1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
|
// Copyright 2024 Cloudflare, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! A In-memory cache implementation with TinyLFU as the admission policy and [S3-FIFO](https://s3fifo.com/) as the eviction policy.
//!
//! TinyUFO improves cache hit ratio noticeably compared to LRU.
//!
//! TinyUFO is lock-free. It is very fast in the systems with a lot concurrent reads and/or writes
use ahash::RandomState;
use crossbeam_queue::SegQueue;
use std::marker::PhantomData;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::{
AtomicBool, AtomicU8,
Ordering::{Acquire, Relaxed, SeqCst},
};
mod buckets;
mod estimation;
use buckets::Buckets;
use estimation::TinyLfu;
use std::hash::Hash;
const SMALL: bool = false;
const MAIN: bool = true;
// Indicate which queue an item is located
#[derive(Debug, Default)]
struct Location(AtomicBool);
impl Location {
fn new_small() -> Self {
Self(AtomicBool::new(SMALL))
}
fn value(&self) -> bool {
self.0.load(Relaxed)
}
fn is_main(&self) -> bool {
self.value()
}
fn move_to_main(&self) {
self.0.store(true, Relaxed);
}
}
// We have 8 bits to spare but we still cap at 3. This is to make sure that the main queue
// in the worst case can find something to evict quickly
const USES_CAP: u8 = 3;
#[derive(Debug, Default)]
struct Uses(AtomicU8);
impl Uses {
pub fn inc_uses(&self) -> u8 {
loop {
let uses = self.uses();
if uses >= USES_CAP {
return uses;
}
if let Err(new) = self.0.compare_exchange(uses, uses + 1, Acquire, Relaxed) {
// someone else beat us to it
if new >= USES_CAP {
// already above cap
return new;
} // else, try again
} else {
return uses + 1;
}
}
}
// decrease uses, return the previous value
pub fn decr_uses(&self) -> u8 {
loop {
let uses = self.uses();
if uses == 0 {
return 0;
}
if let Err(new) = self.0.compare_exchange(uses, uses - 1, Acquire, Relaxed) {
// someone else beat us to it
if new == 0 {
return 0;
} // else, try again
} else {
return uses;
}
}
}
pub fn uses(&self) -> u8 {
self.0.load(Relaxed)
}
}
type Key = u64;
type Weight = u16;
/// The key-value pair returned from cache eviction
#[derive(Clone)]
pub struct KV<T> {
/// NOTE: that we currently don't store the Actual key in the cache. This returned value
/// is just the hash of it.
pub key: Key,
pub data: T,
pub weight: Weight,
}
// the data and its metadata
pub struct Bucket<T> {
uses: Uses,
queue: Location,
weight: Weight,
data: T,
}
const SMALL_QUEUE_PERCENTAGE: f32 = 0.1;
struct FiFoQueues<T> {
total_weight_limit: usize,
small: SegQueue<Key>,
small_weight: AtomicUsize,
main: SegQueue<Key>,
main_weight: AtomicUsize,
// this replaces the ghost queue of S3-FIFO with similar goal: track the evicted assets
estimator: TinyLfu,
_t: PhantomData<T>,
}
impl<T: Clone + Send + Sync + 'static> FiFoQueues<T> {
fn admit(
&self,
key: Key,
data: T,
weight: u16,
ignore_lfu: bool,
buckets: &Buckets<T>,
) -> Vec<KV<T>> {
// Note that we only use TinyLFU during cache admission but not cache read.
// So effectively we mostly sketch the popularity of less popular assets.
// In this way the sketch is a bit more accurate on these assets.
// Also we don't need another separated window cache to address the sparse burst issue as
// this sketch doesn't favor very popular assets much.
let new_freq = self.estimator.incr(key);
assert!(weight > 0);
let new_bucket = {
let Some((uses, queue, weight)) = buckets.get_map(&key, |bucket| {
// the item exists, in case weight changes
let old_weight = bucket.weight;
let uses = bucket.uses.inc_uses();
fn update_atomic(weight: &AtomicUsize, old: u16, new: u16) {
if old == new {
return;
}
if old > new {
weight.fetch_sub((old - new) as usize, SeqCst);
} else {
weight.fetch_add((new - old) as usize, SeqCst);
}
}
let queue = bucket.queue.is_main();
if queue == MAIN {
update_atomic(&self.main_weight, old_weight, weight);
} else {
update_atomic(&self.small_weight, old_weight, weight);
}
(uses, queue, weight)
}) else {
let mut evicted = self.evict_to_limit(weight, buckets);
// TODO: figure out the right way to compare frequencies of different weights across
// many evicted assets. For now TinyLFU is only used when only evicting 1 item.
