summaryrefslogtreecommitdiffhomepage
path: root/libs/tqdm/keras.py
diff options
context:
space:
mode:
Diffstat (limited to 'libs/tqdm/keras.py')
-rw-r--r--libs/tqdm/keras.py47
1 files changed, 33 insertions, 14 deletions
diff --git a/libs/tqdm/keras.py b/libs/tqdm/keras.py
index 27623c099..523e62e94 100644
--- a/libs/tqdm/keras.py
+++ b/libs/tqdm/keras.py
@@ -1,9 +1,13 @@
from __future__ import absolute_import, division
+
+from copy import copy
+from functools import partial
+
from .auto import tqdm as tqdm_auto
-from copy import deepcopy
+
try:
import keras
-except ImportError as e:
+except (ImportError, AttributeError) as e:
try:
from tensorflow import keras
except ImportError:
@@ -13,14 +17,14 @@ __all__ = ['TqdmCallback']
class TqdmCallback(keras.callbacks.Callback):
- """`keras` callback for epoch and batch progress"""
+ """Keras callback for epoch and batch progress."""
@staticmethod
def bar2callback(bar, pop=None, delta=(lambda logs: 1)):
def callback(_, logs=None):
n = delta(logs)
if logs:
if pop:
- logs = deepcopy(logs)
+ logs = copy(logs)
[logs.pop(i, 0) for i in pop]
bar.set_postfix(logs, refresh=False)
bar.update(n)
@@ -28,7 +32,7 @@ class TqdmCallback(keras.callbacks.Callback):
return callback
def __init__(self, epochs=None, data_size=None, batch_size=None, verbose=1,
- tqdm_class=tqdm_auto):
+ tqdm_class=tqdm_auto, **tqdm_kwargs):
"""
Parameters
----------
@@ -41,9 +45,13 @@ class TqdmCallback(keras.callbacks.Callback):
0: epoch, 1: batch (transient), 2: batch. [default: 1].
Will be set to `0` unless both `data_size` and `batch_size`
are given.
- tqdm_class : optional
+ tqdm_class : optional
`tqdm` class to use for bars [default: `tqdm.auto.tqdm`].
+ tqdm_kwargs : optional
+ Any other arguments used for all bars.
"""
+ if tqdm_kwargs:
+ tqdm_class = partial(tqdm_class, **tqdm_kwargs)
self.tqdm_class = tqdm_class
self.epoch_bar = tqdm_class(total=epochs, unit='epoch')
self.on_epoch_end = self.bar2callback(self.epoch_bar)
@@ -53,20 +61,21 @@ class TqdmCallback(keras.callbacks.Callback):
self.batches = batches = None
self.verbose = verbose
if verbose == 1:
- self.batch_bar = tqdm_class(total=batches, unit='batch',
- leave=False)
+ self.batch_bar = tqdm_class(total=batches, unit='batch', leave=False)
self.on_batch_end = self.bar2callback(
- self.batch_bar,
- pop=['batch', 'size'],
+ self.batch_bar, pop=['batch', 'size'],
delta=lambda logs: logs.get('size', 1))
def on_train_begin(self, *_, **__):
params = self.params.get
auto_total = params('epochs', params('nb_epoch', None))
- if auto_total is not None:
+ if auto_total is not None and auto_total != self.epoch_bar.total:
self.epoch_bar.reset(total=auto_total)
- def on_epoch_begin(self, *_, **__):
+ def on_epoch_begin(self, epoch, *_, **__):
+ if self.epoch_bar.n < epoch:
+ ebar = self.epoch_bar
+ ebar.n = ebar.last_print_n = ebar.initial = epoch
if self.verbose:
params = self.params.get
total = params('samples', params(
@@ -78,8 +87,7 @@ class TqdmCallback(keras.callbacks.Callback):
total=total, unit='batch', leave=True,
unit_scale=1 / (params('batch_size', 1) or 1))
self.on_batch_end = self.bar2callback(
- self.batch_bar,
- pop=['batch', 'size'],
+ self.batch_bar, pop=['batch', 'size'],
delta=lambda logs: logs.get('size', 1))
elif self.verbose == 1:
self.batch_bar.unit_scale = 1 / (params('batch_size', 1) or 1)
@@ -92,6 +100,17 @@ class TqdmCallback(keras.callbacks.Callback):
self.batch_bar.close()
self.epoch_bar.close()
+ def display(self):
+ """Displays in the current cell in Notebooks."""
+ container = getattr(self.epoch_bar, 'container', None)
+ if container is None:
+ return
+ from .notebook import display
+ display(container)
+ batch_bar = getattr(self, 'batch_bar', None)
+ if batch_bar is not None:
+ display(batch_bar.container)
+
@staticmethod
def _implements_train_batch_hooks():
return True