aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/usage.md
blob: 5e1946a9f3920605e12d3801ff2233672dff88cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Usage

Inherit `Xbyak::CodeGenerator` class and make the class method.
```cpp
#include <xbyak/xbyak.h>

struct Code : Xbyak::CodeGenerator {
    Code(int x)
    {
        mov(eax, x);
        ret();
    }
};
```
Or you can pass the instance of CodeGenerator without inheriting.
```cpp
void genCode(Xbyak::CodeGenerator& code, int x) {
    using namespace Xbyak::util;
    code.mov(eax, x);
    code.ret();
}
```

Make an instance of the class and get the function
pointer by calling `getCode()` and call it.
```cpp
Code c(5);
int (*f)() = c.getCode<int (*)()>();
printf("ret=%d\n", f()); // ret = 5
```

## Syntax
Similar to MASM/NASM syntax with parentheses.

```cpp
NASM              Xbyak
mov eax, ebx  --> mov(eax, ebx);
inc ecx           inc(ecx);
ret           --> ret();
```

## Addressing
Use `qword`, `dword`, `word` and `byte` if it is necessary to specify the size of memory,
otherwise use `ptr`.

```cpp
(ptr|qword|dword|word|byte) [base + index * (1|2|4|8) + displacement]
                            [rip + 32bit disp] ; x64 only

NASM                   Xbyak
mov eax, [ebx+ecx] --> mov(eax, ptr [ebx+ecx]);
mov al, [ebx+ecx]  --> mov(al, ptr [ebx + ecx]);
test byte [esp], 4 --> test(byte [esp], 4);
inc qword [rax]    --> inc(qword [rax]);
```

**Note**: `qword`, ... are member variables, then don't use `dword` as unsigned int type.

### How to use Selector (Segment Register)
```cpp
mov eax, [fs:eax] --> putSeg(fs);
                      mov(eax, ptr [eax]);
mov ax, cs        --> mov(ax, cs);
```

**Note**: Segment class is not derived from `Operand`.

## AVX

```cpp
vaddps(xmm1, xmm2, xmm3); // xmm1 <- xmm2 + xmm3
vaddps(xmm2, xmm3, ptr [rax]); // use ptr to access memory
vgatherdpd(xmm1, ptr [ebp + 256 + xmm2*4], xmm3);
```

**Note**:
If `XBYAK_ENABLE_OMITTED_OPERAND` is defined, then you can use two operand version for backward compatibility.
But the newer version will not support it.
```cpp
vaddps(xmm2, xmm3); // xmm2 <- xmm2 + xmm3
```

