /*!< Specifies the counter mode.
+ This parameter can be a value of @ref TIM_Counter_Mode */
+
+ uint32_t Period; /*!< Specifies the period value to be loaded into the active
+ Auto-Reload Register at the next update event.
+ This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */
+
+ uint32_t ClockDivision; /*!< Specifies the clock division.
+ This parameter can be a value of @ref TIM_ClockDivision */
+
+ uint32_t RepetitionCounter; /*!< Specifies the repetition counter value. Each time the RCR downcounter
+ reaches zero, an update event is generated and counting restarts
+ from the RCR value (N).
+ This means in PWM mode that (N+1) corresponds to:
+ - the number of PWM periods in edge-aligned mode
+ - the number of half PWM period in center-aligned mode
+ GP timers: this parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF.
+ Advanced timers: this parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */
+
+ uint32_t AutoReloadPreload; /*!< Specifies the auto-reload preload.
+ This parameter can be a value of @ref TIM_AutoReloadPreload */
+} TIM_Base_InitTypeDef;
+
+/**
+ * @brief TIM Output Compare Configuration Structure definition
+ */
+typedef struct {
+ uint32_t OCMode; /*!< Specifies the TIM mode.
+ This parameter can be a value of @ref TIM_Output_Compare_and_PWM_modes */
+
+ uint32_t Pulse; /*!< Specifies the pulse value to be loaded into the Capture Compare Register.
+ This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */
+
+ uint32_t OCPolarity; /*!< Specifies the output polarity.
+ This parameter can be a value of @ref TIM_Output_Compare_Polarity */
+
+ uint32_t OCNPolarity; /*!< Specifies the complementary output polarity.
+ This parameter can be a value of @ref TIM_Output_Compare_N_Polarity
+ @note This parameter is valid only for timer instances supporting break feature. */
+
+ uint32_t OCFastMode; /*!< Specifies the Fast mode state.
+ This parameter can be a value of @ref TIM_Output_Fast_State
+ @note This parameter is valid only in PWM1 and PWM2 mode. */
+
+ uint32_t OCIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
+ This parameter can be a value of @ref TIM_Output_Compare_Idle_State
+ @note This parameter is valid only for timer instances supporting break feature. */
+
+ uint32_t OCNIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
+ This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State
+ @note This parameter is valid only for timer instances supporting break feature. */
+} TIM_OC_InitTypeDef;
+
+/**
+ * @brief TIM One Pulse Mode Configuration Structure definition
+ */
+typedef struct {
+ uint32_t OCMode; /*!< Specifies the TIM mode.
+ This parameter can be a value of @ref TIM_Output_Compare_and_PWM_modes */
+
+ uint32_t Pulse; /*!< Specifies the pulse value to be loaded into the Capture Compare Register.
+ This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */
+
+ uint32_t OCPolarity; /*!< Specifies the output polarity.
+ This parameter can be a value of @ref TIM_Output_Compare_Polarity */
+
+ uint32_t OCNPolarity; /*!< Specifies the complementary output polarity.
+ This parameter can be a value of @ref TIM_Output_Compare_N_Polarity
+ @note This parameter is valid only for timer instances supporting break feature. */
+
+ uint32_t OCIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
+ This parameter can be a value of @ref TIM_Output_Compare_Idle_State
+ @note This parameter is valid only for timer instances supporting break feature. */
+
+ uint32_t OCNIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
+ This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State
+ @note This parameter is valid only for timer instances supporting break feature. */
+
+ uint32_t ICPolarity; /*!< Specifies the active edge of the input signal.
+ This parameter can be a value of @ref TIM_Input_Capture_Polarity */
+
+ uint32_t ICSelection; /*!< Specifies the input.
+ This parameter can be a value of @ref TIM_Input_Capture_Selection */
+
+ uint32_t ICFilter; /*!< Specifies the input capture filter.
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+} TIM_OnePulse_InitTypeDef;
+
+/**
+ * @brief TIM Input Capture Configuration Structure definition
+ */
+typedef struct {
+ uint32_t ICPolarity; /*!< Specifies the active edge of the input signal.
+ This parameter can be a value of @ref TIM_Input_Capture_Polarity */
+
+ uint32_t ICSelection; /*!< Specifies the input.
+ This parameter can be a value of @ref TIM_Input_Capture_Selection */
+
+ uint32_t ICPrescaler; /*!< Specifies the Input Capture Prescaler.
+ This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
+
+ uint32_t ICFilter; /*!< Specifies the input capture filter.
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+} TIM_IC_InitTypeDef;
+
+/**
+ * @brief TIM Encoder Configuration Structure definition
+ */
+typedef struct {
+ uint32_t EncoderMode; /*!< Specifies the active edge of the input signal.
+ This parameter can be a value of @ref TIM_Encoder_Mode */
+
+ uint32_t IC1Polarity; /*!< Specifies the active edge of the input signal.
+ This parameter can be a value of @ref TIM_Encoder_Input_Polarity */
+
+ uint32_t IC1Selection; /*!< Specifies the input.
+ This parameter can be a value of @ref TIM_Input_Capture_Selection */
+
+ uint32_t IC1Prescaler; /*!< Specifies the Input Capture Prescaler.
+ This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
+
+ uint32_t IC1Filter; /*!< Specifies the input capture filter.
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+
+ uint32_t IC2Polarity; /*!< Specifies the active edge of the input signal.
+ This parameter can be a value of @ref TIM_Encoder_Input_Polarity */
+
+ uint32_t IC2Selection; /*!< Specifies the input.
+ This parameter can be a value of @ref TIM_Input_Capture_Selection */
+
+ uint32_t IC2Prescaler; /*!< Specifies the Input Capture Prescaler.
+ This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
+
+ uint32_t IC2Filter; /*!< Specifies the input capture filter.
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+} TIM_Encoder_InitTypeDef;
+
+/**
+ * @brief Clock Configuration Handle Structure definition
+ */
+typedef struct {
+ uint32_t ClockSource; /*!< TIM clock sources
+ This parameter can be a value of @ref TIM_Clock_Source */
+ uint32_t ClockPolarity; /*!< TIM clock polarity
+ This parameter can be a value of @ref TIM_Clock_Polarity */
+ uint32_t ClockPrescaler; /*!< TIM clock prescaler
+ This parameter can be a value of @ref TIM_Clock_Prescaler */
+ uint32_t ClockFilter; /*!< TIM clock filter
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+} TIM_ClockConfigTypeDef;
+
+/**
+ * @brief TIM Clear Input Configuration Handle Structure definition
+ */
+typedef struct {
+ uint32_t ClearInputState; /*!< TIM clear Input state
+ This parameter can be ENABLE or DISABLE */
+ uint32_t ClearInputSource; /*!< TIM clear Input sources
+ This parameter can be a value of @ref TIM_ClearInput_Source */
+ uint32_t ClearInputPolarity; /*!< TIM Clear Input polarity
+ This parameter can be a value of @ref TIM_ClearInput_Polarity */
+ uint32_t ClearInputPrescaler; /*!< TIM Clear Input prescaler
+ This parameter must be 0: When OCRef clear feature is used with ETR source, ETR prescaler must be off */
+ uint32_t ClearInputFilter; /*!< TIM Clear Input filter
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+} TIM_ClearInputConfigTypeDef;
+
+/**
+ * @brief TIM Master configuration Structure definition
+ */
+typedef struct {
+ uint32_t MasterOutputTrigger; /*!< Trigger output (TRGO) selection
+ This parameter can be a value of @ref TIM_Master_Mode_Selection */
+ uint32_t MasterSlaveMode; /*!< Master/slave mode selection
+ This parameter can be a value of @ref TIM_Master_Slave_Mode
+ @note When the Master/slave mode is enabled, the effect of
+ an event on the trigger input (TRGI) is delayed to allow a
+ perfect synchronization between the current timer and its
+ slaves (through TRGO). It is not mandatory in case of timer
+ synchronization mode. */
+} TIM_MasterConfigTypeDef;
+
+/**
+ * @brief TIM Slave configuration Structure definition
+ */
+typedef struct {
+ uint32_t SlaveMode; /*!< Slave mode selection
+ This parameter can be a value of @ref TIM_Slave_Mode */
+ uint32_t InputTrigger; /*!< Input Trigger source
+ This parameter can be a value of @ref TIM_Trigger_Selection */
+ uint32_t TriggerPolarity; /*!< Input Trigger polarity
+ This parameter can be a value of @ref TIM_Trigger_Polarity */
+ uint32_t TriggerPrescaler; /*!< Input trigger prescaler
+ This parameter can be a value of @ref TIM_Trigger_Prescaler */
+ uint32_t TriggerFilter; /*!< Input trigger filter
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+
+} TIM_SlaveConfigTypeDef;
+
+/**
+ * @brief TIM Break input(s) and Dead time configuration Structure definition
+ * @note 2 break inputs can be configured (BKIN and BKIN2) with configurable
+ * filter and polarity.
+ */
+typedef struct {
+ uint32_t OffStateRunMode; /*!< TIM off state in run mode
+ This parameter can be a value of @ref TIM_OSSR_Off_State_Selection_for_Run_mode_state */
+ uint32_t OffStateIDLEMode; /*!< TIM off state in IDLE mode
+ This parameter can be a value of @ref TIM_OSSI_Off_State_Selection_for_Idle_mode_state */
+ uint32_t LockLevel; /*!< TIM Lock level
+ This parameter can be a value of @ref TIM_Lock_level */
+ uint32_t DeadTime; /*!< TIM dead Time
+ This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF */
+ uint32_t BreakState; /*!< TIM Break State
+ This parameter can be a value of @ref TIM_Break_Input_enable_disable */
+ uint32_t BreakPolarity; /*!< TIM Break input polarity
+ This parameter can be a value of @ref TIM_Break_Polarity */
+ uint32_t BreakFilter; /*!< Specifies the break input filter.
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+ uint32_t AutomaticOutput; /*!< TIM Automatic Output Enable state
+ This parameter can be a value of @ref TIM_AOE_Bit_Set_Reset */
+} TIM_BreakDeadTimeConfigTypeDef;
+
+/**
+ * @brief HAL State structures definition
+ */
+typedef enum {
+ HAL_TIM_STATE_RESET = 0x00U, /*!< Peripheral not yet initialized or disabled */
+ HAL_TIM_STATE_READY = 0x01U, /*!< Peripheral Initialized and ready for use */
+ HAL_TIM_STATE_BUSY = 0x02U, /*!< An internal process is ongoing */
+ HAL_TIM_STATE_TIMEOUT = 0x03U, /*!< Timeout state */
+ HAL_TIM_STATE_ERROR = 0x04U /*!< Reception process is ongoing */
+} HAL_TIM_StateTypeDef;
+
+/**
+ * @brief TIM Channel States definition
+ */
+typedef enum {
+ HAL_TIM_CHANNEL_STATE_RESET = 0x00U, /*!< TIM Channel initial state */
+ HAL_TIM_CHANNEL_STATE_READY = 0x01U, /*!< TIM Channel ready for use */
+ HAL_TIM_CHANNEL_STATE_BUSY = 0x02U, /*!< An internal process is ongoing on the TIM channel */
+} HAL_TIM_ChannelStateTypeDef;
+
+/**
+ * @brief DMA Burst States definition
+ */
+typedef enum {
+ HAL_DMA_BURST_STATE_RESET = 0x00U, /*!< DMA Burst initial state */
+ HAL_DMA_BURST_STATE_READY = 0x01U, /*!< DMA Burst ready for use */
+ HAL_DMA_BURST_STATE_BUSY = 0x02U, /*!< Ongoing DMA Burst */
+} HAL_TIM_DMABurstStateTypeDef;
+
+/**
+ * @brief HAL Active channel structures definition
+ */
+typedef enum {
+ HAL_TIM_ACTIVE_CHANNEL_1 = 0x01U, /*!< The active channel is 1 */
+ HAL_TIM_ACTIVE_CHANNEL_2 = 0x02U, /*!< The active channel is 2 */
+ HAL_TIM_ACTIVE_CHANNEL_3 = 0x04U, /*!< The active channel is 3 */
+ HAL_TIM_ACTIVE_CHANNEL_4 = 0x08U, /*!< The active channel is 4 */
+ HAL_TIM_ACTIVE_CHANNEL_CLEARED = 0x00U /*!< All active channels cleared */
+} HAL_TIM_ActiveChannel;
+
+/**
+ * @brief TIM Time Base Handle Structure definition
+ */
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+typedef struct __TIM_HandleTypeDef
+#else
+typedef struct
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+{
+ TIM_TypeDef * Instance; /*!< Register base address */
+ TIM_Base_InitTypeDef Init; /*!< TIM Time Base required parameters */
+ HAL_TIM_ActiveChannel Channel; /*!< Active channel */
+ DMA_HandleTypeDef * hdma[7]; /*!< DMA Handlers array
+ This array is accessed by a @ref DMA_Handle_index */
+ HAL_LockTypeDef Lock; /*!< Locking object */
+ __IO HAL_TIM_StateTypeDef State; /*!< TIM operation state */
+ __IO HAL_TIM_ChannelStateTypeDef ChannelState[4]; /*!< TIM channel operation state */
+ __IO HAL_TIM_ChannelStateTypeDef ChannelNState[4]; /*!< TIM complementary channel operation state */
+ __IO HAL_TIM_DMABurstStateTypeDef DMABurstState; /*!< DMA burst operation state */
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ void (*Base_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Base Msp Init Callback */
+ void (*Base_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Base Msp DeInit Callback */
+ void (*IC_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM IC Msp Init Callback */
+ void (*IC_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM IC Msp DeInit Callback */
+ void (*OC_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM OC Msp Init Callback */
+ void (*OC_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM OC Msp DeInit Callback */
+ void (*PWM_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Msp Init Callback */
+ void (*PWM_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Msp DeInit Callback */
+ void (*OnePulse_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM One Pulse Msp Init Callback */
+ void (*OnePulse_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM One Pulse Msp DeInit Callback */
+ void (*Encoder_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Encoder Msp Init Callback */
+ void (*Encoder_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Encoder Msp DeInit Callback */
+ void (*HallSensor_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Hall Sensor Msp Init Callback */
+ void (*HallSensor_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Hall Sensor Msp DeInit Callback */
+ void (*PeriodElapsedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Period Elapsed Callback */
+ void (*PeriodElapsedHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Period Elapsed half complete Callback */
+ void (*TriggerCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Trigger Callback */
+ void (*TriggerHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Trigger half complete Callback */
+ void (*IC_CaptureCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Input Capture Callback */
+ void (*IC_CaptureHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Input Capture half complete Callback */
+ void (*OC_DelayElapsedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Output Compare Delay Elapsed Callback */
+ void (*PWM_PulseFinishedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Pulse Finished Callback */
+ void (*PWM_PulseFinishedHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Pulse Finished half complete Callback */
+ void (*ErrorCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Error Callback */
+ void (*CommutationCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Commutation Callback */
+ void (*CommutationHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Commutation half complete Callback */
+ void (*BreakCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Break Callback */
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+} TIM_HandleTypeDef;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+/**
+ * @brief HAL TIM Callback ID enumeration definition
+ */
+typedef enum {
+ HAL_TIM_BASE_MSPINIT_CB_ID = 0x00U /*!< TIM Base MspInit Callback ID */
+ ,
+ HAL_TIM_BASE_MSPDEINIT_CB_ID = 0x01U /*!< TIM Base MspDeInit Callback ID */
+ ,
+ HAL_TIM_IC_MSPINIT_CB_ID = 0x02U /*!< TIM IC MspInit Callback ID */
+ ,
+ HAL_TIM_IC_MSPDEINIT_CB_ID = 0x03U /*!< TIM IC MspDeInit Callback ID */
+ ,
+ HAL_TIM_OC_MSPINIT_CB_ID = 0x04U /*!< TIM OC MspInit Callback ID */
+ ,
+ HAL_TIM_OC_MSPDEINIT_CB_ID = 0x05U /*!< TIM OC MspDeInit Callback ID */
+ ,
+ HAL_TIM_PWM_MSPINIT_CB_ID = 0x06U /*!< TIM PWM MspInit Callback ID */
+ ,
+ HAL_TIM_PWM_MSPDEINIT_CB_ID = 0x07U /*!< TIM PWM MspDeInit Callback ID */
+ ,
+ HAL_TIM_ONE_PULSE_MSPINIT_CB_ID = 0x08U /*!< TIM One Pulse MspInit Callback ID */
+ ,
+ HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID = 0x09U /*!< TIM One Pulse MspDeInit Callback ID */
+ ,
+ HAL_TIM_ENCODER_MSPINIT_CB_ID = 0x0AU /*!< TIM Encoder MspInit Callback ID */
+ ,
+ HAL_TIM_ENCODER_MSPDEINIT_CB_ID = 0x0BU /*!< TIM Encoder MspDeInit Callback ID */
+ ,
+ HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID = 0x0CU /*!< TIM Hall Sensor MspDeInit Callback ID */
+ ,
+ HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID = 0x0DU /*!< TIM Hall Sensor MspDeInit Callback ID */
+ ,
+ HAL_TIM_PERIOD_ELAPSED_CB_ID = 0x0EU /*!< TIM Period Elapsed Callback ID */
+ ,
+ HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID = 0x0FU /*!< TIM Period Elapsed half complete Callback ID */
+ ,
+ HAL_TIM_TRIGGER_CB_ID = 0x10U /*!< TIM Trigger Callback ID */
+ ,
+ HAL_TIM_TRIGGER_HALF_CB_ID = 0x11U /*!< TIM Trigger half complete Callback ID */
+
+ ,
+ HAL_TIM_IC_CAPTURE_CB_ID = 0x12U /*!< TIM Input Capture Callback ID */
+ ,
+ HAL_TIM_IC_CAPTURE_HALF_CB_ID = 0x13U /*!< TIM Input Capture half complete Callback ID */
+ ,
+ HAL_TIM_OC_DELAY_ELAPSED_CB_ID = 0x14U /*!< TIM Output Compare Delay Elapsed Callback ID */
+ ,
+ HAL_TIM_PWM_PULSE_FINISHED_CB_ID = 0x15U /*!< TIM PWM Pulse Finished Callback ID */
+ ,
+ HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID = 0x16U /*!< TIM PWM Pulse Finished half complete Callback ID */
+ ,
+ HAL_TIM_ERROR_CB_ID = 0x17U /*!< TIM Error Callback ID */
+ ,
+ HAL_TIM_COMMUTATION_CB_ID = 0x18U /*!< TIM Commutation Callback ID */
+ ,
+ HAL_TIM_COMMUTATION_HALF_CB_ID = 0x19U /*!< TIM Commutation half complete Callback ID */
+ ,
+ HAL_TIM_BREAK_CB_ID = 0x1AU /*!< TIM Break Callback ID */
+} HAL_TIM_CallbackIDTypeDef;
+
+/**
+ * @brief HAL TIM Callback pointer definition
+ */
+typedef void (*pTIM_CallbackTypeDef)(TIM_HandleTypeDef *htim); /*!< pointer to the TIM callback function */
+
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+/* End of exported types -----------------------------------------------------*/
+
+/* Exported constants --------------------------------------------------------*/
+/** @defgroup TIM_Exported_Constants TIM Exported Constants
+ * @{
+ */
+
+/** @defgroup TIM_ClearInput_Source TIM Clear Input Source
+ * @{
+ */
+#define TIM_CLEARINPUTSOURCE_NONE 0x00000000U /*!< OCREF_CLR is disabled */
+#define TIM_CLEARINPUTSOURCE_ETR 0x00000001U /*!< OCREF_CLR is connected to ETRF input */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_DMA_Base_address TIM DMA Base Address
+ * @{
+ */
+#define TIM_DMABASE_CR1 0x00000000U
+#define TIM_DMABASE_CR2 0x00000001U
+#define TIM_DMABASE_SMCR 0x00000002U
+#define TIM_DMABASE_DIER 0x00000003U
+#define TIM_DMABASE_SR 0x00000004U
+#define TIM_DMABASE_EGR 0x00000005U
+#define TIM_DMABASE_CCMR1 0x00000006U
+#define TIM_DMABASE_CCMR2 0x00000007U
+#define TIM_DMABASE_CCER 0x00000008U
+#define TIM_DMABASE_CNT 0x00000009U
+#define TIM_DMABASE_PSC 0x0000000AU
+#define TIM_DMABASE_ARR 0x0000000BU
+#define TIM_DMABASE_RCR 0x0000000CU
+#define TIM_DMABASE_CCR1 0x0000000DU
+#define TIM_DMABASE_CCR2 0x0000000EU
+#define TIM_DMABASE_CCR3 0x0000000FU
+#define TIM_DMABASE_CCR4 0x00000010U
+#define TIM_DMABASE_BDTR 0x00000011U
+#define TIM_DMABASE_DCR 0x00000012U
+#define TIM_DMABASE_DMAR 0x00000013U
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Event_Source TIM Event Source
+ * @{
+ */
+#define TIM_EVENTSOURCE_UPDATE TIM_EGR_UG /*!< Reinitialize the counter and generates an update of the registers */
+#define TIM_EVENTSOURCE_CC1 TIM_EGR_CC1G /*!< A capture/compare event is generated on channel 1 */
+#define TIM_EVENTSOURCE_CC2 TIM_EGR_CC2G /*!< A capture/compare event is generated on channel 2 */
+#define TIM_EVENTSOURCE_CC3 TIM_EGR_CC3G /*!< A capture/compare event is generated on channel 3 */
+#define TIM_EVENTSOURCE_CC4 TIM_EGR_CC4G /*!< A capture/compare event is generated on channel 4 */
+#define TIM_EVENTSOURCE_COM TIM_EGR_COMG /*!< A commutation event is generated */
+#define TIM_EVENTSOURCE_TRIGGER TIM_EGR_TG /*!< A trigger event is generated */
+#define TIM_EVENTSOURCE_BREAK TIM_EGR_BG /*!< A break event is generated */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Input_Channel_Polarity TIM Input Channel polarity
+ * @{
+ */
+#define TIM_INPUTCHANNELPOLARITY_RISING 0x00000000U /*!< Polarity for TIx source */
+#define TIM_INPUTCHANNELPOLARITY_FALLING TIM_CCER_CC1P /*!< Polarity for TIx source */
+#define TIM_INPUTCHANNELPOLARITY_BOTHEDGE (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< Polarity for TIx source */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_ETR_Polarity TIM ETR Polarity
+ * @{
+ */
+#define TIM_ETRPOLARITY_INVERTED TIM_SMCR_ETP /*!< Polarity for ETR source */
+#define TIM_ETRPOLARITY_NONINVERTED 0x00000000U /*!< Polarity for ETR source */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_ETR_Prescaler TIM ETR Prescaler
+ * @{
+ */
+#define TIM_ETRPRESCALER_DIV1 0x00000000U /*!< No prescaler is used */
+#define TIM_ETRPRESCALER_DIV2 TIM_SMCR_ETPS_0 /*!< ETR input source is divided by 2 */
+#define TIM_ETRPRESCALER_DIV4 TIM_SMCR_ETPS_1 /*!< ETR input source is divided by 4 */
+#define TIM_ETRPRESCALER_DIV8 TIM_SMCR_ETPS /*!< ETR input source is divided by 8 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Counter_Mode TIM Counter Mode
+ * @{
+ */
+#define TIM_COUNTERMODE_UP 0x00000000U /*!< Counter used as up-counter */
+#define TIM_COUNTERMODE_DOWN TIM_CR1_DIR /*!< Counter used as down-counter */
+#define TIM_COUNTERMODE_CENTERALIGNED1 TIM_CR1_CMS_0 /*!< Center-aligned mode 1 */
+#define TIM_COUNTERMODE_CENTERALIGNED2 TIM_CR1_CMS_1 /*!< Center-aligned mode 2 */
+#define TIM_COUNTERMODE_CENTERALIGNED3 TIM_CR1_CMS /*!< Center-aligned mode 3 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_ClockDivision TIM Clock Division
+ * @{
+ */
+#define TIM_CLOCKDIVISION_DIV1 0x00000000U /*!< Clock division: tDTS=tCK_INT */
+#define TIM_CLOCKDIVISION_DIV2 TIM_CR1_CKD_0 /*!< Clock division: tDTS=2*tCK_INT */
+#define TIM_CLOCKDIVISION_DIV4 TIM_CR1_CKD_1 /*!< Clock division: tDTS=4*tCK_INT */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_State TIM Output Compare State
+ * @{
+ */
+#define TIM_OUTPUTSTATE_DISABLE 0x00000000U /*!< Capture/Compare 1 output disabled */
+#define TIM_OUTPUTSTATE_ENABLE TIM_CCER_CC1E /*!< Capture/Compare 1 output enabled */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_AutoReloadPreload TIM Auto-Reload Preload
+ * @{
+ */
+#define TIM_AUTORELOAD_PRELOAD_DISABLE 0x00000000U /*!< TIMx_ARR register is not buffered */
+#define TIM_AUTORELOAD_PRELOAD_ENABLE TIM_CR1_ARPE /*!< TIMx_ARR register is buffered */
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Fast_State TIM Output Fast State
+ * @{
+ */
+#define TIM_OCFAST_DISABLE 0x00000000U /*!< Output Compare fast disable */
+#define TIM_OCFAST_ENABLE TIM_CCMR1_OC1FE /*!< Output Compare fast enable */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_N_State TIM Complementary Output Compare State
+ * @{
+ */
+#define TIM_OUTPUTNSTATE_DISABLE 0x00000000U /*!< OCxN is disabled */
+#define TIM_OUTPUTNSTATE_ENABLE TIM_CCER_CC1NE /*!< OCxN is enabled */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_Polarity TIM Output Compare Polarity
+ * @{
+ */
+#define TIM_OCPOLARITY_HIGH 0x00000000U /*!< Capture/Compare output polarity */
+#define TIM_OCPOLARITY_LOW TIM_CCER_CC1P /*!< Capture/Compare output polarity */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_N_Polarity TIM Complementary Output Compare Polarity
+ * @{
+ */
+#define TIM_OCNPOLARITY_HIGH 0x00000000U /*!< Capture/Compare complementary output polarity */
+#define TIM_OCNPOLARITY_LOW TIM_CCER_CC1NP /*!< Capture/Compare complementary output polarity */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_Idle_State TIM Output Compare Idle State
+ * @{
+ */
+#define TIM_OCIDLESTATE_SET TIM_CR2_OIS1 /*!< Output Idle state: OCx=1 when MOE=0 */
+#define TIM_OCIDLESTATE_RESET 0x00000000U /*!< Output Idle state: OCx=0 when MOE=0 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_N_Idle_State TIM Complementary Output Compare Idle State
+ * @{
+ */
+#define TIM_OCNIDLESTATE_SET TIM_CR2_OIS1N /*!< Complementary output Idle state: OCxN=1 when MOE=0 */
+#define TIM_OCNIDLESTATE_RESET 0x00000000U /*!< Complementary output Idle state: OCxN=0 when MOE=0 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Input_Capture_Polarity TIM Input Capture Polarity
+ * @{
+ */
+#define TIM_ICPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Capture triggered by rising edge on timer input */
+#define TIM_ICPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Capture triggered by falling edge on timer input */
+#define TIM_ICPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Capture triggered by both rising and falling edges on timer input*/
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Encoder_Input_Polarity TIM Encoder Input Polarity
+ * @{
+ */
+#define TIM_ENCODERINPUTPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Encoder input with rising edge polarity */
+#define TIM_ENCODERINPUTPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Encoder input with falling edge polarity */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Input_Capture_Selection TIM Input Capture Selection
+ * @{
+ */
+#define TIM_ICSELECTION_DIRECTTI \
+ TIM_CCMR1_CC1S_0 /*!< TIM Input 1, 2, 3 or 4 is selected to be \
+ connected to IC1, IC2, IC3 or IC4, respectively */
+#define TIM_ICSELECTION_INDIRECTTI \
+ TIM_CCMR1_CC1S_1 /*!< TIM Input 1, 2, 3 or 4 is selected to be \
+ connected to IC2, IC1, IC4 or IC3, respectively */
+#define TIM_ICSELECTION_TRC TIM_CCMR1_CC1S /*!< TIM Input 1, 2, 3 or 4 is selected to be connected to TRC */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Input_Capture_Prescaler TIM Input Capture Prescaler
+ * @{
+ */
+#define TIM_ICPSC_DIV1 0x00000000U /*!< Capture performed each time an edge is detected on the capture input */
+#define TIM_ICPSC_DIV2 TIM_CCMR1_IC1PSC_0 /*!< Capture performed once every 2 events */
+#define TIM_ICPSC_DIV4 TIM_CCMR1_IC1PSC_1 /*!< Capture performed once every 4 events */
+#define TIM_ICPSC_DIV8 TIM_CCMR1_IC1PSC /*!< Capture performed once every 8 events */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_One_Pulse_Mode TIM One Pulse Mode
+ * @{
+ */
+#define TIM_OPMODE_SINGLE TIM_CR1_OPM /*!< Counter stops counting at the next update event */
+#define TIM_OPMODE_REPETITIVE 0x00000000U /*!< Counter is not stopped at update event */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Encoder_Mode TIM Encoder Mode
+ * @{
+ */
+#define TIM_ENCODERMODE_TI1 TIM_SMCR_SMS_0 /*!< Quadrature encoder mode 1, x2 mode, counts up/down on TI1FP1 edge depending on TI2FP2 level */
+#define TIM_ENCODERMODE_TI2 TIM_SMCR_SMS_1 /*!< Quadrature encoder mode 2, x2 mode, counts up/down on TI2FP2 edge depending on TI1FP1 level. */
+#define TIM_ENCODERMODE_TI12 (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Quadrature encoder mode 3, x4 mode, counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input. */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Interrupt_definition TIM interrupt Definition
+ * @{
+ */
+#define TIM_IT_UPDATE TIM_DIER_UIE /*!< Update interrupt */
+#define TIM_IT_CC1 TIM_DIER_CC1IE /*!< Capture/Compare 1 interrupt */
+#define TIM_IT_CC2 TIM_DIER_CC2IE /*!< Capture/Compare 2 interrupt */
+#define TIM_IT_CC3 TIM_DIER_CC3IE /*!< Capture/Compare 3 interrupt */
+#define TIM_IT_CC4 TIM_DIER_CC4IE /*!< Capture/Compare 4 interrupt */
+#define TIM_IT_COM TIM_DIER_COMIE /*!< Commutation interrupt */
+#define TIM_IT_TRIGGER TIM_DIER_TIE /*!< Trigger interrupt */
+#define TIM_IT_BREAK TIM_DIER_BIE /*!< Break interrupt */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Commutation_Source TIM Commutation Source
+ * @{
+ */
+#define TIM_COMMUTATION_TRGI TIM_CR2_CCUS /*!< When Capture/compare control bits are preloaded, they are updated by setting the COMG bit or when an rising edge occurs on trigger input */
+#define TIM_COMMUTATION_SOFTWARE 0x00000000U /*!< When Capture/compare control bits are preloaded, they are updated by setting the COMG bit */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_DMA_sources TIM DMA Sources
+ * @{
+ */
+#define TIM_DMA_UPDATE TIM_DIER_UDE /*!< DMA request is triggered by the update event */
+#define TIM_DMA_CC1 TIM_DIER_CC1DE /*!< DMA request is triggered by the capture/compare macth 1 event */
+#define TIM_DMA_CC2 TIM_DIER_CC2DE /*!< DMA request is triggered by the capture/compare macth 2 event event */
+#define TIM_DMA_CC3 TIM_DIER_CC3DE /*!< DMA request is triggered by the capture/compare macth 3 event event */
+#define TIM_DMA_CC4 TIM_DIER_CC4DE /*!< DMA request is triggered by the capture/compare macth 4 event event */
+#define TIM_DMA_COM TIM_DIER_COMDE /*!< DMA request is triggered by the commutation event */
+#define TIM_DMA_TRIGGER TIM_DIER_TDE /*!< DMA request is triggered by the trigger event */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Flag_definition TIM Flag Definition
+ * @{
+ */
+#define TIM_FLAG_UPDATE TIM_SR_UIF /*!< Update interrupt flag */
+#define TIM_FLAG_CC1 TIM_SR_CC1IF /*!< Capture/Compare 1 interrupt flag */
+#define TIM_FLAG_CC2 TIM_SR_CC2IF /*!< Capture/Compare 2 interrupt flag */
+#define TIM_FLAG_CC3 TIM_SR_CC3IF /*!< Capture/Compare 3 interrupt flag */
+#define TIM_FLAG_CC4 TIM_SR_CC4IF /*!< Capture/Compare 4 interrupt flag */
+#define TIM_FLAG_COM TIM_SR_COMIF /*!< Commutation interrupt flag */
+#define TIM_FLAG_TRIGGER TIM_SR_TIF /*!< Trigger interrupt flag */
+#define TIM_FLAG_BREAK TIM_SR_BIF /*!< Break interrupt flag */
+#define TIM_FLAG_CC1OF TIM_SR_CC1OF /*!< Capture 1 overcapture flag */
+#define TIM_FLAG_CC2OF TIM_SR_CC2OF /*!< Capture 2 overcapture flag */
+#define TIM_FLAG_CC3OF TIM_SR_CC3OF /*!< Capture 3 overcapture flag */
+#define TIM_FLAG_CC4OF TIM_SR_CC4OF /*!< Capture 4 overcapture flag */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Channel TIM Channel
+ * @{
+ */
+#define TIM_CHANNEL_1 0x00000000U /*!< Capture/compare channel 1 identifier */
+#define TIM_CHANNEL_2 0x00000004U /*!< Capture/compare channel 2 identifier */
+#define TIM_CHANNEL_3 0x00000008U /*!< Capture/compare channel 3 identifier */
+#define TIM_CHANNEL_4 0x0000000CU /*!< Capture/compare channel 4 identifier */
+#define TIM_CHANNEL_ALL 0x0000003CU /*!< Global Capture/compare channel identifier */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Clock_Source TIM Clock Source
+ * @{
+ */
+#define TIM_CLOCKSOURCE_ETRMODE2 TIM_SMCR_ETPS_1 /*!< External clock source mode 2 */
+#define TIM_CLOCKSOURCE_INTERNAL TIM_SMCR_ETPS_0 /*!< Internal clock source */
+#define TIM_CLOCKSOURCE_ITR0 TIM_TS_ITR0 /*!< External clock source mode 1 (ITR0) */
+#define TIM_CLOCKSOURCE_ITR1 TIM_TS_ITR1 /*!< External clock source mode 1 (ITR1) */
+#define TIM_CLOCKSOURCE_ITR2 TIM_TS_ITR2 /*!< External clock source mode 1 (ITR2) */
+#define TIM_CLOCKSOURCE_ITR3 TIM_TS_ITR3 /*!< External clock source mode 1 (ITR3) */
+#define TIM_CLOCKSOURCE_TI1ED TIM_TS_TI1F_ED /*!< External clock source mode 1 (TTI1FP1 + edge detect.) */
+#define TIM_CLOCKSOURCE_TI1 TIM_TS_TI1FP1 /*!< External clock source mode 1 (TTI1FP1) */
+#define TIM_CLOCKSOURCE_TI2 TIM_TS_TI2FP2 /*!< External clock source mode 1 (TTI2FP2) */
+#define TIM_CLOCKSOURCE_ETRMODE1 TIM_TS_ETRF /*!< External clock source mode 1 (ETRF) */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Clock_Polarity TIM Clock Polarity
+ * @{
+ */
+#define TIM_CLOCKPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx clock sources */
+#define TIM_CLOCKPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx clock sources */
+#define TIM_CLOCKPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIx clock sources */
+#define TIM_CLOCKPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIx clock sources */
+#define TIM_CLOCKPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIx clock sources */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Clock_Prescaler TIM Clock Prescaler
+ * @{
+ */
+#define TIM_CLOCKPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */
+#define TIM_CLOCKPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Clock: Capture performed once every 2 events. */
+#define TIM_CLOCKPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Clock: Capture performed once every 4 events. */
+#define TIM_CLOCKPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Clock: Capture performed once every 8 events. */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_ClearInput_Polarity TIM Clear Input Polarity
+ * @{
+ */
+#define TIM_CLEARINPUTPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx pin */
+#define TIM_CLEARINPUTPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx pin */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_ClearInput_Prescaler TIM Clear Input Prescaler
+ * @{
+ */
+#define TIM_CLEARINPUTPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */
+#define TIM_CLEARINPUTPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR pin: Capture performed once every 2 events. */
+#define TIM_CLEARINPUTPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR pin: Capture performed once every 4 events. */
+#define TIM_CLEARINPUTPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR pin: Capture performed once every 8 events. */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_OSSR_Off_State_Selection_for_Run_mode_state TIM OSSR OffState Selection for Run mode state
+ * @{
+ */
+#define TIM_OSSR_ENABLE TIM_BDTR_OSSR /*!< When inactive, OC/OCN outputs are enabled (still controlled by the timer) */
+#define TIM_OSSR_DISABLE 0x00000000U /*!< When inactive, OC/OCN outputs are disabled (not controlled any longer by the timer) */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_OSSI_Off_State_Selection_for_Idle_mode_state TIM OSSI OffState Selection for Idle mode state
+ * @{
+ */
+#define TIM_OSSI_ENABLE TIM_BDTR_OSSI /*!< When inactive, OC/OCN outputs are enabled (still controlled by the timer) */
+#define TIM_OSSI_DISABLE 0x00000000U /*!< When inactive, OC/OCN outputs are disabled (not controlled any longer by the timer) */
+/**
+ * @}
+ */
+/** @defgroup TIM_Lock_level TIM Lock level
+ * @{
+ */
+#define TIM_LOCKLEVEL_OFF 0x00000000U /*!< LOCK OFF */
+#define TIM_LOCKLEVEL_1 TIM_BDTR_LOCK_0 /*!< LOCK Level 1 */
+#define TIM_LOCKLEVEL_2 TIM_BDTR_LOCK_1 /*!< LOCK Level 2 */
+#define TIM_LOCKLEVEL_3 TIM_BDTR_LOCK /*!< LOCK Level 3 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Break_Input_enable_disable TIM Break Input Enable
+ * @{
+ */
+#define TIM_BREAK_ENABLE TIM_BDTR_BKE /*!< Break input BRK is enabled */
+#define TIM_BREAK_DISABLE 0x00000000U /*!< Break input BRK is disabled */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Break_Polarity TIM Break Input Polarity
+ * @{
+ */
+#define TIM_BREAKPOLARITY_LOW 0x00000000U /*!< Break input BRK is active low */
+#define TIM_BREAKPOLARITY_HIGH TIM_BDTR_BKP /*!< Break input BRK is active high */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_AOE_Bit_Set_Reset TIM Automatic Output Enable
+ * @{
+ */
+#define TIM_AUTOMATICOUTPUT_DISABLE 0x00000000U /*!< MOE can be set only by software */
+#define TIM_AUTOMATICOUTPUT_ENABLE \
+ TIM_BDTR_AOE /*!< MOE can be set by software or automatically at the next update event \
+ (if none of the break inputs BRK and BRK2 is active) */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Master_Mode_Selection TIM Master Mode Selection
+ * @{
+ */
+#define TIM_TRGO_RESET 0x00000000U /*!< TIMx_EGR.UG bit is used as trigger output (TRGO) */
+#define TIM_TRGO_ENABLE TIM_CR2_MMS_0 /*!< TIMx_CR1.CEN bit is used as trigger output (TRGO) */
+#define TIM_TRGO_UPDATE TIM_CR2_MMS_1 /*!< Update event is used as trigger output (TRGO) */
+#define TIM_TRGO_OC1 (TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< Capture or a compare match 1 is used as trigger output (TRGO) */
+#define TIM_TRGO_OC1REF TIM_CR2_MMS_2 /*!< OC1REF signal is used as trigger output (TRGO) */
+#define TIM_TRGO_OC2REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_0) /*!< OC2REF signal is used as trigger output(TRGO) */
+#define TIM_TRGO_OC3REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1) /*!< OC3REF signal is used as trigger output(TRGO) */
+#define TIM_TRGO_OC4REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output(TRGO) */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Master_Slave_Mode TIM Master/Slave Mode
+ * @{
+ */
+#define TIM_MASTERSLAVEMODE_ENABLE TIM_SMCR_MSM /*!< No action */
+#define TIM_MASTERSLAVEMODE_DISABLE 0x00000000U /*!< Master/slave mode is selected */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Slave_Mode TIM Slave mode
+ * @{
+ */
+#define TIM_SLAVEMODE_DISABLE 0x00000000U /*!< Slave mode disabled */
+#define TIM_SLAVEMODE_RESET TIM_SMCR_SMS_2 /*!< Reset Mode */
+#define TIM_SLAVEMODE_GATED (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0) /*!< Gated Mode */
+#define TIM_SLAVEMODE_TRIGGER (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1) /*!< Trigger Mode */
+#define TIM_SLAVEMODE_EXTERNAL1 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< External Clock Mode 1 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_and_PWM_modes TIM Output Compare and PWM Modes
+ * @{
+ */
+#define TIM_OCMODE_TIMING 0x00000000U /*!< Frozen */
+#define TIM_OCMODE_ACTIVE TIM_CCMR1_OC1M_0 /*!< Set channel to active level on match */
+#define TIM_OCMODE_INACTIVE TIM_CCMR1_OC1M_1 /*!< Set channel to inactive level on match */
+#define TIM_OCMODE_TOGGLE (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!< Toggle */
+#define TIM_OCMODE_PWM1 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1) /*!< PWM mode 1 */
+#define TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!< PWM mode 2 */
+#define TIM_OCMODE_FORCED_ACTIVE (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0) /*!< Force active level */
+#define TIM_OCMODE_FORCED_INACTIVE TIM_CCMR1_OC1M_2 /*!< Force inactive level */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Trigger_Selection TIM Trigger Selection
+ * @{
+ */
+#define TIM_TS_ITR0 0x00000000U /*!< Internal Trigger 0 (ITR0) */
+#define TIM_TS_ITR1 TIM_SMCR_TS_0 /*!< Internal Trigger 1 (ITR1) */
+#define TIM_TS_ITR2 TIM_SMCR_TS_1 /*!< Internal Trigger 2 (ITR2) */
+#define TIM_TS_ITR3 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1) /*!< Internal Trigger 3 (ITR3) */
+#define TIM_TS_TI1F_ED TIM_SMCR_TS_2 /*!< TI1 Edge Detector (TI1F_ED) */
+#define TIM_TS_TI1FP1 (TIM_SMCR_TS_0 | TIM_SMCR_TS_2) /*!< Filtered Timer Input 1 (TI1FP1) */
+#define TIM_TS_TI2FP2 (TIM_SMCR_TS_1 | TIM_SMCR_TS_2) /*!< Filtered Timer Input 2 (TI2FP2) */
+#define TIM_TS_ETRF (TIM_SMCR_TS_0 | TIM_SMCR_TS_1 | TIM_SMCR_TS_2) /*!< Filtered External Trigger input (ETRF) */
+#define TIM_TS_NONE 0x0000FFFFU /*!< No trigger selected */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Trigger_Polarity TIM Trigger Polarity
+ * @{
+ */
+#define TIM_TRIGGERPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx trigger sources */
+#define TIM_TRIGGERPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx trigger sources */
+#define TIM_TRIGGERPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIxFPx or TI1_ED trigger sources */
+#define TIM_TRIGGERPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIxFPx or TI1_ED trigger sources */
+#define TIM_TRIGGERPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIxFPx or TI1_ED trigger sources */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Trigger_Prescaler TIM Trigger Prescaler
+ * @{
+ */
+#define TIM_TRIGGERPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */
+#define TIM_TRIGGERPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Trigger: Capture performed once every 2 events. */
+#define TIM_TRIGGERPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Trigger: Capture performed once every 4 events. */
+#define TIM_TRIGGERPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Trigger: Capture performed once every 8 events. */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_TI1_Selection TIM TI1 Input Selection
+ * @{
+ */
+#define TIM_TI1SELECTION_CH1 0x00000000U /*!< The TIMx_CH1 pin is connected to TI1 input */
+#define TIM_TI1SELECTION_XORCOMBINATION TIM_CR2_TI1S /*!< The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_DMA_Burst_Length TIM DMA Burst Length
+ * @{
+ */
+#define TIM_DMABURSTLENGTH_1TRANSFER 0x00000000U /*!< The transfer is done to 1 register starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_2TRANSFERS 0x00000100U /*!< The transfer is done to 2 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_3TRANSFERS 0x00000200U /*!< The transfer is done to 3 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_4TRANSFERS 0x00000300U /*!< The transfer is done to 4 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_5TRANSFERS 0x00000400U /*!< The transfer is done to 5 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_6TRANSFERS 0x00000500U /*!< The transfer is done to 6 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_7TRANSFERS 0x00000600U /*!< The transfer is done to 7 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_8TRANSFERS 0x00000700U /*!< The transfer is done to 8 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_9TRANSFERS 0x00000800U /*!< The transfer is done to 9 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_10TRANSFERS 0x00000900U /*!< The transfer is done to 10 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_11TRANSFERS 0x00000A00U /*!< The transfer is done to 11 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_12TRANSFERS 0x00000B00U /*!< The transfer is done to 12 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_13TRANSFERS 0x00000C00U /*!< The transfer is done to 13 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_14TRANSFERS 0x00000D00U /*!< The transfer is done to 14 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_15TRANSFERS 0x00000E00U /*!< The transfer is done to 15 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_16TRANSFERS 0x00000F00U /*!< The transfer is done to 16 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_17TRANSFERS 0x00001000U /*!< The transfer is done to 17 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_18TRANSFERS 0x00001100U /*!< The transfer is done to 18 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Handle_index TIM DMA Handle Index
+ * @{
+ */
+#define TIM_DMA_ID_UPDATE ((uint16_t)0x0000) /*!< Index of the DMA handle used for Update DMA requests */
+#define TIM_DMA_ID_CC1 ((uint16_t)0x0001) /*!< Index of the DMA handle used for Capture/Compare 1 DMA requests */
+#define TIM_DMA_ID_CC2 ((uint16_t)0x0002) /*!< Index of the DMA handle used for Capture/Compare 2 DMA requests */
+#define TIM_DMA_ID_CC3 ((uint16_t)0x0003) /*!< Index of the DMA handle used for Capture/Compare 3 DMA requests */
+#define TIM_DMA_ID_CC4 ((uint16_t)0x0004) /*!< Index of the DMA handle used for Capture/Compare 4 DMA requests */
+#define TIM_DMA_ID_COMMUTATION ((uint16_t)0x0005) /*!< Index of the DMA handle used for Commutation DMA requests */
+#define TIM_DMA_ID_TRIGGER ((uint16_t)0x0006) /*!< Index of the DMA handle used for Trigger DMA requests */
+/**
+ * @}
+ */
+
+/** @defgroup Channel_CC_State TIM Capture/Compare Channel State
+ * @{
+ */
+#define TIM_CCx_ENABLE 0x00000001U /*!< Input or output channel is enabled */
+#define TIM_CCx_DISABLE 0x00000000U /*!< Input or output channel is disabled */
+#define TIM_CCxN_ENABLE 0x00000004U /*!< Complementary output channel is enabled */
+#define TIM_CCxN_DISABLE 0x00000000U /*!< Complementary output channel is enabled */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/* End of exported constants -------------------------------------------------*/
+
+/* Exported macros -----------------------------------------------------------*/
+/** @defgroup TIM_Exported_Macros TIM Exported Macros
+ * @{
+ */
+
+/** @brief Reset TIM handle state.
+ * @param __HANDLE__ TIM handle.
+ * @retval None
+ */
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+#define __HAL_TIM_RESET_HANDLE_STATE(__HANDLE__) \
+ do { \
+ (__HANDLE__)->State = HAL_TIM_STATE_RESET; \
+ (__HANDLE__)->ChannelState[0] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[1] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[2] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[3] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[0] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[1] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[2] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[3] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->DMABurstState = HAL_DMA_BURST_STATE_RESET; \
+ (__HANDLE__)->Base_MspInitCallback = NULL; \
+ (__HANDLE__)->Base_MspDeInitCallback = NULL; \
+ (__HANDLE__)->IC_MspInitCallback = NULL; \
+ (__HANDLE__)->IC_MspDeInitCallback = NULL; \
+ (__HANDLE__)->OC_MspInitCallback = NULL; \
+ (__HANDLE__)->OC_MspDeInitCallback = NULL; \
+ (__HANDLE__)->PWM_MspInitCallback = NULL; \
+ (__HANDLE__)->PWM_MspDeInitCallback = NULL; \
+ (__HANDLE__)->OnePulse_MspInitCallback = NULL; \
+ (__HANDLE__)->OnePulse_MspDeInitCallback = NULL; \
+ (__HANDLE__)->Encoder_MspInitCallback = NULL; \
+ (__HANDLE__)->Encoder_MspDeInitCallback = NULL; \
+ (__HANDLE__)->HallSensor_MspInitCallback = NULL; \
+ (__HANDLE__)->HallSensor_MspDeInitCallback = NULL; \
+ } while (0)
+#else
+#define __HAL_TIM_RESET_HANDLE_STATE(__HANDLE__) \
+ do { \
+ (__HANDLE__)->State = HAL_TIM_STATE_RESET; \
+ (__HANDLE__)->ChannelState[0] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[1] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[2] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[3] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[0] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[1] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[2] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[3] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->DMABurstState = HAL_DMA_BURST_STATE_RESET; \
+ } while (0)
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+/**
+ * @brief Enable the TIM peripheral.
+ * @param __HANDLE__ TIM handle
+ * @retval None
+ */
+#define __HAL_TIM_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= (TIM_CR1_CEN))
+
+/**
+ * @brief Enable the TIM main Output.
+ * @param __HANDLE__ TIM handle
+ * @retval None
+ */
+#define __HAL_TIM_MOE_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->BDTR |= (TIM_BDTR_MOE))
+
+/**
+ * @brief Disable the TIM peripheral.
+ * @param __HANDLE__ TIM handle
+ * @retval None
+ */
+#define __HAL_TIM_DISABLE(__HANDLE__) \
+ do { \
+ if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0UL) { \
+ if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0UL) { \
+ (__HANDLE__)->Instance->CR1 &= ~(TIM_CR1_CEN); \
+ } \
+ } \
+ } while (0)
+
+/**
+ * @brief Disable the TIM main Output.
+ * @param __HANDLE__ TIM handle
+ * @retval None
+ * @note The Main Output Enable of a timer instance is disabled only if all the CCx and CCxN channels have been disabled
+ */
+#define __HAL_TIM_MOE_DISABLE(__HANDLE__) \
+ do { \
+ if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0UL) { \
+ if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0UL) { \
+ (__HANDLE__)->Instance->BDTR &= ~(TIM_BDTR_MOE); \
+ } \
+ } \
+ } while (0)
+
+/**
+ * @brief Disable the TIM main Output.
+ * @param __HANDLE__ TIM handle
+ * @retval None
+ * @note The Main Output Enable of a timer instance is disabled unconditionally
+ */
+#define __HAL_TIM_MOE_DISABLE_UNCONDITIONALLY(__HANDLE__) (__HANDLE__)->Instance->BDTR &= ~(TIM_BDTR_MOE)
+
+/** @brief Enable the specified TIM interrupt.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __INTERRUPT__ specifies the TIM interrupt source to enable.
+ * This parameter can be one of the following values:
+ * @arg TIM_IT_UPDATE: Update interrupt
+ * @arg TIM_IT_CC1: Capture/Compare 1 interrupt
+ * @arg TIM_IT_CC2: Capture/Compare 2 interrupt
+ * @arg TIM_IT_CC3: Capture/Compare 3 interrupt
+ * @arg TIM_IT_CC4: Capture/Compare 4 interrupt
+ * @arg TIM_IT_COM: Commutation interrupt
+ * @arg TIM_IT_TRIGGER: Trigger interrupt
+ * @arg TIM_IT_BREAK: Break interrupt
+ * @retval None
+ */
+#define __HAL_TIM_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->DIER |= (__INTERRUPT__))
+
+/** @brief Disable the specified TIM interrupt.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __INTERRUPT__ specifies the TIM interrupt source to disable.
+ * This parameter can be one of the following values:
+ * @arg TIM_IT_UPDATE: Update interrupt
+ * @arg TIM_IT_CC1: Capture/Compare 1 interrupt
+ * @arg TIM_IT_CC2: Capture/Compare 2 interrupt
+ * @arg TIM_IT_CC3: Capture/Compare 3 interrupt
+ * @arg TIM_IT_CC4: Capture/Compare 4 interrupt
+ * @arg TIM_IT_COM: Commutation interrupt
+ * @arg TIM_IT_TRIGGER: Trigger interrupt
+ * @arg TIM_IT_BREAK: Break interrupt
+ * @retval None
+ */
+#define __HAL_TIM_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->DIER &= ~(__INTERRUPT__))
+
+/** @brief Enable the specified DMA request.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __DMA__ specifies the TIM DMA request to enable.
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: Update DMA request
+ * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request
+ * @arg TIM_DMA_CC2: Capture/Compare 2 DMA request
+ * @arg TIM_DMA_CC3: Capture/Compare 3 DMA request
+ * @arg TIM_DMA_CC4: Capture/Compare 4 DMA request
+ * @arg TIM_DMA_COM: Commutation DMA request
+ * @arg TIM_DMA_TRIGGER: Trigger DMA request
+ * @retval None
+ */
+#define __HAL_TIM_ENABLE_DMA(__HANDLE__, __DMA__) ((__HANDLE__)->Instance->DIER |= (__DMA__))
+
+/** @brief Disable the specified DMA request.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __DMA__ specifies the TIM DMA request to disable.
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: Update DMA request
+ * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request
+ * @arg TIM_DMA_CC2: Capture/Compare 2 DMA request
+ * @arg TIM_DMA_CC3: Capture/Compare 3 DMA request
+ * @arg TIM_DMA_CC4: Capture/Compare 4 DMA request
+ * @arg TIM_DMA_COM: Commutation DMA request
+ * @arg TIM_DMA_TRIGGER: Trigger DMA request
+ * @retval None
+ */
+#define __HAL_TIM_DISABLE_DMA(__HANDLE__, __DMA__) ((__HANDLE__)->Instance->DIER &= ~(__DMA__))
+
+/** @brief Check whether the specified TIM interrupt flag is set or not.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __FLAG__ specifies the TIM interrupt flag to check.
+ * This parameter can be one of the following values:
+ * @arg TIM_FLAG_UPDATE: Update interrupt flag
+ * @arg TIM_FLAG_CC1: Capture/Compare 1 interrupt flag
+ * @arg TIM_FLAG_CC2: Capture/Compare 2 interrupt flag
+ * @arg TIM_FLAG_CC3: Capture/Compare 3 interrupt flag
+ * @arg TIM_FLAG_CC4: Capture/Compare 4 interrupt flag
+ * @arg TIM_FLAG_COM: Commutation interrupt flag
+ * @arg TIM_FLAG_TRIGGER: Trigger interrupt flag
+ * @arg TIM_FLAG_BREAK: Break interrupt flag
+ * @arg TIM_FLAG_CC1OF: Capture/Compare 1 overcapture flag
+ * @arg TIM_FLAG_CC2OF: Capture/Compare 2 overcapture flag
+ * @arg TIM_FLAG_CC3OF: Capture/Compare 3 overcapture flag
+ * @arg TIM_FLAG_CC4OF: Capture/Compare 4 overcapture flag
+ * @retval The new state of __FLAG__ (TRUE or FALSE).
+ */
+#define __HAL_TIM_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))
+
+/** @brief Clear the specified TIM interrupt flag.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __FLAG__ specifies the TIM interrupt flag to clear.
+ * This parameter can be one of the following values:
+ * @arg TIM_FLAG_UPDATE: Update interrupt flag
+ * @arg TIM_FLAG_CC1: Capture/Compare 1 interrupt flag
+ * @arg TIM_FLAG_CC2: Capture/Compare 2 interrupt flag
+ * @arg TIM_FLAG_CC3: Capture/Compare 3 interrupt flag
+ * @arg TIM_FLAG_CC4: Capture/Compare 4 interrupt flag
+ * @arg TIM_FLAG_COM: Commutation interrupt flag
+ * @arg TIM_FLAG_TRIGGER: Trigger interrupt flag
+ * @arg TIM_FLAG_BREAK: Break interrupt flag
+ * @arg TIM_FLAG_CC1OF: Capture/Compare 1 overcapture flag
+ * @arg TIM_FLAG_CC2OF: Capture/Compare 2 overcapture flag
+ * @arg TIM_FLAG_CC3OF: Capture/Compare 3 overcapture flag
+ * @arg TIM_FLAG_CC4OF: Capture/Compare 4 overcapture flag
+ * @retval The new state of __FLAG__ (TRUE or FALSE).
+ */
+#define __HAL_TIM_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR = ~(__FLAG__))
+
+/**
+ * @brief Check whether the specified TIM interrupt source is enabled or not.
+ * @param __HANDLE__ TIM handle
+ * @param __INTERRUPT__ specifies the TIM interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg TIM_IT_UPDATE: Update interrupt
+ * @arg TIM_IT_CC1: Capture/Compare 1 interrupt
+ * @arg TIM_IT_CC2: Capture/Compare 2 interrupt
+ * @arg TIM_IT_CC3: Capture/Compare 3 interrupt
+ * @arg TIM_IT_CC4: Capture/Compare 4 interrupt
+ * @arg TIM_IT_COM: Commutation interrupt
+ * @arg TIM_IT_TRIGGER: Trigger interrupt
+ * @arg TIM_IT_BREAK: Break interrupt
+ * @retval The state of TIM_IT (SET or RESET).
+ */
+#define __HAL_TIM_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->DIER & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
+
+/** @brief Clear the TIM interrupt pending bits.
+ * @param __HANDLE__ TIM handle
+ * @param __INTERRUPT__ specifies the interrupt pending bit to clear.
+ * This parameter can be one of the following values:
+ * @arg TIM_IT_UPDATE: Update interrupt
+ * @arg TIM_IT_CC1: Capture/Compare 1 interrupt
+ * @arg TIM_IT_CC2: Capture/Compare 2 interrupt
+ * @arg TIM_IT_CC3: Capture/Compare 3 interrupt
+ * @arg TIM_IT_CC4: Capture/Compare 4 interrupt
+ * @arg TIM_IT_COM: Commutation interrupt
+ * @arg TIM_IT_TRIGGER: Trigger interrupt
+ * @arg TIM_IT_BREAK: Break interrupt
+ * @retval None
+ */
+#define __HAL_TIM_CLEAR_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->SR = ~(__INTERRUPT__))
+
+/**
+ * @brief Indicates whether or not the TIM Counter is used as downcounter.
+ * @param __HANDLE__ TIM handle.
+ * @retval False (Counter used as upcounter) or True (Counter used as downcounter)
+ * @note This macro is particularly useful to get the counting mode when the timer operates in Center-aligned mode or Encoder
+mode.
+ */
+#define __HAL_TIM_IS_TIM_COUNTING_DOWN(__HANDLE__) (((__HANDLE__)->Instance->CR1 & (TIM_CR1_DIR)) == (TIM_CR1_DIR))
+
+/**
+ * @brief Set the TIM Prescaler on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @param __PRESC__ specifies the Prescaler new value.
+ * @retval None
+ */
+#define __HAL_TIM_SET_PRESCALER(__HANDLE__, __PRESC__) ((__HANDLE__)->Instance->PSC = (__PRESC__))
+
+/**
+ * @brief Set the TIM Counter Register value on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @param __COUNTER__ specifies the Counter register new value.
+ * @retval None
+ */
+#define __HAL_TIM_SET_COUNTER(__HANDLE__, __COUNTER__) ((__HANDLE__)->Instance->CNT = (__COUNTER__))
+
+/**
+ * @brief Get the TIM Counter Register value on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @retval 16-bit or 32-bit value of the timer counter register (TIMx_CNT)
+ */
+#define __HAL_TIM_GET_COUNTER(__HANDLE__) ((__HANDLE__)->Instance->CNT)
+
+/**
+ * @brief Set the TIM Autoreload Register value on runtime without calling another time any Init function.
+ * @param __HANDLE__ TIM handle.
+ * @param __AUTORELOAD__ specifies the Counter register new value.
+ * @retval None
+ */
+#define __HAL_TIM_SET_AUTORELOAD(__HANDLE__, __AUTORELOAD__) \
+ do { \
+ (__HANDLE__)->Instance->ARR = (__AUTORELOAD__); \
+ (__HANDLE__)->Init.Period = (__AUTORELOAD__); \
+ } while (0)
+
+/**
+ * @brief Get the TIM Autoreload Register value on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @retval 16-bit or 32-bit value of the timer auto-reload register(TIMx_ARR)
+ */
+#define __HAL_TIM_GET_AUTORELOAD(__HANDLE__) ((__HANDLE__)->Instance->ARR)
+
+/**
+ * @brief Set the TIM Clock Division value on runtime without calling another time any Init function.
+ * @param __HANDLE__ TIM handle.
+ * @param __CKD__ specifies the clock division value.
+ * This parameter can be one of the following value:
+ * @arg TIM_CLOCKDIVISION_DIV1: tDTS=tCK_INT
+ * @arg TIM_CLOCKDIVISION_DIV2: tDTS=2*tCK_INT
+ * @arg TIM_CLOCKDIVISION_DIV4: tDTS=4*tCK_INT
+ * @retval None
+ */
+#define __HAL_TIM_SET_CLOCKDIVISION(__HANDLE__, __CKD__) \
+ do { \
+ (__HANDLE__)->Instance->CR1 &= (~TIM_CR1_CKD); \
+ (__HANDLE__)->Instance->CR1 |= (__CKD__); \
+ (__HANDLE__)->Init.ClockDivision = (__CKD__); \
+ } while (0)
+
+/**
+ * @brief Get the TIM Clock Division value on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @retval The clock division can be one of the following values:
+ * @arg TIM_CLOCKDIVISION_DIV1: tDTS=tCK_INT
+ * @arg TIM_CLOCKDIVISION_DIV2: tDTS=2*tCK_INT
+ * @arg TIM_CLOCKDIVISION_DIV4: tDTS=4*tCK_INT
+ */
+#define __HAL_TIM_GET_CLOCKDIVISION(__HANDLE__) ((__HANDLE__)->Instance->CR1 & TIM_CR1_CKD)
+
+/**
+ * @brief Set the TIM Input Capture prescaler on runtime without calling another time HAL_TIM_IC_ConfigChannel() function.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @param __ICPSC__ specifies the Input Capture4 prescaler new value.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPSC_DIV1: no prescaler
+ * @arg TIM_ICPSC_DIV2: capture is done once every 2 events
+ * @arg TIM_ICPSC_DIV4: capture is done once every 4 events
+ * @arg TIM_ICPSC_DIV8: capture is done once every 8 events
+ * @retval None
+ */
+#define __HAL_TIM_SET_ICPRESCALER(__HANDLE__, __CHANNEL__, __ICPSC__) \
+ do { \
+ TIM_RESET_ICPRESCALERVALUE((__HANDLE__), (__CHANNEL__)); \
+ TIM_SET_ICPRESCALERVALUE((__HANDLE__), (__CHANNEL__), (__ICPSC__)); \
+ } while (0)
+
+/**
+ * @brief Get the TIM Input Capture prescaler on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: get input capture 1 prescaler value
+ * @arg TIM_CHANNEL_2: get input capture 2 prescaler value
+ * @arg TIM_CHANNEL_3: get input capture 3 prescaler value
+ * @arg TIM_CHANNEL_4: get input capture 4 prescaler value
+ * @retval The input capture prescaler can be one of the following values:
+ * @arg TIM_ICPSC_DIV1: no prescaler
+ * @arg TIM_ICPSC_DIV2: capture is done once every 2 events
+ * @arg TIM_ICPSC_DIV4: capture is done once every 4 events
+ * @arg TIM_ICPSC_DIV8: capture is done once every 8 events
+ */
+#define __HAL_TIM_GET_ICPRESCALER(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 & TIM_CCMR1_IC1PSC) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? (((__HANDLE__)->Instance->CCMR1 & TIM_CCMR1_IC2PSC) >> 8U) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 & TIM_CCMR2_IC3PSC) : (((__HANDLE__)->Instance->CCMR2 & TIM_CCMR2_IC4PSC)) >> 8U)
+
+/**
+ * @brief Set the TIM Capture Compare Register value on runtime without calling another time ConfigChannel function.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @param __COMPARE__ specifies the Capture Compare register new value.
+ * @retval None
+ */
+#define __HAL_TIM_SET_COMPARE(__HANDLE__, __CHANNEL__, __COMPARE__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCR1 = (__COMPARE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCR2 = (__COMPARE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCR3 = (__COMPARE__)) : ((__HANDLE__)->Instance->CCR4 = (__COMPARE__)))
+
+/**
+ * @brief Get the TIM Capture Compare Register value on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channel associated with the capture compare register
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: get capture/compare 1 register value
+ * @arg TIM_CHANNEL_2: get capture/compare 2 register value
+ * @arg TIM_CHANNEL_3: get capture/compare 3 register value
+ * @arg TIM_CHANNEL_4: get capture/compare 4 register value
+ * @retval 16-bit or 32-bit value of the capture/compare register (TIMx_CCRy)
+ */
+#define __HAL_TIM_GET_COMPARE(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCR1) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCR2) : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCR3) : ((__HANDLE__)->Instance->CCR4))
+
+/**
+ * @brief Set the TIM Output compare preload.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval None
+ */
+#define __HAL_TIM_ENABLE_OCxPRELOAD(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC1PE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC2PE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC3PE) : ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC4PE))
+
+/**
+ * @brief Reset the TIM Output compare preload.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval None
+ */
+#define __HAL_TIM_DISABLE_OCxPRELOAD(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC1PE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC2PE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC3PE) : ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC4PE))
+
+/**
+ * @brief Enable fast mode for a given channel.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @note When fast mode is enabled an active edge on the trigger input acts
+ * like a compare match on CCx output. Delay to sample the trigger
+ * input and to activate CCx output is reduced to 3 clock cycles.
+ * @note Fast mode acts only if the channel is configured in PWM1 or PWM2 mode.
+ * @retval None
+ */
+#define __HAL_TIM_ENABLE_OCxFAST(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC1FE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC2FE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC3FE) : ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC4FE))
+
+/**
+ * @brief Disable fast mode for a given channel.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @note When fast mode is disabled CCx output behaves normally depending
+ * on counter and CCRx values even when the trigger is ON. The minimum
+ * delay to activate CCx output when an active edge occurs on the
+ * trigger input is 5 clock cycles.
+ * @retval None
+ */
+#define __HAL_TIM_DISABLE_OCxFAST(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE) : ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE))
+
+/**
+ * @brief Set the Update Request Source (URS) bit of the TIMx_CR1 register.
+ * @param __HANDLE__ TIM handle.
+ * @note When the URS bit of the TIMx_CR1 register is set, only counter
+ * overflow/underflow generates an update interrupt or DMA request (if
+ * enabled)
+ * @retval None
+ */
+#define __HAL_TIM_URS_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= TIM_CR1_URS)
+
+/**
+ * @brief Reset the Update Request Source (URS) bit of the TIMx_CR1 register.
+ * @param __HANDLE__ TIM handle.
+ * @note When the URS bit of the TIMx_CR1 register is reset, any of the
+ * following events generate an update interrupt or DMA request (if
+ * enabled):
+ * _ Counter overflow underflow
+ * _ Setting the UG bit
+ * _ Update generation through the slave mode controller
+ * @retval None
+ */
+#define __HAL_TIM_URS_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= ~TIM_CR1_URS)
+
+/**
+ * @brief Set the TIM Capture x input polarity on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @param __POLARITY__ Polarity for TIx source
+ * @arg TIM_INPUTCHANNELPOLARITY_RISING: Rising Edge
+ * @arg TIM_INPUTCHANNELPOLARITY_FALLING: Falling Edge
+ * @arg TIM_INPUTCHANNELPOLARITY_BOTHEDGE: Rising and Falling Edge
+ * @retval None
+ */
+#define __HAL_TIM_SET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__, __POLARITY__) \
+ do { \
+ TIM_RESET_CAPTUREPOLARITY((__HANDLE__), (__CHANNEL__)); \
+ TIM_SET_CAPTUREPOLARITY((__HANDLE__), (__CHANNEL__), (__POLARITY__)); \
+ } while (0)
+
+/**
+ * @}
+ */
+/* End of exported macros ----------------------------------------------------*/
+
+/* Private constants ---------------------------------------------------------*/
+/** @defgroup TIM_Private_Constants TIM Private Constants
+ * @{
+ */
+/* The counter of a timer instance is disabled only if all the CCx and CCxN
+ channels have been disabled */
+#define TIM_CCER_CCxE_MASK ((uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC3E | TIM_CCER_CC4E))
+#define TIM_CCER_CCxNE_MASK ((uint32_t)(TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE))
+/**
+ * @}
+ */
+/* End of private constants --------------------------------------------------*/
+
+/* Private macros ------------------------------------------------------------*/
+/** @defgroup TIM_Private_Macros TIM Private Macros
+ * @{
+ */
+#define IS_TIM_CLEARINPUT_SOURCE(__MODE__) (((__MODE__) == TIM_CLEARINPUTSOURCE_NONE) || ((__MODE__) == TIM_CLEARINPUTSOURCE_ETR))
+
+#define IS_TIM_DMA_BASE(__BASE__) \
+ (((__BASE__) == TIM_DMABASE_CR1) || ((__BASE__) == TIM_DMABASE_CR2) || ((__BASE__) == TIM_DMABASE_SMCR) || ((__BASE__) == TIM_DMABASE_DIER) || ((__BASE__) == TIM_DMABASE_SR) \
+ || ((__BASE__) == TIM_DMABASE_EGR) || ((__BASE__) == TIM_DMABASE_CCMR1) || ((__BASE__) == TIM_DMABASE_CCMR2) || ((__BASE__) == TIM_DMABASE_CCER) || ((__BASE__) == TIM_DMABASE_CNT) \
+ || ((__BASE__) == TIM_DMABASE_PSC) || ((__BASE__) == TIM_DMABASE_ARR) || ((__BASE__) == TIM_DMABASE_RCR) || ((__BASE__) == TIM_DMABASE_CCR1) || ((__BASE__) == TIM_DMABASE_CCR2) \
+ || ((__BASE__) == TIM_DMABASE_CCR3) || ((__BASE__) == TIM_DMABASE_CCR4) || ((__BASE__) == TIM_DMABASE_BDTR))
+
+#define IS_TIM_EVENT_SOURCE(__SOURCE__) ((((__SOURCE__)&0xFFFFFF00U) == 0x00000000U) && ((__SOURCE__) != 0x00000000U))
+
+#define IS_TIM_COUNTER_MODE(__MODE__) \
+ (((__MODE__) == TIM_COUNTERMODE_UP) || ((__MODE__) == TIM_COUNTERMODE_DOWN) || ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED1) || ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED2) \
+ || ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED3))
+
+#define IS_TIM_CLOCKDIVISION_DIV(__DIV__) (((__DIV__) == TIM_CLOCKDIVISION_DIV1) || ((__DIV__) == TIM_CLOCKDIVISION_DIV2) || ((__DIV__) == TIM_CLOCKDIVISION_DIV4))
+
+#define IS_TIM_AUTORELOAD_PRELOAD(PRELOAD) (((PRELOAD) == TIM_AUTORELOAD_PRELOAD_DISABLE) || ((PRELOAD) == TIM_AUTORELOAD_PRELOAD_ENABLE))
+
+#define IS_TIM_FAST_STATE(__STATE__) (((__STATE__) == TIM_OCFAST_DISABLE) || ((__STATE__) == TIM_OCFAST_ENABLE))
+
+#define IS_TIM_OC_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_OCPOLARITY_HIGH) || ((__POLARITY__) == TIM_OCPOLARITY_LOW))
+
+#define IS_TIM_OCN_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_OCNPOLARITY_HIGH) || ((__POLARITY__) == TIM_OCNPOLARITY_LOW))
+
+#define IS_TIM_OCIDLE_STATE(__STATE__) (((__STATE__) == TIM_OCIDLESTATE_SET) || ((__STATE__) == TIM_OCIDLESTATE_RESET))
+
+#define IS_TIM_OCNIDLE_STATE(__STATE__) (((__STATE__) == TIM_OCNIDLESTATE_SET) || ((__STATE__) == TIM_OCNIDLESTATE_RESET))
+
+#define IS_TIM_ENCODERINPUT_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_ENCODERINPUTPOLARITY_RISING) || ((__POLARITY__) == TIM_ENCODERINPUTPOLARITY_FALLING))
+
+#define IS_TIM_IC_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_ICPOLARITY_RISING) || ((__POLARITY__) == TIM_ICPOLARITY_FALLING) || ((__POLARITY__) == TIM_ICPOLARITY_BOTHEDGE))
+
+#define IS_TIM_IC_SELECTION(__SELECTION__) (((__SELECTION__) == TIM_ICSELECTION_DIRECTTI) || ((__SELECTION__) == TIM_ICSELECTION_INDIRECTTI) || ((__SELECTION__) == TIM_ICSELECTION_TRC))
+
+#define IS_TIM_IC_PRESCALER(__PRESCALER__) (((__PRESCALER__) == TIM_ICPSC_DIV1) || ((__PRESCALER__) == TIM_ICPSC_DIV2) || ((__PRESCALER__) == TIM_ICPSC_DIV4) || ((__PRESCALER__) == TIM_ICPSC_DIV8))
+
+#define IS_TIM_OPM_MODE(__MODE__) (((__MODE__) == TIM_OPMODE_SINGLE) || ((__MODE__) == TIM_OPMODE_REPETITIVE))
+
+#define IS_TIM_ENCODER_MODE(__MODE__) (((__MODE__) == TIM_ENCODERMODE_TI1) || ((__MODE__) == TIM_ENCODERMODE_TI2) || ((__MODE__) == TIM_ENCODERMODE_TI12))
+
+#define IS_TIM_DMA_SOURCE(__SOURCE__) ((((__SOURCE__)&0xFFFF80FFU) == 0x00000000U) && ((__SOURCE__) != 0x00000000U))
+
+#define IS_TIM_CHANNELS(__CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) || ((__CHANNEL__) == TIM_CHANNEL_2) || ((__CHANNEL__) == TIM_CHANNEL_3) || ((__CHANNEL__) == TIM_CHANNEL_4) || ((__CHANNEL__) == TIM_CHANNEL_ALL))
+
+#define IS_TIM_OPM_CHANNELS(__CHANNEL__) (((__CHANNEL__) == TIM_CHANNEL_1) || ((__CHANNEL__) == TIM_CHANNEL_2))
+
+#define IS_TIM_COMPLEMENTARY_CHANNELS(__CHANNEL__) (((__CHANNEL__) == TIM_CHANNEL_1) || ((__CHANNEL__) == TIM_CHANNEL_2) || ((__CHANNEL__) == TIM_CHANNEL_3))
+
+#define IS_TIM_CLOCKSOURCE(__CLOCK__) \
+ (((__CLOCK__) == TIM_CLOCKSOURCE_INTERNAL) || ((__CLOCK__) == TIM_CLOCKSOURCE_ETRMODE2) || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR0) || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR1) \
+ || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR2) || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR3) || ((__CLOCK__) == TIM_CLOCKSOURCE_TI1ED) || ((__CLOCK__) == TIM_CLOCKSOURCE_TI1) \
+ || ((__CLOCK__) == TIM_CLOCKSOURCE_TI2) || ((__CLOCK__) == TIM_CLOCKSOURCE_ETRMODE1))
+
+#define IS_TIM_CLOCKPOLARITY(__POLARITY__) \
+ (((__POLARITY__) == TIM_CLOCKPOLARITY_INVERTED) || ((__POLARITY__) == TIM_CLOCKPOLARITY_NONINVERTED) || ((__POLARITY__) == TIM_CLOCKPOLARITY_RISING) \
+ || ((__POLARITY__) == TIM_CLOCKPOLARITY_FALLING) || ((__POLARITY__) == TIM_CLOCKPOLARITY_BOTHEDGE))
+
+#define IS_TIM_CLOCKPRESCALER(__PRESCALER__) \
+ (((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV1) || ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV2) || ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV4) || ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV8))
+
+#define IS_TIM_CLOCKFILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU)
+
+#define IS_TIM_CLEARINPUT_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_CLEARINPUTPOLARITY_INVERTED) || ((__POLARITY__) == TIM_CLEARINPUTPOLARITY_NONINVERTED))
+
+#define IS_TIM_CLEARINPUT_PRESCALER(__PRESCALER__) \
+ (((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV1) || ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV2) || ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV4) \
+ || ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV8))
+
+#define IS_TIM_CLEARINPUT_FILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU)
+
+#define IS_TIM_OSSR_STATE(__STATE__) (((__STATE__) == TIM_OSSR_ENABLE) || ((__STATE__) == TIM_OSSR_DISABLE))
+
+#define IS_TIM_OSSI_STATE(__STATE__) (((__STATE__) == TIM_OSSI_ENABLE) || ((__STATE__) == TIM_OSSI_DISABLE))
+
+#define IS_TIM_LOCK_LEVEL(__LEVEL__) (((__LEVEL__) == TIM_LOCKLEVEL_OFF) || ((__LEVEL__) == TIM_LOCKLEVEL_1) || ((__LEVEL__) == TIM_LOCKLEVEL_2) || ((__LEVEL__) == TIM_LOCKLEVEL_3))
+
+#define IS_TIM_BREAK_FILTER(__BRKFILTER__) ((__BRKFILTER__) <= 0xFUL)
+
+#define IS_TIM_BREAK_STATE(__STATE__) (((__STATE__) == TIM_BREAK_ENABLE) || ((__STATE__) == TIM_BREAK_DISABLE))
+
+#define IS_TIM_BREAK_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_BREAKPOLARITY_LOW) || ((__POLARITY__) == TIM_BREAKPOLARITY_HIGH))
+
+#define IS_TIM_AUTOMATIC_OUTPUT_STATE(__STATE__) (((__STATE__) == TIM_AUTOMATICOUTPUT_ENABLE) || ((__STATE__) == TIM_AUTOMATICOUTPUT_DISABLE))
+
+#define IS_TIM_TRGO_SOURCE(__SOURCE__) \
+ (((__SOURCE__) == TIM_TRGO_RESET) || ((__SOURCE__) == TIM_TRGO_ENABLE) || ((__SOURCE__) == TIM_TRGO_UPDATE) || ((__SOURCE__) == TIM_TRGO_OC1) || ((__SOURCE__) == TIM_TRGO_OC1REF) \
+ || ((__SOURCE__) == TIM_TRGO_OC2REF) || ((__SOURCE__) == TIM_TRGO_OC3REF) || ((__SOURCE__) == TIM_TRGO_OC4REF))
+
+#define IS_TIM_MSM_STATE(__STATE__) (((__STATE__) == TIM_MASTERSLAVEMODE_ENABLE) || ((__STATE__) == TIM_MASTERSLAVEMODE_DISABLE))
+
+#define IS_TIM_SLAVE_MODE(__MODE__) \
+ (((__MODE__) == TIM_SLAVEMODE_DISABLE) || ((__MODE__) == TIM_SLAVEMODE_RESET) || ((__MODE__) == TIM_SLAVEMODE_GATED) || ((__MODE__) == TIM_SLAVEMODE_TRIGGER) \
+ || ((__MODE__) == TIM_SLAVEMODE_EXTERNAL1))
+
+#define IS_TIM_PWM_MODE(__MODE__) (((__MODE__) == TIM_OCMODE_PWM1) || ((__MODE__) == TIM_OCMODE_PWM2))
+
+#define IS_TIM_OC_MODE(__MODE__) \
+ (((__MODE__) == TIM_OCMODE_TIMING) || ((__MODE__) == TIM_OCMODE_ACTIVE) || ((__MODE__) == TIM_OCMODE_INACTIVE) || ((__MODE__) == TIM_OCMODE_TOGGLE) || ((__MODE__) == TIM_OCMODE_FORCED_ACTIVE) \
+ || ((__MODE__) == TIM_OCMODE_FORCED_INACTIVE))
+
+#define IS_TIM_TRIGGER_SELECTION(__SELECTION__) \
+ (((__SELECTION__) == TIM_TS_ITR0) || ((__SELECTION__) == TIM_TS_ITR1) || ((__SELECTION__) == TIM_TS_ITR2) || ((__SELECTION__) == TIM_TS_ITR3) || ((__SELECTION__) == TIM_TS_TI1F_ED) \
+ || ((__SELECTION__) == TIM_TS_TI1FP1) || ((__SELECTION__) == TIM_TS_TI2FP2) || ((__SELECTION__) == TIM_TS_ETRF))
+
+#define IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(__SELECTION__) \
+ (((__SELECTION__) == TIM_TS_ITR0) || ((__SELECTION__) == TIM_TS_ITR1) || ((__SELECTION__) == TIM_TS_ITR2) || ((__SELECTION__) == TIM_TS_ITR3) || ((__SELECTION__) == TIM_TS_NONE))
+
+#define IS_TIM_TRIGGERPOLARITY(__POLARITY__) \
+ (((__POLARITY__) == TIM_TRIGGERPOLARITY_INVERTED) || ((__POLARITY__) == TIM_TRIGGERPOLARITY_NONINVERTED) || ((__POLARITY__) == TIM_TRIGGERPOLARITY_RISING) \
+ || ((__POLARITY__) == TIM_TRIGGERPOLARITY_FALLING) || ((__POLARITY__) == TIM_TRIGGERPOLARITY_BOTHEDGE))
+
+#define IS_TIM_TRIGGERPRESCALER(__PRESCALER__) \
+ (((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV1) || ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV2) || ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV4) || ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV8))
+
+#define IS_TIM_TRIGGERFILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU)
+
+#define IS_TIM_TI1SELECTION(__TI1SELECTION__) (((__TI1SELECTION__) == TIM_TI1SELECTION_CH1) || ((__TI1SELECTION__) == TIM_TI1SELECTION_XORCOMBINATION))
+
+#define IS_TIM_DMA_LENGTH(__LENGTH__) \
+ (((__LENGTH__) == TIM_DMABURSTLENGTH_1TRANSFER) || ((__LENGTH__) == TIM_DMABURSTLENGTH_2TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_3TRANSFERS) \
+ || ((__LENGTH__) == TIM_DMABURSTLENGTH_4TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_5TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_6TRANSFERS) \
+ || ((__LENGTH__) == TIM_DMABURSTLENGTH_7TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_8TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_9TRANSFERS) \
+ || ((__LENGTH__) == TIM_DMABURSTLENGTH_10TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_11TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_12TRANSFERS) \
+ || ((__LENGTH__) == TIM_DMABURSTLENGTH_13TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_14TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_15TRANSFERS) \
+ || ((__LENGTH__) == TIM_DMABURSTLENGTH_16TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_17TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_18TRANSFERS))
+
+#define IS_TIM_DMA_DATA_LENGTH(LENGTH) (((LENGTH) >= 0x1U) && ((LENGTH) < 0x10000U))
+
+#define IS_TIM_IC_FILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU)
+
+#define IS_TIM_DEADTIME(__DEADTIME__) ((__DEADTIME__) <= 0xFFU)
+
+#define IS_TIM_SLAVEMODE_TRIGGER_ENABLED(__TRIGGER__) ((__TRIGGER__) == TIM_SLAVEMODE_TRIGGER)
+
+#define TIM_SET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__, __ICPSC__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 |= (__ICPSC__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= ((__ICPSC__) << 8U)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= (__ICPSC__)) : ((__HANDLE__)->Instance->CCMR2 |= ((__ICPSC__) << 8U)))
+
+#define TIM_RESET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC) : ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC))
+
+#define TIM_SET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__, __POLARITY__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCER |= (__POLARITY__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 4U)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 8U)) : ((__HANDLE__)->Instance->CCER |= (((__POLARITY__) << 12U))))
+
+#define TIM_RESET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC3P)) : ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC4P)))
+
+#define TIM_CHANNEL_STATE_GET(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? (__HANDLE__)->ChannelState[0] \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? (__HANDLE__)->ChannelState[1] : ((__CHANNEL__) == TIM_CHANNEL_3) ? (__HANDLE__)->ChannelState[2] : (__HANDLE__)->ChannelState[3])
+
+#define TIM_CHANNEL_STATE_SET(__HANDLE__, __CHANNEL__, __CHANNEL_STATE__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->ChannelState[0] = (__CHANNEL_STATE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->ChannelState[1] = (__CHANNEL_STATE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->ChannelState[2] = (__CHANNEL_STATE__)) : ((__HANDLE__)->ChannelState[3] = (__CHANNEL_STATE__)))
+
+#define TIM_CHANNEL_STATE_SET_ALL(__HANDLE__, __CHANNEL_STATE__) \
+ do { \
+ (__HANDLE__)->ChannelState[0] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelState[1] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelState[2] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelState[3] = (__CHANNEL_STATE__); \
+ } while (0)
+
+#define TIM_CHANNEL_N_STATE_GET(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? (__HANDLE__)->ChannelNState[0] \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? (__HANDLE__)->ChannelNState[1] : ((__CHANNEL__) == TIM_CHANNEL_3) ? (__HANDLE__)->ChannelNState[2] : (__HANDLE__)->ChannelNState[3])
+
+#define TIM_CHANNEL_N_STATE_SET(__HANDLE__, __CHANNEL__, __CHANNEL_STATE__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->ChannelNState[0] = (__CHANNEL_STATE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->ChannelNState[1] = (__CHANNEL_STATE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->ChannelNState[2] = (__CHANNEL_STATE__)) : ((__HANDLE__)->ChannelNState[3] = (__CHANNEL_STATE__)))
+
+#define TIM_CHANNEL_N_STATE_SET_ALL(__HANDLE__, __CHANNEL_STATE__) \
+ do { \
+ (__HANDLE__)->ChannelNState[0] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelNState[1] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelNState[2] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelNState[3] = (__CHANNEL_STATE__); \
+ } while (0)
+
+/**
+ * @}
+ */
+/* End of private macros -----------------------------------------------------*/
+
+/* Include TIM HAL Extended module */
+#include "stm32f1xx_hal_tim_ex.h"
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup TIM_Exported_Functions TIM Exported Functions
+ * @{
+ */
+
+/** @addtogroup TIM_Exported_Functions_Group1 TIM Time Base functions
+ * @brief Time Base functions
+ * @{
+ */
+/* Time Base functions ********************************************************/
+HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim);
+HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim);
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim);
+HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim);
+/* Non-Blocking mode: Interrupt */
+HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim);
+HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim);
+/* Non-Blocking mode: DMA */
+HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length);
+HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim);
+/**
+ * @}
+ */
+
+/** @addtogroup TIM_Exported_Functions_Group2 TIM Output Compare functions
+ * @brief TIM Output Compare functions
+ * @{
+ */
+/* Timer Output Compare functions *********************************************/
+HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim);
+HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim);
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
+/* Non-Blocking mode: Interrupt */
+HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+/* Non-Blocking mode: DMA */
+HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length);
+HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
+/**
+ * @}
+ */
+
+/** @addtogroup TIM_Exported_Functions_Group3 TIM PWM functions
+ * @brief TIM PWM functions
+ * @{
+ */
+/* Timer PWM functions ********************************************************/
+HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim);
+HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim);
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
+/* Non-Blocking mode: Interrupt */
+HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+/* Non-Blocking mode: DMA */
+HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length);
+HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
+/**
+ * @}
+ */
+
+/** @addtogroup TIM_Exported_Functions_Group4 TIM Input Capture functions
+ * @brief TIM Input Capture functions
+ * @{
+ */
+/* Timer Input Capture functions **********************************************/
+HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim);
+HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim);
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
+/* Non-Blocking mode: Interrupt */
+HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+/* Non-Blocking mode: DMA */
+HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length);
+HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
+/**
+ * @}
+ */
+
+/** @addtogroup TIM_Exported_Functions_Group5 TIM One Pulse functions
+ * @brief TIM One Pulse functions
+ * @{
+ */
+/* Timer One Pulse functions **************************************************/
+HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode);
+HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim);
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
+HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
+/* Non-Blocking mode: Interrupt */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
+HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
+/**
+ * @}
+ */
+
+/** @addtogroup TIM_Exported_Functions_Group6 TIM Encoder functions
+ * @brief TIM Encoder functions
+ * @{
+ */
+/* Timer Encoder functions ****************************************************/
+HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig);
+HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim);
+void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim);
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
+/* Non-Blocking mode: Interrupt */
+HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+/* Non-Blocking mode: DMA */
+HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length);
+HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
+/**
+ * @}
+ */
+
+/** @addtogroup TIM_Exported_Functions_Group7 TIM IRQ handler management
+ * @brief IRQ handler management
+ * @{
+ */
+/* Interrupt Handler functions ***********************************************/
+void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim);
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
+ * @brief Peripheral Control functions
+ * @{
+ */
+/* Control functions *********************************************************/
+HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef *sConfig, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef *sConfig, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef *sConfig, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, uint32_t OutputChannel, uint32_t InputChannel);
+HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef *sClearInputConfig, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig);
+HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection);
+HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig);
+HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig);
+HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength);
+HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength);
+HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc);
+HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength);
+HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength);
+HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc);
+HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource);
+uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel);
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
+ * @brief TIM Callbacks functions
+ * @{
+ */
+/* Callback in non blocking modes (Interrupt and DMA) *************************/
+void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim);
+
+/* Callbacks Register/UnRegister functions ***********************************/
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, pTIM_CallbackTypeDef pCallback);
+HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
+ * @brief Peripheral State functions
+ * @{
+ */
+/* Peripheral State functions ************************************************/
+HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim);
+HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim);
+HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim);
+HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim);
+HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim);
+HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim);
+
+/* Peripheral Channel state functions ************************************************/
+HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(TIM_HandleTypeDef *htim);
+HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(TIM_HandleTypeDef *htim);
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/* End of exported functions -------------------------------------------------*/
+
+/* Private functions----------------------------------------------------------*/
+/** @defgroup TIM_Private_Functions TIM Private Functions
+ * @{
+ */
+void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure);
+void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
+void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
+void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter);
+
+void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma);
+void TIM_DMAError(DMA_HandleTypeDef *hdma);
+void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma);
+void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma);
+void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+void TIM_ResetCallback(TIM_HandleTypeDef *htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+/* End of private functions --------------------------------------------------*/
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* STM32F1xx_HAL_TIM_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h new file mode 100644 index 00000000..278b4594 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h @@ -0,0 +1,255 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_tim_ex.h
+ * @author MCD Application Team
+ * @brief Header file of TIM HAL Extended module.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef STM32F1xx_HAL_TIM_EX_H
+#define STM32F1xx_HAL_TIM_EX_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal_def.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup TIMEx
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+/** @defgroup TIMEx_Exported_Types TIM Extended Exported Types
+ * @{
+ */
+
+/**
+ * @brief TIM Hall sensor Configuration Structure definition
+ */
+
+typedef struct {
+ uint32_t IC1Polarity; /*!< Specifies the active edge of the input signal.
+ This parameter can be a value of @ref TIM_Input_Capture_Polarity */
+
+ uint32_t IC1Prescaler; /*!< Specifies the Input Capture Prescaler.
+ This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
+
+ uint32_t IC1Filter; /*!< Specifies the input capture filter.
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+
+ uint32_t Commutation_Delay; /*!< Specifies the pulse value to be loaded into the Capture Compare Register.
+ This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */
+} TIM_HallSensor_InitTypeDef;
+/**
+ * @}
+ */
+/* End of exported types -----------------------------------------------------*/
+
+/* Exported constants --------------------------------------------------------*/
+/** @defgroup TIMEx_Exported_Constants TIM Extended Exported Constants
+ * @{
+ */
+
+/** @defgroup TIMEx_Remap TIM Extended Remapping
+ * @{
+ */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/* End of exported constants -------------------------------------------------*/
+
+/* Exported macro ------------------------------------------------------------*/
+/** @defgroup TIMEx_Exported_Macros TIM Extended Exported Macros
+ * @{
+ */
+
+/**
+ * @}
+ */
+/* End of exported macro -----------------------------------------------------*/
+
+/* Private macro -------------------------------------------------------------*/
+/** @defgroup TIMEx_Private_Macros TIM Extended Private Macros
+ * @{
+ */
+
+/**
+ * @}
+ */
+/* End of private macro ------------------------------------------------------*/
+
+/* Exported functions --------------------------------------------------------*/
+/** @addtogroup TIMEx_Exported_Functions TIM Extended Exported Functions
+ * @{
+ */
+
+/** @addtogroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions
+ * @brief Timer Hall Sensor functions
+ * @{
+ */
+/* Timer Hall Sensor functions **********************************************/
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig);
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim);
+
+void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim);
+void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim);
+
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim);
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim);
+/* Non-Blocking mode: Interrupt */
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim);
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim);
+/* Non-Blocking mode: DMA */
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length);
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim);
+/**
+ * @}
+ */
+
+/** @addtogroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions
+ * @brief Timer Complementary Output Compare functions
+ * @{
+ */
+/* Timer Complementary Output Compare functions *****************************/
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
+
+/* Non-Blocking mode: Interrupt */
+HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+
+/* Non-Blocking mode: DMA */
+HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length);
+HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
+/**
+ * @}
+ */
+
+/** @addtogroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions
+ * @brief Timer Complementary PWM functions
+ * @{
+ */
+/* Timer Complementary PWM functions ****************************************/
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
+
+/* Non-Blocking mode: Interrupt */
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
+/* Non-Blocking mode: DMA */
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length);
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
+/**
+ * @}
+ */
+
+/** @addtogroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions
+ * @brief Timer Complementary One Pulse functions
+ * @{
+ */
+/* Timer Complementary One Pulse functions **********************************/
+/* Blocking mode: Polling */
+HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
+HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
+
+/* Non-Blocking mode: Interrupt */
+HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
+HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
+/**
+ * @}
+ */
+
+/** @addtogroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions
+ * @brief Peripheral Control functions
+ * @{
+ */
+/* Extended Control functions ************************************************/
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource);
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource);
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource);
+HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef *sMasterConfig);
+HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig);
+HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap);
+/**
+ * @}
+ */
+
+/** @addtogroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions
+ * @brief Extended Callbacks functions
+ * @{
+ */
+/* Extended Callback **********************************************************/
+void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim);
+void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim);
+void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim);
+/**
+ * @}
+ */
+
+/** @addtogroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions
+ * @brief Extended Peripheral State functions
+ * @{
+ */
+/* Extended Peripheral State functions ***************************************/
+HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim);
+HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(TIM_HandleTypeDef *htim, uint32_t ChannelN);
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/* End of exported functions -------------------------------------------------*/
+
+/* Private functions----------------------------------------------------------*/
+/** @addtogroup TIMEx_Private_Functions TIMEx Private Functions
+ * @{
+ */
+void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma);
+void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma);
+/**
+ * @}
+ */
+/* End of private functions --------------------------------------------------*/
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* STM32F1xx_HAL_TIM_EX_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal.c new file mode 100644 index 00000000..f71efb0f --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal.c @@ -0,0 +1,535 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal.c
+ * @author MCD Application Team
+ * @brief HAL module driver.
+ * This is the common part of the HAL initialization
+ *
+ @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ The common HAL driver contains a set of generic and common APIs that can be
+ used by the PPP peripheral drivers and the user to start using the HAL.
+ [..]
+ The HAL contains two APIs' categories:
+ (+) Common HAL APIs
+ (+) Services HAL APIs
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup HAL HAL
+ * @brief HAL module driver.
+ * @{
+ */
+
+#ifdef HAL_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/** @defgroup HAL_Private_Constants HAL Private Constants
+ * @{
+ */
+/**
+ * @brief STM32F1xx HAL Driver version number V1.1.7
+ */
+#define __STM32F1xx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */
+#define __STM32F1xx_HAL_VERSION_SUB1 (0x01U) /*!< [23:16] sub1 version */
+#define __STM32F1xx_HAL_VERSION_SUB2 (0x07U) /*!< [15:8] sub2 version */
+#define __STM32F1xx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */
+#define __STM32F1xx_HAL_VERSION ((__STM32F1xx_HAL_VERSION_MAIN << 24) | (__STM32F1xx_HAL_VERSION_SUB1 << 16) | (__STM32F1xx_HAL_VERSION_SUB2 << 8) | (__STM32F1xx_HAL_VERSION_RC))
+
+#define IDCODE_DEVID_MASK 0x00000FFFU
+
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+
+/** @defgroup HAL_Private_Variables HAL Private Variables
+ * @{
+ */
+__IO uint32_t uwTick;
+uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
+HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */
+/**
+ * @}
+ */
+/* Private function prototypes -----------------------------------------------*/
+/* Exported functions ---------------------------------------------------------*/
+
+/** @defgroup HAL_Exported_Functions HAL Exported Functions
+ * @{
+ */
+
+/** @defgroup HAL_Exported_Functions_Group1 Initialization and de-initialization Functions
+ * @brief Initialization and de-initialization functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Initializes the Flash interface, the NVIC allocation and initial clock
+ configuration. It initializes the systick also when timeout is needed
+ and the backup domain when enabled.
+ (+) de-Initializes common part of the HAL.
+ (+) Configure The time base source to have 1ms time base with a dedicated
+ Tick interrupt priority.
+ (++) SysTick timer is used by default as source of time base, but user
+ can eventually implement his proper time base source (a general purpose
+ timer for example or other time source), keeping in mind that Time base
+ duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
+ handled in milliseconds basis.
+ (++) Time base configuration function (HAL_InitTick ()) is called automatically
+ at the beginning of the program after reset by HAL_Init() or at any time
+ when clock is configured, by HAL_RCC_ClockConfig().
+ (++) Source of time base is configured to generate interrupts at regular
+ time intervals. Care must be taken if HAL_Delay() is called from a
+ peripheral ISR process, the Tick interrupt line must have higher priority
+ (numerically lower) than the peripheral interrupt. Otherwise the caller
+ ISR process will be blocked.
+ (++) functions affecting time base configurations are declared as __weak
+ to make override possible in case of other implementations in user file.
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief This function is used to initialize the HAL Library; it must be the first
+ * instruction to be executed in the main program (before to call any other
+ * HAL function), it performs the following:
+ * Configure the Flash prefetch.
+ * Configures the SysTick to generate an interrupt each 1 millisecond,
+ * which is clocked by the HSI (at this stage, the clock is not yet
+ * configured and thus the system is running from the internal HSI at 16 MHz).
+ * Set NVIC Group Priority to 4.
+ * Calls the HAL_MspInit() callback function defined in user file
+ * "stm32f1xx_hal_msp.c" to do the global low level hardware initialization
+ *
+ * @note SysTick is used as time base for the HAL_Delay() function, the application
+ * need to ensure that the SysTick time base is always set to 1 millisecond
+ * to have correct HAL operation.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_Init(void) {
+ /* Configure Flash prefetch */
+#if (PREFETCH_ENABLE != 0)
+#if defined(STM32F101x6) || defined(STM32F101xB) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) \
+ || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+
+ /* Prefetch buffer is not available on value line devices */
+ __HAL_FLASH_PREFETCH_BUFFER_ENABLE();
+#endif
+#endif /* PREFETCH_ENABLE */
+
+ /* Set Interrupt Group Priority */
+ HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
+
+ /* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
+ HAL_InitTick(TICK_INT_PRIORITY);
+
+ /* Init the low level hardware */
+ HAL_MspInit();
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief This function de-Initializes common part of the HAL and stops the systick.
+ * of time base.
+ * @note This function is optional.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_DeInit(void) {
+ /* Reset of all peripherals */
+ __HAL_RCC_APB1_FORCE_RESET();
+ __HAL_RCC_APB1_RELEASE_RESET();
+
+ __HAL_RCC_APB2_FORCE_RESET();
+ __HAL_RCC_APB2_RELEASE_RESET();
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ __HAL_RCC_AHB_FORCE_RESET();
+ __HAL_RCC_AHB_RELEASE_RESET();
+#endif
+
+ /* De-Init the low level hardware */
+ HAL_MspDeInit();
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Initialize the MSP.
+ * @retval None
+ */
+__weak void HAL_MspInit(void) {
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes the MSP.
+ * @retval None
+ */
+__weak void HAL_MspDeInit(void) {
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief This function configures the source of the time base.
+ * The time source is configured to have 1ms time base with a dedicated
+ * Tick interrupt priority.
+ * @note This function is called automatically at the beginning of program after
+ * reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
+ * @note In the default implementation, SysTick timer is the source of time base.
+ * It is used to generate interrupts at regular time intervals.
+ * Care must be taken if HAL_Delay() is called from a peripheral ISR process,
+ * The SysTick interrupt must have higher priority (numerically lower)
+ * than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
+ * The function is declared as __weak to be overwritten in case of other
+ * implementation in user file.
+ * @param TickPriority Tick interrupt priority.