let (key, data, weight) = if !ignore_lfu && evicted.len() == 1 {
// Apply the admission algorithm of TinyLFU: compare the incoming new item
// and the evicted one. The more popular one is admitted to cache
let evicted_first = &evicted[0];
let evicted_freq = self.estimator.get(evicted_first.key);
if evicted_freq > new_freq {
// put it back
let first = evicted.pop().expect("just check non-empty");
// return the put value
evicted.push(KV { key, data, weight });
(first.key, first.data, first.weight)
} else {
(key, data, weight)
}
} else {
(key, data, weight)
};
let bucket = Bucket {
queue: Location::new_small(),
weight,
uses: Default::default(), // 0
data,
};
let old = buckets.insert(key, bucket);
if old.is_none() {
// Always push key first before updating weight
// If doing the other order, another concurrent thread might not
// find things to evict
self.small.push(key);
self.small_weight.fetch_add(weight as usize, SeqCst);
} // else: two threads are racing adding the item
// TODO: compare old.weight and update accordingly
return evicted;
};
Bucket {
queue: Location(queue.into()),
weight,
uses: Uses(uses.into()),
data,
}
};
// replace the existing one
buckets.insert(key, new_bucket);
// NOTE: there is a chance that the item itself is evicted if it happens to be the one selected
// by the algorithm. We could avoid this by checking if the item is in the returned evicted items,
// and then add it back. But to keep the code simple we just allow it to happen.
self.evict_to_limit(0, buckets)
}
// the `extra_weight` is to essentially tell the cache to reserve that amount of weight for
// admission. It is used when calling `evict_to_limit` before admitting the asset itself.
fn evict_to_limit(&self, extra_weight: Weight, buckets: &Buckets<T>) -> Vec<KV<T>> {
let mut evicted = if self.total_weight_limit
< self.small_weight.load(SeqCst) + self.main_weight.load(SeqCst) + extra_weight as usize
{
Vec::with_capacity(1)
} else {
vec![]
};
while self.total_weight_limit
< self.small_weight.load(SeqCst) + self.main_weight.load(SeqCst) + extra_weight as usize
{
if let Some(evicted_item) = self.evict_one(buckets) {
evicted.push(evicted_item);
} else {
break;
}
}
evicted
}
fn evict_one(&self, buckets: &Buckets<T>) -> Option<KV<T>> {
let evict_small = self.small_weight_limit() <= self.small_weight.load(SeqCst);
if evict_small {
let evicted = self.evict_one_from_small(buckets);
// evict_one_from_small could just promote everything to main without evicting any
// so need to evict_one_from_main if nothing evicted
if evicted.is_some() {
return evicted;
}
}
self.evict_one_from_main(buckets)
}
fn small_weight_limit(&self) -> usize {
(self.total_weight_limit as f32 * SMALL_QUEUE_PERCENTAGE).floor() as usize + 1
}
fn evict_one_from_small(&self, buckets: &Buckets<T>) -> Option<KV<T>> {
loop {
let Some(to_evict) = self.small.pop() else {
// empty queue, this is caught between another pop() and fetch_sub()
return None;
};
let v = buckets
.get_map(&to_evict, |bucket| {
let weight = bucket.weight;
self.small_weight.fetch_sub(weight as usize, SeqCst);
if bucket.uses.uses() > 1 {
// move to main
bucket.queue.move_to_main();
self.main.push(to_evict);
self.main_weight.fetch_add(weight as usize, SeqCst);
// continue until find one to evict
None
} else {
let data = bucket.data.clone();
let weight = bucket.weight;
buckets.remove(&to_evict);
Some(KV {
key: to_evict,
data,
weight,
})
}
})
.flatten();
if v.is_some() {
// found the one to evict, break
return v;
}
}
}
fn evict_one_from_main(&self, buckets: &Buckets<T>) -> Option<KV<T>> {
loop {
let to_evict = self.main.pop()?;
if let Some(v) = buckets
.get_map(&to_evict, |bucket| {
if bucket.uses.decr_uses() > 0 {
// put it back
self.main.push(to_evict);
// continue the loop
None
} else {
// evict
let weight = bucket.weight;
self.main_weight.fetch_sub(weight as usize, SeqCst);
let data = bucket.data.clone();
buckets.remove(&to_evict);
Some(KV {
key: to_evict,
data,
weight,
})
}
})
.flatten()
{
// found the one to evict, break
return Some(v);
}
}
}
}
/// [TinyUfo] cache
pub struct TinyUfo<K, T> {
queues: FiFoQueues<T>,
buckets: Buckets<T>,
random_status: RandomState,
_k: PhantomData<K>,
}
impl<K: Hash, T: Clone + Send + Sync + 'static> TinyUfo<K, T> {
/// Create a new TinyUfo cache with the given weight limit and the given
/// size limit of the ghost queue.
