aboutsummaryrefslogtreecommitdiffhomepage
path: root/libs/pydantic/schema.py
blob: ea16a72a6663c426138a58ee97f0df162b871408 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
import re
import warnings
from collections import defaultdict
from dataclasses import is_dataclass
from datetime import date, datetime, time, timedelta
from decimal import Decimal
from enum import Enum
from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network
from pathlib import Path
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    ForwardRef,
    FrozenSet,
    Generic,
    Iterable,
    List,
    Optional,
    Pattern,
    Sequence,
    Set,
    Tuple,
    Type,
    TypeVar,
    Union,
    cast,
)
from uuid import UUID

from typing_extensions import Annotated, Literal

from .fields import (
    MAPPING_LIKE_SHAPES,
    SHAPE_DEQUE,
    SHAPE_FROZENSET,
    SHAPE_GENERIC,
    SHAPE_ITERABLE,
    SHAPE_LIST,
    SHAPE_SEQUENCE,
    SHAPE_SET,
    SHAPE_SINGLETON,
    SHAPE_TUPLE,
    SHAPE_TUPLE_ELLIPSIS,
    FieldInfo,
    ModelField,
)
from .json import pydantic_encoder
from .networks import AnyUrl, EmailStr
from .types import (
    ConstrainedDecimal,
    ConstrainedFloat,
    ConstrainedFrozenSet,
    ConstrainedInt,
    ConstrainedList,
    ConstrainedSet,
    ConstrainedStr,
    SecretBytes,
    SecretStr,
    StrictBytes,
    StrictStr,
    conbytes,
    condecimal,
    confloat,
    confrozenset,
    conint,
    conlist,
    conset,
    constr,
)
from .typing import (
    all_literal_values,
    get_args,
    get_origin,
    get_sub_types,
    is_callable_type,
    is_literal_type,
    is_namedtuple,
    is_none_type,
    is_union,
)
from .utils import ROOT_KEY, get_model, lenient_issubclass

if TYPE_CHECKING:
    from .dataclasses import Dataclass
    from .main import BaseModel

default_prefix = '#/definitions/'
default_ref_template = '#/definitions/{model}'

TypeModelOrEnum = Union[Type['BaseModel'], Type[Enum]]
TypeModelSet = Set[TypeModelOrEnum]


def _apply_modify_schema(
    modify_schema: Callable[..., None], field: Optional[ModelField], field_schema: Dict[str, Any]
) -> None:
    from inspect import signature

    sig = signature(modify_schema)
    args = set(sig.parameters.keys())
    if 'field' in args or 'kwargs' in args:
        modify_schema(field_schema, field=field)
    else:
        modify_schema(field_schema)


def schema(
    models: Sequence[Union[Type['BaseModel'], Type['Dataclass']]],
    *,
    by_alias: bool = True,
    title: Optional[str] = None,
    description: Optional[str] = None,
    ref_prefix: Optional[str] = None,
    ref_template: str = default_ref_template,
) -> Dict[str, Any]:
    """
    Process a list of models and generate a single JSON Schema with all of them defined in the ``definitions``
    top-level JSON key, including their sub-models.

    :param models: a list of models to include in the generated JSON Schema
    :param by_alias: generate the schemas using the aliases defined, if any
    :param title: title for the generated schema that includes the definitions
    :param description: description for the generated schema
    :param ref_prefix: the JSON Pointer prefix for schema references with ``$ref``, if None, will be set to the
      default of ``#/definitions/``. Update it if you want the schemas to reference the definitions somewhere
      else, e.g. for OpenAPI use ``#/components/schemas/``. The resulting generated schemas will still be at the
      top-level key ``definitions``, so you can extract them from there. But all the references will have the set
      prefix.
    :param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful
      for references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For
      a sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``.
    :return: dict with the JSON Schema with a ``definitions`` top-level key including the schema definitions for
      the models and sub-models passed in ``models``.
    """
    clean_models = [get_model(model) for model in models]
    flat_models = get_flat_models_from_models(clean_models)
    model_name_map = get_model_name_map(flat_models)
    definitions = {}
    output_schema: Dict[str, Any] = {}
    if title:
        output_schema['title'] = title
    if description:
        output_schema['description'] = description
    for model in clean_models:
        m_schema, m_definitions, m_nested_models = model_process_schema(
            model,
            by_alias=by_alias,
            model_name_map=model_name_map,
            ref_prefix=ref_prefix,
            ref_template=ref_template,
        )
        definitions.update(m_definitions)
        model_name = model_name_map[model]
        definitions[model_name] = m_schema
    if definitions:
        output_schema['definitions'] = definitions
    return output_schema


def model_schema(
    model: Union[Type['BaseModel'], Type['Dataclass']],
    by_alias: bool = True,
    ref_prefix: Optional[str] = None,
    ref_template: str = default_ref_template,
) -> Dict[str, Any]:
    """
    Generate a JSON Schema for one model. With all the sub-models defined in the ``definitions`` top-level
    JSON key.