+ * @retval HAL status
+ */
+__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) {
+ /* Configure the SysTick to have interrupt in 1ms time basis*/
+ if (HAL_SYSTICK_Config(SystemCoreClock / (1000U / uwTickFreq)) > 0U) {
+ return HAL_ERROR;
+ }
+
+ /* Configure the SysTick IRQ priority */
+ if (TickPriority < (1UL << __NVIC_PRIO_BITS)) {
+ HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
+ uwTickPrio = TickPriority;
+ } else {
+ return HAL_ERROR;
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup HAL_Exported_Functions_Group2 HAL Control functions
+ * @brief HAL Control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### HAL Control functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Provide a tick value in millisecond
+ (+) Provide a blocking delay in millisecond
+ (+) Suspend the time base source interrupt
+ (+) Resume the time base source interrupt
+ (+) Get the HAL API driver version
+ (+) Get the device identifier
+ (+) Get the device revision identifier
+ (+) Enable/Disable Debug module during SLEEP mode
+ (+) Enable/Disable Debug module during STOP mode
+ (+) Enable/Disable Debug module during STANDBY mode
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief This function is called to increment a global variable "uwTick"
+ * used as application time base.
+ * @note In the default implementation, this variable is incremented each 1ms
+ * in SysTick ISR.
+ * @note This function is declared as __weak to be overwritten in case of other
+ * implementations in user file.
+ * @retval None
+ */
+__weak void HAL_IncTick(void) { uwTick += uwTickFreq; }
+
+/**
+ * @brief Provides a tick value in millisecond.
+ * @note This function is declared as __weak to be overwritten in case of other
+ * implementations in user file.
+ * @retval tick value
+ */
+__weak uint32_t HAL_GetTick(void) { return uwTick; }
+
+/**
+ * @brief This function returns a tick priority.
+ * @retval tick priority
+ */
+uint32_t HAL_GetTickPrio(void) { return uwTickPrio; }
+
+/**
+ * @brief Set new tick Freq.
+ * @retval status
+ */
+HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq) {
+ HAL_StatusTypeDef status = HAL_OK;
+ HAL_TickFreqTypeDef prevTickFreq;
+
+ assert_param(IS_TICKFREQ(Freq));
+
+ if (uwTickFreq != Freq) {
+ /* Back up uwTickFreq frequency */
+ prevTickFreq = uwTickFreq;
+
+ /* Update uwTickFreq global variable used by HAL_InitTick() */
+ uwTickFreq = Freq;
+
+ /* Apply the new tick Freq */
+ status = HAL_InitTick(uwTickPrio);
+
+ if (status != HAL_OK) {
+ /* Restore previous tick frequency */
+ uwTickFreq = prevTickFreq;
+ }
+ }
+
+ return status;
+}
+
+/**
+ * @brief Return tick frequency.
+ * @retval tick period in Hz
+ */
+HAL_TickFreqTypeDef HAL_GetTickFreq(void) { return uwTickFreq; }
+
+/**
+ * @brief This function provides minimum delay (in milliseconds) based
+ * on variable incremented.
+ * @note In the default implementation , SysTick timer is the source of time base.
+ * It is used to generate interrupts at regular time intervals where uwTick
+ * is incremented.
+ * @note This function is declared as __weak to be overwritten in case of other
+ * implementations in user file.
+ * @param Delay specifies the delay time length, in milliseconds.
+ * @retval None
+ */
+__weak void HAL_Delay(uint32_t Delay) {
+ uint32_t tickstart = HAL_GetTick();
+ uint32_t wait = Delay;
+
+ /* Add a freq to guarantee minimum wait */
+ if (wait < HAL_MAX_DELAY) {
+ wait += (uint32_t)(uwTickFreq);
+ }
+
+ while ((HAL_GetTick() - tickstart) < wait) {}
+}
+
+/**
+ * @brief Suspend Tick increment.
+ * @note In the default implementation , SysTick timer is the source of time base. It is
+ * used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
+ * is called, the SysTick interrupt will be disabled and so Tick increment
+ * is suspended.
+ * @note This function is declared as __weak to be overwritten in case of other
+ * implementations in user file.
+ * @retval None
+ */
+__weak void HAL_SuspendTick(void) {
+ /* Disable SysTick Interrupt */
+ CLEAR_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
+}
+
+/**
+ * @brief Resume Tick increment.
+ * @note In the default implementation , SysTick timer is the source of time base. It is
+ * used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
+ * is called, the SysTick interrupt will be enabled and so Tick increment
+ * is resumed.
+ * @note This function is declared as __weak to be overwritten in case of other
+ * implementations in user file.
+ * @retval None
+ */
+__weak void HAL_ResumeTick(void) {
+ /* Enable SysTick Interrupt */
+ SET_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
+}
+
+/**
+ * @brief Returns the HAL revision
+ * @retval version 0xXYZR (8bits for each decimal, R for RC)
+ */
+uint32_t HAL_GetHalVersion(void) { return __STM32F1xx_HAL_VERSION; }
+
+/**
+ * @brief Returns the device revision identifier.
+ * Note: On devices STM32F10xx8 and STM32F10xxB,
+ * STM32F101xC/D/E and STM32F103xC/D/E,
+ * STM32F101xF/G and STM32F103xF/G
+ * STM32F10xx4 and STM32F10xx6
+ * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
+ * debug mode (not accessible by the user software in normal mode).
+ * Refer to errata sheet of these devices for more details.
+ * @retval Device revision identifier
+ */
+uint32_t HAL_GetREVID(void) { return ((DBGMCU->IDCODE) >> DBGMCU_IDCODE_REV_ID_Pos); }
+
+/**
+ * @brief Returns the device identifier.
+ * Note: On devices STM32F10xx8 and STM32F10xxB,
+ * STM32F101xC/D/E and STM32F103xC/D/E,
+ * STM32F101xF/G and STM32F103xF/G
+ * STM32F10xx4 and STM32F10xx6
+ * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
+ * debug mode (not accessible by the user software in normal mode).
+ * Refer to errata sheet of these devices for more details.
+ * @retval Device identifier
+ */
+uint32_t HAL_GetDEVID(void) { return ((DBGMCU->IDCODE) & IDCODE_DEVID_MASK); }
+
+/**
+ * @brief Returns first word of the unique device identifier (UID based on 96 bits)
+ * @retval Device identifier
+ */
+uint32_t HAL_GetUIDw0(void) { return (READ_REG(*((uint32_t *)UID_BASE))); }
+
+/**
+ * @brief Returns second word of the unique device identifier (UID based on 96 bits)
+ * @retval Device identifier
+ */
+uint32_t HAL_GetUIDw1(void) { return (READ_REG(*((uint32_t *)(UID_BASE + 4U)))); }
+
+/**
+ * @brief Returns third word of the unique device identifier (UID based on 96 bits)
+ * @retval Device identifier
+ */
+uint32_t HAL_GetUIDw2(void) { return (READ_REG(*((uint32_t *)(UID_BASE + 8U)))); }
+
+/**
+ * @brief Enable the Debug Module during SLEEP mode
+ * @retval None
+ */
+void HAL_DBGMCU_EnableDBGSleepMode(void) { SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP); }
+
+/**
+ * @brief Disable the Debug Module during SLEEP mode
+ * Note: On devices STM32F10xx8 and STM32F10xxB,
+ * STM32F101xC/D/E and STM32F103xC/D/E,
+ * STM32F101xF/G and STM32F103xF/G
+ * STM32F10xx4 and STM32F10xx6
+ * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
+ * debug mode (not accessible by the user software in normal mode).
+ * Refer to errata sheet of these devices for more details.
+ * @retval None
+ */
+void HAL_DBGMCU_DisableDBGSleepMode(void) { CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP); }
+
+/**
+ * @brief Enable the Debug Module during STOP mode
+ * Note: On devices STM32F10xx8 and STM32F10xxB,
+ * STM32F101xC/D/E and STM32F103xC/D/E,
+ * STM32F101xF/G and STM32F103xF/G
+ * STM32F10xx4 and STM32F10xx6
+ * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
+ * debug mode (not accessible by the user software in normal mode).
+ * Refer to errata sheet of these devices for more details.
+ * Note: On all STM32F1 devices:
+ * If the system tick timer interrupt is enabled during the Stop mode
+ * debug (DBG_STOP bit set in the DBGMCU_CR register ), it will wakeup
+ * the system from Stop mode.
+ * Workaround: To debug the Stop mode, disable the system tick timer
+ * interrupt.
+ * Refer to errata sheet of these devices for more details.
+ * Note: On all STM32F1 devices:
+ * If the system tick timer interrupt is enabled during the Stop mode
+ * debug (DBG_STOP bit set in the DBGMCU_CR register ), it will wakeup
+ * the system from Stop mode.
+ * Workaround: To debug the Stop mode, disable the system tick timer
+ * interrupt.
+ * Refer to errata sheet of these devices for more details.
+ * @retval None
+ */
+void HAL_DBGMCU_EnableDBGStopMode(void) { SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP); }
+
+/**
+ * @brief Disable the Debug Module during STOP mode
+ * Note: On devices STM32F10xx8 and STM32F10xxB,
+ * STM32F101xC/D/E and STM32F103xC/D/E,
+ * STM32F101xF/G and STM32F103xF/G
+ * STM32F10xx4 and STM32F10xx6
+ * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
+ * debug mode (not accessible by the user software in normal mode).
+ * Refer to errata sheet of these devices for more details.
+ * @retval None
+ */
+void HAL_DBGMCU_DisableDBGStopMode(void) { CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP); }
+
+/**
+ * @brief Enable the Debug Module during STANDBY mode
+ * Note: On devices STM32F10xx8 and STM32F10xxB,
+ * STM32F101xC/D/E and STM32F103xC/D/E,
+ * STM32F101xF/G and STM32F103xF/G
+ * STM32F10xx4 and STM32F10xx6
+ * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
+ * debug mode (not accessible by the user software in normal mode).
+ * Refer to errata sheet of these devices for more details.
+ * @retval None
+ */
+void HAL_DBGMCU_EnableDBGStandbyMode(void) { SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY); }
+
+/**
+ * @brief Disable the Debug Module during STANDBY mode
+ * Note: On devices STM32F10xx8 and STM32F10xxB,
+ * STM32F101xC/D/E and STM32F103xC/D/E,
+ * STM32F101xF/G and STM32F103xF/G
+ * STM32F10xx4 and STM32F10xx6
+ * Debug registers DBGMCU_IDCODE and DBGMCU_CR are accessible only in
+ * debug mode (not accessible by the user software in normal mode).
+ * Refer to errata sheet of these devices for more details.
+ * @retval None
+ */
+void HAL_DBGMCU_DisableDBGStandbyMode(void) { CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY); }
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc.c new file mode 100644 index 00000000..bb7ac4fc --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc.c @@ -0,0 +1,2145 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_adc.c
+ * @author MCD Application Team
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Analog to Digital Convertor (ADC)
+ * peripheral:
+ * + Initialization and de-initialization functions
+ * ++ Initialization and Configuration of ADC
+ * + Operation functions
+ * ++ Start, stop, get result of conversions of regular
+ * group, using 3 possible modes: polling, interruption or DMA.
+ * + Control functions
+ * ++ Channels configuration on regular group
+ * ++ Channels configuration on injected group
+ * ++ Analog Watchdog configuration
+ * + State functions
+ * ++ ADC state machine management
+ * ++ Interrupts and flags management
+ * Other functions (extended functions) are available in file
+ * "stm32f1xx_hal_adc_ex.c".
+ *
+ @verbatim
+ ==============================================================================
+ ##### ADC peripheral features #####
+ ==============================================================================
+ [..]
+ (+) 12-bit resolution
+
+ (+) Interrupt generation at the end of regular conversion, end of injected
+ conversion, and in case of analog watchdog or overrun events.
+
+ (+) Single and continuous conversion modes.
+
+ (+) Scan mode for conversion of several channels sequentially.
+
+ (+) Data alignment with in-built data coherency.
+
+ (+) Programmable sampling time (channel wise)
+
+ (+) ADC conversion of regular group and injected group.
+
+ (+) External trigger (timer or EXTI)
+ for both regular and injected groups.
+
+ (+) DMA request generation for transfer of conversions data of regular group.
+
+ (+) Multimode Dual mode (available on devices with 2 ADCs or more).
+
+ (+) Configurable DMA data storage in Multimode Dual mode (available on devices
+ with 2 DCs or more).
+
+ (+) Configurable delay between conversions in Dual interleaved mode (available
+ on devices with 2 DCs or more).
+
+ (+) ADC calibration
+
+ (+) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at
+ slower speed.
+
+ (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to
+ Vdda or to an external voltage reference).
+
+
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+
+ *** Configuration of top level parameters related to ADC ***
+ ============================================================
+ [..]
+
+ (#) Enable the ADC interface
+ (++) As prerequisite, ADC clock must be configured at RCC top level.
+ Caution: On STM32F1, ADC clock frequency max is 14MHz (refer
+ to device datasheet).
+ Therefore, ADC clock prescaler must be configured in
+ function of ADC clock source frequency to remain below
+ this maximum frequency.
+ (++) One clock setting is mandatory:
+ ADC clock (core clock, also possibly conversion clock).
+ (+++) Example:
+ Into HAL_ADC_MspInit() (recommended code location) or with
+ other device clock parameters configuration:
+ (+++) RCC_PeriphCLKInitTypeDef PeriphClkInit;
+ (+++) __ADC1_CLK_ENABLE();
+ (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
+ (+++) PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2;
+ (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
+
+ (#) ADC pins configuration
+ (++) Enable the clock for the ADC GPIOs
+ using macro __HAL_RCC_GPIOx_CLK_ENABLE()
+ (++) Configure these ADC pins in analog mode
+ using function HAL_GPIO_Init()
+
+ (#) Optionally, in case of usage of ADC with interruptions:
+ (++) Configure the NVIC for ADC
+ using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
+ (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
+ into the function of corresponding ADC interruption vector
+ ADCx_IRQHandler().
+
+ (#) Optionally, in case of usage of DMA:
+ (++) Configure the DMA (DMA channel, mode normal or circular, ...)
+ using function HAL_DMA_Init().
+ (++) Configure the NVIC for DMA
+ using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
+ (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
+ into the function of corresponding DMA interruption vector
+ DMAx_Channelx_IRQHandler().
+
+ *** Configuration of ADC, groups regular/injected, channels parameters ***
+ ==========================================================================
+ [..]
+
+ (#) Configure the ADC parameters (resolution, data alignment, ...)
+ and regular group parameters (conversion trigger, sequencer, ...)
+ using function HAL_ADC_Init().
+
+ (#) Configure the channels for regular group parameters (channel number,
+ channel rank into sequencer, ..., into regular group)
+ using function HAL_ADC_ConfigChannel().
+
+ (#) Optionally, configure the injected group parameters (conversion trigger,
+ sequencer, ..., of injected group)
+ and the channels for injected group parameters (channel number,
+ channel rank into sequencer, ..., into injected group)
+ using function HAL_ADCEx_InjectedConfigChannel().
+
+ (#) Optionally, configure the analog watchdog parameters (channels
+ monitored, thresholds, ...)
+ using function HAL_ADC_AnalogWDGConfig().
+
+ (#) Optionally, for devices with several ADC instances: configure the
+ multimode parameters
+ using function HAL_ADCEx_MultiModeConfigChannel().
+
+ *** Execution of ADC conversions ***
+ ====================================
+ [..]
+
+ (#) Optionally, perform an automatic ADC calibration to improve the
+ conversion accuracy
+ using function HAL_ADCEx_Calibration_Start().
+
+ (#) ADC driver can be used among three modes: polling, interruption,
+ transfer by DMA.
+
+ (++) ADC conversion by polling:
+ (+++) Activate the ADC peripheral and start conversions
+ using function HAL_ADC_Start()
+ (+++) Wait for ADC conversion completion
+ using function HAL_ADC_PollForConversion()
+ (or for injected group: HAL_ADCEx_InjectedPollForConversion() )
+ (+++) Retrieve conversion results
+ using function HAL_ADC_GetValue()
+ (or for injected group: HAL_ADCEx_InjectedGetValue() )
+ (+++) Stop conversion and disable the ADC peripheral
+ using function HAL_ADC_Stop()
+
+ (++) ADC conversion by interruption:
+ (+++) Activate the ADC peripheral and start conversions
+ using function HAL_ADC_Start_IT()
+ (+++) Wait for ADC conversion completion by call of function
+ HAL_ADC_ConvCpltCallback()
+ (this function must be implemented in user program)
+ (or for injected group: HAL_ADCEx_InjectedConvCpltCallback() )
+ (+++) Retrieve conversion results
+ using function HAL_ADC_GetValue()
+ (or for injected group: HAL_ADCEx_InjectedGetValue() )
+ (+++) Stop conversion and disable the ADC peripheral
+ using function HAL_ADC_Stop_IT()
+
+ (++) ADC conversion with transfer by DMA:
+ (+++) Activate the ADC peripheral and start conversions
+ using function HAL_ADC_Start_DMA()
+ (+++) Wait for ADC conversion completion by call of function
+ HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback()
+ (these functions must be implemented in user program)
+ (+++) Conversion results are automatically transferred by DMA into
+ destination variable address.
+ (+++) Stop conversion and disable the ADC peripheral
+ using function HAL_ADC_Stop_DMA()
+
+ (++) For devices with several ADCs: ADC multimode conversion
+ with transfer by DMA:
+ (+++) Activate the ADC peripheral (slave) and start conversions
+ using function HAL_ADC_Start()
+ (+++) Activate the ADC peripheral (master) and start conversions
+ using function HAL_ADCEx_MultiModeStart_DMA()
+ (+++) Wait for ADC conversion completion by call of function
+ HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback()
+ (these functions must be implemented in user program)
+ (+++) Conversion results are automatically transferred by DMA into
+ destination variable address.
+ (+++) Stop conversion and disable the ADC peripheral (master)
+ using function HAL_ADCEx_MultiModeStop_DMA()
+ (+++) Stop conversion and disable the ADC peripheral (slave)
+ using function HAL_ADC_Stop_IT()
+
+ [..]
+
+ (@) Callback functions must be implemented in user program:
+ (+@) HAL_ADC_ErrorCallback()
+ (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog)
+ (+@) HAL_ADC_ConvCpltCallback()
+ (+@) HAL_ADC_ConvHalfCpltCallback
+ (+@) HAL_ADCEx_InjectedConvCpltCallback()
+
+ *** Deinitialization of ADC ***
+ ============================================================
+ [..]
+
+ (#) Disable the ADC interface
+ (++) ADC clock can be hard reset and disabled at RCC top level.
+ (++) Hard reset of ADC peripherals
+ using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET().
+ (++) ADC clock disable
+ using the equivalent macro/functions as configuration step.
+ (+++) Example:
+ Into HAL_ADC_MspDeInit() (recommended code location) or with
+ other device clock parameters configuration:
+ (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC
+ (+++) PeriphClkInit.AdcClockSelection = RCC_ADCPLLCLK2_OFF
+ (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit)
+
+ (#) ADC pins configuration
+ (++) Disable the clock for the ADC GPIOs
+ using macro __HAL_RCC_GPIOx_CLK_DISABLE()
+
+ (#) Optionally, in case of usage of ADC with interruptions:
+ (++) Disable the NVIC for ADC
+ using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
+
+ (#) Optionally, in case of usage of DMA:
+ (++) Deinitialize the DMA
+ using function HAL_DMA_Init().
+ (++) Disable the NVIC for DMA
+ using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
+
+ [..]
+
+ *** Callback registration ***
+ =============================================
+ [..]
+
+ The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1,
+ allows the user to configure dynamically the driver callbacks.
+ Use Functions @ref HAL_ADC_RegisterCallback()
+ to register an interrupt callback.
+ [..]
+
+ Function @ref HAL_ADC_RegisterCallback() allows to register following callbacks:
+ (+) ConvCpltCallback : ADC conversion complete callback
+ (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback
+ (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback
+ (+) ErrorCallback : ADC error callback
+ (+) InjectedConvCpltCallback : ADC group injected conversion complete callback
+ (+) MspInitCallback : ADC Msp Init callback
+ (+) MspDeInitCallback : ADC Msp DeInit callback
+ This function takes as parameters the HAL peripheral handle, the Callback ID
+ and a pointer to the user callback function.
+ [..]
+
+ Use function @ref HAL_ADC_UnRegisterCallback to reset a callback to the default
+ weak function.
+ [..]
+
+ @ref HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle,
+ and the Callback ID.
+ This function allows to reset following callbacks:
+ (+) ConvCpltCallback : ADC conversion complete callback
+ (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback
+ (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback
+ (+) ErrorCallback : ADC error callback
+ (+) InjectedConvCpltCallback : ADC group injected conversion complete callback
+ (+) MspInitCallback : ADC Msp Init callback
+ (+) MspDeInitCallback : ADC Msp DeInit callback
+ [..]
+
+ By default, after the @ref HAL_ADC_Init() and when the state is @ref HAL_ADC_STATE_RESET
+ all callbacks are set to the corresponding weak functions:
+ examples @ref HAL_ADC_ConvCpltCallback(), @ref HAL_ADC_ErrorCallback().
+ Exception done for MspInit and MspDeInit functions that are
+ reset to the legacy weak functions in the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() only when
+ these callbacks are null (not registered beforehand).
+ [..]
+
+ If MspInit or MspDeInit are not null, the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit()
+ keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
+ [..]
+
+ Callbacks can be registered/unregistered in @ref HAL_ADC_STATE_READY state only.
+ Exception done MspInit/MspDeInit functions that can be registered/unregistered
+ in @ref HAL_ADC_STATE_READY or @ref HAL_ADC_STATE_RESET state,
+ thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
+ [..]
+
+ Then, the user first registers the MspInit/MspDeInit user callbacks
+ using @ref HAL_ADC_RegisterCallback() before calling @ref HAL_ADC_DeInit()
+ or @ref HAL_ADC_Init() function.
+ [..]
+
+ When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available and all callbacks
+ are set to the corresponding weak functions.
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup ADC ADC
+ * @brief ADC HAL module driver
+ * @{
+ */
+
+#ifdef HAL_ADC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup ADC_Private_Constants ADC Private Constants
+ * @{
+ */
+
+/* Timeout values for ADC enable and disable settling time. */
+/* Values defined to be higher than worst cases: low clocks freq, */
+/* maximum prescaler. */
+/* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */
+/* prescaler 4, sampling time 12.5 ADC clock cycles, resolution 12 bits. */
+/* Unit: ms */
+#define ADC_ENABLE_TIMEOUT 2U
+#define ADC_DISABLE_TIMEOUT 2U
+
+/* Delay for ADC stabilization time. */
+/* Maximum delay is 1us (refer to device datasheet, parameter tSTAB). */
+/* Unit: us */
+#define ADC_STAB_DELAY_US 1U
+
+/* Delay for temperature sensor stabilization time. */
+/* Maximum delay is 10us (refer to device datasheet, parameter tSTART). */
+/* Unit: us */
+#define ADC_TEMPSENSOR_DELAY_US 10U
+
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup ADC_Private_Functions ADC Private Functions
+ * @{
+ */
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup ADC_Exported_Functions ADC Exported Functions
+ * @{
+ */
+
+/** @defgroup ADC_Exported_Functions_Group1 Initialization/de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Initialize and configure the ADC.
+ (+) De-initialize the ADC.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the ADC peripheral and regular group according to
+ * parameters specified in structure "ADC_InitTypeDef".
+ * @note As prerequisite, ADC clock must be configured at RCC top level
+ * (clock source APB2).
+ * See commented example code below that can be copied and uncommented
+ * into HAL_ADC_MspInit().
+ * @note Possibility to update parameters on the fly:
+ * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
+ * coming from ADC state reset. Following calls to this function can
+ * be used to reconfigure some parameters of ADC_InitTypeDef
+ * structure on the fly, without modifying MSP configuration. If ADC
+ * MSP has to be modified again, HAL_ADC_DeInit() must be called
+ * before HAL_ADC_Init().
+ * The setting of these parameters is conditioned to ADC state.
+ * For parameters constraints, see comments of structure
+ * "ADC_InitTypeDef".
+ * @note This function configures the ADC within 2 scopes: scope of entire
+ * ADC and scope of regular group. For parameters details, see comments
+ * of structure "ADC_InitTypeDef".
+ * @param hadc: ADC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+ uint32_t tmp_cr1 = 0U;
+ uint32_t tmp_cr2 = 0U;
+ uint32_t tmp_sqr1 = 0U;
+
+ /* Check ADC handle */
+ if (hadc == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign));
+ assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
+ assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
+ assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));
+
+ if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE) {
+ assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
+ assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
+ if (hadc->Init.DiscontinuousConvMode != DISABLE) {
+ assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion));
+ }
+ }
+
+ /* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured */
+ /* at RCC top level. */
+ /* Refer to header of this file for more details on clock enabling */
+ /* procedure. */
+
+ /* Actions performed only if ADC is coming from state reset: */
+ /* - Initialization of ADC MSP */
+ if (hadc->State == HAL_ADC_STATE_RESET) {
+ /* Initialize ADC error code */
+ ADC_CLEAR_ERRORCODE(hadc);
+
+ /* Allocate lock resource and initialize it */
+ hadc->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ /* Init the ADC Callback settings */
+ hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */
+ hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */
+ hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */
+ hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */
+ hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */
+
+ if (hadc->MspInitCallback == NULL) {
+ hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
+ }
+
+ /* Init the low level hardware */
+ hadc->MspInitCallback(hadc);
+#else
+ /* Init the low level hardware */
+ HAL_ADC_MspInit(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+ }
+
+ /* Stop potential conversion on going, on regular and injected groups */
+ /* Disable ADC peripheral */
+ /* Note: In case of ADC already enabled, precaution to not launch an */
+ /* unwanted conversion while modifying register CR2 by writing 1 to */
+ /* bit ADON. */
+ tmp_hal_status = ADC_ConversionStop_Disable(hadc);
+
+ /* Configuration of ADC parameters if previous preliminary actions are */
+ /* correctly completed. */
+ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) && (tmp_hal_status == HAL_OK)) {
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_BUSY_INTERNAL);
+
+ /* Set ADC parameters */
+
+ /* Configuration of ADC: */
+ /* - data alignment */
+ /* - external trigger to start conversion */
+ /* - external trigger polarity (always set to 1, because needed for all */
+ /* triggers: external trigger of SW start) */
+ /* - continuous conversion mode */
+ /* Note: External trigger polarity (ADC_CR2_EXTTRIG) is set into */
+ /* HAL_ADC_Start_xxx functions because if set in this function, */
+ /* a conversion on injected group would start a conversion also on */
+ /* regular group after ADC enabling. */
+ tmp_cr2 |= (hadc->Init.DataAlign | ADC_CFGR_EXTSEL(hadc, hadc->Init.ExternalTrigConv) | ADC_CR2_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode));
+
+ /* Configuration of ADC: */
+ /* - scan mode */
+ /* - discontinuous mode disable/enable */
+ /* - discontinuous mode number of conversions */
+ tmp_cr1 |= (ADC_CR1_SCAN_SET(hadc->Init.ScanConvMode));
+
+ /* Enable discontinuous mode only if continuous mode is disabled */
+ /* Note: If parameter "Init.ScanConvMode" is set to disable, parameter */
+ /* discontinuous is set anyway, but will have no effect on ADC HW. */
+ if (hadc->Init.DiscontinuousConvMode == ENABLE) {
+ if (hadc->Init.ContinuousConvMode == DISABLE) {
+ /* Enable the selected ADC regular discontinuous mode */
+ /* Set the number of channels to be converted in discontinuous mode */
+ SET_BIT(tmp_cr1, ADC_CR1_DISCEN | ADC_CR1_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion));
+ } else {
+ /* ADC regular group settings continuous and sequencer discontinuous*/
+ /* cannot be enabled simultaneously. */
+
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ /* Set ADC error code to ADC IP internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+ }
+ }
+
+ /* Update ADC configuration register CR1 with previous settings */
+ MODIFY_REG(hadc->Instance->CR1, ADC_CR1_SCAN | ADC_CR1_DISCEN | ADC_CR1_DISCNUM, tmp_cr1);
+
+ /* Update ADC configuration register CR2 with previous settings */
+ MODIFY_REG(hadc->Instance->CR2, ADC_CR2_ALIGN | ADC_CR2_EXTSEL | ADC_CR2_EXTTRIG | ADC_CR2_CONT, tmp_cr2);
+
+ /* Configuration of regular group sequencer: */
+ /* - if scan mode is disabled, regular channels sequence length is set to */
+ /* 0x00: 1 channel converted (channel on regular rank 1) */
+ /* Parameter "NbrOfConversion" is discarded. */
+ /* Note: Scan mode is present by hardware on this device and, if */
+ /* disabled, discards automatically nb of conversions. Anyway, nb of */
+ /* conversions is forced to 0x00 for alignment over all STM32 devices. */
+ /* - if scan mode is enabled, regular channels sequence length is set to */
+ /* parameter "NbrOfConversion" */
+ if (ADC_CR1_SCAN_SET(hadc->Init.ScanConvMode) == ADC_SCAN_ENABLE) {
+ tmp_sqr1 = ADC_SQR1_L_SHIFT(hadc->Init.NbrOfConversion);
+ }
+
+ MODIFY_REG(hadc->Instance->SQR1, ADC_SQR1_L, tmp_sqr1);
+
+ /* Check back that ADC registers have effectively been configured to */
+ /* ensure of no potential problem of ADC core IP clocking. */
+ /* Check through register CR2 (excluding bits set in other functions: */
+ /* execution control bits (ADON, JSWSTART, SWSTART), regular group bits */
+ /* (DMA), injected group bits (JEXTTRIG and JEXTSEL), channel internal */
+ /* measurement path bit (TSVREFE). */
+ if (READ_BIT(hadc->Instance->CR2, ~(ADC_CR2_ADON | ADC_CR2_DMA | ADC_CR2_SWSTART | ADC_CR2_JSWSTART | ADC_CR2_JEXTTRIG | ADC_CR2_JEXTSEL | ADC_CR2_TSVREFE)) == tmp_cr2) {
+ /* Set ADC error code to none */
+ ADC_CLEAR_ERRORCODE(hadc);
+
+ /* Set the ADC state */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY);
+ } else {
+ /* Update ADC state machine to error */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC IP internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+
+ } else {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Deinitialize the ADC peripheral registers to their default reset
+ * values, with deinitialization of the ADC MSP.
+ * If needed, the example code can be copied and uncommented into
+ * function HAL_ADC_MspDeInit().
+ * @param hadc: ADC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+
+ /* Check ADC handle */
+ if (hadc == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
+
+ /* Stop potential conversion on going, on regular and injected groups */
+ /* Disable ADC peripheral */
+ tmp_hal_status = ADC_ConversionStop_Disable(hadc);
+
+ /* Configuration of ADC parameters if previous preliminary actions are */
+ /* correctly completed. */
+ if (tmp_hal_status == HAL_OK) {
+ /* ========== Reset ADC registers ========== */
+
+ /* Reset register SR */
+ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD | ADC_FLAG_JEOC | ADC_FLAG_EOC | ADC_FLAG_JSTRT | ADC_FLAG_STRT));
+
+ /* Reset register CR1 */
+ CLEAR_BIT(hadc->Instance->CR1, (ADC_CR1_AWDEN | ADC_CR1_JAWDEN | ADC_CR1_DISCNUM | ADC_CR1_JDISCEN | ADC_CR1_DISCEN | ADC_CR1_JAUTO | ADC_CR1_AWDSGL | ADC_CR1_SCAN | ADC_CR1_JEOCIE | ADC_CR1_AWDIE
+ | ADC_CR1_EOCIE | ADC_CR1_AWDCH));
+
+ /* Reset register CR2 */
+ CLEAR_BIT(hadc->Instance->CR2, (ADC_CR2_TSVREFE | ADC_CR2_SWSTART | ADC_CR2_JSWSTART | ADC_CR2_EXTTRIG | ADC_CR2_EXTSEL | ADC_CR2_JEXTTRIG | ADC_CR2_JEXTSEL | ADC_CR2_ALIGN | ADC_CR2_DMA
+ | ADC_CR2_RSTCAL | ADC_CR2_CAL | ADC_CR2_CONT | ADC_CR2_ADON));
+
+ /* Reset register SMPR1 */
+ CLEAR_BIT(hadc->Instance->SMPR1, (ADC_SMPR1_SMP17 | ADC_SMPR1_SMP16 | ADC_SMPR1_SMP15 | ADC_SMPR1_SMP14 | ADC_SMPR1_SMP13 | ADC_SMPR1_SMP12 | ADC_SMPR1_SMP11 | ADC_SMPR1_SMP10));
+
+ /* Reset register SMPR2 */
+ CLEAR_BIT(hadc->Instance->SMPR2,
+ (ADC_SMPR2_SMP9 | ADC_SMPR2_SMP8 | ADC_SMPR2_SMP7 | ADC_SMPR2_SMP6 | ADC_SMPR2_SMP5 | ADC_SMPR2_SMP4 | ADC_SMPR2_SMP3 | ADC_SMPR2_SMP2 | ADC_SMPR2_SMP1 | ADC_SMPR2_SMP0));
+
+ /* Reset register JOFR1 */
+ CLEAR_BIT(hadc->Instance->JOFR1, ADC_JOFR1_JOFFSET1);
+ /* Reset register JOFR2 */
+ CLEAR_BIT(hadc->Instance->JOFR2, ADC_JOFR2_JOFFSET2);
+ /* Reset register JOFR3 */
+ CLEAR_BIT(hadc->Instance->JOFR3, ADC_JOFR3_JOFFSET3);
+ /* Reset register JOFR4 */
+ CLEAR_BIT(hadc->Instance->JOFR4, ADC_JOFR4_JOFFSET4);
+
+ /* Reset register HTR */
+ CLEAR_BIT(hadc->Instance->HTR, ADC_HTR_HT);
+ /* Reset register LTR */
+ CLEAR_BIT(hadc->Instance->LTR, ADC_LTR_LT);
+
+ /* Reset register SQR1 */
+ CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L | ADC_SQR1_SQ16 | ADC_SQR1_SQ15 | ADC_SQR1_SQ14 | ADC_SQR1_SQ13);
+
+ /* Reset register SQR1 */
+ CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L | ADC_SQR1_SQ16 | ADC_SQR1_SQ15 | ADC_SQR1_SQ14 | ADC_SQR1_SQ13);
+
+ /* Reset register SQR2 */
+ CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ12 | ADC_SQR2_SQ11 | ADC_SQR2_SQ10 | ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7);
+
+ /* Reset register SQR3 */
+ CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ6 | ADC_SQR3_SQ5 | ADC_SQR3_SQ4 | ADC_SQR3_SQ3 | ADC_SQR3_SQ2 | ADC_SQR3_SQ1);
+
+ /* Reset register JSQR */
+ CLEAR_BIT(hadc->Instance->JSQR, ADC_JSQR_JL | ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 | ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1);
+
+ /* Reset register JSQR */
+ CLEAR_BIT(hadc->Instance->JSQR, ADC_JSQR_JL | ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 | ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1);
+
+ /* Reset register DR */
+ /* bits in access mode read only, no direct reset applicable*/
+
+ /* Reset registers JDR1, JDR2, JDR3, JDR4 */
+ /* bits in access mode read only, no direct reset applicable*/
+
+ /* ========== Hard reset ADC peripheral ========== */
+ /* Performs a global reset of the entire ADC peripheral: ADC state is */
+ /* forced to a similar state after device power-on. */
+ /* If needed, copy-paste and uncomment the following reset code into */
+ /* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)": */
+ /* */
+ /* __HAL_RCC_ADC1_FORCE_RESET() */
+ /* __HAL_RCC_ADC1_RELEASE_RESET() */
+
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ if (hadc->MspDeInitCallback == NULL) {
+ hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
+ }
+
+ /* DeInit the low level hardware */
+ hadc->MspDeInitCallback(hadc);
+#else
+ /* DeInit the low level hardware */
+ HAL_ADC_MspDeInit(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Set ADC error code to none */
+ ADC_CLEAR_ERRORCODE(hadc);
+
+ /* Set ADC state */
+ hadc->State = HAL_ADC_STATE_RESET;
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Initializes the ADC MSP.
+ * @param hadc: ADC handle
+ * @retval None
+ */
+__weak void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_MspInit must be implemented in the user file.
+ */
+}
+
+/**
+ * @brief DeInitializes the ADC MSP.
+ * @param hadc: ADC handle
+ * @retval None
+ */
+__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_MspDeInit must be implemented in the user file.
+ */
+}
+
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Register a User ADC Callback
+ * To be used instead of the weak predefined callback
+ * @param hadc Pointer to a ADC_HandleTypeDef structure that contains
+ * the configuration information for the specified ADC.
+ * @param CallbackID ID of the callback to be registered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID
+ * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion complete callback ID
+ * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID
+ * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID
+ * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID
+ * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID
+ * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID
+ * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID
+ * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID
+ * @param pCallback pointer to the Callback function
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL) {
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ return HAL_ERROR;
+ }
+
+ if ((hadc->State & HAL_ADC_STATE_READY) != 0) {
+ switch (CallbackID) {
+ case HAL_ADC_CONVERSION_COMPLETE_CB_ID:
+ hadc->ConvCpltCallback = pCallback;
+ break;
+
+ case HAL_ADC_CONVERSION_HALF_CB_ID:
+ hadc->ConvHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID:
+ hadc->LevelOutOfWindowCallback = pCallback;
+ break;
+
+ case HAL_ADC_ERROR_CB_ID:
+ hadc->ErrorCallback = pCallback;
+ break;
+
+ case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID:
+ hadc->InjectedConvCpltCallback = pCallback;
+ break;
+
+ case HAL_ADC_MSPINIT_CB_ID:
+ hadc->MspInitCallback = pCallback;
+ break;
+
+ case HAL_ADC_MSPDEINIT_CB_ID:
+ hadc->MspDeInitCallback = pCallback;
+ break;
+
+ default:
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else if (HAL_ADC_STATE_RESET == hadc->State) {
+ switch (CallbackID) {
+ case HAL_ADC_MSPINIT_CB_ID:
+ hadc->MspInitCallback = pCallback;
+ break;
+
+ case HAL_ADC_MSPDEINIT_CB_ID:
+ hadc->MspDeInitCallback = pCallback;
+ break;
+
+ default:
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else {
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ return status;
+}
+
+/**
+ * @brief Unregister a ADC Callback
+ * ADC callback is redirected to the weak predefined callback
+ * @param hadc Pointer to a ADC_HandleTypeDef structure that contains
+ * the configuration information for the specified ADC.
+ * @param CallbackID ID of the callback to be unregistered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID
+ * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion complete callback ID
+ * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID
+ * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID
+ * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID
+ * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID
+ * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID
+ * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID
+ * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if ((hadc->State & HAL_ADC_STATE_READY) != 0) {
+ switch (CallbackID) {
+ case HAL_ADC_CONVERSION_COMPLETE_CB_ID:
+ hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback;
+ break;
+
+ case HAL_ADC_CONVERSION_HALF_CB_ID:
+ hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback;
+ break;
+
+ case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID:
+ hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback;
+ break;
+
+ case HAL_ADC_ERROR_CB_ID:
+ hadc->ErrorCallback = HAL_ADC_ErrorCallback;
+ break;
+
+ case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID:
+ hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback;
+ break;
+
+ case HAL_ADC_MSPINIT_CB_ID:
+ hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
+ break;
+
+ case HAL_ADC_MSPDEINIT_CB_ID:
+ hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
+ break;
+
+ default:
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else if (HAL_ADC_STATE_RESET == hadc->State) {
+ switch (CallbackID) {
+ case HAL_ADC_MSPINIT_CB_ID:
+ hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
+ break;
+
+ case HAL_ADC_MSPDEINIT_CB_ID:
+ hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
+ break;
+
+ default:
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else {
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ return status;
+}
+
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Exported_Functions_Group2 IO operation functions
+ * @brief Input and Output operation functions
+ *
+@verbatim
+ ===============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Start conversion of regular group.
+ (+) Stop conversion of regular group.
+ (+) Poll for conversion complete on regular group.
+ (+) Poll for conversion event.
+ (+) Get result of regular channel conversion.
+ (+) Start conversion of regular group and enable interruptions.
+ (+) Stop conversion of regular group and disable interruptions.
+ (+) Handle ADC interrupt request
+ (+) Start conversion of regular group and enable DMA transfer.
+ (+) Stop conversion of regular group and disable ADC DMA transfer.
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables ADC, starts conversion of regular group.
+ * Interruptions enabled in this function: None.
+ * @param hadc: ADC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Enable the ADC peripheral */
+ tmp_hal_status = ADC_Enable(hadc);
+
+ /* Start conversion if ADC is effectively enabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Set ADC state */
+ /* - Clear state bitfield related to regular group conversion results */
+ /* - Set state bitfield related to regular operation */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC, HAL_ADC_STATE_REG_BUSY);
+
+ /* Set group injected state (from auto-injection) and multimode state */
+ /* for all cases of multimode: independent mode, multimode ADC master */
+ /* or multimode ADC slave (for devices with several ADCs): */
+ if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) {
+ /* Set ADC state (ADC independent or master) */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+
+ /* If conversions on group regular are also triggering group injected, */
+ /* update ADC state. */
+ if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) {
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+ }
+ } else {
+ /* Set ADC state (ADC slave) */
+ SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+
+ /* If conversions on group regular are also triggering group injected, */
+ /* update ADC state. */
+ if (ADC_MULTIMODE_AUTO_INJECTED(hadc)) {
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+ }
+ }
+
+ /* State machine update: Check if an injected conversion is ongoing */
+ if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) {
+ /* Reset ADC error code fields related to conversions on group regular */
+ CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
+ } else {
+ /* Reset ADC all error code fields */
+ ADC_CLEAR_ERRORCODE(hadc);
+ }
+
+ /* Process unlocked */
+ /* Unlock before starting ADC conversions: in case of potential */
+ /* interruption, to let the process to ADC IRQ Handler. */
+ __HAL_UNLOCK(hadc);
+
+ /* Clear regular group conversion flag */
+ /* (To ensure of no unknown state from potential previous ADC operations) */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
+
+ /* Enable conversion of regular group. */
+ /* If software start has been selected, conversion starts immediately. */
+ /* If external trigger has been selected, conversion will start at next */
+ /* trigger event. */
+ /* Case of multimode enabled: */
+ /* - if ADC is slave, ADC is enabled only (conversion is not started). */
+ /* - if ADC is master, ADC is enabled and conversion is started. */
+ /* If ADC is master, ADC is enabled and conversion is started. */
+ /* Note: Alternate trigger for single conversion could be to force an */
+ /* additional set of bit ADON "hadc->Instance->CR2 |= ADC_CR2_ADON;"*/
+ if (ADC_IS_SOFTWARE_START_REGULAR(hadc) && ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) {
+ /* Start ADC conversion on regular group with SW start */
+ SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG));
+ } else {
+ /* Start ADC conversion on regular group with external trigger */
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG);
+ }
+ } else {
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+ }
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Stop ADC conversion of regular group (and injected channels in
+ * case of auto_injection mode), disable ADC peripheral.
+ * @note: ADC peripheral disable is forcing stop of potential
+ * conversion on injected group. If injected group is under use, it
+ * should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
+ * @param hadc: ADC handle
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Stop potential conversion on going, on regular and injected groups */
+ /* Disable ADC peripheral */
+ tmp_hal_status = ADC_ConversionStop_Disable(hadc);
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_READY);
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Wait for regular group conversion to be completed.
+ * @note This function cannot be used in a particular setup: ADC configured
+ * in DMA mode.
+ * In this case, DMA resets the flag EOC and polling cannot be
+ * performed on each conversion.
+ * @note On STM32F1 devices, limitation in case of sequencer enabled
+ * (several ranks selected): polling cannot be done on each
+ * conversion inside the sequence. In this case, polling is replaced by
+ * wait for maximum conversion time.
+ * @param hadc: ADC handle
+ * @param Timeout: Timeout value in millisecond.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout) {
+ uint32_t tickstart = 0U;
+
+ /* Variables for polling in case of scan mode enabled and polling for each */
+ /* conversion. */
+ __IO uint32_t Conversion_Timeout_CPU_cycles = 0U;
+ uint32_t Conversion_Timeout_CPU_cycles_max = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Get tick count */
+ tickstart = HAL_GetTick();
+
+ /* Verification that ADC configuration is compliant with polling for */
+ /* each conversion: */
+ /* Particular case is ADC configured in DMA mode */
+ if (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_DMA)) {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_ERROR;
+ }
+
+ /* Polling for end of conversion: differentiation if single/sequence */
+ /* conversion. */
+ /* - If single conversion for regular group (Scan mode disabled or enabled */
+ /* with NbrOfConversion =1), flag EOC is used to determine the */
+ /* conversion completion. */
+ /* - If sequence conversion for regular group (scan mode enabled and */
+ /* NbrOfConversion >=2), flag EOC is set only at the end of the */
+ /* sequence. */
+ /* To poll for each conversion, the maximum conversion time is computed */
+ /* from ADC conversion time (selected sampling time + conversion time of */
+ /* 12.5 ADC clock cycles) and APB2/ADC clock prescalers (depending on */
+ /* settings, conversion time range can be from 28 to 32256 CPU cycles). */
+ /* As flag EOC is not set after each conversion, no timeout status can */
+ /* be set. */
+ if (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_SCAN) && HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L)) {
+ /* Wait until End of Conversion flag is raised */
+ while (HAL_IS_BIT_CLR(hadc->Instance->SR, ADC_FLAG_EOC)) {
+ /* Check if timeout is disabled (set to infinite wait) */
+ if (Timeout != HAL_MAX_DELAY) {
+ if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) {
+ /* Update ADC state machine to timeout */
+ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ } else {
+ /* Replace polling by wait for maximum conversion time */
+ /* - Computation of CPU clock cycles corresponding to ADC clock cycles */
+ /* and ADC maximum conversion cycles on all channels. */
+ /* - Wait for the expected ADC clock cycles delay */
+ Conversion_Timeout_CPU_cycles_max = ((SystemCoreClock / HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC)) * ADC_CONVCYCLES_MAX_RANGE(hadc));
+
+ while (Conversion_Timeout_CPU_cycles < Conversion_Timeout_CPU_cycles_max) {
+ /* Check if timeout is disabled (set to infinite wait) */
+ if (Timeout != HAL_MAX_DELAY) {
+ if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) {
+ /* Update ADC state machine to timeout */
+ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_TIMEOUT;
+ }
+ }
+ Conversion_Timeout_CPU_cycles++;
+ }
+ }
+
+ /* Clear regular group conversion flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
+
+ /* Update ADC state machine */
+ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
+
+ /* Determine whether any further conversion upcoming on group regular */
+ /* by external trigger, continuous mode or scan sequence on going. */
+ /* Note: On STM32F1 devices, in case of sequencer enabled */
+ /* (several ranks selected), end of conversion flag is raised */
+ /* at the end of the sequence. */
+ if (ADC_IS_SOFTWARE_START_REGULAR(hadc) && (hadc->Init.ContinuousConvMode == DISABLE)) {
+ /* Set ADC state */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
+
+ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) {
+ SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+ }
+ }
+
+ /* Return ADC state */
+ return HAL_OK;
+}
+
+/**
+ * @brief Poll for conversion event.
+ * @param hadc: ADC handle
+ * @param EventType: the ADC event type.
+ * This parameter can be one of the following values:
+ * @arg ADC_AWD_EVENT: ADC Analog watchdog event.
+ * @param Timeout: Timeout value in millisecond.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout) {
+ uint32_t tickstart = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_EVENT_TYPE(EventType));
+
+ /* Get tick count */
+ tickstart = HAL_GetTick();
+
+ /* Check selected event flag */
+ while (__HAL_ADC_GET_FLAG(hadc, EventType) == RESET) {
+ /* Check if timeout is disabled (set to infinite wait) */
+ if (Timeout != HAL_MAX_DELAY) {
+ if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) {
+ /* Update ADC state machine to timeout */
+ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Analog watchdog (level out of window) event */
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
+
+ /* Clear ADC analog watchdog flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
+
+ /* Return ADC state */
+ return HAL_OK;
+}
+
+/**
+ * @brief Enables ADC, starts conversion of regular group with interruption.
+ * Interruptions enabled in this function:
+ * - EOC (end of conversion of regular group)
+ * Each of these interruptions has its dedicated callback function.
+ * @param hadc: ADC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Enable the ADC peripheral */
+ tmp_hal_status = ADC_Enable(hadc);
+
+ /* Start conversion if ADC is effectively enabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Set ADC state */
+ /* - Clear state bitfield related to regular group conversion results */
+ /* - Set state bitfield related to regular operation */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, HAL_ADC_STATE_REG_BUSY);
+
+ /* Set group injected state (from auto-injection) and multimode state */
+ /* for all cases of multimode: independent mode, multimode ADC master */
+ /* or multimode ADC slave (for devices with several ADCs): */
+ if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) {
+ /* Set ADC state (ADC independent or master) */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+
+ /* If conversions on group regular are also triggering group injected, */
+ /* update ADC state. */
+ if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) {
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+ }
+ } else {
+ /* Set ADC state (ADC slave) */
+ SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+
+ /* If conversions on group regular are also triggering group injected, */
+ /* update ADC state. */
+ if (ADC_MULTIMODE_AUTO_INJECTED(hadc)) {
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+ }
+ }
+
+ /* State machine update: Check if an injected conversion is ongoing */
+ if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) {
+ /* Reset ADC error code fields related to conversions on group regular */
+ CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
+ } else {
+ /* Reset ADC all error code fields */
+ ADC_CLEAR_ERRORCODE(hadc);
+ }
+
+ /* Process unlocked */
+ /* Unlock before starting ADC conversions: in case of potential */
+ /* interruption, to let the process to ADC IRQ Handler. */
+ __HAL_UNLOCK(hadc);
+
+ /* Clear regular group conversion flag and overrun flag */
+ /* (To ensure of no unknown state from potential previous ADC operations) */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
+
+ /* Enable end of conversion interrupt for regular group */
+ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC);
+
+ /* Enable conversion of regular group. */
+ /* If software start has been selected, conversion starts immediately. */
+ /* If external trigger has been selected, conversion will start at next */
+ /* trigger event. */
+ /* Case of multimode enabled: */
+ /* - if ADC is slave, ADC is enabled only (conversion is not started). */
+ /* - if ADC is master, ADC is enabled and conversion is started. */
+ if (ADC_IS_SOFTWARE_START_REGULAR(hadc) && ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) {
+ /* Start ADC conversion on regular group with SW start */
+ SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG));
+ } else {
+ /* Start ADC conversion on regular group with external trigger */
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG);
+ }
+ } else {
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+ }
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Stop ADC conversion of regular group (and injected group in
+ * case of auto_injection mode), disable interrution of
+ * end-of-conversion, disable ADC peripheral.
+ * @param hadc: ADC handle
+ * @retval None
+ */
+HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Stop potential conversion on going, on regular and injected groups */
+ /* Disable ADC peripheral */
+ tmp_hal_status = ADC_ConversionStop_Disable(hadc);
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Disable ADC end of conversion interrupt for regular group */
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
+
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_READY);
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Enables ADC, starts conversion of regular group and transfers result
+ * through DMA.
+ * Interruptions enabled in this function:
+ * - DMA transfer complete
+ * - DMA half transfer
+ * Each of these interruptions has its dedicated callback function.
+ * @note For devices with several ADCs: This function is for single-ADC mode
+ * only. For multimode, use the dedicated MultimodeStart function.
+ * @note On STM32F1 devices, only ADC1 and ADC3 (ADC availability depending
+ * on devices) have DMA capability.
+ * ADC2 converted data can be transferred in dual ADC mode using DMA
+ * of ADC1 (ADC master in multimode).
+ * In case of using ADC1 with DMA on a device featuring 2 ADC
+ * instances: ADC1 conversion register DR contains ADC1 conversion
+ * result (ADC1 register DR bits 0 to 11) and, additionally, ADC2 last
+ * conversion result (ADC1 register DR bits 16 to 27). Therefore, to
+ * have DMA transferring the conversion results of ADC1 only, DMA must
+ * be configured to transfer size: half word.
+ * @param hadc: ADC handle
+ * @param pData: The destination Buffer address.
+ * @param Length: The length of data to be transferred from ADC peripheral to memory.
+ * @retval None
+ */
+HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_DMA_CAPABILITY_INSTANCE(hadc->Instance));
+
+ /* Verification if multimode is disabled (for devices with several ADC) */
+ /* If multimode is enabled, dedicated function multimode conversion */
+ /* start DMA must be used. */
+ if (ADC_MULTIMODE_IS_ENABLE(hadc) == RESET) {
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Enable the ADC peripheral */
+ tmp_hal_status = ADC_Enable(hadc);
+
+ /* Start conversion if ADC is effectively enabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Set ADC state */
+ /* - Clear state bitfield related to regular group conversion results */
+ /* - Set state bitfield related to regular operation */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, HAL_ADC_STATE_REG_BUSY);
+
+ /* Set group injected state (from auto-injection) and multimode state */
+ /* for all cases of multimode: independent mode, multimode ADC master */
+ /* or multimode ADC slave (for devices with several ADCs): */
+ if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) {
+ /* Set ADC state (ADC independent or master) */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+
+ /* If conversions on group regular are also triggering group injected, */
+ /* update ADC state. */
+ if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) {
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+ }
+ } else {
+ /* Set ADC state (ADC slave) */
+ SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+
+ /* If conversions on group regular are also triggering group injected, */
+ /* update ADC state. */
+ if (ADC_MULTIMODE_AUTO_INJECTED(hadc)) {
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+ }
+ }
+
+ /* State machine update: Check if an injected conversion is ongoing */
+ if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) {
+ /* Reset ADC error code fields related to conversions on group regular */
+ CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
+ } else {
+ /* Reset ADC all error code fields */
+ ADC_CLEAR_ERRORCODE(hadc);
+ }
+
+ /* Process unlocked */
+ /* Unlock before starting ADC conversions: in case of potential */
+ /* interruption, to let the process to ADC IRQ Handler. */
+ __HAL_UNLOCK(hadc);
+
+ /* Set the DMA transfer complete callback */
+ hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
+
+ /* Set the DMA half transfer complete callback */
+ hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
+
+ /* Set the DMA error callback */
+ hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
+
+ /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */
+ /* start (in case of SW start): */
+
+ /* Clear regular group conversion flag and overrun flag */
+ /* (To ensure of no unknown state from potential previous ADC */
+ /* operations) */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
+
+ /* Enable ADC DMA mode */
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_DMA);
+
+ /* Start the DMA channel */
+ HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
+
+ /* Enable conversion of regular group. */
+ /* If software start has been selected, conversion starts immediately. */
+ /* If external trigger has been selected, conversion will start at next */
+ /* trigger event. */
+ if (ADC_IS_SOFTWARE_START_REGULAR(hadc)) {
+ /* Start ADC conversion on regular group with SW start */
+ SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG));
+ } else {
+ /* Start ADC conversion on regular group with external trigger */
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG);
+ }
+ } else {
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+ }
+ } else {
+ tmp_hal_status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Stop ADC conversion of regular group (and injected group in
+ * case of auto_injection mode), disable ADC DMA transfer, disable
+ * ADC peripheral.
+ * @note: ADC peripheral disable is forcing stop of potential
+ * conversion on injected group. If injected group is under use, it
+ * should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
+ * @note For devices with several ADCs: This function is for single-ADC mode
+ * only. For multimode, use the dedicated MultimodeStop function.
+ * @note On STM32F1 devices, only ADC1 and ADC3 (ADC availability depending
+ * on devices) have DMA capability.
+ * @param hadc: ADC handle
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_DMA_CAPABILITY_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Stop potential conversion on going, on regular and injected groups */
+ /* Disable ADC peripheral */
+ tmp_hal_status = ADC_ConversionStop_Disable(hadc);
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Disable ADC DMA mode */
+ CLEAR_BIT(hadc->Instance->CR2, ADC_CR2_DMA);
+
+ /* Disable the DMA channel (in case of DMA in circular mode or stop while */
+ /* DMA transfer is on going) */
+ if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY) {
+ tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
+
+ /* Check if DMA channel effectively disabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_READY);
+ } else {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
+ }
+ }
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Get ADC regular group conversion result.
+ * @note Reading register DR automatically clears ADC flag EOC
+ * (ADC group regular end of unitary conversion).
+ * @note This function does not clear ADC flag EOS
+ * (ADC group regular end of sequence conversion).
+ * Occurrence of flag EOS rising:
+ * - If sequencer is composed of 1 rank, flag EOS is equivalent
+ * to flag EOC.
+ * - If sequencer is composed of several ranks, during the scan
+ * sequence flag EOC only is raised, at the end of the scan sequence
+ * both flags EOC and EOS are raised.
+ * To clear this flag, either use function:
+ * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
+ * model polling: @ref HAL_ADC_PollForConversion()
+ * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS).
+ * @param hadc: ADC handle
+ * @retval ADC group regular conversion data
+ */
+uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef *hadc) {
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Note: EOC flag is not cleared here by software because automatically */
+ /* cleared by hardware when reading register DR. */
+
+ /* Return ADC converted value */
+ return hadc->Instance->DR;
+}
+
+/**
+ * @brief Handles ADC interrupt request
+ * @param hadc: ADC handle
+ * @retval None
+ */
+void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc) {
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
+ assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
+
+ /* ========== Check End of Conversion flag for regular group ========== */
+ if (__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC)) {
+ if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC)) {
+ /* Update state machine on conversion status if not in error state */
+ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) {
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
+ }
+
+ /* Determine whether any further conversion upcoming on group regular */
+ /* by external trigger, continuous mode or scan sequence on going. */
+ /* Note: On STM32F1 devices, in case of sequencer enabled */
+ /* (several ranks selected), end of conversion flag is raised */
+ /* at the end of the sequence. */
+ if (ADC_IS_SOFTWARE_START_REGULAR(hadc) && (hadc->Init.ContinuousConvMode == DISABLE)) {
+ /* Disable ADC end of conversion interrupt on group regular */
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
+
+ /* Set ADC state */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
+
+ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) {
+ SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+ }
+ }
+
+ /* Conversion complete callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->ConvCpltCallback(hadc);
+#else
+ HAL_ADC_ConvCpltCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Clear regular group conversion flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
+ }
+ }
+
+ /* ========== Check End of Conversion flag for injected group ========== */
+ if (__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_JEOC)) {
+ if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC)) {
+ /* Update state machine on conversion status if not in error state */
+ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) {
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
+ }
+
+ /* Determine whether any further conversion upcoming on group injected */
+ /* by external trigger, scan sequence on going or by automatic injected */
+ /* conversion from group regular (same conditions as group regular */
+ /* interruption disabling above). */
+ /* Note: On STM32F1 devices, in case of sequencer enabled */
+ /* (several ranks selected), end of conversion flag is raised */
+ /* at the end of the sequence. */
+ if (ADC_IS_SOFTWARE_START_INJECTED(hadc) || (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) && (ADC_IS_SOFTWARE_START_REGULAR(hadc) && (hadc->Init.ContinuousConvMode == DISABLE)))) {
+ /* Disable ADC end of conversion interrupt on group injected */
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
+
+ /* Set ADC state */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
+
+ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY)) {
+ SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+ }
+ }
+
+ /* Conversion complete callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->InjectedConvCpltCallback(hadc);
+#else
+ HAL_ADCEx_InjectedConvCpltCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Clear injected group conversion flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JSTRT | ADC_FLAG_JEOC));
+ }
+ }
+
+ /* ========== Check Analog watchdog flags ========== */
+ if (__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD)) {
+ if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD)) {
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
+
+ /* Level out of window callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->LevelOutOfWindowCallback(hadc);
+#else
+ HAL_ADC_LevelOutOfWindowCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Clear the ADC analog watchdog flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
+ }
+ }
+}
+
+/**
+ * @brief Conversion complete callback in non blocking mode
+ * @param hadc: ADC handle
+ * @retval None
+ */
+__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_ConvCpltCallback must be implemented in the user file.
+ */
+}
+
+/**
+ * @brief Conversion DMA half-transfer callback in non blocking mode
+ * @param hadc: ADC handle
+ * @retval None
+ */
+__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file.
+ */
+}
+
+/**
+ * @brief Analog watchdog callback in non blocking mode.
+ * @param hadc: ADC handle
+ * @retval None
+ */
+__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file.
+ */
+}
+
+/**
+ * @brief ADC error callback in non blocking mode
+ * (ADC conversion with interruption or transfer by DMA)
+ * @param hadc: ADC handle
+ * @retval None
+ */
+__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_ErrorCallback must be implemented in the user file.
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
+ * @brief Peripheral Control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Configure channels on regular group
+ (+) Configure the analog watchdog
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the the selected channel to be linked to the regular
+ * group.
+ * @note In case of usage of internal measurement channels:
+ * Vbat/VrefInt/TempSensor.
+ * These internal paths can be be disabled using function
+ * HAL_ADC_DeInit().
+ * @note Possibility to update parameters on the fly:
+ * This function initializes channel into regular group, following
+ * calls to this function can be used to reconfigure some parameters
+ * of structure "ADC_ChannelConfTypeDef" on the fly, without reseting
+ * the ADC.
+ * The setting of these parameters is conditioned to ADC state.
+ * For parameters constraints, see comments of structure
+ * "ADC_ChannelConfTypeDef".
+ * @param hadc: ADC handle
+ * @param sConfig: Structure of ADC channel for regular group.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, ADC_ChannelConfTypeDef *sConfig) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+ __IO uint32_t wait_loop_index = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_CHANNEL(sConfig->Channel));
+ assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
+ assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Regular sequence configuration */
+ /* For Rank 1 to 6 */
+ if (sConfig->Rank < 7U) {
+ MODIFY_REG(hadc->Instance->SQR3, ADC_SQR3_RK(ADC_SQR3_SQ1, sConfig->Rank), ADC_SQR3_RK(sConfig->Channel, sConfig->Rank));
+ }
+ /* For Rank 7 to 12 */
+ else if (sConfig->Rank < 13U) {
+ MODIFY_REG(hadc->Instance->SQR2, ADC_SQR2_RK(ADC_SQR2_SQ7, sConfig->Rank), ADC_SQR2_RK(sConfig->Channel, sConfig->Rank));
+ }
+ /* For Rank 13 to 16 */
+ else {
+ MODIFY_REG(hadc->Instance->SQR1, ADC_SQR1_RK(ADC_SQR1_SQ13, sConfig->Rank), ADC_SQR1_RK(sConfig->Channel, sConfig->Rank));
+ }
+
+ /* Channel sampling time configuration */
+ /* For channels 10 to 17 */
+ if (sConfig->Channel >= ADC_CHANNEL_10) {
+ MODIFY_REG(hadc->Instance->SMPR1, ADC_SMPR1(ADC_SMPR1_SMP10, sConfig->Channel), ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel));
+ } else /* For channels 0 to 9 */
+ {
+ MODIFY_REG(hadc->Instance->SMPR2, ADC_SMPR2(ADC_SMPR2_SMP0, sConfig->Channel), ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel));
+ }
+
+ /* If ADC1 Channel_16 or Channel_17 is selected, enable Temperature sensor */
+ /* and VREFINT measurement path. */
+ if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) || (sConfig->Channel == ADC_CHANNEL_VREFINT)) {
+ /* For STM32F1 devices with several ADC: Only ADC1 can access internal */
+ /* measurement channels (VrefInt/TempSensor). If these channels are */
+ /* intended to be set on other ADC instances, an error is reported. */
+ if (hadc->Instance == ADC1) {
+ if (READ_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE) == RESET) {
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE);
+
+ if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR)) {
+ /* Delay for temperature sensor stabilization time */
+ /* Compute number of CPU cycles to wait for */
+ wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
+ while (wait_loop_index != 0U) {
+ wait_loop_index--;
+ }
+ }
+ }
+ } else {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Configures the analog watchdog.
+ * @note Analog watchdog thresholds can be modified while ADC conversion
+ * is on going.
+ * In this case, some constraints must be taken into account:
+ * the programmed threshold values are effective from the next
+ * ADC EOC (end of unitary conversion).
+ * Considering that registers write delay may happen due to
+ * bus activity, this might cause an uncertainty on the
+ * effective timing of the new programmed threshold values.
+ * @param hadc: ADC handle
+ * @param AnalogWDGConfig: Structure of ADC analog watchdog configuration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, ADC_AnalogWDGConfTypeDef *AnalogWDGConfig) {
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode));
+ assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
+ assert_param(IS_ADC_RANGE(AnalogWDGConfig->HighThreshold));
+ assert_param(IS_ADC_RANGE(AnalogWDGConfig->LowThreshold));
+
+ if ((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) || (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC)
+ || (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC)) {
+ assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
+ }
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Analog watchdog configuration */
+
+ /* Configure ADC Analog watchdog interrupt */
+ if (AnalogWDGConfig->ITMode == ENABLE) {
+ /* Enable the ADC Analog watchdog interrupt */
+ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD);
+ } else {
+ /* Disable the ADC Analog watchdog interrupt */
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD);
+ }
+
+ /* Configuration of analog watchdog: */
+ /* - Set the analog watchdog enable mode: regular and/or injected groups, */
+ /* one or all channels. */
+ /* - Set the Analog watchdog channel (is not used if watchdog */
+ /* mode "all channels": ADC_CFGR_AWD1SGL=0). */
+ MODIFY_REG(hadc->Instance->CR1, ADC_CR1_AWDSGL | ADC_CR1_JAWDEN | ADC_CR1_AWDEN | ADC_CR1_AWDCH, AnalogWDGConfig->WatchdogMode | AnalogWDGConfig->Channel);
+
+ /* Set the high threshold */
+ WRITE_REG(hadc->Instance->HTR, AnalogWDGConfig->HighThreshold);
+
+ /* Set the low threshold */
+ WRITE_REG(hadc->Instance->LTR, AnalogWDGConfig->LowThreshold);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions
+ * @brief Peripheral State functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral State and Errors functions #####
+ ===============================================================================
+ [..]
+ This subsection provides functions to get in run-time the status of the
+ peripheral.
+ (+) Check the ADC state
+ (+) Check the ADC error code
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief return the ADC state
+ * @param hadc: ADC handle
+ * @retval HAL state
+ */
+uint32_t HAL_ADC_GetState(ADC_HandleTypeDef *hadc) {
+ /* Return ADC state */
+ return hadc->State;
+}
+
+/**
+ * @brief Return the ADC error code
+ * @param hadc: ADC handle
+ * @retval ADC Error Code
+ */
+uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) { return hadc->ErrorCode; }
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Private_Functions ADC Private Functions
+ * @{
+ */
+
+/**
+ * @brief Enable the selected ADC.
+ * @note Prerequisite condition to use this function: ADC must be disabled
+ * and voltage regulator must be enabled (done into HAL_ADC_Init()).
+ * @param hadc: ADC handle
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc) {
+ uint32_t tickstart = 0U;
+ __IO uint32_t wait_loop_index = 0U;
+
+ /* ADC enable and wait for ADC ready (in case of ADC is disabled or */
+ /* enabling phase not yet completed: flag ADC ready not yet set). */
+ /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */
+ /* causes: ADC clock not running, ...). */
+ if (ADC_IS_ENABLE(hadc) == RESET) {
+ /* Enable the Peripheral */
+ __HAL_ADC_ENABLE(hadc);
+
+ /* Delay for ADC stabilization time */
+ /* Compute number of CPU cycles to wait for */
+ wait_loop_index = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
+ while (wait_loop_index != 0U) {
+ wait_loop_index--;
+ }
+
+ /* Get tick count */
+ tickstart = HAL_GetTick();
+
+ /* Wait for ADC effectively enabled */
+ while (ADC_IS_ENABLE(hadc) == RESET) {
+ if ((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT) {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC IP internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_ERROR;
+ }
+ }
+ }
+
+ /* Return HAL status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stop ADC conversion and disable the selected ADC
+ * @note Prerequisite condition to use this function: ADC conversions must be
+ * stopped to disable the ADC.
+ * @param hadc: ADC handle
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef ADC_ConversionStop_Disable(ADC_HandleTypeDef *hadc) {
+ uint32_t tickstart = 0U;
+
+ /* Verification if ADC is not already disabled */
+ if (ADC_IS_ENABLE(hadc) != RESET) {
+ /* Disable the ADC peripheral */
+ __HAL_ADC_DISABLE(hadc);
+
+ /* Get tick count */
+ tickstart = HAL_GetTick();
+
+ /* Wait for ADC effectively disabled */
+ while (ADC_IS_ENABLE(hadc) != RESET) {
+ if ((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT) {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC IP internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+
+ return HAL_ERROR;
+ }
+ }
+ }
+
+ /* Return HAL status */
+ return HAL_OK;
+}
+
+/**
+ * @brief DMA transfer complete callback.
+ * @param hdma: pointer to DMA handle.
+ * @retval None
+ */
+void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) {
+ /* Retrieve ADC handle corresponding to current DMA handle */
+ ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Update state machine on conversion status if not in error state */
+ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) {
+ /* Update ADC state machine */
+ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
+
+ /* Determine whether any further conversion upcoming on group regular */
+ /* by external trigger, continuous mode or scan sequence on going. */
+ /* Note: On STM32F1 devices, in case of sequencer enabled */
+ /* (several ranks selected), end of conversion flag is raised */
+ /* at the end of the sequence. */
+ if (ADC_IS_SOFTWARE_START_REGULAR(hadc) && (hadc->Init.ContinuousConvMode == DISABLE)) {
+ /* Set ADC state */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
+
+ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) {
+ SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+ }
+ }
+
+ /* Conversion complete callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->ConvCpltCallback(hadc);
+#else
+ HAL_ADC_ConvCpltCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+ } else {
+ /* Call DMA error callback */
+ hadc->DMA_Handle->XferErrorCallback(hdma);
+ }
+}
+
+/**
+ * @brief DMA half transfer complete callback.
+ * @param hdma: pointer to DMA handle.
+ * @retval None
+ */
+void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) {
+ /* Retrieve ADC handle corresponding to current DMA handle */
+ ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Half conversion callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->ConvHalfCpltCallback(hadc);
+#else
+ HAL_ADC_ConvHalfCpltCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief DMA error callback
+ * @param hdma: pointer to DMA handle.
+ * @retval None
+ */
+void ADC_DMAError(DMA_HandleTypeDef *hdma) {
+ /* Retrieve ADC handle corresponding to current DMA handle */
+ ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
+
+ /* Set ADC error code to DMA error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA);
+
+ /* Error callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->ErrorCallback(hadc);
+#else
+ HAL_ADC_ErrorCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+}
+
+/**
+ * @}
+ */
+
+#endif /* HAL_ADC_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc_ex.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc_ex.c new file mode 100644 index 00000000..e24c8e54 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc_ex.c @@ -0,0 +1,1143 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_adc_ex.c
+ * @author MCD Application Team
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Analog to Digital Convertor (ADC)
+ * peripheral:
+ * + Operation functions
+ * ++ Start, stop, get result of conversions of injected
+ * group, using 2 possible modes: polling, interruption.
+ * ++ Multimode feature (available on devices with 2 ADCs or more)
+ * ++ Calibration (ADC automatic self-calibration)
+ * + Control functions
+ * ++ Channels configuration on injected group
+ * Other functions (generic functions) are available in file
+ * "stm32f1xx_hal_adc.c".
+ *
+ @verbatim
+ [..]
+ (@) Sections "ADC peripheral features" and "How to use this driver" are
+ available in file of generic functions "stm32f1xx_hal_adc.c".
+ [..]
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup ADCEx ADCEx
+ * @brief ADC Extension HAL module driver
+ * @{
+ */
+
+#ifdef HAL_ADC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup ADCEx_Private_Constants ADCEx Private Constants
+ * @{
+ */
+
+/* Delay for ADC calibration: */
+/* Hardware prerequisite before starting a calibration: the ADC must have */
+/* been in power-on state for at least two ADC clock cycles. */
+/* Unit: ADC clock cycles */
+#define ADC_PRECALIBRATION_DELAY_ADCCLOCKCYCLES 2U
+
+/* Timeout value for ADC calibration */
+/* Value defined to be higher than worst cases: low clocks freq, */
+/* maximum prescaler. */
+/* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */
+/* prescaler 4, sampling time 12.5 ADC clock cycles, resolution 12 bits. */
+/* Unit: ms */
+#define ADC_CALIBRATION_TIMEOUT 10U
+
+/* Delay for temperature sensor stabilization time. */
+/* Maximum delay is 10us (refer to device datasheet, parameter tSTART). */
+/* Unit: us */
+#define ADC_TEMPSENSOR_DELAY_US 10U
+
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup ADCEx_Exported_Functions ADCEx Exported Functions
+ * @{
+ */
+
+/** @defgroup ADCEx_Exported_Functions_Group1 Extended Extended IO operation functions
+ * @brief Extended Extended Input and Output operation functions
+ *
+@verbatim
+ ===============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Start conversion of injected group.
+ (+) Stop conversion of injected group.
+ (+) Poll for conversion complete on injected group.
+ (+) Get result of injected channel conversion.
+ (+) Start conversion of injected group and enable interruptions.
+ (+) Stop conversion of injected group and disable interruptions.
+
+ (+) Start multimode and enable DMA transfer.
+ (+) Stop multimode and disable ADC DMA transfer.
+ (+) Get result of multimode conversion.
+
+ (+) Perform the ADC self-calibration for single or differential ending.
+ (+) Get calibration factors for single or differential ending.
+ (+) Set calibration factors for single or differential ending.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Perform an ADC automatic self-calibration
+ * Calibration prerequisite: ADC must be disabled (execute this
+ * function before HAL_ADC_Start() or after HAL_ADC_Stop() ).
+ * During calibration process, ADC is enabled. ADC is let enabled at
+ * the completion of this function.
+ * @param hadc: ADC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+ uint32_t tickstart;
+ __IO uint32_t wait_loop_index = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* 1. Calibration prerequisite: */
+ /* - ADC must be disabled for at least two ADC clock cycles in disable */
+ /* mode before ADC enable */
+ /* Stop potential conversion on going, on regular and injected groups */
+ /* Disable ADC peripheral */
+ tmp_hal_status = ADC_ConversionStop_Disable(hadc);
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_BUSY_INTERNAL);
+
+ /* Hardware prerequisite: delay before starting the calibration. */
+ /* - Computation of CPU clock cycles corresponding to ADC clock cycles. */
+ /* - Wait for the expected ADC clock cycles delay */
+ wait_loop_index = ((SystemCoreClock / HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC)) * ADC_PRECALIBRATION_DELAY_ADCCLOCKCYCLES);
+
+ while (wait_loop_index != 0U) {
+ wait_loop_index--;
+ }
+
+ /* 2. Enable the ADC peripheral */
+ ADC_Enable(hadc);
+
+ /* 3. Resets ADC calibration registers */
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_RSTCAL);
+
+ tickstart = HAL_GetTick();
+
+ /* Wait for calibration reset completion */
+ while (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_RSTCAL)) {
+ if ((HAL_GetTick() - tickstart) > ADC_CALIBRATION_TIMEOUT) {
+ /* Update ADC state machine to error */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_ERROR;
+ }
+ }
+
+ /* 4. Start ADC calibration */
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_CAL);
+
+ tickstart = HAL_GetTick();
+
+ /* Wait for calibration completion */
+ while (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_CAL)) {
+ if ((HAL_GetTick() - tickstart) > ADC_CALIBRATION_TIMEOUT) {
+ /* Update ADC state machine to error */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_ERROR;
+ }
+ }
+
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY);
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Enables ADC, starts conversion of injected group.
+ * Interruptions enabled in this function: None.
+ * @param hadc: ADC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Enable the ADC peripheral */
+ tmp_hal_status = ADC_Enable(hadc);
+
+ /* Start conversion if ADC is effectively enabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Set ADC state */
+ /* - Clear state bitfield related to injected group conversion results */
+ /* - Set state bitfield related to injected operation */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+
+ /* Case of independent mode or multimode (for devices with several ADCs): */
+ /* Set multimode state. */
+ if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) {
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+ } else {
+ SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+ }
+
+ /* Check if a regular conversion is ongoing */
+ /* Note: On this device, there is no ADC error code fields related to */
+ /* conversions on group injected only. In case of conversion on */
+ /* going on group regular, no error code is reset. */
+ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY)) {
+ /* Reset ADC all error code fields */
+ ADC_CLEAR_ERRORCODE(hadc);
+ }
+
+ /* Process unlocked */
+ /* Unlock before starting ADC conversions: in case of potential */
+ /* interruption, to let the process to ADC IRQ Handler. */
+ __HAL_UNLOCK(hadc);
+
+ /* Clear injected group conversion flag */
+ /* (To ensure of no unknown state from potential previous ADC operations) */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC);
+
+ /* Enable conversion of injected group. */
+ /* If software start has been selected, conversion starts immediately. */
+ /* If external trigger has been selected, conversion will start at next */
+ /* trigger event. */
+ /* If automatic injected conversion is enabled, conversion will start */
+ /* after next regular group conversion. */
+ /* Case of multimode enabled (for devices with several ADCs): if ADC is */
+ /* slave, ADC is enabled only (conversion is not started). If ADC is */
+ /* master, ADC is enabled and conversion is started. */
+ if (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO)) {
+ if (ADC_IS_SOFTWARE_START_INJECTED(hadc) && ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) {
+ /* Start ADC conversion on injected group with SW start */
+ SET_BIT(hadc->Instance->CR2, (ADC_CR2_JSWSTART | ADC_CR2_JEXTTRIG));
+ } else {
+ /* Start ADC conversion on injected group with external trigger */
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_JEXTTRIG);
+ }
+ }
+ } else {
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+ }
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Stop conversion of injected channels. Disable ADC peripheral if
+ * no regular conversion is on going.
+ * @note If ADC must be disabled and if conversion is on going on
+ * regular group, function HAL_ADC_Stop must be used to stop both
+ * injected and regular groups, and disable the ADC.
+ * @note If injected group mode auto-injection is enabled,
+ * function HAL_ADC_Stop must be used.
+ * @note In case of auto-injection mode, HAL_ADC_Stop must be used.
+ * @param hadc: ADC handle
+ * @retval None
+ */
+HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Stop potential conversion and disable ADC peripheral */
+ /* Conditioned to: */
+ /* - No conversion on the other group (regular group) is intended to */
+ /* continue (injected and regular groups stop conversion and ADC disable */
+ /* are common) */
+ /* - In case of auto-injection mode, HAL_ADC_Stop must be used. */
+ if (((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) && HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO)) {
+ /* Stop potential conversion on going, on regular and injected groups */
+ /* Disable ADC peripheral */
+ tmp_hal_status = ADC_ConversionStop_Disable(hadc);
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_READY);
+ }
+ } else {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Wait for injected group conversion to be completed.
+ * @param hadc: ADC handle
+ * @param Timeout: Timeout value in millisecond.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout) {
+ uint32_t tickstart;
+
+ /* Variables for polling in case of scan mode enabled and polling for each */
+ /* conversion. */
+ __IO uint32_t Conversion_Timeout_CPU_cycles = 0U;
+ uint32_t Conversion_Timeout_CPU_cycles_max = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Get timeout */
+ tickstart = HAL_GetTick();
+
+ /* Polling for end of conversion: differentiation if single/sequence */
+ /* conversion. */
+ /* For injected group, flag JEOC is set only at the end of the sequence, */
+ /* not for each conversion within the sequence. */
+ /* - If single conversion for injected group (scan mode disabled or */
+ /* InjectedNbrOfConversion ==1), flag JEOC is used to determine the */
+ /* conversion completion. */
+ /* - If sequence conversion for injected group (scan mode enabled and */
+ /* InjectedNbrOfConversion >=2), flag JEOC is set only at the end of the */
+ /* sequence. */
+ /* To poll for each conversion, the maximum conversion time is computed */
+ /* from ADC conversion time (selected sampling time + conversion time of */
+ /* 12.5 ADC clock cycles) and APB2/ADC clock prescalers (depending on */
+ /* settings, conversion time range can be from 28 to 32256 CPU cycles). */
+ /* As flag JEOC is not set after each conversion, no timeout status can */
+ /* be set. */
+ if ((hadc->Instance->JSQR & ADC_JSQR_JL) == RESET) {
+ /* Wait until End of Conversion flag is raised */
+ while (HAL_IS_BIT_CLR(hadc->Instance->SR, ADC_FLAG_JEOC)) {
+ /* Check if timeout is disabled (set to infinite wait) */
+ if (Timeout != HAL_MAX_DELAY) {
+ if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) {
+ /* Update ADC state machine to timeout */
+ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ } else {
+ /* Replace polling by wait for maximum conversion time */
+ /* - Computation of CPU clock cycles corresponding to ADC clock cycles */
+ /* and ADC maximum conversion cycles on all channels. */
+ /* - Wait for the expected ADC clock cycles delay */
+ Conversion_Timeout_CPU_cycles_max = ((SystemCoreClock / HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC)) * ADC_CONVCYCLES_MAX_RANGE(hadc));
+
+ while (Conversion_Timeout_CPU_cycles < Conversion_Timeout_CPU_cycles_max) {
+ /* Check if timeout is disabled (set to infinite wait) */
+ if (Timeout != HAL_MAX_DELAY) {
+ if ((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout)) {
+ /* Update ADC state machine to timeout */
+ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_TIMEOUT;
+ }
+ }
+ Conversion_Timeout_CPU_cycles++;
+ }
+ }
+
+ /* Clear injected group conversion flag */
+ /* Note: On STM32F1 ADC, clear regular conversion flag raised */
+ /* simultaneously. */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JSTRT | ADC_FLAG_JEOC | ADC_FLAG_EOC);
+
+ /* Update ADC state machine */
+ SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
+
+ /* Determine whether any further conversion upcoming on group injected */
+ /* by external trigger or by automatic injected conversion */
+ /* from group regular. */
+ if (ADC_IS_SOFTWARE_START_INJECTED(hadc) || (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) && (ADC_IS_SOFTWARE_START_REGULAR(hadc) && (hadc->Init.ContinuousConvMode == DISABLE)))) {
+ /* Set ADC state */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
+
+ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY)) {
+ SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+ }
+ }
+
+ /* Return ADC state */
+ return HAL_OK;
+}
+
+/**
+ * @brief Enables ADC, starts conversion of injected group with interruption.
+ * - JEOC (end of conversion of injected group)
+ * Each of these interruptions has its dedicated callback function.
+ * @param hadc: ADC handle
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Enable the ADC peripheral */
+ tmp_hal_status = ADC_Enable(hadc);
+
+ /* Start conversion if ADC is effectively enabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Set ADC state */
+ /* - Clear state bitfield related to injected group conversion results */
+ /* - Set state bitfield related to injected operation */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+
+ /* Case of independent mode or multimode (for devices with several ADCs): */
+ /* Set multimode state. */
+ if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) {
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+ } else {
+ SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+ }
+
+ /* Check if a regular conversion is ongoing */
+ /* Note: On this device, there is no ADC error code fields related to */
+ /* conversions on group injected only. In case of conversion on */
+ /* going on group regular, no error code is reset. */
+ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY)) {
+ /* Reset ADC all error code fields */
+ ADC_CLEAR_ERRORCODE(hadc);
+ }
+
+ /* Process unlocked */
+ /* Unlock before starting ADC conversions: in case of potential */
+ /* interruption, to let the process to ADC IRQ Handler. */
+ __HAL_UNLOCK(hadc);
+
+ /* Clear injected group conversion flag */
+ /* (To ensure of no unknown state from potential previous ADC operations) */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC);
+
+ /* Enable end of conversion interrupt for injected channels */
+ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
+
+ /* Start conversion of injected group if software start has been selected */
+ /* and if automatic injected conversion is disabled. */
+ /* If external trigger has been selected, conversion will start at next */
+ /* trigger event. */
+ /* If automatic injected conversion is enabled, conversion will start */
+ /* after next regular group conversion. */
+ if (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO)) {
+ if (ADC_IS_SOFTWARE_START_INJECTED(hadc) && ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)) {
+ /* Start ADC conversion on injected group with SW start */
+ SET_BIT(hadc->Instance->CR2, (ADC_CR2_JSWSTART | ADC_CR2_JEXTTRIG));
+ } else {
+ /* Start ADC conversion on injected group with external trigger */
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_JEXTTRIG);
+ }
+ }
+ } else {
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+ }
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Stop conversion of injected channels, disable interruption of
+ * end-of-conversion. Disable ADC peripheral if no regular conversion
+ * is on going.
+ * @note If ADC must be disabled and if conversion is on going on
+ * regular group, function HAL_ADC_Stop must be used to stop both
+ * injected and regular groups, and disable the ADC.
+ * @note If injected group mode auto-injection is enabled,
+ * function HAL_ADC_Stop must be used.
+ * @param hadc: ADC handle
+ * @retval None
+ */
+HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Stop potential conversion and disable ADC peripheral */
+ /* Conditioned to: */
+ /* - No conversion on the other group (regular group) is intended to */
+ /* continue (injected and regular groups stop conversion and ADC disable */
+ /* are common) */
+ /* - In case of auto-injection mode, HAL_ADC_Stop must be used. */
+ if (((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) && HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO)) {
+ /* Stop potential conversion on going, on regular and injected groups */
+ /* Disable ADC peripheral */
+ tmp_hal_status = ADC_ConversionStop_Disable(hadc);
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Disable ADC end of conversion interrupt for injected channels */
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
+
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_READY);
+ }
+ } else {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+/**
+ * @brief Enables ADC, starts conversion of regular group and transfers result
+ * through DMA.
+ * Multimode must have been previously configured using
+ * HAL_ADCEx_MultiModeConfigChannel() function.
+ * Interruptions enabled in this function:
+ * - DMA transfer complete
+ * - DMA half transfer
+ * Each of these interruptions has its dedicated callback function.
+ * @note: On STM32F1 devices, ADC slave regular group must be configured
+ * with conversion trigger ADC_SOFTWARE_START.
+ * @note: ADC slave can be enabled preliminarily using single-mode
+ * HAL_ADC_Start() function.
+ * @param hadc: ADC handle of ADC master (handle of ADC slave must not be used)
+ * @param pData: The destination Buffer address.
+ * @param Length: The length of data to be transferred from ADC peripheral to memory.
+ * @retval None
+ */
+HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+ ADC_HandleTypeDef tmphadcSlave;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
+ assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Set a temporary handle of the ADC slave associated to the ADC master */
+ ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
+
+ /* On STM32F1 devices, ADC slave regular group must be configured with */
+ /* conversion trigger ADC_SOFTWARE_START. */
+ /* Note: External trigger of ADC slave must be enabled, it is already done */
+ /* into function "HAL_ADC_Init()". */
+ if (!ADC_IS_SOFTWARE_START_REGULAR(&tmphadcSlave)) {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_ERROR;
+ }
+
+ /* Enable the ADC peripherals: master and slave (in case if not already */
+ /* enabled previously) */
+ tmp_hal_status = ADC_Enable(hadc);
+ if (tmp_hal_status == HAL_OK) {
+ tmp_hal_status = ADC_Enable(&tmphadcSlave);
+ }
+
+ /* Start conversion if all ADCs of multimode are effectively enabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Set ADC state (ADC master) */
+ /* - Clear state bitfield related to regular group conversion results */
+ /* - Set state bitfield related to regular operation */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_MULTIMODE_SLAVE, HAL_ADC_STATE_REG_BUSY);
+
+ /* If conversions on group regular are also triggering group injected, */
+ /* update ADC state. */
+ if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) {
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+ }
+
+ /* Process unlocked */
+ /* Unlock before starting ADC conversions: in case of potential */
+ /* interruption, to let the process to ADC IRQ Handler. */
+ __HAL_UNLOCK(hadc);
+
+ /* Set ADC error code to none */
+ ADC_CLEAR_ERRORCODE(hadc);
+
+ /* Set the DMA transfer complete callback */
+ hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
+
+ /* Set the DMA half transfer complete callback */
+ hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
+
+ /* Set the DMA error callback */
+ hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
+
+ /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */
+ /* start (in case of SW start): */
+
+ /* Clear regular group conversion flag and overrun flag */
+ /* (To ensure of no unknown state from potential previous ADC operations) */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
+
+ /* Enable ADC DMA mode of ADC master */
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_DMA);
+
+ /* Start the DMA channel */
+ HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
+
+ /* Start conversion of regular group if software start has been selected. */
+ /* If external trigger has been selected, conversion will start at next */
+ /* trigger event. */
+ /* Note: Alternate trigger for single conversion could be to force an */
+ /* additional set of bit ADON "hadc->Instance->CR2 |= ADC_CR2_ADON;"*/
+ if (ADC_IS_SOFTWARE_START_REGULAR(hadc)) {
+ /* Start ADC conversion on regular group with SW start */
+ SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG));
+ } else {
+ /* Start ADC conversion on regular group with external trigger */
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG);
+ }
+ } else {
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+ }
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Stop ADC conversion of regular group (and injected channels in
+ * case of auto_injection mode), disable ADC DMA transfer, disable
+ * ADC peripheral.
+ * @note Multimode is kept enabled after this function. To disable multimode
+ * (set with HAL_ADCEx_MultiModeConfigChannel(), ADC must be
+ * reinitialized using HAL_ADC_Init() or HAL_ADC_ReInit().
+ * @note In case of DMA configured in circular mode, function
+ * HAL_ADC_Stop_DMA must be called after this function with handle of
+ * ADC slave, to properly disable the DMA channel.
+ * @param hadc: ADC handle of ADC master (handle of ADC slave must not be used)
+ * @retval None
+ */
+HAL_StatusTypeDef HAL_ADCEx_MultiModeStop_DMA(ADC_HandleTypeDef *hadc) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+ ADC_HandleTypeDef tmphadcSlave;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Stop potential conversion on going, on regular and injected groups */
+ /* Disable ADC master peripheral */
+ tmp_hal_status = ADC_ConversionStop_Disable(hadc);
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status == HAL_OK) {
+ /* Set a temporary handle of the ADC slave associated to the ADC master */
+ ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
+
+ /* Disable ADC slave peripheral */
+ tmp_hal_status = ADC_ConversionStop_Disable(&tmphadcSlave);
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status != HAL_OK) {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_ERROR;
+ }
+
+ /* Disable ADC DMA mode */
+ CLEAR_BIT(hadc->Instance->CR2, ADC_CR2_DMA);
+
+ /* Reset configuration of ADC DMA continuous request for dual mode */
+ CLEAR_BIT(hadc->Instance->CR1, ADC_CR1_DUALMOD);
+
+ /* Disable the DMA channel (in case of DMA in circular mode or stop while */
+ /* while DMA transfer is on going) */
+ tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
+
+ /* Change ADC state (ADC master) */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_READY);
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+
+/**
+ * @brief Get ADC injected group conversion result.
+ * @note Reading register JDRx automatically clears ADC flag JEOC
+ * (ADC group injected end of unitary conversion).
+ * @note This function does not clear ADC flag JEOS
+ * (ADC group injected end of sequence conversion)
+ * Occurrence of flag JEOS rising:
+ * - If sequencer is composed of 1 rank, flag JEOS is equivalent
+ * to flag JEOC.
+ * - If sequencer is composed of several ranks, during the scan
+ * sequence flag JEOC only is raised, at the end of the scan sequence
+ * both flags JEOC and EOS are raised.
+ * Flag JEOS must not be cleared by this function because
+ * it would not be compliant with low power features
+ * (feature low power auto-wait, not available on all STM32 families).
+ * To clear this flag, either use function:
+ * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
+ * model polling: @ref HAL_ADCEx_InjectedPollForConversion()
+ * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_JEOS).
+ * @param hadc: ADC handle
+ * @param InjectedRank: the converted ADC injected rank.
+ * This parameter can be one of the following values:
+ * @arg ADC_INJECTED_RANK_1: Injected Channel1 selected
+ * @arg ADC_INJECTED_RANK_2: Injected Channel2 selected
+ * @arg ADC_INJECTED_RANK_3: Injected Channel3 selected
+ * @arg ADC_INJECTED_RANK_4: Injected Channel4 selected
+ * @retval ADC group injected conversion data
+ */
+uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef *hadc, uint32_t InjectedRank) {
+ uint32_t tmp_jdr = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_INJECTED_RANK(InjectedRank));
+
+ /* Get ADC converted value */
+ switch (InjectedRank) {
+ case ADC_INJECTED_RANK_4:
+ tmp_jdr = hadc->Instance->JDR4;
+ break;
+ case ADC_INJECTED_RANK_3:
+ tmp_jdr = hadc->Instance->JDR3;
+ break;
+ case ADC_INJECTED_RANK_2:
+ tmp_jdr = hadc->Instance->JDR2;
+ break;
+ case ADC_INJECTED_RANK_1:
+ default:
+ tmp_jdr = hadc->Instance->JDR1;
+ break;
+ }
+
+ /* Return ADC converted value */
+ return tmp_jdr;
+}
+
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+/**
+ * @brief Returns the last ADC Master&Slave regular conversions results data
+ * in the selected multi mode.
+ * @param hadc: ADC handle of ADC master (handle of ADC slave must not be used)
+ * @retval The converted data value.
+ */
+uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef *hadc) {
+ uint32_t tmpDR = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Note: EOC flag is not cleared here by software because automatically */
+ /* cleared by hardware when reading register DR. */
+
+ /* On STM32F1 devices, ADC1 data register DR contains ADC2 conversions */
+ /* only if ADC1 DMA mode is enabled. */
+ tmpDR = hadc->Instance->DR;
+
+ if (HAL_IS_BIT_CLR(ADC1->CR2, ADC_CR2_DMA)) {
+ tmpDR |= (ADC2->DR << 16U);
+ }
+
+ /* Return ADC converted value */
+ return tmpDR;
+}
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+
+/**
+ * @brief Injected conversion complete callback in non blocking mode
+ * @param hadc: ADC handle
+ * @retval None
+ */
+__weak void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef *hadc) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_ADCEx_InjectedConvCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup ADCEx_Exported_Functions_Group2 Extended Peripheral Control functions
+ * @brief Extended Peripheral Control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Configure channels on injected group
+ (+) Configure multimode
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the ADC injected group and the selected channel to be
+ * linked to the injected group.
+ * @note Possibility to update parameters on the fly:
+ * This function initializes injected group, following calls to this
+ * function can be used to reconfigure some parameters of structure
+ * "ADC_InjectionConfTypeDef" on the fly, without reseting the ADC.
+ * The setting of these parameters is conditioned to ADC state:
+ * this function must be called when ADC is not under conversion.
+ * @param hadc: ADC handle
+ * @param sConfigInjected: Structure of ADC injected group and ADC channel for
+ * injected group.
+ * @retval None
+ */
+HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef *hadc, ADC_InjectionConfTypeDef *sConfigInjected) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+ __IO uint32_t wait_loop_index = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_CHANNEL(sConfigInjected->InjectedChannel));
+ assert_param(IS_ADC_SAMPLE_TIME(sConfigInjected->InjectedSamplingTime));
+ assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->AutoInjectedConv));
+ assert_param(IS_ADC_EXTTRIGINJEC(sConfigInjected->ExternalTrigInjecConv));
+ assert_param(IS_ADC_RANGE(sConfigInjected->InjectedOffset));
+
+ if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE) {
+ assert_param(IS_ADC_INJECTED_RANK(sConfigInjected->InjectedRank));
+ assert_param(IS_ADC_INJECTED_NB_CONV(sConfigInjected->InjectedNbrOfConversion));
+ assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjectedDiscontinuousConvMode));
+ }
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Configuration of injected group sequencer: */
+ /* - if scan mode is disabled, injected channels sequence length is set to */
+ /* 0x00: 1 channel converted (channel on regular rank 1) */
+ /* Parameter "InjectedNbrOfConversion" is discarded. */
+ /* Note: Scan mode is present by hardware on this device and, if */
+ /* disabled, discards automatically nb of conversions. Anyway, nb of */
+ /* conversions is forced to 0x00 for alignment over all STM32 devices. */
+ /* - if scan mode is enabled, injected channels sequence length is set to */
+ /* parameter "InjectedNbrOfConversion". */
+ if (hadc->Init.ScanConvMode == ADC_SCAN_DISABLE) {
+ if (sConfigInjected->InjectedRank == ADC_INJECTED_RANK_1) {
+ /* Clear the old SQx bits for all injected ranks */
+ MODIFY_REG(hadc->Instance->JSQR, ADC_JSQR_JL | ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 | ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1, ADC_JSQR_RK_JL(sConfigInjected->InjectedChannel, ADC_INJECTED_RANK_1, 0x01U));
+ }
+ /* If another injected rank than rank1 was intended to be set, and could */
+ /* not due to ScanConvMode disabled, error is reported. */
+ else {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+ } else {
+ /* Since injected channels rank conv. order depends on total number of */
+ /* injected conversions, selected rank must be below or equal to total */
+ /* number of injected conversions to be updated. */
+ if (sConfigInjected->InjectedRank <= sConfigInjected->InjectedNbrOfConversion) {
+ /* Clear the old SQx bits for the selected rank */
+ /* Set the SQx bits for the selected rank */
+ MODIFY_REG(hadc->Instance->JSQR,
+
+ ADC_JSQR_JL | ADC_JSQR_RK_JL(ADC_JSQR_JSQ1, sConfigInjected->InjectedRank, sConfigInjected->InjectedNbrOfConversion),
+
+ ADC_JSQR_JL_SHIFT(sConfigInjected->InjectedNbrOfConversion)
+ | ADC_JSQR_RK_JL(sConfigInjected->InjectedChannel, sConfigInjected->InjectedRank, sConfigInjected->InjectedNbrOfConversion));
+ } else {
+ /* Clear the old SQx bits for the selected rank */
+ MODIFY_REG(hadc->Instance->JSQR,
+
+ ADC_JSQR_JL | ADC_JSQR_RK_JL(ADC_JSQR_JSQ1, sConfigInjected->InjectedRank, sConfigInjected->InjectedNbrOfConversion),
+
+ 0x00000000U);
+ }
+ }
+
+ /* Configuration of injected group */
+ /* Parameters update conditioned to ADC state: */
+ /* Parameters that can be updated only when ADC is disabled: */
+ /* - external trigger to start conversion */
+ /* Parameters update not conditioned to ADC state: */
+ /* - Automatic injected conversion */
+ /* - Injected discontinuous mode */
+ /* Note: In case of ADC already enabled, caution to not launch an unwanted */
+ /* conversion while modifying register CR2 by writing 1 to bit ADON. */
+ if (ADC_IS_ENABLE(hadc) == RESET) {
+ MODIFY_REG(hadc->Instance->CR2, ADC_CR2_JEXTSEL | ADC_CR2_ADON, ADC_CFGR_JEXTSEL(hadc, sConfigInjected->ExternalTrigInjecConv));
+ }
+
+ /* Configuration of injected group */
+ /* - Automatic injected conversion */
+ /* - Injected discontinuous mode */
+
+ /* Automatic injected conversion can be enabled if injected group */
+ /* external triggers are disabled. */
+ if (sConfigInjected->AutoInjectedConv == ENABLE) {
+ if (sConfigInjected->ExternalTrigInjecConv == ADC_INJECTED_SOFTWARE_START) {
+ SET_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO);
+ } else {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+ }
+
+ /* Injected discontinuous can be enabled only if auto-injected mode is */
+ /* disabled. */
+ if (sConfigInjected->InjectedDiscontinuousConvMode == ENABLE) {
+ if (sConfigInjected->AutoInjectedConv == DISABLE) {
+ SET_BIT(hadc->Instance->CR1, ADC_CR1_JDISCEN);
+ } else {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+ }
+
+ /* InjectedChannel sampling time configuration */
+ /* For channels 10 to 17 */
+ if (sConfigInjected->InjectedChannel >= ADC_CHANNEL_10) {
+ MODIFY_REG(hadc->Instance->SMPR1, ADC_SMPR1(ADC_SMPR1_SMP10, sConfigInjected->InjectedChannel), ADC_SMPR1(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel));
+ } else /* For channels 0 to 9 */
+ {
+ MODIFY_REG(hadc->Instance->SMPR2, ADC_SMPR2(ADC_SMPR2_SMP0, sConfigInjected->InjectedChannel), ADC_SMPR2(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel));
+ }
+
+ /* If ADC1 InjectedChannel_16 or InjectedChannel_17 is selected, enable Temperature sensor */
+ /* and VREFINT measurement path. */
+ if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) || (sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT)) {
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE);
+ }
+
+ /* Configure the offset: offset enable/disable, InjectedChannel, offset value */
+ switch (sConfigInjected->InjectedRank) {
+ case 1:
+ /* Set injected channel 1 offset */
+ MODIFY_REG(hadc->Instance->JOFR1, ADC_JOFR1_JOFFSET1, sConfigInjected->InjectedOffset);
+ break;
+ case 2:
+ /* Set injected channel 2 offset */
+ MODIFY_REG(hadc->Instance->JOFR2, ADC_JOFR2_JOFFSET2, sConfigInjected->InjectedOffset);
+ break;
+ case 3:
+ /* Set injected channel 3 offset */
+ MODIFY_REG(hadc->Instance->JOFR3, ADC_JOFR3_JOFFSET3, sConfigInjected->InjectedOffset);
+ break;
+ case 4:
+ default:
+ MODIFY_REG(hadc->Instance->JOFR4, ADC_JOFR4_JOFFSET4, sConfigInjected->InjectedOffset);
+ break;
+ }
+
+ /* If ADC1 Channel_16 or Channel_17 is selected, enable Temperature sensor */
+ /* and VREFINT measurement path. */
+ if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) || (sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT)) {
+ /* For STM32F1 devices with several ADC: Only ADC1 can access internal */
+ /* measurement channels (VrefInt/TempSensor). If these channels are */
+ /* intended to be set on other ADC instances, an error is reported. */
+ if (hadc->Instance == ADC1) {
+ if (READ_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE) == RESET) {
+ SET_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE);
+
+ if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR)) {
+ /* Delay for temperature sensor stabilization time */
+ /* Compute number of CPU cycles to wait for */
+ wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
+ while (wait_loop_index != 0U) {
+ wait_loop_index--;
+ }
+ }
+ }
+ } else {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+#if defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F103xE) || defined(STM32F103xG)
+/**
+ * @brief Enable ADC multimode and configure multimode parameters
+ * @note Possibility to update parameters on the fly:
+ * This function initializes multimode parameters, following
+ * calls to this function can be used to reconfigure some parameters
+ * of structure "ADC_MultiModeTypeDef" on the fly, without reseting
+ * the ADCs (both ADCs of the common group).
