1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
/*
* TipThermoModel.cpp
*
* Created on: 7 Oct 2019
* Author: ralim
*/
#include "TipThermoModel.h"
#include "BSP.h"
#include "Settings.h"
#include "configuration.h"
#include "main.hpp"
#include "power.hpp"
/*
* The hardware is laid out as a non-inverting op-amp
* There is a pullup of 39k(TS100) from the +ve input to 3.9V (1M pulup on TS100)
*
* The simplest case to model this, is to ignore the pullup resistors influence, and assume that its influence is mostly constant
* -> Tip resistance *does* change with temp, but this should be much less than the rest of the system.
*
* When a thermocouple is equal temperature at both sides (hot and cold junction), then the output should be 0uV
* Therefore, by measuring the uV when both are equal, the measured reading is the offset value.
* This is a mix of the pull-up resistor, combined with tip manufacturing differences.
*
* All of the thermocouple readings are based on this expired patent
* - > https://patents.google.com/patent/US6087631A/en
*
* This was bought to my attention by <Kuba Sztandera>
*/
uint32_t TipThermoModel::convertTipRawADCTouV(uint16_t rawADC, bool skipCalOffset) {
// This takes the raw ADC samples, converts these to uV
// Then divides this down by the gain to convert to the uV on the input to the op-amp (A+B terminals)
// Then remove the calibration value that is stored as a tip offset
uint32_t vddRailmVX10 = 33000; // The vreg is +-2%, but we have no higher accuracy available
// 4096 * 8 readings for full scale
// Convert the input ADC reading back into mV times 10 format.
uint32_t rawInputmVX10 = (rawADC * vddRailmVX10) / (4096 * 8);
uint32_t valueuV = rawInputmVX10 * 100; // shift into uV
// Now to divide this down by the gain
valueuV /= OP_AMP_GAIN_STAGE;
if (systemSettings.CalibrationOffset && skipCalOffset == false) {
// Remove uV tipOffset
if (valueuV > systemSettings.CalibrationOffset)
valueuV -= systemSettings.CalibrationOffset;
else
valueuV = 0;
}
return valueuV;
}
uint32_t TipThermoModel::convertTipRawADCToDegC(uint16_t rawADC) { return convertuVToDegC(convertTipRawADCTouV(rawADC)); }
uint32_t TipThermoModel::convertTipRawADCToDegF(uint16_t rawADC) { return convertuVToDegF(convertTipRawADCTouV(rawADC)); }
// Table that is designed to be walked to find the best sample for the lookup
// Extrapolate between two points
// [x1, y1] = point 1
// [x2, y2] = point 2
// x = input value
// output is x's interpolated y value
int32_t LinearInterpolate(int32_t x1, int32_t y1, int32_t x2, int32_t y2, int32_t x) { return y1 + (((((x - x1) * 1000) / (x2 - x1)) * (y2 - y1))) / 1000; }
#ifdef TEMP_uV_LOOKUP_HAKKO
const uint16_t uVtoDegC[] = {
//
//
0, 0, //
266, 10, //
522, 20, //
770, 30, //
1010, 40, //
1244, 50, //
1473, 60, //
1697, 70, //
1917, 80, //
2135, 90, //
2351, 100, //
2566, 110, //
2780, 120, //
2994, 130, //
3209, 140, //
3426, 150, //
3644, 160, //
3865, 170, //
4088, 180, //
4314, 190, //
4544, 200, //
4777, 210, //
5014, 220, //
5255, 230, //
5500, 240, //
5750, 250, //
6003, 260, //
6261, 270, //
6523, 280, //
6789, 290, //
7059, 300, //