pub fn new(total_weight_limit: usize, estimated_size: usize) -> Self {
let queues = FiFoQueues {
small: SegQueue::new(),
small_weight: 0.into(),
main: SegQueue::new(),
main_weight: 0.into(),
total_weight_limit,
estimator: TinyLfu::new(estimated_size),
_t: PhantomData,
};
TinyUfo {
queues,
buckets: Buckets::new_fast(estimated_size),
random_status: RandomState::new(),
_k: PhantomData,
}
}
/// Create a new TinyUfo cache but with more memory efficient data structures.
/// The trade-off is that the the get() is slower by a constant factor.
/// The cache hit ratio could be higher as this type of TinyUFO allows to store
/// more assets with the same memory.
pub fn new_compact(total_weight_limit: usize, estimated_size: usize) -> Self {
let queues = FiFoQueues {
small: SegQueue::new(),
small_weight: 0.into(),
main: SegQueue::new(),
main_weight: 0.into(),
total_weight_limit,
estimator: TinyLfu::new_compact(estimated_size),
_t: PhantomData,
};
TinyUfo {
queues,
buckets: Buckets::new_compact(estimated_size, 32),
random_status: RandomState::new(),
_k: PhantomData,
}
}
// TODO: with_capacity()
/// Read the given key
///
/// Return Some(T) if the key exists
pub fn get(&self, key: &K) -> Option<T> {
let key = self.random_status.hash_one(key);
self.buckets.get_map(&key, |p| {
p.uses.inc_uses();
p.data.clone()
})
}
/// Put the key value to the [TinyUfo]
///
/// Return a list of [KV] of key and `T` that are evicted
pub fn put(&self, key: K, data: T, weight: Weight) -> Vec<KV<T>> {
let key = self.random_status.hash_one(&key);
self.queues.admit(key, data, weight, false, &self.buckets)
}
/// Always put the key value to the [TinyUfo]
///
/// Return a list of [KV] of key and `T` that are evicted
///
/// Similar to [Self::put] but guarantee the assertion of the asset.
/// In [Self::put], the TinyLFU check may reject putting the current asset if it is less
/// popular than the once being evicted.
///
/// In some real world use cases, a few reads to the same asset may be pending for the put action
/// to be finished so that they can read the asset from cache. Neither the above behaviors are ideal
/// for this use case.
///
/// Compared to [Self::put], the hit ratio when using this function is reduced by about 0.5pp or less in
/// under zipf workloads.
pub fn force_put(&self, key: K, data: T, weight: Weight) -> Vec<KV<T>> {
let key = self.random_status.hash_one(&key);
self.queues.admit(key, data, weight, true, &self.buckets)
}
#[cfg(test)]
fn peek_queue(&self, key: K) -> Option<bool> {
let key = self.random_status.hash_one(&key);
self.buckets.get_queue(&key)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_uses() {
let uses: Uses = Default::default();
assert_eq!(uses.uses(), 0);
uses.inc_uses();
assert_eq!(uses.uses(), 1);
for _ in 0..USES_CAP {
uses.inc_uses();
}
assert_eq!(uses.uses(), USES_CAP);
for _ in 0..USES_CAP + 2 {
uses.decr_uses();
}
assert_eq!(uses.uses(), 0);
}
#[test]
fn test_evict_from_small() {
let mut cache = TinyUfo::new(5, 5);
cache.random_status = RandomState::with_seeds(2, 3, 4, 5);
cache.queues.estimator = TinyLfu::new_seeded(5);
cache.put(1, 1, 1);
cache.put(2, 2, 2);
cache.put(3, 3, 2);
// cache full now
assert_eq!(cache.peek_queue(1), Some(SMALL));
assert_eq!(cache.peek_queue(2), Some(SMALL));
assert_eq!(cache.peek_queue(3), Some(SMALL));
let evicted = cache.put(4, 4, 3);
assert_eq!(evicted.len(), 2);
assert_eq!(evicted[0].data, 1);
assert_eq!(evicted[1].data, 2);
assert_eq!(cache.peek_queue(1), None);
assert_eq!(cache.peek_queue(2), None);
assert_eq!(cache.peek_queue(3), Some(SMALL));
}
#[test]
fn test_evict_from_small_to_main() {
let mut cache = TinyUfo::new(5, 5);
cache.random_status = RandomState::with_seeds(2, 3, 4, 5);
cache.queues.estimator = TinyLfu::new_seeded(5);
cache.put(1, 1, 1);
cache.put(2, 2, 2);
cache.put(3, 3, 2);
// cache full now
cache.get(&1);
cache.get(&1); // 1 will be moved to main during next eviction
assert_eq!(cache.peek_queue(1), Some(SMALL));
assert_eq!(cache.peek_queue(2), Some(SMALL));
assert_eq!(cache.peek_queue(3), Some(SMALL));
let evicted = cache.put(4, 4, 2);
assert_eq!(evicted.len(), 1);
assert_eq!(evicted[0].weight, 2);
assert_eq!(cache.peek_queue(1), Some(MAIN));
// either 2, 3, or 4 was evicted. Check evicted for which.