+ * The setting of these parameters is conditioned to ADC state.
+ * For parameters constraints, see comments of structure
+ * "ADC_MultiModeTypeDef".
+ * @note To change back configuration from multimode to single mode, ADC must
+ * be reset (using function HAL_ADC_Init() ).
+ * @param hadc: ADC handle
+ * @param multimode: Structure of ADC multimode configuration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADCEx_MultiModeConfigChannel(ADC_HandleTypeDef *hadc, ADC_MultiModeTypeDef *multimode) {
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+ ADC_HandleTypeDef tmphadcSlave;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_MODE(multimode->Mode));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Set a temporary handle of the ADC slave associated to the ADC master */
+ ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
+
+ /* Parameters update conditioned to ADC state: */
+ /* Parameters that can be updated when ADC is disabled or enabled without */
+ /* conversion on going on regular group: */
+ /* - ADC master and ADC slave DMA configuration */
+ /* Parameters that can be updated only when ADC is disabled: */
+ /* - Multimode mode selection */
+ /* To optimize code, all multimode settings can be set when both ADCs of */
+ /* the common group are in state: disabled. */
+ if ((ADC_IS_ENABLE(hadc) == RESET) && (ADC_IS_ENABLE(&tmphadcSlave) == RESET) && (IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance))) {
+ MODIFY_REG(hadc->Instance->CR1, ADC_CR1_DUALMOD, multimode->Mode);
+ }
+ /* If one of the ADC sharing the same common group is enabled, no update */
+ /* could be done on neither of the multimode structure parameters. */
+ else {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_ADC_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c new file mode 100644 index 00000000..c77c4608 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c @@ -0,0 +1,469 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_cortex.c
+ * @author MCD Application Team
+ * @brief CORTEX HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the CORTEX:
+ * + Initialization and de-initialization functions
+ * + Peripheral Control functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+
+ [..]
+ *** How to configure Interrupts using CORTEX HAL driver ***
+ ===========================================================
+ [..]
+ This section provides functions allowing to configure the NVIC interrupts (IRQ).
+ The Cortex-M3 exceptions are managed by CMSIS functions.
+
+ (#) Configure the NVIC Priority Grouping using HAL_NVIC_SetPriorityGrouping()
+ function according to the following table.
+ (#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority().
+ (#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ().
+ (#) please refer to programming manual for details in how to configure priority.
+
+ -@- When the NVIC_PRIORITYGROUP_0 is selected, IRQ preemption is no more possible.
+ The pending IRQ priority will be managed only by the sub priority.
+
+ -@- IRQ priority order (sorted by highest to lowest priority):
+ (+@) Lowest preemption priority
+ (+@) Lowest sub priority
+ (+@) Lowest hardware priority (IRQ number)
+
+ [..]
+ *** How to configure Systick using CORTEX HAL driver ***
+ ========================================================
+ [..]
+ Setup SysTick Timer for time base.
+
+ (+) The HAL_SYSTICK_Config()function calls the SysTick_Config() function which
+ is a CMSIS function that:
+ (++) Configures the SysTick Reload register with value passed as function parameter.
+ (++) Configures the SysTick IRQ priority to the lowest value 0x0F.
+ (++) Resets the SysTick Counter register.
+ (++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK).
+ (++) Enables the SysTick Interrupt.
+ (++) Starts the SysTick Counter.
+
+ (+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro
+ __HAL_CORTEX_SYSTICKCLK_CONFIG(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the
+ HAL_SYSTICK_Config() function call. The __HAL_CORTEX_SYSTICKCLK_CONFIG() macro is defined
+ inside the stm32f1xx_hal_cortex.h file.
+
+ (+) You can change the SysTick IRQ priority by calling the
+ HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function
+ call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function.
+
+ (+) To adjust the SysTick time base, use the following formula:
+
+ Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s)
+ (++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function
+ (++) Reload Value should not exceed 0xFFFFFF
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup CORTEX CORTEX
+ * @brief CORTEX HAL module driver
+ * @{
+ */
+
+#ifdef HAL_CORTEX_MODULE_ENABLED
+
+/* Private types -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private constants ---------------------------------------------------------*/
+/* Private macros ------------------------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup CORTEX_Exported_Functions CORTEX Exported Functions
+ * @{
+ */
+
+/** @defgroup CORTEX_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Initialization and de-initialization functions #####
+ ==============================================================================
+ [..]
+ This section provides the CORTEX HAL driver functions allowing to configure Interrupts
+ Systick functionalities
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Sets the priority grouping field (preemption priority and subpriority)
+ * using the required unlock sequence.
+ * @param PriorityGroup: The priority grouping bits length.
+ * This parameter can be one of the following values:
+ * @arg NVIC_PRIORITYGROUP_0: 0 bits for preemption priority
+ * 4 bits for subpriority
+ * @arg NVIC_PRIORITYGROUP_1: 1 bits for preemption priority
+ * 3 bits for subpriority
+ * @arg NVIC_PRIORITYGROUP_2: 2 bits for preemption priority
+ * 2 bits for subpriority
+ * @arg NVIC_PRIORITYGROUP_3: 3 bits for preemption priority
+ * 1 bits for subpriority
+ * @arg NVIC_PRIORITYGROUP_4: 4 bits for preemption priority
+ * 0 bits for subpriority
+ * @note When the NVIC_PriorityGroup_0 is selected, IRQ preemption is no more possible.
+ * The pending IRQ priority will be managed only by the subpriority.
+ * @retval None
+ */
+void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup) {
+ /* Check the parameters */
+ assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup));
+
+ /* Set the PRIGROUP[10:8] bits according to the PriorityGroup parameter value */
+ NVIC_SetPriorityGrouping(PriorityGroup);
+}
+
+/**
+ * @brief Sets the priority of an interrupt.
+ * @param IRQn: External interrupt number.
+ * This parameter can be an enumerator of IRQn_Type enumeration
+ * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xx.h))
+ * @param PreemptPriority: The preemption priority for the IRQn channel.
+ * This parameter can be a value between 0 and 15
+ * A lower priority value indicates a higher priority
+ * @param SubPriority: the subpriority level for the IRQ channel.
+ * This parameter can be a value between 0 and 15
+ * A lower priority value indicates a higher priority.
+ * @retval None
+ */
+void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority) {
+ uint32_t prioritygroup = 0x00U;
+
+ /* Check the parameters */
+ assert_param(IS_NVIC_SUB_PRIORITY(SubPriority));
+ assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority));
+
+ prioritygroup = NVIC_GetPriorityGrouping();
+
+ NVIC_SetPriority(IRQn, NVIC_EncodePriority(prioritygroup, PreemptPriority, SubPriority));
+}
+
+/**
+ * @brief Enables a device specific interrupt in the NVIC interrupt controller.
+ * @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig()
+ * function should be called before.
+ * @param IRQn External interrupt number.
+ * This parameter can be an enumerator of IRQn_Type enumeration
+ * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
+ * @retval None
+ */
+void HAL_NVIC_EnableIRQ(IRQn_Type IRQn) {
+ /* Check the parameters */
+ assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
+
+ /* Enable interrupt */
+ NVIC_EnableIRQ(IRQn);
+}
+
+/**
+ * @brief Disables a device specific interrupt in the NVIC interrupt controller.
+ * @param IRQn External interrupt number.
+ * This parameter can be an enumerator of IRQn_Type enumeration
+ * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
+ * @retval None
+ */
+void HAL_NVIC_DisableIRQ(IRQn_Type IRQn) {
+ /* Check the parameters */
+ assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
+
+ /* Disable interrupt */
+ NVIC_DisableIRQ(IRQn);
+}
+
+/**
+ * @brief Initiates a system reset request to reset the MCU.
+ * @retval None
+ */
+void HAL_NVIC_SystemReset(void) {
+ /* System Reset */
+ NVIC_SystemReset();
+}
+
+/**
+ * @brief Initializes the System Timer and its interrupt, and starts the System Tick Timer.
+ * Counter is in free running mode to generate periodic interrupts.
+ * @param TicksNumb: Specifies the ticks Number of ticks between two interrupts.
+ * @retval status: - 0 Function succeeded.
+ * - 1 Function failed.
+ */
+uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb) { return SysTick_Config(TicksNumb); }
+/**
+ * @}
+ */
+
+/** @defgroup CORTEX_Exported_Functions_Group2 Peripheral Control functions
+ * @brief Cortex control functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Peripheral Control functions #####
+ ==============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the CORTEX
+ (NVIC, SYSTICK, MPU) functionalities.
+
+
+@endverbatim
+ * @{
+ */
+
+#if (__MPU_PRESENT == 1U)
+/**
+ * @brief Disables the MPU
+ * @retval None
+ */
+void HAL_MPU_Disable(void) {
+ /* Make sure outstanding transfers are done */
+ __DMB();
+
+ /* Disable fault exceptions */
+ SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
+
+ /* Disable the MPU and clear the control register*/
+ MPU->CTRL = 0U;
+}
+
+/**
+ * @brief Enable the MPU.
+ * @param MPU_Control: Specifies the control mode of the MPU during hard fault,
+ * NMI, FAULTMASK and privileged access to the default memory
+ * This parameter can be one of the following values:
+ * @arg MPU_HFNMI_PRIVDEF_NONE
+ * @arg MPU_HARDFAULT_NMI
+ * @arg MPU_PRIVILEGED_DEFAULT
+ * @arg MPU_HFNMI_PRIVDEF
+ * @retval None
+ */
+void HAL_MPU_Enable(uint32_t MPU_Control) {
+ /* Enable the MPU */
+ MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
+
+ /* Enable fault exceptions */
+ SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
+
+ /* Ensure MPU setting take effects */
+ __DSB();
+ __ISB();
+}
+
+/**
+ * @brief Initializes and configures the Region and the memory to be protected.
+ * @param MPU_Init: Pointer to a MPU_Region_InitTypeDef structure that contains
+ * the initialization and configuration information.
+ * @retval None
+ */
+void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init) {
+ /* Check the parameters */
+ assert_param(IS_MPU_REGION_NUMBER(MPU_Init->Number));
+ assert_param(IS_MPU_REGION_ENABLE(MPU_Init->Enable));
+
+ /* Set the Region number */
+ MPU->RNR = MPU_Init->Number;
+
+ if ((MPU_Init->Enable) != RESET) {
+ /* Check the parameters */
+ assert_param(IS_MPU_INSTRUCTION_ACCESS(MPU_Init->DisableExec));
+ assert_param(IS_MPU_REGION_PERMISSION_ATTRIBUTE(MPU_Init->AccessPermission));
+ assert_param(IS_MPU_TEX_LEVEL(MPU_Init->TypeExtField));
+ assert_param(IS_MPU_ACCESS_SHAREABLE(MPU_Init->IsShareable));
+ assert_param(IS_MPU_ACCESS_CACHEABLE(MPU_Init->IsCacheable));
+ assert_param(IS_MPU_ACCESS_BUFFERABLE(MPU_Init->IsBufferable));
+ assert_param(IS_MPU_SUB_REGION_DISABLE(MPU_Init->SubRegionDisable));
+ assert_param(IS_MPU_REGION_SIZE(MPU_Init->Size));
+
+ MPU->RBAR = MPU_Init->BaseAddress;
+ MPU->RASR = ((uint32_t)MPU_Init->DisableExec << MPU_RASR_XN_Pos) | ((uint32_t)MPU_Init->AccessPermission << MPU_RASR_AP_Pos) | ((uint32_t)MPU_Init->TypeExtField << MPU_RASR_TEX_Pos)
+ | ((uint32_t)MPU_Init->IsShareable << MPU_RASR_S_Pos) | ((uint32_t)MPU_Init->IsCacheable << MPU_RASR_C_Pos) | ((uint32_t)MPU_Init->IsBufferable << MPU_RASR_B_Pos)
+ | ((uint32_t)MPU_Init->SubRegionDisable << MPU_RASR_SRD_Pos) | ((uint32_t)MPU_Init->Size << MPU_RASR_SIZE_Pos) | ((uint32_t)MPU_Init->Enable << MPU_RASR_ENABLE_Pos);
+ } else {
+ MPU->RBAR = 0x00U;
+ MPU->RASR = 0x00U;
+ }
+}
+#endif /* __MPU_PRESENT */
+
+/**
+ * @brief Gets the priority grouping field from the NVIC Interrupt Controller.
+ * @retval Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field)
+ */
+uint32_t HAL_NVIC_GetPriorityGrouping(void) {
+ /* Get the PRIGROUP[10:8] field value */
+ return NVIC_GetPriorityGrouping();
+}
+
+/**
+ * @brief Gets the priority of an interrupt.
+ * @param IRQn: External interrupt number.
+ * This parameter can be an enumerator of IRQn_Type enumeration
+ * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
+ * @param PriorityGroup: the priority grouping bits length.
+ * This parameter can be one of the following values:
+ * @arg NVIC_PRIORITYGROUP_0: 0 bits for preemption priority
+ * 4 bits for subpriority
+ * @arg NVIC_PRIORITYGROUP_1: 1 bits for preemption priority
+ * 3 bits for subpriority
+ * @arg NVIC_PRIORITYGROUP_2: 2 bits for preemption priority
+ * 2 bits for subpriority
+ * @arg NVIC_PRIORITYGROUP_3: 3 bits for preemption priority
+ * 1 bits for subpriority
+ * @arg NVIC_PRIORITYGROUP_4: 4 bits for preemption priority
+ * 0 bits for subpriority
+ * @param pPreemptPriority: Pointer on the Preemptive priority value (starting from 0).
+ * @param pSubPriority: Pointer on the Subpriority value (starting from 0).
+ * @retval None
+ */
+void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t *pPreemptPriority, uint32_t *pSubPriority) {
+ /* Check the parameters */
+ assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup));
+ /* Get priority for Cortex-M system or device specific interrupts */
+ NVIC_DecodePriority(NVIC_GetPriority(IRQn), PriorityGroup, pPreemptPriority, pSubPriority);
+}
+
+/**
+ * @brief Sets Pending bit of an external interrupt.
+ * @param IRQn External interrupt number
+ * This parameter can be an enumerator of IRQn_Type enumeration
+ * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
+ * @retval None
+ */
+void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn) {
+ /* Check the parameters */
+ assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
+
+ /* Set interrupt pending */
+ NVIC_SetPendingIRQ(IRQn);
+}
+
+/**
+ * @brief Gets Pending Interrupt (reads the pending register in the NVIC
+ * and returns the pending bit for the specified interrupt).
+ * @param IRQn External interrupt number.
+ * This parameter can be an enumerator of IRQn_Type enumeration
+ * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
+ * @retval status: - 0 Interrupt status is not pending.
+ * - 1 Interrupt status is pending.
+ */
+uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn) {
+ /* Check the parameters */
+ assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
+
+ /* Return 1 if pending else 0 */
+ return NVIC_GetPendingIRQ(IRQn);
+}
+
+/**
+ * @brief Clears the pending bit of an external interrupt.
+ * @param IRQn External interrupt number.
+ * This parameter can be an enumerator of IRQn_Type enumeration
+ * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
+ * @retval None
+ */
+void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn) {
+ /* Check the parameters */
+ assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
+
+ /* Clear pending interrupt */
+ NVIC_ClearPendingIRQ(IRQn);
+}
+
+/**
+ * @brief Gets active interrupt ( reads the active register in NVIC and returns the active bit).
+ * @param IRQn External interrupt number
+ * This parameter can be an enumerator of IRQn_Type enumeration
+ * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f10xxx.h))
+ * @retval status: - 0 Interrupt status is not pending.
+ * - 1 Interrupt status is pending.
+ */
+uint32_t HAL_NVIC_GetActive(IRQn_Type IRQn) {
+ /* Check the parameters */
+ assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
+
+ /* Return 1 if active else 0 */
+ return NVIC_GetActive(IRQn);
+}
+
+/**
+ * @brief Configures the SysTick clock source.
+ * @param CLKSource: specifies the SysTick clock source.
+ * This parameter can be one of the following values:
+ * @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source.
+ * @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source.
+ * @retval None
+ */
+void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource) {
+ /* Check the parameters */
+ assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource));
+ if (CLKSource == SYSTICK_CLKSOURCE_HCLK) {
+ SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;
+ } else {
+ SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK;
+ }
+}
+
+/**
+ * @brief This function handles SYSTICK interrupt request.
+ * @retval None
+ */
+void HAL_SYSTICK_IRQHandler(void) { HAL_SYSTICK_Callback(); }
+
+/**
+ * @brief SYSTICK callback.
+ * @retval None
+ */
+__weak void HAL_SYSTICK_Callback(void) {
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_SYSTICK_Callback could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_CORTEX_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c new file mode 100644 index 00000000..2c3b06e8 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c @@ -0,0 +1,826 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_dma.c
+ * @author MCD Application Team
+ * @brief DMA HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Direct Memory Access (DMA) peripheral:
+ * + Initialization and de-initialization functions
+ * + IO operation functions
+ * + Peripheral State and errors functions
+ @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ (#) Enable and configure the peripheral to be connected to the DMA Channel
+ (except for internal SRAM / FLASH memories: no initialization is
+ necessary). Please refer to the Reference manual for connection between peripherals
+ and DMA requests.
+
+ (#) For a given Channel, program the required configuration through the following parameters:
+ Channel request, Transfer Direction, Source and Destination data formats,
+ Circular or Normal mode, Channel Priority level, Source and Destination Increment mode
+ using HAL_DMA_Init() function.
+
+ (#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error
+ detection.
+
+ (#) Use HAL_DMA_Abort() function to abort the current transfer
+
+ -@- In Memory-to-Memory transfer mode, Circular mode is not allowed.
+ *** Polling mode IO operation ***
+ =================================
+ [..]
+ (+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source
+ address and destination address and the Length of data to be transferred
+ (+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this
+ case a fixed Timeout can be configured by User depending from his application.
+
+ *** Interrupt mode IO operation ***
+ ===================================
+ [..]
+ (+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority()
+ (+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ()
+ (+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of
+ Source address and destination address and the Length of data to be transferred.
+ In this case the DMA interrupt is configured
+ (+) Use HAL_DMA_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine
+ (+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can
+ add his own function by customization of function pointer XferCpltCallback and
+ XferErrorCallback (i.e. a member of DMA handle structure).
+
+ *** DMA HAL driver macros list ***
+ =============================================
+ [..]
+ Below the list of most used macros in DMA HAL driver.
+
+ (+) __HAL_DMA_ENABLE: Enable the specified DMA Channel.
+ (+) __HAL_DMA_DISABLE: Disable the specified DMA Channel.
+ (+) __HAL_DMA_GET_FLAG: Get the DMA Channel pending flags.
+ (+) __HAL_DMA_CLEAR_FLAG: Clear the DMA Channel pending flags.
+ (+) __HAL_DMA_ENABLE_IT: Enable the specified DMA Channel interrupts.
+ (+) __HAL_DMA_DISABLE_IT: Disable the specified DMA Channel interrupts.
+ (+) __HAL_DMA_GET_IT_SOURCE: Check whether the specified DMA Channel interrupt has occurred or not.
+
+ [..]
+ (@) You can refer to the DMA HAL driver header file for more useful macros
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup DMA DMA
+ * @brief DMA HAL module driver
+ * @{
+ */
+
+#ifdef HAL_DMA_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup DMA_Private_Functions DMA Private Functions
+ * @{
+ */
+static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
+/**
+ * @}
+ */
+
+/* Exported functions ---------------------------------------------------------*/
+
+/** @defgroup DMA_Exported_Functions DMA Exported Functions
+ * @{
+ */
+
+/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and de-initialization functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..]
+ This section provides functions allowing to initialize the DMA Channel source
+ and destination addresses, incrementation and data sizes, transfer direction,
+ circular/normal mode selection, memory-to-memory mode selection and Channel priority value.
+ [..]
+ The HAL_DMA_Init() function follows the DMA configuration procedures as described in
+ reference manual.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initialize the DMA according to the specified
+ * parameters in the DMA_InitTypeDef and initialize the associated handle.
+ * @param hdma: Pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma) {
+ uint32_t tmp = 0U;
+
+ /* Check the DMA handle allocation */
+ if (hdma == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
+ assert_param(IS_DMA_DIRECTION(hdma->Init.Direction));
+ assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc));
+ assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc));
+ assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment));
+ assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment));
+ assert_param(IS_DMA_MODE(hdma->Init.Mode));
+ assert_param(IS_DMA_PRIORITY(hdma->Init.Priority));
+
+#if defined(DMA2)
+ /* calculation of the channel index */
+ if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1)) {
+ /* DMA1 */
+ hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
+ hdma->DmaBaseAddress = DMA1;
+ } else {
+ /* DMA2 */
+ hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2;
+ hdma->DmaBaseAddress = DMA2;
+ }
+#else
+ /* DMA1 */
+ hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
+ hdma->DmaBaseAddress = DMA1;
+#endif /* DMA2 */
+
+ /* Change DMA peripheral state */
+ hdma->State = HAL_DMA_STATE_BUSY;
+
+ /* Get the CR register value */
+ tmp = hdma->Instance->CCR;
+
+ /* Clear PL, MSIZE, PSIZE, MINC, PINC, CIRC and DIR bits */
+ tmp &= ((uint32_t) ~(DMA_CCR_PL | DMA_CCR_MSIZE | DMA_CCR_PSIZE | DMA_CCR_MINC | DMA_CCR_PINC | DMA_CCR_CIRC | DMA_CCR_DIR));
+
+ /* Prepare the DMA Channel configuration */
+ tmp |= hdma->Init.Direction | hdma->Init.PeriphInc | hdma->Init.MemInc | hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment | hdma->Init.Mode | hdma->Init.Priority;
+
+ /* Write to DMA Channel CR register */
+ hdma->Instance->CCR = tmp;
+
+ /* Initialise the error code */
+ hdma->ErrorCode = HAL_DMA_ERROR_NONE;
+
+ /* Initialize the DMA state*/
+ hdma->State = HAL_DMA_STATE_READY;
+ /* Allocate lock resource and initialize it */
+ hdma->Lock = HAL_UNLOCKED;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitialize the DMA peripheral.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma) {
+ /* Check the DMA handle allocation */
+ if (hdma == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
+
+ /* Disable the selected DMA Channelx */
+ __HAL_DMA_DISABLE(hdma);
+
+ /* Reset DMA Channel control register */
+ hdma->Instance->CCR = 0U;
+
+ /* Reset DMA Channel Number of Data to Transfer register */
+ hdma->Instance->CNDTR = 0U;
+
+ /* Reset DMA Channel peripheral address register */
+ hdma->Instance->CPAR = 0U;
+
+ /* Reset DMA Channel memory address register */
+ hdma->Instance->CMAR = 0U;
+
+#if defined(DMA2)
+ /* calculation of the channel index */
+ if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1)) {
+ /* DMA1 */
+ hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
+ hdma->DmaBaseAddress = DMA1;
+ } else {
+ /* DMA2 */
+ hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2;
+ hdma->DmaBaseAddress = DMA2;
+ }
+#else
+ /* DMA1 */
+ hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
+ hdma->DmaBaseAddress = DMA1;
+#endif /* DMA2 */
+
+ /* Clear all flags */
+ hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex));
+
+ /* Clean all callbacks */
+ hdma->XferCpltCallback = NULL;
+ hdma->XferHalfCpltCallback = NULL;
+ hdma->XferErrorCallback = NULL;
+ hdma->XferAbortCallback = NULL;
+
+ /* Reset the error code */
+ hdma->ErrorCode = HAL_DMA_ERROR_NONE;
+
+ /* Reset the DMA state */
+ hdma->State = HAL_DMA_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(hdma);
+
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Exported_Functions_Group2 Input and Output operation functions
+ * @brief Input and Output operation functions
+ *
+@verbatim
+ ===============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Configure the source, destination address and data length and Start DMA transfer
+ (+) Configure the source, destination address and data length and
+ Start DMA transfer with interrupt
+ (+) Abort DMA transfer
+ (+) Poll for transfer complete
+ (+) Handle DMA interrupt request
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Start the DMA Transfer.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @param SrcAddress: The source memory Buffer address
+ * @param DstAddress: The destination memory Buffer address
+ * @param DataLength: The length of data to be transferred from source to destination
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_BUFFER_SIZE(DataLength));
+
+ /* Process locked */
+ __HAL_LOCK(hdma);
+
+ if (HAL_DMA_STATE_READY == hdma->State) {
+ /* Change DMA peripheral state */
+ hdma->State = HAL_DMA_STATE_BUSY;
+ hdma->ErrorCode = HAL_DMA_ERROR_NONE;
+
+ /* Disable the peripheral */
+ __HAL_DMA_DISABLE(hdma);
+
+ /* Configure the source, destination address and the data length & clear flags*/
+ DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
+
+ /* Enable the Peripheral */
+ __HAL_DMA_ENABLE(hdma);
+ } else {
+ /* Process Unlocked */
+ __HAL_UNLOCK(hdma);
+ status = HAL_BUSY;
+ }
+ return status;
+}
+
+/**
+ * @brief Start the DMA Transfer with interrupt enabled.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @param SrcAddress: The source memory Buffer address
+ * @param DstAddress: The destination memory Buffer address
+ * @param DataLength: The length of data to be transferred from source to destination
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_BUFFER_SIZE(DataLength));
+
+ /* Process locked */
+ __HAL_LOCK(hdma);
+
+ if (HAL_DMA_STATE_READY == hdma->State) {
+ /* Change DMA peripheral state */
+ hdma->State = HAL_DMA_STATE_BUSY;
+ hdma->ErrorCode = HAL_DMA_ERROR_NONE;
+
+ /* Disable the peripheral */
+ __HAL_DMA_DISABLE(hdma);
+
+ /* Configure the source, destination address and the data length & clear flags*/
+ DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
+
+ /* Enable the transfer complete interrupt */
+ /* Enable the transfer Error interrupt */
+ if (NULL != hdma->XferHalfCpltCallback) {
+ /* Enable the Half transfer complete interrupt as well */
+ __HAL_DMA_ENABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));
+ } else {
+ __HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT);
+ __HAL_DMA_ENABLE_IT(hdma, (DMA_IT_TC | DMA_IT_TE));
+ }
+ /* Enable the Peripheral */
+ __HAL_DMA_ENABLE(hdma);
+ } else {
+ /* Process Unlocked */
+ __HAL_UNLOCK(hdma);
+
+ /* Remain BUSY */
+ status = HAL_BUSY;
+ }
+ return status;
+}
+
+/**
+ * @brief Abort the DMA Transfer.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (hdma->State != HAL_DMA_STATE_BUSY) {
+ /* no transfer ongoing */
+ hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hdma);
+
+ return HAL_ERROR;
+ } else
+
+ {
+ /* Disable DMA IT */
+ __HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));
+
+ /* Disable the channel */
+ __HAL_DMA_DISABLE(hdma);
+
+ /* Clear all flags */
+ hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);
+ }
+ /* Change the DMA state */
+ hdma->State = HAL_DMA_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hdma);
+
+ return status;
+}
+
+/**
+ * @brief Aborts the DMA Transfer in Interrupt mode.
+ * @param hdma : pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (HAL_DMA_STATE_BUSY != hdma->State) {
+ /* no transfer ongoing */
+ hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
+
+ status = HAL_ERROR;
+ } else {
+ /* Disable DMA IT */
+ __HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));
+
+ /* Disable the channel */
+ __HAL_DMA_DISABLE(hdma);
+
+ /* Clear all flags */
+ __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_GI_FLAG_INDEX(hdma));
+
+ /* Change the DMA state */
+ hdma->State = HAL_DMA_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hdma);
+
+ /* Call User Abort callback */
+ if (hdma->XferAbortCallback != NULL) {
+ hdma->XferAbortCallback(hdma);
+ }
+ }
+ return status;
+}
+
+/**
+ * @brief Polling for transfer complete.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @param CompleteLevel: Specifies the DMA level complete.
+ * @param Timeout: Timeout duration.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout) {
+ uint32_t temp;
+ uint32_t tickstart = 0U;
+
+ if (HAL_DMA_STATE_BUSY != hdma->State) {
+ /* no transfer ongoing */
+ hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
+ __HAL_UNLOCK(hdma);
+ return HAL_ERROR;
+ }
+
+ /* Polling mode not supported in circular mode */
+ if (RESET != (hdma->Instance->CCR & DMA_CCR_CIRC)) {
+ hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED;
+ return HAL_ERROR;
+ }
+
+ /* Get the level transfer complete flag */
+ if (CompleteLevel == HAL_DMA_FULL_TRANSFER) {
+ /* Transfer Complete flag */
+ temp = __HAL_DMA_GET_TC_FLAG_INDEX(hdma);
+ } else {
+ /* Half Transfer Complete flag */
+ temp = __HAL_DMA_GET_HT_FLAG_INDEX(hdma);
+ }
+
+ /* Get tick */
+ tickstart = HAL_GetTick();
+
+ while (__HAL_DMA_GET_FLAG(hdma, temp) == RESET) {
+ if ((__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)) != RESET)) {
+ /* When a DMA transfer error occurs */
+ /* A hardware clear of its EN bits is performed */
+ /* Clear all flags */
+ hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);
+
+ /* Update error code */
+ SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TE);
+
+ /* Change the DMA state */
+ hdma->State = HAL_DMA_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hdma);
+
+ return HAL_ERROR;
+ }
+ /* Check for the Timeout */
+ if (Timeout != HAL_MAX_DELAY) {
+ if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) {
+ /* Update error code */
+ SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TIMEOUT);
+
+ /* Change the DMA state */
+ hdma->State = HAL_DMA_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hdma);
+
+ return HAL_ERROR;
+ }
+ }
+ }
+
+ if (CompleteLevel == HAL_DMA_FULL_TRANSFER) {
+ /* Clear the transfer complete flag */
+ __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));
+
+ /* The selected Channelx EN bit is cleared (DMA is disabled and
+ all transfers are complete) */
+ hdma->State = HAL_DMA_STATE_READY;
+ } else {
+ /* Clear the half transfer complete flag */
+ __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hdma);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Handles DMA interrupt request.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @retval None
+ */
+void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma) {
+ uint32_t flag_it = hdma->DmaBaseAddress->ISR;
+ uint32_t source_it = hdma->Instance->CCR;
+
+ /* Half Transfer Complete Interrupt management ******************************/
+ if (((flag_it & (DMA_FLAG_HT1 << hdma->ChannelIndex)) != RESET) && ((source_it & DMA_IT_HT) != RESET)) {
+ /* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */
+ if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) {
+ /* Disable the half transfer interrupt */
+ __HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT);
+ }
+ /* Clear the half transfer complete flag */
+ __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
+
+ /* DMA peripheral state is not updated in Half Transfer */
+ /* but in Transfer Complete case */
+
+ if (hdma->XferHalfCpltCallback != NULL) {
+ /* Half transfer callback */
+ hdma->XferHalfCpltCallback(hdma);
+ }
+ }
+
+ /* Transfer Complete Interrupt management ***********************************/
+ else if (((flag_it & (DMA_FLAG_TC1 << hdma->ChannelIndex)) != RESET) && ((source_it & DMA_IT_TC) != RESET)) {
+ if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) {
+ /* Disable the transfer complete and error interrupt */
+ __HAL_DMA_DISABLE_IT(hdma, DMA_IT_TE | DMA_IT_TC);
+
+ /* Change the DMA state */
+ hdma->State = HAL_DMA_STATE_READY;
+ }
+ /* Clear the transfer complete flag */
+ __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hdma);
+
+ if (hdma->XferCpltCallback != NULL) {
+ /* Transfer complete callback */
+ hdma->XferCpltCallback(hdma);
+ }
+ }
+
+ /* Transfer Error Interrupt management **************************************/
+ else if ((RESET != (flag_it & (DMA_FLAG_TE1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_TE))) {
+ /* When a DMA transfer error occurs */
+ /* A hardware clear of its EN bits is performed */
+ /* Disable ALL DMA IT */
+ __HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));
+
+ /* Clear all flags */
+ hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);
+
+ /* Update error code */
+ hdma->ErrorCode = HAL_DMA_ERROR_TE;
+
+ /* Change the DMA state */
+ hdma->State = HAL_DMA_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hdma);
+
+ if (hdma->XferErrorCallback != NULL) {
+ /* Transfer error callback */
+ hdma->XferErrorCallback(hdma);
+ }
+ }
+ return;
+}
+
+/**
+ * @brief Register callbacks
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @param CallbackID: User Callback identifer
+ * a HAL_DMA_CallbackIDTypeDef ENUM as parameter.
+ * @param pCallback: pointer to private callbacsk function which has pointer to
+ * a DMA_HandleTypeDef structure as parameter.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (*pCallback)(DMA_HandleTypeDef *_hdma)) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process locked */
+ __HAL_LOCK(hdma);
+
+ if (HAL_DMA_STATE_READY == hdma->State) {
+ switch (CallbackID) {
+ case HAL_DMA_XFER_CPLT_CB_ID:
+ hdma->XferCpltCallback = pCallback;
+ break;
+
+ case HAL_DMA_XFER_HALFCPLT_CB_ID:
+ hdma->XferHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_DMA_XFER_ERROR_CB_ID:
+ hdma->XferErrorCallback = pCallback;
+ break;
+
+ case HAL_DMA_XFER_ABORT_CB_ID:
+ hdma->XferAbortCallback = pCallback;
+ break;
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+ } else {
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hdma);
+
+ return status;
+}
+
+/**
+ * @brief UnRegister callbacks
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @param CallbackID: User Callback identifer
+ * a HAL_DMA_CallbackIDTypeDef ENUM as parameter.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process locked */
+ __HAL_LOCK(hdma);
+
+ if (HAL_DMA_STATE_READY == hdma->State) {
+ switch (CallbackID) {
+ case HAL_DMA_XFER_CPLT_CB_ID:
+ hdma->XferCpltCallback = NULL;
+ break;
+
+ case HAL_DMA_XFER_HALFCPLT_CB_ID:
+ hdma->XferHalfCpltCallback = NULL;
+ break;
+
+ case HAL_DMA_XFER_ERROR_CB_ID:
+ hdma->XferErrorCallback = NULL;
+ break;
+
+ case HAL_DMA_XFER_ABORT_CB_ID:
+ hdma->XferAbortCallback = NULL;
+ break;
+
+ case HAL_DMA_XFER_ALL_CB_ID:
+ hdma->XferCpltCallback = NULL;
+ hdma->XferHalfCpltCallback = NULL;
+ hdma->XferErrorCallback = NULL;
+ hdma->XferAbortCallback = NULL;
+ break;
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+ } else {
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hdma);
+
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Exported_Functions_Group3 Peripheral State and Errors functions
+ * @brief Peripheral State and Errors functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral State and Errors functions #####
+ ===============================================================================
+ [..]
+ This subsection provides functions allowing to
+ (+) Check the DMA state
+ (+) Get error code
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Return the DMA hande state.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @retval HAL state
+ */
+HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma) {
+ /* Return DMA handle state */
+ return hdma->State;
+}
+
+/**
+ * @brief Return the DMA error code.
+ * @param hdma : pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @retval DMA Error Code
+ */
+uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma) { return hdma->ErrorCode; }
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup DMA_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Sets the DMA Transfer parameter.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA Channel.
+ * @param SrcAddress: The source memory Buffer address
+ * @param DstAddress: The destination memory Buffer address
+ * @param DataLength: The length of data to be transferred from source to destination
+ * @retval HAL status
+ */
+static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) {
+ /* Clear all flags */
+ hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);
+
+ /* Configure DMA Channel data length */
+ hdma->Instance->CNDTR = DataLength;
+
+ /* Memory to Peripheral */
+ if ((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) {
+ /* Configure DMA Channel destination address */
+ hdma->Instance->CPAR = DstAddress;
+
+ /* Configure DMA Channel source address */
+ hdma->Instance->CMAR = SrcAddress;
+ }
+ /* Peripheral to Memory */
+ else {
+ /* Configure DMA Channel source address */
+ hdma->Instance->CPAR = SrcAddress;
+
+ /* Configure DMA Channel destination address */
+ hdma->Instance->CMAR = DstAddress;
+ }
+}
+
+/**
+ * @}
+ */
+
+#endif /* HAL_DMA_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_exti.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_exti.c new file mode 100644 index 00000000..ee83c7c6 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_exti.c @@ -0,0 +1,510 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_exti.c
+ * @author MCD Application Team
+ * @brief EXTI HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Extended Interrupts and events controller (EXTI) peripheral:
+ * + Initialization and de-initialization functions
+ * + IO operation functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### EXTI Peripheral features #####
+ ==============================================================================
+ [..]
+ (+) Each Exti line can be configured within this driver.
+
+ (+) Exti line can be configured in 3 different modes
+ (++) Interrupt
+ (++) Event
+ (++) Both of them
+
+ (+) Configurable Exti lines can be configured with 3 different triggers
+ (++) Rising
+ (++) Falling
+ (++) Both of them
+
+ (+) When set in interrupt mode, configurable Exti lines have two different
+ interrupts pending registers which allow to distinguish which transition
+ occurs:
+ (++) Rising edge pending interrupt
+ (++) Falling
+
+ (+) Exti lines 0 to 15 are linked to gpio pin number 0 to 15. Gpio port can
+ be selected through multiplexer.
+
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+
+ (#) Configure the EXTI line using HAL_EXTI_SetConfigLine().
+ (++) Choose the interrupt line number by setting "Line" member from
+ EXTI_ConfigTypeDef structure.
+ (++) Configure the interrupt and/or event mode using "Mode" member from
+ EXTI_ConfigTypeDef structure.
+ (++) For configurable lines, configure rising and/or falling trigger
+ "Trigger" member from EXTI_ConfigTypeDef structure.
+ (++) For Exti lines linked to gpio, choose gpio port using "GPIOSel"
+ member from GPIO_InitTypeDef structure.
+
+ (#) Get current Exti configuration of a dedicated line using
+ HAL_EXTI_GetConfigLine().
+ (++) Provide exiting handle as parameter.
+ (++) Provide pointer on EXTI_ConfigTypeDef structure as second parameter.
+
+ (#) Clear Exti configuration of a dedicated line using HAL_EXTI_GetConfigLine().
+ (++) Provide exiting handle as parameter.
+
+ (#) Register callback to treat Exti interrupts using HAL_EXTI_RegisterCallback().
+ (++) Provide exiting handle as first parameter.
+ (++) Provide which callback will be registered using one value from
+ EXTI_CallbackIDTypeDef.
+ (++) Provide callback function pointer.
+
+ (#) Get interrupt pending bit using HAL_EXTI_GetPending().
+
+ (#) Clear interrupt pending bit using HAL_EXTI_GetPending().
+
+ (#) Generate software interrupt using HAL_EXTI_GenerateSWI().
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2019 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup EXTI
+ * @{
+ */
+/** MISRA C:2012 deviation rule has been granted for following rule:
+ * Rule-18.1_b - Medium: Array `EXTICR' 1st subscript interval [0,7] may be out
+ * of bounds [0,3] in following API :
+ * HAL_EXTI_SetConfigLine
+ * HAL_EXTI_GetConfigLine
+ * HAL_EXTI_ClearConfigLine
+ */
+
+#ifdef HAL_EXTI_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private defines -----------------------------------------------------------*/
+/** @defgroup EXTI_Private_Constants EXTI Private Constants
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/* Private macros ------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+
+/** @addtogroup EXTI_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup EXTI_Exported_Functions_Group1
+ * @brief Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Configuration functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Set configuration of a dedicated Exti line.
+ * @param hexti Exti handle.
+ * @param pExtiConfig Pointer on EXTI configuration to be set.
+ * @retval HAL Status.
+ */
+HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig) {
+ uint32_t regval;
+ uint32_t linepos;
+ uint32_t maskline;
+
+ /* Check null pointer */
+ if ((hexti == NULL) || (pExtiConfig == NULL)) {
+ return HAL_ERROR;
+ }
+
+ /* Check parameters */
+ assert_param(IS_EXTI_LINE(pExtiConfig->Line));
+ assert_param(IS_EXTI_MODE(pExtiConfig->Mode));
+
+ /* Assign line number to handle */
+ hexti->Line = pExtiConfig->Line;
+
+ /* Compute line mask */
+ linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
+ maskline = (1uL << linepos);
+
+ /* Configure triggers for configurable lines */
+ if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u) {
+ assert_param(IS_EXTI_TRIGGER(pExtiConfig->Trigger));
+
+ /* Configure rising trigger */
+ /* Mask or set line */
+ if ((pExtiConfig->Trigger & EXTI_TRIGGER_RISING) != 0x00u) {
+ EXTI->RTSR |= maskline;
+ } else {
+ EXTI->RTSR &= ~maskline;
+ }
+
+ /* Configure falling trigger */
+ /* Mask or set line */
+ if ((pExtiConfig->Trigger & EXTI_TRIGGER_FALLING) != 0x00u) {
+ EXTI->FTSR |= maskline;
+ } else {
+ EXTI->FTSR &= ~maskline;
+ }
+
+ /* Configure gpio port selection in case of gpio exti line */
+ if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO) {
+ assert_param(IS_EXTI_GPIO_PORT(pExtiConfig->GPIOSel));
+ assert_param(IS_EXTI_GPIO_PIN(linepos));
+
+ regval = AFIO->EXTICR[linepos >> 2u];
+ regval &= ~(AFIO_EXTICR1_EXTI0 << (AFIO_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
+ regval |= (pExtiConfig->GPIOSel << (AFIO_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
+ AFIO->EXTICR[linepos >> 2u] = regval;
+ }
+ }
+
+ /* Configure interrupt mode : read current mode */
+ /* Mask or set line */
+ if ((pExtiConfig->Mode & EXTI_MODE_INTERRUPT) != 0x00u) {
+ EXTI->IMR |= maskline;
+ } else {
+ EXTI->IMR &= ~maskline;
+ }
+
+ /* Configure event mode : read current mode */
+ /* Mask or set line */
+ if ((pExtiConfig->Mode & EXTI_MODE_EVENT) != 0x00u) {
+ EXTI->EMR |= maskline;
+ } else {
+ EXTI->EMR &= ~maskline;
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Get configuration of a dedicated Exti line.
+ * @param hexti Exti handle.
+ * @param pExtiConfig Pointer on structure to store Exti configuration.
+ * @retval HAL Status.
+ */
+HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig) {
+ uint32_t regval;
+ uint32_t linepos;
+ uint32_t maskline;
+
+ /* Check null pointer */
+ if ((hexti == NULL) || (pExtiConfig == NULL)) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameter */
+ assert_param(IS_EXTI_LINE(hexti->Line));
+
+ /* Store handle line number to configuration structure */
+ pExtiConfig->Line = hexti->Line;
+
+ /* Compute line mask */
+ linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
+ maskline = (1uL << linepos);
+
+ /* 1] Get core mode : interrupt */
+
+ /* Check if selected line is enable */
+ if ((EXTI->IMR & maskline) != 0x00u) {
+ pExtiConfig->Mode = EXTI_MODE_INTERRUPT;
+ } else {
+ pExtiConfig->Mode = EXTI_MODE_NONE;
+ }
+
+ /* Get event mode */
+ /* Check if selected line is enable */
+ if ((EXTI->EMR & maskline) != 0x00u) {
+ pExtiConfig->Mode |= EXTI_MODE_EVENT;
+ }
+
+ /* 2] Get trigger for configurable lines : rising */
+ if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u) {
+ /* Check if configuration of selected line is enable */
+ if ((EXTI->RTSR & maskline) != 0x00u) {
+ pExtiConfig->Trigger = EXTI_TRIGGER_RISING;
+ } else {
+ pExtiConfig->Trigger = EXTI_TRIGGER_NONE;
+ }
+
+ /* Get falling configuration */
+ /* Check if configuration of selected line is enable */
+ if ((EXTI->FTSR & maskline) != 0x00u) {
+ pExtiConfig->Trigger |= EXTI_TRIGGER_FALLING;
+ }
+
+ /* Get Gpio port selection for gpio lines */
+ if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO) {
+ assert_param(IS_EXTI_GPIO_PIN(linepos));
+
+ regval = AFIO->EXTICR[linepos >> 2u];
+ pExtiConfig->GPIOSel = ((regval << (AFIO_EXTICR1_EXTI1_Pos * (3uL - (linepos & 0x03u)))) >> 24);
+ } else {
+ pExtiConfig->GPIOSel = 0x00u;
+ }
+ } else {
+ /* No Trigger selected */
+ pExtiConfig->Trigger = EXTI_TRIGGER_NONE;
+ pExtiConfig->GPIOSel = 0x00u;
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Clear whole configuration of a dedicated Exti line.
+ * @param hexti Exti handle.
+ * @retval HAL Status.
+ */
+HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti) {
+ uint32_t regval;
+ uint32_t linepos;
+ uint32_t maskline;
+
+ /* Check null pointer */
+ if (hexti == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameter */
+ assert_param(IS_EXTI_LINE(hexti->Line));
+
+ /* compute line mask */
+ linepos = (hexti->Line & EXTI_PIN_MASK);
+ maskline = (1uL << linepos);
+
+ /* 1] Clear interrupt mode */
+ EXTI->IMR = (EXTI->IMR & ~maskline);
+
+ /* 2] Clear event mode */
+ EXTI->EMR = (EXTI->EMR & ~maskline);
+
+ /* 3] Clear triggers in case of configurable lines */
+ if ((hexti->Line & EXTI_CONFIG) != 0x00u) {
+ EXTI->RTSR = (EXTI->RTSR & ~maskline);
+ EXTI->FTSR = (EXTI->FTSR & ~maskline);
+
+ /* Get Gpio port selection for gpio lines */
+ if ((hexti->Line & EXTI_GPIO) == EXTI_GPIO) {
+ assert_param(IS_EXTI_GPIO_PIN(linepos));
+
+ regval = AFIO->EXTICR[linepos >> 2u];
+ regval &= ~(AFIO_EXTICR1_EXTI0 << (AFIO_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
+ AFIO->EXTICR[linepos >> 2u] = regval;
+ }
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Register callback for a dedicated Exti line.
+ * @param hexti Exti handle.
+ * @param CallbackID User callback identifier.
+ * This parameter can be one of @arg @ref EXTI_CallbackIDTypeDef values.
+ * @param pPendingCbfn function pointer to be stored as callback.
+ * @retval HAL Status.
+ */
+HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, void (*pPendingCbfn)(void)) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ switch (CallbackID) {
+ case HAL_EXTI_COMMON_CB_ID:
+ hexti->PendingCallback = pPendingCbfn;
+ break;
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ return status;
+}
+
+/**
+ * @brief Store line number as handle private field.
+ * @param hexti Exti handle.
+ * @param ExtiLine Exti line number.
+ * This parameter can be from 0 to @ref EXTI_LINE_NB.
+ * @retval HAL Status.
+ */
+HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine) {
+ /* Check the parameters */
+ assert_param(IS_EXTI_LINE(ExtiLine));
+
+ /* Check null pointer */
+ if (hexti == NULL) {
+ return HAL_ERROR;
+ } else {
+ /* Store line number as handle private field */
+ hexti->Line = ExtiLine;
+
+ return HAL_OK;
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @addtogroup EXTI_Exported_Functions_Group2
+ * @brief EXTI IO functions.
+ *
+@verbatim
+ ===============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Handle EXTI interrupt request.
+ * @param hexti Exti handle.
+ * @retval none.
+ */
+void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti) {
+ uint32_t regval;
+ uint32_t maskline;
+
+ /* Compute line mask */
+ maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
+
+ /* Get pending bit */
+ regval = (EXTI->PR & maskline);
+ if (regval != 0x00u) {
+ /* Clear pending bit */
+ EXTI->PR = maskline;
+
+ /* Call callback */
+ if (hexti->PendingCallback != NULL) {
+ hexti->PendingCallback();
+ }
+ }
+}
+
+/**
+ * @brief Get interrupt pending bit of a dedicated line.
+ * @param hexti Exti handle.
+ * @param Edge Specify which pending edge as to be checked.
+ * This parameter can be one of the following values:
+ * @arg @ref EXTI_TRIGGER_RISING_FALLING
+ * This parameter is kept for compatibility with other series.
+ * @retval 1 if interrupt is pending else 0.
+ */
+uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge) {
+ uint32_t regval;
+ uint32_t maskline;
+ uint32_t linepos;
+
+ /* Check parameters */
+ assert_param(IS_EXTI_LINE(hexti->Line));
+ assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
+ assert_param(IS_EXTI_PENDING_EDGE(Edge));
+
+ /* Compute line mask */
+ linepos = (hexti->Line & EXTI_PIN_MASK);
+ maskline = (1uL << linepos);
+
+ /* return 1 if bit is set else 0 */
+ regval = ((EXTI->PR & maskline) >> linepos);
+ return regval;
+}
+
+/**
+ * @brief Clear interrupt pending bit of a dedicated line.
+ * @param hexti Exti handle.
+ * @param Edge Specify which pending edge as to be clear.
+ * This parameter can be one of the following values:
+ * @arg @ref EXTI_TRIGGER_RISING_FALLING
+ * This parameter is kept for compatibility with other series.
+ * @retval None.
+ */
+void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge) {
+ uint32_t maskline;
+
+ /* Check parameters */
+ assert_param(IS_EXTI_LINE(hexti->Line));
+ assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
+ assert_param(IS_EXTI_PENDING_EDGE(Edge));
+
+ /* Compute line mask */
+ maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
+
+ /* Clear Pending bit */
+ EXTI->PR = maskline;
+}
+
+/**
+ * @brief Generate a software interrupt for a dedicated line.
+ * @param hexti Exti handle.
+ * @retval None.
+ */
+void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti) {
+ uint32_t maskline;
+
+ /* Check parameters */
+ assert_param(IS_EXTI_LINE(hexti->Line));
+ assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
+
+ /* Compute line mask */
+ maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
+
+ /* Generate Software interrupt */
+ EXTI->SWIER = maskline;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_EXTI_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c new file mode 100644 index 00000000..de73da80 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c @@ -0,0 +1,864 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_flash.c
+ * @author MCD Application Team
+ * @brief FLASH HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the internal FLASH memory:
+ * + Program operations functions
+ * + Memory Control functions
+ * + Peripheral State functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### FLASH peripheral features #####
+ ==============================================================================
+ [..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses
+ to the Flash memory. It implements the erase and program Flash memory operations
+ and the read and write protection mechanisms.
+
+ [..] The Flash memory interface accelerates code execution with a system of instruction
+ prefetch.
+
+ [..] The FLASH main features are:
+ (+) Flash memory read operations
+ (+) Flash memory program/erase operations
+ (+) Read / write protections
+ (+) Prefetch on I-Code
+ (+) Option Bytes programming
+
+
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ This driver provides functions and macros to configure and program the FLASH
+ memory of all STM32F1xx devices.
+
+ (#) FLASH Memory I/O Programming functions: this group includes all needed
+ functions to erase and program the main memory:
+ (++) Lock and Unlock the FLASH interface
+ (++) Erase function: Erase page, erase all pages
+ (++) Program functions: half word, word and doubleword
+ (#) FLASH Option Bytes Programming functions: this group includes all needed
+ functions to manage the Option Bytes:
+ (++) Lock and Unlock the Option Bytes
+ (++) Set/Reset the write protection
+ (++) Set the Read protection Level
+ (++) Program the user Option Bytes
+ (++) Launch the Option Bytes loader
+ (++) Erase Option Bytes
+ (++) Program the data Option Bytes
+ (++) Get the Write protection.
+ (++) Get the user option bytes.
+
+ (#) Interrupts and flags management functions : this group
+ includes all needed functions to:
+ (++) Handle FLASH interrupts
+ (++) Wait for last FLASH operation according to its status
+ (++) Get error flag status
+
+ [..] In addition to these function, this driver includes a set of macros allowing
+ to handle the following operations:
+
+ (+) Set/Get the latency
+ (+) Enable/Disable the prefetch buffer
+ (+) Enable/Disable the half cycle access
+ (+) Enable/Disable the FLASH interrupts
+ (+) Monitor the FLASH flags status
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+#ifdef HAL_FLASH_MODULE_ENABLED
+
+/** @defgroup FLASH FLASH
+ * @brief FLASH HAL module driver
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup FLASH_Private_Constants FLASH Private Constants
+ * @{
+ */
+/**
+ * @}
+ */
+
+/* Private macro ---------------------------- ---------------------------------*/
+/** @defgroup FLASH_Private_Macros FLASH Private Macros
+ * @{
+ */
+
+/**
+ * @}
+ */
+
+/* Private variables ---------------------------------------------------------*/
+/** @defgroup FLASH_Private_Variables FLASH Private Variables
+ * @{
+ */
+/* Variables used for Erase pages under interruption*/
+FLASH_ProcessTypeDef pFlash;
+/**
+ * @}
+ */
+
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup FLASH_Private_Functions FLASH Private Functions
+ * @{
+ */
+static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data);
+static void FLASH_SetErrorCode(void);
+extern void FLASH_PageErase(uint32_t PageAddress);
+/**
+ * @}
+ */
+
+/* Exported functions ---------------------------------------------------------*/
+/** @defgroup FLASH_Exported_Functions FLASH Exported Functions
+ * @{
+ */
+
+/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions
+ * @brief Programming operation functions
+ *
+@verbatim
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Program halfword, word or double word at a specified address
+ * @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
+ * The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
+ *
+ * @note If an erase and a program operations are requested simultaneously,
+ * the erase operation is performed before the program one.
+ *
+ * @note FLASH should be previously erased before new programmation (only exception to this
+ * is when 0x0000 is programmed)
+ *
+ * @param TypeProgram: Indicate the way to program at a specified address.
+ * This parameter can be a value of @ref FLASH_Type_Program
+ * @param Address: Specifies the address to be programmed.
+ * @param Data: Specifies the data to be programmed
+ *
+ * @retval HAL_StatusTypeDef HAL Status
+ */
+HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data) {
+ HAL_StatusTypeDef status = HAL_ERROR;
+ uint8_t index = 0;
+ uint8_t nbiterations = 0;
+
+ /* Process Locked */
+ __HAL_LOCK(&pFlash);
+
+ /* Check the parameters */
+ assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
+ assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
+
+#if defined(FLASH_BANK2_END)
+ if (Address <= FLASH_BANK1_END) {
+#endif /* FLASH_BANK2_END */
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
+#if defined(FLASH_BANK2_END)
+ } else {
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperationBank2(FLASH_TIMEOUT_VALUE);
+ }
+#endif /* FLASH_BANK2_END */
+
+ if (status == HAL_OK) {
+ if (TypeProgram == FLASH_TYPEPROGRAM_HALFWORD) {
+ /* Program halfword (16-bit) at a specified address. */
+ nbiterations = 1U;
+ } else if (TypeProgram == FLASH_TYPEPROGRAM_WORD) {
+ /* Program word (32-bit = 2*16-bit) at a specified address. */
+ nbiterations = 2U;
+ } else {
+ /* Program double word (64-bit = 4*16-bit) at a specified address. */
+ nbiterations = 4U;
+ }
+
+ for (index = 0U; index < nbiterations; index++) {
+ FLASH_Program_HalfWord((Address + (2U * index)), (uint16_t)(Data >> (16U * index)));
+
+#if defined(FLASH_BANK2_END)
+ if (Address <= FLASH_BANK1_END) {
+#endif /* FLASH_BANK2_END */
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
+
+ /* If the program operation is completed, disable the PG Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
+#if defined(FLASH_BANK2_END)
+ } else {
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperationBank2(FLASH_TIMEOUT_VALUE);
+
+ /* If the program operation is completed, disable the PG Bit */
+ CLEAR_BIT(FLASH->CR2, FLASH_CR2_PG);
+ }
+#endif /* FLASH_BANK2_END */
+ /* In case of error, stop programation procedure */
+ if (status != HAL_OK) {
+ break;
+ }
+ }
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(&pFlash);
+
+ return status;
+}
+
+/**
+ * @brief Program halfword, word or double word at a specified address with interrupt enabled.
+ * @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
+ * The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
+ *
+ * @note If an erase and a program operations are requested simultaneously,
+ * the erase operation is performed before the program one.
+ *
+ * @param TypeProgram: Indicate the way to program at a specified address.
+ * This parameter can be a value of @ref FLASH_Type_Program
+ * @param Address: Specifies the address to be programmed.
+ * @param Data: Specifies the data to be programmed
+ *
+ * @retval HAL_StatusTypeDef HAL Status
+ */
+HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process Locked */
+ __HAL_LOCK(&pFlash);
+
+ /* Check the parameters */
+ assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
+ assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
+
+#if defined(FLASH_BANK2_END)
+ /* If procedure already ongoing, reject the next one */
+ if (pFlash.ProcedureOnGoing != FLASH_PROC_NONE) {
+ return HAL_ERROR;
+ }
+
+ if (Address <= FLASH_BANK1_END) {
+ /* Enable End of FLASH Operation and Error source interrupts */
+ __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP_BANK1 | FLASH_IT_ERR_BANK1);
+
+ } else {
+ /* Enable End of FLASH Operation and Error source interrupts */
+ __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP_BANK2 | FLASH_IT_ERR_BANK2);
+ }
+#else
+ /* Enable End of FLASH Operation and Error source interrupts */
+ __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
+#endif /* FLASH_BANK2_END */
+
+ pFlash.Address = Address;
+ pFlash.Data = Data;
+
+ if (TypeProgram == FLASH_TYPEPROGRAM_HALFWORD) {
+ pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMHALFWORD;
+ /* Program halfword (16-bit) at a specified address. */
+ pFlash.DataRemaining = 1U;
+ } else if (TypeProgram == FLASH_TYPEPROGRAM_WORD) {
+ pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMWORD;
+ /* Program word (32-bit : 2*16-bit) at a specified address. */
+ pFlash.DataRemaining = 2U;
+ } else {
+ pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMDOUBLEWORD;
+ /* Program double word (64-bit : 4*16-bit) at a specified address. */
+ pFlash.DataRemaining = 4U;
+ }
+
+ /* Program halfword (16-bit) at a specified address. */
+ FLASH_Program_HalfWord(Address, (uint16_t)Data);
+
+ return status;
+}
+
+/**
+ * @brief This function handles FLASH interrupt request.
+ * @retval None
+ */
+void HAL_FLASH_IRQHandler(void) {
+ uint32_t addresstmp = 0U;
+
+ /* Check FLASH operation error flags */
+#if defined(FLASH_BANK2_END)
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK1) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK1) || (__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2)))
+#else
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
+#endif /* FLASH_BANK2_END */
+ {
+ /* Return the faulty address */
+ addresstmp = pFlash.Address;
+ /* Reset address */
+ pFlash.Address = 0xFFFFFFFFU;
+
+ /* Save the Error code */
+ FLASH_SetErrorCode();
+
+ /* FLASH error interrupt user callback */
+ HAL_FLASH_OperationErrorCallback(addresstmp);
+
+ /* Stop the procedure ongoing */
+ pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
+ }
+
+ /* Check FLASH End of Operation flag */
+#if defined(FLASH_BANK2_END)
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP_BANK1)) {
+ /* Clear FLASH End of Operation pending bit */
+ __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK1);
+#else
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP)) {
+ /* Clear FLASH End of Operation pending bit */
+ __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
+#endif /* FLASH_BANK2_END */
+
+ /* Process can continue only if no error detected */
+ if (pFlash.ProcedureOnGoing != FLASH_PROC_NONE) {
+ if (pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE) {
+ /* Nb of pages to erased can be decreased */
+ pFlash.DataRemaining--;
+
+ /* Check if there are still pages to erase */
+ if (pFlash.DataRemaining != 0U) {
+ addresstmp = pFlash.Address;
+ /*Indicate user which sector has been erased */
+ HAL_FLASH_EndOfOperationCallback(addresstmp);
+
+ /*Increment sector number*/
+ addresstmp = pFlash.Address + FLASH_PAGE_SIZE;
+ pFlash.Address = addresstmp;
+
+ /* If the erase operation is completed, disable the PER Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_PER);
+
+ FLASH_PageErase(addresstmp);
+ } else {
+ /* No more pages to Erase, user callback can be called. */
+ /* Reset Sector and stop Erase pages procedure */
+ pFlash.Address = addresstmp = 0xFFFFFFFFU;
+ pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
+ /* FLASH EOP interrupt user callback */
+ HAL_FLASH_EndOfOperationCallback(addresstmp);
+ }
+ } else if (pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE) {
+ /* Operation is completed, disable the MER Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
+
+#if defined(FLASH_BANK2_END)
+ /* Stop Mass Erase procedure if no pending mass erase on other bank */
+ if (HAL_IS_BIT_CLR(FLASH->CR2, FLASH_CR2_MER)) {
+#endif /* FLASH_BANK2_END */
+ /* MassErase ended. Return the selected bank */
+ /* FLASH EOP interrupt user callback */
+ HAL_FLASH_EndOfOperationCallback(0U);
+
+ /* Stop Mass Erase procedure*/
+ pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
+ }
+#if defined(FLASH_BANK2_END)
+ }
+#endif /* FLASH_BANK2_END */
+ else {
+ /* Nb of 16-bit data to program can be decreased */
+ pFlash.DataRemaining--;
+
+ /* Check if there are still 16-bit data to program */
+ if (pFlash.DataRemaining != 0U) {
+ /* Increment address to 16-bit */
+ pFlash.Address += 2U;
+ addresstmp = pFlash.Address;
+
+ /* Shift to have next 16-bit data */
+ pFlash.Data = (pFlash.Data >> 16U);
+
+ /* Operation is completed, disable the PG Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
+
+ /*Program halfword (16-bit) at a specified address.*/
+ FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data);
+ } else {
+ /* Program ended. Return the selected address */
+ /* FLASH EOP interrupt user callback */
+ if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD) {
+ HAL_FLASH_EndOfOperationCallback(pFlash.Address);
+ } else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD) {
+ HAL_FLASH_EndOfOperationCallback(pFlash.Address - 2U);
+ } else {
+ HAL_FLASH_EndOfOperationCallback(pFlash.Address - 6U);
+ }
+
+ /* Reset Address and stop Program procedure */
+ pFlash.Address = 0xFFFFFFFFU;
+ pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
+ }
+ }
+ }
+ }
+
+#if defined(FLASH_BANK2_END)
+ /* Check FLASH End of Operation flag */
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP_BANK2)) {
+ /* Clear FLASH End of Operation pending bit */
+ __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK2);
+
+ /* Process can continue only if no error detected */
+ if (pFlash.ProcedureOnGoing != FLASH_PROC_NONE) {
+ if (pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE) {
+ /* Nb of pages to erased can be decreased */
+ pFlash.DataRemaining--;
+
+ /* Check if there are still pages to erase*/
+ if (pFlash.DataRemaining != 0U) {
+ /* Indicate user which page address has been erased*/
+ HAL_FLASH_EndOfOperationCallback(pFlash.Address);
+
+ /* Increment page address to next page */
+ pFlash.Address += FLASH_PAGE_SIZE;
+ addresstmp = pFlash.Address;
+
+ /* Operation is completed, disable the PER Bit */
+ CLEAR_BIT(FLASH->CR2, FLASH_CR2_PER);
+
+ FLASH_PageErase(addresstmp);
+ } else {
+ /*No more pages to Erase*/
+
+ /*Reset Address and stop Erase pages procedure*/
+ pFlash.Address = 0xFFFFFFFFU;
+ pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
+
+ /* FLASH EOP interrupt user callback */
+ HAL_FLASH_EndOfOperationCallback(pFlash.Address);
+ }
+ } else if (pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE) {
+ /* Operation is completed, disable the MER Bit */
+ CLEAR_BIT(FLASH->CR2, FLASH_CR2_MER);
+
+ if (HAL_IS_BIT_CLR(FLASH->CR, FLASH_CR_MER)) {
+ /* MassErase ended. Return the selected bank*/
+ /* FLASH EOP interrupt user callback */
+ HAL_FLASH_EndOfOperationCallback(0U);
+
+ pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
+ }
+ } else {
+ /* Nb of 16-bit data to program can be decreased */
+ pFlash.DataRemaining--;
+
+ /* Check if there are still 16-bit data to program */
+ if (pFlash.DataRemaining != 0U) {
+ /* Increment address to 16-bit */
+ pFlash.Address += 2U;
+ addresstmp = pFlash.Address;
+
+ /* Shift to have next 16-bit data */
+ pFlash.Data = (pFlash.Data >> 16U);
+
+ /* Operation is completed, disable the PG Bit */
+ CLEAR_BIT(FLASH->CR2, FLASH_CR2_PG);
+
+ /*Program halfword (16-bit) at a specified address.*/
+ FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data);
+ } else {
+ /*Program ended. Return the selected address*/
+ /* FLASH EOP interrupt user callback */
+ if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD) {
+ HAL_FLASH_EndOfOperationCallback(pFlash.Address);
+ } else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD) {
+ HAL_FLASH_EndOfOperationCallback(pFlash.Address - 2U);
+ } else {
+ HAL_FLASH_EndOfOperationCallback(pFlash.Address - 6U);
+ }
+
+ /* Reset Address and stop Program procedure*/
+ pFlash.Address = 0xFFFFFFFFU;
+ pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
+ }
+ }
+ }
+ }
+#endif
+
+ if (pFlash.ProcedureOnGoing == FLASH_PROC_NONE) {
+#if defined(FLASH_BANK2_END)
+ /* Operation is completed, disable the PG, PER and MER Bits for both bank */
+ CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER));
+ CLEAR_BIT(FLASH->CR2, (FLASH_CR2_PG | FLASH_CR2_PER | FLASH_CR2_MER));
+
+ /* Disable End of FLASH Operation and Error source interrupts for both banks */
+ __HAL_FLASH_DISABLE_IT(FLASH_IT_EOP_BANK1 | FLASH_IT_ERR_BANK1 | FLASH_IT_EOP_BANK2 | FLASH_IT_ERR_BANK2);
+#else
+ /* Operation is completed, disable the PG, PER and MER Bits */
+ CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER));
+
+ /* Disable End of FLASH Operation and Error source interrupts */
+ __HAL_FLASH_DISABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
+#endif /* FLASH_BANK2_END */
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(&pFlash);
+ }
+}
+
+/**
+ * @brief FLASH end of operation interrupt callback
+ * @param ReturnValue: The value saved in this parameter depends on the ongoing procedure
+ * - Mass Erase: No return value expected
+ * - Pages Erase: Address of the page which has been erased
+ * (if 0xFFFFFFFF, it means that all the selected pages have been erased)
+ * - Program: Address which was selected for data program
+ * @retval none
+ */
+__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(ReturnValue);
+
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_FLASH_EndOfOperationCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief FLASH operation error interrupt callback
+ * @param ReturnValue: The value saved in this parameter depends on the ongoing procedure
+ * - Mass Erase: No return value expected
+ * - Pages Erase: Address of the page which returned an error
+ * - Program: Address which was selected for data program
+ * @retval none
+ */
+__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(ReturnValue);
+
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_FLASH_OperationErrorCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions
+ * @brief management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the FLASH
+ memory operations.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Unlock the FLASH control register access
+ * @retval HAL Status
+ */
+HAL_StatusTypeDef HAL_FLASH_Unlock(void) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET) {
+ /* Authorize the FLASH Registers access */
+ WRITE_REG(FLASH->KEYR, FLASH_KEY1);
+ WRITE_REG(FLASH->KEYR, FLASH_KEY2);
+
+ /* Verify Flash is unlocked */
+ if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET) {
+ status = HAL_ERROR;
+ }
+ }
+#if defined(FLASH_BANK2_END)
+ if (READ_BIT(FLASH->CR2, FLASH_CR2_LOCK) != RESET) {
+ /* Authorize the FLASH BANK2 Registers access */
+ WRITE_REG(FLASH->KEYR2, FLASH_KEY1);
+ WRITE_REG(FLASH->KEYR2, FLASH_KEY2);
+
+ /* Verify Flash BANK2 is unlocked */
+ if (READ_BIT(FLASH->CR2, FLASH_CR2_LOCK) != RESET) {
+ status = HAL_ERROR;
+ }
+ }
+#endif /* FLASH_BANK2_END */
+
+ return status;
+}
+
+/**
+ * @brief Locks the FLASH control register access
+ * @retval HAL Status
+ */
+HAL_StatusTypeDef HAL_FLASH_Lock(void) {
+ /* Set the LOCK Bit to lock the FLASH Registers access */
+ SET_BIT(FLASH->CR, FLASH_CR_LOCK);
+
+#if defined(FLASH_BANK2_END)
+ /* Set the LOCK Bit to lock the FLASH BANK2 Registers access */
+ SET_BIT(FLASH->CR2, FLASH_CR2_LOCK);
+
+#endif /* FLASH_BANK2_END */
+ return HAL_OK;
+}
+
+/**
+ * @brief Unlock the FLASH Option Control Registers access.
+ * @retval HAL Status
+ */
+HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void) {
+ if (HAL_IS_BIT_CLR(FLASH->CR, FLASH_CR_OPTWRE)) {
+ /* Authorizes the Option Byte register programming */
+ WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1);
+ WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2);
+ } else {
+ return HAL_ERROR;
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Lock the FLASH Option Control Registers access.
+ * @retval HAL Status
+ */
+HAL_StatusTypeDef HAL_FLASH_OB_Lock(void) {
+ /* Clear the OPTWRE Bit to lock the FLASH Option Byte Registers access */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_OPTWRE);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Launch the option byte loading.
+ * @note This function will reset automatically the MCU.
+ * @retval None
+ */
+void HAL_FLASH_OB_Launch(void) {
+ /* Initiates a system reset request to launch the option byte loading */
+ HAL_NVIC_SystemReset();
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASH_Exported_Functions_Group3 Peripheral errors functions
+ * @brief Peripheral errors functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral Errors functions #####
+ ===============================================================================
+ [..]
+ This subsection permit to get in run-time errors of the FLASH peripheral.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Get the specific FLASH error flag.
+ * @retval FLASH_ErrorCode The returned value can be:
+ * @ref FLASH_Error_Codes
+ */
+uint32_t HAL_FLASH_GetError(void) { return pFlash.ErrorCode; }
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup FLASH_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Program a half-word (16-bit) at a specified address.
+ * @param Address specify the address to be programmed.
+ * @param Data specify the data to be programmed.
+ * @retval None
+ */
+static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data) {
+ /* Clean the error context */
+ pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
+
+#if defined(FLASH_BANK2_END)
+ if (Address <= FLASH_BANK1_END) {
+#endif /* FLASH_BANK2_END */
+ /* Proceed to program the new data */
+ SET_BIT(FLASH->CR, FLASH_CR_PG);
+#if defined(FLASH_BANK2_END)
+ } else {
+ /* Proceed to program the new data */
+ SET_BIT(FLASH->CR2, FLASH_CR2_PG);
+ }
+#endif /* FLASH_BANK2_END */
+
+ /* Write data in the address */
+ *(__IO uint16_t *)Address = Data;
+}
+
+/**
+ * @brief Wait for a FLASH operation to complete.
+ * @param Timeout maximum flash operation timeout
+ * @retval HAL Status
+ */
+HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout) {
+ /* Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
+ Even if the FLASH operation fails, the BUSY flag will be reset and an error
+ flag will be set */
+
+ uint32_t tickstart = HAL_GetTick();
+
+ while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY)) {
+ if (Timeout != HAL_MAX_DELAY) {
+ if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Check FLASH End of Operation flag */
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP)) {
+ /* Clear FLASH End of Operation pending bit */
+ __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
+ }
+
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_OPTVERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR)) {
+ /*Save the error code*/
+ FLASH_SetErrorCode();
+ return HAL_ERROR;
+ }
+
+ /* There is no error flag set */
+ return HAL_OK;
+}
+
+#if defined(FLASH_BANK2_END)
+/**
+ * @brief Wait for a FLASH BANK2 operation to complete.
+ * @param Timeout maximum flash operation timeout
+ * @retval HAL_StatusTypeDef HAL Status
+ */
+HAL_StatusTypeDef FLASH_WaitForLastOperationBank2(uint32_t Timeout) {
+ /* Wait for the FLASH BANK2 operation to complete by polling on BUSY flag to be reset.
+ Even if the FLASH BANK2 operation fails, the BUSY flag will be reset and an error
+ flag will be set */
+
+ uint32_t tickstart = HAL_GetTick();
+
+ while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY_BANK2)) {
+ if (Timeout != HAL_MAX_DELAY) {
+ if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Check FLASH End of Operation flag */
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP_BANK2)) {
+ /* Clear FLASH End of Operation pending bit */
+ __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK2);
+ }
+
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2)) {
+ /*Save the error code*/
+ FLASH_SetErrorCode();
+ return HAL_ERROR;
+ }
+
+ /* If there is an error flag set */
+ return HAL_OK;
+}
+#endif /* FLASH_BANK2_END */
+
+/**
+ * @brief Set the specific FLASH error flag.
+ * @retval None
+ */
+static void FLASH_SetErrorCode(void) {
+ uint32_t flags = 0U;
+
+#if defined(FLASH_BANK2_END)
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2))
+#else
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR))
+#endif /* FLASH_BANK2_END */
+ {
+ pFlash.ErrorCode |= HAL_FLASH_ERROR_WRP;
+#if defined(FLASH_BANK2_END)
+ flags |= FLASH_FLAG_WRPERR | FLASH_FLAG_WRPERR_BANK2;
+#else
+ flags |= FLASH_FLAG_WRPERR;
+#endif /* FLASH_BANK2_END */
+ }
+#if defined(FLASH_BANK2_END)
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2))
+#else
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
+#endif /* FLASH_BANK2_END */
+ {
+ pFlash.ErrorCode |= HAL_FLASH_ERROR_PROG;
+#if defined(FLASH_BANK2_END)
+ flags |= FLASH_FLAG_PGERR | FLASH_FLAG_PGERR_BANK2;
+#else
+ flags |= FLASH_FLAG_PGERR;
+#endif /* FLASH_BANK2_END */
+ }
+ if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_OPTVERR)) {
+ pFlash.ErrorCode |= HAL_FLASH_ERROR_OPTV;
+ __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR);
+ }
+
+ /* Clear FLASH error pending bits */
+ __HAL_FLASH_CLEAR_FLAG(flags);
+}
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_FLASH_MODULE_ENABLED */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c new file mode 100644 index 00000000..cdd487fc --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c @@ -0,0 +1,1037 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_flash_ex.c
+ * @author MCD Application Team
+ * @brief Extended FLASH HAL module driver.
+ *
+ * This file provides firmware functions to manage the following
+ * functionalities of the FLASH peripheral:
+ * + Extended Initialization/de-initialization functions
+ * + Extended I/O operation functions
+ * + Extended Peripheral Control functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### Flash peripheral extended features #####
+ ==============================================================================
+
+ ##### How to use this driver #####
+ ==============================================================================
+ [..] This driver provides functions to configure and program the FLASH memory
+ of all STM32F1xxx devices. It includes
+
+ (++) Set/Reset the write protection
+ (++) Program the user Option Bytes
+ (++) Get the Read protection Level
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+#ifdef HAL_FLASH_MODULE_ENABLED
+
+/** @addtogroup FLASH
+ * @{
+ */
+/** @addtogroup FLASH_Private_Variables
+ * @{
+ */
+/* Variables used for Erase pages under interruption*/
+extern FLASH_ProcessTypeDef pFlash;
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASHEx FLASHEx
+ * @brief FLASH HAL Extension module driver
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup FLASHEx_Private_Constants FLASHEx Private Constants
+ * @{
+ */
+#define FLASH_POSITION_IWDGSW_BIT FLASH_OBR_IWDG_SW_Pos
+#define FLASH_POSITION_OB_USERDATA0_BIT FLASH_OBR_DATA0_Pos
+#define FLASH_POSITION_OB_USERDATA1_BIT FLASH_OBR_DATA1_Pos
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/** @defgroup FLASHEx_Private_Macros FLASHEx Private Macros
+ * @{
+ */
+/**
+ * @}
+ */
+
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup FLASHEx_Private_Functions FLASHEx Private Functions
+ * @{
+ */
+/* Erase operations */
+static void FLASH_MassErase(uint32_t Banks);
+void FLASH_PageErase(uint32_t PageAddress);
+
+/* Option bytes control */
+static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage);
+static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage);
+static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel);
+static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig);
+static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data);
+static uint32_t FLASH_OB_GetWRP(void);
+static uint32_t FLASH_OB_GetRDP(void);
+static uint8_t FLASH_OB_GetUser(void);
+
+/**
+ * @}
+ */
+
+/* Exported functions ---------------------------------------------------------*/
+/** @defgroup FLASHEx_Exported_Functions FLASHEx Exported Functions
+ * @{
+ */
+
+/** @defgroup FLASHEx_Exported_Functions_Group1 FLASHEx Memory Erasing functions
+ * @brief FLASH Memory Erasing functions
+ *
+@verbatim
+ ==============================================================================
+ ##### FLASH Erasing Programming functions #####
+ ==============================================================================
+
+ [..] The FLASH Memory Erasing functions, includes the following functions:
+ (+) @ref HAL_FLASHEx_Erase: return only when erase has been done
+ (+) @ref HAL_FLASHEx_Erase_IT: end of erase is done when @ref HAL_FLASH_EndOfOperationCallback
+ is called with parameter 0xFFFFFFFF
+
+ [..] Any operation of erase should follow these steps:
+ (#) Call the @ref HAL_FLASH_Unlock() function to enable the flash control register and
+ program memory access.
+ (#) Call the desired function to erase page.
+ (#) Call the @ref HAL_FLASH_Lock() to disable the flash program memory access
+ (recommended to protect the FLASH memory against possible unwanted operation).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Perform a mass erase or erase the specified FLASH memory pages
+ * @note To correctly run this function, the @ref HAL_FLASH_Unlock() function
+ * must be called before.
+ * Call the @ref HAL_FLASH_Lock() to disable the flash memory access
+ * (recommended to protect the FLASH memory against possible unwanted operation)
+ * @param[in] pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
+ * contains the configuration information for the erasing.
+ *
+ * @param[out] PageError pointer to variable that
+ * contains the configuration information on faulty page in case of error
+ * (0xFFFFFFFF means that all the pages have been correctly erased)
+ *
+ * @retval HAL_StatusTypeDef HAL Status
+ */
+HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError) {
+ HAL_StatusTypeDef status = HAL_ERROR;
+ uint32_t address = 0U;
+
+ /* Process Locked */
+ __HAL_LOCK(&pFlash);
+
+ /* Check the parameters */
+ assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
+
+ if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE) {
+#if defined(FLASH_BANK2_END)
+ if (pEraseInit->Banks == FLASH_BANK_BOTH) {
+ /* Mass Erase requested for Bank1 and Bank2 */
+ /* Wait for last operation to be completed */
+ if ((FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK) && (FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK)) {
+ /*Mass erase to be done*/
+ FLASH_MassErase(FLASH_BANK_BOTH);
+
+ /* Wait for last operation to be completed */
+ if ((FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK) && (FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK)) {
+ status = HAL_OK;
+ }
+
+ /* If the erase operation is completed, disable the MER Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
+ CLEAR_BIT(FLASH->CR2, FLASH_CR2_MER);
+ }
+ } else if (pEraseInit->Banks == FLASH_BANK_2) {
+ /* Mass Erase requested for Bank2 */
+ /* Wait for last operation to be completed */
+ if (FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK) {
+ /*Mass erase to be done*/
+ FLASH_MassErase(FLASH_BANK_2);
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ /* If the erase operation is completed, disable the MER Bit */
+ CLEAR_BIT(FLASH->CR2, FLASH_CR2_MER);
+ }
+ } else
+#endif /* FLASH_BANK2_END */
+ {
+ /* Mass Erase requested for Bank1 */
+ /* Wait for last operation to be completed */
+ if (FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK) {
+ /*Mass erase to be done*/
+ FLASH_MassErase(FLASH_BANK_1);
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ /* If the erase operation is completed, disable the MER Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
+ }
+ }
+ } else {
+ /* Page Erase is requested */
+ /* Check the parameters */
+ assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress));
+ assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages));
+
+#if defined(FLASH_BANK2_END)
+ /* Page Erase requested on address located on bank2 */
+ if (pEraseInit->PageAddress > FLASH_BANK1_END) {
+ /* Wait for last operation to be completed */
+ if (FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK) {
+ /*Initialization of PageError variable*/
+ *PageError = 0xFFFFFFFFU;
+
+ /* Erase by page by page to be done*/
+ for (address = pEraseInit->PageAddress; address < (pEraseInit->PageAddress + (pEraseInit->NbPages) * FLASH_PAGE_SIZE); address += FLASH_PAGE_SIZE) {
+ FLASH_PageErase(address);
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperationBank2((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ /* If the erase operation is completed, disable the PER Bit */
+ CLEAR_BIT(FLASH->CR2, FLASH_CR2_PER);
+
+ if (status != HAL_OK) {
+ /* In case of error, stop erase procedure and return the faulty address */
+ *PageError = address;
+ break;
+ }
+ }
+ }
+ } else
+#endif /* FLASH_BANK2_END */
+ {
+ /* Page Erase requested on address located on bank1 */
+ /* Wait for last operation to be completed */
+ if (FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK) {
+ /*Initialization of PageError variable*/
+ *PageError = 0xFFFFFFFFU;
+
+ /* Erase page by page to be done*/
+ for (address = pEraseInit->PageAddress; address < ((pEraseInit->NbPages * FLASH_PAGE_SIZE) + pEraseInit->PageAddress); address += FLASH_PAGE_SIZE) {
+ FLASH_PageErase(address);
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ /* If the erase operation is completed, disable the PER Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_PER);
+
+ if (status != HAL_OK) {
+ /* In case of error, stop erase procedure and return the faulty address */
+ *PageError = address;
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(&pFlash);
+
+ return status;
+}
+
+/**
+ * @brief Perform a mass erase or erase the specified FLASH memory pages with interrupt enabled
+ * @note To correctly run this function, the @ref HAL_FLASH_Unlock() function
+ * must be called before.
+ * Call the @ref HAL_FLASH_Lock() to disable the flash memory access
+ * (recommended to protect the FLASH memory against possible unwanted operation)
+ * @param pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
+ * contains the configuration information for the erasing.
+ *
+ * @retval HAL_StatusTypeDef HAL Status
+ */
+HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process Locked */
+ __HAL_LOCK(&pFlash);
+
+ /* If procedure already ongoing, reject the next one */
+ if (pFlash.ProcedureOnGoing != FLASH_PROC_NONE) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
+
+ /* Enable End of FLASH Operation and Error source interrupts */
+ __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
+
+#if defined(FLASH_BANK2_END)
+ /* Enable End of FLASH Operation and Error source interrupts */
+ __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP_BANK2 | FLASH_IT_ERR_BANK2);
+
+#endif
+ if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE) {
+ /*Mass erase to be done*/
+ pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE;
+ FLASH_MassErase(pEraseInit->Banks);
+ } else {
+ /* Erase by page to be done*/
+
+ /* Check the parameters */
+ assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress));
+ assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages));
+
+ pFlash.ProcedureOnGoing = FLASH_PROC_PAGEERASE;
+ pFlash.DataRemaining = pEraseInit->NbPages;
+ pFlash.Address = pEraseInit->PageAddress;
+
+ /*Erase 1st page and wait for IT*/
+ FLASH_PageErase(pEraseInit->PageAddress);
+ }
+
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASHEx_Exported_Functions_Group2 Option Bytes Programming functions
+ * @brief Option Bytes Programming functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Option Bytes Programming functions #####
+ ==============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the FLASH
+ option bytes operations.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Erases the FLASH option bytes.
+ * @note This functions erases all option bytes except the Read protection (RDP).
+ * The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
+ * The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
+ * The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
+ * (system reset will occur)
+ * @retval HAL status
+ */
+
+HAL_StatusTypeDef HAL_FLASHEx_OBErase(void) {
+ uint8_t rdptmp = OB_RDP_LEVEL_0;
+ HAL_StatusTypeDef status = HAL_ERROR;
+
+ /* Get the actual read protection Option Byte value */
+ rdptmp = FLASH_OB_GetRDP();
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ if (status == HAL_OK) {
+ /* Clean the error context */
+ pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
+
+ /* If the previous operation is completed, proceed to erase the option bytes */
+ SET_BIT(FLASH->CR, FLASH_CR_OPTER);
+ SET_BIT(FLASH->CR, FLASH_CR_STRT);
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ /* If the erase operation is completed, disable the OPTER Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_OPTER);
+
+ if (status == HAL_OK) {
+ /* Restore the last read protection Option Byte value */
+ status = FLASH_OB_RDP_LevelConfig(rdptmp);
+ }
+ }
+
+ /* Return the erase status */
+ return status;
+}
+
+/**
+ * @brief Program option bytes
+ * @note The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
+ * The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
+ * The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
+ * (system reset will occur)
+ *
+ * @param pOBInit pointer to an FLASH_OBInitStruct structure that
+ * contains the configuration information for the programming.
+ *
+ * @retval HAL_StatusTypeDef HAL Status
+ */
+HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit) {
+ HAL_StatusTypeDef status = HAL_ERROR;
+
+ /* Process Locked */
+ __HAL_LOCK(&pFlash);
+
+ /* Check the parameters */
+ assert_param(IS_OPTIONBYTE(pOBInit->OptionType));
+
+ /* Write protection configuration */
+ if ((pOBInit->OptionType & OPTIONBYTE_WRP) == OPTIONBYTE_WRP) {
+ assert_param(IS_WRPSTATE(pOBInit->WRPState));
+ if (pOBInit->WRPState == OB_WRPSTATE_ENABLE) {
+ /* Enable of Write protection on the selected page */
+ status = FLASH_OB_EnableWRP(pOBInit->WRPPage);
+ } else {
+ /* Disable of Write protection on the selected page */
+ status = FLASH_OB_DisableWRP(pOBInit->WRPPage);
+ }
+ if (status != HAL_OK) {
+ /* Process Unlocked */
+ __HAL_UNLOCK(&pFlash);
+ return status;
+ }
+ }
+
+ /* Read protection configuration */
+ if ((pOBInit->OptionType & OPTIONBYTE_RDP) == OPTIONBYTE_RDP) {
+ status = FLASH_OB_RDP_LevelConfig(pOBInit->RDPLevel);
+ if (status != HAL_OK) {
+ /* Process Unlocked */
+ __HAL_UNLOCK(&pFlash);
+ return status;
+ }
+ }
+
+ /* USER configuration */
+ if ((pOBInit->OptionType & OPTIONBYTE_USER) == OPTIONBYTE_USER) {
+ status = FLASH_OB_UserConfig(pOBInit->USERConfig);
+ if (status != HAL_OK) {
+ /* Process Unlocked */
+ __HAL_UNLOCK(&pFlash);
+ return status;
+ }
+ }
+
+ /* DATA configuration*/
+ if ((pOBInit->OptionType & OPTIONBYTE_DATA) == OPTIONBYTE_DATA) {
+ status = FLASH_OB_ProgramData(pOBInit->DATAAddress, pOBInit->DATAData);
+ if (status != HAL_OK) {
+ /* Process Unlocked */
+ __HAL_UNLOCK(&pFlash);
+ return status;
+ }
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(&pFlash);
+
+ return status;
+}
+
+/**
+ * @brief Get the Option byte configuration
+ * @param pOBInit pointer to an FLASH_OBInitStruct structure that
+ * contains the configuration information for the programming.
+ *
+ * @retval None
+ */
+void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit) {
+ pOBInit->OptionType = OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER;
+
+ /*Get WRP*/
+ pOBInit->WRPPage = FLASH_OB_GetWRP();
+
+ /*Get RDP Level*/
+ pOBInit->RDPLevel = FLASH_OB_GetRDP();
+
+ /*Get USER*/
+ pOBInit->USERConfig = FLASH_OB_GetUser();
+}
+
+/**
+ * @brief Get the Option byte user data
+ * @param DATAAdress Address of the option byte DATA
+ * This parameter can be one of the following values:
+ * @arg @ref OB_DATA_ADDRESS_DATA0
+ * @arg @ref OB_DATA_ADDRESS_DATA1
+ * @retval Value programmed in USER data
+ */
+uint32_t HAL_FLASHEx_OBGetUserData(uint32_t DATAAdress) {
+ uint32_t value = 0;
+
+ if (DATAAdress == OB_DATA_ADDRESS_DATA0) {
+ /* Get value programmed in OB USER Data0 */
+ value = READ_BIT(FLASH->OBR, FLASH_OBR_DATA0) >> FLASH_POSITION_OB_USERDATA0_BIT;
+ } else {
+ /* Get value programmed in OB USER Data1 */
+ value = READ_BIT(FLASH->OBR, FLASH_OBR_DATA1) >> FLASH_POSITION_OB_USERDATA1_BIT;
+ }
+
+ return value;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup FLASHEx_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Full erase of FLASH memory Bank
+ * @param Banks Banks to be erased
+ * This parameter can be one of the following values:
+ * @arg @ref FLASH_BANK_1 Bank1 to be erased
+ @if STM32F101xG
+ * @arg @ref FLASH_BANK_2 Bank2 to be erased
+ * @arg @ref FLASH_BANK_BOTH Bank1 and Bank2 to be erased
+ @endif
+ @if STM32F103xG
+ * @arg @ref FLASH_BANK_2 Bank2 to be erased
+ * @arg @ref FLASH_BANK_BOTH Bank1 and Bank2 to be erased
+ @endif
+ *
+ * @retval None
+ */
+static void FLASH_MassErase(uint32_t Banks) {
+ /* Check the parameters */
+ assert_param(IS_FLASH_BANK(Banks));
+
+ /* Clean the error context */
+ pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
+
+#if defined(FLASH_BANK2_END)
+ if (Banks == FLASH_BANK_BOTH) {
+ /* bank1 & bank2 will be erased*/
+ SET_BIT(FLASH->CR, FLASH_CR_MER);
+ SET_BIT(FLASH->CR2, FLASH_CR2_MER);
+ SET_BIT(FLASH->CR, FLASH_CR_STRT);
+ SET_BIT(FLASH->CR2, FLASH_CR2_STRT);
+ } else if (Banks == FLASH_BANK_2) {
+ /*Only bank2 will be erased*/
+ SET_BIT(FLASH->CR2, FLASH_CR2_MER);
+ SET_BIT(FLASH->CR2, FLASH_CR2_STRT);
+ } else {
+#endif /* FLASH_BANK2_END */
+#if !defined(FLASH_BANK2_END)
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(Banks);
+#endif /* FLASH_BANK2_END */
+ /* Only bank1 will be erased*/
+ SET_BIT(FLASH->CR, FLASH_CR_MER);
+ SET_BIT(FLASH->CR, FLASH_CR_STRT);
+#if defined(FLASH_BANK2_END)
+ }
+#endif /* FLASH_BANK2_END */
+}
+
+/**
+ * @brief Enable the write protection of the desired pages
+ * @note An option byte erase is done automatically in this function.
+ * @note When the memory read protection level is selected (RDP level = 1),
+ * it is not possible to program or erase the flash page i if
+ * debug features are connected or boot code is executed in RAM, even if nWRPi = 1
+ *
+ * @param WriteProtectPage specifies the page(s) to be write protected.
+ * The value of this parameter depend on device used within the same series
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage) {
+ HAL_StatusTypeDef status = HAL_OK;
+ uint16_t WRP0_Data = 0xFFFF;
+#if defined(FLASH_WRP1_WRP1)
+ uint16_t WRP1_Data = 0xFFFF;
+#endif /* FLASH_WRP1_WRP1 */
+#if defined(FLASH_WRP2_WRP2)
+ uint16_t WRP2_Data = 0xFFFF;
+#endif /* FLASH_WRP2_WRP2 */
+#if defined(FLASH_WRP3_WRP3)
+ uint16_t WRP3_Data = 0xFFFF;
+#endif /* FLASH_WRP3_WRP3 */
+
+ /* Check the parameters */
+ assert_param(IS_OB_WRP(WriteProtectPage));
+
+ /* Get current write protected pages and the new pages to be protected ******/
+ WriteProtectPage = (uint32_t)(~((~FLASH_OB_GetWRP()) | WriteProtectPage));
+
+#if defined(OB_WRP_PAGES0TO15MASK)
+ WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK);
+#elif defined(OB_WRP_PAGES0TO31MASK)
+ WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK);
+#endif /* OB_WRP_PAGES0TO31MASK */
+
+#if defined(OB_WRP_PAGES16TO31MASK)
+ WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8U);
+#elif defined(OB_WRP_PAGES32TO63MASK)
+ WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8U);
+#endif /* OB_WRP_PAGES32TO63MASK */
+
+#if defined(OB_WRP_PAGES64TO95MASK)
+ WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES64TO95MASK) >> 16U);
+#endif /* OB_WRP_PAGES64TO95MASK */
+#if defined(OB_WRP_PAGES32TO47MASK)
+ WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16U);
+#endif /* OB_WRP_PAGES32TO47MASK */
+
+#if defined(OB_WRP_PAGES96TO127MASK)
+ WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES96TO127MASK) >> 24U);
+#elif defined(OB_WRP_PAGES48TO255MASK)
+ WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO255MASK) >> 24U);
+#elif defined(OB_WRP_PAGES48TO511MASK)
+ WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO511MASK) >> 24U);
+#elif defined(OB_WRP_PAGES48TO127MASK)
+ WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24U);
+#endif /* OB_WRP_PAGES96TO127MASK */
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ if (status == HAL_OK) {
+ /* Clean the error context */
+ pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
+
+ /* To be able to write again option byte, need to perform a option byte erase */
+ status = HAL_FLASHEx_OBErase();
+ if (status == HAL_OK) {
+ /* Enable write protection */
+ SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
+
+#if defined(FLASH_WRP0_WRP0)
+ if (WRP0_Data != 0xFFU) {
+ OB->WRP0 &= WRP0_Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+ }
+#endif /* FLASH_WRP0_WRP0 */
+
+#if defined(FLASH_WRP1_WRP1)
+ if ((status == HAL_OK) && (WRP1_Data != 0xFFU)) {
+ OB->WRP1 &= WRP1_Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+ }
+#endif /* FLASH_WRP1_WRP1 */
+
+#if defined(FLASH_WRP2_WRP2)
+ if ((status == HAL_OK) && (WRP2_Data != 0xFFU)) {
+ OB->WRP2 &= WRP2_Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+ }
+#endif /* FLASH_WRP2_WRP2 */
+
+#if defined(FLASH_WRP3_WRP3)
+ if ((status == HAL_OK) && (WRP3_Data != 0xFFU)) {
+ OB->WRP3 &= WRP3_Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+ }
+#endif /* FLASH_WRP3_WRP3 */
+
+ /* if the program operation is completed, disable the OPTPG Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
+ }
+ }
+
+ return status;
+}
+
+/**
+ * @brief Disable the write protection of the desired pages
+ * @note An option byte erase is done automatically in this function.
+ * @note When the memory read protection level is selected (RDP level = 1),
+ * it is not possible to program or erase the flash page i if
+ * debug features are connected or boot code is executed in RAM, even if nWRPi = 1
+ *
+ * @param WriteProtectPage specifies the page(s) to be write unprotected.
+ * The value of this parameter depend on device used within the same series
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage) {
+ HAL_StatusTypeDef status = HAL_OK;
+ uint16_t WRP0_Data = 0xFFFF;
+#if defined(FLASH_WRP1_WRP1)
+ uint16_t WRP1_Data = 0xFFFF;
+#endif /* FLASH_WRP1_WRP1 */
+#if defined(FLASH_WRP2_WRP2)
+ uint16_t WRP2_Data = 0xFFFF;
+#endif /* FLASH_WRP2_WRP2 */
+#if defined(FLASH_WRP3_WRP3)
+ uint16_t WRP3_Data = 0xFFFF;
+#endif /* FLASH_WRP3_WRP3 */
+
+ /* Check the parameters */
+ assert_param(IS_OB_WRP(WriteProtectPage));
+
+ /* Get current write protected pages and the new pages to be unprotected ******/
+ WriteProtectPage = (FLASH_OB_GetWRP() | WriteProtectPage);
+
+#if defined(OB_WRP_PAGES0TO15MASK)
+ WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK);
+#elif defined(OB_WRP_PAGES0TO31MASK)
+ WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK);
+#endif /* OB_WRP_PAGES0TO31MASK */
+
+#if defined(OB_WRP_PAGES16TO31MASK)
+ WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8U);
+#elif defined(OB_WRP_PAGES32TO63MASK)
+ WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8U);
+#endif /* OB_WRP_PAGES32TO63MASK */
+
+#if defined(OB_WRP_PAGES64TO95MASK)
+ WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES64TO95MASK) >> 16U);
+#endif /* OB_WRP_PAGES64TO95MASK */
+#if defined(OB_WRP_PAGES32TO47MASK)
+ WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16U);
+#endif /* OB_WRP_PAGES32TO47MASK */
+
+#if defined(OB_WRP_PAGES96TO127MASK)
+ WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES96TO127MASK) >> 24U);
+#elif defined(OB_WRP_PAGES48TO255MASK)
+ WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO255MASK) >> 24U);
+#elif defined(OB_WRP_PAGES48TO511MASK)
+ WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO511MASK) >> 24U);
+#elif defined(OB_WRP_PAGES48TO127MASK)
+ WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24U);
+#endif /* OB_WRP_PAGES96TO127MASK */
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ if (status == HAL_OK) {
+ /* Clean the error context */
+ pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
+
+ /* To be able to write again option byte, need to perform a option byte erase */
+ status = HAL_FLASHEx_OBErase();
+ if (status == HAL_OK) {
+ SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
+
+#if defined(FLASH_WRP0_WRP0)
+ if (WRP0_Data != 0xFFU) {
+ OB->WRP0 |= WRP0_Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+ }
+#endif /* FLASH_WRP0_WRP0 */
+
+#if defined(FLASH_WRP1_WRP1)
+ if ((status == HAL_OK) && (WRP1_Data != 0xFFU)) {
+ OB->WRP1 |= WRP1_Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+ }
+#endif /* FLASH_WRP1_WRP1 */
+
+#if defined(FLASH_WRP2_WRP2)
+ if ((status == HAL_OK) && (WRP2_Data != 0xFFU)) {
+ OB->WRP2 |= WRP2_Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+ }
+#endif /* FLASH_WRP2_WRP2 */
+
+#if defined(FLASH_WRP3_WRP3)
+ if ((status == HAL_OK) && (WRP3_Data != 0xFFU)) {
+ OB->WRP3 |= WRP3_Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+ }
+#endif /* FLASH_WRP3_WRP3 */
+
+ /* if the program operation is completed, disable the OPTPG Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
+ }
+ }
+ return status;
+}
+
+/**
+ * @brief Set the read protection level.
+ * @param ReadProtectLevel specifies the read protection level.
+ * This parameter can be one of the following values:
+ * @arg @ref OB_RDP_LEVEL_0 No protection
+ * @arg @ref OB_RDP_LEVEL_1 Read protection of the memory
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_OB_RDP_LEVEL(ReadProtectLevel));
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ if (status == HAL_OK) {
+ /* Clean the error context */
+ pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
+
+ /* If the previous operation is completed, proceed to erase the option bytes */
+ SET_BIT(FLASH->CR, FLASH_CR_OPTER);
+ SET_BIT(FLASH->CR, FLASH_CR_STRT);
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ /* If the erase operation is completed, disable the OPTER Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_OPTER);
+
+ if (status == HAL_OK) {
+ /* Enable the Option Bytes Programming operation */
+ SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
+
+ WRITE_REG(OB->RDP, ReadProtectLevel);
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ /* if the program operation is completed, disable the OPTPG Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
+ }
+ }
+
+ return status;
+}
+
+/**
+ * @brief Program the FLASH User Option Byte.
+ * @note Programming of the OB should be performed only after an erase (otherwise PGERR occurs)
+ * @param UserConfig The FLASH User Option Bytes values FLASH_OBR_IWDG_SW(Bit2),
+ * FLASH_OBR_nRST_STOP(Bit3),FLASH_OBR_nRST_STDBY(Bit4).
+ * And BFBF2(Bit5) for STM32F101xG and STM32F103xG .