## AVX-512

```cpp
vaddpd zmm2, zmm5, zmm30                --> vaddpd(zmm2, zmm5, zmm30);
vaddpd xmm30, xmm20, [rax]              --> vaddpd(xmm30, xmm20, ptr [rax]);
vaddps xmm30, xmm20, [rax]              --> vaddps(xmm30, xmm20, ptr [rax]);
vaddpd zmm2{k5}, zmm4, zmm2             --> vaddpd(zmm2 | k5, zmm4, zmm2);
vaddpd zmm2{k5}{z}, zmm4, zmm2          --> vaddpd(zmm2 | k5 | T_z, zmm4, zmm2);
vaddpd zmm2{k5}{z}, zmm4, zmm2,{rd-sae} --> vaddpd(zmm2 | k5 | T_z, zmm4, zmm2 | T_rd_sae);
                                            vaddpd(zmm2 | k5 | T_z | T_rd_sae, zmm4, zmm2); // the position of `|` is arbitrary.
vcmppd k4{k3}, zmm1, zmm2, {sae}, 5     --> vcmppd(k4 | k3, zmm1, zmm2 | T_sae, 5);

vaddpd xmm1, xmm2, [rax+256]            --> vaddpd(xmm1, xmm2, ptr [rax+256]);
vaddpd xmm1, xmm2, [rax+256]{1to2}      --> vaddpd(xmm1, xmm2, ptr_b [rax+256]);
vaddpd ymm1, ymm2, [rax+256]{1to4}      --> vaddpd(ymm1, ymm2, ptr_b [rax+256]);
vaddpd zmm1, zmm2, [rax+256]{1to8}      --> vaddpd(zmm1, zmm2, ptr_b [rax+256]);
vaddps zmm1, zmm2, [rax+rcx*8+8]{1to16} --> vaddps(zmm1, zmm2, ptr_b [rax+rcx*8+8]);
vmovsd [rax]{k1}, xmm4                  --> vmovsd(ptr [rax] | k1, xmm4);

vcvtpd2dq xmm16, oword [eax+33]         --> vcvtpd2dq(xmm16, xword [eax+33]); // use xword for m128 instead of oword
                                            vcvtpd2dq(xmm16, ptr [eax+33]); // default xword
vcvtpd2dq xmm21, [eax+32]{1to2}         --> vcvtpd2dq(xmm21, ptr_b [eax+32]);
vcvtpd2dq xmm0, yword [eax+33]          --> vcvtpd2dq(xmm0, yword [eax+33]); // use yword for m256
vcvtpd2dq xmm19, [eax+32]{1to4}         --> vcvtpd2dq(xmm19, yword_b [eax+32]); // use yword_b to broadcast

vfpclassps k5{k3}, zword [rax+64], 5    --> vfpclassps(k5|k3, zword [rax+64], 5); // specify m512
vfpclasspd k5{k3}, [rax+64]{1to2}, 5    --> vfpclasspd(k5|k3, xword_b [rax+64], 5); // broadcast 64-bit to 128-bit
vfpclassps k5{k3}, [rax+64]{1to4}, 5    --> vfpclassps(k5|k3, yword_b [rax+64], 5); // broadcast 64-bit to 256-bit
```

### Remark
* `k1`, ..., `k7` are opmask registers.
  - `k0` is dealt as no mask.
  - e.g. `vmovaps(zmm0|k0, ptr[rax]);` and `vmovaps(zmm0|T_z, ptr[rax]);` are same to `vmovaps(zmm0, ptr[rax]);`.
* use `| T_z`, `| T_sae`, `| T_rn_sae`, `| T_rd_sae`, `| T_ru_sae`, `| T_rz_sae` instead of `,{z}`, `,{sae}`, `,{rn-sae}`, `,{rd-sae}`, `,{ru-sae}`, `,{rz-sae}` respectively.
* `k4 | k3` is different from `k3 | k4`.
* use `ptr_b` for broadcast `{1toX}`. X is automatically determined.
* specify `xword`/`yword`/`zword(_b)` for m128/m256/m512 if necessary.

## Selecting AVX512-VNNI, AVX-VNNI, AVX-VNNI-INT8, AVX10.2.
Some mnemonics have some types of encodings: VEX, EVEX, AVX10.2.
The functions for these mnemonics include an optional parameter as the last argument to specify the encoding.
The default behavior depends on the order in which the instruction was introduced (whether VEX, EVEX or AVX10.2 came first),
and can be specified using setDefaultEncoding.

```cpp
vpdpbusd(xm0, xm1, xm2); // default encoding: EVEX (AVX512-VNNI)
vpdpbusd(xm0, xm1, xm2, EvexEncoding); // same as the above
vpdpbusd(xm0, xm1, xm2, VexEncoding); // VEX (AVX-VNNI)
setDefaultEncoding(VexEncoding); // change default encoding
vpdpbusd(xm0, xm1, xm2); // VEX

vmpsadbw(xm1, xm3, xm15, 3); // default encoding: AVX
vmpsadbw(xm1, xm3, xm15, 3, PreAVX10v2Encoding); // same as the above
vmpsadbw(xm1, xm3, xm15, 3, AVX10v2Encoding); // AVX10.2
setDefaultEncodingAVX10(AVX10v2Encoding); // change default encoding
vmpsadbw(xm1, xm3, xm15, 3); // AVX10.2
```

- `setDefaultEncoding(PreferredEncoding enc = EvexEncoding)`
  - Configure encoding for AVX512-VNNI or AVX-VNNI instructions.
- `setDefaultEncodingAVX10(PreferredEncoding enc = PreAVXv2Encoding)`
  - Configure encoding for pre-AVX10.2 and AVX10.2 instructions.