    :param model: a Pydantic model (a class that inherits from BaseModel)
    :param by_alias: generate the schemas using the aliases defined, if any
    :param ref_prefix: the JSON Pointer prefix for schema references with ``$ref``, if None, will be set to the
      default of ``#/definitions/``. Update it if you want the schemas to reference the definitions somewhere
      else, e.g. for OpenAPI use ``#/components/schemas/``. The resulting generated schemas will still be at the
      top-level key ``definitions``, so you can extract them from there. But all the references will have the set
      prefix.
    :param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful for
      references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For a
      sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``.
    :return: dict with the JSON Schema for the passed ``model``
    """
    model = get_model(model)
    flat_models = get_flat_models_from_model(model)
    model_name_map = get_model_name_map(flat_models)
    model_name = model_name_map[model]
    m_schema, m_definitions, nested_models = model_process_schema(
        model, by_alias=by_alias, model_name_map=model_name_map, ref_prefix=ref_prefix, ref_template=ref_template
    )
    if model_name in nested_models:
        # model_name is in Nested models, it has circular references
        m_definitions[model_name] = m_schema
        m_schema = get_schema_ref(model_name, ref_prefix, ref_template, False)
    if m_definitions:
        m_schema.update({'definitions': m_definitions})
    return m_schema


def get_field_info_schema(field: ModelField, schema_overrides: bool = False) -> Tuple[Dict[str, Any], bool]:
    # If no title is explicitly set, we don't set title in the schema for enums.
    # The behaviour is the same as `BaseModel` reference, where the default title
    # is in the definitions part of the schema.
    schema_: Dict[str, Any] = {}
    if field.field_info.title or not lenient_issubclass(field.type_, Enum):
        schema_['title'] = field.field_info.title or field.alias.title().replace('_', ' ')

    if field.field_info.title:
        schema_overrides = True

    if field.field_info.description:
        schema_['description'] = field.field_info.description
        schema_overrides = True

    if not field.required and field.default is not None and not is_callable_type(field.outer_type_):
        schema_['default'] = encode_default(field.default)
        schema_overrides = True

    return schema_, schema_overrides


def field_schema(
    field: ModelField,
    *,
    by_alias: bool = True,
    model_name_map: Dict[TypeModelOrEnum, str],
    ref_prefix: Optional[str] = None,
    ref_template: str = default_ref_template,
    known_models: Optional[TypeModelSet] = None,
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]:
    """
    Process a Pydantic field and return a tuple with a JSON Schema for it as the first item.
    Also return a dictionary of definitions with models as keys and their schemas as values. If the passed field
    is a model and has sub-models, and those sub-models don't have overrides (as ``title``, ``default``, etc), they
    will be included in the definitions and referenced in the schema instead of included recursively.

    :param field: a Pydantic ``ModelField``
    :param by_alias: use the defined alias (if any) in the returned schema
    :param model_name_map: used to generate the JSON Schema references to other models included in the definitions
    :param ref_prefix: the JSON Pointer prefix to use for references to other schemas, if None, the default of
      #/definitions/ will be used
    :param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful for
      references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For a
      sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``.
    :param known_models: used to solve circular references
    :return: tuple of the schema for this field and additional definitions
    """
    s, schema_overrides = get_field_info_schema(field)

    validation_schema = get_field_schema_validations(field)
    if validation_schema:
        s.update(validation_schema)
        schema_overrides = True

    f_schema, f_definitions, f_nested_models = field_type_schema(
        field,
        by_alias=by_alias,
        model_name_map=model_name_map,
        schema_overrides=schema_overrides,
        ref_prefix=ref_prefix,
        ref_template=ref_template,
        known_models=known_models or set(),
    )

    # $ref will only be returned when there are no schema_overrides
    if '$ref' in f_schema:
        return f_schema, f_definitions, f_nested_models
    else:
        s.update(f_schema)
        return s, f_definitions, f_nested_models


numeric_types = (int, float, Decimal)
_str_types_attrs: Tuple[Tuple[str, Union[type, Tuple[type, ...]], str], ...] = (
    ('max_length', numeric_types, 'maxLength'),
    ('min_length', numeric_types, 'minLength'),
    ('regex', str, 'pattern'),
)

_numeric_types_attrs: Tuple[Tuple[str, Union[type, Tuple[type, ...]], str], ...] = (
    ('gt', numeric_types, 'exclusiveMinimum'),
    ('lt', numeric_types, 'exclusiveMaximum'),
    ('ge', numeric_types, 'minimum'),
    ('le', numeric_types, 'maximum'),
    ('multiple_of', numeric_types, 'multipleOf'),
)


def get_field_schema_validations(field: ModelField) -> Dict[str, Any]:
    """
    Get the JSON Schema validation keywords for a ``field`` with an annotation of
    a Pydantic ``FieldInfo`` with validation arguments.
    """
    f_schema: Dict[str, Any] = {}

    if lenient_issubclass(field.type_, Enum):
        # schema is already updated by `enum_process_schema`; just update with field extra
        if field.field_info.extra:
            f_schema.update(field.field_info.extra)
        return f_schema

    if lenient_issubclass(field.type_, (str, bytes)):
        for attr_name, t, keyword in _str_types_attrs:
            attr = getattr(field.field_info, attr_name, None)
            if isinstance(attr, t):
                f_schema[keyword] = attr
    if lenient_issubclass(field.type_, numeric_types) and not issubclass(field.type_, bool):
        for attr_name, t, keyword in _numeric_types_attrs:
            attr = getattr(field.field_info, attr_name, None)
            if isinstance(attr, t):
                f_schema[keyword] = attr
    if field.field_info is not None and field.field_info.const:
        f_schema['const'] = field.default
    if field.field_info.extra:
        f_schema.update(field.field_info.extra)
    modify_schema = getattr(field.outer_type_, '__modify_schema__', None)
    if modify_schema:
        _apply_modify_schema(modify_schema, field, f_schema)
    return f_schema


def get_model_name_map(unique_models: TypeModelSet) -> Dict[TypeModelOrEnum, str]:
    """
    Process a set of models and generate unique names for them to be used as keys in the JSON Schema
    definitions. By default the names are the same as the class name. But if two models in different Python
    modules have the same name (e.g. "users.Model" and "items.Model"), the generated names will be
    based on the Python module path for those conflicting models to prevent name collisions.