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_OB_IWDG_SOURCE((UserConfig & OB_IWDG_SW)));
+ assert_param(IS_OB_STOP_SOURCE((UserConfig & OB_STOP_NO_RST)));
+ assert_param(IS_OB_STDBY_SOURCE((UserConfig & OB_STDBY_NO_RST)));
+#if defined(FLASH_BANK2_END)
+ assert_param(IS_OB_BOOT1((UserConfig & OB_BOOT1_SET)));
+#endif /* FLASH_BANK2_END */
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ if (status == HAL_OK) {
+ /* Clean the error context */
+ pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
+
+ /* Enable the Option Bytes Programming operation */
+ SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
+
+#if defined(FLASH_BANK2_END)
+ OB->USER = (UserConfig | 0xF0U);
+#else
+ OB->USER = (UserConfig | 0x88U);
+#endif /* FLASH_BANK2_END */
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ /* if the program operation is completed, disable the OPTPG Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
+ }
+
+ return status;
+}
+
+/**
+ * @brief Programs a half word at a specified Option Byte Data address.
+ * @note The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
+ * The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
+ * The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
+ * (system reset will occur)
+ * Programming of the OB should be performed only after an erase (otherwise PGERR occurs)
+ * @param Address specifies the address to be programmed.
+ * This parameter can be 0x1FFFF804 or 0x1FFFF806.
+ * @param Data specifies the data to be programmed.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data) {
+ HAL_StatusTypeDef status = HAL_ERROR;
+
+ /* Check the parameters */
+ assert_param(IS_OB_DATA_ADDRESS(Address));
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ if (status == HAL_OK) {
+ /* Clean the error context */
+ pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
+
+ /* Enables the Option Bytes Programming operation */
+ SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
+ *(__IO uint16_t *)Address = Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
+
+ /* If the program operation is completed, disable the OPTPG Bit */
+ CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
+ }
+ /* Return the Option Byte Data Program Status */
+ return status;
+}
+
+/**
+ * @brief Return the FLASH Write Protection Option Bytes value.
+ * @retval The FLASH Write Protection Option Bytes value
+ */
+static uint32_t FLASH_OB_GetWRP(void) {
+ /* Return the FLASH write protection Register value */
+ return (uint32_t)(READ_REG(FLASH->WRPR));
+}
+
+/**
+ * @brief Returns the FLASH Read Protection level.
+ * @retval FLASH RDP level
+ * This parameter can be one of the following values:
+ * @arg @ref OB_RDP_LEVEL_0 No protection
+ * @arg @ref OB_RDP_LEVEL_1 Read protection of the memory
+ */
+static uint32_t FLASH_OB_GetRDP(void) {
+ uint32_t readstatus = OB_RDP_LEVEL_0;
+ uint32_t tmp_reg = 0U;
+
+ /* Read RDP level bits */
+ tmp_reg = READ_BIT(FLASH->OBR, FLASH_OBR_RDPRT);
+
+ if (tmp_reg == FLASH_OBR_RDPRT) {
+ readstatus = OB_RDP_LEVEL_1;
+ } else {
+ readstatus = OB_RDP_LEVEL_0;
+ }
+
+ return readstatus;
+}
+
+/**
+ * @brief Return the FLASH User Option Byte value.
+ * @retval The FLASH User Option Bytes values: FLASH_OBR_IWDG_SW(Bit2),
+ * FLASH_OBR_nRST_STOP(Bit3),FLASH_OBR_nRST_STDBY(Bit4).
+ * And FLASH_OBR_BFB2(Bit5) for STM32F101xG and STM32F103xG .
+ */
+static uint8_t FLASH_OB_GetUser(void) {
+ /* Return the User Option Byte */
+ return (uint8_t)((READ_REG(FLASH->OBR) & FLASH_OBR_USER) >> FLASH_POSITION_IWDGSW_BIT);
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup FLASH
+ * @{
+ */
+
+/** @addtogroup FLASH_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Erase the specified FLASH memory page
+ * @param PageAddress FLASH page to erase
+ * The value of this parameter depend on device used within the same series
+ *
+ * @retval None
+ */
+void FLASH_PageErase(uint32_t PageAddress) {
+ /* Clean the error context */
+ pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
+
+#if defined(FLASH_BANK2_END)
+ if (PageAddress > FLASH_BANK1_END) {
+ /* Proceed to erase the page */
+ SET_BIT(FLASH->CR2, FLASH_CR2_PER);
+ WRITE_REG(FLASH->AR2, PageAddress);
+ SET_BIT(FLASH->CR2, FLASH_CR2_STRT);
+ } else {
+#endif /* FLASH_BANK2_END */
+ /* Proceed to erase the page */
+ SET_BIT(FLASH->CR, FLASH_CR_PER);
+ WRITE_REG(FLASH->AR, PageAddress);
+ SET_BIT(FLASH->CR, FLASH_CR_STRT);
+#if defined(FLASH_BANK2_END)
+ }
+#endif /* FLASH_BANK2_END */
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_FLASH_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio.c new file mode 100644 index 00000000..f9616265 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio.c @@ -0,0 +1,544 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_gpio.c
+ * @author MCD Application Team
+ * @brief GPIO HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the General Purpose Input/Output (GPIO) peripheral:
+ * + Initialization and de-initialization functions
+ * + IO operation functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### GPIO Peripheral features #####
+ ==============================================================================
+ [..]
+ Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
+ port bit of the General Purpose IO (GPIO) Ports, can be individually configured by software
+ in several modes:
+ (+) Input mode
+ (+) Analog mode
+ (+) Output mode
+ (+) Alternate function mode
+ (+) External interrupt/event lines
+
+ [..]
+ During and just after reset, the alternate functions and external interrupt
+ lines are not active and the I/O ports are configured in input floating mode.
+
+ [..]
+ All GPIO pins have weak internal pull-up and pull-down resistors, which can be
+ activated or not.
+
+ [..]
+ In Output or Alternate mode, each IO can be configured on open-drain or push-pull
+ type and the IO speed can be selected depending on the VDD value.
+
+ [..]
+ All ports have external interrupt/event capability. To use external interrupt
+ lines, the port must be configured in input mode. All available GPIO pins are
+ connected to the 16 external interrupt/event lines from EXTI0 to EXTI15.
+
+ [..]
+ The external interrupt/event controller consists of up to 20 edge detectors in connectivity
+ line devices, or 19 edge detectors in other devices for generating event/interrupt requests.
+ Each input line can be independently configured to select the type (event or interrupt) and
+ the corresponding trigger event (rising or falling or both). Each line can also masked
+ independently. A pending register maintains the status line of the interrupt requests
+
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ (#) Enable the GPIO APB2 clock using the following function : __HAL_RCC_GPIOx_CLK_ENABLE().
+
+ (#) Configure the GPIO pin(s) using HAL_GPIO_Init().
+ (++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure
+ (++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef
+ structure.
+ (++) In case of Output or alternate function mode selection: the speed is
+ configured through "Speed" member from GPIO_InitTypeDef structure
+ (++) Analog mode is required when a pin is to be used as ADC channel
+ or DAC output.
+ (++) In case of external interrupt/event selection the "Mode" member from
+ GPIO_InitTypeDef structure select the type (interrupt or event) and
+ the corresponding trigger event (rising or falling or both).
+
+ (#) In case of external interrupt/event mode selection, configure NVIC IRQ priority
+ mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using
+ HAL_NVIC_EnableIRQ().
+
+ (#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin().
+
+ (#) To set/reset the level of a pin configured in output mode use
+ HAL_GPIO_WritePin()/HAL_GPIO_TogglePin().
+
+ (#) To lock pin configuration until next reset use HAL_GPIO_LockPin().
+
+ (#) During and just after reset, the alternate functions are not
+ active and the GPIO pins are configured in input floating mode (except JTAG
+ pins).
+
+ (#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose
+ (PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has
+ priority over the GPIO function.
+
+ (#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as
+ general purpose PD0 and PD1, respectively, when the HSE oscillator is off.
+ The HSE has priority over the GPIO function.
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup GPIO GPIO
+ * @brief GPIO HAL module driver
+ * @{
+ */
+
+#ifdef HAL_GPIO_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @addtogroup GPIO_Private_Constants GPIO Private Constants
+ * @{
+ */
+#define GPIO_MODE 0x00000003u
+#define EXTI_MODE 0x10000000u
+#define GPIO_MODE_IT 0x00010000u
+#define GPIO_MODE_EVT 0x00020000u
+#define RISING_EDGE 0x00100000u
+#define FALLING_EDGE 0x00200000u
+#define GPIO_OUTPUT_TYPE 0x00000010u
+
+#define GPIO_NUMBER 16u
+
+/* Definitions for bit manipulation of CRL and CRH register */
+#define GPIO_CR_MODE_INPUT 0x00000000u /*!< 00: Input mode (reset state) */
+#define GPIO_CR_CNF_ANALOG 0x00000000u /*!< 00: Analog mode */
+#define GPIO_CR_CNF_INPUT_FLOATING 0x00000004u /*!< 01: Floating input (reset state) */
+#define GPIO_CR_CNF_INPUT_PU_PD 0x00000008u /*!< 10: Input with pull-up / pull-down */
+#define GPIO_CR_CNF_GP_OUTPUT_PP 0x00000000u /*!< 00: General purpose output push-pull */
+#define GPIO_CR_CNF_GP_OUTPUT_OD 0x00000004u /*!< 01: General purpose output Open-drain */
+#define GPIO_CR_CNF_AF_OUTPUT_PP 0x00000008u /*!< 10: Alternate function output Push-pull */
+#define GPIO_CR_CNF_AF_OUTPUT_OD 0x0000000Cu /*!< 11: Alternate function output Open-drain */
+
+/**
+ * @}
+ */
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+/** @defgroup GPIO_Exported_Functions GPIO Exported Functions
+ * @{
+ */
+
+/** @defgroup GPIO_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..]
+ This section provides functions allowing to initialize and de-initialize the GPIOs
+ to be ready for use.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the GPIOx peripheral according to the specified parameters in the GPIO_Init.
+ * @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
+ * @param GPIO_Init: pointer to a GPIO_InitTypeDef structure that contains
+ * the configuration information for the specified GPIO peripheral.
+ * @retval None
+ */
+void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init) {
+ uint32_t position = 0x00u;
+ uint32_t ioposition;
+ uint32_t iocurrent;
+ uint32_t temp;
+ uint32_t config = 0x00u;
+ __IO uint32_t *configregister; /* Store the address of CRL or CRH register based on pin number */
+ uint32_t registeroffset; /* offset used during computation of CNF and MODE bits placement inside CRL or CRH register */
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
+ assert_param(IS_GPIO_PIN(GPIO_Init->Pin));
+ assert_param(IS_GPIO_MODE(GPIO_Init->Mode));
+
+ /* Configure the port pins */
+ while (((GPIO_Init->Pin) >> position) != 0x00u) {
+ /* Get the IO position */
+ ioposition = (0x01uL << position);
+
+ /* Get the current IO position */
+ iocurrent = (uint32_t)(GPIO_Init->Pin) & ioposition;
+
+ if (iocurrent == ioposition) {
+ /* Check the Alternate function parameters */
+ assert_param(IS_GPIO_AF_INSTANCE(GPIOx));
+
+ /* Based on the required mode, filling config variable with MODEy[1:0] and CNFy[3:2] corresponding bits */
+ switch (GPIO_Init->Mode) {
+ /* If we are configuring the pin in OUTPUT push-pull mode */
+ case GPIO_MODE_OUTPUT_PP:
+ /* Check the GPIO speed parameter */
+ assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
+ config = GPIO_Init->Speed + GPIO_CR_CNF_GP_OUTPUT_PP;
+ break;
+
+ /* If we are configuring the pin in OUTPUT open-drain mode */
+ case GPIO_MODE_OUTPUT_OD:
+ /* Check the GPIO speed parameter */
+ assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
+ config = GPIO_Init->Speed + GPIO_CR_CNF_GP_OUTPUT_OD;
+ break;
+
+ /* If we are configuring the pin in ALTERNATE FUNCTION push-pull mode */
+ case GPIO_MODE_AF_PP:
+ /* Check the GPIO speed parameter */
+ assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
+ config = GPIO_Init->Speed + GPIO_CR_CNF_AF_OUTPUT_PP;
+ break;
+
+ /* If we are configuring the pin in ALTERNATE FUNCTION open-drain mode */
+ case GPIO_MODE_AF_OD:
+ /* Check the GPIO speed parameter */
+ assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
+ config = GPIO_Init->Speed + GPIO_CR_CNF_AF_OUTPUT_OD;
+ break;
+
+ /* If we are configuring the pin in INPUT (also applicable to EVENT and IT mode) */
+ case GPIO_MODE_INPUT:
+ case GPIO_MODE_IT_RISING:
+ case GPIO_MODE_IT_FALLING:
+ case GPIO_MODE_IT_RISING_FALLING:
+ case GPIO_MODE_EVT_RISING:
+ case GPIO_MODE_EVT_FALLING:
+ case GPIO_MODE_EVT_RISING_FALLING:
+ /* Check the GPIO pull parameter */
+ assert_param(IS_GPIO_PULL(GPIO_Init->Pull));
+ if (GPIO_Init->Pull == GPIO_NOPULL) {
+ config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_INPUT_FLOATING;
+ } else if (GPIO_Init->Pull == GPIO_PULLUP) {
+ config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_INPUT_PU_PD;
+
+ /* Set the corresponding ODR bit */
+ GPIOx->BSRR = ioposition;
+ } else /* GPIO_PULLDOWN */
+ {
+ config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_INPUT_PU_PD;
+
+ /* Reset the corresponding ODR bit */
+ GPIOx->BRR = ioposition;
+ }
+ break;
+
+ /* If we are configuring the pin in INPUT analog mode */
+ case GPIO_MODE_ANALOG:
+ config = GPIO_CR_MODE_INPUT + GPIO_CR_CNF_ANALOG;
+ break;
+
+ /* Parameters are checked with assert_param */
+ default:
+ break;
+ }
+
+ /* Check if the current bit belongs to first half or last half of the pin count number
+ in order to address CRH or CRL register*/
+ configregister = (iocurrent < GPIO_PIN_8) ? &GPIOx->CRL : &GPIOx->CRH;
+ registeroffset = (iocurrent < GPIO_PIN_8) ? (position << 2u) : ((position - 8u) << 2u);
+
+ /* Apply the new configuration of the pin to the register */
+ MODIFY_REG((*configregister), ((GPIO_CRL_MODE0 | GPIO_CRL_CNF0) << registeroffset), (config << registeroffset));
+
+ /*--------------------- EXTI Mode Configuration ------------------------*/
+ /* Configure the External Interrupt or event for the current IO */
+ if ((GPIO_Init->Mode & EXTI_MODE) == EXTI_MODE) {
+ /* Enable AFIO Clock */
+ __HAL_RCC_AFIO_CLK_ENABLE();
+ temp = AFIO->EXTICR[position >> 2u];
+ CLEAR_BIT(temp, (0x0Fu) << (4u * (position & 0x03u)));
+ SET_BIT(temp, (GPIO_GET_INDEX(GPIOx)) << (4u * (position & 0x03u)));
+ AFIO->EXTICR[position >> 2u] = temp;
+
+ /* Configure the interrupt mask */
+ if ((GPIO_Init->Mode & GPIO_MODE_IT) == GPIO_MODE_IT) {
+ SET_BIT(EXTI->IMR, iocurrent);
+ } else {
+ CLEAR_BIT(EXTI->IMR, iocurrent);
+ }
+
+ /* Configure the event mask */
+ if ((GPIO_Init->Mode & GPIO_MODE_EVT) == GPIO_MODE_EVT) {
+ SET_BIT(EXTI->EMR, iocurrent);
+ } else {
+ CLEAR_BIT(EXTI->EMR, iocurrent);
+ }
+
+ /* Enable or disable the rising trigger */
+ if ((GPIO_Init->Mode & RISING_EDGE) == RISING_EDGE) {
+ SET_BIT(EXTI->RTSR, iocurrent);
+ } else {
+ CLEAR_BIT(EXTI->RTSR, iocurrent);
+ }
+
+ /* Enable or disable the falling trigger */
+ if ((GPIO_Init->Mode & FALLING_EDGE) == FALLING_EDGE) {
+ SET_BIT(EXTI->FTSR, iocurrent);
+ } else {
+ CLEAR_BIT(EXTI->FTSR, iocurrent);
+ }
+ }
+ }
+
+ position++;
+ }
+}
+
+/**
+ * @brief De-initializes the GPIOx peripheral registers to their default reset values.
+ * @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
+ * @param GPIO_Pin: specifies the port bit to be written.
+ * This parameter can be one of GPIO_PIN_x where x can be (0..15).
+ * @retval None
+ */
+void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin) {
+ uint32_t position = 0x00u;
+ uint32_t iocurrent;
+ uint32_t tmp;
+ __IO uint32_t *configregister; /* Store the address of CRL or CRH register based on pin number */
+ uint32_t registeroffset;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
+ assert_param(IS_GPIO_PIN(GPIO_Pin));
+
+ /* Configure the port pins */
+ while ((GPIO_Pin >> position) != 0u) {
+ /* Get current io position */
+ iocurrent = (GPIO_Pin) & (1uL << position);
+
+ if (iocurrent) {
+ /*------------------------- EXTI Mode Configuration --------------------*/
+ /* Clear the External Interrupt or Event for the current IO */
+
+ tmp = AFIO->EXTICR[position >> 2u];
+ tmp &= 0x0FuL << (4u * (position & 0x03u));
+ if (tmp == (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u)))) {
+ tmp = 0x0FuL << (4u * (position & 0x03u));
+ CLEAR_BIT(AFIO->EXTICR[position >> 2u], tmp);
+
+ /* Clear EXTI line configuration */
+ CLEAR_BIT(EXTI->IMR, (uint32_t)iocurrent);
+ CLEAR_BIT(EXTI->EMR, (uint32_t)iocurrent);
+
+ /* Clear Rising Falling edge configuration */
+ CLEAR_BIT(EXTI->RTSR, (uint32_t)iocurrent);
+ CLEAR_BIT(EXTI->FTSR, (uint32_t)iocurrent);
+ }
+ /*------------------------- GPIO Mode Configuration --------------------*/
+ /* Check if the current bit belongs to first half or last half of the pin count number
+ in order to address CRH or CRL register */
+ configregister = (iocurrent < GPIO_PIN_8) ? &GPIOx->CRL : &GPIOx->CRH;
+ registeroffset = (iocurrent < GPIO_PIN_8) ? (position << 2u) : ((position - 8u) << 2u);
+
+ /* CRL/CRH default value is floating input(0x04) shifted to correct position */
+ MODIFY_REG(*configregister, ((GPIO_CRL_MODE0 | GPIO_CRL_CNF0) << registeroffset), GPIO_CRL_CNF0_0 << registeroffset);
+
+ /* ODR default value is 0 */
+ CLEAR_BIT(GPIOx->ODR, iocurrent);
+ }
+
+ position++;
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup GPIO_Exported_Functions_Group2 IO operation functions
+ * @brief GPIO Read and Write
+ *
+@verbatim
+ ===============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to manage the GPIOs.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Reads the specified input port pin.
+ * @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
+ * @param GPIO_Pin: specifies the port bit to read.
+ * This parameter can be GPIO_PIN_x where x can be (0..15).
+ * @retval The input port pin value.
+ */
+GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) {
+ GPIO_PinState bitstatus;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_PIN(GPIO_Pin));
+
+ if ((GPIOx->IDR & GPIO_Pin) != (uint32_t)GPIO_PIN_RESET) {
+ bitstatus = GPIO_PIN_SET;
+ } else {
+ bitstatus = GPIO_PIN_RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Sets or clears the selected data port bit.
+ *
+ * @note This function uses GPIOx_BSRR register to allow atomic read/modify
+ * accesses. In this way, there is no risk of an IRQ occurring between
+ * the read and the modify access.
+ *
+ * @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
+ * @param GPIO_Pin: specifies the port bit to be written.
+ * This parameter can be one of GPIO_PIN_x where x can be (0..15).
+ * @param PinState: specifies the value to be written to the selected bit.
+ * This parameter can be one of the GPIO_PinState enum values:
+ * @arg GPIO_PIN_RESET: to clear the port pin
+ * @arg GPIO_PIN_SET: to set the port pin
+ * @retval None
+ */
+void HAL_GPIO_WritePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState) {
+ /* Check the parameters */
+ assert_param(IS_GPIO_PIN(GPIO_Pin));
+ assert_param(IS_GPIO_PIN_ACTION(PinState));
+
+ if (PinState != GPIO_PIN_RESET) {
+ GPIOx->BSRR = GPIO_Pin;
+ } else {
+ GPIOx->BSRR = (uint32_t)GPIO_Pin << 16u;
+ }
+}
+
+/**
+ * @brief Toggles the specified GPIO pin
+ * @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
+ * @param GPIO_Pin: Specifies the pins to be toggled.
+ * @retval None
+ */
+void HAL_GPIO_TogglePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) {
+ uint32_t odr;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_PIN(GPIO_Pin));
+
+ /* get current Ouput Data Register value */
+ odr = GPIOx->ODR;
+
+ /* Set selected pins that were at low level, and reset ones that were high */
+ GPIOx->BSRR = ((odr & GPIO_Pin) << GPIO_NUMBER) | (~odr & GPIO_Pin);
+}
+
+/**
+ * @brief Locks GPIO Pins configuration registers.
+ * @note The locking mechanism allows the IO configuration to be frozen. When the LOCK sequence
+ * has been applied on a port bit, it is no longer possible to modify the value of the port bit until
+ * the next reset.
+ * @param GPIOx: where x can be (A..G depending on device used) to select the GPIO peripheral
+ * @param GPIO_Pin: specifies the port bit to be locked.
+ * This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
+ * @retval None
+ */
+HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) {
+ __IO uint32_t tmp = GPIO_LCKR_LCKK;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_LOCK_INSTANCE(GPIOx));
+ assert_param(IS_GPIO_PIN(GPIO_Pin));
+
+ /* Apply lock key write sequence */
+ SET_BIT(tmp, GPIO_Pin);
+ /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
+ GPIOx->LCKR = tmp;
+ /* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */
+ GPIOx->LCKR = GPIO_Pin;
+ /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
+ GPIOx->LCKR = tmp;
+ /* Read LCKK register. This read is mandatory to complete key lock sequence */
+ tmp = GPIOx->LCKR;
+
+ /* read again in order to confirm lock is active */
+ if ((uint32_t)(GPIOx->LCKR & GPIO_LCKR_LCKK)) {
+ return HAL_OK;
+ } else {
+ return HAL_ERROR;
+ }
+}
+
+/**
+ * @brief This function handles EXTI interrupt request.
+ * @param GPIO_Pin: Specifies the pins connected EXTI line
+ * @retval None
+ */
+void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin) {
+ /* EXTI line interrupt detected */
+ if (__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != 0x00u) {
+ __HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin);
+ HAL_GPIO_EXTI_Callback(GPIO_Pin);
+ }
+}
+
+/**
+ * @brief EXTI line detection callbacks.
+ * @param GPIO_Pin: Specifies the pins connected EXTI line
+ * @retval None
+ */
+__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(GPIO_Pin);
+ /* NOTE: This function Should not be modified, when the callback is needed,
+ the HAL_GPIO_EXTI_Callback could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_GPIO_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c new file mode 100644 index 00000000..f870c912 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c @@ -0,0 +1,120 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_gpio_ex.c
+ * @author MCD Application Team
+ * @brief GPIO Extension HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the General Purpose Input/Output (GPIO) extension peripheral.
+ * + Extended features functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### GPIO Peripheral extension features #####
+ ==============================================================================
+ [..] GPIO module on STM32F1 family, manage also the AFIO register:
+ (+) Possibility to use the EVENTOUT Cortex feature
+
+ ##### How to use this driver #####
+ ==============================================================================
+ [..] This driver provides functions to use EVENTOUT Cortex feature
+ (#) Configure EVENTOUT Cortex feature using the function HAL_GPIOEx_ConfigEventout()
+ (#) Activate EVENTOUT Cortex feature using the HAL_GPIOEx_EnableEventout()
+ (#) Deactivate EVENTOUT Cortex feature using the HAL_GPIOEx_DisableEventout()
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup GPIOEx GPIOEx
+ * @brief GPIO HAL module driver
+ * @{
+ */
+
+#ifdef HAL_GPIO_MODULE_ENABLED
+
+/** @defgroup GPIOEx_Exported_Functions GPIOEx Exported Functions
+ * @{
+ */
+
+/** @defgroup GPIOEx_Exported_Functions_Group1 Extended features functions
+ * @brief Extended features functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Extended features functions #####
+ ==============================================================================
+ [..] This section provides functions allowing to:
+ (+) Configure EVENTOUT Cortex feature using the function HAL_GPIOEx_ConfigEventout()
+ (+) Activate EVENTOUT Cortex feature using the HAL_GPIOEx_EnableEventout()
+ (+) Deactivate EVENTOUT Cortex feature using the HAL_GPIOEx_DisableEventout()
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the port and pin on which the EVENTOUT Cortex signal will be connected.
+ * @param GPIO_PortSource Select the port used to output the Cortex EVENTOUT signal.
+ * This parameter can be a value of @ref GPIOEx_EVENTOUT_PORT.
+ * @param GPIO_PinSource Select the pin used to output the Cortex EVENTOUT signal.
+ * This parameter can be a value of @ref GPIOEx_EVENTOUT_PIN.
+ * @retval None
+ */
+void HAL_GPIOEx_ConfigEventout(uint32_t GPIO_PortSource, uint32_t GPIO_PinSource) {
+ /* Verify the parameters */
+ assert_param(IS_AFIO_EVENTOUT_PORT(GPIO_PortSource));
+ assert_param(IS_AFIO_EVENTOUT_PIN(GPIO_PinSource));
+
+ /* Apply the new configuration */
+ MODIFY_REG(AFIO->EVCR, (AFIO_EVCR_PORT) | (AFIO_EVCR_PIN), (GPIO_PortSource) | (GPIO_PinSource));
+}
+
+/**
+ * @brief Enables the Event Output.
+ * @retval None
+ */
+void HAL_GPIOEx_EnableEventout(void) { SET_BIT(AFIO->EVCR, AFIO_EVCR_EVOE); }
+
+/**
+ * @brief Disables the Event Output.
+ * @retval None
+ */
+void HAL_GPIOEx_DisableEventout(void) { CLEAR_BIT(AFIO->EVCR, AFIO_EVCR_EVOE); }
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_GPIO_MODULE_ENABLED */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_i2c.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_i2c.c new file mode 100644 index 00000000..4a83bee2 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_i2c.c @@ -0,0 +1,6623 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_i2c.c
+ * @author MCD Application Team
+ * @brief I2C HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Inter Integrated Circuit (I2C) peripheral:
+ * + Initialization and de-initialization functions
+ * + IO operation functions
+ * + Peripheral State, Mode and Error functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ The I2C HAL driver can be used as follows:
+
+ (#) Declare a I2C_HandleTypeDef handle structure, for example:
+ I2C_HandleTypeDef hi2c;
+
+ (#)Initialize the I2C low level resources by implementing the @ref HAL_I2C_MspInit() API:
+ (##) Enable the I2Cx interface clock
+ (##) I2C pins configuration
+ (+++) Enable the clock for the I2C GPIOs
+ (+++) Configure I2C pins as alternate function open-drain
+ (##) NVIC configuration if you need to use interrupt process
+ (+++) Configure the I2Cx interrupt priority
+ (+++) Enable the NVIC I2C IRQ Channel
+ (##) DMA Configuration if you need to use DMA process
+ (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive channel
+ (+++) Enable the DMAx interface clock using
+ (+++) Configure the DMA handle parameters
+ (+++) Configure the DMA Tx or Rx channel
+ (+++) Associate the initialized DMA handle to the hi2c DMA Tx or Rx handle
+ (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on
+ the DMA Tx or Rx channel
+
+ (#) Configure the Communication Speed, Duty cycle, Addressing mode, Own Address1,
+ Dual Addressing mode, Own Address2, General call and Nostretch mode in the hi2c Init structure.
+
+ (#) Initialize the I2C registers by calling the @ref HAL_I2C_Init(), configures also the low level Hardware
+ (GPIO, CLOCK, NVIC...etc) by calling the customized @ref HAL_I2C_MspInit() API.
+
+ (#) To check if target device is ready for communication, use the function @ref HAL_I2C_IsDeviceReady()
+
+ (#) For I2C IO and IO MEM operations, three operation modes are available within this driver :
+
+ *** Polling mode IO operation ***
+ =================================
+ [..]
+ (+) Transmit in master mode an amount of data in blocking mode using @ref HAL_I2C_Master_Transmit()
+ (+) Receive in master mode an amount of data in blocking mode using @ref HAL_I2C_Master_Receive()
+ (+) Transmit in slave mode an amount of data in blocking mode using @ref HAL_I2C_Slave_Transmit()
+ (+) Receive in slave mode an amount of data in blocking mode using @ref HAL_I2C_Slave_Receive()
+
+ *** Polling mode IO MEM operation ***
+ =====================================
+ [..]
+ (+) Write an amount of data in blocking mode to a specific memory address using @ref HAL_I2C_Mem_Write()
+ (+) Read an amount of data in blocking mode from a specific memory address using @ref HAL_I2C_Mem_Read()
+
+
+ *** Interrupt mode IO operation ***
+ ===================================
+ [..]
+ (+) Transmit in master mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Transmit_IT()
+ (+) At transmission end of transfer, @ref HAL_I2C_MasterTxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_MasterTxCpltCallback()
+ (+) Receive in master mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Receive_IT()
+ (+) At reception end of transfer, @ref HAL_I2C_MasterRxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_MasterRxCpltCallback()
+ (+) Transmit in slave mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Transmit_IT()
+ (+) At transmission end of transfer, @ref HAL_I2C_SlaveTxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_SlaveTxCpltCallback()
+ (+) Receive in slave mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Receive_IT()
+ (+) At reception end of transfer, @ref HAL_I2C_SlaveRxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_SlaveRxCpltCallback()
+ (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback()
+ (+) Abort a master I2C process communication with Interrupt using @ref HAL_I2C_Master_Abort_IT()
+ (+) End of abort process, @ref HAL_I2C_AbortCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_AbortCpltCallback()
+
+ *** Interrupt mode or DMA mode IO sequential operation ***
+ ==========================================================
+ [..]
+ (@) These interfaces allow to manage a sequential transfer with a repeated start condition
+ when a direction change during transfer
+ [..]
+ (+) A specific option field manage the different steps of a sequential transfer
+ (+) Option field values are defined through @ref I2C_XferOptions_definition and are listed below:
+ (++) I2C_FIRST_AND_LAST_FRAME: No sequential usage, functionnal is same as associated interfaces in no sequential mode
+ (++) I2C_FIRST_FRAME: Sequential usage, this option allow to manage a sequence with start condition, address
+ and data to transfer without a final stop condition
+ (++) I2C_FIRST_AND_NEXT_FRAME: Sequential usage (Master only), this option allow to manage a sequence with start condition, address
+ and data to transfer without a final stop condition, an then permit a call the same master sequential interface
+ several times (like @ref HAL_I2C_Master_Seq_Transmit_IT() then @ref HAL_I2C_Master_Seq_Transmit_IT()
+ or @ref HAL_I2C_Master_Seq_Transmit_DMA() then @ref HAL_I2C_Master_Seq_Transmit_DMA())
+ (++) I2C_NEXT_FRAME: Sequential usage, this option allow to manage a sequence with a restart condition, address
+ and with new data to transfer if the direction change or manage only the new data to transfer
+ if no direction change and without a final stop condition in both cases
+ (++) I2C_LAST_FRAME: Sequential usage, this option allow to manage a sequance with a restart condition, address
+ and with new data to transfer if the direction change or manage only the new data to transfer
+ if no direction change and with a final stop condition in both cases
+ (++) I2C_LAST_FRAME_NO_STOP: Sequential usage (Master only), this option allow to manage a restart condition after several call of the same master sequential
+ interface several times (link with option I2C_FIRST_AND_NEXT_FRAME).
+ Usage can, transfer several bytes one by one using HAL_I2C_Master_Seq_Transmit_IT(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME)
+ or HAL_I2C_Master_Seq_Receive_IT(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME)
+ or HAL_I2C_Master_Seq_Transmit_DMA(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME)
+ or HAL_I2C_Master_Seq_Receive_DMA(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME).
+ Then usage of this option I2C_LAST_FRAME_NO_STOP at the last Transmit or Receive sequence permit to call the oposite interface Receive or Transmit
+ without stopping the communication and so generate a restart condition.
+ (++) I2C_OTHER_FRAME: Sequential usage (Master only), this option allow to manage a restart condition after each call of the same master sequential
+ interface.
+ Usage can, transfer several bytes one by one with a restart with slave address between each bytes using HAL_I2C_Master_Seq_Transmit_IT(option I2C_FIRST_FRAME then
+ I2C_OTHER_FRAME) or HAL_I2C_Master_Seq_Receive_IT(option I2C_FIRST_FRAME then I2C_OTHER_FRAME) or HAL_I2C_Master_Seq_Transmit_DMA(option I2C_FIRST_FRAME then I2C_OTHER_FRAME) or
+ HAL_I2C_Master_Seq_Receive_DMA(option I2C_FIRST_FRAME then I2C_OTHER_FRAME). Then usage of this option I2C_OTHER_AND_LAST_FRAME at the last frame to help automatic generation of STOP condition.
+
+ (+) Differents sequential I2C interfaces are listed below:
+ (++) Sequential transmit in master I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Seq_Transmit_IT()
+ or using @ref HAL_I2C_Master_Seq_Transmit_DMA()
+ (+++) At transmission end of current frame transfer, @ref HAL_I2C_MasterTxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_MasterTxCpltCallback()
+ (++) Sequential receive in master I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Seq_Receive_IT()
+ or using @ref HAL_I2C_Master_Seq_Receive_DMA()
+ (+++) At reception end of current frame transfer, @ref HAL_I2C_MasterRxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_MasterRxCpltCallback()
+ (++) Abort a master IT or DMA I2C process communication with Interrupt using @ref HAL_I2C_Master_Abort_IT()
+ (+++) End of abort process, @ref HAL_I2C_AbortCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_AbortCpltCallback()
+ (++) Enable/disable the Address listen mode in slave I2C mode using @ref HAL_I2C_EnableListen_IT() @ref HAL_I2C_DisableListen_IT()
+ (+++) When address slave I2C match, @ref HAL_I2C_AddrCallback() is executed and user can
+ add his own code to check the Address Match Code and the transmission direction request by master (Write/Read).
+ (+++) At Listen mode end @ref HAL_I2C_ListenCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_ListenCpltCallback()
+ (++) Sequential transmit in slave I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Seq_Transmit_IT()
+ or using @ref HAL_I2C_Slave_Seq_Transmit_DMA()
+ (+++) At transmission end of current frame transfer, @ref HAL_I2C_SlaveTxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_SlaveTxCpltCallback()
+ (++) Sequential receive in slave I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Seq_Receive_IT()
+ or using @ref HAL_I2C_Slave_Seq_Receive_DMA()
+ (+++) At reception end of current frame transfer, @ref HAL_I2C_SlaveRxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_SlaveRxCpltCallback()
+ (++) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback()
+
+ *** Interrupt mode IO MEM operation ***
+ =======================================
+ [..]
+ (+) Write an amount of data in non-blocking mode with Interrupt to a specific memory address using
+ @ref HAL_I2C_Mem_Write_IT()
+ (+) At Memory end of write transfer, @ref HAL_I2C_MemTxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_MemTxCpltCallback()
+ (+) Read an amount of data in non-blocking mode with Interrupt from a specific memory address using
+ @ref HAL_I2C_Mem_Read_IT()
+ (+) At Memory end of read transfer, @ref HAL_I2C_MemRxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_MemRxCpltCallback()
+ (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback()
+
+ *** DMA mode IO operation ***
+ ==============================
+ [..]
+ (+) Transmit in master mode an amount of data in non-blocking mode (DMA) using
+ @ref HAL_I2C_Master_Transmit_DMA()
+ (+) At transmission end of transfer, @ref HAL_I2C_MasterTxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_MasterTxCpltCallback()
+ (+) Receive in master mode an amount of data in non-blocking mode (DMA) using
+ @ref HAL_I2C_Master_Receive_DMA()
+ (+) At reception end of transfer, @ref HAL_I2C_MasterRxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_MasterRxCpltCallback()
+ (+) Transmit in slave mode an amount of data in non-blocking mode (DMA) using
+ @ref HAL_I2C_Slave_Transmit_DMA()
+ (+) At transmission end of transfer, @ref HAL_I2C_SlaveTxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_SlaveTxCpltCallback()
+ (+) Receive in slave mode an amount of data in non-blocking mode (DMA) using
+ @ref HAL_I2C_Slave_Receive_DMA()
+ (+) At reception end of transfer, @ref HAL_I2C_SlaveRxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_SlaveRxCpltCallback()
+ (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback()
+ (+) Abort a master I2C process communication with Interrupt using @ref HAL_I2C_Master_Abort_IT()
+ (+) End of abort process, @ref HAL_I2C_AbortCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_AbortCpltCallback()
+
+ *** DMA mode IO MEM operation ***
+ =================================
+ [..]
+ (+) Write an amount of data in non-blocking mode with DMA to a specific memory address using
+ @ref HAL_I2C_Mem_Write_DMA()
+ (+) At Memory end of write transfer, @ref HAL_I2C_MemTxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_MemTxCpltCallback()
+ (+) Read an amount of data in non-blocking mode with DMA from a specific memory address using
+ @ref HAL_I2C_Mem_Read_DMA()
+ (+) At Memory end of read transfer, @ref HAL_I2C_MemRxCpltCallback() is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_MemRxCpltCallback()
+ (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can
+ add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback()
+
+
+ *** I2C HAL driver macros list ***
+ ==================================
+ [..]
+ Below the list of most used macros in I2C HAL driver.
+
+ (+) @ref __HAL_I2C_ENABLE: Enable the I2C peripheral
+ (+) @ref __HAL_I2C_DISABLE: Disable the I2C peripheral
+ (+) @ref __HAL_I2C_GET_FLAG: Checks whether the specified I2C flag is set or not
+ (+) @ref __HAL_I2C_CLEAR_FLAG: Clear the specified I2C pending flag
+ (+) @ref __HAL_I2C_ENABLE_IT: Enable the specified I2C interrupt
+ (+) @ref __HAL_I2C_DISABLE_IT: Disable the specified I2C interrupt
+
+ *** Callback registration ***
+ =============================================
+ [..]
+ The compilation flag USE_HAL_I2C_REGISTER_CALLBACKS when set to 1
+ allows the user to configure dynamically the driver callbacks.
+ Use Functions @ref HAL_I2C_RegisterCallback() or @ref HAL_I2C_RegisterAddrCallback()
+ to register an interrupt callback.
+ [..]
+ Function @ref HAL_I2C_RegisterCallback() allows to register following callbacks:
+ (+) MasterTxCpltCallback : callback for Master transmission end of transfer.
+ (+) MasterRxCpltCallback : callback for Master reception end of transfer.
+ (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer.
+ (+) SlaveRxCpltCallback : callback for Slave reception end of transfer.
+ (+) ListenCpltCallback : callback for end of listen mode.
+ (+) MemTxCpltCallback : callback for Memory transmission end of transfer.
+ (+) MemRxCpltCallback : callback for Memory reception end of transfer.
+ (+) ErrorCallback : callback for error detection.
+ (+) AbortCpltCallback : callback for abort completion process.
+ (+) MspInitCallback : callback for Msp Init.
+ (+) MspDeInitCallback : callback for Msp DeInit.
+ This function takes as parameters the HAL peripheral handle, the Callback ID
+ and a pointer to the user callback function.
+ [..]
+ For specific callback AddrCallback use dedicated register callbacks : @ref HAL_I2C_RegisterAddrCallback().
+ [..]
+ Use function @ref HAL_I2C_UnRegisterCallback to reset a callback to the default
+ weak function.
+ @ref HAL_I2C_UnRegisterCallback takes as parameters the HAL peripheral handle,
+ and the Callback ID.
+ This function allows to reset following callbacks:
+ (+) MasterTxCpltCallback : callback for Master transmission end of transfer.
+ (+) MasterRxCpltCallback : callback for Master reception end of transfer.
+ (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer.
+ (+) SlaveRxCpltCallback : callback for Slave reception end of transfer.
+ (+) ListenCpltCallback : callback for end of listen mode.
+ (+) MemTxCpltCallback : callback for Memory transmission end of transfer.
+ (+) MemRxCpltCallback : callback for Memory reception end of transfer.
+ (+) ErrorCallback : callback for error detection.
+ (+) AbortCpltCallback : callback for abort completion process.
+ (+) MspInitCallback : callback for Msp Init.
+ (+) MspDeInitCallback : callback for Msp DeInit.
+ [..]
+ For callback AddrCallback use dedicated register callbacks : @ref HAL_I2C_UnRegisterAddrCallback().
+ [..]
+ By default, after the @ref HAL_I2C_Init() and when the state is @ref HAL_I2C_STATE_RESET
+ all callbacks are set to the corresponding weak functions:
+ examples @ref HAL_I2C_MasterTxCpltCallback(), @ref HAL_I2C_MasterRxCpltCallback().
+ Exception done for MspInit and MspDeInit functions that are
+ reset to the legacy weak functions in the @ref HAL_I2C_Init()/ @ref HAL_I2C_DeInit() only when
+ these callbacks are null (not registered beforehand).
+ If MspInit or MspDeInit are not null, the @ref HAL_I2C_Init()/ @ref HAL_I2C_DeInit()
+ keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
+ [..]
+ Callbacks can be registered/unregistered in @ref HAL_I2C_STATE_READY state only.
+ Exception done MspInit/MspDeInit functions that can be registered/unregistered
+ in @ref HAL_I2C_STATE_READY or @ref HAL_I2C_STATE_RESET state,
+ thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
+ Then, the user first registers the MspInit/MspDeInit user callbacks
+ using @ref HAL_I2C_RegisterCallback() before calling @ref HAL_I2C_DeInit()
+ or @ref HAL_I2C_Init() function.
+ [..]
+ When the compilation flag USE_HAL_I2C_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available and all callbacks
+ are set to the corresponding weak functions.
+
+
+ *** I2C Workarounds linked to Silicon Limitation ***
+ ====================================================
+ [..]
+ Below the list of all silicon limitations implemented for HAL on STM32F1xx product.
+ (@) See ErrataSheet to know full silicon limitation list of your product.
+
+ (+) Workarounds Implemented inside I2C HAL Driver
+ (++) Wrong data read into data register (Polling and Interrupt mode)
+ (++) Start cannot be generated after a misplaced Stop
+ (++) Some software events must be managed before the current byte is being transferred:
+ Workaround: Use DMA in general, except when the Master is receiving a single byte.
+ For Interupt mode, I2C should have the highest priority in the application.
+ (++) Mismatch on the "Setup time for a repeated Start condition" timing parameter:
+ Workaround: Reduce the frequency down to 88 kHz or use the I2C Fast-mode if
+ supported by the slave.
+ (++) Data valid time (tVD;DAT) violated without the OVR flag being set:
+ Workaround: If the slave device allows it, use the clock stretching mechanism
+ by programming NoStretchMode = I2C_NOSTRETCH_DISABLE in @ref HAL_I2C_Init.
+
+ [..]
+ (@) You can refer to the I2C HAL driver header file for more useful macros
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup I2C I2C
+ * @brief I2C HAL module driver
+ * @{
+ */
+
+#ifdef HAL_I2C_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @addtogroup I2C_Private_Define
+ * @{
+ */
+#define I2C_TIMEOUT_FLAG 35U /*!< Timeout 35 ms */
+#define I2C_TIMEOUT_BUSY_FLAG 25U /*!< Timeout 25 ms */
+#define I2C_TIMEOUT_STOP_FLAG 5U /*!< Timeout 5 ms */
+#define I2C_NO_OPTION_FRAME 0xFFFF0000U /*!< XferOptions default value */
+
+/* Private define for @ref PreviousState usage */
+#define I2C_STATE_MSK \
+ ((uint32_t)((uint32_t)((uint32_t)HAL_I2C_STATE_BUSY_TX | (uint32_t)HAL_I2C_STATE_BUSY_RX) & (uint32_t)(~((uint32_t)HAL_I2C_STATE_READY)))) /*!< Mask State define, keep only RX and TX bits */
+#define I2C_STATE_NONE ((uint32_t)(HAL_I2C_MODE_NONE)) /*!< Default Value */
+#define I2C_STATE_MASTER_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_MASTER)) /*!< Master Busy TX, combinaison of State LSB and Mode enum */
+#define I2C_STATE_MASTER_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_MASTER)) /*!< Master Busy RX, combinaison of State LSB and Mode enum */
+#define I2C_STATE_SLAVE_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_SLAVE)) /*!< Slave Busy TX, combinaison of State LSB and Mode enum */
+#define I2C_STATE_SLAVE_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_SLAVE)) /*!< Slave Busy RX, combinaison of State LSB and Mode enum */
+
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+
+/** @defgroup I2C_Private_Functions I2C Private Functions
+ * @{
+ */
+/* Private functions to handle DMA transfer */
+static void I2C_DMAXferCplt(DMA_HandleTypeDef *hdma);
+static void I2C_DMAError(DMA_HandleTypeDef *hdma);
+static void I2C_DMAAbort(DMA_HandleTypeDef *hdma);
+
+static void I2C_ITError(I2C_HandleTypeDef *hi2c);
+
+static HAL_StatusTypeDef I2C_MasterRequestWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout, uint32_t Tickstart);
+static HAL_StatusTypeDef I2C_MasterRequestRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout, uint32_t Tickstart);
+static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart);
+static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart);
+
+/* Private functions to handle flags during polling transfer */
+static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t Tickstart);
+static HAL_StatusTypeDef I2C_WaitOnMasterAddressFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, uint32_t Timeout, uint32_t Tickstart);
+static HAL_StatusTypeDef I2C_WaitOnTXEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart);
+static HAL_StatusTypeDef I2C_WaitOnBTFFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart);
+static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart);
+static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart);
+static HAL_StatusTypeDef I2C_WaitOnSTOPRequestThroughIT(I2C_HandleTypeDef *hi2c);
+static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c);
+
+/* Private functions for I2C transfer IRQ handler */
+static void I2C_MasterTransmit_TXE(I2C_HandleTypeDef *hi2c);
+static void I2C_MasterTransmit_BTF(I2C_HandleTypeDef *hi2c);
+static void I2C_MasterReceive_RXNE(I2C_HandleTypeDef *hi2c);
+static void I2C_MasterReceive_BTF(I2C_HandleTypeDef *hi2c);
+static void I2C_Master_SB(I2C_HandleTypeDef *hi2c);
+static void I2C_Master_ADD10(I2C_HandleTypeDef *hi2c);
+static void I2C_Master_ADDR(I2C_HandleTypeDef *hi2c);
+
+static void I2C_SlaveTransmit_TXE(I2C_HandleTypeDef *hi2c);
+static void I2C_SlaveTransmit_BTF(I2C_HandleTypeDef *hi2c);
+static void I2C_SlaveReceive_RXNE(I2C_HandleTypeDef *hi2c);
+static void I2C_SlaveReceive_BTF(I2C_HandleTypeDef *hi2c);
+static void I2C_Slave_ADDR(I2C_HandleTypeDef *hi2c, uint32_t IT2Flags);
+static void I2C_Slave_STOPF(I2C_HandleTypeDef *hi2c);
+static void I2C_Slave_AF(I2C_HandleTypeDef *hi2c);
+
+static void I2C_MemoryTransmit_TXE_BTF(I2C_HandleTypeDef *hi2c);
+
+/* Private function to Convert Specific options */
+static void I2C_ConvertOtherXferOptions(I2C_HandleTypeDef *hi2c);
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup I2C_Exported_Functions I2C Exported Functions
+ * @{
+ */
+
+/** @defgroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..] This subsection provides a set of functions allowing to initialize and
+ deinitialize the I2Cx peripheral:
+
+ (+) User must Implement HAL_I2C_MspInit() function in which he configures
+ all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC).
+
+ (+) Call the function HAL_I2C_Init() to configure the selected device with
+ the selected configuration:
+ (++) Communication Speed
+ (++) Duty cycle
+ (++) Addressing mode
+ (++) Own Address 1
+ (++) Dual Addressing mode
+ (++) Own Address 2
+ (++) General call mode
+ (++) Nostretch mode
+
+ (+) Call the function HAL_I2C_DeInit() to restore the default configuration
+ of the selected I2Cx peripheral.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the I2C according to the specified parameters
+ * in the I2C_InitTypeDef and initialize the associated handle.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c) {
+ uint32_t freqrange;
+ uint32_t pclk1;
+
+ /* Check the I2C handle allocation */
+ if (hi2c == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
+ assert_param(IS_I2C_CLOCK_SPEED(hi2c->Init.ClockSpeed));
+ assert_param(IS_I2C_DUTY_CYCLE(hi2c->Init.DutyCycle));
+ assert_param(IS_I2C_OWN_ADDRESS1(hi2c->Init.OwnAddress1));
+ assert_param(IS_I2C_ADDRESSING_MODE(hi2c->Init.AddressingMode));
+ assert_param(IS_I2C_DUAL_ADDRESS(hi2c->Init.DualAddressMode));
+ assert_param(IS_I2C_OWN_ADDRESS2(hi2c->Init.OwnAddress2));
+ assert_param(IS_I2C_GENERAL_CALL(hi2c->Init.GeneralCallMode));
+ assert_param(IS_I2C_NO_STRETCH(hi2c->Init.NoStretchMode));
+
+ if (hi2c->State == HAL_I2C_STATE_RESET) {
+ /* Allocate lock resource and initialize it */
+ hi2c->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ /* Init the I2C Callback settings */
+ hi2c->MasterTxCpltCallback = HAL_I2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */
+ hi2c->MasterRxCpltCallback = HAL_I2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */
+ hi2c->SlaveTxCpltCallback = HAL_I2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */
+ hi2c->SlaveRxCpltCallback = HAL_I2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */
+ hi2c->ListenCpltCallback = HAL_I2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */
+ hi2c->MemTxCpltCallback = HAL_I2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */
+ hi2c->MemRxCpltCallback = HAL_I2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */
+ hi2c->ErrorCallback = HAL_I2C_ErrorCallback; /* Legacy weak ErrorCallback */
+ hi2c->AbortCpltCallback = HAL_I2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
+ hi2c->AddrCallback = HAL_I2C_AddrCallback; /* Legacy weak AddrCallback */
+
+ if (hi2c->MspInitCallback == NULL) {
+ hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */
+ }
+
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ hi2c->MspInitCallback(hi2c);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ HAL_I2C_MspInit(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+
+ hi2c->State = HAL_I2C_STATE_BUSY;
+
+ /* Disable the selected I2C peripheral */
+ __HAL_I2C_DISABLE(hi2c);
+
+ /*Reset I2C*/
+ hi2c->Instance->CR1 |= I2C_CR1_SWRST;
+ hi2c->Instance->CR1 &= ~I2C_CR1_SWRST;
+
+ /* Get PCLK1 frequency */
+ pclk1 = HAL_RCC_GetPCLK1Freq();
+
+ /* Check the minimum allowed PCLK1 frequency */
+ if (I2C_MIN_PCLK_FREQ(pclk1, hi2c->Init.ClockSpeed) == 1U) {
+ return HAL_ERROR;
+ }
+
+ /* Calculate frequency range */
+ freqrange = I2C_FREQRANGE(pclk1);
+
+ /*---------------------------- I2Cx CR2 Configuration ----------------------*/
+ /* Configure I2Cx: Frequency range */
+ MODIFY_REG(hi2c->Instance->CR2, I2C_CR2_FREQ, freqrange);
+
+ /*---------------------------- I2Cx TRISE Configuration --------------------*/
+ /* Configure I2Cx: Rise Time */
+ MODIFY_REG(hi2c->Instance->TRISE, I2C_TRISE_TRISE, I2C_RISE_TIME(freqrange, hi2c->Init.ClockSpeed));
+
+ /*---------------------------- I2Cx CCR Configuration ----------------------*/
+ /* Configure I2Cx: Speed */
+ MODIFY_REG(hi2c->Instance->CCR, (I2C_CCR_FS | I2C_CCR_DUTY | I2C_CCR_CCR), I2C_SPEED(pclk1, hi2c->Init.ClockSpeed, hi2c->Init.DutyCycle));
+
+ /*---------------------------- I2Cx CR1 Configuration ----------------------*/
+ /* Configure I2Cx: Generalcall and NoStretch mode */
+ MODIFY_REG(hi2c->Instance->CR1, (I2C_CR1_ENGC | I2C_CR1_NOSTRETCH), (hi2c->Init.GeneralCallMode | hi2c->Init.NoStretchMode));
+
+ /*---------------------------- I2Cx OAR1 Configuration ---------------------*/
+ /* Configure I2Cx: Own Address1 and addressing mode */
+ MODIFY_REG(hi2c->Instance->OAR1, (I2C_OAR1_ADDMODE | I2C_OAR1_ADD8_9 | I2C_OAR1_ADD1_7 | I2C_OAR1_ADD0), (hi2c->Init.AddressingMode | hi2c->Init.OwnAddress1));
+
+ /*---------------------------- I2Cx OAR2 Configuration ---------------------*/
+ /* Configure I2Cx: Dual mode and Own Address2 */
+ MODIFY_REG(hi2c->Instance->OAR2, (I2C_OAR2_ENDUAL | I2C_OAR2_ADD2), (hi2c->Init.DualAddressMode | hi2c->Init.OwnAddress2));
+
+ /* Enable the selected I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitialize the I2C peripheral.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c) {
+ /* Check the I2C handle allocation */
+ if (hi2c == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
+
+ hi2c->State = HAL_I2C_STATE_BUSY;
+
+ /* Disable the I2C Peripheral Clock */
+ __HAL_I2C_DISABLE(hi2c);
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ if (hi2c->MspDeInitCallback == NULL) {
+ hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */
+ }
+
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
+ hi2c->MspDeInitCallback(hi2c);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
+ HAL_I2C_MspDeInit(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+ hi2c->State = HAL_I2C_STATE_RESET;
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Release Lock */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initialize the I2C MSP.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+__weak void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitialize the I2C MSP.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+__weak void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_MspDeInit could be implemented in the user file
+ */
+}
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Register a User I2C Callback
+ * To be used instead of the weak predefined callback
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param CallbackID ID of the callback to be registered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_I2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID
+ * @arg @ref HAL_I2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID
+ * @arg @ref HAL_I2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID
+ * @arg @ref HAL_I2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID
+ * @arg @ref HAL_I2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID
+ * @arg @ref HAL_I2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID
+ * @arg @ref HAL_I2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID
+ * @arg @ref HAL_I2C_ERROR_CB_ID Error callback ID
+ * @arg @ref HAL_I2C_ABORT_CB_ID Abort callback ID
+ * @arg @ref HAL_I2C_MSPINIT_CB_ID MspInit callback ID
+ * @arg @ref HAL_I2C_MSPDEINIT_CB_ID MspDeInit callback ID
+ * @param pCallback pointer to the Callback function
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_RegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID, pI2C_CallbackTypeDef pCallback) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL) {
+ /* Update the error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK;
+
+ return HAL_ERROR;
+ }
+ /* Process locked */
+ __HAL_LOCK(hi2c);
+
+ if (HAL_I2C_STATE_READY == hi2c->State) {
+ switch (CallbackID) {
+ case HAL_I2C_MASTER_TX_COMPLETE_CB_ID:
+ hi2c->MasterTxCpltCallback = pCallback;
+ break;
+
+ case HAL_I2C_MASTER_RX_COMPLETE_CB_ID:
+ hi2c->MasterRxCpltCallback = pCallback;
+ break;
+
+ case HAL_I2C_SLAVE_TX_COMPLETE_CB_ID:
+ hi2c->SlaveTxCpltCallback = pCallback;
+ break;
+
+ case HAL_I2C_SLAVE_RX_COMPLETE_CB_ID:
+ hi2c->SlaveRxCpltCallback = pCallback;
+ break;
+
+ case HAL_I2C_LISTEN_COMPLETE_CB_ID:
+ hi2c->ListenCpltCallback = pCallback;
+ break;
+
+ case HAL_I2C_MEM_TX_COMPLETE_CB_ID:
+ hi2c->MemTxCpltCallback = pCallback;
+ break;
+
+ case HAL_I2C_MEM_RX_COMPLETE_CB_ID:
+ hi2c->MemRxCpltCallback = pCallback;
+ break;
+
+ case HAL_I2C_ERROR_CB_ID:
+ hi2c->ErrorCallback = pCallback;
+ break;
+
+ case HAL_I2C_ABORT_CB_ID:
+ hi2c->AbortCpltCallback = pCallback;
+ break;
+
+ case HAL_I2C_MSPINIT_CB_ID:
+ hi2c->MspInitCallback = pCallback;
+ break;
+
+ case HAL_I2C_MSPDEINIT_CB_ID:
+ hi2c->MspDeInitCallback = pCallback;
+ break;
+
+ default:
+ /* Update the error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else if (HAL_I2C_STATE_RESET == hi2c->State) {
+ switch (CallbackID) {
+ case HAL_I2C_MSPINIT_CB_ID:
+ hi2c->MspInitCallback = pCallback;
+ break;
+
+ case HAL_I2C_MSPDEINIT_CB_ID:
+ hi2c->MspDeInitCallback = pCallback;
+ break;
+
+ default:
+ /* Update the error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else {
+ /* Update the error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hi2c);
+ return status;
+}
+
+/**
+ * @brief Unregister an I2C Callback
+ * I2C callback is redirected to the weak predefined callback
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param CallbackID ID of the callback to be unregistered
+ * This parameter can be one of the following values:
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_I2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID
+ * @arg @ref HAL_I2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID
+ * @arg @ref HAL_I2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID
+ * @arg @ref HAL_I2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID
+ * @arg @ref HAL_I2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID
+ * @arg @ref HAL_I2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID
+ * @arg @ref HAL_I2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID
+ * @arg @ref HAL_I2C_ERROR_CB_ID Error callback ID
+ * @arg @ref HAL_I2C_ABORT_CB_ID Abort callback ID
+ * @arg @ref HAL_I2C_MSPINIT_CB_ID MspInit callback ID
+ * @arg @ref HAL_I2C_MSPDEINIT_CB_ID MspDeInit callback ID
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_UnRegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process locked */
+ __HAL_LOCK(hi2c);
+
+ if (HAL_I2C_STATE_READY == hi2c->State) {
+ switch (CallbackID) {
+ case HAL_I2C_MASTER_TX_COMPLETE_CB_ID:
+ hi2c->MasterTxCpltCallback = HAL_I2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */
+ break;
+
+ case HAL_I2C_MASTER_RX_COMPLETE_CB_ID:
+ hi2c->MasterRxCpltCallback = HAL_I2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */
+ break;
+
+ case HAL_I2C_SLAVE_TX_COMPLETE_CB_ID:
+ hi2c->SlaveTxCpltCallback = HAL_I2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */
+ break;
+
+ case HAL_I2C_SLAVE_RX_COMPLETE_CB_ID:
+ hi2c->SlaveRxCpltCallback = HAL_I2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */
+ break;
+
+ case HAL_I2C_LISTEN_COMPLETE_CB_ID:
+ hi2c->ListenCpltCallback = HAL_I2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */
+ break;
+
+ case HAL_I2C_MEM_TX_COMPLETE_CB_ID:
+ hi2c->MemTxCpltCallback = HAL_I2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */
+ break;
+
+ case HAL_I2C_MEM_RX_COMPLETE_CB_ID:
+ hi2c->MemRxCpltCallback = HAL_I2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */
+ break;
+
+ case HAL_I2C_ERROR_CB_ID:
+ hi2c->ErrorCallback = HAL_I2C_ErrorCallback; /* Legacy weak ErrorCallback */
+ break;
+
+ case HAL_I2C_ABORT_CB_ID:
+ hi2c->AbortCpltCallback = HAL_I2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
+ break;
+
+ case HAL_I2C_MSPINIT_CB_ID:
+ hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */
+ break;
+
+ case HAL_I2C_MSPDEINIT_CB_ID:
+ hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */
+ break;
+
+ default:
+ /* Update the error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else if (HAL_I2C_STATE_RESET == hi2c->State) {
+ switch (CallbackID) {
+ case HAL_I2C_MSPINIT_CB_ID:
+ hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */
+ break;
+
+ case HAL_I2C_MSPDEINIT_CB_ID:
+ hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */
+ break;
+
+ default:
+ /* Update the error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else {
+ /* Update the error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hi2c);
+ return status;
+}
+
+/**
+ * @brief Register the Slave Address Match I2C Callback
+ * To be used instead of the weak HAL_I2C_AddrCallback() predefined callback
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param pCallback pointer to the Address Match Callback function
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_RegisterAddrCallback(I2C_HandleTypeDef *hi2c, pI2C_AddrCallbackTypeDef pCallback) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL) {
+ /* Update the error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK;
+
+ return HAL_ERROR;
+ }
+ /* Process locked */
+ __HAL_LOCK(hi2c);
+
+ if (HAL_I2C_STATE_READY == hi2c->State) {
+ hi2c->AddrCallback = pCallback;
+ } else {
+ /* Update the error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hi2c);
+ return status;
+}
+
+/**
+ * @brief UnRegister the Slave Address Match I2C Callback
+ * Info Ready I2C Callback is redirected to the weak HAL_I2C_AddrCallback() predefined callback
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_UnRegisterAddrCallback(I2C_HandleTypeDef *hi2c) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process locked */
+ __HAL_LOCK(hi2c);
+
+ if (HAL_I2C_STATE_READY == hi2c->State) {
+ hi2c->AddrCallback = HAL_I2C_AddrCallback; /* Legacy weak AddrCallback */
+ } else {
+ /* Update the error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hi2c);
+ return status;
+}
+
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+/** @defgroup I2C_Exported_Functions_Group2 Input and Output operation functions
+ * @brief Data transfers functions
+ *
+@verbatim
+ ===============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to manage the I2C data
+ transfers.
+
+ (#) There are two modes of transfer:
+ (++) Blocking mode : The communication is performed in the polling mode.
+ The status of all data processing is returned by the same function
+ after finishing transfer.
+ (++) No-Blocking mode : The communication is performed using Interrupts
+ or DMA. These functions return the status of the transfer startup.
+ The end of the data processing will be indicated through the
+ dedicated I2C IRQ when using Interrupt mode or the DMA IRQ when
+ using DMA mode.
+
+ (#) Blocking mode functions are :
+ (++) HAL_I2C_Master_Transmit()
+ (++) HAL_I2C_Master_Receive()
+ (++) HAL_I2C_Slave_Transmit()
+ (++) HAL_I2C_Slave_Receive()
+ (++) HAL_I2C_Mem_Write()
+ (++) HAL_I2C_Mem_Read()
+ (++) HAL_I2C_IsDeviceReady()
+
+ (#) No-Blocking mode functions with Interrupt are :
+ (++) HAL_I2C_Master_Transmit_IT()
+ (++) HAL_I2C_Master_Receive_IT()
+ (++) HAL_I2C_Slave_Transmit_IT()
+ (++) HAL_I2C_Slave_Receive_IT()
+ (++) HAL_I2C_Mem_Write_IT()
+ (++) HAL_I2C_Mem_Read_IT()
+ (++) HAL_I2C_Master_Seq_Transmit_IT()
+ (++) HAL_I2C_Master_Seq_Receive_IT()
+ (++) HAL_I2C_Slave_Seq_Transmit_IT()
+ (++) HAL_I2C_Slave_Seq_Receive_IT()
+ (++) HAL_I2C_EnableListen_IT()
+ (++) HAL_I2C_DisableListen_IT()
+ (++) HAL_I2C_Master_Abort_IT()
+
+ (#) No-Blocking mode functions with DMA are :
+ (++) HAL_I2C_Master_Transmit_DMA()
+ (++) HAL_I2C_Master_Receive_DMA()
+ (++) HAL_I2C_Slave_Transmit_DMA()
+ (++) HAL_I2C_Slave_Receive_DMA()
+ (++) HAL_I2C_Mem_Write_DMA()
+ (++) HAL_I2C_Mem_Read_DMA()
+ (++) HAL_I2C_Master_Seq_Transmit_DMA()
+ (++) HAL_I2C_Master_Seq_Receive_DMA()
+ (++) HAL_I2C_Slave_Seq_Transmit_DMA()
+ (++) HAL_I2C_Slave_Seq_Receive_DMA()
+
+ (#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
+ (++) HAL_I2C_MasterTxCpltCallback()
+ (++) HAL_I2C_MasterRxCpltCallback()
+ (++) HAL_I2C_SlaveTxCpltCallback()
+ (++) HAL_I2C_SlaveRxCpltCallback()
+ (++) HAL_I2C_MemTxCpltCallback()
+ (++) HAL_I2C_MemRxCpltCallback()
+ (++) HAL_I2C_AddrCallback()
+ (++) HAL_I2C_ListenCpltCallback()
+ (++) HAL_I2C_ErrorCallback()
+ (++) HAL_I2C_AbortCpltCallback()
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Transmits in master mode an amount of data in blocking mode.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) {
+ /* Init tickstart for timeout management*/
+ uint32_t tickstart = HAL_GetTick();
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK) {
+ return HAL_BUSY;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_MASTER;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ /* Send Slave Address */
+ if (I2C_MasterRequestWrite(hi2c, DevAddress, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ while (hi2c->XferSize > 0U) {
+ /* Wait until TXE flag is set */
+ if (I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) {
+ if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ return HAL_ERROR;
+ }
+
+ /* Write data to DR */
+ hi2c->Instance->DR = *hi2c->pBuffPtr;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ hi2c->XferSize--;
+
+ if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (hi2c->XferSize != 0U)) {
+ /* Write data to DR */
+ hi2c->Instance->DR = *hi2c->pBuffPtr;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ hi2c->XferSize--;
+ }
+
+ /* Wait until BTF flag is set */
+ if (I2C_WaitOnBTFFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) {
+ if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ return HAL_ERROR;
+ }
+ }
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receives in master mode an amount of data in blocking mode.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) {
+ __IO uint32_t count = 0U;
+
+ /* Init tickstart for timeout management*/
+ uint32_t tickstart = HAL_GetTick();
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK) {
+ return HAL_BUSY;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX;
+ hi2c->Mode = HAL_I2C_MODE_MASTER;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ /* Send Slave Address */
+ if (I2C_MasterRequestRead(hi2c, DevAddress, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ if (hi2c->XferSize == 0U) {
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ } else if (hi2c->XferSize == 1U) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
+ software sequence must complete before the current byte end of transfer */
+ __disable_irq();
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ /* Re-enable IRQs */
+ __enable_irq();
+ } else if (hi2c->XferSize == 2U) {
+ /* Enable Pos */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ /* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
+ software sequence must complete before the current byte end of transfer */
+ __disable_irq();
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Re-enable IRQs */
+ __enable_irq();
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+ }
+
+ while (hi2c->XferSize > 0U) {
+ if (hi2c->XferSize <= 3U) {
+ /* One byte */
+ if (hi2c->XferSize == 1U) {
+ /* Wait until RXNE flag is set */
+ if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+ }
+ /* Two bytes */
+ else if (hi2c->XferSize == 2U) {
+ /* Wait until BTF flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
+ software sequence must complete before the current byte end of transfer */
+ __disable_irq();
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+
+ /* Re-enable IRQs */
+ __enable_irq();
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+ }
+ /* 3 Last bytes */
+ else {
+ /* Wait until BTF flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
+ software sequence must complete before the current byte end of transfer */
+ __disable_irq();
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+
+ /* Wait until BTF flag is set */
+ count = I2C_TIMEOUT_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Re-enable IRQs */
+ __enable_irq();
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == RESET);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+
+ /* Re-enable IRQs */
+ __enable_irq();
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+ }
+ } else {
+ /* Wait until RXNE flag is set */
+ if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+
+ if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+ }
+ }
+ }
+
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Transmits in slave mode an amount of data in blocking mode.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) {
+ /* Init tickstart for timeout management*/
+ uint32_t tickstart = HAL_GetTick();
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ if ((pData == NULL) || (Size == 0U)) {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_SLAVE;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ /* Enable Address Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Wait until ADDR flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* If 10bit addressing mode is selected */
+ if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) {
+ /* Wait until ADDR flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+ }
+
+ while (hi2c->XferSize > 0U) {
+ /* Wait until TXE flag is set */
+ if (I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) {
+ /* Disable Address Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ return HAL_ERROR;
+ }
+
+ /* Write data to DR */
+ hi2c->Instance->DR = *hi2c->pBuffPtr;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ hi2c->XferSize--;
+
+ if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (hi2c->XferSize != 0U)) {
+ /* Write data to DR */
+ hi2c->Instance->DR = *hi2c->pBuffPtr;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ hi2c->XferSize--;
+ }
+ }
+
+ /* Wait until AF flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_AF, RESET, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Clear AF flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
+
+ /* Disable Address Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive in slave mode an amount of data in blocking mode
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) {
+ /* Init tickstart for timeout management*/
+ uint32_t tickstart = HAL_GetTick();
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ if ((pData == NULL) || (Size == (uint16_t)0)) {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX;
+ hi2c->Mode = HAL_I2C_MODE_SLAVE;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ /* Enable Address Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Wait until ADDR flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ while (hi2c->XferSize > 0U) {
+ /* Wait until RXNE flag is set */
+ if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) {
+ /* Disable Address Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ return HAL_ERROR;
+ }
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+
+ if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (hi2c->XferSize != 0U)) {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+ }
+ }
+
+ /* Wait until STOP flag is set */
+ if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) {
+ /* Disable Address Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ return HAL_ERROR;
+ }
+
+ /* Clear STOP flag */
+ __HAL_I2C_CLEAR_STOPFLAG(hi2c);
+
+ /* Disable Address Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Transmit in master mode an amount of data in non-blocking mode with Interrupt
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) {
+ __IO uint32_t count = 0U;
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_MASTER;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+ hi2c->Devaddress = DevAddress;
+
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive in master mode an amount of data in non-blocking mode with Interrupt
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) {
+ __IO uint32_t count = 0U;
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX;
+ hi2c->Mode = HAL_I2C_MODE_MASTER;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+ hi2c->Devaddress = DevAddress;
+
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Transmit in slave mode an amount of data in non-blocking mode with Interrupt
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) {
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ if ((pData == NULL) || (Size == 0U)) {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_SLAVE;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ /* Enable Address Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive in slave mode an amount of data in non-blocking mode with Interrupt
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) {
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ if ((pData == NULL) || (Size == 0U)) {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX;
+ hi2c->Mode = HAL_I2C_MODE_SLAVE;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ /* Enable Address Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Transmit in master mode an amount of data in non-blocking mode with DMA
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) {
+ __IO uint32_t count = 0U;
+ HAL_StatusTypeDef dmaxferstatus;
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_MASTER;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+ hi2c->Devaddress = DevAddress;
+
+ if (hi2c->XferSize > 0U) {
+ /* Set the I2C DMA transfer complete callback */
+ hi2c->hdmatx->XferCpltCallback = I2C_DMAXferCplt;
+
+ /* Set the DMA error callback */
+ hi2c->hdmatx->XferErrorCallback = I2C_DMAError;
+
+ /* Set the unused DMA callbacks to NULL */
+ hi2c->hdmatx->XferHalfCpltCallback = NULL;
+ hi2c->hdmatx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->DR, hi2c->XferSize);
+
+ if (dmaxferstatus == HAL_OK) {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ /* Enable DMA Request */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+ } else {
+ /* Update I2C state */
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Update I2C error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+ }
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive in master mode an amount of data in non-blocking mode with DMA
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) {
+ __IO uint32_t count = 0U;
+ HAL_StatusTypeDef dmaxferstatus;
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX;
+ hi2c->Mode = HAL_I2C_MODE_MASTER;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+ hi2c->Devaddress = DevAddress;
+
+ if (hi2c->XferSize > 0U) {
+ /* Set the I2C DMA transfer complete callback */
+ hi2c->hdmarx->XferCpltCallback = I2C_DMAXferCplt;
+
+ /* Set the DMA error callback */
+ hi2c->hdmarx->XferErrorCallback = I2C_DMAError;
+
+ /* Set the unused DMA callbacks to NULL */
+ hi2c->hdmarx->XferHalfCpltCallback = NULL;
+ hi2c->hdmarx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->DR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize);
+
+ if (dmaxferstatus == HAL_OK) {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ /* Enable DMA Request */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+ } else {
+ /* Update I2C state */
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Update I2C error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+ }
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Transmit in slave mode an amount of data in non-blocking mode with DMA
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) {
+ HAL_StatusTypeDef dmaxferstatus;
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ if ((pData == NULL) || (Size == 0U)) {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_SLAVE;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ /* Set the I2C DMA transfer complete callback */
+ hi2c->hdmatx->XferCpltCallback = I2C_DMAXferCplt;
+
+ /* Set the DMA error callback */
+ hi2c->hdmatx->XferErrorCallback = I2C_DMAError;
+
+ /* Set the unused DMA callbacks to NULL */
+ hi2c->hdmatx->XferHalfCpltCallback = NULL;
+ hi2c->hdmatx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->DR, hi2c->XferSize);
+
+ if (dmaxferstatus == HAL_OK) {
+ /* Enable Address Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+ /* Enable EVT and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ /* Enable DMA Request */
+ hi2c->Instance->CR2 |= I2C_CR2_DMAEN;
+
+ return HAL_OK;
+ } else {
+ /* Update I2C state */
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Update I2C error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive in slave mode an amount of data in non-blocking mode with DMA
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) {
+ HAL_StatusTypeDef dmaxferstatus;
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ if ((pData == NULL) || (Size == 0U)) {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX;
+ hi2c->Mode = HAL_I2C_MODE_SLAVE;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ /* Set the I2C DMA transfer complete callback */
+ hi2c->hdmarx->XferCpltCallback = I2C_DMAXferCplt;
+
+ /* Set the DMA error callback */
+ hi2c->hdmarx->XferErrorCallback = I2C_DMAError;
+
+ /* Set the unused DMA callbacks to NULL */
+ hi2c->hdmarx->XferHalfCpltCallback = NULL;
+ hi2c->hdmarx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->DR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize);
+
+ if (dmaxferstatus == HAL_OK) {
+ /* Enable Address Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+ /* Enable EVT and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ /* Enable DMA Request */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+
+ return HAL_OK;
+ } else {
+ /* Update I2C state */
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Update I2C error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Write an amount of data in blocking mode to a specific memory address
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param MemAddress Internal memory address
+ * @param MemAddSize Size of internal memory address
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) {
+ /* Init tickstart for timeout management*/
+ uint32_t tickstart = HAL_GetTick();
+
+ /* Check the parameters */
+ assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK) {
+ return HAL_BUSY;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_MEM;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ /* Send Slave Address and Memory Address */
+ if (I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ while (hi2c->XferSize > 0U) {
+ /* Wait until TXE flag is set */
+ if (I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) {
+ if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ return HAL_ERROR;
+ }
+
+ /* Write data to DR */
+ hi2c->Instance->DR = *hi2c->pBuffPtr;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+
+ if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (hi2c->XferSize != 0U)) {
+ /* Write data to DR */
+ hi2c->Instance->DR = *hi2c->pBuffPtr;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+ }
+ }
+
+ /* Wait until BTF flag is set */
+ if (I2C_WaitOnBTFFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) {
+ if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ return HAL_ERROR;
+ }
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Read an amount of data in blocking mode from a specific memory address
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param MemAddress Internal memory address
+ * @param MemAddSize Size of internal memory address
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) {
+ __IO uint32_t count = 0U;
+
+ /* Init tickstart for timeout management*/
+ uint32_t tickstart = HAL_GetTick();
+
+ /* Check the parameters */
+ assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK) {
+ return HAL_BUSY;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX;
+ hi2c->Mode = HAL_I2C_MODE_MEM;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ /* Send Slave Address and Memory Address */
+ if (I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ if (hi2c->XferSize == 0U) {
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ } else if (hi2c->XferSize == 1U) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
+ software sequence must complete before the current byte end of transfer */
+ __disable_irq();
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ /* Re-enable IRQs */
+ __enable_irq();
+ } else if (hi2c->XferSize == 2U) {
+ /* Enable Pos */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ /* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
+ software sequence must complete before the current byte end of transfer */
+ __disable_irq();
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Re-enable IRQs */
+ __enable_irq();
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+ }
+
+ while (hi2c->XferSize > 0U) {
+ if (hi2c->XferSize <= 3U) {
+ /* One byte */
+ if (hi2c->XferSize == 1U) {
+ /* Wait until RXNE flag is set */
+ if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+ }
+ /* Two bytes */
+ else if (hi2c->XferSize == 2U) {
+ /* Wait until BTF flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
+ software sequence must complete before the current byte end of transfer */
+ __disable_irq();
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+
+ /* Re-enable IRQs */
+ __enable_irq();
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+ }
+ /* 3 Last bytes */
+ else {
+ /* Wait until BTF flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Disable all active IRQs around ADDR clearing and STOP programming because the EV6_3
+ software sequence must complete before the current byte end of transfer */
+ __disable_irq();
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+
+ /* Wait until BTF flag is set */
+ count = I2C_TIMEOUT_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Re-enable IRQs */
+ __enable_irq();
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == RESET);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+
+ /* Re-enable IRQs */
+ __enable_irq();
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+ }
+ } else {
+ /* Wait until RXNE flag is set */
+ if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+
+ if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferSize--;
+ hi2c->XferCount--;
+ }
+ }
+ }
+
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Write an amount of data in non-blocking mode with Interrupt to a specific memory address
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param MemAddress Internal memory address
+ * @param MemAddSize Size of internal memory address
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) {
+ __IO uint32_t count = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_MEM;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+ hi2c->Devaddress = DevAddress;
+ hi2c->Memaddress = MemAddress;
+ hi2c->MemaddSize = MemAddSize;
+ hi2c->EventCount = 0U;
+
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Read an amount of data in non-blocking mode with Interrupt from a specific memory address
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address
+ * @param MemAddress Internal memory address
+ * @param MemAddSize Size of internal memory address
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) {
+ __IO uint32_t count = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX;
+ hi2c->Mode = HAL_I2C_MODE_MEM;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+ hi2c->Devaddress = DevAddress;
+ hi2c->Memaddress = MemAddress;
+ hi2c->MemaddSize = MemAddSize;
+ hi2c->EventCount = 0U;
+
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ if (hi2c->XferSize > 0U) {
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+ }
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Write an amount of data in non-blocking mode with DMA to a specific memory address
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param MemAddress Internal memory address
+ * @param MemAddSize Size of internal memory address
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) {
+ __IO uint32_t count = 0U;
+ HAL_StatusTypeDef dmaxferstatus;
+
+ /* Init tickstart for timeout management*/
+ uint32_t tickstart = HAL_GetTick();
+
+ /* Check the parameters */
+ assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_MEM;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ if (hi2c->XferSize > 0U) {
+ /* Set the I2C DMA transfer complete callback */
+ hi2c->hdmatx->XferCpltCallback = I2C_DMAXferCplt;
+
+ /* Set the DMA error callback */
+ hi2c->hdmatx->XferErrorCallback = I2C_DMAError;
+
+ /* Set the unused DMA callbacks to NULL */
+ hi2c->hdmatx->XferHalfCpltCallback = NULL;
+ hi2c->hdmatx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->DR, hi2c->XferSize);
+
+ if (dmaxferstatus == HAL_OK) {
+ /* Send Slave Address and Memory Address */
+ if (I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) {
+ /* Abort the ongoing DMA */
+ dmaxferstatus = HAL_DMA_Abort_IT(hi2c->hdmatx);
+
+ /* Prevent unused argument(s) compilation and MISRA warning */
+ UNUSED(dmaxferstatus);
+
+ /* Clear directly Complete callback as no XferAbortCallback is used to finalize Abort treatment */
+ if (hi2c->hdmatx != NULL) {
+ hi2c->hdmatx->XferCpltCallback = NULL;
+ }
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ hi2c->XferSize = 0U;
+ hi2c->XferCount = 0U;
+
+ /* Disable I2C peripheral to prevent dummy data in buffer */
+ __HAL_I2C_DISABLE(hi2c);
+
+ return HAL_ERROR;
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+ /* Enable ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_ERR);
+
+ /* Enable DMA Request */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+
+ return HAL_OK;
+ } else {
+ /* Update I2C state */
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Update I2C error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } else {
+ /* Update I2C state */
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Update I2C error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_SIZE;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Reads an amount of data in non-blocking mode with DMA from a specific memory address.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param MemAddress Internal memory address
+ * @param MemAddSize Size of internal memory address
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be read
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) {
+ /* Init tickstart for timeout management*/
+ uint32_t tickstart = HAL_GetTick();
+ __IO uint32_t count = 0U;
+ HAL_StatusTypeDef dmaxferstatus;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX;
+ hi2c->Mode = HAL_I2C_MODE_MEM;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ if (hi2c->XferSize > 0U) {
+ /* Set the I2C DMA transfer complete callback */
+ hi2c->hdmarx->XferCpltCallback = I2C_DMAXferCplt;
+
+ /* Set the DMA error callback */
+ hi2c->hdmarx->XferErrorCallback = I2C_DMAError;
+
+ /* Set the unused DMA callbacks to NULL */
+ hi2c->hdmarx->XferHalfCpltCallback = NULL;
+ hi2c->hdmarx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->DR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize);
+
+ if (dmaxferstatus == HAL_OK) {
+ /* Send Slave Address and Memory Address */
+ if (I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) {
+ /* Abort the ongoing DMA */
+ dmaxferstatus = HAL_DMA_Abort_IT(hi2c->hdmarx);
+
+ /* Prevent unused argument(s) compilation and MISRA warning */
+ UNUSED(dmaxferstatus);
+
+ /* Clear directly Complete callback as no XferAbortCallback is used to finalize Abort treatment */
+ if (hi2c->hdmarx != NULL) {
+ hi2c->hdmarx->XferCpltCallback = NULL;
+ }
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ hi2c->XferSize = 0U;
+ hi2c->XferCount = 0U;
+
+ /* Disable I2C peripheral to prevent dummy data in buffer */
+ __HAL_I2C_DISABLE(hi2c);
+
+ return HAL_ERROR;
+ }
+
+ if (hi2c->XferSize == 1U) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ } else {
+ /* Enable Last DMA bit */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_LAST);
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+ /* Enable ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_ERR);
+
+ /* Enable DMA Request */
+ hi2c->Instance->CR2 |= I2C_CR2_DMAEN;
+ } else {
+ /* Update I2C state */
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Update I2C error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } else {
+ /* Send Slave Address and Memory Address */
+ if (I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ hi2c->State = HAL_I2C_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+ }
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Checks if target device is ready for communication.
+ * @note This function is used with Memory devices
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param Trials Number of trials
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout) {
+ /* Get tick */
+ uint32_t tickstart = HAL_GetTick();
+ uint32_t I2C_Trials = 1U;
+ FlagStatus tmp1;
+ FlagStatus tmp2;
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Wait until BUSY flag is reset */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK) {
+ return HAL_BUSY;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ do {
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Wait until SB flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, tickstart) != HAL_OK) {
+ if (READ_BIT(hi2c->Instance->CR1, I2C_CR1_START) == I2C_CR1_START) {
+ hi2c->ErrorCode = HAL_I2C_WRONG_START;
+ }
+ return HAL_TIMEOUT;
+ }
+
+ /* Send slave address */
+ hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress);
+
+ /* Wait until ADDR or AF flag are set */
+ /* Get tick */
+ tickstart = HAL_GetTick();
+
+ tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR);
+ tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF);
+ while ((hi2c->State != HAL_I2C_STATE_TIMEOUT) && (tmp1 == RESET) && (tmp2 == RESET)) {
+ if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) {
+ hi2c->State = HAL_I2C_STATE_TIMEOUT;
+ }
+ tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR);
+ tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF);
+ }
+
+ hi2c->State = HAL_I2C_STATE_READY;
+
+ /* Check if the ADDR flag has been set */
+ if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR) == SET) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ /* Clear ADDR Flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Wait until BUSY flag is reset */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ hi2c->State = HAL_I2C_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_OK;
+ } else {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ /* Clear AF Flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
+
+ /* Wait until BUSY flag is reset */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG, tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+ }
+
+ /* Increment Trials */
+ I2C_Trials++;
+ } while (I2C_Trials < Trials);
+
+ hi2c->State = HAL_I2C_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Sequential transmit in master I2C mode an amount of data in non-blocking mode with Interrupt.
+ * @note This interface allow to manage repeated start condition when a direction change during transfer
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) {
+ __IO uint32_t Prev_State = 0x00U;
+ __IO uint32_t count = 0x00U;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Check Busy Flag only if FIRST call of Master interface */
+ if ((READ_BIT(hi2c->Instance->CR1, I2C_CR1_STOP) == I2C_CR1_STOP) || (XferOptions == I2C_FIRST_AND_LAST_FRAME) || (XferOptions == I2C_FIRST_FRAME)) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_MASTER;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = XferOptions;
+ hi2c->Devaddress = DevAddress;
+
+ Prev_State = hi2c->PreviousState;
+
+ /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */
+ /* Mean Previous state is same as current state */
+ if ((Prev_State != I2C_STATE_MASTER_BUSY_TX) || (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 1)) {
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Sequential transmit in master I2C mode an amount of data in non-blocking mode with DMA.
+ * @note This interface allow to manage repeated start condition when a direction change during transfer
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) {
+ __IO uint32_t Prev_State = 0x00U;
+ __IO uint32_t count = 0x00U;
+ HAL_StatusTypeDef dmaxferstatus;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Check Busy Flag only if FIRST call of Master interface */
+ if ((READ_BIT(hi2c->Instance->CR1, I2C_CR1_STOP) == I2C_CR1_STOP) || (XferOptions == I2C_FIRST_AND_LAST_FRAME) || (XferOptions == I2C_FIRST_FRAME)) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_MASTER;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = XferOptions;
+ hi2c->Devaddress = DevAddress;
+
+ Prev_State = hi2c->PreviousState;
+
+ if (hi2c->XferSize > 0U) {
+ /* Set the I2C DMA transfer complete callback */
+ hi2c->hdmatx->XferCpltCallback = I2C_DMAXferCplt;
+
+ /* Set the DMA error callback */
+ hi2c->hdmatx->XferErrorCallback = I2C_DMAError;
+
+ /* Set the unused DMA callbacks to NULL */
+ hi2c->hdmatx->XferHalfCpltCallback = NULL;
+ hi2c->hdmatx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->DR, hi2c->XferSize);
+
+ if (dmaxferstatus == HAL_OK) {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */
+ /* Mean Previous state is same as current state */
+ if ((Prev_State != I2C_STATE_MASTER_BUSY_TX) || (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 1)) {
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* If XferOptions is not associated to a new frame, mean no start bit is request, enable directly the DMA request */
+ /* In other cases, DMA request is enabled after Slave address treatment in IRQHandler */
+ if ((XferOptions == I2C_NEXT_FRAME) || (XferOptions == I2C_LAST_FRAME) || (XferOptions == I2C_LAST_FRAME_NO_STOP)) {
+ /* Enable DMA Request */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+ }
+
+ /* Enable EVT and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+ } else {
+ /* Update I2C state */
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Update I2C error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */
+ /* Mean Previous state is same as current state */
+ if ((Prev_State != I2C_STATE_MASTER_BUSY_TX) || (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 1)) {
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+ }
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Sequential receive in master I2C mode an amount of data in non-blocking mode with Interrupt
+ * @note This interface allow to manage repeated start condition when a direction change during transfer
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) {
+ __IO uint32_t Prev_State = 0x00U;
+ __IO uint32_t count = 0U;
+ uint32_t enableIT = (I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ /* Check the parameters */
+ assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Check Busy Flag only if FIRST call of Master interface */
+ if ((READ_BIT(hi2c->Instance->CR1, I2C_CR1_STOP) == I2C_CR1_STOP) || (XferOptions == I2C_FIRST_AND_LAST_FRAME) || (XferOptions == I2C_FIRST_FRAME)) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX;
+ hi2c->Mode = HAL_I2C_MODE_MASTER;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = XferOptions;
+ hi2c->Devaddress = DevAddress;
+
+ Prev_State = hi2c->PreviousState;
+
+ if ((hi2c->XferCount == 2U) && ((XferOptions == I2C_LAST_FRAME) || (XferOptions == I2C_LAST_FRAME_NO_STOP))) {
+ if (Prev_State == I2C_STATE_MASTER_BUSY_RX) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Enable Pos */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ /* Remove Enabling of IT_BUF, mean RXNE treatment, treat the 2 bytes through BTF */
+ enableIT &= ~I2C_IT_BUF;
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ }
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ }
+
+ /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */
+ /* Mean Previous state is same as current state */
+ if ((Prev_State != I2C_STATE_MASTER_BUSY_RX) || (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 1)) {
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable interrupts */
+ __HAL_I2C_ENABLE_IT(hi2c, enableIT);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Sequential receive in master mode an amount of data in non-blocking mode with DMA
+ * @note This interface allow to manage repeated start condition when a direction change during transfer
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) {
+ __IO uint32_t Prev_State = 0x00U;
+ __IO uint32_t count = 0U;
+ uint32_t enableIT = (I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+ HAL_StatusTypeDef dmaxferstatus;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
+
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ /* Check Busy Flag only if FIRST call of Master interface */
+ if ((READ_BIT(hi2c->Instance->CR1, I2C_CR1_STOP) == I2C_CR1_STOP) || (XferOptions == I2C_FIRST_AND_LAST_FRAME) || (XferOptions == I2C_FIRST_FRAME)) {
+ /* Wait until BUSY flag is reset */
+ count = I2C_TIMEOUT_BUSY_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET);
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ /* Clear Last DMA bit */
+ CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_LAST);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX;
+ hi2c->Mode = HAL_I2C_MODE_MASTER;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = XferOptions;
+ hi2c->Devaddress = DevAddress;
+
+ Prev_State = hi2c->PreviousState;
+
+ if (hi2c->XferSize > 0U) {
+ if ((hi2c->XferCount == 2U) && ((XferOptions == I2C_LAST_FRAME) || (XferOptions == I2C_LAST_FRAME_NO_STOP))) {
+ if (Prev_State == I2C_STATE_MASTER_BUSY_RX) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Enable Pos */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ /* Enable Last DMA bit */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_LAST);
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ }
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ if ((XferOptions == I2C_LAST_FRAME) || (XferOptions == I2C_OTHER_AND_LAST_FRAME) || (XferOptions == I2C_LAST_FRAME_NO_STOP)) {
+ /* Enable Last DMA bit */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_LAST);
+ }
+ }
+
+ /* Set the I2C DMA transfer complete callback */
+ hi2c->hdmarx->XferCpltCallback = I2C_DMAXferCplt;
+
+ /* Set the DMA error callback */
+ hi2c->hdmarx->XferErrorCallback = I2C_DMAError;
+
+ /* Set the unused DMA callbacks to NULL */
+ hi2c->hdmarx->XferHalfCpltCallback = NULL;
+ hi2c->hdmarx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->DR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize);
+
+ if (dmaxferstatus == HAL_OK) {
+ /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */
+ /* Mean Previous state is same as current state */
+ if ((Prev_State != I2C_STATE_MASTER_BUSY_RX) || (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 1)) {
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Update interrupt for only EVT and ERR */
+ enableIT = (I2C_IT_EVT | I2C_IT_ERR);
+ } else {
+ /* Update interrupt for only ERR */
+ enableIT = I2C_IT_ERR;
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* If XferOptions is not associated to a new frame, mean no start bit is request, enable directly the DMA request */
+ /* In other cases, DMA request is enabled after Slave address treatment in IRQHandler */
+ if ((XferOptions == I2C_NEXT_FRAME) || (XferOptions == I2C_LAST_FRAME) || (XferOptions == I2C_LAST_FRAME_NO_STOP)) {
+ /* Enable DMA Request */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+ }
+
+ /* Enable EVT and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, enableIT);
+ } else {
+ /* Update I2C state */
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Update I2C error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */
+ /* Mean Previous state is same as current state */
+ if ((Prev_State != I2C_STATE_MASTER_BUSY_RX) || (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 1)) {
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable interrupts */
+ __HAL_I2C_ENABLE_IT(hi2c, enableIT);
+ }
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Sequential transmit in slave mode an amount of data in non-blocking mode with Interrupt
+ * @note This interface allow to manage repeated start condition when a direction change during transfer
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) {
+ /* Check the parameters */
+ assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
+
+ if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) {
+ if ((pData == NULL) || (Size == 0U)) {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN;
+ hi2c->Mode = HAL_I2C_MODE_SLAVE;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = XferOptions;
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Sequential transmit in slave mode an amount of data in non-blocking mode with DMA
+ * @note This interface allow to manage repeated start condition when a direction change during transfer
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) {
+ HAL_StatusTypeDef dmaxferstatus;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
+
+ if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) {
+ if ((pData == NULL) || (Size == 0U)) {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Disable Interrupts, to prevent preemption during treatment in case of multicall */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */
+ /* and then toggle the HAL slave RX state to TX state */
+ if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) {
+ if ((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN) {
+ /* Abort DMA Xfer if any */
+ if (hi2c->hdmarx != NULL) {
+ CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+
+ /* Set the I2C DMA Abort callback :
+ will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */
+ hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort;
+
+ /* Abort DMA RX */
+ if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) {
+ /* Call Directly XferAbortCallback function in case of error */
+ hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx);
+ }
+ }
+ }
+ } else if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) {
+ if ((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN) {
+ CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+
+ /* Abort DMA Xfer if any */
+ if (hi2c->hdmatx != NULL) {
+ /* Set the I2C DMA Abort callback :
+ will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */
+ hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort;
+
+ /* Abort DMA TX */
+ if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) {
+ /* Call Directly XferAbortCallback function in case of error */
+ hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx);
+ }
+ }
+ }
+ } else {
+ /* Nothing to do */
+ }
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN;
+ hi2c->Mode = HAL_I2C_MODE_SLAVE;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = XferOptions;
+
+ /* Set the I2C DMA transfer complete callback */
+ hi2c->hdmatx->XferCpltCallback = I2C_DMAXferCplt;
+
+ /* Set the DMA error callback */
+ hi2c->hdmatx->XferErrorCallback = I2C_DMAError;
+
+ /* Set the unused DMA callbacks to NULL */
+ hi2c->hdmatx->XferHalfCpltCallback = NULL;
+ hi2c->hdmatx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->DR, hi2c->XferSize);
+
+ if (dmaxferstatus == HAL_OK) {
+ /* Enable Address Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+ /* Enable EVT and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ /* Enable DMA Request */
+ hi2c->Instance->CR2 |= I2C_CR2_DMAEN;
+
+ return HAL_OK;
+ } else {
+ /* Update I2C state */
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Update I2C error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Sequential receive in slave mode an amount of data in non-blocking mode with Interrupt
+ * @note This interface allow to manage repeated start condition when a direction change during transfer
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) {
+ /* Check the parameters */
+ assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
+
+ if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) {
+ if ((pData == NULL) || (Size == 0U)) {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN;
+ hi2c->Mode = HAL_I2C_MODE_SLAVE;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = XferOptions;
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+
+ /* Enable EVT, BUF and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Sequential receive in slave mode an amount of data in non-blocking mode with DMA
+ * @note This interface allow to manage repeated start condition when a direction change during transfer
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param XferOptions Options of Transfer, value of @ref I2C_XferOptions_definition
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) {
+ HAL_StatusTypeDef dmaxferstatus;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
+
+ if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) {
+ if ((pData == NULL) || (Size == 0U)) {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ /* Disable Interrupts, to prevent preemption during treatment in case of multicall */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */
+ /* and then toggle the HAL slave RX state to TX state */
+ if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) {
+ if ((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN) {
+ /* Abort DMA Xfer if any */
+ if (hi2c->hdmarx != NULL) {
+ CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+
+ /* Set the I2C DMA Abort callback :
+ will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */
+ hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort;
+
+ /* Abort DMA RX */
+ if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) {
+ /* Call Directly XferAbortCallback function in case of error */
+ hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx);
+ }
+ }
+ }
+ } else if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) {
+ if ((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN) {
+ CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+
+ /* Abort DMA Xfer if any */
+ if (hi2c->hdmatx != NULL) {
+ /* Set the I2C DMA Abort callback :
+ will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */
+ hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort;
+
+ /* Abort DMA TX */
+ if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) {
+ /* Call Directly XferAbortCallback function in case of error */
+ hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx);
+ }
+ }
+ }
+ } else {
+ /* Nothing to do */
+ }
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Disable Pos */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN;
+ hi2c->Mode = HAL_I2C_MODE_SLAVE;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Prepare transfer parameters */
+ hi2c->pBuffPtr = pData;
+ hi2c->XferCount = Size;
+ hi2c->XferSize = hi2c->XferCount;
+ hi2c->XferOptions = XferOptions;
+
+ /* Set the I2C DMA transfer complete callback */
+ hi2c->hdmarx->XferCpltCallback = I2C_DMAXferCplt;
+
+ /* Set the DMA error callback */
+ hi2c->hdmarx->XferErrorCallback = I2C_DMAError;
+
+ /* Set the unused DMA callbacks to NULL */
+ hi2c->hdmarx->XferHalfCpltCallback = NULL;
+ hi2c->hdmarx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->DR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize);
+
+ if (dmaxferstatus == HAL_OK) {
+ /* Enable Address Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Enable DMA Request */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+
+ /* Note : The I2C interrupts must be enabled after unlocking current process
+ to avoid the risk of I2C interrupt handle execution before current
+ process unlock */
+ /* Enable EVT and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ return HAL_OK;
+ } else {
+ /* Update I2C state */
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Update I2C error code */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Enable the Address listen mode with Interrupt.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c) {
+ if (hi2c->State == HAL_I2C_STATE_READY) {
+ hi2c->State = HAL_I2C_STATE_LISTEN;
+
+ /* Check if the I2C is already enabled */
+ if ((hi2c->Instance->CR1 & I2C_CR1_PE) != I2C_CR1_PE) {
+ /* Enable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+ }
+
+ /* Enable Address Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Enable EVT and ERR interrupt */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Disable the Address listen mode with Interrupt.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c) {
+ /* Declaration of tmp to prevent undefined behavior of volatile usage */
+ uint32_t tmp;
+
+ /* Disable Address listen mode only if a transfer is not ongoing */
+ if (hi2c->State == HAL_I2C_STATE_LISTEN) {
+ tmp = (uint32_t)(hi2c->State) & I2C_STATE_MSK;
+ hi2c->PreviousState = tmp | (uint32_t)(hi2c->Mode);
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Disable Address Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Disable EVT and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ return HAL_OK;
+ } else {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Abort a master I2C IT or DMA process communication with Interrupt.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress) {
+ /* Declaration of temporary variables to prevent undefined behavior of volatile usage */
+ HAL_I2C_ModeTypeDef CurrentMode = hi2c->Mode;
+
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(DevAddress);
+
+ /* Abort Master transfer during Receive or Transmit process */
+ if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET) && (CurrentMode == HAL_I2C_MODE_MASTER)) {
+ /* Process Locked */
+ __HAL_LOCK(hi2c);
+
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_ABORT;
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ hi2c->XferCount = 0U;
+
+ /* Disable EVT, BUF and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Call the corresponding callback to inform upper layer of End of Transfer */
+ I2C_ITError(hi2c);
+
+ return HAL_OK;
+ } else {
+ /* Wrong usage of abort function */
+ /* This function should be used only in case of abort monitored by master device */
+ /* Or periphal is not in busy state, mean there is no active sequence to be abort */
+ return HAL_ERROR;
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup I2C_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks
+ * @{
+ */
+
+/**
+ * @brief This function handles I2C event interrupt request.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c) {
+ uint32_t sr1itflags;
+ uint32_t sr2itflags = 0U;
+ uint32_t itsources = READ_REG(hi2c->Instance->CR2);
+ uint32_t CurrentXferOptions = hi2c->XferOptions;
+ HAL_I2C_ModeTypeDef CurrentMode = hi2c->Mode;
+ HAL_I2C_StateTypeDef CurrentState = hi2c->State;
+
+ /* Master or Memory mode selected */
+ if ((CurrentMode == HAL_I2C_MODE_MASTER) || (CurrentMode == HAL_I2C_MODE_MEM)) {
+ sr2itflags = READ_REG(hi2c->Instance->SR2);
+ sr1itflags = READ_REG(hi2c->Instance->SR1);
+
+ /* Exit IRQ event until Start Bit detected in case of Other frame requested */
+ if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_SB) == RESET) && (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(CurrentXferOptions) == 1U)) {
+ return;
+ }
+
+ /* SB Set ----------------------------------------------------------------*/
+ if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_SB) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_EVT) != RESET)) {
+ /* Convert OTHER_xxx XferOptions if any */
+ I2C_ConvertOtherXferOptions(hi2c);
+
+ I2C_Master_SB(hi2c);
+ }
+ /* ADD10 Set -------------------------------------------------------------*/
+ else if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_ADD10) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_EVT) != RESET)) {
+ I2C_Master_ADD10(hi2c);
+ }
+ /* ADDR Set --------------------------------------------------------------*/
+ else if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_ADDR) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_EVT) != RESET)) {
+ I2C_Master_ADDR(hi2c);
+ }
+ /* I2C in mode Transmitter -----------------------------------------------*/
+ else if (I2C_CHECK_FLAG(sr2itflags, I2C_FLAG_TRA) != RESET) {
+ /* Do not check buffer and BTF flag if a Xfer DMA is on going */
+ if (READ_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN) != I2C_CR2_DMAEN) {
+ /* TXE set and BTF reset -----------------------------------------------*/
+ if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_TXE) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_BUF) != RESET) && (I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_BTF) == RESET)) {
+ I2C_MasterTransmit_TXE(hi2c);
+ }
+ /* BTF set -------------------------------------------------------------*/
+ else if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_BTF) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_EVT) != RESET)) {
+ if (CurrentMode == HAL_I2C_MODE_MASTER) {
+ I2C_MasterTransmit_BTF(hi2c);
+ } else /* HAL_I2C_MODE_MEM */
+ {
+ I2C_MemoryTransmit_TXE_BTF(hi2c);
+ }
+ } else {
+ /* Do nothing */
+ }
+ }
+ }
+ /* I2C in mode Receiver --------------------------------------------------*/
+ else {
+ /* Do not check buffer and BTF flag if a Xfer DMA is on going */
+ if (READ_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN) != I2C_CR2_DMAEN) {
+ /* RXNE set and BTF reset -----------------------------------------------*/
+ if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_RXNE) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_BUF) != RESET) && (I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_BTF) == RESET)) {
+ I2C_MasterReceive_RXNE(hi2c);
+ }
+ /* BTF set -------------------------------------------------------------*/
+ else if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_BTF) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_EVT) != RESET)) {
+ I2C_MasterReceive_BTF(hi2c);
+ } else {
+ /* Do nothing */
+ }
+ }
+ }
+ }
+ /* Slave mode selected */
+ else {
+ /* If an error is detected, read only SR1 register to prevent */
+ /* a clear of ADDR flags by reading SR2 after reading SR1 in Error treatment */
+ if (hi2c->ErrorCode != HAL_I2C_ERROR_NONE) {
+ sr1itflags = READ_REG(hi2c->Instance->SR1);
+ } else {
+ sr2itflags = READ_REG(hi2c->Instance->SR2);
+ sr1itflags = READ_REG(hi2c->Instance->SR1);
+ }
+
+ /* ADDR set --------------------------------------------------------------*/
+ if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_ADDR) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_EVT) != RESET)) {
+ /* Now time to read SR2, this will clear ADDR flag automatically */
+ if (hi2c->ErrorCode != HAL_I2C_ERROR_NONE) {
+ sr2itflags = READ_REG(hi2c->Instance->SR2);
+ }
+ I2C_Slave_ADDR(hi2c, sr2itflags);
+ }
+ /* STOPF set --------------------------------------------------------------*/
+ else if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_STOPF) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_EVT) != RESET)) {
+ I2C_Slave_STOPF(hi2c);
+ }
+ /* I2C in mode Transmitter -----------------------------------------------*/
+ else if ((CurrentState == HAL_I2C_STATE_BUSY_TX) || (CurrentState == HAL_I2C_STATE_BUSY_TX_LISTEN)) {
+ /* TXE set and BTF reset -----------------------------------------------*/
+ if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_TXE) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_BUF) != RESET) && (I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_BTF) == RESET)) {
+ I2C_SlaveTransmit_TXE(hi2c);
+ }
+ /* BTF set -------------------------------------------------------------*/
+ else if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_BTF) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_EVT) != RESET)) {
+ I2C_SlaveTransmit_BTF(hi2c);
+ } else {
+ /* Do nothing */
+ }
+ }
+ /* I2C in mode Receiver --------------------------------------------------*/
+ else {
+ /* RXNE set and BTF reset ----------------------------------------------*/
+ if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_RXNE) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_BUF) != RESET) && (I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_BTF) == RESET)) {
+ I2C_SlaveReceive_RXNE(hi2c);
+ }
+ /* BTF set -------------------------------------------------------------*/
+ else if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_BTF) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_EVT) != RESET)) {
+ I2C_SlaveReceive_BTF(hi2c);
+ } else {
+ /* Do nothing */
+ }
+ }
+ }
+}
+
+/**
+ * @brief This function handles I2C error interrupt request.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c) {
+ HAL_I2C_ModeTypeDef tmp1;
+ uint32_t tmp2;
+ HAL_I2C_StateTypeDef tmp3;
+ uint32_t tmp4;
+ uint32_t sr1itflags = READ_REG(hi2c->Instance->SR1);
+ uint32_t itsources = READ_REG(hi2c->Instance->CR2);
+ uint32_t error = HAL_I2C_ERROR_NONE;
+ HAL_I2C_ModeTypeDef CurrentMode = hi2c->Mode;
+
+ /* I2C Bus error interrupt occurred ----------------------------------------*/
+ if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_BERR) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERR) != RESET)) {
+ error |= HAL_I2C_ERROR_BERR;
+
+ /* Clear BERR flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR);
+
+ /* Workaround: Start cannot be generated after a misplaced Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_SWRST);
+ }
+
+ /* I2C Arbitration Lost error interrupt occurred ---------------------------*/
+ if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_ARLO) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERR) != RESET)) {
+ error |= HAL_I2C_ERROR_ARLO;
+
+ /* Clear ARLO flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO);
+ }
+
+ /* I2C Acknowledge failure error interrupt occurred ------------------------*/
+ if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_AF) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERR) != RESET)) {
+ tmp1 = CurrentMode;
+ tmp2 = hi2c->XferCount;
+ tmp3 = hi2c->State;
+ tmp4 = hi2c->PreviousState;
+ if ((tmp1 == HAL_I2C_MODE_SLAVE) && (tmp2 == 0U)
+ && ((tmp3 == HAL_I2C_STATE_BUSY_TX) || (tmp3 == HAL_I2C_STATE_BUSY_TX_LISTEN) || ((tmp3 == HAL_I2C_STATE_LISTEN) && (tmp4 == I2C_STATE_SLAVE_BUSY_TX)))) {
+ I2C_Slave_AF(hi2c);
+ } else {
+ /* Clear AF flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
+
+ error |= HAL_I2C_ERROR_AF;
+
+ /* Do not generate a STOP in case of Slave receive non acknowledge during transfer (mean not at the end of transfer) */
+ if ((CurrentMode == HAL_I2C_MODE_MASTER) || (CurrentMode == HAL_I2C_MODE_MEM)) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ }
+ }
+
+ /* I2C Over-Run/Under-Run interrupt occurred -------------------------------*/
+ if ((I2C_CHECK_FLAG(sr1itflags, I2C_FLAG_OVR) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERR) != RESET)) {
+ error |= HAL_I2C_ERROR_OVR;
+ /* Clear OVR flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR);
+ }
+
+ /* Call the Error Callback in case of Error detected -----------------------*/
+ if (error != HAL_I2C_ERROR_NONE) {
+ hi2c->ErrorCode |= error;
+ I2C_ITError(hi2c);
+ }
+}
+
+/**
+ * @brief Master Tx Transfer completed callback.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+__weak void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_MasterTxCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Master Rx Transfer completed callback.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+__weak void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_MasterRxCpltCallback could be implemented in the user file
+ */
+}
+
+/** @brief Slave Tx Transfer completed callback.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+__weak void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_SlaveTxCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Slave Rx Transfer completed callback.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+__weak void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_SlaveRxCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Slave Address Match callback.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param TransferDirection Master request Transfer Direction (Write/Read), value of @ref I2C_XferDirection_definition
+ * @param AddrMatchCode Address Match Code
+ * @retval None
+ */
+__weak void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+ UNUSED(TransferDirection);
+ UNUSED(AddrMatchCode);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_AddrCallback() could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Listen Complete callback.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+__weak void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_ListenCpltCallback() could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Memory Tx Transfer completed callback.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+__weak void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_MemTxCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Memory Rx Transfer completed callback.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+__weak void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_MemRxCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief I2C error callback.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+__weak void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_ErrorCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief I2C abort callback.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval None
+ */
+__weak void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hi2c);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_I2C_AbortCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions
+ * @brief Peripheral State, Mode and Error functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral State, Mode and Error functions #####
+ ===============================================================================
+ [..]
