aboutsummaryrefslogtreecommitdiffhomepage
path: root/libs/textdistance-4.6.2.dist-info/METADATA
blob: d9fa87435707e564d72dff32187f2e3ad47bbc82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
Metadata-Version: 2.1
Name: textdistance
Version: 4.6.2
Summary: Compute distance between the two texts.
Home-page: https://github.com/orsinium/textdistance
Download-URL: https://github.com/orsinium/textdistance/tarball/master
Author: orsinium
Author-email: gram@orsinium.dev
License: MIT
Keywords: distance between text strings sequences iterators
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Plugins
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python
Classifier: Topic :: Scientific/Engineering :: Human Machine Interfaces
Requires-Python: >=3.5
Description-Content-Type: text/markdown
License-File: LICENSE
Provides-Extra: dameraulevenshtein
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'dameraulevenshtein'
Requires-Dist: jellyfish ; extra == 'dameraulevenshtein'
Requires-Dist: pyxDamerauLevenshtein ; extra == 'dameraulevenshtein'
Provides-Extra: hamming
Requires-Dist: Levenshtein ; extra == 'hamming'
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'hamming'
Requires-Dist: jellyfish ; extra == 'hamming'
Requires-Dist: distance ; extra == 'hamming'
Provides-Extra: jaro
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'jaro'
Requires-Dist: Levenshtein ; extra == 'jaro'
Provides-Extra: jarowinkler
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'jarowinkler'
Requires-Dist: jellyfish ; extra == 'jarowinkler'
Provides-Extra: levenshtein
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'levenshtein'
Requires-Dist: Levenshtein ; extra == 'levenshtein'
Provides-Extra: all
Requires-Dist: jellyfish ; extra == 'all'
Requires-Dist: numpy ; extra == 'all'
Requires-Dist: Levenshtein ; extra == 'all'
Requires-Dist: pyxDamerauLevenshtein ; extra == 'all'
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'all'
Requires-Dist: distance ; extra == 'all'
Requires-Dist: pylev ; extra == 'all'
Requires-Dist: py-stringmatching ; extra == 'all'
Requires-Dist: tabulate ; extra == 'all'
Provides-Extra: benchmark
Requires-Dist: jellyfish ; extra == 'benchmark'
Requires-Dist: numpy ; extra == 'benchmark'
Requires-Dist: Levenshtein ; extra == 'benchmark'
Requires-Dist: pyxDamerauLevenshtein ; extra == 'benchmark'
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'benchmark'
Requires-Dist: distance ; extra == 'benchmark'
Requires-Dist: pylev ; extra == 'benchmark'
Requires-Dist: py-stringmatching ; extra == 'benchmark'
Requires-Dist: tabulate ; extra == 'benchmark'
Provides-Extra: benchmarks
Requires-Dist: jellyfish ; extra == 'benchmarks'
Requires-Dist: numpy ; extra == 'benchmarks'
Requires-Dist: Levenshtein ; extra == 'benchmarks'
Requires-Dist: pyxDamerauLevenshtein ; extra == 'benchmarks'
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'benchmarks'
Requires-Dist: distance ; extra == 'benchmarks'
Requires-Dist: pylev ; extra == 'benchmarks'
Requires-Dist: py-stringmatching ; extra == 'benchmarks'
Requires-Dist: tabulate ; extra == 'benchmarks'
Provides-Extra: common
Requires-Dist: jellyfish ; extra == 'common'
Requires-Dist: numpy ; extra == 'common'
Requires-Dist: Levenshtein ; extra == 'common'
Requires-Dist: pyxDamerauLevenshtein ; extra == 'common'
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'common'
Provides-Extra: extra
Requires-Dist: jellyfish ; extra == 'extra'
Requires-Dist: numpy ; extra == 'extra'
Requires-Dist: Levenshtein ; extra == 'extra'
Requires-Dist: pyxDamerauLevenshtein ; extra == 'extra'
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'extra'
Provides-Extra: extras
Requires-Dist: jellyfish ; extra == 'extras'
Requires-Dist: numpy ; extra == 'extras'
Requires-Dist: Levenshtein ; extra == 'extras'
Requires-Dist: pyxDamerauLevenshtein ; extra == 'extras'
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'extras'
Provides-Extra: lint
Requires-Dist: twine ; extra == 'lint'
Requires-Dist: mypy ; extra == 'lint'
Requires-Dist: isort ; extra == 'lint'
Requires-Dist: flake8 ; extra == 'lint'
Requires-Dist: types-tabulate ; extra == 'lint'
Requires-Dist: flake8-blind-except ; extra == 'lint'
Requires-Dist: flake8-bugbear ; extra == 'lint'
Requires-Dist: flake8-commas ; extra == 'lint'
Requires-Dist: flake8-logging-format ; extra == 'lint'
Requires-Dist: flake8-mutable ; extra == 'lint'
Requires-Dist: flake8-pep3101 ; extra == 'lint'
Requires-Dist: flake8-quotes ; extra == 'lint'
Requires-Dist: flake8-string-format ; extra == 'lint'
Requires-Dist: flake8-tidy-imports ; extra == 'lint'
Requires-Dist: pep8-naming ; extra == 'lint'
Provides-Extra: test
Requires-Dist: hypothesis ; extra == 'test'
Requires-Dist: isort ; extra == 'test'
Requires-Dist: numpy ; extra == 'test'
Requires-Dist: pytest ; extra == 'test'