    :param unique_models: a Python set of models
    :return: dict mapping models to names
    """
    name_model_map = {}
    conflicting_names: Set[str] = set()
    for model in unique_models:
        model_name = normalize_name(model.__name__)
        if model_name in conflicting_names:
            model_name = get_long_model_name(model)
            name_model_map[model_name] = model
        elif model_name in name_model_map:
            conflicting_names.add(model_name)
            conflicting_model = name_model_map.pop(model_name)
            name_model_map[get_long_model_name(conflicting_model)] = conflicting_model
            name_model_map[get_long_model_name(model)] = model
        else:
            name_model_map[model_name] = model
    return {v: k for k, v in name_model_map.items()}


def get_flat_models_from_model(model: Type['BaseModel'], known_models: Optional[TypeModelSet] = None) -> TypeModelSet:
    """
    Take a single ``model`` and generate a set with itself and all the sub-models in the tree. I.e. if you pass
    model ``Foo`` (subclass of Pydantic ``BaseModel``) as ``model``, and it has a field of type ``Bar`` (also
    subclass of ``BaseModel``) and that model ``Bar`` has a field of type ``Baz`` (also subclass of ``BaseModel``),
    the return value will be ``set([Foo, Bar, Baz])``.

    :param model: a Pydantic ``BaseModel`` subclass
    :param known_models: used to solve circular references
    :return: a set with the initial model and all its sub-models
    """
    known_models = known_models or set()
    flat_models: TypeModelSet = set()
    flat_models.add(model)
    known_models |= flat_models
    fields = cast(Sequence[ModelField], model.__fields__.values())
    flat_models |= get_flat_models_from_fields(fields, known_models=known_models)
    return flat_models


def get_flat_models_from_field(field: ModelField, known_models: TypeModelSet) -> TypeModelSet:
    """
    Take a single Pydantic ``ModelField`` (from a model) that could have been declared as a subclass of BaseModel
    (so, it could be a submodel), and generate a set with its model and all the sub-models in the tree.
    I.e. if you pass a field that was declared to be of type ``Foo`` (subclass of BaseModel) as ``field``, and that
    model ``Foo`` has a field of type ``Bar`` (also subclass of ``BaseModel``) and that model ``Bar`` has a field of
    type ``Baz`` (also subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``.

    :param field: a Pydantic ``ModelField``
    :param known_models: used to solve circular references
    :return: a set with the model used in the declaration for this field, if any, and all its sub-models
    """
    from .main import BaseModel

    flat_models: TypeModelSet = set()

    field_type = field.type_
    if lenient_issubclass(getattr(field_type, '__pydantic_model__', None), BaseModel):
        field_type = field_type.__pydantic_model__

    if field.sub_fields and not lenient_issubclass(field_type, BaseModel):
        flat_models |= get_flat_models_from_fields(field.sub_fields, known_models=known_models)
    elif lenient_issubclass(field_type, BaseModel) and field_type not in known_models:
        flat_models |= get_flat_models_from_model(field_type, known_models=known_models)
    elif lenient_issubclass(field_type, Enum):
        flat_models.add(field_type)
    return flat_models


def get_flat_models_from_fields(fields: Sequence[ModelField], known_models: TypeModelSet) -> TypeModelSet:
    """
    Take a list of Pydantic  ``ModelField``s (from a model) that could have been declared as subclasses of ``BaseModel``
    (so, any of them could be a submodel), and generate a set with their models and all the sub-models in the tree.
    I.e. if you pass a the fields of a model ``Foo`` (subclass of ``BaseModel``) as ``fields``, and on of them has a
    field of type ``Bar`` (also subclass of ``BaseModel``) and that model ``Bar`` has a field of type ``Baz`` (also
    subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``.

    :param fields: a list of Pydantic ``ModelField``s
    :param known_models: used to solve circular references
    :return: a set with any model declared in the fields, and all their sub-models
    """
    flat_models: TypeModelSet = set()
    for field in fields:
        flat_models |= get_flat_models_from_field(field, known_models=known_models)
    return flat_models


def get_flat_models_from_models(models: Sequence[Type['BaseModel']]) -> TypeModelSet:
    """
    Take a list of ``models`` and generate a set with them and all their sub-models in their trees. I.e. if you pass
    a list of two models, ``Foo`` and ``Bar``, both subclasses of Pydantic ``BaseModel`` as models, and ``Bar`` has
    a field of type ``Baz`` (also subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``.
    """
    flat_models: TypeModelSet = set()
    for model in models:
        flat_models |= get_flat_models_from_model(model)
    return flat_models


def get_long_model_name(model: TypeModelOrEnum) -> str:
    return f'{model.__module__}__{model.__qualname__}'.replace('.', '__')


def field_type_schema(
    field: ModelField,
    *,
    by_alias: bool,
    model_name_map: Dict[TypeModelOrEnum, str],
    ref_template: str,
    schema_overrides: bool = False,
    ref_prefix: Optional[str] = None,
    known_models: TypeModelSet,
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]:
    """
    Used by ``field_schema()``, you probably should be using that function.