+ This subsection permit to get in run-time the status of the peripheral
+ and the data flow.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Return the I2C handle state.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval HAL state
+ */
+HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c) {
+ /* Return I2C handle state */
+ return hi2c->State;
+}
+
+/**
+ * @brief Returns the I2C Master, Slave, Memory or no mode.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval HAL mode
+ */
+HAL_I2C_ModeTypeDef HAL_I2C_GetMode(I2C_HandleTypeDef *hi2c) { return hi2c->Mode; }
+
+/**
+ * @brief Return the I2C error code.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval I2C Error Code
+ */
+uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c) { return hi2c->ErrorCode; }
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup I2C_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Handle TXE flag for Master
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_MasterTransmit_TXE(I2C_HandleTypeDef *hi2c) {
+ /* Declaration of temporary variables to prevent undefined behavior of volatile usage */
+ HAL_I2C_StateTypeDef CurrentState = hi2c->State;
+ HAL_I2C_ModeTypeDef CurrentMode = hi2c->Mode;
+ uint32_t CurrentXferOptions = hi2c->XferOptions;
+
+ if ((hi2c->XferSize == 0U) && (CurrentState == HAL_I2C_STATE_BUSY_TX)) {
+ /* Call TxCpltCallback() directly if no stop mode is set */
+ if ((CurrentXferOptions != I2C_FIRST_AND_LAST_FRAME) && (CurrentXferOptions != I2C_LAST_FRAME) && (CurrentXferOptions != I2C_NO_OPTION_FRAME)) {
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MasterTxCpltCallback(hi2c);
+#else
+ HAL_I2C_MasterTxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else /* Generate Stop condition then Call TxCpltCallback() */
+ {
+ /* Disable EVT, BUF and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+
+ if (hi2c->Mode == HAL_I2C_MODE_MEM) {
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MemTxCpltCallback(hi2c);
+#else
+ HAL_I2C_MemTxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MasterTxCpltCallback(hi2c);
+#else
+ HAL_I2C_MasterTxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+ }
+ } else if ((CurrentState == HAL_I2C_STATE_BUSY_TX) || ((CurrentMode == HAL_I2C_MODE_MEM) && (CurrentState == HAL_I2C_STATE_BUSY_RX))) {
+ if (hi2c->XferCount == 0U) {
+ /* Disable BUF interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF);
+ } else {
+ if (hi2c->Mode == HAL_I2C_MODE_MEM) {
+ I2C_MemoryTransmit_TXE_BTF(hi2c);
+ } else {
+ /* Write data to DR */
+ hi2c->Instance->DR = *hi2c->pBuffPtr;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ }
+ }
+ } else {
+ /* Do nothing */
+ }
+}
+
+/**
+ * @brief Handle BTF flag for Master transmitter
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_MasterTransmit_BTF(I2C_HandleTypeDef *hi2c) {
+ /* Declaration of temporary variables to prevent undefined behavior of volatile usage */
+ uint32_t CurrentXferOptions = hi2c->XferOptions;
+
+ if (hi2c->State == HAL_I2C_STATE_BUSY_TX) {
+ if (hi2c->XferCount != 0U) {
+ /* Write data to DR */
+ hi2c->Instance->DR = *hi2c->pBuffPtr;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ } else {
+ /* Call TxCpltCallback() directly if no stop mode is set */
+ if ((CurrentXferOptions != I2C_FIRST_AND_LAST_FRAME) && (CurrentXferOptions != I2C_LAST_FRAME) && (CurrentXferOptions != I2C_NO_OPTION_FRAME)) {
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MasterTxCpltCallback(hi2c);
+#else
+ HAL_I2C_MasterTxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else /* Generate Stop condition then Call TxCpltCallback() */
+ {
+ /* Disable EVT, BUF and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MasterTxCpltCallback(hi2c);
+#else
+ HAL_I2C_MasterTxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+ }
+ } else {
+ /* Do nothing */
+ }
+}
+
+/**
+ * @brief Handle TXE and BTF flag for Memory transmitter
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_MemoryTransmit_TXE_BTF(I2C_HandleTypeDef *hi2c) {
+ /* Declaration of temporary variables to prevent undefined behavior of volatile usage */
+ HAL_I2C_StateTypeDef CurrentState = hi2c->State;
+
+ if (hi2c->EventCount == 0U) {
+ /* If Memory address size is 8Bit */
+ if (hi2c->MemaddSize == I2C_MEMADD_SIZE_8BIT) {
+ /* Send Memory Address */
+ hi2c->Instance->DR = I2C_MEM_ADD_LSB(hi2c->Memaddress);
+
+ hi2c->EventCount += 2U;
+ }
+ /* If Memory address size is 16Bit */
+ else {
+ /* Send MSB of Memory Address */
+ hi2c->Instance->DR = I2C_MEM_ADD_MSB(hi2c->Memaddress);
+
+ hi2c->EventCount++;
+ }
+ } else if (hi2c->EventCount == 1U) {
+ /* Send LSB of Memory Address */
+ hi2c->Instance->DR = I2C_MEM_ADD_LSB(hi2c->Memaddress);
+
+ hi2c->EventCount++;
+ } else if (hi2c->EventCount == 2U) {
+ if (CurrentState == HAL_I2C_STATE_BUSY_RX) {
+ /* Generate Restart */
+ hi2c->Instance->CR1 |= I2C_CR1_START;
+ } else if ((hi2c->XferCount > 0U) && (CurrentState == HAL_I2C_STATE_BUSY_TX)) {
+ /* Write data to DR */
+ hi2c->Instance->DR = *hi2c->pBuffPtr;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ } else if ((hi2c->XferCount == 0U) && (CurrentState == HAL_I2C_STATE_BUSY_TX)) {
+ /* Generate Stop condition then Call TxCpltCallback() */
+ /* Disable EVT, BUF and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MemTxCpltCallback(hi2c);
+#else
+ HAL_I2C_MemTxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ /* Do nothing */
+ }
+ } else {
+ /* Do nothing */
+ }
+}
+
+/**
+ * @brief Handle RXNE flag for Master
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_MasterReceive_RXNE(I2C_HandleTypeDef *hi2c) {
+ if (hi2c->State == HAL_I2C_STATE_BUSY_RX) {
+ uint32_t tmp;
+
+ tmp = hi2c->XferCount;
+ if (tmp > 3U) {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+
+ if (hi2c->XferCount == (uint16_t)3) {
+ /* Disable BUF interrupt, this help to treat correctly the last 4 bytes
+ on BTF subroutine */
+ /* Disable BUF interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF);
+ }
+ } else if ((hi2c->XferOptions != I2C_FIRST_AND_NEXT_FRAME) && ((tmp == 1U) || (tmp == 0U))) {
+ if (I2C_WaitOnSTOPRequestThroughIT(hi2c) == HAL_OK) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Disable EVT, BUF and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+
+ hi2c->State = HAL_I2C_STATE_READY;
+
+ if (hi2c->Mode == HAL_I2C_MODE_MEM) {
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->PreviousState = I2C_STATE_NONE;
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MemRxCpltCallback(hi2c);
+#else
+ HAL_I2C_MemRxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX;
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MasterRxCpltCallback(hi2c);
+#else
+ HAL_I2C_MasterRxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+ } else {
+ /* Disable EVT, BUF and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Call user error callback */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->ErrorCallback(hi2c);
+#else
+ HAL_I2C_ErrorCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+ } else {
+ /* Do nothing */
+ }
+ }
+}
+
+/**
+ * @brief Handle BTF flag for Master receiver
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_MasterReceive_BTF(I2C_HandleTypeDef *hi2c) {
+ /* Declaration of temporary variables to prevent undefined behavior of volatile usage */
+ uint32_t CurrentXferOptions = hi2c->XferOptions;
+
+ if (hi2c->XferCount == 4U) {
+ /* Disable BUF interrupt, this help to treat correctly the last 2 bytes
+ on BTF subroutine if there is a reception delay between N-1 and N byte */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF);
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ } else if (hi2c->XferCount == 3U) {
+ /* Disable BUF interrupt, this help to treat correctly the last 2 bytes
+ on BTF subroutine if there is a reception delay between N-1 and N byte */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF);
+
+ if ((CurrentXferOptions != I2C_NEXT_FRAME) && (CurrentXferOptions != I2C_FIRST_AND_NEXT_FRAME)) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ }
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ } else if (hi2c->XferCount == 2U) {
+ /* Prepare next transfer or stop current transfer */
+ if ((CurrentXferOptions == I2C_FIRST_FRAME) || (CurrentXferOptions == I2C_LAST_FRAME_NO_STOP)) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ } else if ((CurrentXferOptions == I2C_NEXT_FRAME) || (CurrentXferOptions == I2C_FIRST_AND_NEXT_FRAME)) {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ } else if (CurrentXferOptions != I2C_LAST_FRAME_NO_STOP) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ } else {
+ /* Do nothing */
+ }
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+
+ /* Disable EVT and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ hi2c->State = HAL_I2C_STATE_READY;
+ if (hi2c->Mode == HAL_I2C_MODE_MEM) {
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->PreviousState = I2C_STATE_NONE;
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MemRxCpltCallback(hi2c);
+#else
+ HAL_I2C_MemRxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX;
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MasterRxCpltCallback(hi2c);
+#else
+ HAL_I2C_MasterRxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+ } else {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ }
+}
+
+/**
+ * @brief Handle SB flag for Master
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_Master_SB(I2C_HandleTypeDef *hi2c) {
+ if (hi2c->Mode == HAL_I2C_MODE_MEM) {
+ if (hi2c->EventCount == 0U) {
+ /* Send slave address */
+ hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(hi2c->Devaddress);
+ } else {
+ hi2c->Instance->DR = I2C_7BIT_ADD_READ(hi2c->Devaddress);
+ }
+ } else {
+ if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT) {
+ /* Send slave 7 Bits address */
+ if (hi2c->State == HAL_I2C_STATE_BUSY_TX) {
+ hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(hi2c->Devaddress);
+ } else {
+ hi2c->Instance->DR = I2C_7BIT_ADD_READ(hi2c->Devaddress);
+ }
+
+ if (((hi2c->hdmatx != NULL) && (hi2c->hdmatx->XferCpltCallback != NULL)) || ((hi2c->hdmarx != NULL) && (hi2c->hdmarx->XferCpltCallback != NULL))) {
+ /* Enable DMA Request */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+ }
+ } else {
+ if (hi2c->EventCount == 0U) {
+ /* Send header of slave address */
+ hi2c->Instance->DR = I2C_10BIT_HEADER_WRITE(hi2c->Devaddress);
+ } else if (hi2c->EventCount == 1U) {
+ /* Send header of slave address */
+ hi2c->Instance->DR = I2C_10BIT_HEADER_READ(hi2c->Devaddress);
+ } else {
+ /* Do nothing */
+ }
+ }
+ }
+}
+
+/**
+ * @brief Handle ADD10 flag for Master
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_Master_ADD10(I2C_HandleTypeDef *hi2c) {
+ /* Send slave address */
+ hi2c->Instance->DR = I2C_10BIT_ADDRESS(hi2c->Devaddress);
+
+ if ((hi2c->hdmatx != NULL) || (hi2c->hdmarx != NULL)) {
+ if ((hi2c->hdmatx->XferCpltCallback != NULL) || (hi2c->hdmarx->XferCpltCallback != NULL)) {
+ /* Enable DMA Request */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+ }
+ }
+}
+
+/**
+ * @brief Handle ADDR flag for Master
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_Master_ADDR(I2C_HandleTypeDef *hi2c) {
+ /* Declaration of temporary variable to prevent undefined behavior of volatile usage */
+ HAL_I2C_ModeTypeDef CurrentMode = hi2c->Mode;
+ uint32_t CurrentXferOptions = hi2c->XferOptions;
+ uint32_t Prev_State = hi2c->PreviousState;
+
+ if (hi2c->State == HAL_I2C_STATE_BUSY_RX) {
+ if ((hi2c->EventCount == 0U) && (CurrentMode == HAL_I2C_MODE_MEM)) {
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+ } else if ((hi2c->EventCount == 0U) && (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT)) {
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Generate Restart */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ hi2c->EventCount++;
+ } else {
+ if (hi2c->XferCount == 0U) {
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ } else if (hi2c->XferCount == 1U) {
+ if (CurrentXferOptions == I2C_NO_OPTION_FRAME) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ if ((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+ } else {
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ }
+ /* Prepare next transfer or stop current transfer */
+ else if ((CurrentXferOptions != I2C_FIRST_AND_LAST_FRAME) && (CurrentXferOptions != I2C_LAST_FRAME) && ((Prev_State != I2C_STATE_MASTER_BUSY_RX) || (CurrentXferOptions == I2C_FIRST_FRAME))) {
+ if ((CurrentXferOptions != I2C_NEXT_FRAME) && (CurrentXferOptions != I2C_FIRST_AND_NEXT_FRAME) && (CurrentXferOptions != I2C_LAST_FRAME_NO_STOP)) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+ } else {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ } else if (hi2c->XferCount == 2U) {
+ if ((CurrentXferOptions != I2C_NEXT_FRAME) && (CurrentXferOptions != I2C_FIRST_AND_NEXT_FRAME) && (CurrentXferOptions != I2C_LAST_FRAME_NO_STOP)) {
+ /* Enable Pos */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_POS);
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+ }
+
+ if (((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN)
+ && ((CurrentXferOptions == I2C_NO_OPTION_FRAME) || (CurrentXferOptions == I2C_FIRST_FRAME) || (CurrentXferOptions == I2C_FIRST_AND_LAST_FRAME)
+ || (CurrentXferOptions == I2C_LAST_FRAME_NO_STOP) || (CurrentXferOptions == I2C_LAST_FRAME))) {
+ /* Enable Last DMA bit */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_LAST);
+ }
+ } else {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ if (((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN)
+ && ((CurrentXferOptions == I2C_NO_OPTION_FRAME) || (CurrentXferOptions == I2C_FIRST_FRAME) || (CurrentXferOptions == I2C_FIRST_AND_LAST_FRAME)
+ || (CurrentXferOptions == I2C_LAST_FRAME_NO_STOP) || (CurrentXferOptions == I2C_LAST_FRAME))) {
+ /* Enable Last DMA bit */
+ SET_BIT(hi2c->Instance->CR2, I2C_CR2_LAST);
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+ }
+
+ /* Reset Event counter */
+ hi2c->EventCount = 0U;
+ }
+ } else {
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+ }
+}
+
+/**
+ * @brief Handle TXE flag for Slave
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_SlaveTransmit_TXE(I2C_HandleTypeDef *hi2c) {
+ /* Declaration of temporary variables to prevent undefined behavior of volatile usage */
+ HAL_I2C_StateTypeDef CurrentState = hi2c->State;
+
+ if (hi2c->XferCount != 0U) {
+ /* Write data to DR */
+ hi2c->Instance->DR = *hi2c->pBuffPtr;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+
+ if ((hi2c->XferCount == 0U) && (CurrentState == HAL_I2C_STATE_BUSY_TX_LISTEN)) {
+ /* Last Byte is received, disable Interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF);
+
+ /* Set state at HAL_I2C_STATE_LISTEN */
+ hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX;
+ hi2c->State = HAL_I2C_STATE_LISTEN;
+
+ /* Call the corresponding callback to inform upper layer of End of Transfer */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->SlaveTxCpltCallback(hi2c);
+#else
+ HAL_I2C_SlaveTxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+ }
+}
+
+/**
+ * @brief Handle BTF flag for Slave transmitter
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_SlaveTransmit_BTF(I2C_HandleTypeDef *hi2c) {
+ if (hi2c->XferCount != 0U) {
+ /* Write data to DR */
+ hi2c->Instance->DR = *hi2c->pBuffPtr;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ }
+}
+
+/**
+ * @brief Handle RXNE flag for Slave
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_SlaveReceive_RXNE(I2C_HandleTypeDef *hi2c) {
+ /* Declaration of temporary variables to prevent undefined behavior of volatile usage */
+ HAL_I2C_StateTypeDef CurrentState = hi2c->State;
+
+ if (hi2c->XferCount != 0U) {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+
+ if ((hi2c->XferCount == 0U) && (CurrentState == HAL_I2C_STATE_BUSY_RX_LISTEN)) {
+ /* Last Byte is received, disable Interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF);
+
+ /* Set state at HAL_I2C_STATE_LISTEN */
+ hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX;
+ hi2c->State = HAL_I2C_STATE_LISTEN;
+
+ /* Call the corresponding callback to inform upper layer of End of Transfer */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->SlaveRxCpltCallback(hi2c);
+#else
+ HAL_I2C_SlaveRxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+ }
+}
+
+/**
+ * @brief Handle BTF flag for Slave receiver
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_SlaveReceive_BTF(I2C_HandleTypeDef *hi2c) {
+ if (hi2c->XferCount != 0U) {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ }
+}
+
+/**
+ * @brief Handle ADD flag for Slave
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @param IT2Flags Interrupt2 flags to handle.
+ * @retval None
+ */
+static void I2C_Slave_ADDR(I2C_HandleTypeDef *hi2c, uint32_t IT2Flags) {
+ uint8_t TransferDirection = I2C_DIRECTION_RECEIVE;
+ uint16_t SlaveAddrCode;
+
+ if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) {
+ /* Disable BUF interrupt, BUF enabling is manage through slave specific interface */
+ __HAL_I2C_DISABLE_IT(hi2c, (I2C_IT_BUF));
+
+ /* Transfer Direction requested by Master */
+ if (I2C_CHECK_FLAG(IT2Flags, I2C_FLAG_TRA) == RESET) {
+ TransferDirection = I2C_DIRECTION_TRANSMIT;
+ }
+
+ if (I2C_CHECK_FLAG(IT2Flags, I2C_FLAG_DUALF) == RESET) {
+ SlaveAddrCode = (uint16_t)hi2c->Init.OwnAddress1;
+ } else {
+ SlaveAddrCode = (uint16_t)hi2c->Init.OwnAddress2;
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ /* Call Slave Addr callback */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->AddrCallback(hi2c, TransferDirection, SlaveAddrCode);
+#else
+ HAL_I2C_AddrCallback(hi2c, TransferDirection, SlaveAddrCode);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+ }
+}
+
+/**
+ * @brief Handle STOPF flag for Slave
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_Slave_STOPF(I2C_HandleTypeDef *hi2c) {
+ /* Declaration of temporary variable to prevent undefined behavior of volatile usage */
+ HAL_I2C_StateTypeDef CurrentState = hi2c->State;
+
+ /* Disable EVT, BUF and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ /* Clear STOPF flag */
+ __HAL_I2C_CLEAR_STOPFLAG(hi2c);
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* If a DMA is ongoing, Update handle size context */
+ if ((hi2c->Instance->CR2 & I2C_CR2_DMAEN) == I2C_CR2_DMAEN) {
+ if ((CurrentState == HAL_I2C_STATE_BUSY_RX) || (CurrentState == HAL_I2C_STATE_BUSY_RX_LISTEN)) {
+ hi2c->XferCount = (uint16_t)(__HAL_DMA_GET_COUNTER(hi2c->hdmarx));
+
+ if (hi2c->XferCount != 0U) {
+ /* Set ErrorCode corresponding to a Non-Acknowledge */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
+ }
+
+ /* Disable, stop the current DMA */
+ CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+
+ /* Abort DMA Xfer if any */
+ if (HAL_DMA_GetState(hi2c->hdmarx) != HAL_DMA_STATE_READY) {
+ /* Set the I2C DMA Abort callback :
+ will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */
+ hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort;
+
+ /* Abort DMA RX */
+ if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) {
+ /* Call Directly XferAbortCallback function in case of error */
+ hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx);
+ }
+ }
+ } else {
+ hi2c->XferCount = (uint16_t)(__HAL_DMA_GET_COUNTER(hi2c->hdmatx));
+
+ if (hi2c->XferCount != 0U) {
+ /* Set ErrorCode corresponding to a Non-Acknowledge */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
+ }
+
+ /* Disable, stop the current DMA */
+ CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+
+ /* Abort DMA Xfer if any */
+ if (HAL_DMA_GetState(hi2c->hdmatx) != HAL_DMA_STATE_READY) {
+ /* Set the I2C DMA Abort callback :
+ will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */
+ hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort;
+
+ /* Abort DMA TX */
+ if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) {
+ /* Call Directly XferAbortCallback function in case of error */
+ hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx);
+ }
+ }
+ }
+ }
+
+ /* All data are not transferred, so set error code accordingly */
+ if (hi2c->XferCount != 0U) {
+ /* Store Last receive data if any */
+ if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ }
+
+ /* Store Last receive data if any */
+ if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+
+ /* Update counter */
+ hi2c->XferCount--;
+ }
+
+ if (hi2c->XferCount != 0U) {
+ /* Set ErrorCode corresponding to a Non-Acknowledge */
+ hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
+ }
+ }
+
+ if (hi2c->ErrorCode != HAL_I2C_ERROR_NONE) {
+ /* Call the corresponding callback to inform upper layer of End of Transfer */
+ I2C_ITError(hi2c);
+ } else {
+ if (CurrentState == HAL_I2C_STATE_BUSY_RX_LISTEN) {
+ /* Set state at HAL_I2C_STATE_LISTEN */
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_LISTEN;
+
+ /* Call the corresponding callback to inform upper layer of End of Transfer */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->SlaveRxCpltCallback(hi2c);
+#else
+ HAL_I2C_SlaveRxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+
+ if (hi2c->State == HAL_I2C_STATE_LISTEN) {
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->ListenCpltCallback(hi2c);
+#else
+ HAL_I2C_ListenCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ if ((hi2c->PreviousState == I2C_STATE_SLAVE_BUSY_RX) || (CurrentState == HAL_I2C_STATE_BUSY_RX)) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->SlaveRxCpltCallback(hi2c);
+#else
+ HAL_I2C_SlaveRxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+ }
+ }
+}
+
+/**
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @retval None
+ */
+static void I2C_Slave_AF(I2C_HandleTypeDef *hi2c) {
+ /* Declaration of temporary variables to prevent undefined behavior of volatile usage */
+ HAL_I2C_StateTypeDef CurrentState = hi2c->State;
+ uint32_t CurrentXferOptions = hi2c->XferOptions;
+
+ if (((CurrentXferOptions == I2C_FIRST_AND_LAST_FRAME) || (CurrentXferOptions == I2C_LAST_FRAME)) && (CurrentState == HAL_I2C_STATE_LISTEN)) {
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+
+ /* Disable EVT, BUF and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ /* Clear AF flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->ListenCpltCallback(hi2c);
+#else
+ HAL_I2C_ListenCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else if (CurrentState == HAL_I2C_STATE_BUSY_TX) {
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+ hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Disable EVT, BUF and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+
+ /* Clear AF flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->SlaveTxCpltCallback(hi2c);
+#else
+ HAL_I2C_SlaveTxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ /* Clear AF flag only */
+ /* State Listen, but XferOptions == FIRST or NEXT */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
+ }
+}
+
+/**
+ * @brief I2C interrupts error process
+ * @param hi2c I2C handle.
+ * @retval None
+ */
+static void I2C_ITError(I2C_HandleTypeDef *hi2c) {
+ /* Declaration of temporary variable to prevent undefined behavior of volatile usage */
+ HAL_I2C_StateTypeDef CurrentState = hi2c->State;
+ HAL_I2C_ModeTypeDef CurrentMode = hi2c->Mode;
+ uint32_t CurrentError;
+
+ if (((CurrentMode == HAL_I2C_MODE_MASTER) || (CurrentMode == HAL_I2C_MODE_MEM)) && (CurrentState == HAL_I2C_STATE_BUSY_RX)) {
+ /* Disable Pos bit in I2C CR1 when error occurred in Master/Mem Receive IT Process */
+ hi2c->Instance->CR1 &= ~I2C_CR1_POS;
+ }
+
+ if (((uint32_t)CurrentState & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) {
+ /* keep HAL_I2C_STATE_LISTEN */
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_LISTEN;
+ } else {
+ /* If state is an abort treatment on going, don't change state */
+ /* This change will be do later */
+ if ((READ_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN) != I2C_CR2_DMAEN) && (CurrentState != HAL_I2C_STATE_ABORT)) {
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ }
+ hi2c->PreviousState = I2C_STATE_NONE;
+ }
+
+ /* Abort DMA transfer */
+ if (READ_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN) == I2C_CR2_DMAEN) {
+ hi2c->Instance->CR2 &= ~I2C_CR2_DMAEN;
+
+ if (hi2c->hdmatx->State != HAL_DMA_STATE_READY) {
+ /* Set the DMA Abort callback :
+ will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */
+ hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort;
+
+ if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) {
+ /* Disable I2C peripheral to prevent dummy data in buffer */
+ __HAL_I2C_DISABLE(hi2c);
+
+ hi2c->State = HAL_I2C_STATE_READY;
+
+ /* Call Directly XferAbortCallback function in case of error */
+ hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx);
+ }
+ } else {
+ /* Set the DMA Abort callback :
+ will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */
+ hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort;
+
+ if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) {
+ /* Store Last receive data if any */
+ if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+ }
+
+ /* Disable I2C peripheral to prevent dummy data in buffer */
+ __HAL_I2C_DISABLE(hi2c);
+
+ hi2c->State = HAL_I2C_STATE_READY;
+
+ /* Call Directly hi2c->hdmarx->XferAbortCallback function in case of error */
+ hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx);
+ }
+ }
+ } else if (hi2c->State == HAL_I2C_STATE_ABORT) {
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Store Last receive data if any */
+ if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+ }
+
+ /* Disable I2C peripheral to prevent dummy data in buffer */
+ __HAL_I2C_DISABLE(hi2c);
+
+ /* Call the corresponding callback to inform upper layer of End of Transfer */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->AbortCpltCallback(hi2c);
+#else
+ HAL_I2C_AbortCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ /* Store Last receive data if any */
+ if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) {
+ /* Read data from DR */
+ *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->DR;
+
+ /* Increment Buffer pointer */
+ hi2c->pBuffPtr++;
+ }
+
+ /* Call user error callback */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->ErrorCallback(hi2c);
+#else
+ HAL_I2C_ErrorCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+
+ /* STOP Flag is not set after a NACK reception, BusError, ArbitrationLost, OverRun */
+ CurrentError = hi2c->ErrorCode;
+
+ if (((CurrentError & HAL_I2C_ERROR_BERR) == HAL_I2C_ERROR_BERR) || ((CurrentError & HAL_I2C_ERROR_ARLO) == HAL_I2C_ERROR_ARLO) || ((CurrentError & HAL_I2C_ERROR_AF) == HAL_I2C_ERROR_AF)
+ || ((CurrentError & HAL_I2C_ERROR_OVR) == HAL_I2C_ERROR_OVR)) {
+ /* Disable EVT, BUF and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
+ }
+
+ /* So may inform upper layer that listen phase is stopped */
+ /* during NACK error treatment */
+ CurrentState = hi2c->State;
+ if (((hi2c->ErrorCode & HAL_I2C_ERROR_AF) == HAL_I2C_ERROR_AF) && (CurrentState == HAL_I2C_STATE_LISTEN)) {
+ hi2c->XferOptions = I2C_NO_OPTION_FRAME;
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+
+ /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->ListenCpltCallback(hi2c);
+#else
+ HAL_I2C_ListenCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+}
+
+/**
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param Timeout Timeout duration
+ * @param Tickstart Tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_MasterRequestWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout, uint32_t Tickstart) {
+ /* Declaration of temporary variable to prevent undefined behavior of volatile usage */
+ uint32_t CurrentXferOptions = hi2c->XferOptions;
+
+ /* Generate Start condition if first transfer */
+ if ((CurrentXferOptions == I2C_FIRST_AND_LAST_FRAME) || (CurrentXferOptions == I2C_FIRST_FRAME) || (CurrentXferOptions == I2C_NO_OPTION_FRAME)) {
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+ } else if (hi2c->PreviousState == I2C_STATE_MASTER_BUSY_RX) {
+ /* Generate ReStart */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+ } else {
+ /* Do nothing */
+ }
+
+ /* Wait until SB flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK) {
+ if (READ_BIT(hi2c->Instance->CR1, I2C_CR1_START) == I2C_CR1_START) {
+ hi2c->ErrorCode = HAL_I2C_WRONG_START;
+ }
+ return HAL_TIMEOUT;
+ }
+
+ if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT) {
+ /* Send slave address */
+ hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress);
+ } else {
+ /* Send header of slave address */
+ hi2c->Instance->DR = I2C_10BIT_HEADER_WRITE(DevAddress);
+
+ /* Wait until ADD10 flag is set */
+ if (I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADD10, Timeout, Tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Send slave address */
+ hi2c->Instance->DR = I2C_10BIT_ADDRESS(DevAddress);
+ }
+
+ /* Wait until ADDR flag is set */
+ if (I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Master sends target device address for read request.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param Timeout Timeout duration
+ * @param Tickstart Tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_MasterRequestRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout, uint32_t Tickstart) {
+ /* Declaration of temporary variable to prevent undefined behavior of volatile usage */
+ uint32_t CurrentXferOptions = hi2c->XferOptions;
+
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Generate Start condition if first transfer */
+ if ((CurrentXferOptions == I2C_FIRST_AND_LAST_FRAME) || (CurrentXferOptions == I2C_FIRST_FRAME) || (CurrentXferOptions == I2C_NO_OPTION_FRAME)) {
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+ } else if (hi2c->PreviousState == I2C_STATE_MASTER_BUSY_TX) {
+ /* Generate ReStart */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+ } else {
+ /* Do nothing */
+ }
+
+ /* Wait until SB flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK) {
+ if (READ_BIT(hi2c->Instance->CR1, I2C_CR1_START) == I2C_CR1_START) {
+ hi2c->ErrorCode = HAL_I2C_WRONG_START;
+ }
+ return HAL_TIMEOUT;
+ }
+
+ if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT) {
+ /* Send slave address */
+ hi2c->Instance->DR = I2C_7BIT_ADD_READ(DevAddress);
+ } else {
+ /* Send header of slave address */
+ hi2c->Instance->DR = I2C_10BIT_HEADER_WRITE(DevAddress);
+
+ /* Wait until ADD10 flag is set */
+ if (I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADD10, Timeout, Tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Send slave address */
+ hi2c->Instance->DR = I2C_10BIT_ADDRESS(DevAddress);
+
+ /* Wait until ADDR flag is set */
+ if (I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Generate Restart */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Wait until SB flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK) {
+ if (READ_BIT(hi2c->Instance->CR1, I2C_CR1_START) == I2C_CR1_START) {
+ hi2c->ErrorCode = HAL_I2C_WRONG_START;
+ }
+ return HAL_TIMEOUT;
+ }
+
+ /* Send header of slave address */
+ hi2c->Instance->DR = I2C_10BIT_HEADER_READ(DevAddress);
+ }
+
+ /* Wait until ADDR flag is set */
+ if (I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Master sends target device address followed by internal memory address for write request.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param MemAddress Internal memory address
+ * @param MemAddSize Size of internal memory address
+ * @param Timeout Timeout duration
+ * @param Tickstart Tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart) {
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Wait until SB flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK) {
+ if (READ_BIT(hi2c->Instance->CR1, I2C_CR1_START) == I2C_CR1_START) {
+ hi2c->ErrorCode = HAL_I2C_WRONG_START;
+ }
+ return HAL_TIMEOUT;
+ }
+
+ /* Send slave address */
+ hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress);
+
+ /* Wait until ADDR flag is set */
+ if (I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Wait until TXE flag is set */
+ if (I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) {
+ if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ return HAL_ERROR;
+ }
+
+ /* If Memory address size is 8Bit */
+ if (MemAddSize == I2C_MEMADD_SIZE_8BIT) {
+ /* Send Memory Address */
+ hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress);
+ }
+ /* If Memory address size is 16Bit */
+ else {
+ /* Send MSB of Memory Address */
+ hi2c->Instance->DR = I2C_MEM_ADD_MSB(MemAddress);
+
+ /* Wait until TXE flag is set */
+ if (I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) {
+ if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ return HAL_ERROR;
+ }
+
+ /* Send LSB of Memory Address */
+ hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress);
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Master sends target device address followed by internal memory address for read request.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @param DevAddress Target device address: The device 7 bits address value
+ * in datasheet must be shifted to the left before calling the interface
+ * @param MemAddress Internal memory address
+ * @param MemAddSize Size of internal memory address
+ * @param Timeout Timeout duration
+ * @param Tickstart Tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart) {
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* Generate Start */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Wait until SB flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK) {
+ if (READ_BIT(hi2c->Instance->CR1, I2C_CR1_START) == I2C_CR1_START) {
+ hi2c->ErrorCode = HAL_I2C_WRONG_START;
+ }
+ return HAL_TIMEOUT;
+ }
+
+ /* Send slave address */
+ hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress);
+
+ /* Wait until ADDR flag is set */
+ if (I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Clear ADDR flag */
+ __HAL_I2C_CLEAR_ADDRFLAG(hi2c);
+
+ /* Wait until TXE flag is set */
+ if (I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) {
+ if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ return HAL_ERROR;
+ }
+
+ /* If Memory address size is 8Bit */
+ if (MemAddSize == I2C_MEMADD_SIZE_8BIT) {
+ /* Send Memory Address */
+ hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress);
+ }
+ /* If Memory address size is 16Bit */
+ else {
+ /* Send MSB of Memory Address */
+ hi2c->Instance->DR = I2C_MEM_ADD_MSB(MemAddress);
+
+ /* Wait until TXE flag is set */
+ if (I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) {
+ if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ return HAL_ERROR;
+ }
+
+ /* Send LSB of Memory Address */
+ hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress);
+ }
+
+ /* Wait until TXE flag is set */
+ if (I2C_WaitOnTXEFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) {
+ if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+ return HAL_ERROR;
+ }
+
+ /* Generate Restart */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_START);
+
+ /* Wait until SB flag is set */
+ if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout, Tickstart) != HAL_OK) {
+ if (READ_BIT(hi2c->Instance->CR1, I2C_CR1_START) == I2C_CR1_START) {
+ hi2c->ErrorCode = HAL_I2C_WRONG_START;
+ }
+ return HAL_TIMEOUT;
+ }
+
+ /* Send slave address */
+ hi2c->Instance->DR = I2C_7BIT_ADD_READ(DevAddress);
+
+ /* Wait until ADDR flag is set */
+ if (I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout, Tickstart) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DMA I2C process complete callback.
+ * @param hdma DMA handle
+ * @retval None
+ */
+static void I2C_DMAXferCplt(DMA_HandleTypeDef *hdma) {
+ I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */
+
+ /* Declaration of temporary variable to prevent undefined behavior of volatile usage */
+ HAL_I2C_StateTypeDef CurrentState = hi2c->State;
+ HAL_I2C_ModeTypeDef CurrentMode = hi2c->Mode;
+ uint32_t CurrentXferOptions = hi2c->XferOptions;
+
+ /* Disable EVT and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ /* Clear Complete callback */
+ if (hi2c->hdmatx != NULL) {
+ hi2c->hdmatx->XferCpltCallback = NULL;
+ }
+ if (hi2c->hdmarx != NULL) {
+ hi2c->hdmarx->XferCpltCallback = NULL;
+ }
+
+ if ((((uint32_t)CurrentState & (uint32_t)HAL_I2C_STATE_BUSY_TX) == (uint32_t)HAL_I2C_STATE_BUSY_TX)
+ || ((((uint32_t)CurrentState & (uint32_t)HAL_I2C_STATE_BUSY_RX) == (uint32_t)HAL_I2C_STATE_BUSY_RX) && (CurrentMode == HAL_I2C_MODE_SLAVE))) {
+ /* Disable DMA Request */
+ CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+
+ hi2c->XferCount = 0U;
+
+ if (CurrentState == HAL_I2C_STATE_BUSY_TX_LISTEN) {
+ /* Set state at HAL_I2C_STATE_LISTEN */
+ hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX;
+ hi2c->State = HAL_I2C_STATE_LISTEN;
+
+ /* Call the corresponding callback to inform upper layer of End of Transfer */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->SlaveTxCpltCallback(hi2c);
+#else
+ HAL_I2C_SlaveTxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else if (CurrentState == HAL_I2C_STATE_BUSY_RX_LISTEN) {
+ /* Set state at HAL_I2C_STATE_LISTEN */
+ hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX;
+ hi2c->State = HAL_I2C_STATE_LISTEN;
+
+ /* Call the corresponding callback to inform upper layer of End of Transfer */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->SlaveRxCpltCallback(hi2c);
+#else
+ HAL_I2C_SlaveRxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ /* Do nothing */
+ }
+
+ /* Enable EVT and ERR interrupt to treat end of transfer in IRQ handler */
+ __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+ }
+ /* Check current Mode, in case of treatment DMA handler have been preempted by a prior interrupt */
+ else if (hi2c->Mode != HAL_I2C_MODE_NONE) {
+ if (hi2c->XferCount == (uint16_t)1) {
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+ }
+
+ /* Disable EVT and ERR interrupt */
+ __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR);
+
+ /* Prepare next transfer or stop current transfer */
+ if ((CurrentXferOptions == I2C_NO_OPTION_FRAME) || (CurrentXferOptions == I2C_FIRST_AND_LAST_FRAME) || (CurrentXferOptions == I2C_OTHER_AND_LAST_FRAME) || (CurrentXferOptions == I2C_LAST_FRAME)) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+ }
+
+ /* Disable Last DMA */
+ CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_LAST);
+
+ /* Disable DMA Request */
+ CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_DMAEN);
+
+ hi2c->XferCount = 0U;
+
+ /* Check if Errors has been detected during transfer */
+ if (hi2c->ErrorCode != HAL_I2C_ERROR_NONE) {
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->ErrorCallback(hi2c);
+#else
+ HAL_I2C_ErrorCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ hi2c->State = HAL_I2C_STATE_READY;
+
+ if (hi2c->Mode == HAL_I2C_MODE_MEM) {
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->PreviousState = I2C_STATE_NONE;
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MemRxCpltCallback(hi2c);
+#else
+ HAL_I2C_MemRxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX;
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->MasterRxCpltCallback(hi2c);
+#else
+ HAL_I2C_MasterRxCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+ }
+ } else {
+ /* Do nothing */
+ }
+}
+
+/**
+ * @brief DMA I2C communication error callback.
+ * @param hdma DMA handle
+ * @retval None
+ */
+static void I2C_DMAError(DMA_HandleTypeDef *hdma) {
+ I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */
+
+ /* Clear Complete callback */
+ if (hi2c->hdmatx != NULL) {
+ hi2c->hdmatx->XferCpltCallback = NULL;
+ }
+ if (hi2c->hdmarx != NULL) {
+ hi2c->hdmarx->XferCpltCallback = NULL;
+ }
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ hi2c->XferCount = 0U;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
+
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->ErrorCallback(hi2c);
+#else
+ HAL_I2C_ErrorCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief DMA I2C communication abort callback
+ * (To be called at end of DMA Abort procedure).
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void I2C_DMAAbort(DMA_HandleTypeDef *hdma) {
+ __IO uint32_t count = 0U;
+ I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */
+
+ /* Declaration of temporary variable to prevent undefined behavior of volatile usage */
+ HAL_I2C_StateTypeDef CurrentState = hi2c->State;
+
+ /* During abort treatment, check that there is no pending STOP request */
+ /* Wait until STOP flag is reset */
+ count = I2C_TIMEOUT_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ if (count == 0U) {
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+ break;
+ }
+ count--;
+ } while (READ_BIT(hi2c->Instance->CR1, I2C_CR1_STOP) == I2C_CR1_STOP);
+
+ /* Clear Complete callback */
+ if (hi2c->hdmatx != NULL) {
+ hi2c->hdmatx->XferCpltCallback = NULL;
+ }
+ if (hi2c->hdmarx != NULL) {
+ hi2c->hdmarx->XferCpltCallback = NULL;
+ }
+
+ /* Disable Acknowledge */
+ CLEAR_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ hi2c->XferCount = 0U;
+
+ /* Reset XferAbortCallback */
+ if (hi2c->hdmatx != NULL) {
+ hi2c->hdmatx->XferAbortCallback = NULL;
+ }
+ if (hi2c->hdmarx != NULL) {
+ hi2c->hdmarx->XferAbortCallback = NULL;
+ }
+
+ /* Disable I2C peripheral to prevent dummy data in buffer */
+ __HAL_I2C_DISABLE(hi2c);
+
+ /* Check if come from abort from user */
+ if (hi2c->State == HAL_I2C_STATE_ABORT) {
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
+
+ /* Call the corresponding callback to inform upper layer of End of Transfer */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->AbortCpltCallback(hi2c);
+#else
+ HAL_I2C_AbortCpltCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ } else {
+ if (((uint32_t)CurrentState & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) {
+ /* Renable I2C peripheral */
+ __HAL_I2C_ENABLE(hi2c);
+
+ /* Enable Acknowledge */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_ACK);
+
+ /* keep HAL_I2C_STATE_LISTEN */
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_LISTEN;
+ } else {
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ }
+
+ /* Call the corresponding callback to inform upper layer of End of Transfer */
+#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
+ hi2c->ErrorCallback(hi2c);
+#else
+ HAL_I2C_ErrorCallback(hi2c);
+#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
+ }
+}
+
+/**
+ * @brief This function handles I2C Communication Timeout.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @param Flag specifies the I2C flag to check.
+ * @param Status The new Flag status (SET or RESET).
+ * @param Timeout Timeout duration
+ * @param Tickstart Tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t Tickstart) {
+ /* Wait until flag is set */
+ while (__HAL_I2C_GET_FLAG(hi2c, Flag) == Status) {
+ /* Check for the Timeout */
+ if (Timeout != HAL_MAX_DELAY) {
+ if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief This function handles I2C Communication Timeout for Master addressing phase.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for I2C module
+ * @param Flag specifies the I2C flag to check.
+ * @param Timeout Timeout duration
+ * @param Tickstart Tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_WaitOnMasterAddressFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, uint32_t Timeout, uint32_t Tickstart) {
+ while (__HAL_I2C_GET_FLAG(hi2c, Flag) == RESET) {
+ if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) {
+ /* Generate Stop */
+ SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
+
+ /* Clear AF Flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
+
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+
+ /* Check for the Timeout */
+ if (Timeout != HAL_MAX_DELAY) {
+ if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief This function handles I2C Communication Timeout for specific usage of TXE flag.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param Timeout Timeout duration
+ * @param Tickstart Tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_WaitOnTXEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) {
+ while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXE) == RESET) {
+ /* Check if a NACK is detected */
+ if (I2C_IsAcknowledgeFailed(hi2c) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Check for the Timeout */
+ if (Timeout != HAL_MAX_DELAY) {
+ if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief This function handles I2C Communication Timeout for specific usage of BTF flag.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param Timeout Timeout duration
+ * @param Tickstart Tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_WaitOnBTFFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) {
+ while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == RESET) {
+ /* Check if a NACK is detected */
+ if (I2C_IsAcknowledgeFailed(hi2c) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Check for the Timeout */
+ if (Timeout != HAL_MAX_DELAY) {
+ if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief This function handles I2C Communication Timeout for specific usage of STOP flag.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param Timeout Timeout duration
+ * @param Tickstart Tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) {
+ while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) {
+ /* Check if a NACK is detected */
+ if (I2C_IsAcknowledgeFailed(hi2c) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Check for the Timeout */
+ if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief This function handles I2C Communication Timeout for specific usage of STOP request through Interrupt.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_WaitOnSTOPRequestThroughIT(I2C_HandleTypeDef *hi2c) {
+ __IO uint32_t count = 0U;
+
+ /* Wait until STOP flag is reset */
+ count = I2C_TIMEOUT_STOP_FLAG * (SystemCoreClock / 25U / 1000U);
+ do {
+ count--;
+ if (count == 0U) {
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ return HAL_ERROR;
+ }
+ } while (READ_BIT(hi2c->Instance->CR1, I2C_CR1_STOP) == I2C_CR1_STOP);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief This function handles I2C Communication Timeout for specific usage of RXNE flag.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @param Timeout Timeout duration
+ * @param Tickstart Tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) {
+
+ while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET) {
+ /* Check if a STOPF is detected */
+ if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) {
+ /* Clear STOP Flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
+
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_NONE;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+
+ /* Check for the Timeout */
+ if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) {
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief This function handles Acknowledge failed detection during an I2C Communication.
+ * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
+ * the configuration information for the specified I2C.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c) {
+ if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) {
+ /* Clear NACKF Flag */
+ __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
+
+ hi2c->PreviousState = I2C_STATE_NONE;
+ hi2c->State = HAL_I2C_STATE_READY;
+ hi2c->Mode = HAL_I2C_MODE_NONE;
+ hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hi2c);
+
+ return HAL_ERROR;
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief Convert I2Cx OTHER_xxx XferOptions to functionnal XferOptions.
+ * @param hi2c I2C handle.
+ * @retval None
+ */
+static void I2C_ConvertOtherXferOptions(I2C_HandleTypeDef *hi2c) {
+ /* if user set XferOptions to I2C_OTHER_FRAME */
+ /* it request implicitly to generate a restart condition */
+ /* set XferOptions to I2C_FIRST_FRAME */
+ if (hi2c->XferOptions == I2C_OTHER_FRAME) {
+ hi2c->XferOptions = I2C_FIRST_FRAME;
+ }
+ /* else if user set XferOptions to I2C_OTHER_AND_LAST_FRAME */
+ /* it request implicitly to generate a restart condition */
+ /* then generate a stop condition at the end of transfer */
+ /* set XferOptions to I2C_FIRST_AND_LAST_FRAME */
+ else if (hi2c->XferOptions == I2C_OTHER_AND_LAST_FRAME) {
+ hi2c->XferOptions = I2C_FIRST_AND_LAST_FRAME;
+ } else {
+ /* Nothing to do */
+ }
+}
+
+/**
+ * @}
+ */
+
+#endif /* HAL_I2C_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_iwdg.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_iwdg.c new file mode 100644 index 00000000..e4bb6a63 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_iwdg.c @@ -0,0 +1,251 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_iwdg.c
+ * @author MCD Application Team
+ * @brief IWDG HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Independent Watchdog (IWDG) peripheral:
+ * + Initialization and Start functions
+ * + IO operation functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### IWDG Generic features #####
+ ==============================================================================
+ [..]
+ (+) The IWDG can be started by either software or hardware (configurable
+ through option byte).
+
+ (+) The IWDG is clocked by the Low-Speed Internal clock (LSI) and thus stays
+ active even if the main clock fails.
+
+ (+) Once the IWDG is started, the LSI is forced ON and both cannot be
+ disabled. The counter starts counting down from the reset value (0xFFF).
+ When it reaches the end of count value (0x000) a reset signal is
+ generated (IWDG reset).
+
+ (+) Whenever the key value 0x0000 AAAA is written in the IWDG_KR register,
+ the IWDG_RLR value is reloaded into the counter and the watchdog reset
+ is prevented.
+
+ (+) The IWDG is implemented in the VDD voltage domain that is still functional
+ in STOP and STANDBY mode (IWDG reset can wake up the CPU from STANDBY).
+ IWDGRST flag in RCC_CSR register can be used to inform when an IWDG
+ reset occurs.
+
+ (+) Debug mode: When the microcontroller enters debug mode (core halted),
+ the IWDG counter either continues to work normally or stops, depending
+ on DBG_IWDG_STOP configuration bit in DBG module, accessible through
+ __HAL_DBGMCU_FREEZE_IWDG() and __HAL_DBGMCU_UNFREEZE_IWDG() macros.
+
+ [..] Min-max timeout value @32KHz (LSI): ~125us / ~32.7s
+ The IWDG timeout may vary due to LSI clock frequency dispersion.
+ STM32F1xx devices provide the capability to measure the LSI clock
+ frequency (LSI clock is internally connected to TIM5 CH4 input capture).
+ The measured value can be used to have an IWDG timeout with an
+ acceptable accuracy.
+
+ [..] Default timeout value (necessary for IWDG_SR status register update):
+ Constant LSI_VALUE is defined based on the nominal LSI clock frequency.
+ This frequency being subject to variations as mentioned above, the
+ default timeout value (defined through constant HAL_IWDG_DEFAULT_TIMEOUT
+ below) may become too short or too long.
+ In such cases, this default timeout value can be tuned by redefining
+ the constant LSI_VALUE at user-application level (based, for instance,
+ on the measured LSI clock frequency as explained above).
+
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ (#) Use IWDG using HAL_IWDG_Init() function to :
+ (++) Enable instance by writing Start keyword in IWDG_KEY register. LSI
+ clock is forced ON and IWDG counter starts counting down.
+ (++) Enable write access to configuration registers:
+ IWDG_PR and IWDG_RLR.
+ (++) Configure the IWDG prescaler and counter reload value. This reload
+ value will be loaded in the IWDG counter each time the watchdog is
+ reloaded, then the IWDG will start counting down from this value.
+ (++) Wait for status flags to be reset.
+
+ (#) Then the application program must refresh the IWDG counter at regular
+ intervals during normal operation to prevent an MCU reset, using
+ HAL_IWDG_Refresh() function.
+
+ *** IWDG HAL driver macros list ***
+ ====================================
+ [..]
+ Below the list of most used macros in IWDG HAL driver:
+ (+) __HAL_IWDG_START: Enable the IWDG peripheral
+ (+) __HAL_IWDG_RELOAD_COUNTER: Reloads IWDG counter with value defined in
+ the reload register
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+#ifdef HAL_IWDG_MODULE_ENABLED
+/** @addtogroup IWDG
+ * @brief IWDG HAL module driver.
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup IWDG_Private_Defines IWDG Private Defines
+ * @{
+ */
+/* Status register needs up to 5 LSI clock periods divided by the clock
+ prescaler to be updated. The number of LSI clock periods is upper-rounded to
+ 6 for the timeout value calculation.
+ The timeout value is also calculated using the highest prescaler (256) and
+ the LSI_VALUE constant. The value of this constant can be changed by the user
+ to take into account possible LSI clock period variations.
+ The timeout value is multiplied by 1000 to be converted in milliseconds. */
+#define HAL_IWDG_DEFAULT_TIMEOUT ((6UL * 256UL * 1000UL) / LSI_VALUE)
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+
+/** @addtogroup IWDG_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup IWDG_Exported_Functions_Group1
+ * @brief Initialization and Start functions.
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and Start functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Initialize the IWDG according to the specified parameters in the
+ IWDG_InitTypeDef of associated handle.
+ (+) Once initialization is performed in HAL_IWDG_Init function, Watchdog
+ is reloaded in order to exit function with correct time base.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initialize the IWDG according to the specified parameters in the
+ * IWDG_InitTypeDef and start watchdog. Before exiting function,
+ * watchdog is refreshed in order to have correct time base.
+ * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains
+ * the configuration information for the specified IWDG module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IWDG_Init(IWDG_HandleTypeDef *hiwdg) {
+ uint32_t tickstart;
+
+ /* Check the IWDG handle allocation */
+ if (hiwdg == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_IWDG_ALL_INSTANCE(hiwdg->Instance));
+ assert_param(IS_IWDG_PRESCALER(hiwdg->Init.Prescaler));
+ assert_param(IS_IWDG_RELOAD(hiwdg->Init.Reload));
+
+ /* Enable IWDG. LSI is turned on automatically */
+ __HAL_IWDG_START(hiwdg);
+
+ /* Enable write access to IWDG_PR and IWDG_RLR registers by writing
+ 0x5555 in KR */
+ IWDG_ENABLE_WRITE_ACCESS(hiwdg);
+
+ /* Write to IWDG registers the Prescaler & Reload values to work with */
+ hiwdg->Instance->PR = hiwdg->Init.Prescaler;
+ hiwdg->Instance->RLR = hiwdg->Init.Reload;
+
+ /* Check pending flag, if previous update not done, return timeout */
+ tickstart = HAL_GetTick();
+
+ /* Wait for register to be updated */
+ while (hiwdg->Instance->SR != 0x00u) {
+ if ((HAL_GetTick() - tickstart) > HAL_IWDG_DEFAULT_TIMEOUT) {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Reload IWDG counter with value defined in the reload register */
+ __HAL_IWDG_RELOAD_COUNTER(hiwdg);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @addtogroup IWDG_Exported_Functions_Group2
+ * @brief IO operation functions
+ *
+@verbatim
+ ===============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Refresh the IWDG.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Refresh the IWDG.
+ * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains
+ * the configuration information for the specified IWDG module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IWDG_Refresh(IWDG_HandleTypeDef *hiwdg) {
+ /* Reload IWDG counter with value defined in the reload register */
+ __HAL_IWDG_RELOAD_COUNTER(hiwdg);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_IWDG_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c new file mode 100644 index 00000000..d082c1b0 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c @@ -0,0 +1,584 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_pwr.c
+ * @author MCD Application Team
+ * @brief PWR HAL module driver.
+ *
+ * This file provides firmware functions to manage the following
+ * functionalities of the Power Controller (PWR) peripheral:
+ * + Initialization/de-initialization functions
+ * + Peripheral Control functions
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup PWR PWR
+ * @brief PWR HAL module driver
+ * @{
+ */
+
+#ifdef HAL_PWR_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/** @defgroup PWR_Private_Constants PWR Private Constants
+ * @{
+ */
+
+/** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask
+ * @{
+ */
+#define PVD_MODE_IT 0x00010000U
+#define PVD_MODE_EVT 0x00020000U
+#define PVD_RISING_EDGE 0x00000001U
+#define PVD_FALLING_EDGE 0x00000002U
+/**
+ * @}
+ */
+
+/** @defgroup PWR_register_alias_address PWR Register alias address
+ * @{
+ */
+/* ------------- PWR registers bit address in the alias region ---------------*/
+#define PWR_OFFSET (PWR_BASE - PERIPH_BASE)
+#define PWR_CR_OFFSET 0x00U
+#define PWR_CSR_OFFSET 0x04U
+#define PWR_CR_OFFSET_BB (PWR_OFFSET + PWR_CR_OFFSET)
+#define PWR_CSR_OFFSET_BB (PWR_OFFSET + PWR_CSR_OFFSET)
+/**
+ * @}
+ */
+
+/** @defgroup PWR_CR_register_alias PWR CR Register alias address
+ * @{
+ */
+/* --- CR Register ---*/
+/* Alias word address of LPSDSR bit */
+#define LPSDSR_BIT_NUMBER PWR_CR_LPDS_Pos
+#define CR_LPSDSR_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32U) + (LPSDSR_BIT_NUMBER * 4U)))
+
+/* Alias word address of DBP bit */
+#define DBP_BIT_NUMBER PWR_CR_DBP_Pos
+#define CR_DBP_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32U) + (DBP_BIT_NUMBER * 4U)))
+
+/* Alias word address of PVDE bit */
+#define PVDE_BIT_NUMBER PWR_CR_PVDE_Pos
+#define CR_PVDE_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32U) + (PVDE_BIT_NUMBER * 4U)))
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_CSR_register_alias PWR CSR Register alias address
+ * @{
+ */
+
+/* --- CSR Register ---*/
+/* Alias word address of EWUP1 bit */
+#define CSR_EWUP_BB(VAL) ((uint32_t)(PERIPH_BB_BASE + (PWR_CSR_OFFSET_BB * 32U) + (POSITION_VAL(VAL) * 4U)))
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup PWR_Private_Functions PWR Private Functions
+ * brief WFE cortex command overloaded for HAL_PWR_EnterSTOPMode usage only (see Workaround section)
+ * @{
+ */
+static void PWR_OverloadWfe(void);
+
+/* Private functions ---------------------------------------------------------*/
+__NOINLINE
+static void PWR_OverloadWfe(void) {
+ __asm volatile("wfe");
+ __asm volatile("nop");
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Exported_Functions PWR Exported Functions
+ * @{
+ */
+
+/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and de-initialization functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..]
+ After reset, the backup domain (RTC registers, RTC backup data
+ registers) is protected against possible unwanted
+ write accesses.
+ To enable access to the RTC Domain and RTC registers, proceed as follows:
+ (+) Enable the Power Controller (PWR) APB1 interface clock using the
+ __HAL_RCC_PWR_CLK_ENABLE() macro.
+ (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the PWR peripheral registers to their default reset values.
+ * @retval None
+ */
+void HAL_PWR_DeInit(void) {
+ __HAL_RCC_PWR_FORCE_RESET();
+ __HAL_RCC_PWR_RELEASE_RESET();
+}
+
+/**
+ * @brief Enables access to the backup domain (RTC registers, RTC
+ * backup data registers ).
+ * @note If the HSE divided by 128 is used as the RTC clock, the
+ * Backup Domain Access should be kept enabled.
+ * @retval None
+ */
+void HAL_PWR_EnableBkUpAccess(void) {
+ /* Enable access to RTC and backup registers */
+ *(__IO uint32_t *)CR_DBP_BB = (uint32_t)ENABLE;
+}
+
+/**
+ * @brief Disables access to the backup domain (RTC registers, RTC
+ * backup data registers).
+ * @note If the HSE divided by 128 is used as the RTC clock, the
+ * Backup Domain Access should be kept enabled.
+ * @retval None
+ */
+void HAL_PWR_DisableBkUpAccess(void) {
+ /* Disable access to RTC and backup registers */
+ *(__IO uint32_t *)CR_DBP_BB = (uint32_t)DISABLE;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
+ * @brief Low Power modes configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+
+ *** PVD configuration ***
+ =========================
+ [..]
+ (+) The PVD is used to monitor the VDD power supply by comparing it to a
+ threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
+
+ (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
+ than the PVD threshold. This event is internally connected to the EXTI
+ line16 and can generate an interrupt if enabled. This is done through
+ __HAL_PVD_EXTI_ENABLE_IT() macro.
+ (+) The PVD is stopped in Standby mode.
+
+ *** WakeUp pin configuration ***
+ ================================
+ [..]
+ (+) WakeUp pin is used to wake up the system from Standby mode. This pin is
+ forced in input pull-down configuration and is active on rising edges.
+ (+) There is one WakeUp pin:
+ WakeUp Pin 1 on PA.00.
+
+ [..]
+
+ *** Low Power modes configuration ***
+ =====================================
+ [..]
+ The device features 3 low-power modes:
+ (+) Sleep mode: CPU clock off, all peripherals including Cortex-M3 core peripherals like
+ NVIC, SysTick, etc. are kept running
+ (+) Stop mode: All clocks are stopped
+ (+) Standby mode: 1.8V domain powered off
+
+
+ *** Sleep mode ***
+ ==================
+ [..]
+ (+) Entry:
+ The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFx)
+ functions with
+ (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
+ (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
+
+ (+) Exit:
+ (++) WFI entry mode, Any peripheral interrupt acknowledged by the nested vectored interrupt
+ controller (NVIC) can wake up the device from Sleep mode.
+ (++) WFE entry mode, Any wakeup event can wake up the device from Sleep mode.
+ (+++) Any peripheral interrupt w/o NVIC configuration & SEVONPEND bit set in the Cortex (HAL_PWR_EnableSEVOnPend)
+ (+++) Any EXTI Line (Internal or External) configured in Event mode
+
+ *** Stop mode ***
+ =================
+ [..]
+ The Stop mode is based on the Cortex-M3 deepsleep mode combined with peripheral
+ clock gating. The voltage regulator can be configured either in normal or low-power mode.
+ In Stop mode, all clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE RC
+ oscillators are disabled. SRAM and register contents are preserved.
+ In Stop mode, all I/O pins keep the same state as in Run mode.
+
+ (+) Entry:
+ The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_REGULATOR_VALUE, PWR_SLEEPENTRY_WFx )
+ function with:
+ (++) PWR_REGULATOR_VALUE= PWR_MAINREGULATOR_ON: Main regulator ON.
+ (++) PWR_REGULATOR_VALUE= PWR_LOWPOWERREGULATOR_ON: Low Power regulator ON.
+ (++) PWR_SLEEPENTRY_WFx= PWR_SLEEPENTRY_WFI: enter STOP mode with WFI instruction
+ (++) PWR_SLEEPENTRY_WFx= PWR_SLEEPENTRY_WFE: enter STOP mode with WFE instruction
+ (+) Exit:
+ (++) WFI entry mode, Any EXTI Line (Internal or External) configured in Interrupt mode with NVIC configured
+ (++) WFE entry mode, Any EXTI Line (Internal or External) configured in Event mode.
+
+ *** Standby mode ***
+ ====================
+ [..]
+ The Standby mode allows to achieve the lowest power consumption. It is based on the
+ Cortex-M3 deepsleep mode, with the voltage regulator disabled. The 1.8 V domain is
+ consequently powered off. The PLL, the HSI oscillator and the HSE oscillator are also
+ switched off. SRAM and register contents are lost except for registers in the Backup domain
+ and Standby circuitry
+
+ (+) Entry:
+ (++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
+ (+) Exit:
+ (++) WKUP pin rising edge, RTC alarm event rising edge, external Reset in
+ NRSTpin, IWDG Reset
+
+ *** Auto-wakeup (AWU) from low-power mode ***
+ =============================================
+ [..]
+
+ (+) The MCU can be woken up from low-power mode by an RTC Alarm event,
+ without depending on an external interrupt (Auto-wakeup mode).
+
+ (+) RTC auto-wakeup (AWU) from the Stop and Standby modes
+
+ (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to
+ configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function.
+
+ *** PWR Workarounds linked to Silicon Limitation ***
+ ====================================================
+ [..]
+ Below the list of all silicon limitations known on STM32F1xx prouct.
+
+ (#)Workarounds Implemented inside PWR HAL Driver
+ (##)Debugging Stop mode with WFE entry - overloaded the WFE by an internal function
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
+ * @param sConfigPVD: pointer to an PWR_PVDTypeDef structure that contains the configuration
+ * information for the PVD.
+ * @note Refer to the electrical characteristics of your device datasheet for
+ * more details about the voltage threshold corresponding to each
+ * detection level.
+ * @retval None
+ */
+void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD) {
+ /* Check the parameters */
+ assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
+ assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
+
+ /* Set PLS[7:5] bits according to PVDLevel value */
+ MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
+
+ /* Clear any previous config. Keep it clear if no event or IT mode is selected */
+ __HAL_PWR_PVD_EXTI_DISABLE_EVENT();
+ __HAL_PWR_PVD_EXTI_DISABLE_IT();
+ __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
+ __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();
+
+ /* Configure interrupt mode */
+ if ((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT) {
+ __HAL_PWR_PVD_EXTI_ENABLE_IT();
+ }
+
+ /* Configure event mode */
+ if ((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT) {
+ __HAL_PWR_PVD_EXTI_ENABLE_EVENT();
+ }
+
+ /* Configure the edge */
+ if ((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE) {
+ __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
+ }
+
+ if ((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE) {
+ __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
+ }
+}
+
+/**
+ * @brief Enables the Power Voltage Detector(PVD).
+ * @retval None
+ */
+void HAL_PWR_EnablePVD(void) {
+ /* Enable the power voltage detector */
+ *(__IO uint32_t *)CR_PVDE_BB = (uint32_t)ENABLE;
+}
+
+/**
+ * @brief Disables the Power Voltage Detector(PVD).
+ * @retval None
+ */
+void HAL_PWR_DisablePVD(void) {
+ /* Disable the power voltage detector */
+ *(__IO uint32_t *)CR_PVDE_BB = (uint32_t)DISABLE;
+}
+
+/**
+ * @brief Enables the WakeUp PINx functionality.
+ * @param WakeUpPinx: Specifies the Power Wake-Up pin to enable.
+ * This parameter can be one of the following values:
+ * @arg PWR_WAKEUP_PIN1
+ * @retval None
+ */
+void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx) {
+ /* Check the parameter */
+ assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
+ /* Enable the EWUPx pin */
+ *(__IO uint32_t *)CSR_EWUP_BB(WakeUpPinx) = (uint32_t)ENABLE;
+}
+
+/**
+ * @brief Disables the WakeUp PINx functionality.
+ * @param WakeUpPinx: Specifies the Power Wake-Up pin to disable.
+ * This parameter can be one of the following values:
+ * @arg PWR_WAKEUP_PIN1
+ * @retval None
+ */
+void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx) {
+ /* Check the parameter */
+ assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
+ /* Disable the EWUPx pin */
+ *(__IO uint32_t *)CSR_EWUP_BB(WakeUpPinx) = (uint32_t)DISABLE;
+}
+
+/**
+ * @brief Enters Sleep mode.
+ * @note In Sleep mode, all I/O pins keep the same state as in Run mode.
+ * @param Regulator: Regulator state as no effect in SLEEP mode - allows to support portability from legacy software
+ * @param SLEEPEntry: Specifies if SLEEP mode is entered with WFI or WFE instruction.
+ * When WFI entry is used, tick interrupt have to be disabled if not desired as
+ * the interrupt wake up source.
+ * This parameter can be one of the following values:
+ * @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
+ * @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
+ * @retval None
+ */
+void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry) {
+ /* Check the parameters */
+ /* No check on Regulator because parameter not used in SLEEP mode */
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(Regulator);
+
+ assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
+
+ /* Clear SLEEPDEEP bit of Cortex System Control Register */
+ CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
+
+ /* Select SLEEP mode entry -------------------------------------------------*/
+ if (SLEEPEntry == PWR_SLEEPENTRY_WFI) {
+ /* Request Wait For Interrupt */
+ __WFI();
+ } else {
+ /* Request Wait For Event */
+ __SEV();
+ __WFE();
+ __WFE();
+ }
+}
+
+/**
+ * @brief Enters Stop mode.
+ * @note In Stop mode, all I/O pins keep the same state as in Run mode.
+ * @note When exiting Stop mode by using an interrupt or a wakeup event,
+ * HSI RC oscillator is selected as system clock.
+ * @note When the voltage regulator operates in low power mode, an additional
+ * startup delay is incurred when waking up from Stop mode.
+ * By keeping the internal regulator ON during Stop mode, the consumption
+ * is higher although the startup time is reduced.
+ * @param Regulator: Specifies the regulator state in Stop mode.
+ * This parameter can be one of the following values:
+ * @arg PWR_MAINREGULATOR_ON: Stop mode with regulator ON
+ * @arg PWR_LOWPOWERREGULATOR_ON: Stop mode with low power regulator ON
+ * @param STOPEntry: Specifies if Stop mode in entered with WFI or WFE instruction.
+ * This parameter can be one of the following values:
+ * @arg PWR_STOPENTRY_WFI: Enter Stop mode with WFI instruction
+ * @arg PWR_STOPENTRY_WFE: Enter Stop mode with WFE instruction
+ * @retval None
+ */
+void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry) {
+ /* Check the parameters */
+ assert_param(IS_PWR_REGULATOR(Regulator));
+ assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
+
+ /* Clear PDDS bit in PWR register to specify entering in STOP mode when CPU enter in Deepsleep */
+ CLEAR_BIT(PWR->CR, PWR_CR_PDDS);
+
+ /* Select the voltage regulator mode by setting LPDS bit in PWR register according to Regulator parameter value */
+ MODIFY_REG(PWR->CR, PWR_CR_LPDS, Regulator);
+
+ /* Set SLEEPDEEP bit of Cortex System Control Register */
+ SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
+
+ /* Select Stop mode entry --------------------------------------------------*/
+ if (STOPEntry == PWR_STOPENTRY_WFI) {
+ /* Request Wait For Interrupt */
+ __WFI();
+ } else {
+ /* Request Wait For Event */
+ __SEV();
+ PWR_OverloadWfe(); /* WFE redefine locally */
+ PWR_OverloadWfe(); /* WFE redefine locally */
+ }
+ /* Reset SLEEPDEEP bit of Cortex System Control Register */
+ CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
+}
+
+/**
+ * @brief Enters Standby mode.
+ * @note In Standby mode, all I/O pins are high impedance except for:
+ * - Reset pad (still available)
+ * - TAMPER pin if configured for tamper or calibration out.
+ * - WKUP pin (PA0) if enabled.
+ * @retval None
+ */
+void HAL_PWR_EnterSTANDBYMode(void) {
+ /* Select Standby mode */
+ SET_BIT(PWR->CR, PWR_CR_PDDS);
+
+ /* Set SLEEPDEEP bit of Cortex System Control Register */
+ SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
+
+ /* This option is used to ensure that store operations are completed */
+#if defined(__CC_ARM)
+ __force_stores();
+#endif
+ /* Request Wait For Interrupt */
+ __WFI();
+}
+
+/**
+ * @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode.
+ * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
+ * re-enters SLEEP mode when an interruption handling is over.
+ * Setting this bit is useful when the processor is expected to run only on
+ * interruptions handling.
+ * @retval None
+ */
+void HAL_PWR_EnableSleepOnExit(void) {
+ /* Set SLEEPONEXIT bit of Cortex System Control Register */
+ SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
+}
+
+/**
+ * @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode.
+ * @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor
+ * re-enters SLEEP mode when an interruption handling is over.
+ * @retval None
+ */
+void HAL_PWR_DisableSleepOnExit(void) {
+ /* Clear SLEEPONEXIT bit of Cortex System Control Register */
+ CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
+}
+
+/**
+ * @brief Enables CORTEX M3 SEVONPEND bit.
+ * @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes
+ * WFE to wake up when an interrupt moves from inactive to pended.
+ * @retval None
+ */
+void HAL_PWR_EnableSEVOnPend(void) {
+ /* Set SEVONPEND bit of Cortex System Control Register */
+ SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
+}
+
+/**
+ * @brief Disables CORTEX M3 SEVONPEND bit.
+ * @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes
+ * WFE to wake up when an interrupt moves from inactive to pended.
+ * @retval None
+ */
+void HAL_PWR_DisableSEVOnPend(void) {
+ /* Clear SEVONPEND bit of Cortex System Control Register */
+ CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
+}
+
+/**
+ * @brief This function handles the PWR PVD interrupt request.
+ * @note This API should be called under the PVD_IRQHandler().
+ * @retval None
+ */
+void HAL_PWR_PVD_IRQHandler(void) {
+ /* Check PWR exti flag */
+ if (__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET) {
+ /* PWR PVD interrupt user callback */
+ HAL_PWR_PVDCallback();
+
+ /* Clear PWR Exti pending bit */
+ __HAL_PWR_PVD_EXTI_CLEAR_FLAG();
+ }
+}
+
+/**
+ * @brief PWR PVD interrupt callback
+ * @retval None
+ */
+__weak void HAL_PWR_PVDCallback(void) {
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_PWR_PVDCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_PWR_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c new file mode 100644 index 00000000..dfea429d --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c @@ -0,0 +1,1230 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_rcc.c
+ * @author MCD Application Team
+ * @brief RCC HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Reset and Clock Control (RCC) peripheral:
+ * + Initialization and de-initialization functions
+ * + Peripheral Control functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### RCC specific features #####
+ ==============================================================================
+ [..]
+ After reset the device is running from Internal High Speed oscillator
+ (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled,
+ and all peripherals are off except internal SRAM, Flash and JTAG.
+ (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses;
+ all peripherals mapped on these buses are running at HSI speed.
+ (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
+ (+) All GPIOs are in input floating state, except the JTAG pins which
+ are assigned to be used for debug purpose.
+ [..] Once the device started from reset, the user application has to:
+ (+) Configure the clock source to be used to drive the System clock
+ (if the application needs higher frequency/performance)
+ (+) Configure the System clock frequency and Flash settings
+ (+) Configure the AHB and APB buses prescalers
+ (+) Enable the clock for the peripheral(s) to be used
+ (+) Configure the clock source(s) for peripherals whose clocks are not
+ derived from the System clock (I2S, RTC, ADC, USB OTG FS)
+
+ ##### RCC Limitations #####
+ ==============================================================================
+ [..]
+ A delay between an RCC peripheral clock enable and the effective peripheral
+ enabling should be taken into account in order to manage the peripheral read/write
+ from/to registers.
+ (+) This delay depends on the peripheral mapping.
+ (++) AHB & APB peripherals, 1 dummy read is necessary
+
+ [..]
+ Workarounds:
+ (#) For AHB & APB peripherals, a dummy read to the peripheral register has been
+ inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup RCC RCC
+ * @brief RCC HAL module driver
+ * @{
+ */
+
+#ifdef HAL_RCC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup RCC_Private_Constants RCC Private Constants
+ * @{
+ */
+/**
+ * @}
+ */
+/* Private macro -------------------------------------------------------------*/
+/** @defgroup RCC_Private_Macros RCC Private Macros
+ * @{
+ */
+
+#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
+#define MCO1_GPIO_PORT GPIOA
+#define MCO1_PIN GPIO_PIN_8
+
+/**
+ * @}
+ */
+
+/* Private variables ---------------------------------------------------------*/
+/** @defgroup RCC_Private_Variables RCC Private Variables
+ * @{
+ */
+/**
+ * @}
+ */
+
+/* Private function prototypes -----------------------------------------------*/
+static void RCC_Delay(uint32_t mdelay);
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup RCC_Exported_Functions RCC Exported Functions
+ * @{
+ */
+
+/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+ @verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..]
+ This section provides functions allowing to configure the internal/external oscillators
+ (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1
+ and APB2).
+
+ [..] Internal/external clock and PLL configuration
+ (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
+ the PLL as System clock source.
+ (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC
+ clock source.
+
+ (#) HSE (high-speed external), 4 to 24 MHz (STM32F100xx) or 4 to 16 MHz (STM32F101x/STM32F102x/STM32F103x) or 3 to 25 MHz (STM32F105x/STM32F107x) crystal oscillator used directly or
+ through the PLL as System clock source. Can be used also as RTC clock source.
+
+ (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
+
+ (#) PLL (clocked by HSI or HSE), featuring different output clocks:
+ (++) The first output is used to generate the high speed system clock (up to 72 MHz for STM32F10xxx or up to 24 MHz for STM32F100xx)
+ (++) The second output is used to generate the clock for the USB OTG FS (48 MHz)
+
+ (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
+ and if a HSE clock failure occurs(HSE used directly or through PLL as System
+ clock source), the System clocks automatically switched to HSI and an interrupt
+ is generated if enabled. The interrupt is linked to the Cortex-M3 NMI
+ (Non-Maskable Interrupt) exception vector.
+
+ (#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI,
+ HSE or PLL clock (divided by 2) on PA8 pin + PLL2CLK, PLL3CLK/2, PLL3CLK and XTI for STM32F105x/STM32F107x
+
+ [..] System, AHB and APB buses clocks configuration
+ (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
+ HSE and PLL.
+ The AHB clock (HCLK) is derived from System clock through configurable
+ prescaler and used to clock the CPU, memory and peripherals mapped
+ on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
+ from AHB clock through configurable prescalers and used to clock
+ the peripherals mapped on these buses. You can use
+ "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
+
+ -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
+ (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock
+ divided by 128.
+ (+@) USB OTG FS and RTC: USB OTG FS require a frequency equal to 48 MHz
+ to work correctly. This clock is derived of the main PLL through PLL Multiplier.
+ (+@) I2S interface on STM32F105x/STM32F107x can be derived from PLL3CLK
+ (+@) IWDG clock which is always the LSI clock.
+
+ (#) For STM32F10xxx, the maximum frequency of the SYSCLK and HCLK/PCLK2 is 72 MHz, PCLK1 36 MHz.
+ For STM32F100xx, the maximum frequency of the SYSCLK and HCLK/PCLK1/PCLK2 is 24 MHz.
+ Depending on the SYSCLK frequency, the flash latency should be adapted accordingly.
+ @endverbatim
+ * @{
+ */
+
+/*
+ Additional consideration on the SYSCLK based on Latency settings:
+ +-----------------------------------------------+
+ | Latency | SYSCLK clock frequency (MHz) |
+ |---------------|-------------------------------|
+ |0WS(1CPU cycle)| 0 < SYSCLK <= 24 |
+ |---------------|-------------------------------|
+ |1WS(2CPU cycle)| 24 < SYSCLK <= 48 |
+ |---------------|-------------------------------|
+ |2WS(3CPU cycle)| 48 < SYSCLK <= 72 |
+ +-----------------------------------------------+
+ */
+
+/**
+ * @brief Resets the RCC clock configuration to the default reset state.
+ * @note The default reset state of the clock configuration is given below:
+ * - HSI ON and used as system clock source
+ * - HSE, PLL, PLL2 and PLL3 are OFF
+ * - AHB, APB1 and APB2 prescaler set to 1.
+ * - CSS and MCO1 OFF
+ * - All interrupts disabled
+ * - All flags are cleared
+ * @note This function does not modify the configuration of the
+ * - Peripheral clocks
+ * - LSI, LSE and RTC clocks
+ * @retval HAL_StatusTypeDef
+ */
+HAL_StatusTypeDef HAL_RCC_DeInit(void) {
+ uint32_t tickstart;
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Set HSION bit */
+ SET_BIT(RCC->CR, RCC_CR_HSION);
+
+ /* Wait till HSI is ready */
+ while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET) {
+ if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Set HSITRIM bits to the reset value */
+ MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, (0x10U << RCC_CR_HSITRIM_Pos));
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Reset CFGR register */
+ CLEAR_REG(RCC->CFGR);
+
+ /* Wait till clock switch is ready */
+ while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != RESET) {
+ if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Update the SystemCoreClock global variable */
+ SystemCoreClock = HSI_VALUE;
+
+ /* Adapt Systick interrupt period */
+ if (HAL_InitTick(uwTickPrio) != HAL_OK) {
+ return HAL_ERROR;
+ }
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Second step is to clear PLLON bit */
+ CLEAR_BIT(RCC->CR, RCC_CR_PLLON);
+
+ /* Wait till PLL is disabled */
+ while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Ensure to reset PLLSRC and PLLMUL bits */
+ CLEAR_REG(RCC->CFGR);
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Reset HSEON & CSSON bits */
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON);
+
+ /* Wait till HSE is disabled */
+ while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Reset HSEBYP bit */
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
+
+#if defined(RCC_PLL2_SUPPORT)
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Clear PLL2ON bit */
+ CLEAR_BIT(RCC->CR, RCC_CR_PLL2ON);
+
+ /* Wait till PLL2 is disabled */
+ while (READ_BIT(RCC->CR, RCC_CR_PLL2RDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+#endif /* RCC_PLL2_SUPPORT */
+
+#if defined(RCC_PLLI2S_SUPPORT)
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Clear PLL3ON bit */
+ CLEAR_BIT(RCC->CR, RCC_CR_PLL3ON);
+
+ /* Wait till PLL3 is disabled */
+ while (READ_BIT(RCC->CR, RCC_CR_PLL3RDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > PLLI2S_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+#endif /* RCC_PLLI2S_SUPPORT */
+
+#if defined(RCC_CFGR2_PREDIV1)
+ /* Reset CFGR2 register */
+ CLEAR_REG(RCC->CFGR2);
+#endif /* RCC_CFGR2_PREDIV1 */
+
+ /* Reset all CSR flags */
+ SET_BIT(RCC->CSR, RCC_CSR_RMVF);
+
+ /* Disable all interrupts */
+ CLEAR_REG(RCC->CIR);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the RCC Oscillators according to the specified parameters in the
+ * RCC_OscInitTypeDef.
+ * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * contains the configuration information for the RCC Oscillators.
+ * @note The PLL is not disabled when used as system clock.
+ * @note The PLL is not disabled when USB OTG FS clock is enabled (specific to devices with USB FS)
+ * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
+ * supported by this macro. User should request a transition to LSE Off
+ * first and then LSE On or LSE Bypass.
+ * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
+ * supported by this macro. User should request a transition to HSE Off
+ * first and then HSE On or HSE Bypass.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) {
+ uint32_t tickstart;
+ uint32_t pll_config;
+
+ /* Check Null pointer */
+ if (RCC_OscInitStruct == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
+
+ /*------------------------------- HSE Configuration ------------------------*/
+ if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
+
+ /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
+ if ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE))) {
+ if ((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) {
+ return HAL_ERROR;
+ }
+ } else {
+ /* Set the new HSE configuration ---------------------------------------*/
+ __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
+
+ /* Check the HSE State */
+ if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF) {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSE is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) {
+ if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ } else {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSE is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*----------------------------- HSI Configuration --------------------------*/
+ if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
+ assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
+
+ /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
+ if ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
+ || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI_DIV2))) {
+ /* When HSI is used as system clock it will not disabled */
+ if ((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) {
+ return HAL_ERROR;
+ }
+ /* Otherwise, just the calibration is allowed */
+ else {
+ /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
+ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
+ }
+ } else {
+ /* Check the HSI State */
+ if (RCC_OscInitStruct->HSIState != RCC_HSI_OFF) {
+ /* Enable the Internal High Speed oscillator (HSI). */
+ __HAL_RCC_HSI_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) {
+ if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
+ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
+ } else {
+ /* Disable the Internal High Speed oscillator (HSI). */
+ __HAL_RCC_HSI_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*------------------------------ LSI Configuration -------------------------*/
+ if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) {
+ /* Check the parameters */
+ assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
+
+ /* Check the LSI State */
+ if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF) {
+ /* Enable the Internal Low Speed oscillator (LSI). */
+ __HAL_RCC_LSI_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSI is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) {
+ if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ /* To have a fully stabilized clock in the specified range, a software delay of 1ms
+ should be added.*/
+ RCC_Delay(1);
+ } else {
+ /* Disable the Internal Low Speed oscillator (LSI). */
+ __HAL_RCC_LSI_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSI is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ /*------------------------------ LSE Configuration -------------------------*/
+ if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) {
+ FlagStatus pwrclkchanged = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
+
+ /* Update LSE configuration in Backup Domain control register */
+ /* Requires to enable write access to Backup Domain of necessary */
+ if (__HAL_RCC_PWR_IS_CLK_DISABLED()) {
+ __HAL_RCC_PWR_CLK_ENABLE();
+ pwrclkchanged = SET;
+ }
+
+ if (HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) {
+ /* Enable write access to Backup domain */
+ SET_BIT(PWR->CR, PWR_CR_DBP);
+
+ /* Wait for Backup domain Write protection disable */
+ tickstart = HAL_GetTick();
+
+ while (HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) {
+ if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Set the new LSE configuration -----------------------------------------*/
+ __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
+ /* Check the LSE State */
+ if (RCC_OscInitStruct->LSEState != RCC_LSE_OFF) {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) {
+ if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ } else {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Require to disable power clock if necessary */
+ if (pwrclkchanged == SET) {
+ __HAL_RCC_PWR_CLK_DISABLE();
+ }
+ }
+
+#if defined(RCC_CR_PLL2ON)
+ /*-------------------------------- PLL2 Configuration -----------------------*/
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL2(RCC_OscInitStruct->PLL2.PLL2State));
+ if ((RCC_OscInitStruct->PLL2.PLL2State) != RCC_PLL2_NONE) {
+ /* This bit can not be cleared if the PLL2 clock is used indirectly as system
+ clock (i.e. it is used as PLL clock entry that is used as system clock). */
+ if ((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK)
+ && ((READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2)) {
+ return HAL_ERROR;
+ } else {
+ if ((RCC_OscInitStruct->PLL2.PLL2State) == RCC_PLL2_ON) {
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL2_MUL(RCC_OscInitStruct->PLL2.PLL2MUL));
+ assert_param(IS_RCC_HSE_PREDIV2(RCC_OscInitStruct->PLL2.HSEPrediv2Value));
+
+ /* Prediv2 can be written only when the PLLI2S is disabled. */
+ /* Return an error only if new value is different from the programmed value */
+ if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLL3ON) && (__HAL_RCC_HSE_GET_PREDIV2() != RCC_OscInitStruct->PLL2.HSEPrediv2Value)) {
+ return HAL_ERROR;
+ }
+
+ /* Disable the main PLL2. */
+ __HAL_RCC_PLL2_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL2 is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Configure the HSE prediv2 factor --------------------------------*/
+ __HAL_RCC_HSE_PREDIV2_CONFIG(RCC_OscInitStruct->PLL2.HSEPrediv2Value);
+
+ /* Configure the main PLL2 multiplication factors. */
+ __HAL_RCC_PLL2_CONFIG(RCC_OscInitStruct->PLL2.PLL2MUL);
+
+ /* Enable the main PLL2. */
+ __HAL_RCC_PLL2_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL2 is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) == RESET) {
+ if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ } else {
+ /* Set PREDIV1 source to HSE */
+ CLEAR_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC);
+
+ /* Disable the main PLL2. */
+ __HAL_RCC_PLL2_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL2 is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+
+#endif /* RCC_CR_PLL2ON */
+ /*-------------------------------- PLL Configuration -----------------------*/
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
+ if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) {
+ /* Check if the PLL is used as system clock or not */
+ if (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) {
+ if ((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) {
+ /* Check the parameters */
+ assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
+ assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
+
+ /* Disable the main PLL. */
+ __HAL_RCC_PLL_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Configure the HSE prediv factor --------------------------------*/
+ /* It can be written only when the PLL is disabled. Not used in PLL source is different than HSE */
+ if (RCC_OscInitStruct->PLL.PLLSource == RCC_PLLSOURCE_HSE) {
+ /* Check the parameter */
+ assert_param(IS_RCC_HSE_PREDIV(RCC_OscInitStruct->HSEPredivValue));
+#if defined(RCC_CFGR2_PREDIV1SRC)
+ assert_param(IS_RCC_PREDIV1_SOURCE(RCC_OscInitStruct->Prediv1Source));
+
+ /* Set PREDIV1 source */
+ SET_BIT(RCC->CFGR2, RCC_OscInitStruct->Prediv1Source);
+#endif /* RCC_CFGR2_PREDIV1SRC */
+
+ /* Set PREDIV1 Value */
+ __HAL_RCC_HSE_PREDIV_CONFIG(RCC_OscInitStruct->HSEPredivValue);
+ }
+
+ /* Configure the main PLL clock source and multiplication factors. */
+ __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, RCC_OscInitStruct->PLL.PLLMUL);
+ /* Enable the main PLL. */
+ __HAL_RCC_PLL_ENABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) {
+ if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ } else {
+ /* Disable the main PLL. */
+ __HAL_RCC_PLL_DISABLE();
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ } else {
+ /* Check if there is a request to disable the PLL used as System clock source */
+ if ((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) {
+ return HAL_ERROR;
+ } else {
+ /* Do not return HAL_ERROR if request repeats the current configuration */
+ pll_config = RCC->CFGR;
+ if ((READ_BIT(pll_config, RCC_CFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || (READ_BIT(pll_config, RCC_CFGR_PLLMULL) != RCC_OscInitStruct->PLL.PLLMUL)) {
+ return HAL_ERROR;
+ }
+ }
+ }
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the CPU, AHB and APB buses clocks according to the specified
+ * parameters in the RCC_ClkInitStruct.
+ * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * contains the configuration information for the RCC peripheral.
+ * @param FLatency FLASH Latency
+ * The value of this parameter depend on device used within the same series
+ * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
+ * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
+ *
+ * @note The HSI is used (enabled by hardware) as system clock source after
+ * start-up from Reset, wake-up from STOP and STANDBY mode, or in case
+ * of failure of the HSE used directly or indirectly as system clock
+ * (if the Clock Security System CSS is enabled).
+ *
+ * @note A switch from one clock source to another occurs only if the target
+ * clock source is ready (clock stable after start-up delay or PLL locked).
+ * If a clock source which is not yet ready is selected, the switch will
+ * occur when the clock source will be ready.
+ * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
+ * currently used as system clock source.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) {
+ uint32_t tickstart;
+
+ /* Check Null pointer */
+ if (RCC_ClkInitStruct == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
+ assert_param(IS_FLASH_LATENCY(FLatency));
+
+ /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
+ must be correctly programmed according to the frequency of the CPU clock
+ (HCLK) of the device. */
+
+#if defined(FLASH_ACR_LATENCY)
+ /* Increasing the number of wait states because of higher CPU frequency */
+ if (FLatency > __HAL_FLASH_GET_LATENCY()) {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLatency);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if (__HAL_FLASH_GET_LATENCY() != FLatency) {
+ return HAL_ERROR;
+ }
+ }
+
+#endif /* FLASH_ACR_LATENCY */
+ /*-------------------------- HCLK Configuration --------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) {
+ /* Set the highest APBx dividers in order to ensure that we do not go through
+ a non-spec phase whatever we decrease or increase HCLK. */
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) {
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_HCLK_DIV16);
+ }
+
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) {
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, (RCC_HCLK_DIV16 << 3));
+ }
+
+ /* Set the new HCLK clock divider */
+ assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
+ }
+
+ /*------------------------- SYSCLK Configuration ---------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) {
+ assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
+
+ /* HSE is selected as System Clock Source */
+ if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) {
+ /* Check the HSE ready flag */
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) {
+ return HAL_ERROR;
+ }
+ }
+ /* PLL is selected as System Clock Source */
+ else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) {
+ /* Check the PLL ready flag */
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) {
+ return HAL_ERROR;
+ }
+ }
+ /* HSI is selected as System Clock Source */
+ else {
+ /* Check the HSI ready flag */
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) {
+ return HAL_ERROR;
+ }
+ }
+ __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) {
+ if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+#if defined(FLASH_ACR_LATENCY)
+ /* Decreasing the number of wait states because of lower CPU frequency */
+ if (FLatency < __HAL_FLASH_GET_LATENCY()) {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLatency);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if (__HAL_FLASH_GET_LATENCY() != FLatency) {
+ return HAL_ERROR;
+ }
+ }
+#endif /* FLASH_ACR_LATENCY */
+
+ /*-------------------------- PCLK1 Configuration ---------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) {
+ assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
+ }
+
+ /*-------------------------- PCLK2 Configuration ---------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) {
+ assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3));
+ }
+
+ /* Update the SystemCoreClock global variable */
+ SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos];
+
+ /* Configure the source of time base considering new system clocks settings*/
+ HAL_InitTick(uwTickPrio);
+
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
+ * @brief RCC clocks control functions
+ *
+ @verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the RCC Clocks
+ frequencies.
+
+ @endverbatim
+ * @{
+ */
+
+/**
+ * @brief Selects the clock source to output on MCO pin.
+ * @note MCO pin should be configured in alternate function mode.
+ * @param RCC_MCOx specifies the output direction for the clock source.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
+ * @param RCC_MCOSource specifies the clock source to output.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
+ * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
+ @if STM32F105xC
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source
+ @endif
+ @if STM32F107xC
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source
+ @endif
+ * @param RCC_MCODiv specifies the MCO DIV.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCODIV_1 no division applied to MCO clock
+ * @retval None
+ */
+void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) {
+ GPIO_InitTypeDef gpio = {0U};
+
+ /* Check the parameters */
+ assert_param(IS_RCC_MCO(RCC_MCOx));
+ assert_param(IS_RCC_MCODIV(RCC_MCODiv));
+ assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
+
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(RCC_MCOx);
+ UNUSED(RCC_MCODiv);
+
+ /* Configure the MCO1 pin in alternate function mode */
+ gpio.Mode = GPIO_MODE_AF_PP;
+ gpio.Speed = GPIO_SPEED_FREQ_HIGH;
+ gpio.Pull = GPIO_NOPULL;
+ gpio.Pin = MCO1_PIN;
+
+ /* MCO1 Clock Enable */
+ MCO1_CLK_ENABLE();
+
+ HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);
+
+ /* Configure the MCO clock source */
+ __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
+}
+
+/**
+ * @brief Enables the Clock Security System.
+ * @note If a failure is detected on the HSE oscillator clock, this oscillator
+ * is automatically disabled and an interrupt is generated to inform the
+ * software about the failure (Clock Security System Interrupt, CSSI),
+ * allowing the MCU to perform rescue operations. The CSSI is linked to
+ * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector.
+ * @retval None
+ */
+void HAL_RCC_EnableCSS(void) { *(__IO uint32_t *)RCC_CR_CSSON_BB = (uint32_t)ENABLE; }
+
+/**
+ * @brief Disables the Clock Security System.
+ * @retval None
+ */
+void HAL_RCC_DisableCSS(void) { *(__IO uint32_t *)RCC_CR_CSSON_BB = (uint32_t)DISABLE; }
+
+/**
+ * @brief Returns the SYSCLK frequency
+ * @note The system frequency computed by this function is not the real
+ * frequency in the chip. It is calculated based on the predefined
+ * constant and the selected clock source:
+ * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
+ * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE
+ * divided by PREDIV factor(**)
+ * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE
+ * divided by PREDIV factor(**) or HSI_VALUE(*) multiplied by the PLL factor.
+ * @note (*) HSI_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
+ * 8 MHz) but the real value may vary depending on the variations
+ * in voltage and temperature.
+ * @note (**) HSE_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
+ * 8 MHz), user has to ensure that HSE_VALUE is same as the real
+ * frequency of the crystal used. Otherwise, this function may
+ * have wrong result.
+ *
+ * @note The result of this function could be not correct when using fractional
+ * value for HSE crystal.
+ *
+ * @note This function can be used by the user application to compute the
+ * baud-rate for the communication peripherals or configure other parameters.