let mut remaining = vec![2, 3, 4];
remaining.remove(
remaining
.iter()
.position(|x| *x == evicted[0].data)
.unwrap(),
);
assert_eq!(cache.peek_queue(evicted[0].key), None);
for k in remaining {
assert_eq!(cache.peek_queue(k), Some(SMALL));
}
}
#[test]
fn test_evict_reentry() {
let mut cache = TinyUfo::new(5, 5);
cache.random_status = RandomState::with_seeds(2, 3, 4, 5);
cache.queues.estimator = TinyLfu::new_seeded(5);
cache.put(1, 1, 1);
cache.put(2, 2, 2);
cache.put(3, 3, 2);
// cache full now
assert_eq!(cache.peek_queue(1), Some(SMALL));
assert_eq!(cache.peek_queue(2), Some(SMALL));
assert_eq!(cache.peek_queue(3), Some(SMALL));
let evicted = cache.put(4, 4, 1);
assert_eq!(evicted.len(), 1);
assert_eq!(evicted[0].data, 1);
assert_eq!(cache.peek_queue(1), None);
assert_eq!(cache.peek_queue(2), Some(SMALL));
assert_eq!(cache.peek_queue(3), Some(SMALL));
assert_eq!(cache.peek_queue(4), Some(SMALL));
let evicted = cache.put(1, 1, 1);
assert_eq!(evicted.len(), 1);
assert_eq!(evicted[0].data, 2);
assert_eq!(cache.peek_queue(1), Some(SMALL));
assert_eq!(cache.peek_queue(2), None);
assert_eq!(cache.peek_queue(3), Some(SMALL));
assert_eq!(cache.peek_queue(4), Some(SMALL));
}
#[test]
fn test_evict_entry_denied() {
let mut cache = TinyUfo::new(5, 5);
cache.random_status = RandomState::with_seeds(2, 3, 4, 5);
cache.queues.estimator = TinyLfu::new_seeded(5);
cache.put(1, 1, 1);
cache.put(2, 2, 2);
cache.put(3, 3, 2);
// cache full now
assert_eq!(cache.peek_queue(1), Some(SMALL));
assert_eq!(cache.peek_queue(2), Some(SMALL));
assert_eq!(cache.peek_queue(3), Some(SMALL));
// trick: put a few times to bump their frequencies
cache.put(1, 1, 1);
cache.put(2, 2, 2);
cache.put(3, 3, 2);
let evicted = cache.put(4, 4, 1);
assert_eq!(evicted.len(), 1);
assert_eq!(evicted[0].data, 4); // 4 is returned
assert_eq!(cache.peek_queue(1), Some(SMALL));
assert_eq!(cache.peek_queue(2), Some(SMALL));
assert_eq!(cache.peek_queue(3), Some(SMALL));
assert_eq!(cache.peek_queue(4), None);
}
#[test]
fn test_force_put() {
let mut cache = TinyUfo::new(5, 5);
cache.random_status = RandomState::with_seeds(2, 3, 4, 5);
cache.queues.estimator = TinyLfu::new_seeded(5);
cache.put(1, 1, 1);
cache.put(2, 2, 2);
cache.put(3, 3, 2);
// cache full now
assert_eq!(cache.peek_queue(1), Some(SMALL));
assert_eq!(cache.peek_queue(2), Some(SMALL));
assert_eq!(cache.peek_queue(3), Some(SMALL));
// trick: put a few times to bump their frequencies
cache.put(1, 1, 1);
cache.put(2, 2, 2);
cache.put(3, 3, 2);
// force put will replace 1 with 4 even through 1 is more popular
let evicted = cache.force_put(4, 4, 1);
assert_eq!(evicted.len(), 1);
assert_eq!(evicted[0].data, 1); // 1 is returned
assert_eq!(cache.peek_queue(1), None);