`setDefaultEncoding`|EvexEncoding (default)|VexEncoding
-|-|-
feature|AVX512-VNNI|AVX-VNNI

- Target functions: vpdpbusd, vpdpbusds, vpdpwssd, vpdpwssds

`setDefaultEncodingAVX10`|PreAVX10v2Encoding (default)|AVX10v2Encoding
-|-|-
feature|AVX-VNNI-INT8, AVX512-FP16|AVX10.2

- Target functions: vmpsadbw, vpdpbssd, vpdpbssds, vpdpbsud, vpdpbsuds, vpdpbuud, vpdpbuuds, vpdpwsud vpdpwsuds vpdpwusd vpdpwusds vpdpwuud, vpdpwuuds and vmovd, vmovw with MEM-to-MEM.

### Remark

1. `vmovd` and `vmovw` instructions with REG-to-XMM or XMM-to-REG operands are always encoded using AVX10.1.
When used with XMM-to-XMM operands, these instructions are always encoded using AVX10.2.

2. `vmovd` and `vmovw` instructions with XMM-to-MEM or MEM-to-XMM operands support multiple encoding formats, including AVX, AVX512F, AVX512-FP16, and AVX10.2.

Initially, I tried implementing `setDefaultEncodingAVX10` using `EvexEncoding` (resp. `VexEncoding`) instead of `AVX10v2Encoding` (resp. `EvexEncoding`).
However, I abandoned this approach after discovering the complexity of the encoding requirements of `vmovd` and `vmovw`.

## APX
[Advanced Performance Extensions (APX) Architecture Specification](https://www.intel.com/content/www/us/en/content-details/786223/intel-advanced-performance-extensions-intel-apx-architecture-specification.html)
- Support 64-bit 16 additional GPRs (general-purpose registers) r16, ..., r31
  - 32-bit regs are r16d, ..., r31d
  - 16-bit regs are r16w, ..., r31w
  - 8-bit regs are r16b, ..., r31b
  - `add(r20, r21);`
  - `lea(r30, ptr[r29+r31]);`
- Support three-operand instruction
  - `add(r20, r21, r23);`
  - `add(r20, ptr[rax + rcx * 8 + 0x1234], r23);`
- Support T_nf for NF=1 (status flags update suppression)
  - `add(r20|T_nf, r21, r23);` // Set EVEX.NF=1
- Support T_zu for NF=ZU (zero upper) for imul and setcc
  - `imul(ax|T_zu, cx, 0x1234);` // Set ND=ZU
  - `imul(ax|T_zu|T_nf, cx, 0x1234);` // Set ND=ZU and EVEX.NF=1
  - `setb(r31b|T_zu);` // same as set(r31b); movzx(r31, r31b);
  - See [sample/zero_upper.cpp](../sample/zero_upper.cpp)

### ccmpSCC and ctestSCC

- ccmpSCC(op1, op2, dfv = 0); // eflags = eflags == SCC ? cmp(op1, op2) : dfv
- ctestSCC(op1, op2, dfv = 0); // eflags = eflags == SCC ? test(op1, op2) : dfv
- SCC means source condition code such as z, a, gt.
- See [sample/ccmp.cpp](../sample/ccmp.cpp)
- Specify the union of T_of(=8), T_sf(=4), T_zf(=2), or T_cf(=1) for dfv.


## Label
Two kinds of Label are supported. (String literal and Label class).

### String literal
```cpp
L("L1");
  jmp("L1");

  jmp("L2");
  ...
  a few mnemonics (8-bit displacement jmp)
  ...
L("L2");

  jmp("L3", T_NEAR);
  ...
  a lot of mnemonics (32-bit displacement jmp)
  ...
L("L3");
```

* Call `hasUndefinedLabel()` to verify your code has no undefined label.
* you can use a label for immediate value of mov like as `mov(eax, "L2")`.