+ *
+ * @note Each time SYSCLK changes, this function must be called to update the
+ * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
+ *
+ * @retval SYSCLK frequency
+ */
+uint32_t HAL_RCC_GetSysClockFreq(void) {
+#if defined(RCC_CFGR2_PREDIV1SRC)
+ const uint8_t aPLLMULFactorTable[14] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 13};
+ const uint8_t aPredivFactorTable[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
+#else
+ const uint8_t aPLLMULFactorTable[16] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16};
+#if defined(RCC_CFGR2_PREDIV1)
+ const uint8_t aPredivFactorTable[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
+#else
+ const uint8_t aPredivFactorTable[2] = {1, 2};
+#endif /*RCC_CFGR2_PREDIV1*/
+
+#endif
+ uint32_t tmpreg = 0U, prediv = 0U, pllclk = 0U, pllmul = 0U;
+ uint32_t sysclockfreq = 0U;
+#if defined(RCC_CFGR2_PREDIV1SRC)
+ uint32_t prediv2 = 0U, pll2mul = 0U;
+#endif /*RCC_CFGR2_PREDIV1SRC*/
+
+ tmpreg = RCC->CFGR;
+
+ /* Get SYSCLK source -------------------------------------------------------*/
+ switch (tmpreg & RCC_CFGR_SWS) {
+ case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */
+ {
+ sysclockfreq = HSE_VALUE;
+ break;
+ }
+ case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */
+ {
+ pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMULL) >> RCC_CFGR_PLLMULL_Pos];
+ if ((tmpreg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2) {
+#if defined(RCC_CFGR2_PREDIV1)
+ prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> RCC_CFGR2_PREDIV1_Pos];
+#else
+ prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> RCC_CFGR_PLLXTPRE_Pos];
+#endif /*RCC_CFGR2_PREDIV1*/
+#if defined(RCC_CFGR2_PREDIV1SRC)
+
+ if (HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC)) {
+ /* PLL2 selected as Prediv1 source */
+ /* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */
+ prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> RCC_CFGR2_PREDIV2_Pos) + 1;
+ pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> RCC_CFGR2_PLL2MUL_Pos) + 2;
+ pllclk = (uint32_t)(((uint64_t)HSE_VALUE * (uint64_t)pll2mul * (uint64_t)pllmul) / ((uint64_t)prediv2 * (uint64_t)prediv));
+ } else {
+ /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
+ pllclk = (uint32_t)((HSE_VALUE * pllmul) / prediv);
+ }
+
+ /* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */
+ /* In this case need to divide pllclk by 2 */
+ if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> RCC_CFGR_PLLMULL_Pos]) {
+ pllclk = pllclk / 2;
+ }
+#else
+ /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
+ pllclk = (uint32_t)((HSE_VALUE * pllmul) / prediv);
+#endif /*RCC_CFGR2_PREDIV1SRC*/
+ } else {
+ /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
+ pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul);
+ }
+ sysclockfreq = pllclk;
+ break;
+ }
+ case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
+ default: /* HSI used as system clock */
+ {
+ sysclockfreq = HSI_VALUE;
+ break;
+ }
+ }
+ return sysclockfreq;
+}
+
+/**
+ * @brief Returns the HCLK frequency
+ * @note Each time HCLK changes, this function must be called to update the
+ * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
+ *
+ * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
+ * and updated within this function
+ * @retval HCLK frequency
+ */
+uint32_t HAL_RCC_GetHCLKFreq(void) { return SystemCoreClock; }
+
+/**
+ * @brief Returns the PCLK1 frequency
+ * @note Each time PCLK1 changes, this function must be called to update the
+ * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
+ * @retval PCLK1 frequency
+ */
+uint32_t HAL_RCC_GetPCLK1Freq(void) {
+ /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
+ return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_Pos]);
+}
+
+/**
+ * @brief Returns the PCLK2 frequency
+ * @note Each time PCLK2 changes, this function must be called to update the
+ * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
+ * @retval PCLK2 frequency
+ */
+uint32_t HAL_RCC_GetPCLK2Freq(void) {
+ /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
+ return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_Pos]);
+}
+
+/**
+ * @brief Configures the RCC_OscInitStruct according to the internal
+ * RCC configuration registers.
+ * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * will be configured.
+ * @retval None
+ */
+void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) {
+ /* Check the parameters */
+ assert_param(RCC_OscInitStruct != NULL);
+
+ /* Set all possible values for the Oscillator type parameter ---------------*/
+ RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
+
+#if defined(RCC_CFGR2_PREDIV1SRC)
+ /* Get the Prediv1 source --------------------------------------------------*/
+ RCC_OscInitStruct->Prediv1Source = READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC);
+#endif /* RCC_CFGR2_PREDIV1SRC */
+
+ /* Get the HSE configuration -----------------------------------------------*/
+ if ((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP) {
+ RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
+ } else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON) {
+ RCC_OscInitStruct->HSEState = RCC_HSE_ON;
+ } else {
+ RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
+ }
+ RCC_OscInitStruct->HSEPredivValue = __HAL_RCC_HSE_GET_PREDIV();
+
+ /* Get the HSI configuration -----------------------------------------------*/
+ if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION) {
+ RCC_OscInitStruct->HSIState = RCC_HSI_ON;
+ } else {
+ RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
+ }
+
+ RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos);
+
+ /* Get the LSE configuration -----------------------------------------------*/
+ if ((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) {
+ RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
+ } else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) {
+ RCC_OscInitStruct->LSEState = RCC_LSE_ON;
+ } else {
+ RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
+ }
+
+ /* Get the LSI configuration -----------------------------------------------*/
+ if ((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION) {
+ RCC_OscInitStruct->LSIState = RCC_LSI_ON;
+ } else {
+ RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
+ }
+
+ /* Get the PLL configuration -----------------------------------------------*/
+ if ((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON) {
+ RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
+ } else {
+ RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
+ }
+ RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
+ RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMULL);
+#if defined(RCC_CR_PLL2ON)
+ /* Get the PLL2 configuration -----------------------------------------------*/
+ if ((RCC->CR & RCC_CR_PLL2ON) == RCC_CR_PLL2ON) {
+ RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_ON;
+ } else {
+ RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_OFF;
+ }
+ RCC_OscInitStruct->PLL2.HSEPrediv2Value = __HAL_RCC_HSE_GET_PREDIV2();
+ RCC_OscInitStruct->PLL2.PLL2MUL = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PLL2MUL);
+#endif /* RCC_CR_PLL2ON */
+}
+
+/**
+ * @brief Get the RCC_ClkInitStruct according to the internal
+ * RCC configuration registers.
+ * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
+ * contains the current clock configuration.
+ * @param pFLatency Pointer on the Flash Latency.
+ * @retval None
+ */
+void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) {
+ /* Check the parameters */
+ assert_param(RCC_ClkInitStruct != NULL);
+ assert_param(pFLatency != NULL);
+
+ /* Set all possible values for the Clock type parameter --------------------*/
+ RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
+
+ /* Get the SYSCLK configuration --------------------------------------------*/
+ RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
+
+ /* Get the HCLK configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
+
+ /* Get the APB1 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
+
+ /* Get the APB2 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3);
+
+#if defined(FLASH_ACR_LATENCY)
+ /* Get the Flash Wait State (Latency) configuration ------------------------*/
+ *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
+#else
+ /* For VALUE lines devices, only LATENCY_0 can be set*/
+ *pFLatency = (uint32_t)FLASH_LATENCY_0;
+#endif
+}
+
+/**
+ * @brief This function handles the RCC CSS interrupt request.
+ * @note This API should be called under the NMI_Handler().
+ * @retval None
+ */
+void HAL_RCC_NMI_IRQHandler(void) {
+ /* Check RCC CSSF flag */
+ if (__HAL_RCC_GET_IT(RCC_IT_CSS)) {
+ /* RCC Clock Security System interrupt user callback */
+ HAL_RCC_CSSCallback();
+
+ /* Clear RCC CSS pending bit */
+ __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
+ }
+}
+
+/**
+ * @brief This function provides delay (in milliseconds) based on CPU cycles method.
+ * @param mdelay: specifies the delay time length, in milliseconds.
+ * @retval None
+ */
+static void RCC_Delay(uint32_t mdelay) {
+ __IO uint32_t Delay = mdelay * (SystemCoreClock / 8U / 1000U);
+ do {
+ __NOP();
+ } while (Delay--);
+}
+
+/**
+ * @brief RCC Clock Security System interrupt callback
+ * @retval none
+ */
+__weak void HAL_RCC_CSSCallback(void) {
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_RCC_CSSCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_RCC_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc_ex.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc_ex.c new file mode 100644 index 00000000..d82d6fea --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc_ex.c @@ -0,0 +1,757 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_rcc_ex.c
+ * @author MCD Application Team
+ * @brief Extended RCC HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities RCC extension peripheral:
+ * + Extended Peripheral Control functions
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+#ifdef HAL_RCC_MODULE_ENABLED
+
+/** @defgroup RCCEx RCCEx
+ * @brief RCC Extension HAL module driver.
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
+ * @{
+ */
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/** @defgroup RCCEx_Private_Macros RCCEx Private Macros
+ * @{
+ */
+/**
+ * @}
+ */
+
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
+ * @{
+ */
+
+/** @defgroup RCCEx_Exported_Functions_Group1 Peripheral Control functions
+ * @brief Extended Peripheral Control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Extended Peripheral Control functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the RCC Clocks
+ frequencies.
+ [..]
+ (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
+ select the RTC clock source; in this case the Backup domain will be reset in
+ order to modify the RTC Clock source, as consequence RTC registers (including
+ the backup registers) are set to their reset values.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the RCC extended peripherals clocks according to the specified parameters in the
+ * RCC_PeriphCLKInitTypeDef.
+ * @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
+ * contains the configuration information for the Extended Peripherals clocks(RTC clock).
+ *
+ * @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select
+ * the RTC clock source; in this case the Backup domain will be reset in
+ * order to modify the RTC Clock source, as consequence RTC registers (including
+ * the backup registers) are set to their reset values.
+ *
+ * @note In case of STM32F105xC or STM32F107xC devices, PLLI2S will be enabled if requested on
+ * one of 2 I2S interfaces. When PLLI2S is enabled, you need to call HAL_RCCEx_DisablePLLI2S to
+ * manually disable it.
+ *
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) {
+ uint32_t tickstart = 0U, temp_reg = 0U;
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ uint32_t pllactive = 0U;
+#endif /* STM32F105xC || STM32F107xC */
+
+ /* Check the parameters */
+ assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
+
+ /*------------------------------- RTC/LCD Configuration ------------------------*/
+ if ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)) {
+ /* check for RTC Parameters used to output RTCCLK */
+ assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
+
+ FlagStatus pwrclkchanged = RESET;
+
+ /* As soon as function is called to change RTC clock source, activation of the
+ power domain is done. */
+ /* Requires to enable write access to Backup Domain of necessary */
+ if (__HAL_RCC_PWR_IS_CLK_DISABLED()) {
+ __HAL_RCC_PWR_CLK_ENABLE();
+ pwrclkchanged = SET;
+ }
+
+ if (HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) {
+ /* Enable write access to Backup domain */
+ SET_BIT(PWR->CR, PWR_CR_DBP);
+
+ /* Wait for Backup domain Write protection disable */
+ tickstart = HAL_GetTick();
+
+ while (HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) {
+ if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Reset the Backup domain only if the RTC Clock source selection is modified from reset value */
+ temp_reg = (RCC->BDCR & RCC_BDCR_RTCSEL);
+ if ((temp_reg != 0x00000000U) && (temp_reg != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL))) {
+ /* Store the content of BDCR register before the reset of Backup Domain */
+ temp_reg = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
+ /* RTC Clock selection can be changed only if the Backup Domain is reset */
+ __HAL_RCC_BACKUPRESET_FORCE();
+ __HAL_RCC_BACKUPRESET_RELEASE();
+ /* Restore the Content of BDCR register */
+ RCC->BDCR = temp_reg;
+
+ /* Wait for LSERDY if LSE was enabled */
+ if (HAL_IS_BIT_SET(temp_reg, RCC_BDCR_LSEON)) {
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) {
+ if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
+
+ /* Require to disable power clock if necessary */
+ if (pwrclkchanged == SET) {
+ __HAL_RCC_PWR_CLK_DISABLE();
+ }
+ }
+
+ /*------------------------------ ADC clock Configuration ------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC) {
+ /* Check the parameters */
+ assert_param(IS_RCC_ADCPLLCLK_DIV(PeriphClkInit->AdcClockSelection));
+
+ /* Configure the ADC clock source */
+ __HAL_RCC_ADC_CONFIG(PeriphClkInit->AdcClockSelection);
+ }
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ /*------------------------------ I2S2 Configuration ------------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S2) == RCC_PERIPHCLK_I2S2) {
+ /* Check the parameters */
+ assert_param(IS_RCC_I2S2CLKSOURCE(PeriphClkInit->I2s2ClockSelection));
+
+ /* Configure the I2S2 clock source */
+ __HAL_RCC_I2S2_CONFIG(PeriphClkInit->I2s2ClockSelection);
+ }
+
+ /*------------------------------ I2S3 Configuration ------------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S3) == RCC_PERIPHCLK_I2S3) {
+ /* Check the parameters */
+ assert_param(IS_RCC_I2S3CLKSOURCE(PeriphClkInit->I2s3ClockSelection));
+
+ /* Configure the I2S3 clock source */
+ __HAL_RCC_I2S3_CONFIG(PeriphClkInit->I2s3ClockSelection);
+ }
+
+ /*------------------------------ PLL I2S Configuration ----------------------*/
+ /* Check that PLLI2S need to be enabled */
+ if (HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_I2S2SRC) || HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_I2S3SRC)) {
+ /* Update flag to indicate that PLL I2S should be active */
+ pllactive = 1;
+ }
+
+ /* Check if PLL I2S need to be enabled */
+ if (pllactive == 1) {
+ /* Enable PLL I2S only if not active */
+ if (HAL_IS_BIT_CLR(RCC->CR, RCC_CR_PLL3ON)) {
+ /* Check the parameters */
+ assert_param(IS_RCC_PLLI2S_MUL(PeriphClkInit->PLLI2S.PLLI2SMUL));
+ assert_param(IS_RCC_HSE_PREDIV2(PeriphClkInit->PLLI2S.HSEPrediv2Value));
+
+ /* Prediv2 can be written only when the PLL2 is disabled. */
+ /* Return an error only if new value is different from the programmed value */
+ if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLL2ON) && (__HAL_RCC_HSE_GET_PREDIV2() != PeriphClkInit->PLLI2S.HSEPrediv2Value)) {
+ return HAL_ERROR;
+ }
+
+ /* Configure the HSE prediv2 factor --------------------------------*/
+ __HAL_RCC_HSE_PREDIV2_CONFIG(PeriphClkInit->PLLI2S.HSEPrediv2Value);
+
+ /* Configure the main PLLI2S multiplication factors. */
+ __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SMUL);
+
+ /* Enable the main PLLI2S. */
+ __HAL_RCC_PLLI2S_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLI2S is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET) {
+ if ((HAL_GetTick() - tickstart) > PLLI2S_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ } else {
+ /* Return an error only if user wants to change the PLLI2SMUL whereas PLLI2S is active */
+ if (READ_BIT(RCC->CFGR2, RCC_CFGR2_PLL3MUL) != PeriphClkInit->PLLI2S.PLLI2SMUL) {
+ return HAL_ERROR;
+ }
+ }
+ }
+#endif /* STM32F105xC || STM32F107xC */
+
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+ /*------------------------------ USB clock Configuration ------------------*/
+ if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB) {
+ /* Check the parameters */
+ assert_param(IS_RCC_USBPLLCLK_DIV(PeriphClkInit->UsbClockSelection));
+
+ /* Configure the USB clock source */
+ __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
+ }
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Get the PeriphClkInit according to the internal
+ * RCC configuration registers.
+ * @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
+ * returns the configuration information for the Extended Peripherals clocks(RTC, I2S, ADC clocks).
+ * @retval None
+ */
+void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) {
+ uint32_t srcclk = 0U;
+
+ /* Set all possible values for the extended clock type parameter------------*/
+ PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_RTC;
+
+ /* Get the RTC configuration -----------------------------------------------*/
+ srcclk = __HAL_RCC_GET_RTC_SOURCE();
+ /* Source clock is LSE or LSI*/
+ PeriphClkInit->RTCClockSelection = srcclk;
+
+ /* Get the ADC clock configuration -----------------------------------------*/
+ PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_ADC;
+ PeriphClkInit->AdcClockSelection = __HAL_RCC_GET_ADC_SOURCE();
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ /* Get the I2S2 clock configuration -----------------------------------------*/
+ PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S2;
+ PeriphClkInit->I2s2ClockSelection = __HAL_RCC_GET_I2S2_SOURCE();
+
+ /* Get the I2S3 clock configuration -----------------------------------------*/
+ PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S3;
+ PeriphClkInit->I2s3ClockSelection = __HAL_RCC_GET_I2S3_SOURCE();
+
+#endif /* STM32F105xC || STM32F107xC */
+
+#if defined(STM32F103xE) || defined(STM32F103xG)
+ /* Get the I2S2 clock configuration -----------------------------------------*/
+ PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S2;
+ PeriphClkInit->I2s2ClockSelection = RCC_I2S2CLKSOURCE_SYSCLK;
+
+ /* Get the I2S3 clock configuration -----------------------------------------*/
+ PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_I2S3;
+ PeriphClkInit->I2s3ClockSelection = RCC_I2S3CLKSOURCE_SYSCLK;
+
+#endif /* STM32F103xE || STM32F103xG */
+
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+ /* Get the USB clock configuration -----------------------------------------*/
+ PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB;
+ PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE();
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+}
+
+/**
+ * @brief Returns the peripheral clock frequency
+ * @note Returns 0 if peripheral clock is unknown
+ * @param PeriphClk Peripheral clock identifier
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
+ * @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock
+ @if STM32F103xE
+ * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ @endif
+ @if STM32F103xG
+ * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
+ @endif
+ @if STM32F105xC
+ * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
+ @endif
+ @if STM32F107xC
+ * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S3 I2S3 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
+ * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
+ @endif
+ @if STM32F102xx
+ * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
+ @endif
+ @if STM32F103xx
+ * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
+ @endif
+ * @retval Frequency in Hz (0: means that no available frequency for the peripheral)
+ */
+uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk) {
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ const uint8_t aPLLMULFactorTable[14] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 13};
+ const uint8_t aPredivFactorTable[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
+
+ uint32_t prediv1 = 0U, pllclk = 0U, pllmul = 0U;
+ uint32_t pll2mul = 0U, pll3mul = 0U, prediv2 = 0U;
+#endif /* STM32F105xC || STM32F107xC */
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG)
+ const uint8_t aPLLMULFactorTable[16] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16};
+ const uint8_t aPredivFactorTable[2] = {1, 2};
+
+ uint32_t prediv1 = 0U, pllclk = 0U, pllmul = 0U;
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG */
+ uint32_t temp_reg = 0U, frequency = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));
+
+ switch (PeriphClk) {
+#if defined(STM32F102x6) || defined(STM32F102xB) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+ case RCC_PERIPHCLK_USB: {
+ /* Get RCC configuration ------------------------------------------------------*/
+ temp_reg = RCC->CFGR;
+
+ /* Check if PLL is enabled */
+ if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLON)) {
+ pllmul = aPLLMULFactorTable[(uint32_t)(temp_reg & RCC_CFGR_PLLMULL) >> RCC_CFGR_PLLMULL_Pos];
+ if ((temp_reg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2) {
+#if defined(STM32F105xC) || defined(STM32F107xC) || defined(STM32F100xB) || defined(STM32F100xE)
+ prediv1 = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> RCC_CFGR2_PREDIV1_Pos];
+#else
+ prediv1 = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> RCC_CFGR_PLLXTPRE_Pos];
+#endif /* STM32F105xC || STM32F107xC || STM32F100xB || STM32F100xE */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ if (HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC)) {
+ /* PLL2 selected as Prediv1 source */
+ /* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */
+ prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> RCC_CFGR2_PREDIV2_Pos) + 1;
+ pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> RCC_CFGR2_PLL2MUL_Pos) + 2;
+ pllclk = (uint32_t)((((HSE_VALUE / prediv2) * pll2mul) / prediv1) * pllmul);
+ } else {
+ /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
+ pllclk = (uint32_t)((HSE_VALUE / prediv1) * pllmul);
+ }
+
+ /* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */
+ /* In this case need to divide pllclk by 2 */
+ if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> RCC_CFGR_PLLMULL_Pos]) {
+ pllclk = pllclk / 2;
+ }
+#else
+ if ((temp_reg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2) {
+ /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
+ pllclk = (uint32_t)((HSE_VALUE / prediv1) * pllmul);
+ }
+#endif /* STM32F105xC || STM32F107xC */
+ } else {
+ /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
+ pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul);
+ }
+
+ /* Calcul of the USB frequency*/
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ /* USBCLK = PLLVCO = (2 x PLLCLK) / USB prescaler */
+ if (__HAL_RCC_GET_USB_SOURCE() == RCC_USBCLKSOURCE_PLL_DIV2) {
+ /* Prescaler of 2 selected for USB */
+ frequency = pllclk;
+ } else {
+ /* Prescaler of 3 selected for USB */
+ frequency = (2 * pllclk) / 3;
+ }
+#else
+ /* USBCLK = PLLCLK / USB prescaler */
+ if (__HAL_RCC_GET_USB_SOURCE() == RCC_USBCLKSOURCE_PLL) {
+ /* No prescaler selected for USB */
+ frequency = pllclk;
+ } else {
+ /* Prescaler of 1.5 selected for USB */
+ frequency = (pllclk * 2) / 3;
+ }
+#endif
+ }
+ break;
+ }
+#endif /* STM32F102x6 || STM32F102xB || STM32F103x6 || STM32F103xB || STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+#if defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
+ case RCC_PERIPHCLK_I2S2: {
+#if defined(STM32F103xE) || defined(STM32F103xG)
+ /* SYSCLK used as source clock for I2S2 */
+ frequency = HAL_RCC_GetSysClockFreq();
+#else
+ if (__HAL_RCC_GET_I2S2_SOURCE() == RCC_I2S2CLKSOURCE_SYSCLK) {
+ /* SYSCLK used as source clock for I2S2 */
+ frequency = HAL_RCC_GetSysClockFreq();
+ } else {
+ /* Check if PLLI2S is enabled */
+ if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLL3ON)) {
+ /* PLLI2SVCO = 2 * PLLI2SCLK = 2 * (HSE/PREDIV2 * PLL3MUL) */
+ prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> RCC_CFGR2_PREDIV2_Pos) + 1;
+ pll3mul = ((RCC->CFGR2 & RCC_CFGR2_PLL3MUL) >> RCC_CFGR2_PLL3MUL_Pos) + 2;
+ frequency = (uint32_t)(2 * ((HSE_VALUE / prediv2) * pll3mul));
+ }
+ }
+#endif /* STM32F103xE || STM32F103xG */
+ break;
+ }
+ case RCC_PERIPHCLK_I2S3: {
+#if defined(STM32F103xE) || defined(STM32F103xG)
+ /* SYSCLK used as source clock for I2S3 */
+ frequency = HAL_RCC_GetSysClockFreq();
+#else
+ if (__HAL_RCC_GET_I2S3_SOURCE() == RCC_I2S3CLKSOURCE_SYSCLK) {
+ /* SYSCLK used as source clock for I2S3 */
+ frequency = HAL_RCC_GetSysClockFreq();
+ } else {
+ /* Check if PLLI2S is enabled */
+ if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLL3ON)) {
+ /* PLLI2SVCO = 2 * PLLI2SCLK = 2 * (HSE/PREDIV2 * PLL3MUL) */
+ prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> RCC_CFGR2_PREDIV2_Pos) + 1;
+ pll3mul = ((RCC->CFGR2 & RCC_CFGR2_PLL3MUL) >> RCC_CFGR2_PLL3MUL_Pos) + 2;
+ frequency = (uint32_t)(2 * ((HSE_VALUE / prediv2) * pll3mul));
+ }
+ }
+#endif /* STM32F103xE || STM32F103xG */
+ break;
+ }
+#endif /* STM32F103xE || STM32F103xG || STM32F105xC || STM32F107xC */
+ case RCC_PERIPHCLK_RTC: {
+ /* Get RCC BDCR configuration ------------------------------------------------------*/
+ temp_reg = RCC->BDCR;
+
+ /* Check if LSE is ready if RTC clock selection is LSE */
+ if (((temp_reg & RCC_BDCR_RTCSEL) == RCC_RTCCLKSOURCE_LSE) && (HAL_IS_BIT_SET(temp_reg, RCC_BDCR_LSERDY))) {
+ frequency = LSE_VALUE;
+ }
+ /* Check if LSI is ready if RTC clock selection is LSI */
+ else if (((temp_reg & RCC_BDCR_RTCSEL) == RCC_RTCCLKSOURCE_LSI) && (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY))) {
+ frequency = LSI_VALUE;
+ } else if (((temp_reg & RCC_BDCR_RTCSEL) == RCC_RTCCLKSOURCE_HSE_DIV128) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY))) {
+ frequency = HSE_VALUE / 128U;
+ }
+ /* Clock not enabled for RTC*/
+ else {
+ /* nothing to do: frequency already initialized to 0U */
+ }
+ break;
+ }
+ case RCC_PERIPHCLK_ADC: {
+ frequency = HAL_RCC_GetPCLK2Freq() / (((__HAL_RCC_GET_ADC_SOURCE() >> RCC_CFGR_ADCPRE_Pos) + 1) * 2);
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+ return (frequency);
+}
+
+/**
+ * @}
+ */
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+/** @defgroup RCCEx_Exported_Functions_Group2 PLLI2S Management function
+ * @brief PLLI2S Management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Extended PLLI2S Management functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the PLLI2S
+ activation or deactivation
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enable PLLI2S
+ * @param PLLI2SInit pointer to an RCC_PLLI2SInitTypeDef structure that
+ * contains the configuration information for the PLLI2S
+ * @note The PLLI2S configuration not modified if used by I2S2 or I2S3 Interface.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCCEx_EnablePLLI2S(RCC_PLLI2SInitTypeDef *PLLI2SInit) {
+ uint32_t tickstart = 0U;
+
+ /* Check that PLL I2S has not been already enabled by I2S2 or I2S3*/
+ if (HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S2SRC) && HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S3SRC)) {
+ /* Check the parameters */
+ assert_param(IS_RCC_PLLI2S_MUL(PLLI2SInit->PLLI2SMUL));
+ assert_param(IS_RCC_HSE_PREDIV2(PLLI2SInit->HSEPrediv2Value));
+
+ /* Prediv2 can be written only when the PLL2 is disabled. */
+ /* Return an error only if new value is different from the programmed value */
+ if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLL2ON) && (__HAL_RCC_HSE_GET_PREDIV2() != PLLI2SInit->HSEPrediv2Value)) {
+ return HAL_ERROR;
+ }
+
+ /* Disable the main PLLI2S. */
+ __HAL_RCC_PLLI2S_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLI2S is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > PLLI2S_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Configure the HSE prediv2 factor --------------------------------*/
+ __HAL_RCC_HSE_PREDIV2_CONFIG(PLLI2SInit->HSEPrediv2Value);
+
+ /* Configure the main PLLI2S multiplication factors. */
+ __HAL_RCC_PLLI2S_CONFIG(PLLI2SInit->PLLI2SMUL);
+
+ /* Enable the main PLLI2S. */
+ __HAL_RCC_PLLI2S_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLI2S is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET) {
+ if ((HAL_GetTick() - tickstart) > PLLI2S_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ } else {
+ /* PLLI2S cannot be modified as already used by I2S2 or I2S3 */
+ return HAL_ERROR;
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Disable PLLI2S
+ * @note PLLI2S is not disabled if used by I2S2 or I2S3 Interface.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCCEx_DisablePLLI2S(void) {
+ uint32_t tickstart = 0U;
+
+ /* Disable PLL I2S as not requested by I2S2 or I2S3*/
+ if (HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S2SRC) && HAL_IS_BIT_CLR(RCC->CFGR2, RCC_CFGR2_I2S3SRC)) {
+ /* Disable the main PLLI2S. */
+ __HAL_RCC_PLLI2S_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLLI2S is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > PLLI2S_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ } else {
+ /* PLLI2S is currently used by I2S2 or I2S3. Cannot be disabled.*/
+ return HAL_ERROR;
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCCEx_Exported_Functions_Group3 PLL2 Management function
+ * @brief PLL2 Management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Extended PLL2 Management functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the PLL2
+ activation or deactivation
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enable PLL2
+ * @param PLL2Init pointer to an RCC_PLL2InitTypeDef structure that
+ * contains the configuration information for the PLL2
+ * @note The PLL2 configuration not modified if used indirectly as system clock.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCCEx_EnablePLL2(RCC_PLL2InitTypeDef *PLL2Init) {
+ uint32_t tickstart = 0U;
+
+ /* This bit can not be cleared if the PLL2 clock is used indirectly as system
+ clock (i.e. it is used as PLL clock entry that is used as system clock). */
+ if ((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK)
+ && ((READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2)) {
+ return HAL_ERROR;
+ } else {
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL2_MUL(PLL2Init->PLL2MUL));
+ assert_param(IS_RCC_HSE_PREDIV2(PLL2Init->HSEPrediv2Value));
+
+ /* Prediv2 can be written only when the PLLI2S is disabled. */
+ /* Return an error only if new value is different from the programmed value */
+ if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLL3ON) && (__HAL_RCC_HSE_GET_PREDIV2() != PLL2Init->HSEPrediv2Value)) {
+ return HAL_ERROR;
+ }
+
+ /* Disable the main PLL2. */
+ __HAL_RCC_PLL2_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL2 is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Configure the HSE prediv2 factor --------------------------------*/
+ __HAL_RCC_HSE_PREDIV2_CONFIG(PLL2Init->HSEPrediv2Value);
+
+ /* Configure the main PLL2 multiplication factors. */
+ __HAL_RCC_PLL2_CONFIG(PLL2Init->PLL2MUL);
+
+ /* Enable the main PLL2. */
+ __HAL_RCC_PLL2_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL2 is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) == RESET) {
+ if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Disable PLL2
+ * @note PLL2 is not disabled if used indirectly as system clock.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCCEx_DisablePLL2(void) {
+ uint32_t tickstart = 0U;
+
+ /* This bit can not be cleared if the PLL2 clock is used indirectly as system
+ clock (i.e. it is used as PLL clock entry that is used as system clock). */
+ if ((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK)
+ && ((READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2)) {
+ return HAL_ERROR;
+ } else {
+ /* Disable the main PLL2. */
+ __HAL_RCC_PLL2_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL2 is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET) {
+ if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+#endif /* STM32F105xC || STM32F107xC */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_RCC_MODULE_ENABLED */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c new file mode 100644 index 00000000..1990dcc5 --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c @@ -0,0 +1,6643 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_tim.c
+ * @author MCD Application Team
+ * @brief TIM HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Timer (TIM) peripheral:
+ * + TIM Time Base Initialization
+ * + TIM Time Base Start
+ * + TIM Time Base Start Interruption
+ * + TIM Time Base Start DMA
+ * + TIM Output Compare/PWM Initialization
+ * + TIM Output Compare/PWM Channel Configuration
+ * + TIM Output Compare/PWM Start
+ * + TIM Output Compare/PWM Start Interruption
+ * + TIM Output Compare/PWM Start DMA
+ * + TIM Input Capture Initialization
+ * + TIM Input Capture Channel Configuration
+ * + TIM Input Capture Start
+ * + TIM Input Capture Start Interruption
+ * + TIM Input Capture Start DMA
+ * + TIM One Pulse Initialization
+ * + TIM One Pulse Channel Configuration
+ * + TIM One Pulse Start
+ * + TIM Encoder Interface Initialization
+ * + TIM Encoder Interface Start
+ * + TIM Encoder Interface Start Interruption
+ * + TIM Encoder Interface Start DMA
+ * + Commutation Event configuration with Interruption and DMA
+ * + TIM OCRef clear configuration
+ * + TIM External Clock configuration
+ @verbatim
+ ==============================================================================
+ ##### TIMER Generic features #####
+ ==============================================================================
+ [..] The Timer features include:
+ (#) 16-bit up, down, up/down auto-reload counter.
+ (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
+ counter clock frequency either by any factor between 1 and 65536.
+ (#) Up to 4 independent channels for:
+ (++) Input Capture
+ (++) Output Compare
+ (++) PWM generation (Edge and Center-aligned Mode)
+ (++) One-pulse mode output
+ (#) Synchronization circuit to control the timer with external signals and to interconnect
+ several timers together.
+ (#) Supports incremental encoder for positioning purposes
+
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ (#) Initialize the TIM low level resources by implementing the following functions
+ depending on the selected feature:
+ (++) Time Base : HAL_TIM_Base_MspInit()
+ (++) Input Capture : HAL_TIM_IC_MspInit()
+ (++) Output Compare : HAL_TIM_OC_MspInit()
+ (++) PWM generation : HAL_TIM_PWM_MspInit()
+ (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
+ (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
+
+ (#) Initialize the TIM low level resources :
+ (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
+ (##) TIM pins configuration
+ (+++) Enable the clock for the TIM GPIOs using the following function:
+ __HAL_RCC_GPIOx_CLK_ENABLE();
+ (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
+
+ (#) The external Clock can be configured, if needed (the default clock is the
+ internal clock from the APBx), using the following function:
+ HAL_TIM_ConfigClockSource, the clock configuration should be done before
+ any start function.
+
+ (#) Configure the TIM in the desired functioning mode using one of the
+ Initialization function of this driver:
+ (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
+ (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
+ Output Compare signal.
+ (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
+ PWM signal.
+ (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
+ external signal.
+ (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
+ in One Pulse Mode.
+ (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
+
+ (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
+ (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
+ (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
+ (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
+ (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
+ (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
+ (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
+
+ (#) The DMA Burst is managed with the two following functions:
+ HAL_TIM_DMABurst_WriteStart()
+ HAL_TIM_DMABurst_ReadStart()
+
+ *** Callback registration ***
+ =============================================
+
+ [..]
+ The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
+ allows the user to configure dynamically the driver callbacks.
+
+ [..]
+ Use Function @ref HAL_TIM_RegisterCallback() to register a callback.
+ @ref HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
+ the Callback ID and a pointer to the user callback function.
+
+ [..]
+ Use function @ref HAL_TIM_UnRegisterCallback() to reset a callback to the default
+ weak function.
+ @ref HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
+ and the Callback ID.
+
+ [..]
+ These functions allow to register/unregister following callbacks:
+ (+) Base_MspInitCallback : TIM Base Msp Init Callback.
+ (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback.
+ (+) IC_MspInitCallback : TIM IC Msp Init Callback.
+ (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback.
+ (+) OC_MspInitCallback : TIM OC Msp Init Callback.
+ (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback.
+ (+) PWM_MspInitCallback : TIM PWM Msp Init Callback.
+ (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback.
+ (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback.
+ (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback.
+ (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback.
+ (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback.
+ (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback.
+ (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback.
+ (+) PeriodElapsedCallback : TIM Period Elapsed Callback.
+ (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback.
+ (+) TriggerCallback : TIM Trigger Callback.
+ (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback.
+ (+) IC_CaptureCallback : TIM Input Capture Callback.
+ (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback.
+ (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback.
+ (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback.
+ (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
+ (+) ErrorCallback : TIM Error Callback.
+ (+) CommutationCallback : TIM Commutation Callback.
+ (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback.
+ (+) BreakCallback : TIM Break Callback.
+
+ [..]
+By default, after the Init and when the state is HAL_TIM_STATE_RESET
+all interrupt callbacks are set to the corresponding weak functions:
+ examples @ref HAL_TIM_TriggerCallback(), @ref HAL_TIM_ErrorCallback().
+
+ [..]
+ Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
+ functionalities in the Init / DeInit only when these callbacks are null
+ (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
+ keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
+
+ [..]
+ Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
+ Exception done MspInit / MspDeInit that can be registered / unregistered
+ in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
+ thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
+ In that case first register the MspInit/MspDeInit user callbacks
+ using @ref HAL_TIM_RegisterCallback() before calling DeInit or Init function.
+
+ [..]
+ When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available and all callbacks
+ are set to the corresponding weak functions.
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup TIM TIM
+ * @brief TIM HAL module driver
+ * @{
+ */
+
+#ifdef HAL_TIM_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macros ------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @addtogroup TIM_Private_Functions
+ * @{
+ */
+static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
+static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
+static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
+static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
+static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
+static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
+static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
+static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
+static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
+static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
+static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig);
+/**
+ * @}
+ */
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup TIM_Exported_Functions TIM Exported Functions
+ * @{
+ */
+
+/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
+ * @brief Time Base functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Time Base functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM base.
+ (+) De-initialize the TIM base.
+ (+) Start the Time Base.
+ (+) Stop the Time Base.
+ (+) Start the Time Base and enable interrupt.
+ (+) Stop the Time Base and disable interrupt.
+ (+) Start the Time Base and enable DMA transfer.
+ (+) Stop the Time Base and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM Time base Unit according to the specified
+ * parameters in the TIM_HandleTypeDef and initialize the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) {
+ /* Check the TIM handle allocation */
+ if (htim == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+
+ if (htim->State == HAL_TIM_STATE_RESET) {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->Base_MspInitCallback == NULL) {
+ htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->Base_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ HAL_TIM_Base_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Set the Time Base configuration */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM Base peripheral
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->Base_MspDeInitCallback == NULL) {
+ htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->Base_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
+ HAL_TIM_Base_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM Base MSP.
+ * @param htim TIM Base handle
+ * @retval None
+ */
+__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_Base_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM Base MSP.
+ * @param htim TIM Base handle
+ * @retval None
+ */
+__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_Base_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the TIM Base generation.
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ /* Check the TIM state */
+ if (htim->State != HAL_TIM_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Base generation.
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Base generation in interrupt mode.
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ /* Check the TIM state */
+ if (htim->State != HAL_TIM_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Enable the TIM Update interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Base generation in interrupt mode.
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ /* Disable the TIM Update interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Base generation in DMA mode.
+ * @param htim TIM Base handle
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to peripheral.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
+
+ /* Set the TIM state */
+ if (htim->State == HAL_TIM_STATE_BUSY) {
+ return HAL_BUSY;
+ } else if (htim->State == HAL_TIM_STATE_READY) {
+ if ((pData == NULL) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ htim->State = HAL_TIM_STATE_BUSY;
+ }
+ } else {
+ return HAL_ERROR;
+ }
+
+ /* Set the DMA Period elapsed callbacks */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+
+ /* Enable the TIM Update DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Base generation in DMA mode.
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
+
+ /* Disable the TIM Update DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
+
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
+ * @brief TIM Output Compare functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM Output Compare functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM Output Compare.
+ (+) De-initialize the TIM Output Compare.
+ (+) Start the TIM Output Compare.
+ (+) Stop the TIM Output Compare.
+ (+) Start the TIM Output Compare and enable interrupt.
+ (+) Stop the TIM Output Compare and disable interrupt.
+ (+) Start the TIM Output Compare and enable DMA transfer.
+ (+) Stop the TIM Output Compare and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM Output Compare according to the specified
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
+ * @param htim TIM Output Compare handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) {
+ /* Check the TIM handle allocation */
+ if (htim == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+
+ if (htim->State == HAL_TIM_STATE_RESET) {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->OC_MspInitCallback == NULL) {
+ htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->OC_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_OC_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Init the base time for the Output Compare */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM peripheral
+ * @param htim TIM Output Compare handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->OC_MspDeInitCallback == NULL) {
+ htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->OC_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_OC_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM Output Compare MSP.
+ * @param htim TIM Output Compare handle
+ * @retval None
+ */
+__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_OC_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM Output Compare MSP.
+ * @param htim TIM Output Compare handle
+ * @retval None
+ */
+__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_OC_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the TIM Output Compare signal generation.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Output Compare signal generation.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Disable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Output Compare signal generation in interrupt mode.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Enable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Enable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Enable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Enable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Enable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Output Compare signal generation in interrupt mode.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Disable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Disable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Disable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Disable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Disable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Output Compare signal generation in DMA mode.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to TIM peripheral
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Set the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) {
+ return HAL_BUSY;
+ } else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) {
+ if ((pData == NULL) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ return HAL_ERROR;
+ }
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+
+ /* Enable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+
+ /* Enable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 4 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Enable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Output Compare signal generation in DMA mode.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Disable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Disable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Disable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Disable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Disable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
+ * @brief TIM PWM functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM PWM functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM PWM.
+ (+) De-initialize the TIM PWM.
+ (+) Start the TIM PWM.
+ (+) Stop the TIM PWM.
+ (+) Start the TIM PWM and enable interrupt.
+ (+) Stop the TIM PWM and disable interrupt.
+ (+) Start the TIM PWM and enable DMA transfer.
+ (+) Stop the TIM PWM and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM PWM Time Base according to the specified
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
+ * @param htim TIM PWM handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) {
+ /* Check the TIM handle allocation */
+ if (htim == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+
+ if (htim->State == HAL_TIM_STATE_RESET) {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->PWM_MspInitCallback == NULL) {
+ htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->PWM_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_PWM_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Init the base time for the PWM */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM peripheral
+ * @param htim TIM PWM handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->PWM_MspDeInitCallback == NULL) {
+ htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->PWM_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_PWM_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM PWM MSP.
+ * @param htim TIM PWM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PWM_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM PWM MSP.
+ * @param htim TIM PWM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PWM_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the PWM signal generation.
+ * @param htim TIM handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the PWM signal generation.
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Disable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the PWM signal generation in interrupt mode.
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Enable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Enable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Enable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Enable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the PWM signal generation in interrupt mode.
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Disable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Disable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Disable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Disable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Disable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM PWM signal generation in DMA mode.
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to TIM peripheral
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Set the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) {
+ return HAL_BUSY;
+ } else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) {
+ if ((pData == NULL) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ return HAL_ERROR;
+ }
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+
+ /* Enable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Output Capture/Compare 3 request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 4 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM PWM signal generation in DMA mode.
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Disable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Disable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Disable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Disable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Disable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
+ * @brief TIM Input Capture functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM Input Capture functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM Input Capture.
+ (+) De-initialize the TIM Input Capture.
+ (+) Start the TIM Input Capture.
+ (+) Stop the TIM Input Capture.
+ (+) Start the TIM Input Capture and enable interrupt.
+ (+) Stop the TIM Input Capture and disable interrupt.
+ (+) Start the TIM Input Capture and enable DMA transfer.
+ (+) Stop the TIM Input Capture and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM Input Capture Time base according to the specified
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
+ * @param htim TIM Input Capture handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) {
+ /* Check the TIM handle allocation */
+ if (htim == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+
+ if (htim->State == HAL_TIM_STATE_RESET) {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->IC_MspInitCallback == NULL) {
+ htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->IC_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_IC_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Init the base time for the input capture */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM peripheral
+ * @param htim TIM Input Capture handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->IC_MspDeInitCallback == NULL) {
+ htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->IC_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_IC_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM Input Capture MSP.
+ * @param htim TIM Input Capture handle
+ * @retval None
+ */
+__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_IC_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM Input Capture MSP.
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_IC_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the TIM Input Capture measurement.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Input Capture measurement.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Disable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Input Capture measurement in interrupt mode.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Enable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Enable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Enable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Enable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ break;
+ }
+ /* Enable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Input Capture measurement in interrupt mode.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Disable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Disable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Disable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Disable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Disable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Input Capture measurement in DMA mode.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @param pData The destination Buffer address.
+ * @param Length The length of data to be transferred from TIM peripheral to memory.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+ assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel state */
+ if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY)) {
+ return HAL_BUSY;
+ } else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY)) {
+ if ((pData == NULL) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ return HAL_ERROR;
+ }
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 4 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Enable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Input Capture measurement in DMA mode.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+ assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
+
+ /* Disable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Disable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Disable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Disable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Disable the TIM Capture/Compare 4 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
+ * @brief TIM One Pulse functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM One Pulse functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM One Pulse.
+ (+) De-initialize the TIM One Pulse.
+ (+) Start the TIM One Pulse.
+ (+) Stop the TIM One Pulse.
+ (+) Start the TIM One Pulse and enable interrupt.
+ (+) Stop the TIM One Pulse and disable interrupt.
+ (+) Start the TIM One Pulse and enable DMA transfer.
+ (+) Stop the TIM One Pulse and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM One Pulse Time Base according to the specified
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
+ * @note When the timer instance is initialized in One Pulse mode, timer
+ * channels 1 and channel 2 are reserved and cannot be used for other
+ * purpose.
+ * @param htim TIM One Pulse handle
+ * @param OnePulseMode Select the One pulse mode.
+ * This parameter can be one of the following values:
+ * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
+ * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) {
+ /* Check the TIM handle allocation */
+ if (htim == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_OPM_MODE(OnePulseMode));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+
+ if (htim->State == HAL_TIM_STATE_RESET) {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->OnePulse_MspInitCallback == NULL) {
+ htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->OnePulse_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_OnePulse_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Configure the Time base in the One Pulse Mode */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Reset the OPM Bit */
+ htim->Instance->CR1 &= ~TIM_CR1_OPM;
+
+ /* Configure the OPM Mode */
+ htim->Instance->CR1 |= OnePulseMode;
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM One Pulse
+ * @param htim TIM One Pulse handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->OnePulse_MspDeInitCallback == NULL) {
+ htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->OnePulse_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
+ HAL_TIM_OnePulse_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM One Pulse MSP.
+ * @param htim TIM One Pulse handle
+ * @retval None
+ */
+__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_OnePulse_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM One Pulse MSP.
+ * @param htim TIM One Pulse handle
+ * @retval None
+ */
+__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the TIM One Pulse signal generation.
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(OutputChannel);
+
+ /* Check the TIM channels state */
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Capture compare and the Input Capture channels
+ (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
+ if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
+ if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
+ in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
+
+ No need to enable the counter, it's enabled automatically by hardware
+ (the counter starts in response to a stimulus and generate a pulse */
+
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM One Pulse signal generation.
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channels to be disable
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(OutputChannel);
+
+ /* Disable the Capture compare and the Input Capture channels
+ (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
+ if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
+ if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
+ in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
+
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM One Pulse signal generation in interrupt mode.
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(OutputChannel);
+
+ /* Check the TIM channels state */
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Capture compare and the Input Capture channels
+ (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
+ if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
+ if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
+ in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
+
+ No need to enable the counter, it's enabled automatically by hardware
+ (the counter starts in response to a stimulus and generate a pulse */
+
+ /* Enable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+
+ /* Enable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM One Pulse signal generation in interrupt mode.
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(OutputChannel);
+
+ /* Disable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+
+ /* Disable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+
+ /* Disable the Capture compare and the Input Capture channels
+ (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
+ if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
+ if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
+ in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
+ * @brief TIM Encoder functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM Encoder functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM Encoder.
+ (+) De-initialize the TIM Encoder.
+ (+) Start the TIM Encoder.
+ (+) Stop the TIM Encoder.
+ (+) Start the TIM Encoder and enable interrupt.
+ (+) Stop the TIM Encoder and disable interrupt.
+ (+) Start the TIM Encoder and enable DMA transfer.
+ (+) Stop the TIM Encoder and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM Encoder Interface and initialize the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
+ * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together
+ * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
+ * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
+ * @note When the timer instance is initialized in Encoder mode, timer
+ * channels 1 and channel 2 are reserved and cannot be used for other
+ * purpose.
+ * @param htim TIM Encoder Interface handle
+ * @param sConfig TIM Encoder Interface configuration structure
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig) {
+ uint32_t tmpsmcr;
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Check the TIM handle allocation */
+ if (htim == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+ assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
+ assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
+ assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
+ assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
+ assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
+ assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
+ assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
+ assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
+ assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
+
+ if (htim->State == HAL_TIM_STATE_RESET) {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->Encoder_MspInitCallback == NULL) {
+ htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->Encoder_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_Encoder_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Reset the SMS and ECE bits */
+ htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
+
+ /* Configure the Time base in the Encoder Mode */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = htim->Instance->SMCR;
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmr1 = htim->Instance->CCMR1;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = htim->Instance->CCER;
+
+ /* Set the encoder Mode */
+ tmpsmcr |= sConfig->EncoderMode;
+
+ /* Select the Capture Compare 1 and the Capture Compare 2 as input */
+ tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
+ tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
+
+ /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
+ tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
+ tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
+ tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
+ tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
+
+ /* Set the TI1 and the TI2 Polarities */
+ tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
+ tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
+
+ /* Write to TIMx SMCR */
+ htim->Instance->SMCR = tmpsmcr;
+
+ /* Write to TIMx CCMR1 */
+ htim->Instance->CCMR1 = tmpccmr1;
+
+ /* Write to TIMx CCER */
+ htim->Instance->CCER = tmpccer;
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM Encoder interface
+ * @param htim TIM Encoder Interface handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->Encoder_MspDeInitCallback == NULL) {
+ htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->Encoder_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
+ HAL_TIM_Encoder_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM Encoder Interface MSP.
+ * @param htim TIM Encoder Interface handle
+ * @retval None
+ */
+__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_Encoder_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM Encoder Interface MSP.
+ * @param htim TIM Encoder Interface handle
+ * @retval None
+ */
+__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the TIM Encoder Interface.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel(s) state */
+ if (Channel == TIM_CHANNEL_1) {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else if (Channel == TIM_CHANNEL_2) {
+ if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+
+ /* Enable the encoder interface channels */
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+ break;
+ }
+
+ default: {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+ break;
+ }
+ }
+ /* Enable the Peripheral */
+ __HAL_TIM_ENABLE(htim);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Encoder Interface.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Disable the Input Capture channels 1 and 2
+ (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+ break;
+ }
+
+ default: {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+ break;
+ }
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel(s) state */
+ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Encoder Interface in interrupt mode.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel(s) state */
+ if (Channel == TIM_CHANNEL_1) {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else if (Channel == TIM_CHANNEL_2) {
+ if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+
+ /* Enable the encoder interface channels */
+ /* Enable the capture compare Interrupts 1 and/or 2 */
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ default: {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+ }
+
+ /* Enable the Peripheral */
+ __HAL_TIM_ENABLE(htim);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Encoder Interface in interrupt mode.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Disable the Input Capture channels 1 and 2
+ (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
+ if (Channel == TIM_CHANNEL_1) {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare Interrupts 1 */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ } else if (Channel == TIM_CHANNEL_2) {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare Interrupts 2 */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ } else {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare Interrupts 1 and 2 */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel(s) state */
+ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Encoder Interface in DMA mode.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @param pData1 The destination Buffer address for IC1.
+ * @param pData2 The destination Buffer address for IC2.
+ * @param Length The length of data to be transferred from TIM peripheral to memory.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length) {
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel(s) state */
+ if (Channel == TIM_CHANNEL_1) {
+ if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) {
+ return HAL_BUSY;
+ } else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) {
+ if ((pData1 == NULL) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ return HAL_ERROR;
+ }
+ } else if (Channel == TIM_CHANNEL_2) {
+ if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) {
+ return HAL_BUSY;
+ } else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) {
+ if ((pData2 == NULL) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ return HAL_ERROR;
+ }
+ } else {
+ if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
+ || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) {
+ return HAL_BUSY;
+ } else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
+ && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) {
+ if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ return HAL_ERROR;
+ }
+ }
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Input Capture DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+
+ /* Enable the Peripheral */
+ __HAL_TIM_ENABLE(htim);
+
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Input Capture DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+
+ /* Enable the Peripheral */
+ __HAL_TIM_ENABLE(htim);
+
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+ break;
+ }
+
+ case TIM_CHANNEL_ALL: {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the Peripheral */
+ __HAL_TIM_ENABLE(htim);
+
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+
+ /* Enable the TIM Input Capture DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+ /* Enable the TIM Input Capture DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Encoder Interface in DMA mode.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Disable the Input Capture channels 1 and 2
+ (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
+ if (Channel == TIM_CHANNEL_1) {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare DMA Request 1 */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ } else if (Channel == TIM_CHANNEL_2) {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare DMA Request 2 */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ } else {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare DMA Request 1 and 2 */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel(s) state */
+ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
+ * @brief TIM IRQ handler management
+ *
+@verbatim
+ ==============================================================================
+ ##### IRQ handler management #####
+ ==============================================================================
+ [..]
+ This section provides Timer IRQ handler function.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief This function handles TIM interrupts requests.
+ * @param htim TIM handle
+ * @retval None
+ */
+void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) {
+ /* Capture compare 1 event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET) {
+ {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+
+ /* Input capture event */
+ if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
+ HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ /* Output compare event */
+ else {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_OC_DelayElapsedCallback(htim);
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+ }
+ }
+ }
+ /* Capture compare 2 event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET) {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+ /* Input capture event */
+ if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
+ HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ /* Output compare event */
+ else {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_OC_DelayElapsedCallback(htim);
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+ }
+ }
+ /* Capture compare 3 event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET) {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+ /* Input capture event */
+ if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
+ HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ /* Output compare event */
+ else {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_OC_DelayElapsedCallback(htim);
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+ }
+ }
+ /* Capture compare 4 event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET) {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+ /* Input capture event */
+ if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
+ HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ /* Output compare event */
+ else {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_OC_DelayElapsedCallback(htim);
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+ }
+ }
+ /* TIM Update event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PeriodElapsedCallback(htim);
+#else
+ HAL_TIM_PeriodElapsedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ }
+ /* TIM Break input event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET) {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET) {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->BreakCallback(htim);
+#else
+ HAL_TIMEx_BreakCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ }
+ /* TIM Trigger detection event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->TriggerCallback(htim);
+#else
+ HAL_TIM_TriggerCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ }
+ /* TIM commutation event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET) {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET) {
+ __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->CommutationCallback(htim);
+#else
+ HAL_TIMEx_CommutCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
+ * @brief TIM Peripheral Control functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Peripheral Control functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
+ (+) Configure External Clock source.
+ (+) Configure Complementary channels, break features and dead time.
+ (+) Configure Master and the Slave synchronization.
+ (+) Configure the DMA Burst Mode.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the TIM Output Compare Channels according to the specified
+ * parameters in the TIM_OC_InitTypeDef.
+ * @param htim TIM Output Compare handle
+ * @param sConfig TIM Output Compare configuration structure
+ * @param Channel TIM Channels to configure
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef *sConfig, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CHANNELS(Channel));
+ assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
+ assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
+ /* Configure the TIM Channel 1 in Output Compare */
+ TIM_OC1_SetConfig(htim->Instance, sConfig);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ /* Configure the TIM Channel 2 in Output Compare */
+ TIM_OC2_SetConfig(htim->Instance, sConfig);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
+
+ /* Configure the TIM Channel 3 in Output Compare */
+ TIM_OC3_SetConfig(htim->Instance, sConfig);
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
+
+ /* Configure the TIM Channel 4 in Output Compare */
+ TIM_OC4_SetConfig(htim->Instance, sConfig);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM Input Capture Channels according to the specified
+ * parameters in the TIM_IC_InitTypeDef.
+ * @param htim TIM IC handle
+ * @param sConfig TIM Input Capture configuration structure
+ * @param Channel TIM Channel to configure
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef *sConfig, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
+ assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
+ assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
+ assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ if (Channel == TIM_CHANNEL_1) {
+ /* TI1 Configuration */
+ TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter);
+
+ /* Reset the IC1PSC Bits */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
+
+ /* Set the IC1PSC value */
+ htim->Instance->CCMR1 |= sConfig->ICPrescaler;
+ } else if (Channel == TIM_CHANNEL_2) {
+ /* TI2 Configuration */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter);
+
+ /* Reset the IC2PSC Bits */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
+
+ /* Set the IC2PSC value */
+ htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
+ } else if (Channel == TIM_CHANNEL_3) {
+ /* TI3 Configuration */
+ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
+
+ TIM_TI3_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter);
+
+ /* Reset the IC3PSC Bits */
+ htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
+
+ /* Set the IC3PSC value */
+ htim->Instance->CCMR2 |= sConfig->ICPrescaler;
+ } else {
+ /* TI4 Configuration */
+ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
+
+ TIM_TI4_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter);
+
+ /* Reset the IC4PSC Bits */
+ htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
+
+ /* Set the IC4PSC value */
+ htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
+ }
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM PWM channels according to the specified
+ * parameters in the TIM_OC_InitTypeDef.
+ * @param htim TIM PWM handle
+ * @param sConfig TIM PWM configuration structure
+ * @param Channel TIM Channels to be configured
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef *sConfig, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CHANNELS(Channel));
+ assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
+ assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
+ assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
+ /* Configure the Channel 1 in PWM mode */
+ TIM_OC1_SetConfig(htim->Instance, sConfig);
+
+ /* Set the Preload enable bit for channel1 */
+ htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
+
+ /* Configure the Output Fast mode */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
+ htim->Instance->CCMR1 |= sConfig->OCFastMode;
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ /* Configure the Channel 2 in PWM mode */
+ TIM_OC2_SetConfig(htim->Instance, sConfig);
+
+ /* Set the Preload enable bit for channel2 */
+ htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
+
+ /* Configure the Output Fast mode */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
+ htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
+
+ /* Configure the Channel 3 in PWM mode */
+ TIM_OC3_SetConfig(htim->Instance, sConfig);
+
+ /* Set the Preload enable bit for channel3 */
+ htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
+
+ /* Configure the Output Fast mode */
+ htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
+ htim->Instance->CCMR2 |= sConfig->OCFastMode;
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
+
+ /* Configure the Channel 4 in PWM mode */
+ TIM_OC4_SetConfig(htim->Instance, sConfig);
+
+ /* Set the Preload enable bit for channel4 */
+ htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
+
+ /* Configure the Output Fast mode */
+ htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
+ htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM One Pulse Channels according to the specified
+ * parameters in the TIM_OnePulse_InitTypeDef.
+ * @param htim TIM One Pulse handle
+ * @param sConfig TIM One Pulse configuration structure
+ * @param OutputChannel TIM output channel to configure
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @param InputChannel TIM input Channel to configure
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @note To output a waveform with a minimum delay user can enable the fast
+ * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
+ * output is forced in response to the edge detection on TIx input,
+ * without taking in account the comparison.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, uint32_t OutputChannel, uint32_t InputChannel) {
+ TIM_OC_InitTypeDef temp1;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
+ assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
+
+ if (OutputChannel != InputChannel) {
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Extract the Output compare configuration from sConfig structure */
+ temp1.OCMode = sConfig->OCMode;
+ temp1.Pulse = sConfig->Pulse;
+ temp1.OCPolarity = sConfig->OCPolarity;
+ temp1.OCNPolarity = sConfig->OCNPolarity;
+ temp1.OCIdleState = sConfig->OCIdleState;
+ temp1.OCNIdleState = sConfig->OCNIdleState;
+
+ switch (OutputChannel) {
+ case TIM_CHANNEL_1: {
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
+ TIM_OC1_SetConfig(htim->Instance, &temp1);
+ break;
+ }
+ case TIM_CHANNEL_2: {
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ TIM_OC2_SetConfig(htim->Instance, &temp1);
+ break;
+ }
+ default:
+ break;
+ }
+
+ switch (InputChannel) {
+ case TIM_CHANNEL_1: {
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
+ TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter);
+
+ /* Reset the IC1PSC Bits */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
+
+ /* Select the Trigger source */
+ htim->Instance->SMCR &= ~TIM_SMCR_TS;
+ htim->Instance->SMCR |= TIM_TS_TI1FP1;
+
+ /* Select the Slave Mode */
+ htim->Instance->SMCR &= ~TIM_SMCR_SMS;
+ htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
+ break;
+ }
+ case TIM_CHANNEL_2: {
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter);
+
+ /* Reset the IC2PSC Bits */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
+
+ /* Select the Trigger source */
+ htim->Instance->SMCR &= ~TIM_SMCR_TS;
+ htim->Instance->SMCR |= TIM_TS_TI2FP2;
+
+ /* Select the Slave Mode */
+ htim->Instance->SMCR &= ~TIM_SMCR_SMS;
+ htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+ } else {
+ return HAL_ERROR;
+ }
+}
+
+/**
+ * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABASE_CR1
+ * @arg TIM_DMABASE_CR2
+ * @arg TIM_DMABASE_SMCR
+ * @arg TIM_DMABASE_DIER
+ * @arg TIM_DMABASE_SR
+ * @arg TIM_DMABASE_EGR
+ * @arg TIM_DMABASE_CCMR1
+ * @arg TIM_DMABASE_CCMR2
+ * @arg TIM_DMABASE_CCER
+ * @arg TIM_DMABASE_CNT
+ * @arg TIM_DMABASE_PSC
+ * @arg TIM_DMABASE_ARR
+ * @arg TIM_DMABASE_RCR
+ * @arg TIM_DMABASE_CCR1
+ * @arg TIM_DMABASE_CCR2
+ * @arg TIM_DMABASE_CCR3
+ * @arg TIM_DMABASE_CCR4
+ * @arg TIM_DMABASE_BDTR
+ * @param BurstRequestSrc TIM DMA Request sources
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: TIM update Interrupt source
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
+ * @arg TIM_DMA_COM: TIM Commutation DMA source
+ * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
+ * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @note This function should be used only when BurstLength is equal to DMA data transfer length.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) {
+ return HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, ((BurstLength) >> 8U) + 1U);
+}
+
+/**
+ * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABASE_CR1
+ * @arg TIM_DMABASE_CR2
+ * @arg TIM_DMABASE_SMCR
+ * @arg TIM_DMABASE_DIER
+ * @arg TIM_DMABASE_SR
+ * @arg TIM_DMABASE_EGR
+ * @arg TIM_DMABASE_CCMR1
+ * @arg TIM_DMABASE_CCMR2
+ * @arg TIM_DMABASE_CCER
+ * @arg TIM_DMABASE_CNT
+ * @arg TIM_DMABASE_PSC
+ * @arg TIM_DMABASE_ARR
+ * @arg TIM_DMABASE_RCR
+ * @arg TIM_DMABASE_CCR1
+ * @arg TIM_DMABASE_CCR2
+ * @arg TIM_DMABASE_CCR3
+ * @arg TIM_DMABASE_CCR4
+ * @arg TIM_DMABASE_BDTR
+ * @param BurstRequestSrc TIM DMA Request sources
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: TIM update Interrupt source
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
+ * @arg TIM_DMA_COM: TIM Commutation DMA source
+ * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
+ * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @param DataLength Data length. This parameter can be one value
+ * between 1 and 0xFFFF.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength) {
+ /* Check the parameters */
+ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
+ assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
+ assert_param(IS_TIM_DMA_LENGTH(BurstLength));
+ assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
+
+ if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) {
+ return HAL_BUSY;
+ } else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) {
+ if ((BurstBuffer == NULL) && (BurstLength > 0U)) {
+ return HAL_ERROR;
+ } else {
+ htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
+ }
+ } else {
+ /* nothing to do */
+ }
+ switch (BurstRequestSrc) {
+ case TIM_DMA_UPDATE: {
+ /* Set the DMA Period elapsed callbacks */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC1: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC2: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC3: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC4: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_COM: {
+ /* Set the DMA commutation callbacks */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_TRIGGER: {
+ /* Set the DMA trigger callbacks */
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ default:
+ break;
+ }
+
+ /* Configure the DMA Burst Mode */
+ htim->Instance->DCR = (BurstBaseAddress | BurstLength);
+ /* Enable the TIM DMA Request */
+ __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM DMA Burst mode
+ * @param htim TIM handle
+ * @param BurstRequestSrc TIM DMA Request sources to disable
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) {
+ /* Check the parameters */
+ assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
+
+ /* Abort the DMA transfer (at least disable the DMA channel) */
+ switch (BurstRequestSrc) {
+ case TIM_DMA_UPDATE: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
+ break;
+ }
+ case TIM_DMA_CC1: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+ case TIM_DMA_CC2: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+ case TIM_DMA_CC3: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+ case TIM_DMA_CC4: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
+ case TIM_DMA_COM: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
+ break;
+ }
+ case TIM_DMA_TRIGGER: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
+ break;
+ }
+ default:
+ break;
+ }
+
+ /* Disable the TIM Update DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABASE_CR1
+ * @arg TIM_DMABASE_CR2
+ * @arg TIM_DMABASE_SMCR
+ * @arg TIM_DMABASE_DIER
+ * @arg TIM_DMABASE_SR
+ * @arg TIM_DMABASE_EGR
+ * @arg TIM_DMABASE_CCMR1
+ * @arg TIM_DMABASE_CCMR2
+ * @arg TIM_DMABASE_CCER
+ * @arg TIM_DMABASE_CNT
+ * @arg TIM_DMABASE_PSC
+ * @arg TIM_DMABASE_ARR
+ * @arg TIM_DMABASE_RCR
+ * @arg TIM_DMABASE_CCR1
+ * @arg TIM_DMABASE_CCR2
+ * @arg TIM_DMABASE_CCR3
+ * @arg TIM_DMABASE_CCR4
+ * @arg TIM_DMABASE_BDTR
+ * @param BurstRequestSrc TIM DMA Request sources
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: TIM update Interrupt source
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
+ * @arg TIM_DMA_COM: TIM Commutation DMA source
+ * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
+ * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @note This function should be used only when BurstLength is equal to DMA data transfer length.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) {
+ return HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, ((BurstLength) >> 8U) + 1U);
+}
+
+/**
+ * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABASE_CR1
+ * @arg TIM_DMABASE_CR2
+ * @arg TIM_DMABASE_SMCR
+ * @arg TIM_DMABASE_DIER
+ * @arg TIM_DMABASE_SR
+ * @arg TIM_DMABASE_EGR
+ * @arg TIM_DMABASE_CCMR1
+ * @arg TIM_DMABASE_CCMR2
+ * @arg TIM_DMABASE_CCER
+ * @arg TIM_DMABASE_CNT
+ * @arg TIM_DMABASE_PSC
+ * @arg TIM_DMABASE_ARR
+ * @arg TIM_DMABASE_RCR
+ * @arg TIM_DMABASE_CCR1
+ * @arg TIM_DMABASE_CCR2
+ * @arg TIM_DMABASE_CCR3
+ * @arg TIM_DMABASE_CCR4
+ * @arg TIM_DMABASE_BDTR
+ * @param BurstRequestSrc TIM DMA Request sources
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: TIM update Interrupt source
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
+ * @arg TIM_DMA_COM: TIM Commutation DMA source
+ * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
+ * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @param DataLength Data length. This parameter can be one value
+ * between 1 and 0xFFFF.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength) {
+ /* Check the parameters */
+ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
+ assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
+ assert_param(IS_TIM_DMA_LENGTH(BurstLength));
+ assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
+
+ if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) {
+ return HAL_BUSY;
+ } else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) {
+ if ((BurstBuffer == NULL) && (BurstLength > 0U)) {
+ return HAL_ERROR;
+ } else {
+ htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
+ }
+ } else {
+ /* nothing to do */
+ }
+ switch (BurstRequestSrc) {
+ case TIM_DMA_UPDATE: {
+ /* Set the DMA Period elapsed callbacks */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC1: {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC2: {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC3: {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC4: {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_COM: {
+ /* Set the DMA commutation callbacks */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_TRIGGER: {
+ /* Set the DMA trigger callbacks */
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ default:
+ break;
+ }
+
+ /* Configure the DMA Burst Mode */
+ htim->Instance->DCR = (BurstBaseAddress | BurstLength);
+
+ /* Enable the TIM DMA Request */
+ __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stop the DMA burst reading
+ * @param htim TIM handle
+ * @param BurstRequestSrc TIM DMA Request sources to disable.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) {
+ /* Check the parameters */
+ assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
+
+ /* Abort the DMA transfer (at least disable the DMA channel) */
+ switch (BurstRequestSrc) {
+ case TIM_DMA_UPDATE: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
+ break;
+ }
+ case TIM_DMA_CC1: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+ case TIM_DMA_CC2: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+ case TIM_DMA_CC3: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+ case TIM_DMA_CC4: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
+ case TIM_DMA_COM: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
+ break;
+ }
+ case TIM_DMA_TRIGGER: {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
+ break;
+ }
+ default:
+ break;
+ }
+
+ /* Disable the TIM Update DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Generate a software event
+ * @param htim TIM handle
+ * @param EventSource specifies the event source.
+ * This parameter can be one of the following values:
+ * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
+ * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
+ * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
+ * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
+ * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
+ * @arg TIM_EVENTSOURCE_COM: Timer COM event source
+ * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
+ * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
+ * @note Basic timers can only generate an update event.
+ * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
+ * @note TIM_EVENTSOURCE_BREAK are relevant only for timer instances
+ * supporting a break input.
+ * @retval HAL status
+ */
+
+HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) {
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_EVENT_SOURCE(EventSource));
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ /* Change the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Set the event sources */
+ htim->Instance->EGR = EventSource;
+
+ /* Change the TIM state */
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Configures the OCRef clear feature
+ * @param htim TIM handle
+ * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
+ * contains the OCREF clear feature and parameters for the TIM peripheral.
+ * @param Channel specifies the TIM Channel
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1
+ * @arg TIM_CHANNEL_2: TIM Channel 2
+ * @arg TIM_CHANNEL_3: TIM Channel 3
+ * @arg TIM_CHANNEL_4: TIM Channel 4
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef *sClearInputConfig, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ switch (sClearInputConfig->ClearInputSource) {
+ case TIM_CLEARINPUTSOURCE_NONE: {
+ /* Clear the OCREF clear selection bit and the the ETR Bits */
+ CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
+ break;
+ }
+
+ case TIM_CLEARINPUTSOURCE_ETR: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
+ assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
+ assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
+
+ /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
+ if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) {
+ htim->State = HAL_TIM_STATE_READY;
+ __HAL_UNLOCK(htim);
+ return HAL_ERROR;
+ }
+
+ TIM_ETR_SetConfig(htim->Instance, sClearInputConfig->ClearInputPrescaler, sClearInputConfig->ClearInputPolarity, sClearInputConfig->ClearInputFilter);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) {
+ /* Enable the OCREF clear feature for Channel 1 */
+ SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
+ } else {
+ /* Disable the OCREF clear feature for Channel 1 */
+ CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
+ }
+ break;
+ }
+ case TIM_CHANNEL_2: {
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) {
+ /* Enable the OCREF clear feature for Channel 2 */
+ SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
+ } else {
+ /* Disable the OCREF clear feature for Channel 2 */
+ CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
+ }
+ break;
+ }
+ case TIM_CHANNEL_3: {
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) {
+ /* Enable the OCREF clear feature for Channel 3 */
+ SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
+ } else {
+ /* Disable the OCREF clear feature for Channel 3 */
+ CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
+ }
+ break;
+ }
+ case TIM_CHANNEL_4: {
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) {
+ /* Enable the OCREF clear feature for Channel 4 */
+ SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
+ } else {
+ /* Disable the OCREF clear feature for Channel 4 */
+ CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
+ }
+ break;
+ }
+ default:
+ break;
+ }
+
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Configures the clock source to be used
+ * @param htim TIM handle
+ * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
+ * contains the clock source information for the TIM peripheral.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig) {
+ uint32_t tmpsmcr;
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
+
+ /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
+ tmpsmcr = htim->Instance->SMCR;
+ tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
+ tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
+ htim->Instance->SMCR = tmpsmcr;
+
+ switch (sClockSourceConfig->ClockSource) {
+ case TIM_CLOCKSOURCE_INTERNAL: {
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_ETRMODE1: {
+ /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
+ assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
+
+ /* Check ETR input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ /* Configure the ETR Clock source */
+ TIM_ETR_SetConfig(htim->Instance, sClockSourceConfig->ClockPrescaler, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter);
+
+ /* Select the External clock mode1 and the ETRF trigger */
+ tmpsmcr = htim->Instance->SMCR;
+ tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
+ /* Write to TIMx SMCR */
+ htim->Instance->SMCR = tmpsmcr;
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_ETRMODE2: {
+ /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
+ assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
+
+ /* Check ETR input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ /* Configure the ETR Clock source */
+ TIM_ETR_SetConfig(htim->Instance, sClockSourceConfig->ClockPrescaler, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter);
+ /* Enable the External clock mode2 */
+ htim->Instance->SMCR |= TIM_SMCR_ECE;
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_TI1: {
+ /* Check whether or not the timer instance supports external clock mode 1 */
+ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
+
+ /* Check TI1 input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ TIM_TI1_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter);
+ TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_TI2: {
+ /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
+ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
+
+ /* Check TI2 input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ TIM_TI2_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter);
+ TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_TI1ED: {
+ /* Check whether or not the timer instance supports external clock mode 1 */
+ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
+
+ /* Check TI1 input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ TIM_TI1_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter);
+ TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_ITR0:
+ case TIM_CLOCKSOURCE_ITR1:
+ case TIM_CLOCKSOURCE_ITR2:
+ case TIM_CLOCKSOURCE_ITR3: {
+ /* Check whether or not the timer instance supports internal trigger input */
+ assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
+
+ TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
+ break;
+ }
+
+ default:
+ break;
+ }
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Selects the signal connected to the TI1 input: direct from CH1_input
+ * or a XOR combination between CH1_input, CH2_input & CH3_input
+ * @param htim TIM handle.
+ * @param TI1_Selection Indicate whether or not channel 1 is connected to the
+ * output of a XOR gate.
+ * This parameter can be one of the following values:
+ * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
+ * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
+ * pins are connected to the TI1 input (XOR combination)
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) {
+ uint32_t tmpcr2;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
+
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = htim->Instance->CR2;
+
+ /* Reset the TI1 selection */
+ tmpcr2 &= ~TIM_CR2_TI1S;
+
+ /* Set the TI1 selection */
+ tmpcr2 |= TI1_Selection;
+
+ /* Write to TIMxCR2 */
+ htim->Instance->CR2 = tmpcr2;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Configures the TIM in Slave mode
+ * @param htim TIM handle.
+ * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
+ * contains the selected trigger (internal trigger input, filtered
+ * timer input or external trigger input) and the Slave mode
+ * (Disable, Reset, Gated, Trigger, External clock mode 1).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) {
+ /* Check the parameters */
+ assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
+ assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
+
+ __HAL_LOCK(htim);
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) {
+ htim->State = HAL_TIM_STATE_READY;
+ __HAL_UNLOCK(htim);
+ return HAL_ERROR;
+ }
+
+ /* Disable Trigger Interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
+
+ /* Disable Trigger DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
+
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Configures the TIM in Slave mode in interrupt mode
+ * @param htim TIM handle.
+ * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
+ * contains the selected trigger (internal trigger input, filtered
+ * timer input or external trigger input) and the Slave mode
+ * (Disable, Reset, Gated, Trigger, External clock mode 1).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) {
+ /* Check the parameters */
+ assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
+ assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
+
+ __HAL_LOCK(htim);
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) {
+ htim->State = HAL_TIM_STATE_READY;
+ __HAL_UNLOCK(htim);
+ return HAL_ERROR;
+ }
+
+ /* Enable Trigger Interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
+
+ /* Disable Trigger DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
+
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Read the captured value from Capture Compare unit
+ * @param htim TIM handle.
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval Captured value
+ */
+uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpreg = 0U;
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
+ /* Return the capture 1 value */
+ tmpreg = htim->Instance->CCR1;
+
+ break;
+ }
+ case TIM_CHANNEL_2: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ /* Return the capture 2 value */
+ tmpreg = htim->Instance->CCR2;
+
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
+
+ /* Return the capture 3 value */
+ tmpreg = htim->Instance->CCR3;
+
+ break;
+ }
+
+ case TIM_CHANNEL_4: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
+
+ /* Return the capture 4 value */
+ tmpreg = htim->Instance->CCR4;
+
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return tmpreg;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
+ * @brief TIM Callbacks functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM Callbacks functions #####
+ ==============================================================================
+ [..]
+ This section provides TIM callback functions:
+ (+) TIM Period elapsed callback
+ (+) TIM Output Compare callback
+ (+) TIM Input capture callback
+ (+) TIM Trigger callback
+ (+) TIM Error callback
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Period elapsed callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Period elapsed half complete callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Output Compare callback in non-blocking mode
+ * @param htim TIM OC handle
+ * @retval None
+ */
+__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Input Capture callback in non-blocking mode
+ * @param htim TIM IC handle
+ * @retval None
+ */
+__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_IC_CaptureCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Input Capture half complete callback in non-blocking mode
+ * @param htim TIM IC handle
+ * @retval None
+ */
+__weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief PWM Pulse finished callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief PWM Pulse finished half complete callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Hall Trigger detection callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_TriggerCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Hall Trigger detection half complete callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Timer error callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_ErrorCallback could be implemented in the user file
+ */
+}
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Register a User TIM callback to be used instead of the weak predefined callback
+ * @param htim tim handle
+ * @param CallbackID ID of the callback to be registered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
+ * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
+ * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
+ * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
+ * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
+ * @param pCallback pointer to the callback function
+ * @retval status
+ */
+HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, pTIM_CallbackTypeDef pCallback) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL) {
+ return HAL_ERROR;
+ }
+ /* Process locked */
+ __HAL_LOCK(htim);
+
+ if (htim->State == HAL_TIM_STATE_READY) {
+ switch (CallbackID) {
+ case HAL_TIM_BASE_MSPINIT_CB_ID:
+ htim->Base_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID:
+ htim->Base_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID:
+ htim->IC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID:
+ htim->IC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID:
+ htim->OC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID:
+ htim->OC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID:
+ htim->PWM_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID:
+ htim->PWM_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID:
+ htim->OnePulse_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID:
+ htim->OnePulse_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID:
+ htim->Encoder_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID:
+ htim->Encoder_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID:
+ htim->HallSensor_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID:
+ htim->HallSensor_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_CB_ID:
+ htim->PeriodElapsedCallback = pCallback;
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID:
+ htim->PeriodElapsedHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_TRIGGER_CB_ID:
+ htim->TriggerCallback = pCallback;
+ break;
+
+ case HAL_TIM_TRIGGER_HALF_CB_ID:
+ htim->TriggerHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_CAPTURE_CB_ID:
+ htim->IC_CaptureCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_CAPTURE_HALF_CB_ID:
+ htim->IC_CaptureHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_DELAY_ELAPSED_CB_ID:
+ htim->OC_DelayElapsedCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_CB_ID:
+ htim->PWM_PulseFinishedCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID:
+ htim->PWM_PulseFinishedHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_ERROR_CB_ID:
+ htim->ErrorCallback = pCallback;
+ break;
+
+ case HAL_TIM_COMMUTATION_CB_ID:
+ htim->CommutationCallback = pCallback;
+ break;
+
+ case HAL_TIM_COMMUTATION_HALF_CB_ID:
+ htim->CommutationHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_BREAK_CB_ID:
+ htim->BreakCallback = pCallback;
+ break;
+
+ default:
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else if (htim->State == HAL_TIM_STATE_RESET) {
+ switch (CallbackID) {
+ case HAL_TIM_BASE_MSPINIT_CB_ID:
+ htim->Base_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID:
+ htim->Base_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID:
+ htim->IC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID:
+ htim->IC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID:
+ htim->OC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID:
+ htim->OC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID:
+ htim->PWM_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID:
+ htim->PWM_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID:
+ htim->OnePulse_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID:
+ htim->OnePulse_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID:
+ htim->Encoder_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID:
+ htim->Encoder_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID:
+ htim->HallSensor_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID:
+ htim->HallSensor_MspDeInitCallback = pCallback;
+ break;
+
+ default:
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else {
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return status;
+}
+
+/**
+ * @brief Unregister a TIM callback
+ * TIM callback is redirected to the weak predefined callback
+ * @param htim tim handle
+ * @param CallbackID ID of the callback to be unregistered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
+ * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
+ * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
+ * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
+ * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
+ * @retval status
+ */
+HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process locked */
+ __HAL_LOCK(htim);
+
+ if (htim->State == HAL_TIM_STATE_READY) {
+ switch (CallbackID) {
+ case HAL_TIM_BASE_MSPINIT_CB_ID:
+ htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID:
+ htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID:
+ htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID:
+ htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID:
+ htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID:
+ htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID:
+ htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID:
+ htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID:
+ htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID:
+ htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID:
+ htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID:
+ htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID:
+ htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID:
+ htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_CB_ID:
+ htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak Period Elapsed Callback */
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID:
+ htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak Period Elapsed half complete Callback */
+ break;
+
+ case HAL_TIM_TRIGGER_CB_ID:
+ htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak Trigger Callback */
+ break;
+
+ case HAL_TIM_TRIGGER_HALF_CB_ID:
+ htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak Trigger half complete Callback */
+ break;
+
+ case HAL_TIM_IC_CAPTURE_CB_ID:
+ htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC Capture Callback */
+ break;
+
+ case HAL_TIM_IC_CAPTURE_HALF_CB_ID:
+ htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC Capture half complete Callback */
+ break;
+
+ case HAL_TIM_OC_DELAY_ELAPSED_CB_ID:
+ htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC Delay Elapsed Callback */
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_CB_ID:
+ htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM Pulse Finished Callback */
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID:
+ htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM Pulse Finished half complete Callback */
+ break;
+
+ case HAL_TIM_ERROR_CB_ID:
+ htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak Error Callback */
+ break;
+
+ case HAL_TIM_COMMUTATION_CB_ID:
+ htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak Commutation Callback */
+ break;
+
+ case HAL_TIM_COMMUTATION_HALF_CB_ID:
+ htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak Commutation half complete Callback */
+ break;
+
+ case HAL_TIM_BREAK_CB_ID:
+ htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak Break Callback */
+ break;
+
+ default:
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else if (htim->State == HAL_TIM_STATE_RESET) {
+ switch (CallbackID) {
+ case HAL_TIM_BASE_MSPINIT_CB_ID:
+ htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID:
+ htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID:
+ htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID:
+ htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID:
+ htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID:
+ htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID:
+ htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID:
+ htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID:
+ htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID:
+ htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID:
+ htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID:
+ htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID:
+ htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID:
+ htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */
+ break;
+
+ default:
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else {
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return status;
+}
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
+ * @brief TIM Peripheral State functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Peripheral State functions #####
+ ==============================================================================
+ [..]
+ This subsection permits to get in run-time the status of the peripheral
+ and the data flow.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Return the TIM Base handle state.
+ * @param htim TIM Base handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
+
+/**
+ * @brief Return the TIM OC handle state.
+ * @param htim TIM Output Compare handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
+
+/**
+ * @brief Return the TIM PWM handle state.
+ * @param htim TIM handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
+
+/**
+ * @brief Return the TIM Input Capture handle state.
+ * @param htim TIM IC handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
+
+/**
+ * @brief Return the TIM One Pulse Mode handle state.
+ * @param htim TIM OPM handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
+
+/**
+ * @brief Return the TIM Encoder Mode handle state.
+ * @param htim TIM Encoder Interface handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
+
+/**
+ * @brief Return the TIM Encoder Mode handle state.
+ * @param htim TIM handle
+ * @retval Active channel
+ */
+HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(TIM_HandleTypeDef *htim) { return htim->Channel; }
+
+/**
+ * @brief Return actual state of the TIM channel.
+ * @param htim TIM handle
+ * @param Channel TIM Channel
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1
+ * @arg TIM_CHANNEL_2: TIM Channel 2
+ * @arg TIM_CHANNEL_3: TIM Channel 3
+ * @arg TIM_CHANNEL_4: TIM Channel 4
+ * @arg TIM_CHANNEL_5: TIM Channel 5
+ * @arg TIM_CHANNEL_6: TIM Channel 6
+ * @retval TIM Channel state
+ */
+HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ HAL_TIM_ChannelStateTypeDef channel_state;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+
+ return channel_state;
+}
+
+/**
+ * @brief Return actual state of a DMA burst operation.
+ * @param htim TIM handle
+ * @retval DMA burst state
+ */
+HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
+
+ return htim->DMABurstState;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Private_Functions TIM Private Functions
+ * @{
+ */
+
+/**
+ * @brief TIM DMA error callback
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIM_DMAError(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ } else {
+ htim->State = HAL_TIM_STATE_READY;
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->ErrorCallback(htim);
+#else
+ HAL_TIM_ErrorCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Delay Pulse complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Delay Pulse half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+ } else {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PWM_PulseFinishedHalfCpltCallback(htim);
+#else
+ HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Capture complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
+ HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Capture half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+ } else {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureHalfCpltCallback(htim);
+#else
+ HAL_TIM_IC_CaptureHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Period Elapse complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) {
+ htim->State = HAL_TIM_STATE_READY;
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PeriodElapsedCallback(htim);
+#else
+ HAL_TIM_PeriodElapsedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Period Elapse half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PeriodElapsedHalfCpltCallback(htim);
+#else
+ HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Trigger callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) {
+ htim->State = HAL_TIM_STATE_READY;
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->TriggerCallback(htim);
+#else
+ HAL_TIM_TriggerCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Trigger half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->TriggerHalfCpltCallback(htim);
+#else
+ HAL_TIM_TriggerHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief Time Base configuration
+ * @param TIMx TIM peripheral
+ * @param Structure TIM Base configuration structure
+ * @retval None
+ */
+void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) {
+ uint32_t tmpcr1;
+ tmpcr1 = TIMx->CR1;
+
+ /* Set TIM Time Base Unit parameters ---------------------------------------*/
+ if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) {
+ /* Select the Counter Mode */
+ tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
+ tmpcr1 |= Structure->CounterMode;
+ }
+
+ if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) {
+ /* Set the clock division */
+ tmpcr1 &= ~TIM_CR1_CKD;
+ tmpcr1 |= (uint32_t)Structure->ClockDivision;
+ }
+
+ /* Set the auto-reload preload */
+ MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
+
+ TIMx->CR1 = tmpcr1;
+
+ /* Set the Autoreload value */
+ TIMx->ARR = (uint32_t)Structure->Period;
+
+ /* Set the Prescaler value */
+ TIMx->PSC = Structure->Prescaler;
+
+ if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) {
+ /* Set the Repetition Counter value */
+ TIMx->RCR = Structure->RepetitionCounter;
+ }
+
+ /* Generate an update event to reload the Prescaler
+ and the repetition counter (only for advanced timer) value immediately */
+ TIMx->EGR = TIM_EGR_UG;
+}
+
+/**
+ * @brief Timer Output Compare 1 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
+ * @retval None
+ */
+static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) {
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
+
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC1E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmrx = TIMx->CCMR1;
+
+ /* Reset the Output Compare Mode Bits */
+ tmpccmrx &= ~TIM_CCMR1_OC1M;
+ tmpccmrx &= ~TIM_CCMR1_CC1S;
+ /* Select the Output Compare Mode */
+ tmpccmrx |= OC_Config->OCMode;
+
+ /* Reset the Output Polarity level */
+ tmpccer &= ~TIM_CCER_CC1P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= OC_Config->OCPolarity;
+
+ if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1)) {
+ /* Check parameters */
+ assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
+
+ /* Reset the Output N Polarity level */
+ tmpccer &= ~TIM_CCER_CC1NP;
+ /* Set the Output N Polarity */
+ tmpccer |= OC_Config->OCNPolarity;
+ /* Reset the Output N State */
+ tmpccer &= ~TIM_CCER_CC1NE;
+ }
+
+ if (IS_TIM_BREAK_INSTANCE(TIMx)) {
+ /* Check parameters */
+ assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
+ assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
+
+ /* Reset the Output Compare and Output Compare N IDLE State */
+ tmpcr2 &= ~TIM_CR2_OIS1;
+ tmpcr2 &= ~TIM_CR2_OIS1N;
+ /* Set the Output Idle state */
+ tmpcr2 |= OC_Config->OCIdleState;
+ /* Set the Output N Idle state */
+ tmpcr2 |= OC_Config->OCNIdleState;
+ }
+
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR1 = OC_Config->Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Timer Output Compare 2 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
+ * @retval None
+ */
+void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) {
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
+
+ /* Disable the Channel 2: Reset the CC2E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC2E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmrx = TIMx->CCMR1;
+
+ /* Reset the Output Compare mode and Capture/Compare selection Bits */
+ tmpccmrx &= ~TIM_CCMR1_OC2M;
+ tmpccmrx &= ~TIM_CCMR1_CC2S;
+
+ /* Select the Output Compare Mode */
+ tmpccmrx |= (OC_Config->OCMode << 8U);
+
+ /* Reset the Output Polarity level */
+ tmpccer &= ~TIM_CCER_CC2P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= (OC_Config->OCPolarity << 4U);
+
+ if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2)) {
+ assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
+
+ /* Reset the Output N Polarity level */
+ tmpccer &= ~TIM_CCER_CC2NP;
+ /* Set the Output N Polarity */
+ tmpccer |= (OC_Config->OCNPolarity << 4U);
+ /* Reset the Output N State */
+ tmpccer &= ~TIM_CCER_CC2NE;
+ }
+
+ if (IS_TIM_BREAK_INSTANCE(TIMx)) {
+ /* Check parameters */
+ assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
+ assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
+
+ /* Reset the Output Compare and Output Compare N IDLE State */
+ tmpcr2 &= ~TIM_CR2_OIS2;
+ tmpcr2 &= ~TIM_CR2_OIS2N;
+ /* Set the Output Idle state */
+ tmpcr2 |= (OC_Config->OCIdleState << 2U);
+ /* Set the Output N Idle state */
+ tmpcr2 |= (OC_Config->OCNIdleState << 2U);
+ }
+
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR2 = OC_Config->Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Timer Output Compare 3 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
+ * @retval None
+ */
+static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) {
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
+
+ /* Disable the Channel 3: Reset the CC2E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC3E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmrx = TIMx->CCMR2;
+
+ /* Reset the Output Compare mode and Capture/Compare selection Bits */
+ tmpccmrx &= ~TIM_CCMR2_OC3M;
+ tmpccmrx &= ~TIM_CCMR2_CC3S;
+ /* Select the Output Compare Mode */
+ tmpccmrx |= OC_Config->OCMode;
+
+ /* Reset the Output Polarity level */
+ tmpccer &= ~TIM_CCER_CC3P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= (OC_Config->OCPolarity << 8U);
+
+ if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3)) {
+ assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
+
+ /* Reset the Output N Polarity level */
+ tmpccer &= ~TIM_CCER_CC3NP;
+ /* Set the Output N Polarity */
+ tmpccer |= (OC_Config->OCNPolarity << 8U);
+ /* Reset the Output N State */
+ tmpccer &= ~TIM_CCER_CC3NE;
+ }
+
+ if (IS_TIM_BREAK_INSTANCE(TIMx)) {
+ /* Check parameters */
+ assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
+ assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
+
+ /* Reset the Output Compare and Output Compare N IDLE State */
+ tmpcr2 &= ~TIM_CR2_OIS3;
+ tmpcr2 &= ~TIM_CR2_OIS3N;
+ /* Set the Output Idle state */
+ tmpcr2 |= (OC_Config->OCIdleState << 4U);
+ /* Set the Output N Idle state */
+ tmpcr2 |= (OC_Config->OCNIdleState << 4U);
+ }
+
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR3 = OC_Config->Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Timer Output Compare 4 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
+ * @retval None
+ */
+static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) {
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
+
+ /* Disable the Channel 4: Reset the CC4E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC4E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmrx = TIMx->CCMR2;
+
+ /* Reset the Output Compare mode and Capture/Compare selection Bits */
+ tmpccmrx &= ~TIM_CCMR2_OC4M;
+ tmpccmrx &= ~TIM_CCMR2_CC4S;
+
+ /* Select the Output Compare Mode */
+ tmpccmrx |= (OC_Config->OCMode << 8U);
+
+ /* Reset the Output Polarity level */
+ tmpccer &= ~TIM_CCER_CC4P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= (OC_Config->OCPolarity << 12U);
+
+ if (IS_TIM_BREAK_INSTANCE(TIMx)) {
+ /* Check parameters */
+ assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
+
+ /* Reset the Output Compare IDLE State */
+ tmpcr2 &= ~TIM_CR2_OIS4;
+
+ /* Set the Output Idle state */
+ tmpcr2 |= (OC_Config->OCIdleState << 6U);
+ }
+
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR4 = OC_Config->Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Slave Timer configuration function
+ * @param htim TIM handle
+ * @param sSlaveConfig Slave timer configuration
+ * @retval None
+ */
+static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) {
+ uint32_t tmpsmcr;
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = htim->Instance->SMCR;
+
+ /* Reset the Trigger Selection Bits */
+ tmpsmcr &= ~TIM_SMCR_TS;
+ /* Set the Input Trigger source */
+ tmpsmcr |= sSlaveConfig->InputTrigger;
+
+ /* Reset the slave mode Bits */
+ tmpsmcr &= ~TIM_SMCR_SMS;
+ /* Set the slave mode */
+ tmpsmcr |= sSlaveConfig->SlaveMode;
+
+ /* Write to TIMx SMCR */
+ htim->Instance->SMCR = tmpsmcr;
+
+ /* Configure the trigger prescaler, filter, and polarity */
+ switch (sSlaveConfig->InputTrigger) {
+ case TIM_TS_ETRF: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
+ assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
+ assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
+ /* Configure the ETR Trigger source */
+ TIM_ETR_SetConfig(htim->Instance, sSlaveConfig->TriggerPrescaler, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter);
+ break;
+ }
+
+ case TIM_TS_TI1F_ED: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
+
+ if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) {
+ return HAL_ERROR;
+ }
+
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ tmpccer = htim->Instance->CCER;
+ htim->Instance->CCER &= ~TIM_CCER_CC1E;
+ tmpccmr1 = htim->Instance->CCMR1;
+
+ /* Set the filter */
+ tmpccmr1 &= ~TIM_CCMR1_IC1F;
+ tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ htim->Instance->CCMR1 = tmpccmr1;
+ htim->Instance->CCER = tmpccer;
+ break;
+ }
+
+ case TIM_TS_TI1FP1: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
+ assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
+
+ /* Configure TI1 Filter and Polarity */
+ TIM_TI1_ConfigInputStage(htim->Instance, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter);
+ break;
+ }
+
+ case TIM_TS_TI2FP2: {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
+ assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
+
+ /* Configure TI2 Filter and Polarity */
+ TIM_TI2_ConfigInputStage(htim->Instance, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter);
+ break;
+ }
+
+ case TIM_TS_ITR0:
+ case TIM_TS_ITR1:
+ case TIM_TS_ITR2:
+ case TIM_TS_ITR3: {
+ /* Check the parameter */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+ break;
+ }
+
+ default:
+ break;
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief Configure the TI1 as Input.
+ * @param TIMx to select the TIM peripheral.
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @arg TIM_ICPOLARITY_BOTHEDGE
+ * @param TIM_ICSelection specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
+ * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
+ * (on channel2 path) is used as the input signal. Therefore CCMR1 must be
+ * protected against un-initialized filter and polarity values.
+ */
+void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) {
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC1E;
+ tmpccmr1 = TIMx->CCMR1;
+ tmpccer = TIMx->CCER;
+
+ /* Select the Input */
+ if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) {
+ tmpccmr1 &= ~TIM_CCMR1_CC1S;
+ tmpccmr1 |= TIM_ICSelection;
+ } else {
+ tmpccmr1 |= TIM_CCMR1_CC1S_0;
+ }
+
+ /* Set the filter */
+ tmpccmr1 &= ~TIM_CCMR1_IC1F;
+ tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
+
+ /* Select the Polarity and set the CC1E Bit */
+ tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
+ tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the Polarity and Filter for TI1.
+ * @param TIMx to select the TIM peripheral.
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @arg TIM_ICPOLARITY_BOTHEDGE
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) {
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ tmpccer = TIMx->CCER;
+ TIMx->CCER &= ~TIM_CCER_CC1E;
+ tmpccmr1 = TIMx->CCMR1;
+
+ /* Set the filter */
+ tmpccmr1 &= ~TIM_CCMR1_IC1F;
+ tmpccmr1 |= (TIM_ICFilter << 4U);
+
+ /* Select the Polarity and set the CC1E Bit */
+ tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
+ tmpccer |= TIM_ICPolarity;
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI2 as Input.
+ * @param TIMx to select the TIM peripheral
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @arg TIM_ICPOLARITY_BOTHEDGE
+ * @param TIM_ICSelection specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
+ * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
+ * (on channel1 path) is used as the input signal. Therefore CCMR1 must be
+ * protected against un-initialized filter and polarity values.
+ */
+static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) {
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 2: Reset the CC2E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC2E;
+ tmpccmr1 = TIMx->CCMR1;
+ tmpccer = TIMx->CCER;
+
+ /* Select the Input */
+ tmpccmr1 &= ~TIM_CCMR1_CC2S;
+ tmpccmr1 |= (TIM_ICSelection << 8U);
+
+ /* Set the filter */
+ tmpccmr1 &= ~TIM_CCMR1_IC2F;
+ tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
+
+ /* Select the Polarity and set the CC2E Bit */
+ tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
+ tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the Polarity and Filter for TI2.
+ * @param TIMx to select the TIM peripheral.
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @arg TIM_ICPOLARITY_BOTHEDGE
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) {
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 2: Reset the CC2E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC2E;
+ tmpccmr1 = TIMx->CCMR1;
+ tmpccer = TIMx->CCER;
+
+ /* Set the filter */
+ tmpccmr1 &= ~TIM_CCMR1_IC2F;
+ tmpccmr1 |= (TIM_ICFilter << 12U);
+
+ /* Select the Polarity and set the CC2E Bit */
+ tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
+ tmpccer |= (TIM_ICPolarity << 4U);
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI3 as Input.
+ * @param TIMx to select the TIM peripheral
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @param TIM_ICSelection specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
+ * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
+ * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
+ * protected against un-initialized filter and polarity values.
+ */
+static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) {
+ uint32_t tmpccmr2;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 3: Reset the CC3E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC3E;
+ tmpccmr2 = TIMx->CCMR2;
+ tmpccer = TIMx->CCER;
+
+ /* Select the Input */
+ tmpccmr2 &= ~TIM_CCMR2_CC3S;
+ tmpccmr2 |= TIM_ICSelection;
+
+ /* Set the filter */
+ tmpccmr2 &= ~TIM_CCMR2_IC3F;
+ tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
+
+ /* Select the Polarity and set the CC3E Bit */
+ tmpccer &= ~(TIM_CCER_CC3P);
+ tmpccer |= ((TIM_ICPolarity << 8U) & TIM_CCER_CC3P);
+
+ /* Write to TIMx CCMR2 and CCER registers */
+ TIMx->CCMR2 = tmpccmr2;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI4 as Input.
+ * @param TIMx to select the TIM peripheral
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @param TIM_ICSelection specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
+ * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
+ * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
+ * protected against un-initialized filter and polarity values.
+ * @retval None
+ */
+static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) {
+ uint32_t tmpccmr2;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 4: Reset the CC4E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC4E;
+ tmpccmr2 = TIMx->CCMR2;
+ tmpccer = TIMx->CCER;
+
+ /* Select the Input */
+ tmpccmr2 &= ~TIM_CCMR2_CC4S;
+ tmpccmr2 |= (TIM_ICSelection << 8U);
+
+ /* Set the filter */
+ tmpccmr2 &= ~TIM_CCMR2_IC4F;
+ tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
+
+ /* Select the Polarity and set the CC4E Bit */
+ tmpccer &= ~(TIM_CCER_CC4P);
+ tmpccer |= ((TIM_ICPolarity << 12U) & TIM_CCER_CC4P);
+
+ /* Write to TIMx CCMR2 and CCER registers */
+ TIMx->CCMR2 = tmpccmr2;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Selects the Input Trigger source
+ * @param TIMx to select the TIM peripheral
+ * @param InputTriggerSource The Input Trigger source.
+ * This parameter can be one of the following values:
+ * @arg TIM_TS_ITR0: Internal Trigger 0
+ * @arg TIM_TS_ITR1: Internal Trigger 1
+ * @arg TIM_TS_ITR2: Internal Trigger 2
+ * @arg TIM_TS_ITR3: Internal Trigger 3
+ * @arg TIM_TS_TI1F_ED: TI1 Edge Detector
+ * @arg TIM_TS_TI1FP1: Filtered Timer Input 1
+ * @arg TIM_TS_TI2FP2: Filtered Timer Input 2
+ * @arg TIM_TS_ETRF: External Trigger input
+ * @retval None
+ */
+static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) {
+ uint32_t tmpsmcr;
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = TIMx->SMCR;
+ /* Reset the TS Bits */
+ tmpsmcr &= ~TIM_SMCR_TS;
+ /* Set the Input Trigger source and the slave mode*/
+ tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+}
+/**
+ * @brief Configures the TIMx External Trigger (ETR).
+ * @param TIMx to select the TIM peripheral
+ * @param TIM_ExtTRGPrescaler The external Trigger Prescaler.