    Take a single ``field`` and generate the schema for its type only, not including additional
    information as title, etc. Also return additional schema definitions, from sub-models.
    """
    from .main import BaseModel  # noqa: F811

    definitions = {}
    nested_models: Set[str] = set()
    f_schema: Dict[str, Any]
    if field.shape in {
        SHAPE_LIST,
        SHAPE_TUPLE_ELLIPSIS,
        SHAPE_SEQUENCE,
        SHAPE_SET,
        SHAPE_FROZENSET,
        SHAPE_ITERABLE,
        SHAPE_DEQUE,
    }:
        items_schema, f_definitions, f_nested_models = field_singleton_schema(
            field,
            by_alias=by_alias,
            model_name_map=model_name_map,
            ref_prefix=ref_prefix,
            ref_template=ref_template,
            known_models=known_models,
        )
        definitions.update(f_definitions)
        nested_models.update(f_nested_models)
        f_schema = {'type': 'array', 'items': items_schema}
        if field.shape in {SHAPE_SET, SHAPE_FROZENSET}:
            f_schema['uniqueItems'] = True

    elif field.shape in MAPPING_LIKE_SHAPES:
        f_schema = {'type': 'object'}
        key_field = cast(ModelField, field.key_field)
        regex = getattr(key_field.type_, 'regex', None)
        items_schema, f_definitions, f_nested_models = field_singleton_schema(
            field,
            by_alias=by_alias,
            model_name_map=model_name_map,
            ref_prefix=ref_prefix,
            ref_template=ref_template,
            known_models=known_models,
        )
        definitions.update(f_definitions)
        nested_models.update(f_nested_models)
        if regex:
            # Dict keys have a regex pattern
            # items_schema might be a schema or empty dict, add it either way
            f_schema['patternProperties'] = {ConstrainedStr._get_pattern(regex): items_schema}
        if items_schema:
            # The dict values are not simply Any, so they need a schema
            f_schema['additionalProperties'] = items_schema
    elif field.shape == SHAPE_TUPLE or (field.shape == SHAPE_GENERIC and not issubclass(field.type_, BaseModel)):
        sub_schema = []
        sub_fields = cast(List[ModelField], field.sub_fields)
        for sf in sub_fields:
            sf_schema, sf_definitions, sf_nested_models = field_type_schema(
                sf,
                by_alias=by_alias,
                model_name_map=model_name_map,
                ref_prefix=ref_prefix,
                ref_template=ref_template,
                known_models=known_models,
            )
            definitions.update(sf_definitions)
            nested_models.update(sf_nested_models)
            sub_schema.append(sf_schema)

        sub_fields_len = len(sub_fields)
        if field.shape == SHAPE_GENERIC:
            all_of_schemas = sub_schema[0] if sub_fields_len == 1 else {'type': 'array', 'items': sub_schema}
            f_schema = {'allOf': [all_of_schemas]}
        else:
            f_schema = {
                'type': 'array',
                'minItems': sub_fields_len,
                'maxItems': sub_fields_len,
            }
            if sub_fields_len >= 1:
                f_schema['items'] = sub_schema
    else:
        assert field.shape in {SHAPE_SINGLETON, SHAPE_GENERIC}, field.shape
        f_schema, f_definitions, f_nested_models = field_singleton_schema(
            field,
            by_alias=by_alias,
            model_name_map=model_name_map,
            schema_overrides=schema_overrides,
            ref_prefix=ref_prefix,
            ref_template=ref_template,
            known_models=known_models,
        )
        definitions.update(f_definitions)
        nested_models.update(f_nested_models)

    # check field type to avoid repeated calls to the same __modify_schema__ method
    if field.type_ != field.outer_type_:
        if field.shape == SHAPE_GENERIC:
            field_type = field.type_
        else:
            field_type = field.outer_type_
        modify_schema = getattr(field_type, '__modify_schema__', None)
        if modify_schema:
            _apply_modify_schema(modify_schema, field, f_schema)
    return f_schema, definitions, nested_models


def model_process_schema(
    model: TypeModelOrEnum,
    *,
    by_alias: bool = True,
    model_name_map: Dict[TypeModelOrEnum, str],
    ref_prefix: Optional[str] = None,
    ref_template: str = default_ref_template,
    known_models: Optional[TypeModelSet] = None,
    field: Optional[ModelField] = None,
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]:
    """
    Used by ``model_schema()``, you probably should be using that function.

    Take a single ``model`` and generate its schema. Also return additional schema definitions, from sub-models. The
    sub-models of the returned schema will be referenced, but their definitions will not be included in the schema. All
    the definitions are returned as the second value.
    """
    from inspect import getdoc, signature

    known_models = known_models or set()
    if lenient_issubclass(model, Enum):
        model = cast(Type[Enum], model)
        s = enum_process_schema(model, field=field)
        return s, {}, set()
    model = cast(Type['BaseModel'], model)
    s = {'title': model.__config__.title or model.__name__}
    doc = getdoc(model)
    if doc:
        s['description'] = doc
    known_models.add(model)
    m_schema, m_definitions, nested_models = model_type_schema(
        model,
        by_alias=by_alias,
        model_name_map=model_name_map,
        ref_prefix=ref_prefix,
        ref_template=ref_template,
        known_models=known_models,
    )
    s.update(m_schema)
    schema_extra = model.__config__.schema_extra
    if callable(schema_extra):
        if len(signature(schema_extra).parameters) == 1:
            schema_extra(s)
        else:
            schema_extra(s, model)
    else:
        s.update(schema_extra)
    return s, m_definitions, nested_models


def model_type_schema(
    model: Type['BaseModel'],
    *,
    by_alias: bool,
    model_name_map: Dict[TypeModelOrEnum, str],
    ref_template: str,
    ref_prefix: Optional[str] = None,
    known_models: TypeModelSet,
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]:
    """
    You probably should be using ``model_schema()``, this function is indirectly used by that function.