### Support `@@`, `@f`, `@b` like MASM

```cpp
L("@@"); // <A>
  jmp("@b"); // jmp to <A>
  jmp("@f"); // jmp to <B>
L("@@"); // <B>
  jmp("@b"); // jmp to <B>
  mov(eax, "@b");
  jmp(eax); // jmp to <B>
```

### Local label

Label symbols beginning with a period between `inLocalLabel()` and `outLocalLabel()`
are treated as a local label.
`inLocalLabel()` and `outLocalLabel()` can be nested.

```cpp
void func1()
{
    inLocalLabel();
  L(".lp"); // <A> ; local label
    ...
    jmp(".lp"); // jmp to <A>
  L("aaa"); // global label <C>
    outLocalLabel();

    inLocalLabel();
  L(".lp"); // <B> ; local label
    func1();
    jmp(".lp"); // jmp to <B>
    inLocalLabel();
    jmp("aaa"); // jmp to <C>
}
```

### short and long jump
Xbyak deals with jump mnemonics of an undefined label as short jump if no type is specified.
So if the size between jmp and label is larger than 127 byte, then xbyak will cause an error.

```cpp
jmp("short-jmp"); // short jmp
// small code
L("short-jmp");

jmp("long-jmp");
// long code
L("long-jmp"); // throw exception
```

Then specify T_NEAR for jmp.
```cpp
jmp("long-jmp", T_NEAR); // long jmp
// long code
L("long-jmp");
```

Or call `setDefaultJmpNEAR(true);` once, then the default type is set to T_NEAR.
```cpp
jmp("long-jmp"); // long jmp
// long code
L("long-jmp");
```

### Label class

`L()` and `jxx()` support Label class.

```cpp
  Xbyak::Label label1, label2;
L(label1);
  ...
  jmp(label1);
  ...
  jmp(label2);
  ...
L(label2);
```

Use `putL` for jmp table
```cpp
    Label labelTbl, L0, L1, L2;
    mov(rax, labelTbl);
    // rdx is an index of jump table
    jmp(ptr [rax + rdx * sizeof(void*)]);
L(labelTbl);
    putL(L0);
    putL(L1);
    putL(L2);
L(L0);
    ....
L(L1);
    ....
```

`assignL(dstLabel, srcLabel)` binds dstLabel with srcLabel.

```cpp
  Label label2;
  Label label1 = L(); // make label1 ; same to Label label1; L(label1);
  ...
  jmp(label2); // label2 is not determined here
  ...
  assignL(label2, label1); // label2 <- label1
```
The `jmp` in the above code jumps to label1 assigned by `assignL`.

**Note**:
* srcLabel must be used in `L()`.
* dstLabel must not be used in `L()`.

`Label::getAddress()` returns the address specified by the label instance and 0 if not specified.
```cpp
// not AutoGrow mode
Label  label;
assert(label.getAddress() == 0);
L(label);
assert(label.getAddress() == getCurr());
```

### Rip ; relative addressing
```cpp
Label label;
mov(eax, ptr [rip + label]); // eax = 4
...

L(label);
dd(4);
```
```cpp
int x;
...
  mov(eax, ptr[rip + &x]); // throw exception if the difference between &x and current position is larger than 2GiB
```

## Far jump

Use `word|dword|qword` instead of `ptr` to specify the address size.

### 32 bit mode
```cpp
jmp(word[eax], T_FAR);  // jmp m16:16(FF /5)
jmp(dword[eax], T_FAR); // jmp m16:32(FF /5)
```

### 64 bit mode
```cpp
jmp(word[rax], T_FAR);  // jmp m16:16(FF /5)
jmp(dword[rax], T_FAR); // jmp m16:32(FF /5)
jmp(qword[rax], T_FAR); // jmp m16:64(REX.W FF /5)
```
The same applies to `call`.