7332, 310, //
7609, 320, //
7889, 330, //
8171, 340, //
8456, 350, //
8742, 360, //
9030, 370, //
9319, 380, //
9607, 390, //
9896, 400, //
10183, 410, //
10468, 420, //
10750, 430, //
11029, 440, //
11304, 450, //
11573, 460, //
11835, 470, //
12091, 480, //
12337, 490, //
12575, 500, //
};
#endif
#ifdef TEMP_uV_LOOKUP_TS80
const uint16_t uVtoDegC[] = {
//
//
530, 0, //
1282, 10, //
2034, 20, //
2786, 30, //
3538, 40, //
4290, 50, //
5043, 60, //
5795, 70, //
6547, 80, //
7299, 90, //
8051, 100, //
8803, 110, //
9555, 120, //
10308, 130, //
11060, 140, //
11812, 150, //
12564, 160, //
13316, 170, //
14068, 180, //
14820, 190, //
15573, 200, //
16325, 210, //
17077, 220, //
17829, 230, //
18581, 240, //
19333, 250, //
20085, 260, //
20838, 270, //
21590, 280, //
22342, 290, //
23094, 300, //
23846, 310, //
24598, 320, //
25350, 330, //
26103, 340, //
26855, 350, //
27607, 360, //
28359, 370, //
29111, 380, //
29863, 390, //
30615, 400, //
31368, 410, //
32120, 420, //
32872, 430, //
33624, 440, //
34376, 450, //
35128, 460, //
35880, 470, //
36632, 480, //
37385, 490, //
38137, 500, //
};
#endif
uint32_t TipThermoModel::convertuVToDegC(uint32_t tipuVDelta) {
if (tipuVDelta) {
int noItems = sizeof(uVtoDegC) / (2 * sizeof(uint16_t));
for (int i = 1; i < (noItems - 1); i++) {
// If current tip temp is less than current lookup, then this current lookup is the higher point to interpolate
if (tipuVDelta < uVtoDegC[i * 2]) {
return LinearInterpolate(uVtoDegC[(i - 1) * 2], uVtoDegC[((i - 1) * 2) + 1], uVtoDegC[i * 2], uVtoDegC[(i * 2) + 1], tipuVDelta);
}
}
return LinearInterpolate(uVtoDegC[(noItems - 2) * 2], uVtoDegC[((noItems - 2) * 2) + 1], uVtoDegC[(noItems - 1) * 2], uVtoDegC[((noItems - 1) * 2) + 1], tipuVDelta);
}
return 0;
}
uint32_t TipThermoModel::convertuVToDegF(uint32_t tipuVDelta) { return convertCtoF(convertuVToDegC(tipuVDelta)); }
uint32_t TipThermoModel::convertCtoF(uint32_t degC) {
//(Y °C × 9/5) + 32 =Y°F
return (32 + ((degC * 9) / 5));
}
uint32_t TipThermoModel::convertFtoC(uint32_t degF) {
//(Y°F − 32) × 5/9 = Y°C
if (degF < 32) {
return 0;
}
return ((degF - 32) * 5) / 9;
}
uint32_t TipThermoModel::getTipInC(bool sampleNow) {
int32_t currentTipTempInC = TipThermoModel::convertTipRawADCToDegC(getTipRawTemp(sampleNow));
currentTipTempInC += getHandleTemperature() / 10; // Add handle offset
// Power usage indicates that our tip temp is lower than our thermocouple temp.
// I found a number that doesn't unbalance the existing PID, causing overshoot.
// This could be tuned in concert with PID parameters...
currentTipTempInC -= x10WattHistory.average() / 25;
if (currentTipTempInC < 0)
return 0;
return currentTipTempInC;
}
uint32_t TipThermoModel::getTipInF(bool sampleNow) {
uint32_t currentTipTempInF = getTipInC(sampleNow);
currentTipTempInF = convertCtoF(currentTipTempInF);
return currentTipTempInF;
}
uint32_t TipThermoModel::getTipMaxInC() {
uint32_t maximumTipTemp = TipThermoModel::convertTipRawADCToDegC(0x7FFF - (21 * 5)); // back off approx 5 deg c from ADC max
maximumTipTemp += getHandleTemperature() / 10; // Add handle offset
return maximumTipTemp - 1;
}
|