    Take a single ``model`` and generate the schema for its type only, not including additional
    information as title, etc. Also return additional schema definitions, from sub-models.
    """
    properties = {}
    required = []
    definitions: Dict[str, Any] = {}
    nested_models: Set[str] = set()
    for k, f in model.__fields__.items():
        try:
            f_schema, f_definitions, f_nested_models = field_schema(
                f,
                by_alias=by_alias,
                model_name_map=model_name_map,
                ref_prefix=ref_prefix,
                ref_template=ref_template,
                known_models=known_models,
            )
        except SkipField as skip:
            warnings.warn(skip.message, UserWarning)
            continue
        definitions.update(f_definitions)
        nested_models.update(f_nested_models)
        if by_alias:
            properties[f.alias] = f_schema
            if f.required:
                required.append(f.alias)
        else:
            properties[k] = f_schema
            if f.required:
                required.append(k)
    if ROOT_KEY in properties:
        out_schema = properties[ROOT_KEY]
        out_schema['title'] = model.__config__.title or model.__name__
    else:
        out_schema = {'type': 'object', 'properties': properties}
        if required:
            out_schema['required'] = required
    if model.__config__.extra == 'forbid':
        out_schema['additionalProperties'] = False
    return out_schema, definitions, nested_models


def enum_process_schema(enum: Type[Enum], *, field: Optional[ModelField] = None) -> Dict[str, Any]:
    """
    Take a single `enum` and generate its schema.

    This is similar to the `model_process_schema` function, but applies to ``Enum`` objects.
    """
    import inspect

    schema_: Dict[str, Any] = {
        'title': enum.__name__,
        # Python assigns all enums a default docstring value of 'An enumeration', so
        # all enums will have a description field even if not explicitly provided.
        'description': inspect.cleandoc(enum.__doc__ or 'An enumeration.'),
        # Add enum values and the enum field type to the schema.
        'enum': [item.value for item in cast(Iterable[Enum], enum)],
    }

    add_field_type_to_schema(enum, schema_)

    modify_schema = getattr(enum, '__modify_schema__', None)
    if modify_schema:
        _apply_modify_schema(modify_schema, field, schema_)

    return schema_


def field_singleton_sub_fields_schema(
    field: ModelField,
    *,
    by_alias: bool,
    model_name_map: Dict[TypeModelOrEnum, str],
    ref_template: str,
    schema_overrides: bool = False,
    ref_prefix: Optional[str] = None,
    known_models: TypeModelSet,
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]:
    """
    This function is indirectly used by ``field_schema()``, you probably should be using that function.

    Take a list of Pydantic ``ModelField`` from the declaration of a type with parameters, and generate their
    schema. I.e., fields used as "type parameters", like ``str`` and ``int`` in ``Tuple[str, int]``.
    """
    sub_fields = cast(List[ModelField], field.sub_fields)
    definitions = {}
    nested_models: Set[str] = set()
    if len(sub_fields) == 1:
        return field_type_schema(
            sub_fields[0],
            by_alias=by_alias,
            model_name_map=model_name_map,
            schema_overrides=schema_overrides,
            ref_prefix=ref_prefix,
            ref_template=ref_template,
            known_models=known_models,
        )
    else:
        s: Dict[str, Any] = {}
        # https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#discriminator-object
        field_has_discriminator: bool = field.discriminator_key is not None
        if field_has_discriminator:
            assert field.sub_fields_mapping is not None

            discriminator_models_refs: Dict[str, Union[str, Dict[str, Any]]] = {}

            for discriminator_value, sub_field in field.sub_fields_mapping.items():
                if isinstance(discriminator_value, Enum):
                    discriminator_value = str(discriminator_value.value)
                # sub_field is either a `BaseModel` or directly an `Annotated` `Union` of many
                if is_union(get_origin(sub_field.type_)):
                    sub_models = get_sub_types(sub_field.type_)
                    discriminator_models_refs[discriminator_value] = {
                        model_name_map[sub_model]: get_schema_ref(
                            model_name_map[sub_model], ref_prefix, ref_template, False
                        )
                        for sub_model in sub_models
                    }
                else:
                    sub_field_type = sub_field.type_
                    if hasattr(sub_field_type, '__pydantic_model__'):
                        sub_field_type = sub_field_type.__pydantic_model__

                    discriminator_model_name = model_name_map[sub_field_type]
                    discriminator_model_ref = get_schema_ref(discriminator_model_name, ref_prefix, ref_template, False)
                    discriminator_models_refs[discriminator_value] = discriminator_model_ref['$ref']

            s['discriminator'] = {
                'propertyName': field.discriminator_alias,
                'mapping': discriminator_models_refs,
            }

