1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
#include "BezierCurve.hpp"
#include "../debug/Log.hpp"
#include "../macros.hpp"
#include <chrono>
#include <algorithm>
void CBezierCurve::setup(std::vector<Vector2D>* pVec) {
m_dPoints.clear();
const auto BEGIN = std::chrono::high_resolution_clock::now();
m_dPoints.emplace_back(Vector2D(0, 0));
for (auto& p : *pVec) {
m_dPoints.push_back(p);
}
m_dPoints.emplace_back(Vector2D(1, 1));
RASSERT(m_dPoints.size() == 4, "CBezierCurve only supports cubic beziers! (points num: {})", m_dPoints.size());
// bake BAKEDPOINTS points for faster lookups
// T -> X ( / BAKEDPOINTS )
for (int i = 0; i < BAKEDPOINTS; ++i) {
m_aPointsBaked[i] = Vector2D(getXForT((i + 1) / (float)BAKEDPOINTS), getYForT((i + 1) / (float)BAKEDPOINTS));
}
const auto ELAPSEDUS = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::high_resolution_clock::now() - BEGIN).count() / 1000.f;
const auto POINTSSIZE = m_aPointsBaked.size() * sizeof(m_aPointsBaked[0]) / 1000.f;
const auto BEGINCALC = std::chrono::high_resolution_clock::now();
for (float i = 0.1f; i < 1.f; i += 0.1f)
getYForPoint(i);
const auto ELAPSEDCALCAVG = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::high_resolution_clock::now() - BEGINCALC).count() / 1000.f / 10.f;
Debug::log(LOG, "Created a bezier curve, baked {} points, mem usage: {:.2f}kB, time to bake: {:.2f}µs. Estimated average calc time: {:.2f}µs.", BAKEDPOINTS, POINTSSIZE,
ELAPSEDUS, ELAPSEDCALCAVG);
}
float CBezierCurve::getYForT(float t) {
return 3 * t * pow(1 - t, 2) * m_dPoints[1].y + 3 * pow(t, 2) * (1 - t) * m_dPoints[2].y + pow(t, 3);
}
float CBezierCurve::getXForT(float t) {
return 3 * t * pow(1 - t, 2) * m_dPoints[1].x + 3 * pow(t, 2) * (1 - t) * m_dPoints[2].x + pow(t, 3);
}
// Todo: this probably can be done better and faster
float CBezierCurve::getYForPoint(float x) {
if (x >= 1.0)
return 1.0;
// binary search for the range UPDOWN X
int upperT = BAKEDPOINTS - 1;
int lowerT = 0;
int mid = upperT / 2;
while (std::abs(upperT - lowerT) > 1) {
if (m_aPointsBaked[mid].x > x) {
upperT = mid;
} else {
lowerT = mid;
}
mid = (upperT + lowerT) / 2;
}
// in the name of performance i shall make a hack
const auto LOWERPOINT = &m_aPointsBaked[std::clamp(lowerT, 0, BAKEDPOINTS - 1)];
const auto UPPERPOINT = &m_aPointsBaked[std::clamp(upperT, 0, BAKEDPOINTS - 1)];
const auto PERCINDELTA = (x - LOWERPOINT->x) / (UPPERPOINT->x - LOWERPOINT->x);
if (std::isnan(PERCINDELTA) || std::isinf(PERCINDELTA)) // can sometimes happen for VERY small x
return 0.f;
return LOWERPOINT->y + (UPPERPOINT->y - LOWERPOINT->y) * PERCINDELTA;
}
|