1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
from __future__ import absolute_import, division
from .auto import tqdm as tqdm_auto
from copy import deepcopy
try:
import keras
except ImportError as e:
try:
from tensorflow import keras
except ImportError:
raise e
__author__ = {"github.com/": ["casperdcl"]}
__all__ = ['TqdmCallback']
class TqdmCallback(keras.callbacks.Callback):
"""`keras` callback for epoch and batch progress"""
@staticmethod
def bar2callback(bar, pop=None, delta=(lambda logs: 1)):
def callback(_, logs=None):
n = delta(logs)
if logs:
if pop:
logs = deepcopy(logs)
[logs.pop(i, 0) for i in pop]
bar.set_postfix(logs, refresh=False)
bar.update(n)
return callback
def __init__(self, epochs=None, data_size=None, batch_size=None, verbose=1,
tqdm_class=tqdm_auto):
"""
Parameters
----------
epochs : int, optional
data_size : int, optional
Number of training pairs.
batch_size : int, optional
Number of training pairs per batch.
verbose : int
0: epoch, 1: batch (transient), 2: batch. [default: 1].
Will be set to `0` unless both `data_size` and `batch_size`
are given.
tqdm_class : optional
`tqdm` class to use for bars [default: `tqdm.auto.tqdm`].
"""
self.tqdm_class = tqdm_class
self.epoch_bar = tqdm_class(total=epochs, unit='epoch')
self.on_epoch_end = self.bar2callback(self.epoch_bar)
if data_size and batch_size:
self.batches = batches = (data_size + batch_size - 1) // batch_size
else:
self.batches = batches = None
self.verbose = verbose
if verbose == 1:
self.batch_bar = tqdm_class(total=batches, unit='batch',
leave=False)
self.on_batch_end = self.bar2callback(
self.batch_bar,
pop=['batch', 'size'],
delta=lambda logs: logs.get('size', 1))
def on_train_begin(self, *_, **__):
params = self.params.get
auto_total = params('epochs', params('nb_epoch', None))
if auto_total is not None:
self.epoch_bar.reset(total=auto_total)
def on_epoch_begin(self, *_, **__):
if self.verbose:
params = self.params.get
total = params('samples', params(
'nb_sample', params('steps', None))) or self.batches
if self.verbose == 2:
if hasattr(self, 'batch_bar'):
self.batch_bar.close()
self.batch_bar = self.tqdm_class(
total=total, unit='batch', leave=True,
unit_scale=1 / (params('batch_size', 1) or 1))
self.on_batch_end = self.bar2callback(
self.batch_bar,
pop=['batch', 'size'],
delta=lambda logs: logs.get('size', 1))
elif self.verbose == 1:
self.batch_bar.unit_scale = 1 / (params('batch_size', 1) or 1)
self.batch_bar.reset(total=total)
else:
raise KeyError('Unknown verbosity')
def on_train_end(self, *_, **__):
if self.verbose:
self.batch_bar.close()
self.epoch_bar.close()
@staticmethod
def _implements_train_batch_hooks():
return True
@staticmethod
def _implements_test_batch_hooks():
return True
@staticmethod
def _implements_predict_batch_hooks():
return True
|