# TextDistance

![TextDistance logo](logo.png)

[![Build Status](https://travis-ci.org/life4/textdistance.svg?branch=master)](https://travis-ci.org/life4/textdistance) [![PyPI version](https://img.shields.io/pypi/v/textdistance.svg)](https://pypi.python.org/pypi/textdistance) [![Status](https://img.shields.io/pypi/status/textdistance.svg)](https://pypi.python.org/pypi/textdistance) [![License](https://img.shields.io/pypi/l/textdistance.svg)](LICENSE)

**TextDistance** -- python library for comparing distance between two or more sequences by many algorithms.

Features:

- 30+ algorithms
- Pure python implementation
- Simple usage
- More than two sequences comparing
- Some algorithms have more than one implementation in one class.
- Optional numpy usage for maximum speed.

## Algorithms

### Edit based

| Algorithm                                                                                 | Class                | Functions              |
|-------------------------------------------------------------------------------------------|----------------------|------------------------|
| [Hamming](https://en.wikipedia.org/wiki/Hamming_distance)                                 | `Hamming`            | `hamming`              |
| [MLIPNS](http://www.sial.iias.spb.su/files/386-386-1-PB.pdf)                              | `Mlipns`             | `mlipns`               |
| [Levenshtein](https://en.wikipedia.org/wiki/Levenshtein_distance)                         | `Levenshtein`        | `levenshtein`          |
| [Damerau-Levenshtein](https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance) | `DamerauLevenshtein` | `damerau_levenshtein`  |
| [Jaro-Winkler](https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance)               | `JaroWinkler`        | `jaro_winkler`, `jaro` |
| [Strcmp95](http://cpansearch.perl.org/src/SCW/Text-JaroWinkler-0.1/strcmp95.c)            | `StrCmp95`           | `strcmp95`             |
| [Needleman-Wunsch](https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm)      | `NeedlemanWunsch`    | `needleman_wunsch`     |
| [Gotoh](http://bioinfo.ict.ac.cn/~dbu/AlgorithmCourses/Lectures/LOA/Lec6-Sequence-Alignment-Affine-Gaps-Gotoh1982.pdf) | `Gotoh`              | `gotoh`                |
| [Smith-Waterman](https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm)          | `SmithWaterman`      | `smith_waterman`       |

### Token based

| Algorithm                                                                                 | Class                | Functions     |
|-------------------------------------------------------------------------------------------|----------------------|---------------|
| [Jaccard index](https://en.wikipedia.org/wiki/Jaccard_index)                              | `Jaccard`            | `jaccard`     |
| [Sørensen–Dice coefficient](https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient) | `Sorensen`   | `sorensen`, `sorensen_dice`, `dice` |
| [Tversky index](https://en.wikipedia.org/wiki/Tversky_index)                              | `Tversky`            | `tversky`    |
| [Overlap coefficient](https://en.wikipedia.org/wiki/Overlap_coefficient)                  | `Overlap`            | `overlap`    |
| [Tanimoto distance](https://en.wikipedia.org/wiki/Jaccard_index#Tanimoto_similarity_and_distance) | `Tanimoto`   | `tanimoto`   |
| [Cosine similarity](https://en.wikipedia.org/wiki/Cosine_similarity)                      | `Cosine`             | `cosine`     |
| [Monge-Elkan](https://www.academia.edu/200314/Generalized_Monge-Elkan_Method_for_Approximate_Text_String_Comparison) | `MongeElkan` | `monge_elkan` |
| [Bag distance](https://github.com/Yomguithereal/talisman/blob/master/src/metrics/bag.js) | `Bag`        | `bag`        |

### Sequence based

| Algorithm | Class | Functions |
|-----------|-------|-----------|
| [longest common subsequence similarity](https://en.wikipedia.org/wiki/Longest_common_subsequence_problem)          | `LCSSeq` | `lcsseq` |
| [longest common substring similarity](https://docs.python.org/2/library/difflib.html#difflib.SequenceMatcher)      | `LCSStr` | `lcsstr` |
| [Ratcliff-Obershelp similarity](https://en.wikipedia.org/wiki/Gestalt_Pattern_Matching) | `RatcliffObershelp` | `ratcliff_obershelp` |

### Compression based

[Normalized compression distance](https://en.wikipedia.org/wiki/Normalized_compression_distance#Normalized_compression_distance) with different compression algorithms.