        sub_field_schemas = []
        for sf in sub_fields:
            sub_schema, sub_definitions, sub_nested_models = field_type_schema(
                sf,
                by_alias=by_alias,
                model_name_map=model_name_map,
                schema_overrides=schema_overrides,
                ref_prefix=ref_prefix,
                ref_template=ref_template,
                known_models=known_models,
            )
            definitions.update(sub_definitions)
            if schema_overrides and 'allOf' in sub_schema:
                # if the sub_field is a referenced schema we only need the referenced
                # object. Otherwise we will end up with several allOf inside anyOf/oneOf.
                # See https://github.com/pydantic/pydantic/issues/1209
                sub_schema = sub_schema['allOf'][0]

            if sub_schema.keys() == {'discriminator', 'oneOf'}:
                # we don't want discriminator information inside oneOf choices, this is dealt with elsewhere
                sub_schema.pop('discriminator')
            sub_field_schemas.append(sub_schema)
            nested_models.update(sub_nested_models)
        s['oneOf' if field_has_discriminator else 'anyOf'] = sub_field_schemas
        return s, definitions, nested_models


# Order is important, e.g. subclasses of str must go before str
# this is used only for standard library types, custom types should use __modify_schema__ instead
field_class_to_schema: Tuple[Tuple[Any, Dict[str, Any]], ...] = (
    (Path, {'type': 'string', 'format': 'path'}),
    (datetime, {'type': 'string', 'format': 'date-time'}),
    (date, {'type': 'string', 'format': 'date'}),
    (time, {'type': 'string', 'format': 'time'}),
    (timedelta, {'type': 'number', 'format': 'time-delta'}),
    (IPv4Network, {'type': 'string', 'format': 'ipv4network'}),
    (IPv6Network, {'type': 'string', 'format': 'ipv6network'}),
    (IPv4Interface, {'type': 'string', 'format': 'ipv4interface'}),
    (IPv6Interface, {'type': 'string', 'format': 'ipv6interface'}),
    (IPv4Address, {'type': 'string', 'format': 'ipv4'}),
    (IPv6Address, {'type': 'string', 'format': 'ipv6'}),
    (Pattern, {'type': 'string', 'format': 'regex'}),
    (str, {'type': 'string'}),
    (bytes, {'type': 'string', 'format': 'binary'}),
    (bool, {'type': 'boolean'}),
    (int, {'type': 'integer'}),
    (float, {'type': 'number'}),
    (Decimal, {'type': 'number'}),
    (UUID, {'type': 'string', 'format': 'uuid'}),
    (dict, {'type': 'object'}),
    (list, {'type': 'array', 'items': {}}),
    (tuple, {'type': 'array', 'items': {}}),
    (set, {'type': 'array', 'items': {}, 'uniqueItems': True}),
    (frozenset, {'type': 'array', 'items': {}, 'uniqueItems': True}),
)

json_scheme = {'type': 'string', 'format': 'json-string'}


def add_field_type_to_schema(field_type: Any, schema_: Dict[str, Any]) -> None:
    """
    Update the given `schema` with the type-specific metadata for the given `field_type`.

    This function looks through `field_class_to_schema` for a class that matches the given `field_type`,
    and then modifies the given `schema` with the information from that type.
    """
    for type_, t_schema in field_class_to_schema:
        # Fallback for `typing.Pattern` and `re.Pattern` as they are not a valid class
        if lenient_issubclass(field_type, type_) or field_type is type_ is Pattern:
            schema_.update(t_schema)
            break


def get_schema_ref(name: str, ref_prefix: Optional[str], ref_template: str, schema_overrides: bool) -> Dict[str, Any]:
    if ref_prefix:
        schema_ref = {'$ref': ref_prefix + name}
    else:
        schema_ref = {'$ref': ref_template.format(model=name)}
    return {'allOf': [schema_ref]} if schema_overrides else schema_ref


def field_singleton_schema(  # noqa: C901 (ignore complexity)
    field: ModelField,
    *,
    by_alias: bool,
    model_name_map: Dict[TypeModelOrEnum, str],
    ref_template: str,
    schema_overrides: bool = False,
    ref_prefix: Optional[str] = None,
    known_models: TypeModelSet,
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]:
    """
    This function is indirectly used by ``field_schema()``, you should probably be using that function.

    Take a single Pydantic ``ModelField``, and return its schema and any additional definitions from sub-models.
    """
    from .main import BaseModel

    definitions: Dict[str, Any] = {}
    nested_models: Set[str] = set()
    field_type = field.type_

    # Recurse into this field if it contains sub_fields and is NOT a
    # BaseModel OR that BaseModel is a const
    if field.sub_fields and (
        (field.field_info and field.field_info.const) or not lenient_issubclass(field_type, BaseModel)
    ):
        return field_singleton_sub_fields_schema(
            field,
            by_alias=by_alias,
            model_name_map=model_name_map,
            schema_overrides=schema_overrides,
            ref_prefix=ref_prefix,
            ref_template=ref_template,
            known_models=known_models,
        )
    if field_type is Any or field_type is object or field_type.__class__ == TypeVar or get_origin(field_type) is type:
        return {}, definitions, nested_models  # no restrictions
    if is_none_type(field_type):
        return {'type': 'null'}, definitions, nested_models
    if is_callable_type(field_type):
        raise SkipField(f'Callable {field.name} was excluded from schema since JSON schema has no equivalent type.')
    f_schema: Dict[str, Any] = {}
    if field.field_info is not None and field.field_info.const:
        f_schema['const'] = field.default

    if is_literal_type(field_type):
        values = tuple(x.value if isinstance(x, Enum) else x for x in all_literal_values(field_type))

        if len({v.__class__ for v in values}) > 1:
            return field_schema(
                multitypes_literal_field_for_schema(values, field),
                by_alias=by_alias,
                model_name_map=model_name_map,
                ref_prefix=ref_prefix,
                ref_template=ref_template,
                known_models=known_models,
            )