+ * This parameter can be one of the following values:
+ * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
+ * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
+ * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
+ * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
+ * @param TIM_ExtTRGPolarity The external Trigger Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
+ * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
+ * @param ExtTRGFilter External Trigger Filter.
+ * This parameter must be a value between 0x00 and 0x0F
+ * @retval None
+ */
+void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) {
+ uint32_t tmpsmcr;
+
+ tmpsmcr = TIMx->SMCR;
+
+ /* Reset the ETR Bits */
+ tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
+
+ /* Set the Prescaler, the Filter value and the Polarity */
+ tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
+
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+}
+
+/**
+ * @brief Enables or disables the TIM Capture Compare Channel x.
+ * @param TIMx to select the TIM peripheral
+ * @param Channel specifies the TIM Channel
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1
+ * @arg TIM_CHANNEL_2: TIM Channel 2
+ * @arg TIM_CHANNEL_3: TIM Channel 3
+ * @arg TIM_CHANNEL_4: TIM Channel 4
+ * @param ChannelState specifies the TIM Channel CCxE bit new state.
+ * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
+ * @retval None
+ */
+void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) {
+ uint32_t tmp;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(TIMx));
+ assert_param(IS_TIM_CHANNELS(Channel));
+
+ tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
+
+ /* Reset the CCxE Bit */
+ TIMx->CCER &= ~tmp;
+
+ /* Set or reset the CCxE Bit */
+ TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
+}
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Reset interrupt callbacks to the legacy weak callbacks.
+ * @param htim pointer to a TIM_HandleTypeDef structure that contains
+ * the configuration information for TIM module.
+ * @retval None
+ */
+void TIM_ResetCallback(TIM_HandleTypeDef *htim) {
+ /* Reset the TIM callback to the legacy weak callbacks */
+ htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak PeriodElapsedCallback */
+ htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak PeriodElapsedHalfCpltCallback */
+ htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak TriggerCallback */
+ htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak TriggerHalfCpltCallback */
+ htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC_CaptureCallback */
+ htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC_CaptureHalfCpltCallback */
+ htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC_DelayElapsedCallback */
+ htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM_PulseFinishedCallback */
+ htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM_PulseFinishedHalfCpltCallback */
+ htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak ErrorCallback */
+ htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak CommutationCallback */
+ htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak CommutationHalfCpltCallback */
+ htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak BreakCallback */
+}
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_TIM_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c new file mode 100644 index 00000000..9d6123bf --- /dev/null +++ b/source/Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c @@ -0,0 +1,2095 @@ +/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_tim_ex.c
+ * @author MCD Application Team
+ * @brief TIM HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Timer Extended peripheral:
+ * + Time Hall Sensor Interface Initialization
+ * + Time Hall Sensor Interface Start
+ * + Time Complementary signal break and dead time configuration
+ * + Time Master and Slave synchronization configuration
+ * + Timer remapping capabilities configuration
+ @verbatim
+ ==============================================================================
+ ##### TIMER Extended features #####
+ ==============================================================================
+ [..]
+ The Timer Extended features include:
+ (#) Complementary outputs with programmable dead-time for :
+ (++) Output Compare
+ (++) PWM generation (Edge and Center-aligned Mode)
+ (++) One-pulse mode output
+ (#) Synchronization circuit to control the timer with external signals and to
+ interconnect several timers together.
+ (#) Break input to put the timer output signals in reset state or in a known state.
+ (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for
+ positioning purposes
+
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ (#) Initialize the TIM low level resources by implementing the following functions
+ depending on the selected feature:
+ (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit()
+
+ (#) Initialize the TIM low level resources :
+ (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
+ (##) TIM pins configuration
+ (+++) Enable the clock for the TIM GPIOs using the following function:
+ __HAL_RCC_GPIOx_CLK_ENABLE();
+ (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
+
+ (#) The external Clock can be configured, if needed (the default clock is the
+ internal clock from the APBx), using the following function:
+ HAL_TIM_ConfigClockSource, the clock configuration should be done before
+ any start function.
+
+ (#) Configure the TIM in the desired functioning mode using one of the
+ initialization function of this driver:
+ (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the
+ Timer Hall Sensor Interface and the commutation event with the corresponding
+ Interrupt and DMA request if needed (Note that One Timer is used to interface
+ with the Hall sensor Interface and another Timer should be used to use
+ the commutation event).
+
+ (#) Activate the TIM peripheral using one of the start functions:
+ (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OCN_Start_IT()
+ (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), HAL_TIMEx_PWMN_Start_IT()
+ (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT()
+ (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT().
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup TIMEx TIMEx
+ * @brief TIM Extended HAL module driver
+ * @{
+ */
+
+#ifdef HAL_TIM_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macros ------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma);
+static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState);
+
+/* Exported functions --------------------------------------------------------*/
+/** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions
+ * @{
+ */
+
+/** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions
+ * @brief Timer Hall Sensor functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Timer Hall Sensor functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure TIM HAL Sensor.
+ (+) De-initialize TIM HAL Sensor.
+ (+) Start the Hall Sensor Interface.
+ (+) Stop the Hall Sensor Interface.
+ (+) Start the Hall Sensor Interface and enable interrupts.
+ (+) Stop the Hall Sensor Interface and disable interrupts.
+ (+) Start the Hall Sensor Interface and enable DMA transfers.
+ (+) Stop the Hall Sensor Interface and disable DMA transfers.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM Hall Sensor Interface and initialize the associated handle.
+ * @note When the timer instance is initialized in Hall Sensor Interface mode,
+ * timer channels 1 and channel 2 are reserved and cannot be used for
+ * other purpose.
+ * @param htim TIM Hall Sensor Interface handle
+ * @param sConfig TIM Hall Sensor configuration structure
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig) {
+ TIM_OC_InitTypeDef OC_Config;
+
+ /* Check the TIM handle allocation */
+ if (htim == NULL) {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+ assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
+ assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
+ assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
+
+ if (htim->State == HAL_TIM_STATE_RESET) {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy week callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->HallSensor_MspInitCallback == NULL) {
+ htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->HallSensor_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_TIMEx_HallSensor_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Configure the Time base in the Encoder Mode */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */
+ TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter);
+
+ /* Reset the IC1PSC Bits */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
+ /* Set the IC1PSC value */
+ htim->Instance->CCMR1 |= sConfig->IC1Prescaler;
+
+ /* Enable the Hall sensor interface (XOR function of the three inputs) */
+ htim->Instance->CR2 |= TIM_CR2_TI1S;
+
+ /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */
+ htim->Instance->SMCR &= ~TIM_SMCR_TS;
+ htim->Instance->SMCR |= TIM_TS_TI1F_ED;
+
+ /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */
+ htim->Instance->SMCR &= ~TIM_SMCR_SMS;
+ htim->Instance->SMCR |= TIM_SLAVEMODE_RESET;
+
+ /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/
+ OC_Config.OCFastMode = TIM_OCFAST_DISABLE;
+ OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET;
+ OC_Config.OCMode = TIM_OCMODE_PWM2;
+ OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
+ OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
+ OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH;
+ OC_Config.Pulse = sConfig->Commutation_Delay;
+
+ TIM_OC2_SetConfig(htim->Instance, &OC_Config);
+
+ /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
+ register to 101 */
+ htim->Instance->CR2 &= ~TIM_CR2_MMS;
+ htim->Instance->CR2 |= TIM_TRGO_OC2REF;
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM Hall Sensor interface
+ * @param htim TIM Hall Sensor Interface handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->HallSensor_MspDeInitCallback == NULL) {
+ htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->HallSensor_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
+ HAL_TIMEx_HallSensor_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM Hall Sensor MSP.
+ * @param htim TIM Hall Sensor Interface handle
+ * @retval None
+ */
+__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM Hall Sensor MSP.
+ * @param htim TIM Hall Sensor Interface handle
+ * @retval None
+ */
+__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the TIM Hall Sensor Interface.
+ * @param htim TIM Hall Sensor Interface handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) {
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Check the TIM channels state */
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Input Capture channel 1
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Hall sensor Interface.
+ * @param htim TIM Hall Sensor Interface handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Disable the Input Capture channels 1, 2 and 3
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Hall Sensor Interface in interrupt mode.
+ * @param htim TIM Hall Sensor Interface handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) {
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Check the TIM channels state */
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the capture compare Interrupts 1 event */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+
+ /* Enable the Input Capture channel 1
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Hall Sensor Interface in interrupt mode.
+ * @param htim TIM Hall Sensor Interface handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Disable the Input Capture channel 1
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare Interrupts event */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Hall Sensor Interface in DMA mode.
+ * @param htim TIM Hall Sensor Interface handle
+ * @param pData The destination Buffer address.
+ * @param Length The length of data to be transferred from TIM peripheral to memory.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel state */
+ if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) {
+ return HAL_BUSY;
+ } else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) {
+ if ((pData == NULL) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ return HAL_ERROR;
+ }
+
+ /* Enable the Input Capture channel 1
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+
+ /* Set the DMA Input Capture 1 Callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
+
+ /* Enable the DMA channel for Capture 1*/
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the capture compare 1 Interrupt */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Hall Sensor Interface in DMA mode.
+ * @param htim TIM Hall Sensor Interface handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Disable the Input Capture channel 1
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare Interrupts 1 event */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions
+ * @brief Timer Complementary Output Compare functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Timer Complementary Output Compare functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Start the Complementary Output Compare/PWM.
+ (+) Stop the Complementary Output Compare/PWM.
+ (+) Start the Complementary Output Compare/PWM and enable interrupts.
+ (+) Stop the Complementary Output Compare/PWM and disable interrupts.
+ (+) Start the Complementary Output Compare/PWM and enable DMA transfers.
+ (+) Stop the Complementary Output Compare/PWM and disable DMA transfers.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Starts the TIM Output Compare signal generation on the complementary
+ * output.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Capture compare channel N */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
+
+ /* Enable the Main Output */
+ __HAL_TIM_MOE_ENABLE(htim);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Output Compare signal generation on the complementary
+ * output.
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ /* Disable the Capture compare channel N */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
+
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Output Compare signal generation in interrupt mode
+ * on the complementary output.
+ * @param htim TIM OC handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Enable the TIM Output Compare interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Enable the TIM Output Compare interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Enable the TIM Output Compare interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Enable the TIM Break interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
+
+ /* Enable the Capture compare channel N */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
+
+ /* Enable the Main Output */
+ __HAL_TIM_MOE_ENABLE(htim);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Output Compare signal generation in interrupt mode
+ * on the complementary output.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpccer;
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Disable the TIM Output Compare interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Disable the TIM Output Compare interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Disable the TIM Output Compare interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Disable the Capture compare channel N */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
+
+ /* Disable the TIM Break interrupt (only if no more channel is active) */
+ tmpccer = htim->Instance->CCER;
+ if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) {
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
+ }
+
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Output Compare signal generation in DMA mode
+ * on the complementary output.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to TIM peripheral
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ /* Set the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) {
+ return HAL_BUSY;
+ } else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) {
+ if ((pData == NULL) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ return HAL_ERROR;
+ }
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Output Compare DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Output Compare DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Output Compare DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Enable the Capture compare channel N */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
+
+ /* Enable the Main Output */
+ __HAL_TIM_MOE_ENABLE(htim);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Output Compare signal generation in DMA mode
+ * on the complementary output.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Disable the TIM Output Compare DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Disable the TIM Output Compare DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Disable the TIM Output Compare DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Disable the Capture compare channel N */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
+
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions
+ * @brief Timer Complementary PWM functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Timer Complementary PWM functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Start the Complementary PWM.
+ (+) Stop the Complementary PWM.
+ (+) Start the Complementary PWM and enable interrupts.
+ (+) Stop the Complementary PWM and disable interrupts.
+ (+) Start the Complementary PWM and enable DMA transfers.
+ (+) Stop the Complementary PWM and disable DMA transfers.
+ (+) Start the Complementary Input Capture measurement.
+ (+) Stop the Complementary Input Capture.
+ (+) Start the Complementary Input Capture and enable interrupts.
+ (+) Stop the Complementary Input Capture and disable interrupts.
+ (+) Start the Complementary Input Capture and enable DMA transfers.
+ (+) Stop the Complementary Input Capture and disable DMA transfers.
+ (+) Start the Complementary One Pulse generation.
+ (+) Stop the Complementary One Pulse.
+ (+) Start the Complementary One Pulse and enable interrupts.
+ (+) Stop the Complementary One Pulse and disable interrupts.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Starts the PWM signal generation on the complementary output.
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the complementary PWM output */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
+
+ /* Enable the Main Output */
+ __HAL_TIM_MOE_ENABLE(htim);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the PWM signal generation on the complementary output.
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ /* Disable the complementary PWM output */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
+
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the PWM signal generation in interrupt mode on the
+ * complementary output.
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Enable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Enable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Enable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Enable the TIM Break interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
+
+ /* Enable the complementary PWM output */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
+
+ /* Enable the Main Output */
+ __HAL_TIM_MOE_ENABLE(htim);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the PWM signal generation in interrupt mode on the
+ * complementary output.
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpccer;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Disable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Disable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Disable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Disable the complementary PWM output */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
+
+ /* Disable the TIM Break interrupt (only if no more channel is active) */
+ tmpccer = htim->Instance->CCER;
+ if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) {
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
+ }
+
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM PWM signal generation in DMA mode on the
+ * complementary output
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to TIM peripheral
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ /* Set the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) {
+ return HAL_BUSY;
+ } else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) {
+ if ((pData == NULL) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ return HAL_ERROR;
+ }
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Enable the complementary PWM output */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
+
+ /* Enable the Main Output */
+ __HAL_TIM_MOE_ENABLE(htim);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM PWM signal generation in DMA mode on the complementary
+ * output
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel) {
+ case TIM_CHANNEL_1: {
+ /* Disable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+
+ case TIM_CHANNEL_2: {
+ /* Disable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+
+ case TIM_CHANNEL_3: {
+ /* Disable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ /* Disable the complementary PWM output */
+ TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
+
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions
+ * @brief Timer Complementary One Pulse functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Timer Complementary One Pulse functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Start the Complementary One Pulse generation.
+ (+) Stop the Complementary One Pulse.
+ (+) Start the Complementary One Pulse and enable interrupts.
+ (+) Stop the Complementary One Pulse and disable interrupts.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Starts the TIM One Pulse signal generation on the complementary
+ * output.
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
+ HAL_TIM_ChannelStateTypeDef input_channel_state = TIM_CHANNEL_STATE_GET(htim, input_channel);
+ HAL_TIM_ChannelStateTypeDef output_channel_state = TIM_CHANNEL_N_STATE_GET(htim, OutputChannel);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
+
+ /* Check the TIM channels state */
+ if ((output_channel_state != HAL_TIM_CHANNEL_STATE_READY) || (input_channel_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the complementary One Pulse output channel and the Input Capture channel */
+ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);
+
+ /* Enable the Main Output */
+ __HAL_TIM_MOE_ENABLE(htim);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM One Pulse signal generation on the complementary
+ * output.
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
+
+ /* Disable the complementary One Pulse output channel and the Input Capture channel */
+ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);
+
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM One Pulse signal generation in interrupt mode on the
+ * complementary channel.
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
+ HAL_TIM_ChannelStateTypeDef input_channel_state = TIM_CHANNEL_STATE_GET(htim, input_channel);
+ HAL_TIM_ChannelStateTypeDef output_channel_state = TIM_CHANNEL_N_STATE_GET(htim, OutputChannel);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
+
+ /* Check the TIM channels state */
+ if ((output_channel_state != HAL_TIM_CHANNEL_STATE_READY) || (input_channel_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+
+ /* Enable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+
+ /* Enable the complementary One Pulse output channel and the Input Capture channel */
+ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);
+
+ /* Enable the Main Output */
+ __HAL_TIM_MOE_ENABLE(htim);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM One Pulse signal generation in interrupt mode on the
+ * complementary channel.
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
+
+ /* Disable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+
+ /* Disable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+
+ /* Disable the complementary One Pulse output channel and the Input Capture channel */
+ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);
+
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions
+ * @brief Peripheral Control functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Peripheral Control functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Configure the commutation event in case of use of the Hall sensor interface.
+ (+) Configure Output channels for OC and PWM mode.
+
+ (+) Configure Complementary channels, break features and dead time.
+ (+) Configure Master synchronization.
+ (+) Configure timer remapping capabilities.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configure the TIM commutation event sequence.
+ * @note This function is mandatory to use the commutation event in order to
+ * update the configuration at each commutation detection on the TRGI input of the Timer,
+ * the typical use of this feature is with the use of another Timer(interface Timer)
+ * configured in Hall sensor interface, this interface Timer will generate the
+ * commutation at its TRGO output (connected to Timer used in this function) each time
+ * the TI1 of the Interface Timer detect a commutation at its input TI1.
+ * @param htim TIM handle
+ * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
+ * This parameter can be one of the following values:
+ * @arg TIM_TS_ITR0: Internal trigger 0 selected
+ * @arg TIM_TS_ITR1: Internal trigger 1 selected
+ * @arg TIM_TS_ITR2: Internal trigger 2 selected
+ * @arg TIM_TS_ITR3: Internal trigger 3 selected
+ * @arg TIM_TS_NONE: No trigger is needed
+ * @param CommutationSource the Commutation Event source
+ * This parameter can be one of the following values:
+ * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
+ * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) {
+ /* Check the parameters */
+ assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
+
+ __HAL_LOCK(htim);
+
+ if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) {
+ /* Select the Input trigger */
+ htim->Instance->SMCR &= ~TIM_SMCR_TS;
+ htim->Instance->SMCR |= InputTrigger;
+ }
+
+ /* Select the Capture Compare preload feature */
+ htim->Instance->CR2 |= TIM_CR2_CCPC;
+ /* Select the Commutation event source */
+ htim->Instance->CR2 &= ~TIM_CR2_CCUS;
+ htim->Instance->CR2 |= CommutationSource;
+
+ /* Disable Commutation Interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);
+
+ /* Disable Commutation DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Configure the TIM commutation event sequence with interrupt.
+ * @note This function is mandatory to use the commutation event in order to
+ * update the configuration at each commutation detection on the TRGI input of the Timer,
+ * the typical use of this feature is with the use of another Timer(interface Timer)
+ * configured in Hall sensor interface, this interface Timer will generate the
+ * commutation at its TRGO output (connected to Timer used in this function) each time
+ * the TI1 of the Interface Timer detect a commutation at its input TI1.
+ * @param htim TIM handle
+ * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
+ * This parameter can be one of the following values:
+ * @arg TIM_TS_ITR0: Internal trigger 0 selected
+ * @arg TIM_TS_ITR1: Internal trigger 1 selected
+ * @arg TIM_TS_ITR2: Internal trigger 2 selected
+ * @arg TIM_TS_ITR3: Internal trigger 3 selected
+ * @arg TIM_TS_NONE: No trigger is needed
+ * @param CommutationSource the Commutation Event source
+ * This parameter can be one of the following values:
+ * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
+ * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) {
+ /* Check the parameters */
+ assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
+
+ __HAL_LOCK(htim);
+
+ if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) {
+ /* Select the Input trigger */
+ htim->Instance->SMCR &= ~TIM_SMCR_TS;
+ htim->Instance->SMCR |= InputTrigger;
+ }
+
+ /* Select the Capture Compare preload feature */
+ htim->Instance->CR2 |= TIM_CR2_CCPC;
+ /* Select the Commutation event source */
+ htim->Instance->CR2 &= ~TIM_CR2_CCUS;
+ htim->Instance->CR2 |= CommutationSource;
+
+ /* Disable Commutation DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);
+
+ /* Enable the Commutation Interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM);
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Configure the TIM commutation event sequence with DMA.
+ * @note This function is mandatory to use the commutation event in order to
+ * update the configuration at each commutation detection on the TRGI input of the Timer,
+ * the typical use of this feature is with the use of another Timer(interface Timer)
+ * configured in Hall sensor interface, this interface Timer will generate the
+ * commutation at its TRGO output (connected to Timer used in this function) each time
+ * the TI1 of the Interface Timer detect a commutation at its input TI1.
+ * @note The user should configure the DMA in his own software, in This function only the COMDE bit is set
+ * @param htim TIM handle
+ * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
+ * This parameter can be one of the following values:
+ * @arg TIM_TS_ITR0: Internal trigger 0 selected
+ * @arg TIM_TS_ITR1: Internal trigger 1 selected
+ * @arg TIM_TS_ITR2: Internal trigger 2 selected
+ * @arg TIM_TS_ITR3: Internal trigger 3 selected
+ * @arg TIM_TS_NONE: No trigger is needed
+ * @param CommutationSource the Commutation Event source
+ * This parameter can be one of the following values:
+ * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
+ * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) {
+ /* Check the parameters */
+ assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
+
+ __HAL_LOCK(htim);
+
+ if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) {
+ /* Select the Input trigger */
+ htim->Instance->SMCR &= ~TIM_SMCR_TS;
+ htim->Instance->SMCR |= InputTrigger;
+ }
+
+ /* Select the Capture Compare preload feature */
+ htim->Instance->CR2 |= TIM_CR2_CCPC;
+ /* Select the Commutation event source */
+ htim->Instance->CR2 &= ~TIM_CR2_CCUS;
+ htim->Instance->CR2 |= CommutationSource;
+
+ /* Enable the Commutation DMA Request */
+ /* Set the DMA Commutation Callback */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;
+
+ /* Disable Commutation Interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);
+
+ /* Enable the Commutation DMA Request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM);
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Configures the TIM in master mode.
+ * @param htim TIM handle.
+ * @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that
+ * contains the selected trigger output (TRGO) and the Master/Slave
+ * mode.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef *sMasterConfig) {
+ uint32_t tmpcr2;
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger));
+ assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode));
+
+ /* Check input state */
+ __HAL_LOCK(htim);
+
+ /* Change the handler state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = htim->Instance->CR2;
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = htim->Instance->SMCR;
+
+ /* Reset the MMS Bits */
+ tmpcr2 &= ~TIM_CR2_MMS;
+ /* Select the TRGO source */
+ tmpcr2 |= sMasterConfig->MasterOutputTrigger;
+
+ /* Update TIMx CR2 */
+ htim->Instance->CR2 = tmpcr2;
+
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ /* Reset the MSM Bit */
+ tmpsmcr &= ~TIM_SMCR_MSM;
+ /* Set master mode */
+ tmpsmcr |= sMasterConfig->MasterSlaveMode;
+
+ /* Update TIMx SMCR */
+ htim->Instance->SMCR = tmpsmcr;
+ }
+
+ /* Change the htim state */
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State
+ * and the AOE(automatic output enable).
+ * @param htim TIM handle
+ * @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that
+ * contains the BDTR Register configuration information for the TIM peripheral.
+ * @note Interrupts can be generated when an active level is detected on the
+ * break input, the break 2 input or the system break input. Break
+ * interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig) {
+ /* Keep this variable initialized to 0 as it is used to configure BDTR register */
+ uint32_t tmpbdtr = 0U;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode));
+ assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode));
+ assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel));
+ assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime));
+ assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState));
+ assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity));
+ assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput));
+
+ /* Check input state */
+ __HAL_LOCK(htim);
+
+ /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
+ the OSSI State, the dead time value and the Automatic Output Enable Bit */
+
+ /* Set the BDTR bits */
+ MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime);
+ MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel);
+ MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode);
+ MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode);
+ MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState);
+ MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity);
+ MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput);
+
+ /* Set TIMx_BDTR */
+ htim->Instance->BDTR = tmpbdtr;
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Configures the TIMx Remapping input capabilities.
+ * @param htim TIM handle.
+ * @param Remap specifies the TIM remapping source.
+ *
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+ UNUSED(Remap);
+
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions
+ * @brief Extended Callbacks functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Extended Callbacks functions #####
+ ==============================================================================
+ [..]
+ This section provides Extended TIM callback functions:
+ (+) Timer Commutation callback
+ (+) Timer Break callback
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Hall commutation changed callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIMEx_CommutCallback could be implemented in the user file
+ */
+}
+/**
+ * @brief Hall commutation changed half complete callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Hall Break detection callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIMEx_BreakCallback could be implemented in the user file
+ */
+}
+/**
+ * @}
+ */
+
+/** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions
+ * @brief Extended Peripheral State functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Extended Peripheral State functions #####
+ ==============================================================================
+ [..]
+ This subsection permits to get in run-time the status of the peripheral
+ and the data flow.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Return the TIM Hall Sensor interface handle state.
+ * @param htim TIM Hall Sensor handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
+
+/**
+ * @brief Return actual state of the TIM complementary channel.
+ * @param htim TIM handle
+ * @param ChannelN TIM Complementary channel
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1
+ * @arg TIM_CHANNEL_2: TIM Channel 2
+ * @arg TIM_CHANNEL_3: TIM Channel 3
+ * @retval TIM Complementary channel state
+ */
+HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(TIM_HandleTypeDef *htim, uint32_t ChannelN) {
+ HAL_TIM_ChannelStateTypeDef channel_state;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, ChannelN));
+
+ channel_state = TIM_CHANNEL_N_STATE_GET(htim, ChannelN);
+
+ return channel_state;
+}
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Private functions ---------------------------------------------------------*/
+/** @defgroup TIMEx_Private_Functions TIMEx Private Functions
+ * @{
+ */
+
+/**
+ * @brief TIM DMA Commutation callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Change the htim state */
+ htim->State = HAL_TIM_STATE_READY;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->CommutationCallback(htim);
+#else
+ HAL_TIMEx_CommutCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Commutation half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Change the htim state */
+ htim->State = HAL_TIM_STATE_READY;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->CommutationHalfCpltCallback(htim);
+#else
+ HAL_TIMEx_CommutHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Delay Pulse complete callback (complementary channel).
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA error callback (complementary channel)
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ } else {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->ErrorCallback(htim);
+#else
+ HAL_TIM_ErrorCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief Enables or disables the TIM Capture Compare Channel xN.
+ * @param TIMx to select the TIM peripheral
+ * @param Channel specifies the TIM Channel
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1
+ * @arg TIM_CHANNEL_2: TIM Channel 2
+ * @arg TIM_CHANNEL_3: TIM Channel 3
+ * @param ChannelNState specifies the TIM Channel CCxNE bit new state.
+ * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable.
+ * @retval None
+ */
+static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState) {
+ uint32_t tmp;
+
+ tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
+
+ /* Reset the CCxNE Bit */
+ TIMx->CCER &= ~tmp;
+
+ /* Set or reset the CCxNE Bit */
+ TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
+}
+/**
+ * @}
+ */
+
+#endif /* HAL_TIM_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/flash.c b/source/Core/BSP/MHP30/flash.c new file mode 100644 index 00000000..c320d687 --- /dev/null +++ b/source/Core/BSP/MHP30/flash.c @@ -0,0 +1,44 @@ +/*
+ * flash.c
+ *
+ * Created on: 29 May 2020
+ * Author: Ralim
+ */
+
+#include "BSP.h"
+#include "BSP_Flash.h"
+#include "stm32f1xx_hal.h"
+#include "string.h"
+
+static uint16_t settings_page[512] __attribute__((section(".settings_page")));
+
+uint8_t flash_save_buffer(const uint8_t *buffer, const uint16_t length) {
+ FLASH_EraseInitTypeDef pEraseInit;
+ pEraseInit.TypeErase = FLASH_TYPEERASE_PAGES;
+ pEraseInit.Banks = FLASH_BANK_1;
+ pEraseInit.NbPages = 1;
+ pEraseInit.PageAddress = (uint32_t)settings_page;
+ uint32_t failingAddress = 0;
+ resetWatchdog();
+ __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR | FLASH_FLAG_BSY);
+ HAL_FLASH_Unlock();
+ HAL_Delay(1);
+ resetWatchdog();
+ HAL_FLASHEx_Erase(&pEraseInit, &failingAddress);
+ //^ Erase the page of flash (1024 bytes on this stm32)
+ // erased the chunk
+ // now we program it
+ uint16_t *data = (uint16_t *)buffer;
+ HAL_FLASH_Unlock();
+ for (uint16_t i = 0; i < (length / 2); i++) {
+ resetWatchdog();
+ HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, (uint32_t)&settings_page[i], data[i]);
+ }
+ HAL_FLASH_Lock();
+ return 1;
+}
+
+void flash_read_buffer(uint8_t *buffer, const uint16_t length) {
+ memset(buffer, 0, length);
+ memcpy(buffer, settings_page, length);
+}
diff --git a/source/Core/BSP/MHP30/fusb_user.cpp b/source/Core/BSP/MHP30/fusb_user.cpp new file mode 100644 index 00000000..bddf5a72 --- /dev/null +++ b/source/Core/BSP/MHP30/fusb_user.cpp @@ -0,0 +1,29 @@ +#include "Model_Config.h" +#ifdef POW_PD +#include "BSP.h" +#include "I2C_Wrapper.hpp" +#include "Pins.h" +#include "Setup.h" +#include "fusb302b.h" +#include "fusb_user.h" + +bool fusb_read_buf(uint8_t addr, uint8_t size, uint8_t *buf) { return FRToSI2C::Mem_Read(FUSB302B_ADDR, addr, buf, size); } + +bool fusb_write_buf(uint8_t addr, uint8_t size, const uint8_t *buf) { return FRToSI2C::Mem_Write(FUSB302B_ADDR, addr, (uint8_t *)buf, size); } + +bool fusb302_detect() { + // Probe the I2C bus for its address + return FRToSI2C::probe(FUSB302B_ADDR); +} + +void setupFUSBIRQ() { + GPIO_InitTypeDef GPIO_InitStruct; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; + GPIO_InitStruct.Pin = INT_PD_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; + GPIO_InitStruct.Pull = GPIO_PULLUP; + HAL_GPIO_Init(INT_PD_GPIO_Port, &GPIO_InitStruct); + HAL_NVIC_SetPriority(EXTI9_5_IRQn, 10, 0); + HAL_NVIC_EnableIRQ(EXTI9_5_IRQn); +} +#endif diff --git a/source/Core/BSP/MHP30/logo.cpp b/source/Core/BSP/MHP30/logo.cpp new file mode 100644 index 00000000..c6e77b53 --- /dev/null +++ b/source/Core/BSP/MHP30/logo.cpp @@ -0,0 +1,25 @@ +/*
+ * logo.c
+ *
+ * Created on: 29 May 2020
+ * Author: Ralim
+ */
+
+#include "BSP.h"
+#include "OLED.hpp"
+
+static uint8_t logo_page[1024] __attribute__((section(".logo_page")));
+
+// Logo header signature.
+#define LOGO_HEADER_VALUE 0xF00DAA55
+
+uint8_t showBootLogoIfavailable() {
+ // Do not show logo data if signature is not found.
+ if (LOGO_HEADER_VALUE != *(reinterpret_cast<const uint32_t *>(logo_page))) {
+ return 0;
+ }
+
+ OLED::drawAreaSwapped(0, 0, 96, 16, (uint8_t *)(logo_page + 4));
+ OLED::refresh();
+ return 1;
+}
diff --git a/source/Core/BSP/MHP30/port.c b/source/Core/BSP/MHP30/port.c new file mode 100644 index 00000000..7ee68597 --- /dev/null +++ b/source/Core/BSP/MHP30/port.c @@ -0,0 +1,659 @@ +/*
+ * FreeRTOS Kernel V10.3.1
+ * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
+
+/*-----------------------------------------------------------
+ * Implementation of functions defined in portable.h for the ARM CM3 port.
+ *----------------------------------------------------------*/
+
+/* Scheduler includes. */
+#include "FreeRTOS.h"
+#include "task.h"
+
+/* For backward compatibility, ensure configKERNEL_INTERRUPT_PRIORITY is
+ defined. The value should also ensure backward compatibility.
+ FreeRTOS.org versions prior to V4.4.0 did not include this definition. */
+#ifndef configKERNEL_INTERRUPT_PRIORITY
+#define configKERNEL_INTERRUPT_PRIORITY 255
+#endif
+
+#ifndef configSYSTICK_CLOCK_HZ
+#define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ
+/* Ensure the SysTick is clocked at the same frequency as the core. */
+#define portNVIC_SYSTICK_CLK_BIT (1UL << 2UL)
+#else
+/* The way the SysTick is clocked is not modified in case it is not the same
+as the core. */
+#define portNVIC_SYSTICK_CLK_BIT (0)
+#endif
+
+/* Constants required to manipulate the core. Registers first... */
+#define portNVIC_SYSTICK_CTRL_REG (*((volatile uint32_t *)0xe000e010))
+#define portNVIC_SYSTICK_LOAD_REG (*((volatile uint32_t *)0xe000e014))
+#define portNVIC_SYSTICK_CURRENT_VALUE_REG (*((volatile uint32_t *)0xe000e018))
+#define portNVIC_SYSPRI2_REG (*((volatile uint32_t *)0xe000ed20))
+/* ...then bits in the registers. */
+#define portNVIC_SYSTICK_INT_BIT (1UL << 1UL)
+#define portNVIC_SYSTICK_ENABLE_BIT (1UL << 0UL)
+#define portNVIC_SYSTICK_COUNT_FLAG_BIT (1UL << 16UL)
+#define portNVIC_PENDSVCLEAR_BIT (1UL << 27UL)
+#define portNVIC_PEND_SYSTICK_CLEAR_BIT (1UL << 25UL)
+
+#define portNVIC_PENDSV_PRI (((uint32_t)configKERNEL_INTERRUPT_PRIORITY) << 16UL)
+#define portNVIC_SYSTICK_PRI (((uint32_t)configKERNEL_INTERRUPT_PRIORITY) << 24UL)
+
+/* Constants required to check the validity of an interrupt priority. */
+#define portFIRST_USER_INTERRUPT_NUMBER (16)
+#define portNVIC_IP_REGISTERS_OFFSET_16 (0xE000E3F0)
+#define portAIRCR_REG (*((volatile uint32_t *)0xE000ED0C))
+#define portMAX_8_BIT_VALUE ((uint8_t)0xff)
+#define portTOP_BIT_OF_BYTE ((uint8_t)0x80)
+#define portMAX_PRIGROUP_BITS ((uint8_t)7)
+#define portPRIORITY_GROUP_MASK (0x07UL << 8UL)
+#define portPRIGROUP_SHIFT (8UL)
+
+/* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
+#define portVECTACTIVE_MASK (0xFFUL)
+
+/* Constants required to set up the initial stack. */
+#define portINITIAL_XPSR (0x01000000UL)
+
+/* The systick is a 24-bit counter. */
+#define portMAX_24_BIT_NUMBER (0xffffffUL)
+
+/* A fiddle factor to estimate the number of SysTick counts that would have
+ occurred while the SysTick counter is stopped during tickless idle
+ calculations. */
+#define portMISSED_COUNTS_FACTOR (45UL)
+
+/* For strict compliance with the Cortex-M spec the task start address should
+ have bit-0 clear, as it is loaded into the PC on exit from an ISR. */
+#define portSTART_ADDRESS_MASK ((StackType_t)0xfffffffeUL)
+
+/* Let the user override the pre-loading of the initial LR with the address of
+ prvTaskExitError() in case it messes up unwinding of the stack in the
+ debugger. */
+#ifdef configTASK_RETURN_ADDRESS
+#define portTASK_RETURN_ADDRESS configTASK_RETURN_ADDRESS
+#else
+#define portTASK_RETURN_ADDRESS prvTaskExitError
+#endif
+
+/*
+ * Setup the timer to generate the tick interrupts. The implementation in this
+ * file is weak to allow application writers to change the timer used to
+ * generate the tick interrupt.
+ */
+void vPortSetupTimerInterrupt(void);
+
+/*
+ * Exception handlers.
+ */
+void xPortPendSVHandler(void) __attribute__((naked));
+void xPortSysTickHandler(void);
+void vPortSVCHandler(void) __attribute__((naked));
+
+/*
+ * Start first task is a separate function so it can be tested in isolation.
+ */
+static void prvPortStartFirstTask(void) __attribute__((naked));
+
+/*
+ * Used to catch tasks that attempt to return from their implementing function.
+ */
+static void prvTaskExitError(void);
+
+/*-----------------------------------------------------------*/
+
+/* Each task maintains its own interrupt status in the critical nesting
+ variable. */
+static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
+
+/*
+ * The number of SysTick increments that make up one tick period.
+ */
+#if (configUSE_TICKLESS_IDLE == 1)
+static uint32_t ulTimerCountsForOneTick = 0;
+#endif /* configUSE_TICKLESS_IDLE */
+
+/*
+ * The maximum number of tick periods that can be suppressed is limited by the
+ * 24 bit resolution of the SysTick timer.
+ */
+#if (configUSE_TICKLESS_IDLE == 1)
+static uint32_t xMaximumPossibleSuppressedTicks = 0;
+#endif /* configUSE_TICKLESS_IDLE */
+
+/*
+ * Compensate for the CPU cycles that pass while the SysTick is stopped (low
+ * power functionality only.
+ */
+#if (configUSE_TICKLESS_IDLE == 1)
+static uint32_t ulStoppedTimerCompensation = 0;
+#endif /* configUSE_TICKLESS_IDLE */
+
+/*
+ * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
+ * FreeRTOS API functions are not called from interrupts that have been assigned
+ * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
+ */
+#if (configASSERT_DEFINED == 1)
+static uint8_t ucMaxSysCallPriority = 0;
+static uint32_t ulMaxPRIGROUPValue = 0;
+static const volatile uint8_t *const pcInterruptPriorityRegisters = (const volatile uint8_t *const)portNVIC_IP_REGISTERS_OFFSET_16;
+#endif /* configASSERT_DEFINED */
+
+/*-----------------------------------------------------------*/
+
+/*
+ * See header file for description.
+ */
+StackType_t *pxPortInitialiseStack(StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters) {
+ /* Simulate the stack frame as it would be created by a context switch
+ interrupt. */
+ pxTopOfStack--; /* Offset added to account for the way the MCU uses the stack on entry/exit of interrupts. */
+ *pxTopOfStack = portINITIAL_XPSR; /* xPSR */
+ pxTopOfStack--;
+ *pxTopOfStack = ((StackType_t)pxCode) & portSTART_ADDRESS_MASK; /* PC */
+ pxTopOfStack--;
+ *pxTopOfStack = (StackType_t)portTASK_RETURN_ADDRESS; /* LR */
+ pxTopOfStack -= 5; /* R12, R3, R2 and R1. */
+ *pxTopOfStack = (StackType_t)pvParameters; /* R0 */
+ pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
+
+ return pxTopOfStack;
+}
+/*-----------------------------------------------------------*/
+
+static void prvTaskExitError(void) {
+ volatile uint32_t ulDummy = 0UL;
+
+ /* A function that implements a task must not exit or attempt to return to
+ its caller as there is nothing to return to. If a task wants to exit it
+ should instead call vTaskDelete( NULL ).
+
+ Artificially force an assert() to be triggered if configASSERT() is
+ defined, then stop here so application writers can catch the error. */
+ configASSERT(uxCriticalNesting == ~0UL);
+ portDISABLE_INTERRUPTS();
+ while (ulDummy == 0) {
+ /* This file calls prvTaskExitError() after the scheduler has been
+ started to remove a compiler warning about the function being defined
+ but never called. ulDummy is used purely to quieten other warnings
+ about code appearing after this function is called - making ulDummy
+ volatile makes the compiler think the function could return and
+ therefore not output an 'unreachable code' warning for code that appears
+ after it. */
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vPortSVCHandler(void) {
+ __asm volatile(" ldr r3, pxCurrentTCBConst2 \n" /* Restore the context. */
+ " ldr r1, [r3] \n" /* Use pxCurrentTCBConst to get the pxCurrentTCB address. */
+ " ldr r0, [r1] \n" /* The first item in pxCurrentTCB is the task top of stack. */
+ " ldmia r0!, {r4-r11} \n" /* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */
+ " msr psp, r0 \n" /* Restore the task stack pointer. */
+ " isb \n"
+ " mov r0, #0 \n"
+ " msr basepri, r0 \n"
+ " orr r14, #0xd \n"
+ " bx r14 \n"
+ " \n"
+ " .align 4 \n"
+ "pxCurrentTCBConst2: .word pxCurrentTCB \n");
+}
+/*-----------------------------------------------------------*/
+
+static void prvPortStartFirstTask(void) {
+ __asm volatile(" ldr r0, =0xE000ED08 \n" /* Use the NVIC offset register to locate the stack. */
+ " ldr r0, [r0] \n"
+ " ldr r0, [r0] \n"
+ " msr msp, r0 \n" /* Set the msp back to the start of the stack. */
+ " cpsie i \n" /* Globally enable interrupts. */
+ " cpsie f \n"
+ " dsb \n"
+ " isb \n"
+ " svc 0 \n" /* System call to start first task. */
+ " nop \n");
+}
+/*-----------------------------------------------------------*/
+
+/*
+ * See header file for description.
+ */
+BaseType_t xPortStartScheduler(void) {
+ /* configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0.
+ See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
+ configASSERT(configMAX_SYSCALL_INTERRUPT_PRIORITY);
+
+#if (configASSERT_DEFINED == 1)
+ {
+ volatile uint32_t ulOriginalPriority;
+ volatile uint8_t *const pucFirstUserPriorityRegister = (volatile uint8_t *const)(portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER);
+ volatile uint8_t ucMaxPriorityValue;
+
+ /* Determine the maximum priority from which ISR safe FreeRTOS API
+ functions can be called. ISR safe functions are those that end in
+ "FromISR". FreeRTOS maintains separate thread and ISR API functions to
+ ensure interrupt entry is as fast and simple as possible.
+
+ Save the interrupt priority value that is about to be clobbered. */
+ ulOriginalPriority = *pucFirstUserPriorityRegister;
+
+ /* Determine the number of priority bits available. First write to all
+ possible bits. */
+ *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
+
+ /* Read the value back to see how many bits stuck. */
+ ucMaxPriorityValue = *pucFirstUserPriorityRegister;
+
+ /* Use the same mask on the maximum system call priority. */
+ ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
+
+ /* Calculate the maximum acceptable priority group value for the number
+ of bits read back. */
+ ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
+ while ((ucMaxPriorityValue & portTOP_BIT_OF_BYTE) == portTOP_BIT_OF_BYTE) {
+ ulMaxPRIGROUPValue--;
+ ucMaxPriorityValue <<= (uint8_t)0x01;
+ }
+
+#ifdef __NVIC_PRIO_BITS
+ {
+ /* Check the CMSIS configuration that defines the number of
+ priority bits matches the number of priority bits actually queried
+ from the hardware. */
+ configASSERT((portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue) == __NVIC_PRIO_BITS);
+ }
+#endif
+
+#ifdef configPRIO_BITS
+ {
+ /* Check the FreeRTOS configuration that defines the number of
+ priority bits matches the number of priority bits actually queried
+ from the hardware. */
+ configASSERT((portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue) == configPRIO_BITS);
+ }
+#endif
+
+ /* Shift the priority group value back to its position within the AIRCR
+ register. */
+ ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
+ ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
+
+ /* Restore the clobbered interrupt priority register to its original
+ value. */
+ *pucFirstUserPriorityRegister = ulOriginalPriority;
+ }
+#endif /* conifgASSERT_DEFINED */
+
+ /* Make PendSV and SysTick the lowest priority interrupts. */
+ portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI;
+ portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI;
+
+ /* Start the timer that generates the tick ISR. Interrupts are disabled
+ here already. */
+ vPortSetupTimerInterrupt();
+
+ /* Initialise the critical nesting count ready for the first task. */
+ uxCriticalNesting = 0;
+
+ /* Start the first task. */
+ prvPortStartFirstTask();
+
+ /* Should never get here as the tasks will now be executing! Call the task
+ exit error function to prevent compiler warnings about a static function
+ not being called in the case that the application writer overrides this
+ functionality by defining configTASK_RETURN_ADDRESS. Call
+ vTaskSwitchContext() so link time optimisation does not remove the
+ symbol. */
+ vTaskSwitchContext();
+ prvTaskExitError();
+
+ /* Should not get here! */
+ return 0;
+}
+/*-----------------------------------------------------------*/
+
+void vPortEndScheduler(void) {
+ /* Not implemented in ports where there is nothing to return to.
+ Artificially force an assert. */
+ configASSERT(uxCriticalNesting == 1000UL);
+}
+/*-----------------------------------------------------------*/
+
+void vPortEnterCritical(void) {
+ portDISABLE_INTERRUPTS();
+ uxCriticalNesting++;
+
+ /* This is not the interrupt safe version of the enter critical function so
+ assert() if it is being called from an interrupt context. Only API
+ functions that end in "FromISR" can be used in an interrupt. Only assert if
+ the critical nesting count is 1 to protect against recursive calls if the
+ assert function also uses a critical section. */
+ if (uxCriticalNesting == 1) {
+ configASSERT((portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK) == 0);
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vPortExitCritical(void) {
+ configASSERT(uxCriticalNesting);
+ uxCriticalNesting--;
+ if (uxCriticalNesting == 0) {
+ portENABLE_INTERRUPTS();
+ }
+}
+/*-----------------------------------------------------------*/
+
+void xPortPendSVHandler(void) {
+ /* This is a naked function. */
+
+ __asm volatile(" mrs r0, psp \n"
+ " isb \n"
+ " \n"
+ " ldr r3, pxCurrentTCBConst \n" /* Get the location of the current TCB. */
+ " ldr r2, [r3] \n"
+ " \n"
+ " stmdb r0!, {r4-r11} \n" /* Save the remaining registers. */
+ " str r0, [r2] \n" /* Save the new top of stack into the first member of the TCB. */
+ " \n"
+ " stmdb sp!, {r3, r14} \n"
+ " mov r0, %0 \n"
+ " msr basepri, r0 \n"
+ " bl vTaskSwitchContext \n"
+ " mov r0, #0 \n"
+ " msr basepri, r0 \n"
+ " ldmia sp!, {r3, r14} \n"
+ " \n" /* Restore the context, including the critical nesting count. */
+ " ldr r1, [r3] \n"
+ " ldr r0, [r1] \n" /* The first item in pxCurrentTCB is the task top of stack. */
+ " ldmia r0!, {r4-r11} \n" /* Pop the registers. */
+ " msr psp, r0 \n"
+ " isb \n"
+ " bx r14 \n"
+ " \n"
+ " .align 4 \n"
+ "pxCurrentTCBConst: .word pxCurrentTCB \n" ::"i"(configMAX_SYSCALL_INTERRUPT_PRIORITY));
+}
+/*-----------------------------------------------------------*/
+
+void xPortSysTickHandler(void) {
+ /* The SysTick runs at the lowest interrupt priority, so when this interrupt
+ executes all interrupts must be unmasked. There is therefore no need to
+ save and then restore the interrupt mask value as its value is already
+ known. */
+ portDISABLE_INTERRUPTS();
+ {
+ /* Increment the RTOS tick. */
+ if (xTaskIncrementTick() != pdFALSE) {
+ /* A context switch is required. Context switching is performed in
+ the PendSV interrupt. Pend the PendSV interrupt. */
+ portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
+ }
+ }
+ portENABLE_INTERRUPTS();
+}
+/*-----------------------------------------------------------*/
+
+#if (configUSE_TICKLESS_IDLE == 1)
+
+__attribute__((weak)) void vPortSuppressTicksAndSleep(TickType_t xExpectedIdleTime) {
+ uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements;
+ TickType_t xModifiableIdleTime;
+
+ /* Make sure the SysTick reload value does not overflow the counter. */
+ if (xExpectedIdleTime > xMaximumPossibleSuppressedTicks) {
+ xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
+ }
+
+ /* Stop the SysTick momentarily. The time the SysTick is stopped for
+ is accounted for as best it can be, but using the tickless mode will
+ inevitably result in some tiny drift of the time maintained by the
+ kernel with respect to calendar time. */
+ portNVIC_SYSTICK_CTRL_REG &= ~portNVIC_SYSTICK_ENABLE_BIT;
+
+ /* Calculate the reload value required to wait xExpectedIdleTime
+ tick periods. -1 is used because this code will execute part way
+ through one of the tick periods. */
+ ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + (ulTimerCountsForOneTick * (xExpectedIdleTime - 1UL));
+ if (ulReloadValue > ulStoppedTimerCompensation) {
+ ulReloadValue -= ulStoppedTimerCompensation;
+ }
+
+ /* Enter a critical section but don't use the taskENTER_CRITICAL()
+ method as that will mask interrupts that should exit sleep mode. */
+ __asm volatile("cpsid i" ::: "memory");
+ __asm volatile("dsb");
+ __asm volatile("isb");
+
+ /* If a context switch is pending or a task is waiting for the scheduler
+ to be unsuspended then abandon the low power entry. */
+ if (eTaskConfirmSleepModeStatus() == eAbortSleep) {
+ /* Restart from whatever is left in the count register to complete
+ this tick period. */
+ portNVIC_SYSTICK_LOAD_REG = portNVIC_SYSTICK_CURRENT_VALUE_REG;
+
+ /* Restart SysTick. */
+ portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
+
+ /* Reset the reload register to the value required for normal tick
+ periods. */
+ portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
+
+ /* Re-enable interrupts - see comments above the cpsid instruction()
+ above. */
+ __asm volatile("cpsie i" ::: "memory");
+ } else {
+ /* Set the new reload value. */
+ portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
+
+ /* Clear the SysTick count flag and set the count value back to
+ zero. */
+ portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
+
+ /* Restart SysTick. */
+ portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
+
+ /* Sleep until something happens. configPRE_SLEEP_PROCESSING() can
+ set its parameter to 0 to indicate that its implementation contains
+ its own wait for interrupt or wait for event instruction, and so wfi
+ should not be executed again. However, the original expected idle
+ time variable must remain unmodified, so a copy is taken. */
+ xModifiableIdleTime = xExpectedIdleTime;
+ configPRE_SLEEP_PROCESSING(xModifiableIdleTime);
+ if (xModifiableIdleTime > 0) {
+ __asm volatile("dsb" ::: "memory");
+ __asm volatile("wfi");
+ __asm volatile("isb");
+ }
+ configPOST_SLEEP_PROCESSING(xExpectedIdleTime);
+
+ /* Re-enable interrupts to allow the interrupt that brought the MCU
+ out of sleep mode to execute immediately. see comments above
+ __disable_interrupt() call above. */
+ __asm volatile("cpsie i" ::: "memory");
+ __asm volatile("dsb");
+ __asm volatile("isb");
+
+ /* Disable interrupts again because the clock is about to be stopped
+ and interrupts that execute while the clock is stopped will increase
+ any slippage between the time maintained by the RTOS and calendar
+ time. */
+ __asm volatile("cpsid i" ::: "memory");
+ __asm volatile("dsb");
+ __asm volatile("isb");
+
+ /* Disable the SysTick clock without reading the
+ portNVIC_SYSTICK_CTRL_REG register to ensure the
+ portNVIC_SYSTICK_COUNT_FLAG_BIT is not cleared if it is set. Again,
+ the time the SysTick is stopped for is accounted for as best it can
+ be, but using the tickless mode will inevitably result in some tiny
+ drift of the time maintained by the kernel with respect to calendar
+ time*/
+ portNVIC_SYSTICK_CTRL_REG = (portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT);
+
+ /* Determine if the SysTick clock has already counted to zero and
+ been set back to the current reload value (the reload back being
+ correct for the entire expected idle time) or if the SysTick is yet
+ to count to zero (in which case an interrupt other than the SysTick
+ must have brought the system out of sleep mode). */
+ if ((portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT) != 0) {
+ uint32_t ulCalculatedLoadValue;
+
+ /* The tick interrupt is already pending, and the SysTick count
+ reloaded with ulReloadValue. Reset the
+ portNVIC_SYSTICK_LOAD_REG with whatever remains of this tick
+ period. */
+ ulCalculatedLoadValue = (ulTimerCountsForOneTick - 1UL) - (ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG);
+
+ /* Don't allow a tiny value, or values that have somehow
+ underflowed because the post sleep hook did something
+ that took too long. */
+ if ((ulCalculatedLoadValue < ulStoppedTimerCompensation) || (ulCalculatedLoadValue > ulTimerCountsForOneTick)) {
+ ulCalculatedLoadValue = (ulTimerCountsForOneTick - 1UL);
+ }
+
+ portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
+
+ /* As the pending tick will be processed as soon as this
+ function exits, the tick value maintained by the tick is stepped
+ forward by one less than the time spent waiting. */
+ ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
+ } else {
+ /* Something other than the tick interrupt ended the sleep.
+ Work out how long the sleep lasted rounded to complete tick
+ periods (not the ulReload value which accounted for part
+ ticks). */
+ ulCompletedSysTickDecrements = (xExpectedIdleTime * ulTimerCountsForOneTick) - portNVIC_SYSTICK_CURRENT_VALUE_REG;
+
+ /* How many complete tick periods passed while the processor
+ was waiting? */
+ ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
+
+ /* The reload value is set to whatever fraction of a single tick
+ period remains. */
+ portNVIC_SYSTICK_LOAD_REG = ((ulCompleteTickPeriods + 1UL) * ulTimerCountsForOneTick) - ulCompletedSysTickDecrements;
+ }
+
+ /* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG
+ again, then set portNVIC_SYSTICK_LOAD_REG back to its standard
+ value. */
+ portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
+ portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
+ vTaskStepTick(ulCompleteTickPeriods);
+ portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
+
+ /* Exit with interrupts enabled. */
+ __asm volatile("cpsie i" ::: "memory");
+ }
+}
+
+#endif /* configUSE_TICKLESS_IDLE */
+/*-----------------------------------------------------------*/
+
+/*
+ * Setup the systick timer to generate the tick interrupts at the required
+ * frequency.
+ */
+__attribute__((weak)) void vPortSetupTimerInterrupt(void) {
+ /* Calculate the constants required to configure the tick interrupt. */
+#if (configUSE_TICKLESS_IDLE == 1)
+ {
+ ulTimerCountsForOneTick = (configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ);
+ xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
+ ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / (configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ);
+ }
+#endif /* configUSE_TICKLESS_IDLE */
+
+ /* Stop and clear the SysTick. */
+ portNVIC_SYSTICK_CTRL_REG = 0UL;
+ portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
+
+ /* Configure SysTick to interrupt at the requested rate. */
+ portNVIC_SYSTICK_LOAD_REG = (configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ) - 1UL;
+ portNVIC_SYSTICK_CTRL_REG = (portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT);
+}
+/*-----------------------------------------------------------*/
+
+#if (configASSERT_DEFINED == 1)
+
+void vPortValidateInterruptPriority(void) {
+ uint32_t ulCurrentInterrupt;
+ uint8_t ucCurrentPriority;
+
+ /* Obtain the number of the currently executing interrupt. */
+ __asm volatile("mrs %0, ipsr" : "=r"(ulCurrentInterrupt)::"memory");
+
+ /* Is the interrupt number a user defined interrupt? */
+ if (ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER) {
+ /* Look up the interrupt's priority. */
+ ucCurrentPriority = pcInterruptPriorityRegisters[ulCurrentInterrupt];
+
+ /* The following assertion will fail if a service routine (ISR) for
+ an interrupt that has been assigned a priority above
+ configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
+ function. ISR safe FreeRTOS API functions must *only* be called
+ from interrupts that have been assigned a priority at or below
+ configMAX_SYSCALL_INTERRUPT_PRIORITY.
+
+ Numerically low interrupt priority numbers represent logically high
+ interrupt priorities, therefore the priority of the interrupt must
+ be set to a value equal to or numerically *higher* than
+ configMAX_SYSCALL_INTERRUPT_PRIORITY.
+
+ Interrupts that use the FreeRTOS API must not be left at their
+ default priority of zero as that is the highest possible priority,
+ which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
+ and therefore also guaranteed to be invalid.
+
+ FreeRTOS maintains separate thread and ISR API functions to ensure
+ interrupt entry is as fast and simple as possible.
+
+ The following links provide detailed information:
+ http://www.freertos.org/RTOS-Cortex-M3-M4.html
+ http://www.freertos.org/FAQHelp.html */
+ configASSERT(ucCurrentPriority >= ucMaxSysCallPriority);
+ }
+
+ /* Priority grouping: The interrupt controller (NVIC) allows the bits
+ that define each interrupt's priority to be split between bits that
+ define the interrupt's pre-emption priority bits and bits that define
+ the interrupt's sub-priority. For simplicity all bits must be defined
+ to be pre-emption priority bits. The following assertion will fail if
+ this is not the case (if some bits represent a sub-priority).
+
+ If the application only uses CMSIS libraries for interrupt
+ configuration then the correct setting can be achieved on all Cortex-M
+ devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
+ scheduler. Note however that some vendor specific peripheral libraries
+ assume a non-zero priority group setting, in which cases using a value
+ of zero will result in unpredictable behaviour. */
+ configASSERT((portAIRCR_REG & portPRIORITY_GROUP_MASK) <= ulMaxPRIGROUPValue);
+}
+
+#endif /* configASSERT_DEFINED */
diff --git a/source/Core/BSP/MHP30/portmacro.h b/source/Core/BSP/MHP30/portmacro.h new file mode 100644 index 00000000..16d5242c --- /dev/null +++ b/source/Core/BSP/MHP30/portmacro.h @@ -0,0 +1,230 @@ +/*
+ * FreeRTOS Kernel V10.3.1
+ * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
+
+#ifndef PORTMACRO_H
+#define PORTMACRO_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*-----------------------------------------------------------
+ * Port specific definitions.
+ *
+ * The settings in this file configure FreeRTOS correctly for the
+ * given hardware and compiler.
+ *
+ * These settings should not be altered.
+ *-----------------------------------------------------------
+ */
+
+/* Type definitions. */
+#define portCHAR char
+#define portFLOAT float
+#define portDOUBLE double
+#define portLONG long
+#define portSHORT short
+#define portSTACK_TYPE uint32_t
+#define portBASE_TYPE long
+
+typedef portSTACK_TYPE StackType_t;
+typedef long BaseType_t;
+typedef unsigned long UBaseType_t;
+
+#if (configUSE_16_BIT_TICKS == 1)
+typedef uint16_t TickType_t;
+#define portMAX_DELAY (TickType_t)0xffff
+#else
+typedef uint32_t TickType_t;
+#define portMAX_DELAY (TickType_t)0xffffffffUL
+
+/* 32-bit tick type on a 32-bit architecture, so reads of the tick count do
+ not need to be guarded with a critical section. */
+#define portTICK_TYPE_IS_ATOMIC 1
+#endif
+/*-----------------------------------------------------------*/
+
+/* Architecture specifics. */
+#define portSTACK_GROWTH (-1)
+#define portTICK_PERIOD_MS ((TickType_t)1000 / configTICK_RATE_HZ)
+#define portBYTE_ALIGNMENT 8
+/*-----------------------------------------------------------*/
+
+/* Scheduler utilities. */
+#define portYIELD() \
+ { \
+ /* Set a PendSV to request a context switch. */ \
+ portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; \
+ \
+ /* Barriers are normally not required but do ensure the code is completely \
+ within the specified behaviour for the architecture. */ \
+ __asm volatile("dsb" ::: "memory"); \
+ __asm volatile("isb"); \
+ }
+
+#define portNVIC_INT_CTRL_REG (*((volatile uint32_t *)0xe000ed04))
+#define portNVIC_PENDSVSET_BIT (1UL << 28UL)
+#define portEND_SWITCHING_ISR(xSwitchRequired) \
+ if (xSwitchRequired != pdFALSE) \
+ portYIELD()
+#define portYIELD_FROM_ISR(x) portEND_SWITCHING_ISR(x)
+/*-----------------------------------------------------------*/
+
+/* Critical section management. */
+extern void vPortEnterCritical(void);
+extern void vPortExitCritical(void);
+#define portSET_INTERRUPT_MASK_FROM_ISR() ulPortRaiseBASEPRI()
+#define portCLEAR_INTERRUPT_MASK_FROM_ISR(x) vPortSetBASEPRI(x)
+#define portDISABLE_INTERRUPTS() vPortRaiseBASEPRI()
+#define portENABLE_INTERRUPTS() vPortSetBASEPRI(0)
+#define portENTER_CRITICAL() vPortEnterCritical()
+#define portEXIT_CRITICAL() vPortExitCritical()
+
+/*-----------------------------------------------------------*/
+
+/* Task function macros as described on the FreeRTOS.org WEB site. These are
+ not necessary for to use this port. They are defined so the common demo files
+ (which build with all the ports) will build. */
+#define portTASK_FUNCTION_PROTO(vFunction, pvParameters) void vFunction(void *pvParameters)
+#define portTASK_FUNCTION(vFunction, pvParameters) void vFunction(void *pvParameters)
+/*-----------------------------------------------------------*/
+
+/* Tickless idle/low power functionality. */
+#ifndef portSUPPRESS_TICKS_AND_SLEEP
+extern void vPortSuppressTicksAndSleep(TickType_t xExpectedIdleTime);
+#define portSUPPRESS_TICKS_AND_SLEEP(xExpectedIdleTime) vPortSuppressTicksAndSleep(xExpectedIdleTime)
+#endif
+/*-----------------------------------------------------------*/
+
+/* Architecture specific optimisations. */
+#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
+#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
+#endif
+
+#if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1
+
+/* Generic helper function. */
+__attribute__((always_inline)) static inline uint8_t ucPortCountLeadingZeros(uint32_t ulBitmap) {
+ uint8_t ucReturn;
+
+ __asm volatile("clz %0, %1" : "=r"(ucReturn) : "r"(ulBitmap) : "memory");
+ return ucReturn;
+}
+
+/* Check the configuration. */
+#if (configMAX_PRIORITIES > 32)
+#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
+#endif
+
+/* Store/clear the ready priorities in a bit map. */
+#define portRECORD_READY_PRIORITY(uxPriority, uxReadyPriorities) (uxReadyPriorities) |= (1UL << (uxPriority))
+#define portRESET_READY_PRIORITY(uxPriority, uxReadyPriorities) (uxReadyPriorities) &= ~(1UL << (uxPriority))
+
+/*-----------------------------------------------------------*/
+
+#define portGET_HIGHEST_PRIORITY(uxTopPriority, uxReadyPriorities) uxTopPriority = (31UL - (uint32_t)ucPortCountLeadingZeros((uxReadyPriorities)))
+
+#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
+
+/*-----------------------------------------------------------*/
+
+#ifdef configASSERT
+void vPortValidateInterruptPriority(void);
+#define portASSERT_IF_INTERRUPT_PRIORITY_INVALID() vPortValidateInterruptPriority()
+#endif
+
+/* portNOP() is not required by this port. */
+#define portNOP()
+
+#define portINLINE __inline
+
+#ifndef portFORCE_INLINE
+#define portFORCE_INLINE inline __attribute__((always_inline))
+#endif
+
+/*-----------------------------------------------------------*/
+
+portFORCE_INLINE static BaseType_t xPortIsInsideInterrupt(void) {
+ uint32_t ulCurrentInterrupt;
+ BaseType_t xReturn;
+
+ /* Obtain the number of the currently executing interrupt. */
+ __asm volatile("mrs %0, ipsr" : "=r"(ulCurrentInterrupt)::"memory");
+
+ if (ulCurrentInterrupt == 0) {
+ xReturn = pdFALSE;
+ } else {
+ xReturn = pdTRUE;
+ }
+
+ return xReturn;
+}
+
+/*-----------------------------------------------------------*/
+
+portFORCE_INLINE static void vPortRaiseBASEPRI(void) {
+ uint32_t ulNewBASEPRI;
+
+ __asm volatile(" mov %0, %1 \n"
+ " msr basepri, %0 \n"
+ " isb \n"
+ " dsb \n"
+ : "=r"(ulNewBASEPRI)
+ : "i"(configMAX_SYSCALL_INTERRUPT_PRIORITY)
+ : "memory");
+}
+
+/*-----------------------------------------------------------*/
+
+portFORCE_INLINE static uint32_t ulPortRaiseBASEPRI(void) {
+ uint32_t ulOriginalBASEPRI, ulNewBASEPRI;
+
+ __asm volatile(" mrs %0, basepri \n"
+ " mov %1, %2 \n"
+ " msr basepri, %1 \n"
+ " isb \n"
+ " dsb \n"
+ : "=r"(ulOriginalBASEPRI), "=r"(ulNewBASEPRI)
+ : "i"(configMAX_SYSCALL_INTERRUPT_PRIORITY)
+ : "memory");
+
+ /* This return will not be reached but is necessary to prevent compiler
+ warnings. */
+ return ulOriginalBASEPRI;
+}
+/*-----------------------------------------------------------*/
+
+portFORCE_INLINE static void vPortSetBASEPRI(uint32_t ulNewMaskValue) { __asm volatile(" msr basepri, %0 " ::"r"(ulNewMaskValue) : "memory"); }
+/*-----------------------------------------------------------*/
+
+#define portMEMORY_BARRIER() __asm volatile("" ::: "memory")
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* PORTMACRO_H */
diff --git a/source/Core/BSP/MHP30/postRTOS.cpp b/source/Core/BSP/MHP30/postRTOS.cpp new file mode 100644 index 00000000..2daab8b6 --- /dev/null +++ b/source/Core/BSP/MHP30/postRTOS.cpp @@ -0,0 +1,14 @@ +#include "BSP.h" +#include "FreeRTOS.h" +#include "I2C_Wrapper.hpp" +#include "QC3.h" +#include "Settings.h" +#include "cmsis_os.h" +#include "fusbpd.h" +#include "main.hpp" +#include "power.hpp" +#include "stdlib.h" +#include "task.h" + +// Initialisation to be performed with scheduler active +void postRToSInit() {} diff --git a/source/Core/BSP/MHP30/preRTOS.cpp b/source/Core/BSP/MHP30/preRTOS.cpp new file mode 100644 index 00000000..44ac337f --- /dev/null +++ b/source/Core/BSP/MHP30/preRTOS.cpp @@ -0,0 +1,24 @@ +/*
+ * preRTOS.c
+ *
+ * Created on: 29 May 2020
+ * Author: Ralim
+ */
+
+#include "BSP.h"
+#include "I2CBB.hpp"
+#include "Model_Config.h"
+#include "Pins.h"
+#include "Setup.h"
+#include "fusbpd.h"
+#include <I2C_Wrapper.hpp>
+void preRToSInit() {
+ /* Reset of all peripherals, Initializes the Flash interface and the Systick.
+ */
+ HAL_Init();
+ Setup_HAL(); // Setup all the HAL objects
+ BSPInit();
+ I2CBB::init();
+ /* Init the IPC objects */
+ FRToSI2C::FRToSInit();
+}
diff --git a/source/stm32f103.ld b/source/Core/BSP/MHP30/stm32f103.ld index a3a5a942..a3a5a942 100644 --- a/source/stm32f103.ld +++ b/source/Core/BSP/MHP30/stm32f103.ld diff --git a/source/Core/BSP/MHP30/stm32f1xx_hal_msp.c b/source/Core/BSP/MHP30/stm32f1xx_hal_msp.c new file mode 100644 index 00000000..d3a849a4 --- /dev/null +++ b/source/Core/BSP/MHP30/stm32f1xx_hal_msp.c @@ -0,0 +1,134 @@ +#include "Pins.h"
+#include "Setup.h"
+#include "stm32f1xx_hal.h"
+/**
+ * Initializes the Global MSP.
+ */
+void HAL_MspInit(void) {
+ __HAL_RCC_AFIO_CLK_ENABLE();
+
+ HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
+
+ /* System interrupt init*/
+ /* MemoryManagement_IRQn interrupt configuration */
+ HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0);
+ /* BusFault_IRQn interrupt configuration */
+ HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0);
+ /* UsageFault_IRQn interrupt configuration */
+ HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0);
+ /* SVCall_IRQn interrupt configuration */
+ HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0);
+ /* DebugMonitor_IRQn interrupt configuration */
+ HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0);
+ /* PendSV_IRQn interrupt configuration */
+ HAL_NVIC_SetPriority(PendSV_IRQn, 15, 0);
+ /* SysTick_IRQn interrupt configuration */
+ HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
+}
+
+void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc) {
+
+ GPIO_InitTypeDef GPIO_InitStruct;
+ if (hadc->Instance == ADC1) {
+ __HAL_RCC_ADC1_CLK_ENABLE();
+
+ /* ADC1 DMA Init */
+ /* ADC1 Init */
+ hdma_adc1.Instance = DMA1_Channel1;
+ hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
+ hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
+ hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
+ hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
+ hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
+ hdma_adc1.Init.Mode = DMA_CIRCULAR;
+ hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
+ HAL_DMA_Init(&hdma_adc1);
+
+ __HAL_LINKDMA(hadc, DMA_Handle, hdma_adc1);
+
+ /* ADC1 interrupt Init */
+ HAL_NVIC_SetPriority(ADC1_2_IRQn, 15, 0);
+ HAL_NVIC_EnableIRQ(ADC1_2_IRQn);
+ } else {
+ __HAL_RCC_ADC2_CLK_ENABLE();
+
+ /**ADC2 GPIO Configuration
+ PB0 ------> ADC2_IN8
+ PB1 ------> ADC2_IN9
+ */
+ GPIO_InitStruct.Pin = TIP_TEMP_Pin;
+ GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
+ HAL_GPIO_Init(TIP_TEMP_GPIO_Port, &GPIO_InitStruct);
+ GPIO_InitStruct.Pin = TMP36_INPUT_Pin;
+ GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
+ HAL_GPIO_Init(TMP36_INPUT_GPIO_Port, &GPIO_InitStruct);
+ GPIO_InitStruct.Pin = VIN_Pin;
+ GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
+ HAL_GPIO_Init(VIN_GPIO_Port, &GPIO_InitStruct);
+ GPIO_InitStruct.Pin = PLATE_SENSOR_Pin;
+ GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
+ HAL_GPIO_Init(PLATE_SENSOR_GPIO_Port, &GPIO_InitStruct);
+
+ /* ADC2 interrupt Init */
+ HAL_NVIC_SetPriority(ADC1_2_IRQn, 15, 0);
+ HAL_NVIC_EnableIRQ(ADC1_2_IRQn);
+ }
+}
+
+void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c) {
+
+ GPIO_InitTypeDef GPIO_InitStruct;
+ /**I2C1 GPIO Configuration
+ PB6 ------> I2C1_SCL
+ PB7 ------> I2C1_SDA
+ */
+ GPIO_InitStruct.Pin = SCL_Pin | SDA_Pin;
+ GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
+ GPIO_InitStruct.Pull = GPIO_PULLUP;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
+ HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
+
+ /* Peripheral clock enable */
+ __HAL_RCC_I2C1_CLK_ENABLE();
+ /* I2C1 DMA Init */
+ /* I2C1_RX Init */
+ hdma_i2c1_rx.Instance = DMA1_Channel7;
+ hdma_i2c1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
+ hdma_i2c1_rx.Init.PeriphInc = DMA_PINC_DISABLE;
+ hdma_i2c1_rx.Init.MemInc = DMA_MINC_ENABLE;
+ hdma_i2c1_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
+ hdma_i2c1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
+ hdma_i2c1_rx.Init.Mode = DMA_NORMAL;
+ hdma_i2c1_rx.Init.Priority = DMA_PRIORITY_LOW;
+ HAL_DMA_Init(&hdma_i2c1_rx);
+
+ __HAL_LINKDMA(hi2c, hdmarx, hdma_i2c1_rx);
+
+ /* I2C1_TX Init */
+ hdma_i2c1_tx.Instance = DMA1_Channel6;
+ hdma_i2c1_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
+ hdma_i2c1_tx.Init.PeriphInc = DMA_PINC_DISABLE;
+ hdma_i2c1_tx.Init.MemInc = DMA_MINC_ENABLE;
+ hdma_i2c1_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
+ hdma_i2c1_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
+ hdma_i2c1_tx.Init.Mode = DMA_NORMAL;
+ hdma_i2c1_tx.Init.Priority = DMA_PRIORITY_MEDIUM;
+ HAL_DMA_Init(&hdma_i2c1_tx);
+
+ __HAL_LINKDMA(hi2c, hdmatx, hdma_i2c1_tx);
+
+ /* I2C1 interrupt Init */
+ HAL_NVIC_SetPriority(I2C1_EV_IRQn, 15, 0);
+ HAL_NVIC_EnableIRQ(I2C1_EV_IRQn);
+ HAL_NVIC_SetPriority(I2C1_ER_IRQn, 15, 0);
+ HAL_NVIC_EnableIRQ(I2C1_ER_IRQn);
+}
+
+void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim_base) {
+
+ if (htim_base->Instance == TIM3) {
+ __HAL_RCC_TIM3_CLK_ENABLE();
+ } else if (htim_base->Instance == TIM2) {
+ __HAL_RCC_TIM2_CLK_ENABLE();
+ }
+}
diff --git a/source/Core/BSP/MHP30/stm32f1xx_hal_timebase_TIM.c b/source/Core/BSP/MHP30/stm32f1xx_hal_timebase_TIM.c new file mode 100644 index 00000000..e08191ef --- /dev/null +++ b/source/Core/BSP/MHP30/stm32f1xx_hal_timebase_TIM.c @@ -0,0 +1,107 @@ +/* USER CODE BEGIN Header */
+/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_timebase_TIM.c
+ * @brief HAL time base based on the hardware TIM.
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© Copyright (c) 2021 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+/* USER CODE END Header */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+#include "stm32f1xx_hal_tim.h"
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+TIM_HandleTypeDef htim4;
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/**
+ * @brief This function configures the TIM4 as a time base source.
+ * The time source is configured to have 1ms time base with a dedicated
+ * Tick interrupt priority.
+ * @note This function is called automatically at the beginning of program after
+ * reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig().
+ * @param TickPriority: Tick interrupt priority.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) {
+ RCC_ClkInitTypeDef clkconfig;
+ uint32_t uwTimclock = 0;
+ uint32_t uwPrescalerValue = 0;
+ uint32_t pFLatency;
+ /*Configure the TIM4 IRQ priority */
+ HAL_NVIC_SetPriority(TIM4_IRQn, TickPriority, 0);
+
+ /* Enable the TIM4 global Interrupt */
+ HAL_NVIC_EnableIRQ(TIM4_IRQn);
+ /* Enable TIM4 clock */
+ __HAL_RCC_TIM4_CLK_ENABLE();
+
+ /* Get clock configuration */
+ HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);
+
+ /* Compute TIM4 clock */
+ uwTimclock = 2 * HAL_RCC_GetPCLK1Freq();
+ /* Compute the prescaler value to have TIM4 counter clock equal to 1MHz */
+ uwPrescalerValue = (uint32_t)((uwTimclock / 1000000U) - 1U);
+
+ /* Initialize TIM4 */
+ htim4.Instance = TIM4;
+
+ /* Initialize TIMx peripheral as follow:
+ + Period = [(TIM4CLK/1000) - 1]. to have a (1/1000) s time base.
+ + Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock.
+ + ClockDivision = 0
+ + Counter direction = Up
+ */
+ htim4.Init.Period = (1000000U / 1000U) - 1U;
+ htim4.Init.Prescaler = uwPrescalerValue;
+ htim4.Init.ClockDivision = 0;
+ htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
+ if (HAL_TIM_Base_Init(&htim4) == HAL_OK) {
+ /* Start the TIM time Base generation in interrupt mode */
+ return HAL_TIM_Base_Start_IT(&htim4);
+ }
+
+ /* Return function status */
+ return HAL_ERROR;
+}
+
+/**
+ * @brief Suspend Tick increment.
+ * @note Disable the tick increment by disabling TIM4 update interrupt.
+ * @param None
+ * @retval None
+ */
+void HAL_SuspendTick(void) {
+ /* Disable TIM4 update Interrupt */
+ __HAL_TIM_DISABLE_IT(&htim4, TIM_IT_UPDATE);
+}
+
+/**
+ * @brief Resume Tick increment.
+ * @note Enable the tick increment by Enabling TIM4 update interrupt.
+ * @param None
+ * @retval None
+ */
+void HAL_ResumeTick(void) {
+ /* Enable TIM4 Update interrupt */
+ __HAL_TIM_ENABLE_IT(&htim4, TIM_IT_UPDATE);
+}
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/MHP30/stm32f1xx_it.c b/source/Core/BSP/MHP30/stm32f1xx_it.c new file mode 100644 index 00000000..087bf037 --- /dev/null +++ b/source/Core/BSP/MHP30/stm32f1xx_it.c @@ -0,0 +1,53 @@ +// This is the stock standard STM interrupt file full of handlers
+#include "stm32f1xx_it.h"
+#include "Pins.h"
+#include "Setup.h"
+#include "cmsis_os.h"
+#include "stm32f1xx.h"
+#include "stm32f1xx_hal.h"
+extern TIM_HandleTypeDef htim4; // used for the systick
+
+/******************************************************************************/
+/* Cortex-M3 Processor Interruption and Exception Handlers */
+/******************************************************************************/
+
+void NMI_Handler(void) {}
+
+// We have the assembly for a breakpoint trigger here to halt the system when a debugger is connected
+// Hardfault handler, often a screwup in the code
+void HardFault_Handler(void) {}
+
+// Memory management unit had an error
+void MemManage_Handler(void) {}
+
+// Prefetcher or busfault occured
+void BusFault_Handler(void) {}
+
+void UsageFault_Handler(void) {}
+
+void DebugMon_Handler(void) {}
+
+// Systick is used by FreeRTOS tick
+void SysTick_Handler(void) { osSystickHandler(); }
+
+/******************************************************************************/
+/* STM32F1xx Peripheral Interrupt Handlers */
+/* Add here the Interrupt Handlers for the used peripherals. */
+/* For the available peripheral interrupt handler names, */
+/* please refer to the startup file. */
+/******************************************************************************/
+
+// DMA used to move the ADC readings into system ram
+void DMA1_Channel1_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_adc1); }
+// ADC interrupt used for DMA
+void ADC1_2_IRQHandler(void) { HAL_ADC_IRQHandler(&hadc1); }
+
+// used for hal ticks
+void TIM4_IRQHandler(void) { HAL_TIM_IRQHandler(&htim4); }
+void I2C1_EV_IRQHandler(void) { HAL_I2C_EV_IRQHandler(&hi2c1); }
+void I2C1_ER_IRQHandler(void) { HAL_I2C_ER_IRQHandler(&hi2c1); }
+
+void DMA1_Channel6_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_i2c1_tx); }
+
+void DMA1_Channel7_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_i2c1_rx); }
+void EXTI9_5_IRQHandler(void) { HAL_GPIO_EXTI_IRQHandler(INT_PD_Pin); }
diff --git a/source/Core/BSP/MHP30/system_stm32f1xx.c b/source/Core/BSP/MHP30/system_stm32f1xx.c new file mode 100644 index 00000000..e950ea24 --- /dev/null +++ b/source/Core/BSP/MHP30/system_stm32f1xx.c @@ -0,0 +1,290 @@ +// This file was automatically generated by the STM Cube software
+// And as such, is BSD licneced from STM
+#include "stm32f1xx.h"
+
+#if !defined(HSI_VALUE)
+#define HSI_VALUE \
+ 8000000U /*!< Default value of the Internal oscillator in Hz. \
+ This value can be provided and adapted by the user application. */
+#endif /* HSI_VALUE */
+
+/*!< Uncomment the following line if you need to use external SRAM */
+#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
+/* #define DATA_IN_ExtSRAM */
+#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
+
+/*******************************************************************************
+ * Clock Definitions
+ *******************************************************************************/
+#if defined(STM32F100xB) || defined(STM32F100xE)
+uint32_t SystemCoreClock = 24000000U; /*!< System Clock Frequency (Core Clock) */
+#else /*!< HSI Selected as System Clock source */
+uint32_t SystemCoreClock = 64000000U; /*!< System Clock Frequency (Core Clock) */
+#endif
+
+const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
+const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4};
+
+/**
+ * @brief Setup the microcontroller system
+ * Initialize the Embedded Flash Interface, the PLL and update the
+ * SystemCoreClock variable.
+ * @note This function should be used only after reset.
+ * @param None
+ * @retval None
+ */
+void SystemInit(void) {
+ /* Reset the RCC clock configuration to the default reset state(for debug purpose) */
+ /* Set HSION bit */
+ RCC->CR |= 0x00000001U;
+
+ /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
+#if !defined(STM32F105xC) && !defined(STM32F107xC)
+ RCC->CFGR &= 0xF8FF0000U;
+#else
+ RCC->CFGR &= 0xF0FF0000U;
+#endif /* STM32F105xC */
+
+ /* Reset HSEON, CSSON and PLLON bits */
+ RCC->CR &= 0xFEF6FFFFU;
+
+ /* Reset HSEBYP bit */
+ RCC->CR &= 0xFFFBFFFFU;
+
+ /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
+ RCC->CFGR &= 0xFF80FFFFU;
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ /* Reset PLL2ON and PLL3ON bits */
+ RCC->CR &= 0xEBFFFFFFU;
+
+ /* Disable all interrupts and clear pending bits */
+ RCC->CIR = 0x00FF0000U;
+
+ /* Reset CFGR2 register */
+ RCC->CFGR2 = 0x00000000U;
+#elif defined(STM32F100xB) || defined(STM32F100xE)
+ /* Disable all interrupts and clear pending bits */
+ RCC->CIR = 0x009F0000U;
+
+ /* Reset CFGR2 register */
+ RCC->CFGR2 = 0x00000000U;
+#else
+ /* Disable all interrupts and clear pending bits */
+ RCC->CIR = 0x009F0000U;
+#endif /* STM32F105xC */
+
+#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
+#ifdef DATA_IN_ExtSRAM
+ SystemInit_ExtMemCtl();
+#endif /* DATA_IN_ExtSRAM */
+#endif
+
+#ifdef VECT_TAB_SRAM
+ SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
+#else
+ SCB->VTOR = FLASH_BASE | 0x8000; /* Vector Table Relocation in Internal FLASH. */
+#endif
+}
+
+/**
+ * @brief Update SystemCoreClock variable according to Clock Register Values.
+ * The SystemCoreClock variable contains the core clock (HCLK), it can
+ * be used by the user application to setup the SysTick timer or configure
+ * other parameters.
+ *
+ * @note Each time the core clock (HCLK) changes, this function must be called
+ * to update SystemCoreClock variable value. Otherwise, any configuration
+ * based on this variable will be incorrect.
+ *
+ * @note - The system frequency computed by this function is not the real
+ * frequency in the chip. It is calculated based on the predefined
+ * constant and the selected clock source:
+ *
+ * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
+ *
+ * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
+ *
+ * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
+ * or HSI_VALUE(*) multiplied by the PLL factors.
+ *
+ * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value
+ * 8 MHz) but the real value may vary depending on the variations
+ * in voltage and temperature.
+ *
+ * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value
+ * 8 MHz or 25 MHz, depending on the product used), user has to ensure
+ * that HSE_VALUE is same as the real frequency of the crystal used.
+ * Otherwise, this function may have wrong result.
+ *
+ * - The result of this function could be not correct when using fractional
+ * value for HSE crystal.
+ * @param None
+ * @retval None
+ */
+void SystemCoreClockUpdate(void) {
+ uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U;
+
+#if defined(STM32F105xC) || defined(STM32F107xC)
+ uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U;
+#endif /* STM32F105xC */
+
+#if defined(STM32F100xB) || defined(STM32F100xE)
+ uint32_t prediv1factor = 0U;
+#endif /* STM32F100xB or STM32F100xE */
+
+ /* Get SYSCLK source -------------------------------------------------------*/
+ tmp = RCC->CFGR & RCC_CFGR_SWS;
+
+ switch (tmp) {
+ case 0x00U: /* HSI used as system clock */
+ SystemCoreClock = HSI_VALUE;
+ break;
+ case 0x04U: /* HSE used as system clock */
+ SystemCoreClock = HSE_VALUE;
+ break;
+ case 0x08U: /* PLL used as system clock */
+
+ /* Get PLL clock source and multiplication factor ----------------------*/
+ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
+ pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
+
+#if !defined(STM32F105xC) && !defined(STM32F107xC)
+ pllmull = (pllmull >> 18U) + 2U;
+
+ if (pllsource == 0x00U) {
+ /* HSI oscillator clock divided by 2 selected as PLL clock entry */
+ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull;
+ } else {
+#if defined(STM32F100xB) || defined(STM32F100xE)
+ prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U;
+ /* HSE oscillator clock selected as PREDIV1 clock entry */
+ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;
+#else
+ /* HSE selected as PLL clock entry */
+ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) { /* HSE oscillator clock divided by 2 */
+ SystemCoreClock = (HSE_VALUE >> 1U) * pllmull;
+ } else {
+ SystemCoreClock = HSE_VALUE * pllmull;
+ }
+#endif
+ }
+#else
+ pllmull = pllmull >> 18U;
+
+ if (pllmull != 0x0DU) {
+ pllmull += 2U;
+ } else { /* PLL multiplication factor = PLL input clock * 6.5 */
+ pllmull = 13U / 2U;
+ }
+
+ if (pllsource == 0x00U) {
+ /* HSI oscillator clock divided by 2 selected as PLL clock entry */
+ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull;
+ } else { /* PREDIV1 selected as PLL clock entry */
+
+ /* Get PREDIV1 clock source and division factor */
+ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC;
+ prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U;
+
+ if (prediv1source == 0U) {
+ /* HSE oscillator clock selected as PREDIV1 clock entry */
+ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;
+ } else { /* PLL2 clock selected as PREDIV1 clock entry */
+
+ /* Get PREDIV2 division factor and PLL2 multiplication factor */
+ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U;
+ pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U;
+ SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull;
+ }
+ }
+#endif /* STM32F105xC */
+ break;
+
+ default:
+ SystemCoreClock = HSI_VALUE;
+ break;
+ }
+
+ /* Compute HCLK clock frequency ----------------*/
+ /* Get HCLK prescaler */
+ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)];
+ /* HCLK clock frequency */
+ SystemCoreClock >>= tmp;
+}
+
+#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
+/**
+ * @brief Setup the external memory controller. Called in startup_stm32f1xx.s
+ * before jump to __main
+ * @param None
+ * @retval None
+ */
+#ifdef DATA_IN_ExtSRAM
+/**
+ * @brief Setup the external memory controller.
+ * Called in startup_stm32f1xx_xx.s/.c before jump to main.
+ * This function configures the external SRAM mounted on STM3210E-EVAL
+ * board (STM32 High density devices). This SRAM will be used as program
+ * data memory (including heap and stack).