## Code size
The default max code size is 4096 bytes.
Specify the size in constructor of `CodeGenerator()` if necessary.

```cpp
class Quantize : public Xbyak::CodeGenerator {
public:
  Quantize()
    : CodeGenerator(8192)
  {
  }
  ...
};
```

## User allocated memory

You can make jit code on prepared memory.

Call `setProtectModeRE` yourself to change memory mode if using the prepared memory.

```cpp
uint8_t alignas(4096) buf[8192]; // C++11 or later

struct Code : Xbyak::CodeGenerator {
    Code() : Xbyak::CodeGenerator(sizeof(buf), buf)
    {
        mov(rax, 123);
        ret();
    }
};

int main()
{
    Code c;
    c.setProtectModeRE(); // set memory to Read/Exec
    printf("%d\n", c.getCode<int(*)()>()());
}
```

**Note**: See [../sample/test0.cpp](../sample/test0.cpp).

### AutoGrow

The memory region for jit is automatically extended if necessary when `AutoGrow` is specified in a constructor of `CodeGenerator`.

Call `ready()` or `readyRE()` before calling `getCode()` to fix jump address.
```cpp
struct Code : Xbyak::CodeGenerator {
  Code()
    : Xbyak::CodeGenerator(<default memory size>, Xbyak::AutoGrow)
  {
     ...
  }
};
Code c;
// generate code for jit
c.ready(); // mode = Read/Write/Exec
```

**Note**:
* Don't use the address returned by `getCurr()` before calling `ready()` because it may be invalid address.

### Read/Exec mode
Xbyak set Read/Write/Exec mode to memory to run jit code.
If you want to use Read/Exec mode for security, then specify `DontSetProtectRWE` for `CodeGenerator` and
call `setProtectModeRE()` after generating jit code.

```cpp
struct Code : Xbyak::CodeGenerator {
    Code()
        : Xbyak::CodeGenerator(4096, Xbyak::DontSetProtectRWE)
    {
        mov(eax, 123);
        ret();
    }
};

Code c;
c.setProtectModeRE();
...

```
Call `readyRE()` instead of `ready()` when using `AutoGrow` mode.
See [protect-re.cpp](../sample/protect-re.cpp).

## Exception-less mode
If `XBYAK_NO_EXCEPTION` is defined, then gcc/clang can compile xbyak with `-fno-exceptions`.
In stead of throwing an exception, `Xbyak::GetError()` returns non-zero value (e.g. `ERR_BAD_ADDRESSING`) if there is something wrong.
The status will not be changed automatically, then you should reset it by `Xbyak::ClearError()`.
`CodeGenerator::reset()` calls `ClearError()`.

## Macro

* **XBYAK32** is defined on 32bit.
* **XBYAK64** is defined on 64bit.
* **XBYAK64_WIN** is defined on 64bit Windows(VC).
* **XBYAK64_GCC** is defined on 64bit gcc, cygwin.
* define **XBYAK_USE_OP_NAMES** on gcc with `-fno-operator-names` if you want to use `and()`, ....
* define **XBYAK_ENABLE_OMITTED_OPERAND** if you use omitted destination such as `vaddps(xmm2, xmm3);`(deprecated in the future).
* define **XBYAK_UNDEF_JNL** if Bessel function jnl is defined as macro.
* define **XBYAK_NO_EXCEPTION** for a compiler option `-fno-exceptions`.
* define **XBYAK_USE_MEMFD** on Linux then /proc/self/maps shows the area used by xbyak.
* define **XBYAK_OLD_DISP_CHECK** if the old disp check is necessary (deprecated in the future).

## Sample

* [test0.cpp](../sample/test0.cpp) ; tiny sample (x86, x64)
* [quantize.cpp](../sample/quantize.cpp) ; JIT optimized quantization by fast division (x86 only)
* [calc.cpp](../sample/calc.cpp) ; assemble and estimate a given polynomial (x86, x64)
* [bf.cpp](../sample/bf.cpp) ; JIT brainfuck (x86, x64)