        # All values have the same type
        field_type = values[0].__class__
        f_schema['enum'] = list(values)
        add_field_type_to_schema(field_type, f_schema)
    elif lenient_issubclass(field_type, Enum):
        enum_name = model_name_map[field_type]
        f_schema, schema_overrides = get_field_info_schema(field, schema_overrides)
        f_schema.update(get_schema_ref(enum_name, ref_prefix, ref_template, schema_overrides))
        definitions[enum_name] = enum_process_schema(field_type, field=field)
    elif is_namedtuple(field_type):
        sub_schema, *_ = model_process_schema(
            field_type.__pydantic_model__,
            by_alias=by_alias,
            model_name_map=model_name_map,
            ref_prefix=ref_prefix,
            ref_template=ref_template,
            known_models=known_models,
            field=field,
        )
        items_schemas = list(sub_schema['properties'].values())
        f_schema.update(
            {
                'type': 'array',
                'items': items_schemas,
                'minItems': len(items_schemas),
                'maxItems': len(items_schemas),
            }
        )
    elif not hasattr(field_type, '__pydantic_model__'):
        add_field_type_to_schema(field_type, f_schema)

        modify_schema = getattr(field_type, '__modify_schema__', None)
        if modify_schema:
            _apply_modify_schema(modify_schema, field, f_schema)

    if f_schema:
        return f_schema, definitions, nested_models

    # Handle dataclass-based models
    if lenient_issubclass(getattr(field_type, '__pydantic_model__', None), BaseModel):
        field_type = field_type.__pydantic_model__

    if issubclass(field_type, BaseModel):
        model_name = model_name_map[field_type]
        if field_type not in known_models:
            sub_schema, sub_definitions, sub_nested_models = model_process_schema(
                field_type,
                by_alias=by_alias,
                model_name_map=model_name_map,
                ref_prefix=ref_prefix,
                ref_template=ref_template,
                known_models=known_models,
                field=field,
            )
            definitions.update(sub_definitions)
            definitions[model_name] = sub_schema
            nested_models.update(sub_nested_models)
        else:
            nested_models.add(model_name)
        schema_ref = get_schema_ref(model_name, ref_prefix, ref_template, schema_overrides)
        return schema_ref, definitions, nested_models

    # For generics with no args
    args = get_args(field_type)
    if args is not None and not args and Generic in field_type.__bases__:
        return f_schema, definitions, nested_models

    raise ValueError(f'Value not declarable with JSON Schema, field: {field}')


def multitypes_literal_field_for_schema(values: Tuple[Any, ...], field: ModelField) -> ModelField:
    """
    To support `Literal` with values of different types, we split it into multiple `Literal` with same type
    e.g. `Literal['qwe', 'asd', 1, 2]` becomes `Union[Literal['qwe', 'asd'], Literal[1, 2]]`
    """
    literal_distinct_types = defaultdict(list)
    for v in values:
        literal_distinct_types[v.__class__].append(v)
    distinct_literals = (Literal[tuple(same_type_values)] for same_type_values in literal_distinct_types.values())

    return ModelField(
        name=field.name,
        type_=Union[tuple(distinct_literals)],  # type: ignore
        class_validators=field.class_validators,
        model_config=field.model_config,
        default=field.default,
        required=field.required,
        alias=field.alias,
        field_info=field.field_info,
    )


def encode_default(dft: Any) -> Any:
    from .main import BaseModel

    if isinstance(dft, BaseModel) or is_dataclass(dft):
        dft = cast('dict[str, Any]', pydantic_encoder(dft))

    if isinstance(dft, dict):
        return {encode_default(k): encode_default(v) for k, v in dft.items()}
    elif isinstance(dft, Enum):
        return dft.value
    elif isinstance(dft, (int, float, str)):
        return dft
    elif isinstance(dft, (list, tuple)):
        t = dft.__class__
        seq_args = (encode_default(v) for v in dft)
        return t(*seq_args) if is_namedtuple(t) else t(seq_args)
    elif dft is None:
        return None
    else:
        return pydantic_encoder(dft)


_map_types_constraint: Dict[Any, Callable[..., type]] = {int: conint, float: confloat, Decimal: condecimal}


def get_annotation_from_field_info(
    annotation: Any, field_info: FieldInfo, field_name: str, validate_assignment: bool = False
) -> Type[Any]:
    """
    Get an annotation with validation implemented for numbers and strings based on the field_info.
    :param annotation: an annotation from a field specification, as ``str``, ``ConstrainedStr``
    :param field_info: an instance of FieldInfo, possibly with declarations for validations and JSON Schema
    :param field_name: name of the field for use in error messages
    :param validate_assignment: default False, flag for BaseModel Config value of validate_assignment
    :return: the same ``annotation`` if unmodified or a new annotation with validation in place
    """
    constraints = field_info.get_constraints()
    used_constraints: Set[str] = set()
    if constraints:
        annotation, used_constraints = get_annotation_with_constraints(annotation, field_info)
    if validate_assignment:
        used_constraints.add('allow_mutation')

    unused_constraints = constraints - used_constraints
    if unused_constraints:
        raise ValueError(
            f'On field "{field_name}" the following field constraints are set but not enforced: '
            f'{", ".join(unused_constraints)}. '
            f'\nFor more details see https://docs.pydantic.dev/usage/schema/#unenforced-field-constraints'
        )

    return annotation


def get_annotation_with_constraints(annotation: Any, field_info: FieldInfo) -> Tuple[Type[Any], Set[str]]:  # noqa: C901
    """
    Get an annotation with used constraints implemented for numbers and strings based on the field_info.

