#include "BezierCurve.hpp" #include "../debug/Log.hpp" #include "../macros.hpp" #include #include void CBezierCurve::setup(std::vector* pVec) { const auto BEGIN = std::chrono::high_resolution_clock::now(); // Avoid reallocations by reserving enough memory upfront m_dPoints.resize(pVec->size() + 2); m_dPoints[0] = Vector2D(0, 0); // Start point size_t index = 1; // Start after the first element for (const auto& vec : *pVec) { if (index < m_dPoints.size() - 1) { // Bounds check to ensure safety m_dPoints[index] = vec; ++index; } } m_dPoints.back() = Vector2D(1, 1); // End point RASSERT(m_dPoints.size() == 4, "CBezierCurve only supports cubic beziers! (points num: {})", m_dPoints.size()); // bake BAKEDPOINTS points for faster lookups // T -> X ( / BAKEDPOINTS ) for (int i = 0; i < BAKEDPOINTS; ++i) { float const t = (i + 1) / (float)BAKEDPOINTS; m_aPointsBaked[i] = Vector2D(getXForT(t), getYForT(t)); } const auto ELAPSEDUS = std::chrono::duration_cast(std::chrono::high_resolution_clock::now() - BEGIN).count() / 1000.f; const auto POINTSSIZE = m_aPointsBaked.size() * sizeof(m_aPointsBaked[0]) / 1000.f; const auto BEGINCALC = std::chrono::high_resolution_clock::now(); for (int j = 1; j < 10; ++j) { float i = j / 10.0f; getYForPoint(i); } const auto ELAPSEDCALCAVG = std::chrono::duration_cast(std::chrono::high_resolution_clock::now() - BEGINCALC).count() / 1000.f / 10.f; Debug::log(LOG, "Created a bezier curve, baked {} points, mem usage: {:.2f}kB, time to bake: {:.2f}µs. Estimated average calc time: {:.2f}µs.", BAKEDPOINTS, POINTSSIZE, ELAPSEDUS, ELAPSEDCALCAVG); } float CBezierCurve::getXForT(float const& t) { float t2 = t * t; float t3 = t2 * t; return 3 * t * (1 - t) * (1 - t) * m_dPoints[1].x + 3 * t2 * (1 - t) * m_dPoints[2].x + t3 * m_dPoints[3].x; } float CBezierCurve::getYForT(float const& t) { float t2 = t * t; float t3 = t2 * t; return 3 * t * (1 - t) * (1 - t) * m_dPoints[1].y + 3 * t2 * (1 - t) * m_dPoints[2].y + t3 * m_dPoints[3].y; } // Todo: this probably can be done better and faster float CBezierCurve::getYForPoint(float const& x) { if (x >= 1.f) return 1.f; if (x <= 0.f) return 0.f; int index = 0; bool below = true; for (int step = (BAKEDPOINTS + 1) / 2; step > 0; step /= 2) { if (below) index += step; else index -= step; below = m_aPointsBaked[index].x < x; } int lowerIndex = index - (!below || index == BAKEDPOINTS - 1); // in the name of performance i shall make a hack const auto LOWERPOINT = &m_aPointsBaked[lowerIndex]; const auto UPPERPOINT = &m_aPointsBaked[lowerIndex + 1]; const auto PERCINDELTA = (x - LOWERPOINT->x) / (UPPERPOINT->x - LOWERPOINT->x); if (std::isnan(PERCINDELTA) || std::isinf(PERCINDELTA)) // can sometimes happen for VERY small x return 0.f; return LOWERPOINT->y + (UPPERPOINT->y - LOWERPOINT->y) * PERCINDELTA; }