diff options
Diffstat (limited to 'libs')
-rw-r--r-- | libs/subliminal_patch/providers/whisperai.py | 62 |
1 files changed, 51 insertions, 11 deletions
diff --git a/libs/subliminal_patch/providers/whisperai.py b/libs/subliminal_patch/providers/whisperai.py index 7e1b62bbb..1cf6e5ff0 100644 --- a/libs/subliminal_patch/providers/whisperai.py +++ b/libs/subliminal_patch/providers/whisperai.py @@ -1,5 +1,7 @@ from __future__ import absolute_import import logging +import time +from datetime import timedelta from requests import Session @@ -122,6 +124,13 @@ whisper_languages = { logger = logging.getLogger(__name__) +def set_log_level(newLevel="INFO"): + newLevel = newLevel.upper() + # print(f'WhisperAI log level changing from {logging._levelToName[logger.getEffectiveLevel()]} to {newLevel}') + logger.setLevel(getattr(logging, newLevel)) + +# initialize to default above +set_log_level() @functools.lru_cache(2) def encode_audio_stream(path, ffmpeg_path, audio_stream_language=None): @@ -138,7 +147,8 @@ def encode_audio_stream(path, ffmpeg_path, audio_stream_language=None): .run(cmd=[ffmpeg_path, "-nostdin"], capture_stdout=True, capture_stderr=True) except ffmpeg.Error as e: - raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e + logger.warning(f"ffmpeg failed to load audio: {e.stderr.decode()}") + return None logger.debug(f"Finished encoding audio stream in {path} with no errors") @@ -161,6 +171,9 @@ def whisper_get_language_reverse(alpha3): return wl raise ValueError +def language_from_alpha3(lang): + name = Language(lang).name + return name class WhisperAISubtitle(Subtitle): '''Whisper AI Subtitle.''' @@ -198,12 +211,10 @@ class WhisperAIProvider(Provider): for lan in whisper_languages: languages.update({whisper_get_language(lan, whisper_languages[lan])}) - languages.update(set(Language.rebuild(lang, hi=True) for lang in languages)) - languages.update(set(Language.rebuild(lang, forced=True) for lang in languages)) - video_types = (Episode, Movie) - def __init__(self, endpoint=None, timeout=None, ffmpeg_path=None): + def __init__(self, endpoint=None, timeout=None, ffmpeg_path=None, loglevel=None): + set_log_level(loglevel) if not endpoint: raise ConfigurationError('Whisper Web Service Endpoint must be provided') @@ -230,12 +241,16 @@ class WhisperAIProvider(Provider): def detect_language(self, path) -> Language: out = encode_audio_stream(path, self.ffmpeg_path) + if out == None: + logger.info(f"Whisper cannot detect language of {path} because of missing/bad audio track") + return None + r = self.session.post(f"{self.endpoint}/detect-language", params={'encode': 'false'}, files={'audio_file': out}, - timeout=(5, self.timeout)) + timeout=(self.timeout, self.timeout)) - logger.info(f"Whisper detected language of {path} as {r.json()['detected_language']}") + logger.debug(f"Whisper detected language of {path} as {r.json()['detected_language']}") return whisper_get_language(r.json()["language_code"], r.json()["detected_language"]) @@ -262,6 +277,11 @@ class WhisperAIProvider(Provider): else: # We must detect the language manually detected_lang = self.detect_language(video.original_path) + if detected_lang == None: + sub.task = "error" + # tell the user what is wrong + sub.release_info = "bad/missing audio track - cannot transcribe" + return sub if detected_lang != language: sub.task = "translate" @@ -270,9 +290,11 @@ class WhisperAIProvider(Provider): if sub.task == "translate": if language.alpha3 != "eng": - logger.info(f"Translation only possible from {language} to English") + logger.debug(f"Translation only possible from {language} to English") return None - + + # tell the user what we are about to do + sub.release_info = f"{sub.task} {language_from_alpha3(sub.audio_language)} audio -> {language_from_alpha3(language.alpha3)} SRT" logger.debug(f"Whisper ({video.original_path}): {sub.audio_language} -> {language.alpha3} [TASK: {sub.task}]") return sub @@ -285,11 +307,29 @@ class WhisperAIProvider(Provider): # Invoke Whisper through the API. This may take a long time depending on the file. # TODO: This loads the entire file into memory, find a good way to stream the file in chunks - out = encode_audio_stream(subtitle.video.original_path, self.ffmpeg_path, subtitle.force_audio_stream) + out = None + if subtitle.task != "error": + out = encode_audio_stream(subtitle.video.original_path, self.ffmpeg_path, subtitle.force_audio_stream) + if out == None: + logger.info(f"Whisper cannot process {subtitle.video.original_path} because of missing/bad audio track") + subtitle.content = None + return + + if subtitle.task == "transcribe": + output_language = subtitle.audio_language + else: + output_language = "eng" + + logger.info(f'Starting WhisperAI {subtitle.task} to {language_from_alpha3(output_language)} for {subtitle.video.original_path}') + startTime = time.time() r = self.session.post(f"{self.endpoint}/asr", params={'task': subtitle.task, 'language': whisper_get_language_reverse(subtitle.audio_language), 'output': 'srt', 'encode': 'false'}, files={'audio_file': out}, - timeout=(5, self.timeout)) + timeout=(self.timeout, self.timeout)) + + endTime = time.time() + elapsedTime = timedelta(seconds=round(endTime - startTime)) + logger.info(f'Completed WhisperAI {subtitle.task} to {language_from_alpha3(output_language)} in {elapsedTime} for {subtitle.video.original_path}') subtitle.content = r.content |