    :param annotation: an annotation from a field specification, as ``str``, ``ConstrainedStr``
    :param field_info: an instance of FieldInfo, possibly with declarations for validations and JSON Schema
    :return: the same ``annotation`` if unmodified or a new annotation along with the used constraints.
    """
    used_constraints: Set[str] = set()

    def go(type_: Any) -> Type[Any]:
        if (
            is_literal_type(type_)
            or isinstance(type_, ForwardRef)
            or lenient_issubclass(type_, (ConstrainedList, ConstrainedSet, ConstrainedFrozenSet))
        ):
            return type_
        origin = get_origin(type_)
        if origin is not None:
            args: Tuple[Any, ...] = get_args(type_)
            if any(isinstance(a, ForwardRef) for a in args):
                # forward refs cause infinite recursion below
                return type_

            if origin is Annotated:
                return go(args[0])
            if is_union(origin):
                return Union[tuple(go(a) for a in args)]  # type: ignore

            if issubclass(origin, List) and (
                field_info.min_items is not None
                or field_info.max_items is not None
                or field_info.unique_items is not None
            ):
                used_constraints.update({'min_items', 'max_items', 'unique_items'})
                return conlist(
                    go(args[0]),
                    min_items=field_info.min_items,
                    max_items=field_info.max_items,
                    unique_items=field_info.unique_items,
                )

            if issubclass(origin, Set) and (field_info.min_items is not None or field_info.max_items is not None):
                used_constraints.update({'min_items', 'max_items'})
                return conset(go(args[0]), min_items=field_info.min_items, max_items=field_info.max_items)

            if issubclass(origin, FrozenSet) and (field_info.min_items is not None or field_info.max_items is not None):
                used_constraints.update({'min_items', 'max_items'})
                return confrozenset(go(args[0]), min_items=field_info.min_items, max_items=field_info.max_items)

            for t in (Tuple, List, Set, FrozenSet, Sequence):
                if issubclass(origin, t):  # type: ignore
                    return t[tuple(go(a) for a in args)]  # type: ignore

            if issubclass(origin, Dict):
                return Dict[args[0], go(args[1])]  # type: ignore

        attrs: Optional[Tuple[str, ...]] = None
        constraint_func: Optional[Callable[..., type]] = None
        if isinstance(type_, type):
            if issubclass(type_, (SecretStr, SecretBytes)):
                attrs = ('max_length', 'min_length')

                def constraint_func(**kw: Any) -> Type[Any]:
                    return type(type_.__name__, (type_,), kw)

            elif issubclass(type_, str) and not issubclass(type_, (EmailStr, AnyUrl)):
                attrs = ('max_length', 'min_length', 'regex')
                if issubclass(type_, StrictStr):

                    def constraint_func(**kw: Any) -> Type[Any]:
                        return type(type_.__name__, (type_,), kw)

                else:
                    constraint_func = constr
            elif issubclass(type_, bytes):
                attrs = ('max_length', 'min_length', 'regex')
                if issubclass(type_, StrictBytes):

                    def constraint_func(**kw: Any) -> Type[Any]:
                        return type(type_.__name__, (type_,), kw)

                else:
                    constraint_func = conbytes
            elif issubclass(type_, numeric_types) and not issubclass(
                type_,
                (
                    ConstrainedInt,
                    ConstrainedFloat,
                    ConstrainedDecimal,
                    ConstrainedList,
                    ConstrainedSet,
                    ConstrainedFrozenSet,
                    bool,
                ),
            ):
                # Is numeric type
                attrs = ('gt', 'lt', 'ge', 'le', 'multiple_of')
                if issubclass(type_, float):
                    attrs += ('allow_inf_nan',)
                if issubclass(type_, Decimal):
                    attrs += ('max_digits', 'decimal_places')
                numeric_type = next(t for t in numeric_types if issubclass(type_, t))  # pragma: no branch
                constraint_func = _map_types_constraint[numeric_type]

        if attrs:
            used_constraints.update(set(attrs))
            kwargs = {
                attr_name: attr
                for attr_name, attr in ((attr_name, getattr(field_info, attr_name)) for attr_name in attrs)
                if attr is not None
            }
            if kwargs:
                constraint_func = cast(Callable[..., type], constraint_func)
                return constraint_func(**kwargs)
        return type_

    return go(annotation), used_constraints


def normalize_name(name: str) -> str:
    """
    Normalizes the given name. This can be applied to either a model *or* enum.
    """
    return re.sub(r'[^a-zA-Z0-9.\-_]', '_', name)


class SkipField(Exception):
    """
    Utility exception used to exclude fields from schema.
    """

    def __init__(self, message: str) -> None:
        self.message = message