1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
// Copyright 2024 Cloudflare, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use ahash::RandomState;
use std::hash::Hash;
use std::sync::atomic::{AtomicU8, AtomicUsize, Ordering};
struct Estimator {
estimator: Box<[(Box<[AtomicU8]>, RandomState)]>,
}
impl Estimator {
fn optimal_paras(items: usize) -> (usize, usize) {
use std::cmp::max;
// derived from https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
// width = ceil(e / ε)
// depth = ceil(ln(1 − δ) / ln(1 / 2))
let error_range = 1.0 / (items as f64);
let failure_probability = 1.0 / (items as f64);
(
max((std::f64::consts::E / error_range).ceil() as usize, 16),
max((failure_probability.ln() / 0.5f64.ln()).ceil() as usize, 2),
)
}
fn optimal(items: usize) -> Self {
let (slots, hashes) = Self::optimal_paras(items);
Self::new(hashes, slots)
}
fn compact(items: usize) -> Self {
let (slots, hashes) = Self::optimal_paras(items / 100);
Self::new(hashes, slots)
}
/// Create a new `Estimator` with the given amount of hashes and columns (slots).
pub fn new(hashes: usize, slots: usize) -> Self {
let mut estimator = Vec::with_capacity(hashes);
for _ in 0..hashes {
let mut slot = Vec::with_capacity(slots);
for _ in 0..slots {
slot.push(AtomicU8::new(0));
}
estimator.push((slot.into_boxed_slice(), RandomState::new()));
}
Estimator {
estimator: estimator.into_boxed_slice(),
}
}
pub fn incr<T: Hash>(&self, key: T) -> u8 {
let mut min = u8::MAX;
for (slot, hasher) in self.estimator.iter() {
let hash = hasher.hash_one(&key) as usize;
let counter = &slot[hash % slot.len()];
let (_current, new) = incr_no_overflow(counter);
min = std::cmp::min(min, new);
}
min
}
/// Get the estimated frequency of `key`.
pub fn get<T: Hash>(&self, key: T) -> u8 {
let mut min = u8::MAX;
for (slot, hasher) in self.estimator.iter() {
let hash = hasher.hash_one(&key) as usize;
let counter = &slot[hash % slot.len()];
let current = counter.load(Ordering::Relaxed);
min = std::cmp::min(min, current);
}
min
}
/// right shift all values inside this `Estimator`.
pub fn age(&self, shift: u8) {
for (slot, _) in self.estimator.iter() {
for counter in slot.iter() {
// we don't CAS because the only update between the load and store
// is fetch_add(1), which should be fine to miss/ignore
let c = counter.load(Ordering::Relaxed);
counter.store(c >> shift, Ordering::Relaxed);
}
}
}
}
fn incr_no_overflow(var: &AtomicU8) -> (u8, u8) {
loop {
let current = var.load(Ordering::Relaxed);
if current == u8::MAX {
return (current, current);
}
let new = if current == u8::MAX - 1 {
u8::MAX
} else {
current + 1
};
if let Err(new) = var.compare_exchange(current, new, Ordering::Acquire, Ordering::Relaxed) {
// someone else beat us to it
if new == u8::MAX {
// already max
return (current, new);
} // else, try again
} else {
return (current, new);
}
}
}
// bare-minimum TinyLfu with CM-Sketch, no doorkeeper for now
pub(crate) struct TinyLfu {
estimator: Estimator,
window_counter: AtomicUsize,
window_limit: usize,
}
impl TinyLfu {
pub fn get<T: Hash>(&self, key: T) -> u8 {
self.estimator.get(key)
}
pub fn incr<T: Hash>(&self, key: T) -> u8 {
let window_size = self.window_counter.fetch_add(1, Ordering::Relaxed);
// When window_size concurrently increases, only one resets the window and age the estimator.
// > self.window_limit * 2 is a safety net in case for whatever reason window_size grows
// out of control
if window_size == self.window_limit || window_size > self.window_limit * 2 {
self.window_counter.store(0, Ordering::Relaxed);
self.estimator.age(1); // right shift 1 bit
}
self.estimator.incr(key)
}
// because we use 8-bits counters, window size can be 256 * the cache size
pub fn new(cache_size: usize) -> Self {
Self {
estimator: Estimator::optimal(cache_size),
window_counter: Default::default(),
// 8x: just a heuristic to balance the memory usage and accuracy
window_limit: cache_size * 8,
}
}
pub fn new_compact(cache_size: usize) -> Self {
Self {
estimator: Estimator::compact(cache_size),
window_counter: Default::default(),
// 8x: just a heuristic to balance the memory usage and accuracy
window_limit: cache_size * 8,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_cmk_paras() {
let (slots, hashes) = Estimator::optimal_paras(1_000_000);
// just smoke check some standard input
assert_eq!(slots, 2718282);
assert_eq!(hashes, 20);
}
#[test]
fn test_tiny_lfu() {
let tiny = TinyLfu::new(1);
assert_eq!(tiny.get(1), 0);
assert_eq!(tiny.incr(1), 1);
assert_eq!(tiny.incr(1), 2);
assert_eq!(tiny.get(1), 2);
assert_eq!(tiny.get(2), 0);
assert_eq!(tiny.incr(2), 1);
assert_eq!(tiny.incr(2), 2);
assert_eq!(tiny.get(2), 2);
assert_eq!(tiny.incr(3), 1);
assert_eq!(tiny.incr(3), 2);
assert_eq!(tiny.incr(3), 3);
assert_eq!(tiny.incr(3), 4);
// 8 incr(), now reset
assert_eq!(tiny.incr(3), 3);
assert_eq!(tiny.incr(1), 2);
assert_eq!(tiny.incr(2), 2);
}
}
|