Classic compression algorithms:

| Algorithm                                                                  | Class       | Function     |
|----------------------------------------------------------------------------|-------------|--------------|
| [Arithmetic coding](https://en.wikipedia.org/wiki/Arithmetic_coding)       | `ArithNCD`  | `arith_ncd`  |
| [RLE](https://en.wikipedia.org/wiki/Run-length_encoding)                   | `RLENCD`    | `rle_ncd`    |
| [BWT RLE](https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform) | `BWTRLENCD` | `bwtrle_ncd` |

Normal compression algorithms:

| Algorithm                                                                  | Class        | Function      |
|----------------------------------------------------------------------------|--------------|---------------|
| Square Root                                                                | `SqrtNCD`    | `sqrt_ncd`    |
| [Entropy](https://en.wikipedia.org/wiki/Entropy_(information_theory))      | `EntropyNCD` | `entropy_ncd` |

Work in progress algorithms that compare two strings as array of bits:

| Algorithm                                  | Class     | Function   |
|--------------------------------------------|-----------|------------|
| [BZ2](https://en.wikipedia.org/wiki/Bzip2) | `BZ2NCD`  | `bz2_ncd`  |
| [LZMA](https://en.wikipedia.org/wiki/LZMA) | `LZMANCD` | `lzma_ncd` |
| [ZLib](https://en.wikipedia.org/wiki/Zlib) | `ZLIBNCD` | `zlib_ncd` |

See [blog post](https://articles.life4web.ru/other/ncd/) for more details about NCD.

### Phonetic

| Algorithm                                                                    | Class    | Functions |
|------------------------------------------------------------------------------|----------|-----------|
| [MRA](https://en.wikipedia.org/wiki/Match_rating_approach)                   | `MRA`    | `mra`     |
| [Editex](https://anhaidgroup.github.io/py_stringmatching/v0.3.x/Editex.html) | `Editex` | `editex`  |

### Simple

| Algorithm           | Class      | Functions  |
|---------------------|------------|------------|
| Prefix similarity   | `Prefix`   | `prefix`   |
| Postfix similarity  | `Postfix`  | `postfix`  |
| Length distance     | `Length`   | `length`   |
| Identity similarity | `Identity` | `identity` |
| Matrix similarity   | `Matrix`   | `matrix`   |

## Installation

### Stable

Only pure python implementation:

```bash
pip install textdistance
```

With extra libraries for maximum speed:

```bash
pip install "textdistance[extras]"
```

With all libraries (required for [benchmarking](#benchmarks) and [testing](#running-tests)):

```bash
pip install "textdistance[benchmark]"
```

With algorithm specific extras:

```bash
pip install "textdistance[Hamming]"
```

Algorithms with available extras: `DamerauLevenshtein`, `Hamming`, `Jaro`, `JaroWinkler`, `Levenshtein`.

### Dev

Via pip:

```bash
pip install -e git+https://github.com/life4/textdistance.git#egg=textdistance
```

Or clone repo and install with some extras:

```bash
git clone https://github.com/life4/textdistance.git
pip install -e ".[benchmark]"
```

## Usage

All algorithms have 2 interfaces:

1. Class with algorithm-specific params for customizing.
1. Class instance with default params for quick and simple usage.

All algorithms have some common methods:

1. `.distance(*sequences)` -- calculate distance between sequences.
1. `.similarity(*sequences)` -- calculate similarity for sequences.
1. `.maximum(*sequences)` -- maximum possible value for distance and similarity. For any sequence: `distance + similarity == maximum`.
1. `.normalized_distance(*sequences)` -- normalized distance between sequences. The return value is a float between 0 and 1, where 0 means equal, and 1 totally different.
1. `.normalized_similarity(*sequences)` -- normalized similarity for sequences. The return value is a float between 0 and 1, where 0 means totally different, and 1 equal.

Most common init arguments:

1. `qval` -- q-value for split sequences into q-grams. Possible values:
    - 1 (default) -- compare sequences by chars.
    - 2 or more -- transform sequences to q-grams.
    - None -- split sequences by words.
1. `as_set` -- for token-based algorithms:
    - True -- `t` and `ttt` is equal.
    - False (default) -- `t` and `ttt` is different.