assert_eq!(cache.peek_queue(2), Some(SMALL));
assert_eq!(cache.peek_queue(3), Some(SMALL));
assert_eq!(cache.peek_queue(4), Some(SMALL));
}
#[test]
fn test_evict_from_main() {
let mut cache = TinyUfo::new(5, 5);
cache.random_status = RandomState::with_seeds(2, 3, 4, 5);
cache.queues.estimator = TinyLfu::new_seeded(5);
cache.put(1, 1, 1);
cache.put(2, 2, 2);
cache.put(3, 3, 2);
// cache full now
// all 3 will qualify to main
cache.get(&1);
cache.get(&1);
cache.get(&2);
cache.get(&2);
cache.get(&3);
cache.get(&3);
let evicted = cache.put(4, 4, 1);
assert_eq!(evicted.len(), 1);
assert_eq!(evicted[0].data, 1);
// 1 kicked from main
assert_eq!(cache.peek_queue(1), None);
assert_eq!(cache.peek_queue(2), Some(MAIN));
assert_eq!(cache.peek_queue(3), Some(MAIN));
assert_eq!(cache.peek_queue(4), Some(SMALL));
let evicted = cache.put(1, 1, 1);
assert_eq!(evicted.len(), 1);
assert_eq!(evicted[0].data, 4);
assert_eq!(cache.peek_queue(1), Some(SMALL));
assert_eq!(cache.peek_queue(2), Some(MAIN));
assert_eq!(cache.peek_queue(3), Some(MAIN));
assert_eq!(cache.peek_queue(4), None);
}
#[test]
fn test_evict_from_small_compact() {
let mut cache = TinyUfo::new(5, 5);
cache.random_status = RandomState::with_seeds(2, 3, 4, 5);
cache.queues.estimator = TinyLfu::new_compact_seeded(5);
cache.put(1, 1, 1);
cache.put(2, 2, 2);
cache.put(3, 3, 2);
// cache full now
assert_eq!(cache.peek_queue(1), Some(SMALL));
assert_eq!(cache.peek_queue(2), Some(SMALL));
assert_eq!(cache.peek_queue(3), Some(SMALL));
let evicted = cache.put(4, 4, 3);
assert_eq!(evicted.len(), 2);
assert_eq!(evicted[0].data, 1);
assert_eq!(evicted[1].data, 2);
assert_eq!(cache.peek_queue(1), None);
assert_eq!(cache.peek_queue(2), None);
assert_eq!(cache.peek_queue(3), Some(SMALL));
}
#[test]
fn test_evict_from_small_to_main_compact() {
let mut cache = TinyUfo::new(5, 5);
cache.random_status = RandomState::with_seeds(2, 3, 4, 5);
cache.queues.estimator = TinyLfu::new_compact_seeded(5);
cache.put(1, 1, 1);
cache.put(2, 2, 2);
cache.put(3, 3, 2);
// cache full now
cache.get(&1);
cache.get(&1); // 1 will be moved to main during next eviction
assert_eq!(cache.peek_queue(1), Some(SMALL));
assert_eq!(cache.peek_queue(2), Some(SMALL));
assert_eq!(cache.peek_queue(3), Some(SMALL));
let evicted = cache.put(4, 4, 2);
assert_eq!(evicted.len(), 1);
assert_eq!(evicted[0].weight, 2);
assert_eq!(cache.peek_queue(1), Some(MAIN));
// either 2, 3, or 4 was evicted. Check evicted for which.
let mut remaining = vec![2, 3, 4];
remaining.remove(
remaining
.iter()
.position(|x| *x == evicted[0].data)
.unwrap(),
);
assert_eq!(cache.peek_queue(evicted[0].key), None);
for k in remaining {
assert_eq!(cache.peek_queue(k), Some(SMALL));
}
}
}
|