+ * @param None
+ * @retval None
+ */
+void SystemInit_ExtMemCtl(void) {
+ __IO uint32_t tmpreg;
+ /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is
+ required, then adjust the Register Addresses */
+
+ /* Enable FSMC clock */
+ RCC->AHBENR = 0x00000114U;
+
+ /* Delay after an RCC peripheral clock enabling */
+ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN);
+
+ /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */
+ RCC->APB2ENR = 0x000001E0U;
+
+ /* Delay after an RCC peripheral clock enabling */
+ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN);
+
+ (void)(tmpreg);
+
+ /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/
+ /*---------------- SRAM Address lines configuration -------------------------*/
+ /*---------------- NOE and NWE configuration --------------------------------*/
+ /*---------------- NE3 configuration ----------------------------------------*/
+ /*---------------- NBL0, NBL1 configuration ---------------------------------*/
+
+ GPIOD->CRL = 0x44BB44BBU;
+ GPIOD->CRH = 0xBBBBBBBBU;
+
+ GPIOE->CRL = 0xB44444BBU;
+ GPIOE->CRH = 0xBBBBBBBBU;
+
+ GPIOF->CRL = 0x44BBBBBBU;
+ GPIOF->CRH = 0xBBBB4444U;
+
+ GPIOG->CRL = 0x44BBBBBBU;
+ GPIOG->CRH = 0x444B4B44U;
+
+ /*---------------- FSMC Configuration ---------------------------------------*/
+ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/
+
+ FSMC_Bank1->BTCR[4U] = 0x00001091U;
+ FSMC_Bank1->BTCR[5U] = 0x00110212U;
+}
+#endif /* DATA_IN_ExtSRAM */
+#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/Miniware/BSP.cpp b/source/Core/BSP/Miniware/BSP.cpp index a40c9000..7c1d149e 100644 --- a/source/Core/BSP/Miniware/BSP.cpp +++ b/source/Core/BSP/Miniware/BSP.cpp @@ -5,6 +5,8 @@ #include "Model_Config.h"
#include "Pins.h"
#include "Setup.h"
+#include "TipThermoModel.h"
+#include "configuration.h"
#include "history.hpp"
#include "main.hpp"
#include <IRQ.h>
@@ -338,3 +340,12 @@ void BSPInit(void) { switchToFastPWM(); } void reboot() { NVIC_SystemReset(); }
void delay_ms(uint16_t count) { HAL_Delay(count); }
+
+bool isTipDisconnected() {
+
+ uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
+ uint32_t tipTemp = TipThermoModel::getTipInC();
+ return tipTemp > tipDisconnectedThres;
+}
+
+void setStatusLED(const enum StatusLED state) {}
diff --git a/source/Core/BSP/Miniware/Power.cpp b/source/Core/BSP/Miniware/Power.cpp index 27384a2c..8cbee738 100644 --- a/source/Core/BSP/Miniware/Power.cpp +++ b/source/Core/BSP/Miniware/Power.cpp @@ -4,6 +4,7 @@ #include "Pins.h" #include "QC3.h" #include "Settings.h" +#include "fusb_user.h" #include "fusbpd.h" #include "int_n.h" #include "policy_engine.h" diff --git a/source/Core/BSP/Miniware/ThermoModel.cpp b/source/Core/BSP/Miniware/ThermoModel.cpp new file mode 100644 index 00000000..ae74d49c --- /dev/null +++ b/source/Core/BSP/Miniware/ThermoModel.cpp @@ -0,0 +1,130 @@ +/*
+ * ThermoModel.cpp
+ *
+ * Created on: 1 May 2021
+ * Author: Ralim
+ */
+#include "TipThermoModel.h"
+#include "Utils.h"
+#include "configuration.h"
+
+#ifdef TEMP_uV_LOOKUP_HAKKO
+const uint16_t uVtoDegC[] = {
+ //
+ //
+ 0, 0, //
+ 266, 10, //
+ 522, 20, //
+ 770, 30, //
+ 1010, 40, //
+ 1244, 50, //
+ 1473, 60, //
+ 1697, 70, //
+ 1917, 80, //
+ 2135, 90, //
+ 2351, 100, //
+ 2566, 110, //
+ 2780, 120, //
+ 2994, 130, //
+ 3209, 140, //
+ 3426, 150, //
+ 3644, 160, //
+ 3865, 170, //
+ 4088, 180, //
+ 4314, 190, //
+ 4544, 200, //
+ 4777, 210, //
+ 5014, 220, //
+ 5255, 230, //
+ 5500, 240, //
+ 5750, 250, //
+ 6003, 260, //
+ 6261, 270, //
+ 6523, 280, //
+ 6789, 290, //
+ 7059, 300, //
+ 7332, 310, //
+ 7609, 320, //
+ 7889, 330, //
+ 8171, 340, //
+ 8456, 350, //
+ 8742, 360, //
+ 9030, 370, //
+ 9319, 380, //
+ 9607, 390, //
+ 9896, 400, //
+ 10183, 410, //
+ 10468, 420, //
+ 10750, 430, //
+ 11029, 440, //
+ 11304, 450, //
+ 11573, 460, //
+ 11835, 470, //
+ 12091, 480, //
+ 12337, 490, //
+ 12575, 500, //
+
+};
+#endif
+
+#ifdef TEMP_uV_LOOKUP_TS80
+
+const uint16_t uVtoDegC[] = {
+ //
+ //
+ 530, 0, //
+ 1282, 10, //
+ 2034, 20, //
+ 2786, 30, //
+ 3538, 40, //
+ 4290, 50, //
+ 5043, 60, //
+ 5795, 70, //
+ 6547, 80, //
+ 7299, 90, //
+ 8051, 100, //
+ 8803, 110, //
+ 9555, 120, //
+ 10308, 130, //
+ 11060, 140, //
+ 11812, 150, //
+ 12564, 160, //
+ 13316, 170, //
+ 14068, 180, //
+ 14820, 190, //
+ 15573, 200, //
+ 16325, 210, //
+ 17077, 220, //
+ 17829, 230, //
+ 18581, 240, //
+ 19333, 250, //
+ 20085, 260, //
+ 20838, 270, //
+ 21590, 280, //
+ 22342, 290, //
+ 23094, 300, //
+ 23846, 310, //
+ 24598, 320, //
+ 25350, 330, //
+ 26103, 340, //
+ 26855, 350, //
+ 27607, 360, //
+ 28359, 370, //
+ 29111, 380, //
+ 29863, 390, //
+ 30615, 400, //
+ 31368, 410, //
+ 32120, 420, //
+ 32872, 430, //
+ 33624, 440, //
+ 34376, 450, //
+ 35128, 460, //
+ 35880, 470, //
+ 36632, 480, //
+ 37385, 490, //
+ 38137, 500, //
+};
+#endif
+const int uVtoDegCItems = sizeof(uVtoDegC) / (2 * sizeof(uint16_t));
+
+uint32_t TipThermoModel::convertuVToDegC(uint32_t tipuVDelta) { return Utils::InterpolateLookupTable(uVtoDegC, uVtoDegCItems, tipuVDelta); }
diff --git a/source/Core/BSP/Miniware/fusb_user.cpp b/source/Core/BSP/Miniware/fusb_user.cpp index 5ae87423..c37bb5ff 100644 --- a/source/Core/BSP/Miniware/fusb_user.cpp +++ b/source/Core/BSP/Miniware/fusb_user.cpp @@ -5,21 +5,6 @@ #include "Setup.h" #include "fusb302b.h" #include "fusb_user.h" -/* - * Read a single byte from the FUSB302B - * - * cfg: The FUSB302B to communicate with - * addr: The memory address from which to read - * - * Returns the value read from addr. - */ -uint8_t fusb_read_byte(uint8_t addr) { - uint8_t data[1]; - if (!I2CBB::Mem_Read(FUSB302B_ADDR, addr, (uint8_t *)data, 1)) { - return 0; - } - return data[0]; -} /* * Read multiple bytes from the FUSB302B @@ -32,15 +17,6 @@ uint8_t fusb_read_byte(uint8_t addr) { bool fusb_read_buf(uint8_t addr, uint8_t size, uint8_t *buf) { return I2CBB::Mem_Read(FUSB302B_ADDR, addr, buf, size); } /* - * Write a single byte to the FUSB302B - * - * cfg: The FUSB302B to communicate with - * addr: The memory address to which we will write - * byte: The value to write - */ -bool fusb_write_byte(uint8_t addr, uint8_t byte) { return I2CBB::Mem_Write(FUSB302B_ADDR, addr, (uint8_t *)&byte, 1); } - -/* * Write multiple bytes to the FUSB302B * * cfg: The FUSB302B to communicate with @@ -50,7 +26,7 @@ bool fusb_write_byte(uint8_t addr, uint8_t byte) { return I2CBB::Mem_Write(FUSB3 */ bool fusb_write_buf(uint8_t addr, uint8_t size, const uint8_t *buf) { return I2CBB::Mem_Write(FUSB302B_ADDR, addr, buf, size); } -uint8_t fusb302_detect() { +bool fusb302_detect() { // Probe the I2C bus for its address return I2CBB::probe(FUSB302B_ADDR); } diff --git a/source/Core/BSP/Miniware/stm32f103.ld b/source/Core/BSP/Miniware/stm32f103.ld new file mode 100644 index 00000000..a3a5a942 --- /dev/null +++ b/source/Core/BSP/Miniware/stm32f103.ld @@ -0,0 +1,169 @@ +
+
+/* Entry Point */
+ENTRY(Reset_Handler)
+
+/* Highest address of the user mode stack */
+_estack = 0x20005000; /* end of RAM */
+
+_Min_Heap_Size = 0x300; /* required amount of heap */
+_Min_Stack_Size = 1024; /* required amount of stack */
+
+__APP_BASE_ADDRESS__ = 0x08000000 + __BOOTLDR_SIZE__;
+__ROM_REGION_LENGTH__ = __FLASH_SIZE__ - __BOOTLDR_SIZE__;
+__FLASH_END_ADDR__ = __APP_BASE_ADDRESS__ + __ROM_REGION_LENGTH__;
+
+/* Memories definition */
+MEMORY
+{
+ RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 20K
+ ROM (rx) : ORIGIN = __APP_BASE_ADDRESS__, LENGTH = __ROM_REGION_LENGTH__
+}
+/* ROM is normally 48K after the bootloader, however we allocate the last page for settings, and the second last one for display boot logo*/
+
+/* Sections */
+SECTIONS
+{
+ /* The startup code into ROM memory */
+ .isr_vector :
+ {
+ . = ALIGN(4);
+ KEEP(*(.isr_vector)) /* Startup code */
+ . = ALIGN(4);
+ } >ROM
+
+ /* The program code and other data into ROM memory */
+ .text :
+ {
+ . = ALIGN(4);
+ *(.text) /* .text sections (code) */
+ *(.text*) /* .text* sections (code) */
+ *(.glue_7) /* glue arm to thumb code */
+ *(.glue_7t) /* glue thumb to arm code */
+ *(.eh_frame)
+
+ KEEP (*(.init))
+ KEEP (*(.fini))
+
+ . = ALIGN(4);
+ _etext = .; /* define a global symbols at end of code */
+ } >ROM
+
+ /* Constant data into ROM memory*/
+ .rodata :
+ {
+ . = ALIGN(4);
+ *(.rodata) /* .rodata sections (constants, strings, etc.) */
+ *(.rodata*) /* .rodata* sections (constants, strings, etc.) */
+ . = ALIGN(4);
+ } >ROM
+
+ .ARM.extab : {
+ . = ALIGN(4);
+ *(.ARM.extab* .gnu.linkonce.armextab.*)
+ . = ALIGN(4);
+ } >ROM
+
+ .ARM : {
+ . = ALIGN(4);
+ __exidx_start = .;
+ *(.ARM.exidx*)
+ __exidx_end = .;
+ . = ALIGN(4);
+ } >ROM
+
+ .preinit_array :
+ {
+ . = ALIGN(4);
+ PROVIDE_HIDDEN (__preinit_array_start = .);
+ KEEP (*(.preinit_array*))
+ PROVIDE_HIDDEN (__preinit_array_end = .);
+ . = ALIGN(4);
+ } >ROM
+
+ .init_array :
+ {
+ . = ALIGN(4);
+ PROVIDE_HIDDEN (__init_array_start = .);
+ KEEP (*(SORT(.init_array.*)))
+ KEEP (*(.init_array*))
+ PROVIDE_HIDDEN (__init_array_end = .);
+ . = ALIGN(4);
+ } >ROM
+
+ .fini_array :
+ {
+ . = ALIGN(4);
+ PROVIDE_HIDDEN (__fini_array_start = .);
+ KEEP (*(SORT(.fini_array.*)))
+ KEEP (*(.fini_array*))
+ PROVIDE_HIDDEN (__fini_array_end = .);
+ . = ALIGN(4);
+ } >ROM
+
+ /* Used by the startup to initialize data */
+ _sidata = LOADADDR(.data);
+
+ /* Initialized data sections into RAM memory */
+ .data :
+ {
+ . = ALIGN(4);
+ _sdata = .; /* create a global symbol at data start */
+ *(.data) /* .data sections */
+ *(.data*) /* .data* sections */
+
+ . = ALIGN(4);
+ _edata = .; /* define a global symbol at data end */
+ } >RAM AT> ROM
+
+ .logo_page (NOLOAD) :
+ {
+ . = ABSOLUTE(__FLASH_END_ADDR__ - 2048);
+ KEEP (*(.logo_page*))
+ } > ROM
+
+ .settings_page (NOLOAD) :
+ {
+ . = ABSOLUTE(__FLASH_END_ADDR__ - 1024);
+ KEEP (*(.settings_page*))
+ } > ROM
+
+ .bss :
+ {
+ /* Uninitialized data section into RAM memory */
+ . = ALIGN(4);
+ /* This is used by the startup in order to initialize the .bss secion */
+ _sbss = .; /* define a global symbol at bss start */
+ __bss_start__ = _sbss;
+ *(.bss)
+ *(.bss*)
+ *(COMMON)
+
+ . = ALIGN(4);
+ _ebss = .; /* define a global symbol at bss end */
+ __bss_end__ = _ebss;
+ } >RAM
+
+ /* User_heap_stack section, used to check that there is enough RAM left */
+ ._user_heap_stack :
+ {
+ . = ALIGN(8);
+ PROVIDE ( end = . );
+ PROVIDE ( _end = . );
+ . = . + _Min_Heap_Size;
+ . = . + _Min_Stack_Size;
+ . = ALIGN(8);
+ } >RAM
+
+
+
+ /* Remove information from the compiler libraries */
+ /DISCARD/ :
+ {
+ libc.a ( * )
+ libm.a ( * )
+ libgcc.a ( * )
+ }
+
+ .ARM.attributes 0 : { *(.ARM.attributes) }
+}
diff --git a/source/Core/BSP/Pine64/BSP.cpp b/source/Core/BSP/Pine64/BSP.cpp index e29abea2..3a63cfcf 100644 --- a/source/Core/BSP/Pine64/BSP.cpp +++ b/source/Core/BSP/Pine64/BSP.cpp @@ -2,12 +2,14 @@ #include "BSP.h"
#include "I2C_Wrapper.hpp"
+#include "IRQ.h"
#include "Pins.h"
#include "Setup.h"
+#include "TipThermoModel.h"
+#include "configuration.h"
#include "gd32vf103_timer.h"
#include "history.hpp"
#include "main.hpp"
-#include <IRQ.h>
const uint16_t powerPWM = 255;
const uint8_t holdoffTicks = 25; // delay of 7 ms
@@ -120,3 +122,12 @@ void delay_ms(uint16_t count) { delay_1ms(count); } uint32_t __get_IPSR(void) {
return 0; // To shut-up CMSIS
}
+
+bool isTipDisconnected() {
+
+ uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
+ uint32_t tipTemp = TipThermoModel::getTipInC();
+ return tipTemp > tipDisconnectedThres;
+}
+
+void setStatusLED(const enum StatusLED state) {}
diff --git a/source/Core/BSP/Pine64/Power.cpp b/source/Core/BSP/Pine64/Power.cpp index 540d757e..2dfa76a0 100644 --- a/source/Core/BSP/Pine64/Power.cpp +++ b/source/Core/BSP/Pine64/Power.cpp @@ -4,6 +4,7 @@ #include "Pins.h" #include "QC3.h" #include "Settings.h" +#include "fusb_user.h" #include "fusbpd.h" #include "int_n.h" #include "policy_engine.h" diff --git a/source/Core/BSP/Pine64/ThermoModel.cpp b/source/Core/BSP/Pine64/ThermoModel.cpp new file mode 100644 index 00000000..1f4da291 --- /dev/null +++ b/source/Core/BSP/Pine64/ThermoModel.cpp @@ -0,0 +1,72 @@ +/*
+ * ThermoModel.cpp
+ *
+ * Created on: 1 May 2021
+ * Author: Ralim
+ */
+#include "TipThermoModel.h"
+#include "Utils.h"
+#include "configuration.h"
+
+#ifdef TEMP_uV_LOOKUP_HAKKO
+const uint16_t uVtoDegC[] = {
+ //
+ // uv -> temp in C
+ 0, 0, //
+ 266, 10, //
+ 522, 20, //
+ 770, 30, //
+ 1010, 40, //
+ 1244, 50, //
+ 1473, 60, //
+ 1697, 70, //
+ 1917, 80, //
+ 2135, 90, //
+ 2351, 100, //
+ 2566, 110, //
+ 2780, 120, //
+ 2994, 130, //
+ 3209, 140, //
+ 3426, 150, //
+ 3644, 160, //
+ 3865, 170, //
+ 4088, 180, //
+ 4314, 190, //
+ 4544, 200, //
+ 4777, 210, //
+ 5014, 220, //
+ 5255, 230, //
+ 5500, 240, //
+ 5750, 250, //
+ 6003, 260, //
+ 6261, 270, //
+ 6523, 280, //
+ 6789, 290, //
+ 7059, 300, //
+ 7332, 310, //
+ 7609, 320, //
+ 7889, 330, //
+ 8171, 340, //
+ 8456, 350, //
+ 8742, 360, //
+ 9030, 370, //
+ 9319, 380, //
+ 9607, 390, //
+ 9896, 400, //
+ 10183, 410, //
+ 10468, 420, //
+ 10750, 430, //
+ 11029, 440, //
+ 11304, 450, //
+ 11573, 460, //
+ 11835, 470, //
+ 12091, 480, //
+ 12337, 490, //
+ 12575, 500, //
+
+};
+#endif
+
+const int uVtoDegCItems = sizeof(uVtoDegC) / (2 * sizeof(uint16_t));
+
+uint32_t TipThermoModel::convertuVToDegC(uint32_t tipuVDelta) { return Utils::InterpolateLookupTable(uVtoDegC, uVtoDegCItems, tipuVDelta); }
diff --git a/source/Core/BSP/Pine64/fusb_user.cpp b/source/Core/BSP/Pine64/fusb_user.cpp index bc62bc62..2d566399 100644 --- a/source/Core/BSP/Pine64/fusb_user.cpp +++ b/source/Core/BSP/Pine64/fusb_user.cpp @@ -5,21 +5,6 @@ #include "Setup.h" #include "fusb302b.h" #include "fusb_user.h" -/* - * Read a single byte from the FUSB302B - * - * cfg: The FUSB302B to communicate with - * addr: The memory address from which to read - * - * Returns the value read from addr. - */ -uint8_t fusb_read_byte(uint8_t addr) { - uint8_t data[1]; - if (!FRToSI2C::Mem_Read(FUSB302B_ADDR, addr, (uint8_t *)data, 1)) { - return 0; - } - return data[0]; -} /* * Read multiple bytes from the FUSB302B @@ -32,15 +17,6 @@ uint8_t fusb_read_byte(uint8_t addr) { bool fusb_read_buf(uint8_t addr, uint8_t size, uint8_t *buf) { return FRToSI2C::Mem_Read(FUSB302B_ADDR, addr, buf, size); } /* - * Write a single byte to the FUSB302B - * - * cfg: The FUSB302B to communicate with - * addr: The memory address to which we will write - * byte: The value to write - */ -bool fusb_write_byte(uint8_t addr, uint8_t byte) { return FRToSI2C::Mem_Write(FUSB302B_ADDR, addr, (uint8_t *)&byte, 1); } - -/* * Write multiple bytes to the FUSB302B * * cfg: The FUSB302B to communicate with @@ -50,7 +26,7 @@ bool fusb_write_byte(uint8_t addr, uint8_t byte) { return FRToSI2C::Mem_Write(FU */ bool fusb_write_buf(uint8_t addr, uint8_t size, const uint8_t *buf) { return FRToSI2C::Mem_Write(FUSB302B_ADDR, addr, (uint8_t *)buf, size); } -uint8_t fusb302_detect() { +bool fusb302_detect() { // Probe the I2C bus for its address return FRToSI2C::probe(FUSB302B_ADDR); } diff --git a/source/Core/Drivers/FUSB302/fusb302b.cpp b/source/Core/Drivers/FUSB302/fusb302b.cpp index 63ef5baf..83bab9c7 100644 --- a/source/Core/Drivers/FUSB302/fusb302b.cpp +++ b/source/Core/Drivers/FUSB302/fusb302b.cpp @@ -21,7 +21,9 @@ #include "fusb_user.h" #include "int_n.h" #include <pd.h> -void fusb_send_message(const union pd_msg *msg) { +uint8_t fusb_read_byte(uint8_t addr); +bool fusb_write_byte(uint8_t addr, uint8_t byte); +void fusb_send_message(const union pd_msg *msg) { /* Token sequences for the FUSB302B */ static uint8_t sop_seq[5] = {FUSB_FIFO_TX_SOP1, FUSB_FIFO_TX_SOP1, FUSB_FIFO_TX_SOP1, FUSB_FIFO_TX_SOP2, FUSB_FIFO_TX_PACKSYM}; @@ -41,6 +43,8 @@ void fusb_send_message(const union pd_msg *msg) { fusb_write_buf(FUSB_FIFOS, 4, eop_seq); } +bool fusb_rx_pending() { return (fusb_read_byte(FUSB_STATUS1) & FUSB_STATUS1_RX_EMPTY) != FUSB_STATUS1_RX_EMPTY; } + uint8_t fusb_read_message(union pd_msg *msg) { static uint8_t garbage[4]; @@ -48,7 +52,11 @@ uint8_t fusb_read_message(union pd_msg *msg) { // Read the header. If its not a SOP we dont actually want it at all // But on some revisions of the fusb if you dont both pick them up and read them out of the fifo, it gets stuck - fusb_read_byte(FUSB_FIFOS); + if ((fusb_read_byte(FUSB_FIFOS) & FUSB_FIFO_RX_TOKEN_BITS) != FUSB_FIFO_RX_SOP) { + return 1; + } + + // fusb_read_byte(FUSB_FIFOS); /* Read the message header into msg */ fusb_read_buf(FUSB_FIFOS, 2, msg->bytes); /* Get the number of data objects */ @@ -111,11 +119,11 @@ bool fusb_setup() { /* Select the correct CC line for BMC signaling; also enable AUTO_CRC */ if (cc1 > cc2) { - fusb_write_byte(FUSB_SWITCHES1, 0x25); - fusb_write_byte(FUSB_SWITCHES0, 0x07); + fusb_write_byte(FUSB_SWITCHES1, 0x25); // TX_CC1|AUTO_CRC|SPECREV0 + fusb_write_byte(FUSB_SWITCHES0, 0x07); // PWDN1|PWDN2|MEAS_CC1 } else { - fusb_write_byte(FUSB_SWITCHES1, 0x26); - fusb_write_byte(FUSB_SWITCHES0, 0x0B); + fusb_write_byte(FUSB_SWITCHES1, 0x26); // TX_CC2|AUTO_CRC|SPECREV0 + fusb_write_byte(FUSB_SWITCHES0, 0x0B); // PWDN1|PWDN2|MEAS_CC2 } fusb_reset(); @@ -123,10 +131,10 @@ bool fusb_setup() { return true; } -void fusb_get_status(union fusb_status *status) { +bool fusb_get_status(union fusb_status *status) { /* Read the interrupt and status flags into status */ - fusb_read_buf(FUSB_STATUS0A, 7, status->bytes); + return fusb_read_buf(FUSB_STATUS0A, 7, status->bytes); } enum fusb_typec_current fusb_get_typec_current() { @@ -144,7 +152,7 @@ void fusb_reset() { /* Flush the RX buffer */ fusb_write_byte(FUSB_CONTROL1, FUSB_CONTROL1_RX_FLUSH); /* Reset the PD logic */ - // fusb_write_byte( FUSB_RESET, FUSB_RESET_PD_RESET); + fusb_write_byte(FUSB_RESET, FUSB_RESET_PD_RESET); } bool fusb_read_id() { @@ -154,4 +162,28 @@ bool fusb_read_id() { if (version == 0 || version == 0xFF) return false; return true; -}
\ No newline at end of file +} +/* + * Read a single byte from the FUSB302B + * + * cfg: The FUSB302B to communicate with + * addr: The memory address from which to read + * + * Returns the value read from addr. + */ +uint8_t fusb_read_byte(uint8_t addr) { + uint8_t data[1]; + if (!fusb_read_buf(addr, 1, (uint8_t *)data)) { + return 0; + } + return data[0]; +} + +/* + * Write a single byte to the FUSB302B + * + * cfg: The FUSB302B to communicate with + * addr: The memory address to which we will write + * byte: The value to write + */ +bool fusb_write_byte(uint8_t addr, uint8_t byte) { return fusb_write_buf(addr, 1, (uint8_t *)&byte); } diff --git a/source/Core/Drivers/FUSB302/fusb302b.h b/source/Core/Drivers/FUSB302/fusb302b.h index 43910a4d..72736250 100644 --- a/source/Core/Drivers/FUSB302/fusb302b.h +++ b/source/Core/Drivers/FUSB302/fusb302b.h @@ -269,7 +269,7 @@ union fusb_status { * Send a USB Power Delivery message to the FUSB302B */ void fusb_send_message(const union pd_msg *msg); - +bool fusb_rx_pending(); /* * Read a USB Power Delivery message from the FUSB302B */ @@ -283,7 +283,7 @@ void fusb_send_hardrst(); /* * Read the FUSB302B status and interrupt flags into *status */ -void fusb_get_status(union fusb_status *status); +bool fusb_get_status(union fusb_status *status); /* * Read the FUSB302B BC_LVL as an enum fusb_typec_current diff --git a/source/Core/Drivers/FUSB302/fusb_user.h b/source/Core/Drivers/FUSB302/fusb_user.h index 9a81c611..55a27ebf 100644 --- a/source/Core/Drivers/FUSB302/fusb_user.h +++ b/source/Core/Drivers/FUSB302/fusb_user.h @@ -19,11 +19,29 @@ #define PDB_FUSB_USER_H #include <stdint.h> -uint8_t fusb_read_byte(uint8_t addr); -bool fusb_read_buf(uint8_t addr, uint8_t size, uint8_t *buf); -bool fusb_write_byte(uint8_t addr, uint8_t byte); -bool fusb_write_buf(uint8_t addr, uint8_t size, const uint8_t *buf); -uint8_t fusb302_detect(); -void setupFUSBIRQ(); +/* + * Read multiple bytes from the FUSB302B + * + * cfg: The FUSB302B to communicate with + * addr: The memory address from which to read + * size: The number of bytes to read + * buf: The buffer into which data will be read + */ +bool fusb_read_buf(uint8_t addr, uint8_t size, uint8_t *buf); +/* + * Write multiple bytes to the FUSB302B + * + * cfg: The FUSB302B to communicate with + * addr: The memory address to which we will write + * size: The number of bytes to write + * buf: The buffer to write + */ +bool fusb_write_buf(uint8_t addr, uint8_t size, const uint8_t *buf); +// Used to poll for the device existing on the I2C bus. This should return non-zero if the device is responding on the bus +bool fusb302_detect(); +// Once this is called IRQ's should be enabled and routed to the IRQ handler thread +void setupFUSBIRQ(); +// This should return true if the IRQ line for the FUSB302 is still held low +bool getFUS302IRQLow(); #endif /* PDB_FUSB302B_H */ diff --git a/source/Core/Drivers/FUSB302/fusbpd.cpp b/source/Core/Drivers/FUSB302/fusbpd.cpp index 54f026c0..f8a74155 100644 --- a/source/Core/Drivers/FUSB302/fusbpd.cpp +++ b/source/Core/Drivers/FUSB302/fusbpd.cpp @@ -12,7 +12,6 @@ #include "int_n.h"
#include "policy_engine.h"
-#include "protocol_tx.h"
#include <fusbpd.h>
#include <pd.h>
@@ -20,7 +19,6 @@ void fusb302_start_processing() { /* Initialize the FUSB302B */
if (fusb_setup()) {
PolicyEngine::init();
- ProtocolTransmit::init();
InterruptHandler::init();
}
}
diff --git a/source/Core/Drivers/FUSB302/fusbpd.h b/source/Core/Drivers/FUSB302/fusbpd.h index 353bb338..1f3a80fb 100644 --- a/source/Core/Drivers/FUSB302/fusbpd.h +++ b/source/Core/Drivers/FUSB302/fusbpd.h @@ -11,8 +11,5 @@ extern struct pdb_config pdb_config_data;
#include <stdint.h>
-// returns 1 if the FUSB302 is on the I2C bus
-uint8_t fusb302_detect();
-
void fusb302_start_processing();
#endif /* DRIVERS_FUSB302_FUSBPD_H_ */
diff --git a/source/Core/Drivers/FUSB302/int_n.cpp b/source/Core/Drivers/FUSB302/int_n.cpp index 1ca67894..7c00b651 100644 --- a/source/Core/Drivers/FUSB302/int_n.cpp +++ b/source/Core/Drivers/FUSB302/int_n.cpp @@ -16,13 +16,11 @@ */ #include "int_n.h" -#include "BSP.h" -#include "BSP_PD.h" +#include "Defines.h" #include "fusb302b.h" +#include "fusb_user.h" #include "fusbpd.h" #include "policy_engine.h" - -#include "protocol_tx.h" #include "task.h" #include <pd.h> #include <string.h> @@ -37,23 +35,28 @@ void InterruptHandler::init() { osThreadStaticDef(intTask, Thread, PDB_PRIO_PRL_INT_N, 0, TaskStackSize, TaskBuffer, &TaskControlBlock); TaskHandle = osThreadCreate(osThread(intTask), NULL); } - -void InterruptHandler::readPendingMessage() { - /* Get a buffer to read the message into. Guaranteed to not fail - * because we have a big enough pool and are careful. */ +volatile uint32_t msgCounter = 0; +volatile uint32_t msgCounter1 = 0; +void InterruptHandler::readPendingMessage() { memset(&tempMessage, 0, sizeof(tempMessage)); - /* Read the message */ - fusb_read_message(&tempMessage); - /* If it's a Soft_Reset, go to the soft reset state */ - if (PD_MSGTYPE_GET(&tempMessage) == PD_MSGTYPE_SOFT_RESET && PD_NUMOBJ_GET(&tempMessage) == 0) { - /* TX transitions to its reset state */ - ProtocolTransmit::notify(ProtocolTransmit::Notifications::PDB_EVT_PRLTX_RESET); - } else { - /* Tell ProtocolTX to discard the message being transmitted */ - ProtocolTransmit::notify(ProtocolTransmit::Notifications::PDB_EVT_PRLTX_DISCARD); + while (fusb_rx_pending()) { + msgCounter++; + /* Read the message */ + if (fusb_read_message(&tempMessage) == 0) { + /* If it's a Soft_Reset, go to the soft reset state */ + if (PD_MSGTYPE_GET(&tempMessage) == PD_MSGTYPE_SOFT_RESET && PD_NUMOBJ_GET(&tempMessage) == 0) { + /* TX transitions to its reset state */ + PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_PE_RESET); + } else { + /* Tell PolicyEngine to discard the message being transmitted */ + PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_TX_DISCARD); - /* Pass the message to the policy engine. */ - PolicyEngine::handleMessage(&tempMessage); + /* Pass the message to the policy engine. */ + PolicyEngine::handleMessage(&tempMessage); + } + } else { + msgCounter1++; + } } } @@ -66,27 +69,28 @@ void InterruptHandler::Thread(const void *arg) { xTaskNotifyWait(0x00, 0x0F, NULL, TICKS_SECOND * 30); } /* Read the FUSB302B status and interrupt registers */ - fusb_get_status(&status); + if (fusb_get_status(&status)) { - /* If the I_GCRCSENT flag is set, tell the Protocol RX thread */ - // This means a message was recieved with a good CRC - if (status.interruptb & FUSB_INTERRUPTB_I_GCRCSENT) { - readPendingMessage(); - } + /* If the I_GCRCSENT flag is set, tell the Protocol RX thread */ + // This means a message was received with a good CRC + if (status.interruptb & FUSB_INTERRUPTB_I_GCRCSENT) { + readPendingMessage(); + } - /* If the I_TXSENT or I_RETRYFAIL flag is set, tell the Protocol TX - * thread */ - if (status.interrupta & FUSB_INTERRUPTA_I_TXSENT) { - ProtocolTransmit::notify(ProtocolTransmit::Notifications::PDB_EVT_PRLTX_I_TXSENT); - } - if (status.interrupta & FUSB_INTERRUPTA_I_RETRYFAIL) { - ProtocolTransmit::notify(ProtocolTransmit::Notifications::PDB_EVT_PRLTX_I_RETRYFAIL); - } + /* If the I_TXSENT or I_RETRYFAIL flag is set, tell the Protocol TX + * thread */ + if (status.interrupta & FUSB_INTERRUPTA_I_TXSENT) { + PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_TX_I_TXSENT); + } + if (status.interrupta & FUSB_INTERRUPTA_I_RETRYFAIL) { + PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_TX_I_RETRYFAIL); + } - /* If the I_OCP_TEMP and OVRTEMP flags are set, tell the Policy - * Engine thread */ - if ((status.interrupta & FUSB_INTERRUPTA_I_OCP_TEMP) && (status.status1 & FUSB_STATUS1_OVRTEMP)) { - PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_PE_I_OVRTEMP); + /* If the I_OCP_TEMP and OVRTEMP flags are set, tell the Policy + * Engine thread */ + if ((status.interrupta & FUSB_INTERRUPTA_I_OCP_TEMP) && (status.status1 & FUSB_STATUS1_OVRTEMP)) { + PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_PE_I_OVRTEMP); + } } } } diff --git a/source/Core/Drivers/FUSB302/policy_engine.cpp b/source/Core/Drivers/FUSB302/policy_engine.cpp index d1ebaba0..23ee8810 100644 --- a/source/Core/Drivers/FUSB302/policy_engine.cpp +++ b/source/Core/Drivers/FUSB302/policy_engine.cpp @@ -19,7 +19,6 @@ #include "Defines.h" #include "fusb302b.h" #include "int_n.h" -#include "protocol_tx.h" #include <pd.h> #include <stdbool.h> bool PolicyEngine::pdNegotiationComplete; @@ -43,8 +42,9 @@ uint8_t PolicyEngine::ucQueueStorageArea[PDB_MSG_POOL_ QueueHandle_t PolicyEngine::messagesWaiting = NULL; EventGroupHandle_t PolicyEngine::xEventGroupHandle = NULL; StaticEventGroup_t PolicyEngine::xCreatedEventGroup; -bool PolicyEngine::PPSTimerEnabled = false; -TickType_t PolicyEngine::PPSTimeLastEvent = 0; +bool PolicyEngine::PPSTimerEnabled = false; +TickType_t PolicyEngine::PPSTimeLastEvent = 0; +uint8_t PolicyEngine::_tx_messageidcounter = 0; void PolicyEngine::init() { messagesWaiting = xQueueCreateStatic(PDB_MSG_POOL_SIZE, sizeof(union pd_msg), ucQueueStorageArea, &xStaticQueue); // Create static thread at PDB_PRIO_PE priority @@ -238,9 +238,7 @@ PolicyEngine::policy_engine_state PolicyEngine::pe_sink_select_cap() { /* Transmit the request */ waitForEvent((uint32_t)Notifications::PDB_EVT_PE_ALL, 0); // clear pending - ProtocolTransmit::pushMessage(&_last_dpm_request); - // Send indication that there is a message pending - EventBits_t evt = waitForEvent((uint32_t)Notifications::PDB_EVT_PE_TX_DONE | (uint32_t)Notifications::PDB_EVT_PE_TX_ERR | (uint32_t)Notifications::PDB_EVT_PE_RESET); + EventBits_t evt = pushMessage(&_last_dpm_request); /* If we got reset signaling, transition to default */ if (evt & (uint32_t)Notifications::PDB_EVT_PE_RESET || evt == 0) { return PESinkTransitionDefault; @@ -410,8 +408,7 @@ PolicyEngine::policy_engine_state PolicyEngine::pe_sink_get_source_cap() { /* Make a Get_Source_Cap message */ get_source_cap->hdr = hdr_template | PD_MSGTYPE_GET_SOURCE_CAP | PD_NUMOBJ(0); /* Transmit the Get_Source_Cap */ - ProtocolTransmit::pushMessage(get_source_cap); - EventBits_t evt = waitForEvent((uint32_t)Notifications::PDB_EVT_PE_TX_DONE | (uint32_t)Notifications::PDB_EVT_PE_TX_ERR | (uint32_t)Notifications::PDB_EVT_PE_RESET); + EventBits_t evt = pushMessage(get_source_cap); /* Free the sent message */ /* If we got reset signaling, transition to default */ if (evt & (uint32_t)Notifications::PDB_EVT_PE_RESET) { @@ -432,8 +429,7 @@ PolicyEngine::policy_engine_state PolicyEngine::pe_sink_give_sink_cap() { pdbs_dpm_get_sink_capability(snk_cap); /* Transmit our capabilities */ - ProtocolTransmit::pushMessage(snk_cap); - EventBits_t evt = waitForEvent((uint32_t)Notifications::PDB_EVT_PE_TX_DONE | (uint32_t)Notifications::PDB_EVT_PE_TX_ERR | (uint32_t)Notifications::PDB_EVT_PE_RESET); + EventBits_t evt = pushMessage(snk_cap); /* Free the Sink_Capabilities message */ @@ -485,8 +481,7 @@ PolicyEngine::policy_engine_state PolicyEngine::pe_sink_soft_reset() { /* Make an Accept message */ accept.hdr = hdr_template | PD_MSGTYPE_ACCEPT | PD_NUMOBJ(0); /* Transmit the Accept */ - ProtocolTransmit::pushMessage(&accept); - EventBits_t evt = waitForEvent((uint32_t)Notifications::PDB_EVT_PE_TX_DONE | (uint32_t)Notifications::PDB_EVT_PE_TX_ERR | (uint32_t)Notifications::PDB_EVT_PE_RESET); + EventBits_t evt = pushMessage(&accept); /* Free the sent message */ /* If we got reset signaling, transition to default */ @@ -510,8 +505,7 @@ PolicyEngine::policy_engine_state PolicyEngine::pe_sink_send_soft_reset() { /* Make a Soft_Reset message */ softrst->hdr = hdr_template | PD_MSGTYPE_SOFT_RESET | PD_NUMOBJ(0); /* Transmit the soft reset */ - ProtocolTransmit::pushMessage(softrst); - EventBits_t evt = waitForEvent((uint32_t)Notifications::PDB_EVT_PE_TX_DONE | (uint32_t)Notifications::PDB_EVT_PE_TX_ERR | (uint32_t)Notifications::PDB_EVT_PE_RESET); + EventBits_t evt = pushMessage(softrst); /* If we got reset signaling, transition to default */ if (evt & (uint32_t)Notifications::PDB_EVT_PE_RESET) { return PESinkTransitionDefault; @@ -564,8 +558,7 @@ PolicyEngine::policy_engine_state PolicyEngine::pe_sink_send_not_supported() { } /* Transmit the message */ - ProtocolTransmit::pushMessage(&tempMessage); - EventBits_t evt = waitForEvent((uint32_t)Notifications::PDB_EVT_PE_TX_DONE | (uint32_t)Notifications::PDB_EVT_PE_TX_ERR | (uint32_t)Notifications::PDB_EVT_PE_RESET); + EventBits_t evt = pushMessage(&tempMessage); /* If we got reset signaling, transition to default */ if (evt & (uint32_t)Notifications::PDB_EVT_PE_RESET) { @@ -625,3 +618,57 @@ void PolicyEngine::PPSTimerCallback() { } } } + +EventBits_t PolicyEngine::pushMessage(union pd_msg *msg) { + if (PD_MSGTYPE_GET(msg) == PD_MSGTYPE_SOFT_RESET && PD_NUMOBJ_GET(msg) == 0) { + /* Clear MessageIDCounter */ + _tx_messageidcounter = 0; + return (EventBits_t)Notifications::PDB_EVT_PE_TX_DONE; + } + msg->hdr &= ~PD_HDR_MESSAGEID; + msg->hdr |= (_tx_messageidcounter % 8) << PD_HDR_MESSAGEID_SHIFT; + + /* PD 3.0 collision avoidance */ + if (PolicyEngine::isPD3_0()) { + /* If we're starting an AMS, wait for permission to transmit */ + // while (fusb_get_typec_current() != fusb_sink_tx_ok) { + // vTaskDelay(TICKS_10MS); + // } + } + /* Send the message to the PHY */ + fusb_send_message(msg); + /* Waiting for response*/ + EventBits_t evt = waitForEvent((uint32_t)Notifications::PDB_EVT_PE_RESET | (uint32_t)Notifications::PDB_EVT_TX_DISCARD | (uint32_t)Notifications::PDB_EVT_TX_I_TXSENT + | (uint32_t)Notifications::PDB_EVT_TX_I_RETRYFAIL); + + if ((uint32_t)evt & (uint32_t)Notifications::PDB_EVT_TX_DISCARD) { + // increment the counter + _tx_messageidcounter = (_tx_messageidcounter + 1) % 8; + return (EventBits_t)Notifications::PDB_EVT_PE_TX_ERR; // + } + + /* If the message was sent successfully */ + if ((uint32_t)evt & (uint32_t)Notifications::PDB_EVT_TX_I_TXSENT) { + union pd_msg goodcrc; + + /* Read the GoodCRC */ + fusb_read_message(&goodcrc); + + /* Check that the message is correct */ + if (PD_MSGTYPE_GET(&goodcrc) == PD_MSGTYPE_GOODCRC && PD_NUMOBJ_GET(&goodcrc) == 0 && PD_MESSAGEID_GET(&goodcrc) == _tx_messageidcounter) { + /* Increment MessageIDCounter */ + _tx_messageidcounter = (_tx_messageidcounter + 1) % 8; + + return (EventBits_t)Notifications::PDB_EVT_PE_TX_DONE; + } else { + return (EventBits_t)Notifications::PDB_EVT_PE_TX_ERR; + } + } + /* If the message failed to be sent */ + if ((uint32_t)evt & (uint32_t)Notifications::PDB_EVT_TX_I_RETRYFAIL) { + return (EventBits_t)Notifications::PDB_EVT_PE_TX_ERR; + } + + /* Silence the compiler warning */ + return (EventBits_t)Notifications::PDB_EVT_PE_TX_ERR; +} diff --git a/source/Core/Drivers/FUSB302/policy_engine.h b/source/Core/Drivers/FUSB302/policy_engine.h index 489b7a50..447d17c6 100644 --- a/source/Core/Drivers/FUSB302/policy_engine.h +++ b/source/Core/Drivers/FUSB302/policy_engine.h @@ -61,7 +61,10 @@ public: PDB_EVT_PE_PPS_REQUEST = EVENT_MASK(6), PDB_EVT_PE_GET_SOURCE_CAP = EVENT_MASK(7), PDB_EVT_PE_NEW_POWER = EVENT_MASK(8), - PDB_EVT_PE_ALL = (EVENT_MASK(9) - 1), + PDB_EVT_TX_I_TXSENT = EVENT_MASK(9), + PDB_EVT_TX_I_RETRYFAIL = EVENT_MASK(10), + PDB_EVT_TX_DISCARD = EVENT_MASK(11), + PDB_EVT_PE_ALL = (EVENT_MASK(12) - 1), }; // Send a notification static void notify(Notifications notification); @@ -86,25 +89,28 @@ private: /* The index of the first PPS APDO */ static uint8_t _pps_index; - static void pe_task(const void *arg); + static void pe_task(const void *arg); + static EventBits_t pushMessage(union pd_msg *msg); + static uint8_t _tx_messageidcounter; enum policy_engine_state { - PESinkStartup, - PESinkDiscovery, - PESinkWaitCap, - PESinkEvalCap, - PESinkSelectCap, // 4 - PESinkTransitionSink, // 5 - PESinkReady, // 6 - PESinkGetSourceCap, - PESinkGiveSinkCap, - PESinkHardReset, - PESinkTransitionDefault, - PESinkSoftReset, - PESinkSendSoftReset, - PESinkSendNotSupported, - PESinkChunkReceived, - PESinkNotSupportedReceived, - PESinkSourceUnresponsive + PESinkStartup, // 0 + PESinkDiscovery, // 1 + PESinkWaitCap, // 2 + PESinkEvalCap, // 3 + PESinkSelectCap, // 4 + PESinkTransitionSink, // 5 + PESinkReady, // 6 + PESinkGetSourceCap, // 7 + PESinkGiveSinkCap, // 8 + PESinkHardReset, // 9 + PESinkTransitionDefault, // 10 + PESinkSoftReset, // 11 + PESinkSendSoftReset, // 12 + PESinkSendNotSupported, // 13 + PESinkChunkReceived, // 14 + PESinkNotSupportedReceived, // 15 + PESinkSourceUnresponsive // 16 + }; static enum policy_engine_state pe_sink_startup(); static enum policy_engine_state pe_sink_discovery(); diff --git a/source/Core/Drivers/FUSB302/policy_engine_user.cpp b/source/Core/Drivers/FUSB302/policy_engine_user.cpp index 89f72c3e..b97584aa 100644 --- a/source/Core/Drivers/FUSB302/policy_engine_user.cpp +++ b/source/Core/Drivers/FUSB302/policy_engine_user.cpp @@ -6,6 +6,7 @@ */
#include "BSP_PD.h"
#include "configuration.h"
+#include "main.hpp"
#include "pd.h"
#include "policy_engine.h"
@@ -60,6 +61,7 @@ bool PolicyEngine::pdbs_dpm_evaluate_capability(const union pd_msg *capabilities int bestIndexVoltage = 0;
int bestIndexCurrent = 0;
bool bestIsPPS = false;
+ powerSupplyWattageLimit = 0;
for (uint8_t i = 0; i < numobj; i++) {
/* If we have a fixed PDO, its V equals our desired V, and its I is
* at least our desired I */
@@ -72,7 +74,15 @@ bool PolicyEngine::pdbs_dpm_evaluate_capability(const union pd_msg *capabilities int current_a_x100 = PD_PDO_SRC_FIXED_CURRENT_GET(capabilities->obj[i]); // current in 10mA units
int min_resistance_ohmsx10 = voltage_mv / current_a_x100;
if (voltage_mv <= (USB_PD_VMAX * 1000)) {
- if (min_resistance_ohmsx10 <= tipResistance) {
+#ifdef MODEL_HAS_DCDC
+ // If this device has step down DC/DC inductor to smooth out current spikes
+ // We can instead ignore resistance and go for max voltage we can accept
+ if (voltage_mv <= (USB_PD_VMAX * 1000)) {
+ min_resistance_ohmsx10 = tipResistance;
+ }
+#endif
+ // Fudge of 0.5 ohms to round up a little to account for other losses
+ if (min_resistance_ohmsx10 <= (tipResistance + 5)) {
// This is a valid power source we can select as
if (voltage_mv > bestIndexVoltage || bestIndex == 0xFF) {
// Higher voltage and valid, select this instead
@@ -80,12 +90,14 @@ bool PolicyEngine::pdbs_dpm_evaluate_capability(const union pd_msg *capabilities bestIndexVoltage = voltage_mv;
bestIndexCurrent = current_a_x100;
bestIsPPS = false;
+#ifdef MODEL_HAS_DCDC
+ // set limiter for wattage
+ powerSupplyWattageLimit = ((voltage_mv * current_a_x100) / 100 / 1000);
+#endif
}
}
}
- } else
-
- if ((capabilities->obj[i] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED && (capabilities->obj[i] & PD_APDO_TYPE) == PD_APDO_TYPE_PPS) {
+ } else if ((capabilities->obj[i] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED && (capabilities->obj[i] & PD_APDO_TYPE) == PD_APDO_TYPE_PPS) {
// If this is a PPS slot, calculate the max voltage in the PPS range that can we be used and maintain
uint16_t max_voltage = PD_PAV2MV(PD_APDO_PPS_MAX_VOLTAGE_GET(capabilities->obj[i]));
// uint16_t min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(capabilities->obj[i]));
@@ -105,6 +117,10 @@ bool PolicyEngine::pdbs_dpm_evaluate_capability(const union pd_msg *capabilities bestIndexVoltage = ideal_voltage_mv;
bestIndexCurrent = max_current;
bestIsPPS = true;
+#ifdef MODEL_HAS_DCDC
+ // set limiter for wattage
+ powerSupplyWattageLimit = ((ideal_voltage_mv * max_current) / 100 / 1000);
+#endif
}
}
}
diff --git a/source/Core/Drivers/FUSB302/protocol_tx.cpp b/source/Core/Drivers/FUSB302/protocol_tx.cpp deleted file mode 100644 index ca9410b5..00000000 --- a/source/Core/Drivers/FUSB302/protocol_tx.cpp +++ /dev/null @@ -1,276 +0,0 @@ -/* - * PD Buddy Firmware Library - USB Power Delivery for everyone - * Copyright 2017-2018 Clayton G. Hobbs - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "protocol_tx.h" -#include "Defines.h" -#include "fusb302b.h" -#include "fusbpd.h" -#include "policy_engine.h" -#include <pd.h> - -osThreadId ProtocolTransmit::TaskHandle = NULL; -uint32_t ProtocolTransmit::TaskBuffer[ProtocolTransmit::TaskStackSize]; -osStaticThreadDef_t ProtocolTransmit::TaskControlBlock; -StaticQueue_t ProtocolTransmit::xStaticQueue; -bool ProtocolTransmit::messageSending = false; -uint8_t ProtocolTransmit::ucQueueStorageArea[PDB_MSG_POOL_SIZE * sizeof(union pd_msg)]; -QueueHandle_t ProtocolTransmit::messagesWaiting = NULL; -uint8_t ProtocolTransmit::_tx_messageidcounter; -union pd_msg ProtocolTransmit::temp_msg; -EventGroupHandle_t ProtocolTransmit::xEventGroupHandle = NULL; -StaticEventGroup_t ProtocolTransmit::xCreatedEventGroup; -/* - * PRL_Tx_PHY_Layer_Reset state - */ -ProtocolTransmit::protocol_tx_state ProtocolTransmit::protocol_tx_phy_reset() { - /* Reset the PHY */ - fusb_reset(); - - /* If a message was pending when we got here, tell the policy engine that - * we failed to send it */ - if (messagePending()) { - /* Tell the policy engine that we failed */ - PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_PE_TX_ERR); - /* Finish failing to send the message */ - while (messagePending()) { - getMessage(); // Discard - } - } - - /* Wait for a message request */ - return PRLTxWaitMessage; -} - -/* - * PRL_Tx_Wait_for_Message_Request state - */ -ProtocolTransmit::protocol_tx_state ProtocolTransmit::protocol_tx_wait_message() { - /* Wait for an event */ - ProtocolTransmit::Notifications evt = waitForEvent((uint32_t)Notifications::PDB_EVT_PRLTX_RESET | (uint32_t)Notifications::PDB_EVT_PRLTX_DISCARD | (uint32_t)Notifications::PDB_EVT_PRLTX_MSG_TX); - - if ((uint32_t)evt & (uint32_t)Notifications::PDB_EVT_PRLTX_RESET) { - return PRLTxPHYReset; - } - - /* If the policy engine is trying to send a message */ - if ((uint32_t)evt & (uint32_t)Notifications::PDB_EVT_PRLTX_MSG_TX) { - /* Get the message */ - getMessage(); - - /* If it's a Soft_Reset, reset the TX layer first */ - if (PD_MSGTYPE_GET(&temp_msg) == PD_MSGTYPE_SOFT_RESET && PD_NUMOBJ_GET(&(temp_msg)) == 0) { - return PRLTxReset; - /* Otherwise, just send the message */ - } else { - return PRLTxConstructMessage; - } - } - - /* Silence the compiler warning */ - return PRLTxWaitMessage; -} - -ProtocolTransmit::protocol_tx_state ProtocolTransmit::protocol_tx_reset() { - /* Clear MessageIDCounter */ - _tx_messageidcounter = 0; - - return PRLTxConstructMessage; -} - -/* - * PRL_Tx_Construct_Message state - */ -ProtocolTransmit::protocol_tx_state ProtocolTransmit::protocol_tx_construct_message() { - /* Set the correct MessageID in the message */ - temp_msg.hdr &= ~PD_HDR_MESSAGEID; - temp_msg.hdr |= (_tx_messageidcounter % 8) << PD_HDR_MESSAGEID_SHIFT; - - /* PD 3.0 collision avoidance */ - if (PolicyEngine::isPD3_0()) { - /* If we're starting an AMS, wait for permission to transmit */ - while (fusb_get_typec_current() != fusb_sink_tx_ok) { - vTaskDelay(TICKS_10MS); - } - } - messageSending = true; - /* Send the message to the PHY */ - fusb_send_message(&temp_msg); - - return PRLTxWaitResponse; -} - -/* - * PRL_Tx_Wait_for_PHY_Response state - */ -ProtocolTransmit::protocol_tx_state ProtocolTransmit::protocol_tx_wait_response() { - /* Wait for an event. There is no need to run CRCReceiveTimer, since the - * FUSB302B handles that as part of its retry mechanism. */ - ProtocolTransmit::Notifications evt = waitForEvent((uint32_t)Notifications::PDB_EVT_PRLTX_RESET | (uint32_t)Notifications::PDB_EVT_PRLTX_DISCARD | (uint32_t)Notifications::PDB_EVT_PRLTX_I_TXSENT - | (uint32_t)Notifications::PDB_EVT_PRLTX_I_RETRYFAIL); - - if ((uint32_t)evt & (uint32_t)Notifications::PDB_EVT_PRLTX_RESET) { - return PRLTxPHYReset; - } - if ((uint32_t)evt & (uint32_t)Notifications::PDB_EVT_PRLTX_DISCARD) { - return PRLTxDiscardMessage; - } - - /* If the message was sent successfully */ - if ((uint32_t)evt & (uint32_t)Notifications::PDB_EVT_PRLTX_I_TXSENT) { - return PRLTxMatchMessageID; - } - /* If the message failed to be sent */ - if ((uint32_t)evt & (uint32_t)Notifications::PDB_EVT_PRLTX_I_RETRYFAIL) { - return PRLTxTransmissionError; - } - - /* Silence the compiler warning */ - return PRLTxDiscardMessage; -} - -/* - * PRL_Tx_Match_MessageID state - */ -ProtocolTransmit::protocol_tx_state ProtocolTransmit::protocol_tx_match_messageid() { - union pd_msg goodcrc; - - /* Read the GoodCRC */ - fusb_read_message(&goodcrc); - - /* Check that the message is correct */ - if (PD_MSGTYPE_GET(&goodcrc) == PD_MSGTYPE_GOODCRC && PD_NUMOBJ_GET(&goodcrc) == 0 && PD_MESSAGEID_GET(&goodcrc) == _tx_messageidcounter) { - return PRLTxMessageSent; - } else { - return PRLTxTransmissionError; - } -} - -ProtocolTransmit::protocol_tx_state ProtocolTransmit::protocol_tx_transmission_error() { - /* Increment MessageIDCounter */ - _tx_messageidcounter = (_tx_messageidcounter + 1) % 8; - - /* Tell the policy engine that we failed */ - PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_PE_TX_ERR); - - return PRLTxWaitMessage; -} - -ProtocolTransmit::protocol_tx_state ProtocolTransmit::protocol_tx_message_sent() { - messageSending = false; - /* Increment MessageIDCounter */ - _tx_messageidcounter = (_tx_messageidcounter + 1) % 8; - - /* Tell the policy engine that we succeeded */ - PolicyEngine::notify(PolicyEngine::Notifications::PDB_EVT_PE_TX_DONE); - - return PRLTxWaitMessage; -} - -ProtocolTransmit::protocol_tx_state ProtocolTransmit::protocol_tx_discard_message() { - /* If we were working on sending a message, increment MessageIDCounter */ - if (messageSending) { - _tx_messageidcounter = (_tx_messageidcounter + 1) % 8; - - return PRLTxPHYReset; - } else { - return PRLTxWaitMessage; - } -} -void ProtocolTransmit::thread(const void *args) { - (void)args; - ProtocolTransmit::protocol_tx_state state = PRLTxPHYReset; - - // Init the incoming message queue - - while (true) { - switch (state) { - case PRLTxPHYReset: - state = protocol_tx_phy_reset(); - break; - case PRLTxWaitMessage: - state = protocol_tx_wait_message(); - break; - case PRLTxReset: - state = protocol_tx_reset(); - break; - case PRLTxConstructMessage: - state = protocol_tx_construct_message(); - break; - case PRLTxWaitResponse: - state = protocol_tx_wait_response(); - break; - case PRLTxMatchMessageID: - state = protocol_tx_match_messageid(); - break; - case PRLTxTransmissionError: - state = protocol_tx_transmission_error(); - break; - case PRLTxMessageSent: - state = protocol_tx_message_sent(); - break; - case PRLTxDiscardMessage: - state = protocol_tx_discard_message(); - break; - default: - state = PRLTxPHYReset; - break; - } - } -} - -void ProtocolTransmit::notify(ProtocolTransmit::Notifications notification) { - if (xEventGroupHandle != NULL) { - xEventGroupSetBits(xEventGroupHandle, (uint32_t)notification); - } -} - -void ProtocolTransmit::init() { - messagesWaiting = xQueueCreateStatic(PDB_MSG_POOL_SIZE, sizeof(union pd_msg), ucQueueStorageArea, &xStaticQueue); - - osThreadStaticDef(pd_txTask, thread, PDB_PRIO_PRL, 0, TaskStackSize, TaskBuffer, &TaskControlBlock); - TaskHandle = osThreadCreate(osThread(pd_txTask), NULL); - xEventGroupHandle = xEventGroupCreateStatic(&xCreatedEventGroup); -} - -void ProtocolTransmit::pushMessage(union pd_msg *msg) { - if (messagesWaiting) { - if (xQueueSend(messagesWaiting, msg, 100) == pdTRUE) { - notify(ProtocolTransmit::Notifications::PDB_EVT_PRLTX_MSG_TX); - } - } -} - -bool ProtocolTransmit::messagePending() { - if (messagesWaiting) { - return uxQueueMessagesWaiting(messagesWaiting) > 0; - } - return false; -} - -void ProtocolTransmit::getMessage() { - // Loads the pending message into the buffer - if (messagesWaiting) { - xQueueReceive(messagesWaiting, &temp_msg, 1); - } -} - -ProtocolTransmit::Notifications ProtocolTransmit::waitForEvent(uint32_t mask, TickType_t ticksToWait) { - if (xEventGroupHandle) { - return (Notifications)xEventGroupWaitBits(xEventGroupHandle, mask, mask, pdFALSE, ticksToWait); - } - return (Notifications)0; -} diff --git a/source/Core/Drivers/FUSB302/protocol_tx.h b/source/Core/Drivers/FUSB302/protocol_tx.h deleted file mode 100644 index 0231f455..00000000 --- a/source/Core/Drivers/FUSB302/protocol_tx.h +++ /dev/null @@ -1,85 +0,0 @@ -/* - * PD Buddy Firmware Library - USB Power Delivery for everyone - * Copyright 2017-2018 Clayton G. Hobbs - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef PDB_PROTOCOL_TX_H -#define PDB_PROTOCOL_TX_H - -#include "policy_engine.h" - -#include <pd.h> -#include <stdint.h> - -/* Events for the Protocol TX thread */ - -class ProtocolTransmit { -public: - static void init(); - // Push a message to the queue to be sent out the pd comms bus - static void pushMessage(union pd_msg *msg); - - enum class Notifications { - - PDB_EVT_PRLTX_RESET = EVENT_MASK(0), // - PDB_EVT_PRLTX_I_TXSENT = EVENT_MASK(1), // - PDB_EVT_PRLTX_I_RETRYFAIL = EVENT_MASK(2), // - PDB_EVT_PRLTX_DISCARD = EVENT_MASK(3), // - PDB_EVT_PRLTX_MSG_TX = EVENT_MASK(4), // - }; - static void notify(Notifications notification); - -private: - static void thread(const void *args); - static EventGroupHandle_t xEventGroupHandle; - static StaticEventGroup_t xCreatedEventGroup; - static osThreadId TaskHandle; - static const size_t TaskStackSize = 1024 / 4; - static uint32_t TaskBuffer[TaskStackSize]; - static osStaticThreadDef_t TaskControlBlock; - static bool messageSending; - /* - * Protocol TX machine states - * - * Because the PHY can automatically send retries, the Check_RetryCounter state - * has been removed, transitions relating to it are modified appropriately, and - * we don't even keep a RetryCounter. - */ - enum protocol_tx_state { PRLTxPHYReset, PRLTxWaitMessage, PRLTxReset, PRLTxConstructMessage, PRLTxWaitResponse, PRLTxMatchMessageID, PRLTxTransmissionError, PRLTxMessageSent, PRLTxDiscardMessage }; - // Internal states - static protocol_tx_state protocol_tx_discard_message(); - static protocol_tx_state protocol_tx_message_sent(); - static protocol_tx_state protocol_tx_transmission_error(); - static protocol_tx_state protocol_tx_match_messageid(); - static protocol_tx_state protocol_tx_wait_response(); - static protocol_tx_state protocol_tx_construct_message(); - static protocol_tx_state protocol_tx_reset(); - static protocol_tx_state protocol_tx_wait_message(); - static protocol_tx_state protocol_tx_phy_reset(); - // queue of up to PDB_MSG_POOL_SIZE messages to send - static StaticQueue_t xStaticQueue; - /* The array to use as the queue's storage area. This must be at least - uxQueueLength * uxItemSize bytes. */ - static uint8_t ucQueueStorageArea[PDB_MSG_POOL_SIZE * sizeof(union pd_msg)]; - static QueueHandle_t messagesWaiting; - static uint8_t _tx_messageidcounter; - static bool messagePending(); - // Reads a message off the queue into the temp message - static void getMessage(); - static union pd_msg temp_msg; - static Notifications waitForEvent(uint32_t mask, TickType_t ticksToWait = portMAX_DELAY); -}; - -#endif /* PDB_PROTOCOL_TX_H */ diff --git a/source/Core/Drivers/I2CBB.cpp b/source/Core/Drivers/I2CBB.cpp index b55435d7..f90b09fc 100644 --- a/source/Core/Drivers/I2CBB.cpp +++ b/source/Core/Drivers/I2CBB.cpp @@ -274,6 +274,14 @@ bool I2CBB::lock() { return a;
}
+bool I2CBB::I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data) { return Mem_Write(address, reg, &data, 1); }
+
+uint8_t I2CBB::I2C_RegisterRead(uint8_t address, uint8_t reg) {
+ uint8_t temp = 0;
+ Mem_Read(address, reg, &temp, 1);
+ return temp;
+}
+
void I2CBB::write_bit(uint8_t val) {
if (val) {
SOFT_SDA_HIGH();
@@ -287,4 +295,14 @@ void I2CBB::write_bit(uint8_t val) { SOFT_SCL_LOW();
}
+bool I2CBB::writeRegistersBulk(const uint8_t address, const I2C_REG *registers, const uint8_t registersLength) {
+ for (int index = 0; index < registersLength; index++) {
+ if (!I2C_RegisterWrite(address, registers[index].reg, registers[index].val)) {
+ return false;
+ }
+ if (registers[index].pause_ms)
+ delay_ms(registers[index].pause_ms);
+ }
+ return true;
+}
#endif
diff --git a/source/Core/Drivers/I2CBB.hpp b/source/Core/Drivers/I2CBB.hpp index 7b580b07..cf2e4df1 100644 --- a/source/Core/Drivers/I2CBB.hpp +++ b/source/Core/Drivers/I2CBB.hpp @@ -24,10 +24,18 @@ public: // Issues a complete 8bit register read
static bool Mem_Read(uint16_t DevAddress, uint16_t MemAddress, uint8_t *pData, uint16_t Size);
// Implements a register write
- static bool Mem_Write(uint16_t DevAddress, uint16_t MemAddress, const uint8_t *pData, uint16_t Size);
- static void Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size);
- static void Receive(uint16_t DevAddress, uint8_t *pData, uint16_t Size);
- static void TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx, uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx);
+ static bool Mem_Write(uint16_t DevAddress, uint16_t MemAddress, const uint8_t *pData, uint16_t Size);
+ static void Transmit(uint16_t DevAddress, uint8_t *pData, uint16_t Size);
+ static void Receive(uint16_t DevAddress, uint8_t *pData, uint16_t Size);
+ static void TransmitReceive(uint16_t DevAddress, uint8_t *pData_tx, uint16_t Size_tx, uint8_t *pData_rx, uint16_t Size_rx);
+ static bool I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data);
+ static uint8_t I2C_RegisterRead(uint8_t address, uint8_t reg);
+ typedef struct {
+ const uint8_t reg; // The register to write to
+ uint8_t val; // The value to write to this register
+ const uint8_t pause_ms; // How many ms to pause _after_ writing this reg
+ } I2C_REG;
+ static bool writeRegistersBulk(const uint8_t address, const I2C_REG *registers, const uint8_t registersLength);
private:
static SemaphoreHandle_t I2CSemaphore;
diff --git a/source/Core/Drivers/MSA301.cpp b/source/Core/Drivers/MSA301.cpp index a3d64de8..3e1b9e46 100644 --- a/source/Core/Drivers/MSA301.cpp +++ b/source/Core/Drivers/MSA301.cpp @@ -7,7 +7,7 @@ #include "MSA301_defines.h"
#include <MSA301.h>
-#define MSA301_I2C_ADDRESS 0x4C
+#define MSA301_I2C_ADDRESS 0x26 << 1
bool MSA301::detect() { return FRToSI2C::probe(MSA301_I2C_ADDRESS); }
static const FRToSI2C::I2C_REG i2c_registers[] = {
diff --git a/source/Core/Drivers/OLED.cpp b/source/Core/Drivers/OLED.cpp index fc8ef266..b3559360 100644 --- a/source/Core/Drivers/OLED.cpp +++ b/source/Core/Drivers/OLED.cpp @@ -29,7 +29,7 @@ uint8_t OLED::secondFrameBuffer[OLED_WIDTH * 2]; /*http://www.displayfuture.com/Display/datasheet/controller/SSD1307.pdf*/ /*All commands are prefixed with 0x80*/ /*Data packets are prefixed with 0x40*/ -FRToSI2C::I2C_REG OLED_Setup_Array[] = { +I2C_CLASS::I2C_REG OLED_Setup_Array[] = { /**/ {0x80, 0xAE, 0}, /*Display off*/ {0x80, 0xD5, 0}, /*Set display clock divide ratio / osc freq*/ @@ -120,7 +120,7 @@ void OLED::initialize() { // initialisation data to the OLED. for (int tries = 0; tries < 10; tries++) { - if (FRToSI2C::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) { + if (I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) { return; } } @@ -238,7 +238,7 @@ void OLED::maskScrollIndicatorOnOLED() { 0x00, 0x00, }; - FRToSI2C::Transmit(DEVICEADDR_OLED, maskCommands, sizeof(maskCommands)); + I2C_CLASS::Transmit(DEVICEADDR_OLED, maskCommands, sizeof(maskCommands)); } /** @@ -331,7 +331,7 @@ void OLED::transitionScrollDown() { // Also update setup command for "set display start line": OLED_Setup_Array[8].val = scrollCommandByte; - FRToSI2C::I2C_RegisterWrite(DEVICEADDR_OLED, 0x80, scrollCommandByte); + I2C_CLASS::I2C_RegisterWrite(DEVICEADDR_OLED, 0x80, scrollCommandByte); osDelay(TICKS_100MS / 5); } } @@ -352,7 +352,7 @@ void OLED::setRotation(bool leftHanded) { OLED_Setup_Array[5].val = 0xC0; OLED_Setup_Array[9].val = 0xA0; } - FRToSI2C::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0])); + I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0])); inLeftHandedMode = leftHanded; diff --git a/source/Core/Drivers/OLED.hpp b/source/Core/Drivers/OLED.hpp index c108dcf7..83e8914d 100644 --- a/source/Core/Drivers/OLED.hpp +++ b/source/Core/Drivers/OLED.hpp @@ -10,7 +10,7 @@ #ifndef OLED_HPP_
#define OLED_HPP_
#include "Font.h"
-#include "I2C_Wrapper.hpp"
+#include "Model_Config.h"
#include <BSP.h>
#include <stdbool.h>
#include <string.h>
@@ -21,6 +21,15 @@ extern "C" { #ifdef __cplusplus
}
#endif
+
+#ifdef OLED_I2CBB
+#include "I2CBB.hpp"
+#define I2C_CLASS I2CBB
+#else
+#define I2C_CLASS FRToSI2C
+#include "I2C_Wrapper.hpp"
+#endif
+
#define DEVICEADDR_OLED (0x3c << 1)
#define OLED_WIDTH 96
#define OLED_HEIGHT 16
@@ -40,7 +49,7 @@ public: static bool isInitDone();
// Draw the buffer out to the LCD using the DMA Channel
static void refresh() {
- FRToSI2C::Transmit(DEVICEADDR_OLED, screenBuffer, FRAMEBUFFER_START + (OLED_WIDTH * 2));
+ I2C_CLASS::Transmit(DEVICEADDR_OLED, screenBuffer, FRAMEBUFFER_START + (OLED_WIDTH * 2));
// DMA tx time is ~ 20mS Ensure after calling this you delay for at least 25ms
// or we need to goto double buffering
}
diff --git a/source/Core/Drivers/TipThermoModel.cpp b/source/Core/Drivers/TipThermoModel.cpp index edf97fbc..813bba11 100644 --- a/source/Core/Drivers/TipThermoModel.cpp +++ b/source/Core/Drivers/TipThermoModel.cpp @@ -8,7 +8,7 @@ #include "TipThermoModel.h" #include "BSP.h" #include "Settings.h" -#include "configuration.h" +#include "Utils.h" #include "main.hpp" #include "power.hpp" /* @@ -27,8 +27,8 @@ * * This was bought to my attention by <Kuba Sztandera> */ - -uint32_t TipThermoModel::convertTipRawADCTouV(uint16_t rawADC, bool skipCalOffset) { +volatile uint32_t lastuv = 0; +uint32_t TipThermoModel::convertTipRawADCTouV(uint16_t rawADC, bool skipCalOffset) { // This takes the raw ADC samples, converts these to uV // Then divides this down by the gain to convert to the uV on the input to the op-amp (A+B terminals) // Then remove the calibration value that is stored as a tip offset @@ -48,152 +48,13 @@ uint32_t TipThermoModel::convertTipRawADCTouV(uint16_t rawADC, bool skipCalOffse else valueuV = 0; } - + lastuv = valueuV; return valueuV; } uint32_t TipThermoModel::convertTipRawADCToDegC(uint16_t rawADC) { return convertuVToDegC(convertTipRawADCTouV(rawADC)); } uint32_t TipThermoModel::convertTipRawADCToDegF(uint16_t rawADC) { return convertuVToDegF(convertTipRawADCTouV(rawADC)); } -// Table that is designed to be walked to find the best sample for the lookup - -// Extrapolate between two points -// [x1, y1] = point 1 -// [x2, y2] = point 2 -// x = input value -// output is x's interpolated y value -int32_t LinearInterpolate(int32_t x1, int32_t y1, int32_t x2, int32_t y2, int32_t x) { return y1 + (((((x - x1) * 1000) / (x2 - x1)) * (y2 - y1))) / 1000; } -#ifdef TEMP_uV_LOOKUP_HAKKO -const uint16_t uVtoDegC[] = { - // - // - 0, 0, // - 266, 10, // - 522, 20, // - 770, 30, // - 1010, 40, // - 1244, 50, // - 1473, 60, // - 1697, 70, // - 1917, 80, // - 2135, 90, // - 2351, 100, // - 2566, 110, // - 2780, 120, // - 2994, 130, // - 3209, 140, // - 3426, 150, // - 3644, 160, // - 3865, 170, // - 4088, 180, // - 4314, 190, // - 4544, 200, // - 4777, 210, // - 5014, 220, // - 5255, 230, // - 5500, 240, // - 5750, 250, // - 6003, 260, // - 6261, 270, // - 6523, 280, // - 6789, 290, // - 7059, 300, // - 7332, 310, // - 7609, 320, // - 7889, 330, // - 8171, 340, // - 8456, 350, // - 8742, 360, // - 9030, 370, // - 9319, 380, // - 9607, 390, // - 9896, 400, // - 10183, 410, // - 10468, 420, // - 10750, 430, // - 11029, 440, // - 11304, 450, // - 11573, 460, // - 11835, 470, // - 12091, 480, // - 12337, 490, // - 12575, 500, // - -}; -#endif - -#ifdef TEMP_uV_LOOKUP_TS80 - -const uint16_t uVtoDegC[] = { - // - // - 530, 0, // - 1282, 10, // - 2034, 20, // - 2786, 30, // - 3538, 40, // - 4290, 50, // - 5043, 60, // - 5795, 70, // - 6547, 80, // - 7299, 90, // - 8051, 100, // - 8803, 110, // - 9555, 120, // - 10308, 130, // - 11060, 140, // - 11812, 150, // - 12564, 160, // - 13316, 170, // - 14068, 180, // - 14820, 190, // - 15573, 200, // - 16325, 210, // - 17077, 220, // - 17829, 230, // - 18581, 240, // - 19333, 250, // - 20085, 260, // - 20838, 270, // - 21590, 280, // - 22342, 290, // - 23094, 300, // - 23846, 310, // - 24598, 320, // - 25350, 330, // - 26103, 340, // - 26855, 350, // - 27607, 360, // - 28359, 370, // - 29111, 380, // - 29863, 390, // - 30615, 400, // - 31368, 410, // - 32120, 420, // - 32872, 430, // - 33624, 440, // - 34376, 450, // - 35128, 460, // - 35880, 470, // - 36632, 480, // - 37385, 490, // - 38137, 500, // -}; -#endif -uint32_t TipThermoModel::convertuVToDegC(uint32_t tipuVDelta) { - if (tipuVDelta) { - int noItems = sizeof(uVtoDegC) / (2 * sizeof(uint16_t)); - for (int i = 1; i < (noItems - 1); i++) { - // If current tip temp is less than current lookup, then this current lookup is the higher point to interpolate - if (tipuVDelta < uVtoDegC[i * 2]) { - return LinearInterpolate(uVtoDegC[(i - 1) * 2], uVtoDegC[((i - 1) * 2) + 1], uVtoDegC[i * 2], uVtoDegC[(i * 2) + 1], tipuVDelta); - } - } - return LinearInterpolate(uVtoDegC[(noItems - 2) * 2], uVtoDegC[((noItems - 2) * 2) + 1], uVtoDegC[(noItems - 1) * 2], uVtoDegC[((noItems - 1) * 2) + 1], tipuVDelta); - } - return 0; -} - uint32_t TipThermoModel::convertuVToDegF(uint32_t tipuVDelta) { return convertCtoF(convertuVToDegC(tipuVDelta)); } uint32_t TipThermoModel::convertCtoF(uint32_t degC) { @@ -208,14 +69,17 @@ uint32_t TipThermoModel::convertFtoC(uint32_t degF) { } return ((degF - 32) * 5) / 9; } - uint32_t TipThermoModel::getTipInC(bool sampleNow) { int32_t currentTipTempInC = TipThermoModel::convertTipRawADCToDegC(getTipRawTemp(sampleNow)); currentTipTempInC += getHandleTemperature() / 10; // Add handle offset - // Power usage indicates that our tip temp is lower than our thermocouple temp. - // I found a number that doesn't unbalance the existing PID, causing overshoot. - // This could be tuned in concert with PID parameters... + // Power usage indicates that our tip temp is lower than our thermocouple temp. + // I found a number that doesn't unbalance the existing PID, causing overshoot. + // This could be tuned in concert with PID parameters... +#ifdef THERMAL_MASS_OVERSHOOTS + currentTipTempInC += x10WattHistory.average() / 25; +#else currentTipTempInC -= x10WattHistory.average() / 25; +#endif if (currentTipTempInC < 0) return 0; return currentTipTempInC; diff --git a/source/Core/Drivers/Utils.cpp b/source/Core/Drivers/Utils.cpp new file mode 100644 index 00000000..9d85ef38 --- /dev/null +++ b/source/Core/Drivers/Utils.cpp @@ -0,0 +1,23 @@ +/*
+ * Utils.cpp
+ *
+ * Created on: 28 Apr 2021
+ * Author: Ralim
+ */
+
+#include <Utils.h>
+
+int32_t Utils::InterpolateLookupTable(const uint16_t *lookupTable, const int noItems, const uint16_t value) {
+ if (value) {
+ for (int i = 1; i < (noItems - 1); i++) {
+ // If current tip temp is less than current lookup, then this current lookup is the higher point to interpolate
+ if (value < lookupTable[i * 2]) {
+ return LinearInterpolate(lookupTable[(i - 1) * 2], lookupTable[((i - 1) * 2) + 1], lookupTable[i * 2], lookupTable[(i * 2) + 1], value);
+ }
+ }
+ return LinearInterpolate(lookupTable[(noItems - 2) * 2], lookupTable[((noItems - 2) * 2) + 1], lookupTable[(noItems - 1) * 2], lookupTable[((noItems - 1) * 2) + 1], value);
+ }
+ return 0;
+}
+
+int32_t Utils::LinearInterpolate(int32_t x1, int32_t y1, int32_t x2, int32_t y2, int32_t x) { return y1 + (((((x - x1) * 1000) / (x2 - x1)) * (y2 - y1))) / 1000; }
diff --git a/source/Core/Drivers/Utils.h b/source/Core/Drivers/Utils.h new file mode 100644 index 00000000..a4e2b07c --- /dev/null +++ b/source/Core/Drivers/Utils.h @@ -0,0 +1,17 @@ +/*
+ * Utils.h
+ *
+ * Created on: 28 Apr 2021
+ * Author: Ralim
+ */
+
+#ifndef CORE_DRIVERS_UTILS_H_
+#define CORE_DRIVERS_UTILS_H_
+#include <stdint.h>
+class Utils {
+public:
+ static int32_t InterpolateLookupTable(const uint16_t *lookupTable, const int noItems, const uint16_t value);
+ static int32_t LinearInterpolate(int32_t x1, int32_t y1, int32_t x2, int32_t y2, int32_t x);
+};
+
+#endif /* CORE_DRIVERS_UTILS_H_ */
diff --git a/source/Core/Drivers/WS2812.h b/source/Core/Drivers/WS2812.h new file mode 100644 index 00000000..d7eb4254 --- /dev/null +++ b/source/Core/Drivers/WS2812.h @@ -0,0 +1,124 @@ +/*
+ * WS2812.h
+ *
+ * Created on: 2 May 2021
+ * Author: Ralim
+ */
+#include "Pins.h"
+#include "Setup.h"
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h>
+
+#ifndef CORE_DRIVERS_WS2812_H_
+#define CORE_DRIVERS_WS2812_H_
+
+#ifndef WS2812_LED_CHANNEL_COUNT
+#define WS2812_LED_CHANNEL_COUNT 3
+#endif
+
+#define WS2812_RAW_BYTES_PER_LED (WS2812_LED_CHANNEL_COUNT * 8)
+
+template <uint32_t LED_GPIO, uint16_t LED_PIN, int LED_COUNT> class WS2812 {
+private:
+ uint8_t leds_colors[WS2812_LED_CHANNEL_COUNT * LED_COUNT];
+
+public:
+ void led_update() {
+ __disable_irq();
+ // Bitbang it out as our cpu irq latency is too high
+ for (unsigned int i = 0; i < sizeof(leds_colors); i++) {
+ // Shove out MSB first
+ for (int x = 0; x < 8; x++) {
+ ((GPIO_TypeDef *)WS2812_GPIO_Port)->BSRR = WS2812_Pin;
+ if ((leds_colors[i] & (1 << (7 - x))) == (1 << (7 - x))) {
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ } else {
+
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ }
+ ((GPIO_TypeDef *)WS2812_GPIO_Port)->BSRR = (uint32_t)WS2812_Pin << 16u;
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ __asm__ __volatile__("nop");
+ }
+ }
+ __enable_irq();
+ }
+
+ void init(void) { memset(leds_colors, 0, sizeof(leds_colors)); }
+
+ void led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b) {
+ leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = g;
+ leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = r;
+ leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
+ }
+
+ void led_set_color_all(uint8_t r, uint8_t g, uint8_t b) {
+ for (int index = 0; index < LED_COUNT; index++) {
+ leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = g;
+ leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = r;
+ leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
+ }
+ }
+};
+
+#endif /* CORE_DRIVERS_WS2812_H_ */
diff --git a/source/Core/Inc/configuration.h b/source/Core/Inc/configuration.h index 6de93bcb..66f3f828 100644 --- a/source/Core/Inc/configuration.h +++ b/source/Core/Inc/configuration.h @@ -15,7 +15,7 @@ * Default soldering temp is 320.0 C * Temperature the iron sleeps at - default 150.0 C */ -#define SOLDERING_TEMP 320 // Default soldering temp is 320.0 °C + #define SLEEP_TEMP 150 // Default sleep temperature #define BOOST_TEMP 420 // Default boost temp. #define BOOST_MODE_ENABLED 1 // 0: Disable 1: Enable @@ -111,11 +111,16 @@ #define OP_AMP_GAIN_STAGE_TS80 (1 + (OP_AMP_Rf_TS80 / OP_AMP_Rin_TS80)) +#define OP_AMP_Rf_MHP30 268500 // 268.5 Kilo-ohms -> Measured +#define OP_AMP_Rin_MHP30 1600 // 1.6 Kilo-ohms -> Measured + +#define OP_AMP_GAIN_STAGE_MHP30 (1 + (OP_AMP_Rf_MHP30 / OP_AMP_Rin_MHP30)) // Deriving the Voltage div: // Vin_max = (3.3*(r1+r2))/(r2) // vdiv = (32768*4)/(vin_max*10) #ifdef MODEL_TS100 +#define SOLDERING_TEMP 320 // Default soldering temp is 320.0 °C #define VOLTAGE_DIV 467 // 467 - Default divider from schematic #define CALIBRATION_OFFSET 900 // 900 - Default adc offset in uV #define PID_POWER_LIMIT 70 // Sets the max pwm power limit @@ -125,9 +130,17 @@ #define OP_AMP_GAIN_STAGE OP_AMP_GAIN_STAGE_TS100 // #define TEMP_uV_LOOKUP_HAKKO // #define USB_PD_VMAX 20 // Maximum voltage for PD to negotiate +#define PID_TIM_HZ (8) // Tick rate of the PID loop +#define MAX_TEMP_C 450 // Max soldering temp selectable °C +#define MAX_TEMP_F 850 // Max soldering temp selectable °F +#define MIN_TEMP_C 10 // Min soldering temp selectable °C +#define MIN_TEMP_F 60 // Min soldering temp selectable °F +#define MIN_BOOST_TEMP_C 250 // The min settable temp for boost mode °C +#define MIN_BOOST_TEMP_F 480 // The min settable temp for boost mode °F #endif #ifdef MODEL_Pinecil +#define SOLDERING_TEMP 320 // Default soldering temp is 320.0 °C #define VOLTAGE_DIV 467 // 467 - Default divider from schematic #define CALIBRATION_OFFSET 900 // 900 - Default adc offset in uV #define PID_POWER_LIMIT 70 // Sets the max pwm power limit @@ -137,9 +150,17 @@ #define OP_AMP_GAIN_STAGE OP_AMP_GAIN_STAGE_TS100 // Uses TS100 resistors #define TEMP_uV_LOOKUP_HAKKO // Use Hakko lookup table #define USB_PD_VMAX 20 // Maximum voltage for PD to negotiate +#define PID_TIM_HZ (8) // Tick rate of the PID loop +#define MAX_TEMP_C 450 // Max soldering temp selectable °C +#define MAX_TEMP_F 850 // Max soldering temp selectable °F +#define MIN_TEMP_C 10 // Min soldering temp selectable °C +#define MIN_TEMP_F 60 // Min soldering temp selectable °F +#define MIN_BOOST_TEMP_C 250 // The min settable temp for boost mode °C +#define MIN_BOOST_TEMP_F 480 // The min settable temp for boost mode °F #endif #ifdef MODEL_TS80 +#define SOLDERING_TEMP 320 // Default soldering temp is 320.0 °C #define VOLTAGE_DIV 780 // Default divider from schematic #define PID_POWER_LIMIT 24 // Sets the max pwm power limit #define CALIBRATION_OFFSET 900 // the adc offset in uV @@ -149,9 +170,17 @@ #define OP_AMP_GAIN_STAGE OP_AMP_GAIN_STAGE_TS80 // #define TEMP_uV_LOOKUP_TS80 // #define USB_PD_VMAX 12 // Maximum voltage for PD to negotiate +#define PID_TIM_HZ (8) // Tick rate of the PID loop +#define MAX_TEMP_C 450 // Max soldering temp selectable °C +#define MAX_TEMP_F 850 // Max soldering temp selectable °F +#define MIN_TEMP_C 10 // Min soldering temp selectable °C +#define MIN_TEMP_F 60 // Min soldering temp selectable °F +#define MIN_BOOST_TEMP_C 250 // The min settable temp for boost mode °C +#define MIN_BOOST_TEMP_F 480 // The min settable temp for boost mode °F #endif #ifdef MODEL_TS80P +#define SOLDERING_TEMP 320 // Default soldering temp is 320.0 °C #define VOLTAGE_DIV 650 // Default for TS80P with slightly different resistors #define PID_POWER_LIMIT 35 // Sets the max pwm power limit #define CALIBRATION_OFFSET 1500 // the adc offset in uV @@ -161,6 +190,37 @@ #define OP_AMP_GAIN_STAGE OP_AMP_GAIN_STAGE_TS80 // #define TEMP_uV_LOOKUP_TS80 // #define USB_PD_VMAX 12 // Maximum voltage for PD to negotiate +#define PID_TIM_HZ (8) // Tick rate of the PID loop +#define MAX_TEMP_C 450 // Max soldering temp selectable °C +#define MAX_TEMP_F 850 // Max soldering temp selectable °F +#define MIN_TEMP_C 10 // Min soldering temp selectable °C +#define MIN_TEMP_F 60 // Min soldering temp selectable °F +#define MIN_BOOST_TEMP_C 250 // The min settable temp for boost mode °C +#define MIN_BOOST_TEMP_F 480 // The min settable temp for boost mode °F + +#endif + +#ifdef MODEL_MHP30 +#define SOLDERING_TEMP 200 // Default soldering temp is 200.0 °C +#define VOLTAGE_DIV 360 // Default for MHP30 +#define PID_POWER_LIMIT 65 // Sets the max pwm power limit +#define CALIBRATION_OFFSET 0 // the adc offset in uV - MHP compensates automagically +#define POWER_LIMIT 65 // 65 watts default power limit +#define MAX_POWER_LIMIT 65 // +#define POWER_LIMIT_STEPS 1 // +#define OP_AMP_GAIN_STAGE OP_AMP_GAIN_STAGE_MHP30 // +#define USB_PD_VMAX 20 // Maximum voltage for PD to negotiate +#define MODEL_HAS_DCDC // Has inductor to current filter +#define PID_TIM_HZ (16) // +#define THERMAL_MASS_OVERSHOOTS // We have overshoot so reverse direction of compensation +#define MAX_TEMP_C 300 // Max soldering temp selectable °C +#define MAX_TEMP_F 570 // Max soldering temp selectable °F +#define MIN_TEMP_C 10 // Min soldering temp selectable °C +#define MIN_TEMP_F 60 // Min soldering temp selectable °F +#define MIN_BOOST_TEMP_C 150 // The min settable temp for boost mode °C +#define MIN_BOOST_TEMP_F 300 // The min settable temp for boost mode °F +#define NO_DISPLAY_ROTATE // Disable OLED rotation by accel +#define SLEW_LIMIT 50 // Limit to 3.0 Watts per 64ms pid loop update rate slew rate #endif #ifdef MODEL_TS100 @@ -182,3 +242,8 @@ const uint8_t tipResistance = 45; // x10 ohms, 4.5 typical for ts80 tips const uint32_t tipMass = 40; const uint8_t tipResistance = 45; // x10 ohms, 4.5 typical for ts80 tips #endif + +#ifdef MODEL_MHP30 +const uint32_t tipMass = 45; // TODO +const uint8_t tipResistance = 60; // x10 ohms, ~6 typical +#endif diff --git a/source/Core/Inc/main.hpp b/source/Core/Inc/main.hpp index a6c6a374..a139694c 100644 --- a/source/Core/Inc/main.hpp +++ b/source/Core/Inc/main.hpp @@ -21,6 +21,7 @@ void startPIDTask(void const *argument); void startMOVTask(void const *argument); void startPOWTask(void const *argument); extern TaskHandle_t pidTaskNotification; +extern int32_t powerSupplyWattageLimit; extern uint8_t accelInit; extern TickType_t lastMovementTime; #ifdef __cplusplus diff --git a/source/Core/Src/gui.cpp b/source/Core/Src/gui.cpp index e56a2ca9..50cf0f03 100644 --- a/source/Core/Src/gui.cpp +++ b/source/Core/Src/gui.cpp @@ -26,10 +26,13 @@ static bool settings_displayInputMinVRange(void); static bool settings_setQCInputV(void); static bool settings_displayQCInputV(void); #endif + +#ifndef NO_SLEEP_MODE static bool settings_setSleepTemp(void); static bool settings_displaySleepTemp(void); static bool settings_setSleepTime(void); static bool settings_displaySleepTime(void); +#endif static bool settings_setShutdownTime(void); static bool settings_displayShutdownTime(void); static bool settings_setSensitivity(void); @@ -44,8 +47,10 @@ static bool settings_setScrollSpeed(void); static bool settings_displayScrollSpeed(void); static bool settings_setPowerLimit(void); static bool settings_displayPowerLimit(void); +#ifndef NO_DISPLAY_ROTATE static bool settings_setDisplayRotation(void); static bool settings_displayDisplayRotation(void); +#endif static bool settings_setBoostTemp(void); static bool settings_displayBoostTemp(void); static bool settings_setAutomaticStartMode(void); @@ -81,8 +86,11 @@ static bool settings_displayHallEffect(void); static bool settings_setHallEffect(void); #endif // Menu functions + +#if defined(POW_DC) || defined(POW_QC) static bool settings_displayPowerMenu(void); static bool settings_enterPowerMenu(void); +#endif static bool settings_displaySolderingMenu(void); static bool settings_enterSolderingMenu(void); static bool settings_displayPowerSavingMenu(void); @@ -131,24 +139,30 @@ static bool settings_enterAdvancedMenu(void); * Reset Settings * */ -const menuitem rootSettingsMenu[]{ - /* - * Power Menu - * Soldering Menu - * Power Saving Menu - * UI Menu - * Advanced Menu - * Exit - */ - {0, settings_enterPowerMenu, settings_displayPowerMenu}, /*Power*/ - {0, settings_enterSolderingMenu, settings_displaySolderingMenu}, /*Soldering*/ - {0, settings_enterPowerSavingMenu, settings_displayPowerSavingMenu}, /*Sleep Options Menu*/ - {0, settings_enterUIMenu, settings_displayUIMenu}, /*UI Menu*/ - {0, settings_enterAdvancedMenu, settings_displayAdvancedMenu}, /*Advanced Menu*/ - {0, settings_setLanguageSwitch, settings_displayLanguageSwitch}, /*Language Switch*/ - {0, nullptr, nullptr} // end of menu marker. DO NOT REMOVE +const menuitem rootSettingsMenu[] { + /* + * Power Menu + * Soldering Menu + * Power Saving Menu + * UI Menu + * Advanced Menu + * Exit + */ + +#if defined(POW_DC) || defined(POW_QC) + {0, settings_enterPowerMenu, settings_displayPowerMenu}, /*Power*/ +#endif + {0, settings_enterSolderingMenu, settings_displaySolderingMenu}, /*Soldering*/ + {0, settings_enterPowerSavingMenu, settings_displayPowerSavingMenu}, /*Sleep Options Menu*/ + {0, settings_enterUIMenu, settings_displayUIMenu}, /*UI Menu*/ + {0, settings_enterAdvancedMenu, settings_displayAdvancedMenu}, /*Advanced Menu*/ + {0, settings_setLanguageSwitch, settings_displayLanguageSwitch}, /*Language Switch*/ + { + 0, nullptr, nullptr + } // end of menu marker. DO NOT REMOVE }; +#if defined(POW_DC) || defined(POW_QC) const menuitem powerMenu[] = { /* * Power Source @@ -162,6 +176,7 @@ const menuitem powerMenu[] = { #endif {0, nullptr, nullptr} // end of menu marker. DO NOT REMOVE }; +#endif const menuitem solderingMenu[] = { /* * Boost Mode Enabled @@ -188,7 +203,9 @@ const menuitem UIMenu[] = { */ {SETTINGS_DESC(SettingsItemIndex::TemperatureUnit), settings_setTempF, settings_displayTempF}, /* Temperature units, this has to be the first element in the array to work with the logic in settings_enterUIMenu() */ - {SETTINGS_DESC(SettingsItemIndex::DisplayRotation), settings_setDisplayRotation, settings_displayDisplayRotation}, /*Display Rotation*/ +#ifndef NO_DISPLAY_ROTATE + {SETTINGS_DESC(SettingsItemIndex::DisplayRotation), settings_setDisplayRotation, settings_displayDisplayRotation}, /*Display Rotation*/ +#endif {SETTINGS_DESC(SettingsItemIndex::CooldownBlink), settings_setCoolingBlinkEnabled, settings_displayCoolingBlinkEnabled}, /*Cooling blink warning*/ {SETTINGS_DESC(SettingsItemIndex::ScrollingSpeed), settings_setScrollSpeed, settings_displayScrollSpeed}, /*Scroll Speed for descriptions*/ {SETTINGS_DESC(SettingsItemIndex::ReverseButtonTempChange), settings_setReverseButtonTempChangeEnabled, settings_displayReverseButtonTempChangeEnabled}, /* Reverse Temp change buttons + - */ @@ -197,14 +214,16 @@ const menuitem UIMenu[] = { {0, nullptr, nullptr} // end of menu marker. DO NOT REMOVE }; const menuitem PowerSavingMenu[] = { - /* - * Sleep Temp - * Sleep Time - * Shutdown Time - * Motion Sensitivity - */ - {SETTINGS_DESC(SettingsItemIndex::SleepTemperature), settings_setSleepTemp, settings_displaySleepTemp}, /*Sleep Temp*/ - {SETTINGS_DESC(SettingsItemIndex::SleepTimeout), settings_setSleepTime, settings_displaySleepTime}, /*Sleep Time*/ +/* + * Sleep Temp + * Sleep Time + * Shutdown Time + * Motion Sensitivity + */ +#ifndef NO_SLEEP_MODE + {SETTINGS_DESC(SettingsItemIndex::SleepTemperature), settings_setSleepTemp, settings_displaySleepTemp}, /*Sleep Temp*/ + {SETTINGS_DESC(SettingsItemIndex::SleepTimeout), settings_setSleepTime, settings_displaySleepTime}, /*Sleep Time*/ +#endif {SETTINGS_DESC(SettingsItemIndex::ShutdownTimeout), settings_setShutdownTime, settings_displayShutdownTime}, /*Shutdown Time*/ {SETTINGS_DESC(SettingsItemIndex::MotionSensitivity), settings_setSensitivity, settings_displaySensitivity}, /* Motion Sensitivity*/ #ifdef HALL_SENSOR @@ -362,6 +381,8 @@ static bool settings_displayQCInputV(void) { } #endif + +#ifndef NO_SLEEP_MODE static bool settings_setSleepTemp(void) { // If in C, 10 deg, if in F 20 deg if (systemSettings.temperatureInF) { @@ -407,7 +428,7 @@ static bool settings_displaySleepTime(void) { } return false; } - +#endif static bool settings_setShutdownTime(void) { systemSettings.ShutdownTime++; if (systemSettings.ShutdownTime > 60) { @@ -528,6 +549,7 @@ static bool settings_displayScrollSpeed(void) { return false; } +#ifndef NO_DISPLAY_ROTATE static bool settings_setDisplayRotation(void) { systemSettings.OrientationMode++; systemSettings.OrientationMode = systemSettings.OrientationMode % 3; @@ -566,29 +588,29 @@ static bool settings_displayDisplayRotation(void) { } return false; } - +#endif static bool settings_setBoostTemp(void) { if (systemSettings.temperatureInF) { if (systemSettings.BoostTemp == 0) { - systemSettings.BoostTemp = 480; // loop back at 480 + systemSettings.BoostTemp = MIN_BOOST_TEMP_F; // loop back at 480 } else { systemSettings.BoostTemp += 20; // Go up 20F at a time } - if (systemSettings.BoostTemp > 850) { + if (systemSettings.BoostTemp > MAX_TEMP_F) { systemSettings.BoostTemp = 0; // jump to off } - return systemSettings.BoostTemp == 840; + return systemSettings.BoostTemp == MAX_TEMP_F - 10; } else { if (systemSettings.BoostTemp == 0) { - systemSettings.BoostTemp = 250; // loop back at 250 + systemSettings.BoostTemp = MIN_BOOST_TEMP_C; // loop back at 250 } else { systemSettings.BoostTemp += 10; // Go up 10C at a time } - if (systemSettings.BoostTemp > 450) { + if (systemSettings.BoostTemp > MAX_TEMP_C) { systemSettings.BoostTemp = 0; // Go to off state } - return systemSettings.BoostTemp == 450; + return systemSettings.BoostTemp == MAX_TEMP_C; } } @@ -1000,6 +1022,8 @@ static bool settings_displayCalibrateVIN(void) { printShortDescription(SettingsItemIndex::VoltageCalibration, 5); return false; } + +#if defined(POW_DC) || defined(POW_QC) static bool settings_displayPowerMenu(void) { displayMenu(0); return false; @@ -1008,6 +1032,7 @@ static bool settings_enterPowerMenu(void) { gui_Menu(powerMenu); return false; } +#endif static bool settings_displaySolderingMenu(void) { displayMenu(1); return false; diff --git a/source/Core/Threads/GUIThread.cpp b/source/Core/Threads/GUIThread.cpp index 5d994831..df032b26 100644 --- a/source/Core/Threads/GUIThread.cpp +++ b/source/Core/Threads/GUIThread.cpp @@ -239,15 +239,15 @@ static void gui_solderingTempAdjust() { } // constrain between 10-450 C if (systemSettings.temperatureInF) { - if (systemSettings.SolderingTemp > 850) - systemSettings.SolderingTemp = 850; - if (systemSettings.SolderingTemp < 60) - systemSettings.SolderingTemp = 60; + if (systemSettings.SolderingTemp > MAX_TEMP_F) + systemSettings.SolderingTemp = MAX_TEMP_F; + if (systemSettings.SolderingTemp < MIN_TEMP_F) + systemSettings.SolderingTemp = MIN_TEMP_F; } else { - if (systemSettings.SolderingTemp > 450) - systemSettings.SolderingTemp = 450; - if (systemSettings.SolderingTemp < 10) - systemSettings.SolderingTemp = 10; + if (systemSettings.SolderingTemp > MAX_TEMP_C) + systemSettings.SolderingTemp = MAX_TEMP_C; + if (systemSettings.SolderingTemp < MIN_TEMP_C) + systemSettings.SolderingTemp = MIN_TEMP_C; } if (xTaskGetTickCount() - lastChange > (TICKS_SECOND * 2)) @@ -354,9 +354,28 @@ static int gui_SolderingSleepingMode(bool stayOff, bool autoStarted) { OLED::refresh(); GUIDelay(); +#ifdef ACCEL_EXITS_ON_MOVEMENT + // If the accel works in reverse where movement will cause exiting the soldering mode + if (systemSettings.sensitivity) { + if (lastMovementTime) { + if (lastMovementTime > TICKS_SECOND * 10) { + // If we have moved recently; in the last second + // Then exit soldering mode + + if (((TickType_t)(xTaskGetTickCount() - lastMovementTime)) < (TickType_t)(TICKS_SECOND)) { + currentTempTargetDegC = 0; + return 1; + } + } + } + } +#else + if (!shouldBeSleeping(autoStarted)) { return 0; } + +#endif if (shouldShutdown()) { // shutdown currentTempTargetDegC = 0; @@ -365,6 +384,7 @@ static int gui_SolderingSleepingMode(bool stayOff, bool autoStarted) { } return 0; } +#ifndef NO_SLEEP_MODE static void display_countdown(int sleepThres) { /* @@ -382,6 +402,7 @@ static void display_countdown(int sleepThres) { } } static uint32_t getSleepTimeout() { + if (systemSettings.sensitivity && systemSettings.SleepTime) { uint32_t sleepThres = 0; @@ -393,7 +414,9 @@ static uint32_t getSleepTimeout() { } return 0; } +#endif static bool shouldBeSleeping(bool inAutoStart) { +#ifndef NO_SLEEP_MODE // Return true if the iron should be in sleep mode if (systemSettings.sensitivity && systemSettings.SleepTime) { if (inAutoStart) { @@ -429,6 +452,7 @@ static bool shouldBeSleeping(bool inAutoStart) { } } #endif +#endif return false; } static void gui_solderingMode(uint8_t jumpToSleep) { @@ -526,17 +550,18 @@ static void gui_solderingMode(uint8_t jumpToSleep) { OLED::clearScreen(); // Draw in the screen details if (systemSettings.detailedSoldering) { - OLED::print(translatedString(Tr->SolderingAdvancedPowerPrompt), FontStyle::SMALL); // Power: + OLED::print(translatedString(Tr->SolderingAdvancedPowerPrompt), + FontStyle::SMALL); // Power: OLED::printNumber(x10WattHistory.average() / 10, 2, FontStyle::SMALL); OLED::print(SymbolDot, FontStyle::SMALL); OLED::printNumber(x10WattHistory.average() % 10, 1, FontStyle::SMALL); OLED::print(SymbolWatts, FontStyle::SMALL); - +#ifndef NO_SLEEP_MODE if (systemSettings.sensitivity && systemSettings.SleepTime) { OLED::print(SymbolSpace, FontStyle::SMALL); display_countdown(getSleepTimeout()); } - +#endif OLED::setCursor(0, 8); OLED::print(translatedString(Tr->SleepingTipAdvancedString), FontStyle::SMALL); gui_drawTipTemp(true, FontStyle::SMALL); @@ -612,6 +637,14 @@ static void gui_solderingMode(uint8_t jumpToSleep) { return; // If the function returns non-0 then exit } } + // Update LED status + int error = currentTempTargetDegC - TipThermoModel::getTipInC(); + if (error >= -10 && error <= 10) { + // converged + setStatusLED(LED_HOT); + } else { + setStatusLED(LED_HEATING); + } // slow down ui update rate GUIDelay(); } @@ -819,8 +852,10 @@ void startGUITask(void const *argument __unused) { saveSettings(); break; case BUTTON_F_SHORT: - gui_solderingMode(0); // enter soldering mode - buttonLockout = true; + if (!isTipDisconnected()) { + gui_solderingMode(0); // enter soldering mode + buttonLockout = true; + } break; case BUTTON_B_SHORT: enterSettingsMenu(); // enter the settings menu @@ -837,7 +872,11 @@ void startGUITask(void const *argument __unused) { currentTempTargetDegC = 0; // ensure tip is off getInputVoltageX10(systemSettings.voltageDiv, 0); uint32_t tipTemp = TipThermoModel::getTipInC(); - + if (tipTemp > 55) { + setStatusLED(LED_COOLING_STILL_HOT); + } else { + setStatusLED(LED_STANDBY); + } // Preemptively turn the display on. Turn it off if and only if // the tip temperature is below 50 degrees C *and* motion sleep // detection is enabled *and* there has been no activity (movement or @@ -847,13 +886,13 @@ void startGUITask(void const *argument __unused) { if ((tipTemp < 50) && systemSettings.sensitivity && (((xTaskGetTickCount() - lastMovementTime) > MOVEMENT_INACTIVITY_TIME) && ((xTaskGetTickCount() - lastButtonTime) > BUTTON_INACTIVITY_TIME))) { OLED::setDisplayState(OLED::DisplayState::OFF); + setStatusLED(LED_OFF); } - uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5; // Clear the lcd buffer OLED::clearScreen(); OLED::setCursor(0, 0); if (systemSettings.detailedIDLE) { - if (tipTemp > tipDisconnectedThres) { + if (isTipDisconnected()) { OLED::print(translatedString(Tr->TipDisconnectedString), FontStyle::SMALL); } else { OLED::print(translatedString(Tr->IdleTipString), FontStyle::SMALL); @@ -886,7 +925,7 @@ void startGUITask(void const *argument __unused) { tempOnDisplay = true; else if (tipTemp < 45) tempOnDisplay = false; - if (tipTemp > tipDisconnectedThres) { + if (isTipDisconnected()) { tempOnDisplay = false; tipDisconnectedDisplay = true; } diff --git a/source/Core/Threads/PIDThread.cpp b/source/Core/Threads/PIDThread.cpp index 66302f99..e8a69073 100644 --- a/source/Core/Threads/PIDThread.cpp +++ b/source/Core/Threads/PIDThread.cpp @@ -14,11 +14,11 @@ #include "main.hpp"
#include "power.hpp"
#include "task.h"
-static TickType_t powerPulseWaitUnit = 25 * TICKS_100MS; // 2.5 s
-static TickType_t powerPulseDurationUnit = (5 * TICKS_100MS) / 2; // 250 ms
-TaskHandle_t pidTaskNotification = NULL;
-uint32_t currentTempTargetDegC = 0; // Current temperature target in C
-
+static TickType_t powerPulseWaitUnit = 25 * TICKS_100MS; // 2.5 s
+static TickType_t powerPulseDurationUnit = (5 * TICKS_100MS) / 2; // 250 ms
+TaskHandle_t pidTaskNotification = NULL;
+uint32_t currentTempTargetDegC = 0; // Current temperature target in C
+int32_t powerSupplyWattageLimit = 0;
/* StartPIDTask function */
void startPIDTask(void const *argument __unused) {
/*
@@ -34,6 +34,9 @@ void startPIDTask(void const *argument __unused) { // be over-ridden rapidly
pidTaskNotification = xTaskGetCurrentTaskHandle();
uint32_t PIDTempTarget = 0;
+#ifdef SLEW_LIMIT
+ int32_t x10WattsOutLast = 0;
+#endif
for (;;) {
if (ulTaskNotifyTake(pdTRUE, 2000)) {
@@ -73,7 +76,6 @@ void startPIDTask(void const *argument __unused) { // Once we have feed-forward temp estimation we should be able to better tune this.
int32_t x10WattsNeeded = tempToX10Watts(tError);
- // tempError.average());
// note that milliWattsNeeded is sometimes negative, this counters overshoot
// from I term's inertia.
x10WattsOut += x10WattsNeeded;
@@ -106,14 +108,25 @@ void startPIDTask(void const *argument __unused) { }
// Secondary safety check to forcefully disable header when within ADC noise of top of ADC
- if (getTipRawTemp(0) > (0x7FFF - 150)) {
+ if (getTipRawTemp(0) > (0x7FFF - 32)) {
x10WattsOut = 0;
}
if (systemSettings.powerLimit && x10WattsOut > (systemSettings.powerLimit * 10)) {
- setTipX10Watts(systemSettings.powerLimit * 10);
- } else {
- setTipX10Watts(x10WattsOut);
+ x10WattsOut = systemSettings.powerLimit * 10;
+ }
+ if (powerSupplyWattageLimit && x10WattsOut > powerSupplyWattageLimit * 10) {
+ x10WattsOut = powerSupplyWattageLimit * 10;
+ }
+#ifdef SLEW_LIMIT
+ if (x10WattsOut - x10WattsOutLast > SLEW_LIMIT) {
+ x10WattsOut = x10WattsOutLast + SLEW_LIMIT;
}
+ if (x10WattsOut < 0) {
+ x10WattsOut = 0;
+ }
+ x10WattsOutLast = x10WattsOut;
+#endif
+ setTipX10Watts(x10WattsOut);
#ifdef DEBUG_UART_OUTPUT
log_system_state(x10WattsOut);
#endif
diff --git a/source/Makefile b/source/Makefile index c6a4ebad..6ecd4881 100644 --- a/source/Makefile +++ b/source/Makefile @@ -5,7 +5,8 @@ endif ALL_MINIWARE_MODELS=TS100 TS80 TS80P
ALL_PINE_MODELS=Pinecil
-ALL_MODELS=$(ALL_MINIWARE_MODELS) $(ALL_PINE_MODELS)
+ALL_MHP30_MODELS=MHP30
+ALL_MODELS=$(ALL_MINIWARE_MODELS) $(ALL_PINE_MODELS) $(ALL_MHP30_MODELS)
ifneq ($(model),$(filter $(model),$(ALL_MODELS)))
$(error Invalid model '$(model)', valid options are: $(ALL_MODELS))
endif
@@ -38,13 +39,23 @@ MINIWARE_INC_CMSIS_DEVICE = ./Core/BSP/Miniware/Vendor/CMSIS/Device/ST/STM32F1xx MINIWARE_CMSIS_CORE_INC_DIR = ./Core/BSP/Miniware/Vendor/CMSIS/Include
MINIWARE_HAL_INC_DIR = ./Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc
MINIWARE_HAL_LEGACY_INC_DIR = ./Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/Legacy
+MINIWARE_STARTUP_DIR = ./Startup
+MINIWARE_INC_DIR = ./Core/BSP/Miniware
+MINIWARE_LD_FILE = ./Core/BSP/Miniware/stm32f103.ld
+
+MHP30_INC_CMSIS_DEVICE = ./Core/BSP/MHP30/Vendor/CMSIS/Device/ST/STM32F1xx/Include
+MHP30_CMSIS_CORE_INC_DIR = ./Core/BSP/MHP30/Vendor/CMSIS/Include
+MHP30_HAL_INC_DIR = ./Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc
+MHP30_HAL_LEGACY_INC_DIR = ./Core/BSP/MHP30/Vendor/STM32F1xx_HAL_Driver/Inc/Legacy
+MHP30_STARTUP_DIR = ./Startup
+MHP30_INC_DIR = ./Core/BSP/MHP30
+MHP30_LD_FILE = ./Core/BSP/MHP30/stm32f103.ld
+
FRTOS_CMIS_INC_DIR = ./Middlewares/Third_Party/FreeRTOS/Source/CMSIS_RTOS
FRTOS_INC_DIR = ./Middlewares/Third_Party/FreeRTOS/Source/include
-MINIWARE_STARTUP_DIR = ./Startup
DRIVER_INC_DIR =./Core/Drivers
BSP_INC_DIR = ./Core/BSP
THREADS_INC_DIR = ./Core/Threads
-MINIWARE_INC_DIR = ./Core/BSP/Miniware
PINE_INC_DIR = ./Core/BSP/Pine64
PINE_VENDOR_INC_DIR = ./Core/BSP/Pine64/Vendor/SoC/gd32vf103/Common/Include
PINE_BOARD_INC_DIR = ./Core/BSP/Pine64/Vendor/SoC/gd32vf103/Board/pinecil/Include
@@ -72,7 +83,7 @@ DEVICE_INCLUDES = -I$(MINIWARE_INC_DIR) \ -I$(MINIWARE_HAL_LEGACY_INC_DIR)
DEVICE_BSP_DIR = ./Core/BSP/Miniware
S_SRCS := $(shell find $(MINIWARE_STARTUP_DIR) -type f -name '*.S')
-LDSCRIPT=stm32f103.ld
+LDSCRIPT=$(MINIWARE_LD_FILE)
DEV_GLOBAL_DEFS= -D STM32F103T8Ux -D STM32F1 -D STM32 -D USE_HAL_DRIVER -D STM32F103xB -D USE_RTOS_SYSTICK -D GCC_ARMCM3 \
-D ARM_MATH_CM3 \
-D STM32F10X_MD
@@ -91,6 +102,33 @@ flash_size=64k bootldr_size=0x4000
endif
+ifeq ($(model),$(filter $(model),$(ALL_MHP30_MODELS)))
+$(info Building for MHP30 )
+DEVICE_INCLUDES = -I$(MHP30_INC_DIR) \
+ -I$(MHP30_INC_CMSIS_DEVICE)\
+ -I$(MHP30_CMSIS_CORE_INC_DIR) \
+ -I$(MHP30_HAL_INC_DIR) \
+ -I$(MHP30_HAL_LEGACY_INC_DIR)
+DEVICE_BSP_DIR = ./Core/BSP/MHP30
+S_SRCS := $(shell find $(MHP30_STARTUP_DIR) -type f -name '*.S')
+LDSCRIPT=$(MHP30_LD_FILE)
+DEV_GLOBAL_DEFS= -D STM32F103T8Ux -D STM32F1 -D STM32 -D USE_HAL_DRIVER -D STM32F103xB -D USE_RTOS_SYSTICK -D GCC_ARMCM3 \
+ -D ARM_MATH_CM3 \
+ -D STM32F10X_MD
+DEV_LDFLAGS=-lm -Wl,--gc-sections
+DEV_AFLAGS=
+DEV_CFLAGS= -D GCC_ARMCM3 \
+ -D ARM_MATH_CM3 \
+ -D STM32F10X_MD
+DEV_CXXFLAGS= -D GCC_ARMCM3 \
+ -D ARM_MATH_CM3 \
+ -D STM32F10X_MD
+CPUFLAGS= -mcpu=cortex-m3 \
+ -mthumb \
+ -mfloat-abi=soft
+flash_size=128k
+bootldr_size=32k
+endif
ifeq ($(model),$(ALL_PINE_MODELS))
$(info Building for Pine64 )
DEVICE_INCLUDES = -I$(PINE_INC_DIR) \
@@ -167,7 +205,7 @@ COMPILER=gcc # arm-none-eabi is the general ARM compiler,
# riscv-none-embed is the riscv compiler
# riscv-nuclei-elf is the nuclei tuned one for their cores
-ifeq ($(model),$(filter $(model),$(ALL_MINIWARE_MODELS)))
+ifeq ($(model),$(filter $(model),$(ALL_MINIWARE_MODELS) $(ALL_MHP30_MODELS)))
COMPILER_PREFIX=arm-none-eabi
endif
ifeq ($(model),$(ALL_PINE_MODELS))
diff --git a/source/build.sh b/source/build.sh index 27c4f974..8d3700fe 100644 --- a/source/build.sh +++ b/source/build.sh @@ -7,11 +7,11 @@ TRANSLATION_SCRIPT="make_translation.py" # AVAILABLE_LANGUAGES will be calculating according to json files in $TRANSLATION_DIR AVAILABLE_LANGUAGES=() BUILD_LANGUAGES=() -AVAILABLE_MODELS=("TS100" "TS80" "TS80P" "Pinecil") +AVAILABLE_MODELS=("TS100" "TS80" "TS80P" "Pinecil" "MHP30") BUILD_MODELS=() usage() { - echo "Usage : $(basename "$0") [-l <LANG_CODE>] [-m <TS100|TS80|TS80P|Pinecil>] [-h] + echo "Usage : $(basename "$0") [-l <LANG_CODE>] [-m <TS100|TS80|TS80P|Pinecil|MHP30>] [-h] Parameters : -l LANG_CODE : Force a specific language (E.g. : EN, FR, NL_BE, ...) @@ -70,7 +70,7 @@ shift $((OPTIND - 1)) echo "*********************************************" echo " Builder for the" echo " Alternate Open Source Firmware" -echo " for Miniware TS100 or TS80" +echo " for Miniware + Pine64" echo " by Ralim" echo " " echo "*********************************************" |