## Examples

For example, [Hamming distance](https://en.wikipedia.org/wiki/Hamming_distance):

```python
import textdistance

textdistance.hamming('test', 'text')
# 1

textdistance.hamming.distance('test', 'text')
# 1

textdistance.hamming.similarity('test', 'text')
# 3

textdistance.hamming.normalized_distance('test', 'text')
# 0.25

textdistance.hamming.normalized_similarity('test', 'text')
# 0.75

textdistance.Hamming(qval=2).distance('test', 'text')
# 2

```

Any other algorithms have same interface.

## Articles

A few articles with examples how to use textdistance in the real world:

- [Guide to Fuzzy Matching with Python](http://theautomatic.net/2019/11/13/guide-to-fuzzy-matching-with-python/)
- [String similarity — the basic know your algorithms guide!](https://itnext.io/string-similarity-the-basic-know-your-algorithms-guide-3de3d7346227)
- [Normalized compression distance](https://articles.life4web.ru/other/ncd/)

## Extra libraries

For main algorithms textdistance try to call known external libraries (fastest first) if available (installed in your system) and possible (this implementation can compare this type of sequences). [Install](#installation) textdistance with extras for this feature.

You can disable this by passing `external=False` argument on init:

```python3
import textdistance
hamming = textdistance.Hamming(external=False)
hamming('text', 'testit')
# 3
```

Supported libraries:

1. [Distance](https://github.com/doukremt/distance)
1. [jellyfish](https://github.com/jamesturk/jellyfish)
1. [py_stringmatching](https://github.com/anhaidgroup/py_stringmatching)
1. [pylev](https://github.com/toastdriven/pylev)
1. [Levenshtein](https://github.com/maxbachmann/Levenshtein)
1. [pyxDamerauLevenshtein](https://github.com/gfairchild/pyxDamerauLevenshtein)

Algorithms:

1. DamerauLevenshtein
1. Hamming
1. Jaro
1. JaroWinkler
1. Levenshtein

## Benchmarks

Without extras installation:

| algorithm          | library               |    time |
|--------------------|-----------------------|---------|
| DamerauLevenshtein | rapidfuzz             | 0.00312 |
| DamerauLevenshtein | jellyfish             | 0.00591 |
| DamerauLevenshtein | pyxdameraulevenshtein | 0.03335 |
| DamerauLevenshtein | **textdistance**      | 0.83524 |
| Hamming            | Levenshtein           | 0.00038 |
| Hamming            | rapidfuzz             | 0.00044 |
| Hamming            | jellyfish             | 0.00091 |
| Hamming            | distance              | 0.00812 |
| Hamming            | **textdistance**      | 0.03531 |
| Jaro               | rapidfuzz             | 0.00092 |
| Jaro               | jellyfish             | 0.00191 |
| Jaro               | **textdistance**      | 0.07365 |
| JaroWinkler        | rapidfuzz             | 0.00094 |
| JaroWinkler        | jellyfish             | 0.00195 |
| JaroWinkler        | **textdistance**      | 0.07501 |
| Levenshtein        | rapidfuzz             | 0.00099 |
| Levenshtein        | Levenshtein           | 0.00122 |
| Levenshtein        | jellyfish             | 0.00254 |
| Levenshtein        | pylev                 | 0.15688 |
| Levenshtein        | distance              | 0.28669 |
| Levenshtein        | **textdistance**      | 0.53902 |

Total: 24 libs.

Yeah, so slow. Use TextDistance on production only with extras.

Textdistance use benchmark's results for algorithm's optimization and try to call fastest external lib first (if possible).

You can run benchmark manually on your system:

```bash
pip install textdistance[benchmark]
python3 -m textdistance.benchmark
```

TextDistance show benchmarks results table for your system and save libraries priorities into `libraries.json` file in TextDistance's folder. This file will be used by textdistance for calling fastest algorithm implementation. Default [libraries.json](textdistance/libraries.json) already included in package.

## Running tests

All you need is [task](https://taskfile.dev/). See [Taskfile.yml](./Taskfile.yml) for the list of available commands. For example, to run tests including third-party libraries usage, execute `task pytest-external:run`.

## Contributing

PRs are welcome!

- Found a bug? Fix it!
- Want to add more algorithms? Sure! Just make it with the same interface as other algorithms in the lib and add some tests.
- Can make something faster? Great! Just avoid external dependencies and remember that everything should work not only with strings.
- Something else that do you think is good? Do it! Just make sure that CI passes and everything from the README is still applicable (interface, features, and so on).
- Have no time to code? Tell your friends and subscribers about `textdistance`. More users, more contributions, more amazing features.

Thank you :heart: