aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/cubeb_audiounit.cpp
blob: 879e2c4f06a2d8cf591d8cf57a43798f2d2b4d47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
/*
 * Copyright © 2011 Mozilla Foundation
 *
 * This program is made available under an ISC-style license.  See the
 * accompanying file LICENSE for details.
 */
#undef NDEBUG

#include <TargetConditionals.h>
#include <assert.h>
#include <mach/mach_time.h>
#include <pthread.h>
#include <stdlib.h>
#include <AudioUnit/AudioUnit.h>
#if !TARGET_OS_IPHONE
#include <AvailabilityMacros.h>
#include <CoreAudio/AudioHardware.h>
#include <CoreAudio/HostTime.h>
#include <CoreFoundation/CoreFoundation.h>
#endif
#include <CoreAudio/CoreAudioTypes.h>
#include <AudioToolbox/AudioToolbox.h>
#include "cubeb/cubeb.h"
#include "cubeb-internal.h"
#include "cubeb_mixer.h"
#include "cubeb_panner.h"
#if !TARGET_OS_IPHONE
#include "cubeb_osx_run_loop.h"
#endif
#include "cubeb_resampler.h"
#include "cubeb_ring_array.h"
#include <algorithm>
#include <atomic>
#include <vector>
#include <set>
#include <sys/time.h>
#include <string>

using namespace std;

#if MAC_OS_X_VERSION_MIN_REQUIRED < 101000
typedef UInt32 AudioFormatFlags;
#endif

#define AU_OUT_BUS    0
#define AU_IN_BUS     1

const char * DISPATCH_QUEUE_LABEL = "org.mozilla.cubeb";
const char * PRIVATE_AGGREGATE_DEVICE_NAME = "CubebAggregateDevice";

#ifdef ALOGV
#undef ALOGV
#endif
#define ALOGV(msg, ...) dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^{LOGV(msg, ##__VA_ARGS__);})

#ifdef ALOG
#undef ALOG
#endif
#define ALOG(msg, ...) dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^{LOG(msg, ##__VA_ARGS__);})

/* Testing empirically, some headsets report a minimal latency that is very
 * low, but this does not work in practice. Lie and say the minimum is 256
 * frames. */
const uint32_t SAFE_MIN_LATENCY_FRAMES = 256;
const uint32_t SAFE_MAX_LATENCY_FRAMES = 512;

const AudioObjectPropertyAddress DEFAULT_INPUT_DEVICE_PROPERTY_ADDRESS = {
  kAudioHardwarePropertyDefaultInputDevice,
  kAudioObjectPropertyScopeGlobal,
  kAudioObjectPropertyElementMaster
};

const AudioObjectPropertyAddress DEFAULT_OUTPUT_DEVICE_PROPERTY_ADDRESS = {
  kAudioHardwarePropertyDefaultOutputDevice,
  kAudioObjectPropertyScopeGlobal,
  kAudioObjectPropertyElementMaster
};

const AudioObjectPropertyAddress DEVICE_IS_ALIVE_PROPERTY_ADDRESS = {
  kAudioDevicePropertyDeviceIsAlive,
  kAudioObjectPropertyScopeGlobal,
  kAudioObjectPropertyElementMaster
};

const AudioObjectPropertyAddress DEVICES_PROPERTY_ADDRESS = {
  kAudioHardwarePropertyDevices,
  kAudioObjectPropertyScopeGlobal,
  kAudioObjectPropertyElementMaster
};

const AudioObjectPropertyAddress INPUT_DATA_SOURCE_PROPERTY_ADDRESS = {
  kAudioDevicePropertyDataSource,
  kAudioDevicePropertyScopeInput,
  kAudioObjectPropertyElementMaster
};

const AudioObjectPropertyAddress OUTPUT_DATA_SOURCE_PROPERTY_ADDRESS = {
  kAudioDevicePropertyDataSource,
  kAudioDevicePropertyScopeOutput,
  kAudioObjectPropertyElementMaster
};

typedef uint32_t device_flags_value;

enum device_flags {
  DEV_UNKNOWN           = 0x00, /* Unknown */
  DEV_INPUT             = 0x01, /* Record device like mic */
  DEV_OUTPUT            = 0x02, /* Playback device like speakers */
  DEV_SYSTEM_DEFAULT    = 0x04, /* System default device */
  DEV_SELECTED_DEFAULT  = 0x08, /* User selected to use the system default device */
};

void audiounit_stream_stop_internal(cubeb_stream * stm);
void audiounit_stream_start_internal(cubeb_stream * stm);
static void audiounit_close_stream(cubeb_stream *stm);
static int audiounit_setup_stream(cubeb_stream *stm);
static vector<AudioObjectID>
audiounit_get_devices_of_type(cubeb_device_type devtype);
static UInt32 audiounit_get_device_presentation_latency(AudioObjectID devid, AudioObjectPropertyScope scope);

#if !TARGET_OS_IPHONE
static AudioObjectID audiounit_get_default_device_id(cubeb_device_type type);
static int audiounit_uninstall_device_changed_callback(cubeb_stream * stm);
static int audiounit_uninstall_system_changed_callback(cubeb_stream * stm);
static void audiounit_reinit_stream_async(cubeb_stream * stm, device_flags_value flags);
#endif

extern cubeb_ops const audiounit_ops;

struct cubeb {
  cubeb_ops const * ops = &audiounit_ops;
  owned_critical_section mutex;
  int active_streams = 0;
  uint32_t global_latency_frames = 0;
  cubeb_device_collection_changed_callback collection_changed_callback = nullptr;
  void * collection_changed_user_ptr = nullptr;
  /* Differentiate input from output devices. */
  cubeb_device_type collection_changed_devtype = CUBEB_DEVICE_TYPE_UNKNOWN;
  vector<AudioObjectID> devtype_device_array;
  // The queue is asynchronously deallocated once all references to it are released
  dispatch_queue_t serial_queue = dispatch_queue_create(DISPATCH_QUEUE_LABEL, DISPATCH_QUEUE_SERIAL);
  // Current used channel layout
  atomic<cubeb_channel_layout> layout{ CUBEB_LAYOUT_UNDEFINED };
  uint32_t channels = 0;
};

static unique_ptr<AudioChannelLayout, decltype(&free)>
make_sized_audio_channel_layout(size_t sz)
{
    assert(sz >= sizeof(AudioChannelLayout));
    AudioChannelLayout * acl = reinterpret_cast<AudioChannelLayout *>(calloc(1, sz));
    assert(acl); // Assert the allocation works.
    return unique_ptr<AudioChannelLayout, decltype(&free)>(acl, free);
}

enum io_side {
  INPUT,
  OUTPUT,
};

static char const *
to_string(io_side side)
{
  switch (side) {
  case INPUT:
    return "input";
  case OUTPUT:
    return "output";
  }
}

struct device_info {
  AudioDeviceID id = kAudioObjectUnknown;
  device_flags_value flags = DEV_UNKNOWN;
};

struct property_listener {
  AudioDeviceID device_id;
  const AudioObjectPropertyAddress * property_address;
  AudioObjectPropertyListenerProc callback;
  cubeb_stream * stream;

  property_listener(AudioDeviceID id,
                    const AudioObjectPropertyAddress * address,
                    AudioObjectPropertyListenerProc proc,
                    cubeb_stream * stm)
    : device_id(id)
    , property_address(address)
    , callback(proc)
    , stream(stm)
  {}
};

struct cubeb_stream {
  explicit cubeb_stream(cubeb * context);

  /* Note: Must match cubeb_stream layout in cubeb.c. */
  cubeb * context;
  void * user_ptr = nullptr;
  /**/

  cubeb_data_callback data_callback = nullptr;
  cubeb_state_callback state_callback = nullptr;
  cubeb_device_changed_callback device_changed_callback = nullptr;
  owned_critical_section device_changed_callback_lock;
  /* Stream creation parameters */
  cubeb_stream_params input_stream_params = { CUBEB_SAMPLE_FLOAT32NE, 0, 0, CUBEB_LAYOUT_UNDEFINED, CUBEB_STREAM_PREF_NONE };
  cubeb_stream_params output_stream_params = { CUBEB_SAMPLE_FLOAT32NE, 0, 0, CUBEB_LAYOUT_UNDEFINED, CUBEB_STREAM_PREF_NONE };
  device_info input_device;
  device_info output_device;
  /* Format descriptions */
  AudioStreamBasicDescription input_desc;
  AudioStreamBasicDescription output_desc;
  /* I/O AudioUnits */
  AudioUnit input_unit = nullptr;
  AudioUnit output_unit = nullptr;
  /* I/O device sample rate */
  Float64 input_hw_rate = 0;
  Float64 output_hw_rate = 0;
  /* Expected I/O thread interleave,
   * calculated from I/O hw rate. */
  int expected_output_callbacks_in_a_row = 0;
  owned_critical_section mutex;
  // Hold the input samples in every input callback iteration.
  // Only accessed on input/output callback thread and during initial configure.
  unique_ptr<auto_array_wrapper> input_linear_buffer;
  // After the resampling some input data remains stored inside
  // the resampler. This number is used in order to calculate
  // the number of extra silence frames in input.
  // Only accessed on input/output callback thread and during initial configure.
  uint32_t available_input_frames = 0;
  /* Frame counters */
  atomic<uint64_t> frames_played{ 0 };
  uint64_t frames_queued = 0;
  atomic<int64_t> frames_read{ 0 };
  atomic<bool> shutdown{ true };
  atomic<bool> draining{ false };
  /* Latency requested by the user. */
  uint32_t latency_frames = 0;
  atomic<uint32_t> current_latency_frames{ 0 };
  atomic<float> panning{ 0 };
  unique_ptr<cubeb_resampler, decltype(&cubeb_resampler_destroy)> resampler;
  /* This is true if a device change callback is currently running.  */
  atomic<bool> switching_device{ false };
  atomic<bool> buffer_size_change_state{ false };
  AudioDeviceID aggregate_device_id = 0;    // the aggregate device id
  AudioObjectID plugin_id = 0;              // used to create aggregate device
  /* Mixer interface */
  unique_ptr<cubeb_mixer, decltype(&cubeb_mixer_destroy)> mixer;
  /* Buffer where remixing/resampling will occur when upmixing is required */
  /* Only accessed from callback thread */
  unique_ptr<uint8_t[]> temp_buffer;
  size_t temp_buffer_size = 0; // size in bytes.
  /* Listeners indicating what system events are monitored. */
  unique_ptr<property_listener> default_input_listener;
  unique_ptr<property_listener> default_output_listener;
  unique_ptr<property_listener> input_alive_listener;
  unique_ptr<property_listener> input_source_listener;
  unique_ptr<property_listener> output_source_listener;
};

bool has_input(cubeb_stream * stm)
{
  return stm->input_stream_params.rate != 0;
}

bool has_output(cubeb_stream * stm)
{
  return stm->output_stream_params.rate != 0;
}

cubeb_channel
channel_label_to_cubeb_channel(UInt32 label)
{
  switch (label) {
    case kAudioChannelLabel_Left:
      return CHANNEL_FRONT_LEFT;
    case kAudioChannelLabel_Right:
      return CHANNEL_FRONT_RIGHT;
    case kAudioChannelLabel_Center:
      return CHANNEL_FRONT_CENTER;
    case kAudioChannelLabel_LFEScreen:
      return CHANNEL_LOW_FREQUENCY;
    case kAudioChannelLabel_LeftSurround:
      return CHANNEL_BACK_LEFT;
    case kAudioChannelLabel_RightSurround:
      return CHANNEL_BACK_RIGHT;
    case kAudioChannelLabel_LeftCenter:
      return CHANNEL_FRONT_LEFT_OF_CENTER;
    case kAudioChannelLabel_RightCenter:
      return CHANNEL_FRONT_RIGHT_OF_CENTER;
    case kAudioChannelLabel_CenterSurround:
      return CHANNEL_BACK_CENTER;
    case kAudioChannelLabel_LeftSurroundDirect:
      return CHANNEL_SIDE_LEFT;
    case kAudioChannelLabel_RightSurroundDirect:
      return CHANNEL_SIDE_RIGHT;
    case kAudioChannelLabel_TopCenterSurround:
      return CHANNEL_TOP_CENTER;
    case kAudioChannelLabel_VerticalHeightLeft:
      return CHANNEL_TOP_FRONT_LEFT;
    case kAudioChannelLabel_VerticalHeightCenter:
      return CHANNEL_TOP_FRONT_CENTER;
    case kAudioChannelLabel_VerticalHeightRight:
      return CHANNEL_TOP_FRONT_RIGHT;
    case kAudioChannelLabel_TopBackLeft:
      return CHANNEL_TOP_BACK_LEFT;
    case kAudioChannelLabel_TopBackCenter:
      return CHANNEL_TOP_BACK_CENTER;
    case kAudioChannelLabel_TopBackRight:
      return CHANNEL_TOP_BACK_RIGHT;
    default:
      return CHANNEL_UNKNOWN;
  }
}

AudioChannelLabel
cubeb_channel_to_channel_label(cubeb_channel channel)
{
  switch (channel) {
    case CHANNEL_FRONT_LEFT:
      return kAudioChannelLabel_Left;
    case CHANNEL_FRONT_RIGHT:
      return kAudioChannelLabel_Right;
    case CHANNEL_FRONT_CENTER:
      return kAudioChannelLabel_Center;
    case CHANNEL_LOW_FREQUENCY:
      return kAudioChannelLabel_LFEScreen;
    case CHANNEL_BACK_LEFT:
      return kAudioChannelLabel_LeftSurround;
    case CHANNEL_BACK_RIGHT:
      return kAudioChannelLabel_RightSurround;
    case CHANNEL_FRONT_LEFT_OF_CENTER:
      return kAudioChannelLabel_LeftCenter;
    case CHANNEL_FRONT_RIGHT_OF_CENTER:
      return kAudioChannelLabel_RightCenter;
    case CHANNEL_BACK_CENTER:
      return kAudioChannelLabel_CenterSurround;
    case CHANNEL_SIDE_LEFT:
      return kAudioChannelLabel_LeftSurroundDirect;
    case CHANNEL_SIDE_RIGHT:
      return kAudioChannelLabel_RightSurroundDirect;
    case CHANNEL_TOP_CENTER:
      return kAudioChannelLabel_TopCenterSurround;
    case CHANNEL_TOP_FRONT_LEFT:
      return kAudioChannelLabel_VerticalHeightLeft;
    case CHANNEL_TOP_FRONT_CENTER:
      return kAudioChannelLabel_VerticalHeightCenter;
    case CHANNEL_TOP_FRONT_RIGHT:
      return kAudioChannelLabel_VerticalHeightRight;
    case CHANNEL_TOP_BACK_LEFT:
      return kAudioChannelLabel_TopBackLeft;
    case CHANNEL_TOP_BACK_CENTER:
      return kAudioChannelLabel_TopBackCenter;
    case CHANNEL_TOP_BACK_RIGHT:
      return kAudioChannelLabel_TopBackRight;
    default:
      return kAudioChannelLabel_Unknown;
  }
}

#if TARGET_OS_IPHONE
typedef UInt32 AudioDeviceID;
typedef UInt32 AudioObjectID;

#define AudioGetCurrentHostTime mach_absolute_time

uint64_t
AudioConvertHostTimeToNanos(uint64_t host_time)
{
  static struct mach_timebase_info timebase_info;
  static bool initialized = false;
  if (!initialized) {
    mach_timebase_info(&timebase_info);
    initialized = true;
  }

  long double answer = host_time;
  if (timebase_info.numer != timebase_info.denom) {
    answer *= timebase_info.numer;
    answer /= timebase_info.denom;
  }
  return (uint64_t)answer;
}
#endif

static void
audiounit_increment_active_streams(cubeb * ctx)
{
  ctx->mutex.assert_current_thread_owns();
  ctx->active_streams += 1;
}

static void
audiounit_decrement_active_streams(cubeb * ctx)
{
  ctx->mutex.assert_current_thread_owns();
  ctx->active_streams -= 1;
}

static int
audiounit_active_streams(cubeb * ctx)
{
  ctx->mutex.assert_current_thread_owns();
  return ctx->active_streams;
}

static void
audiounit_set_global_latency(cubeb * ctx, uint32_t latency_frames)
{
  ctx->mutex.assert_current_thread_owns();
  assert(audiounit_active_streams(ctx) == 1);
  ctx->global_latency_frames = latency_frames;
}

static void
audiounit_make_silent(AudioBuffer * ioData)
{
  assert(ioData);
  assert(ioData->mData);
  memset(ioData->mData, 0, ioData->mDataByteSize);
}

static OSStatus
audiounit_render_input(cubeb_stream * stm,
                       AudioUnitRenderActionFlags * flags,
                       AudioTimeStamp const * tstamp,
                       UInt32 bus,
                       UInt32 input_frames)
{
  /* Create the AudioBufferList to store input. */
  AudioBufferList input_buffer_list;
  input_buffer_list.mBuffers[0].mDataByteSize =
      stm->input_desc.mBytesPerFrame * input_frames;
  input_buffer_list.mBuffers[0].mData = nullptr;
  input_buffer_list.mBuffers[0].mNumberChannels = stm->input_desc.mChannelsPerFrame;
  input_buffer_list.mNumberBuffers = 1;

  /* Render input samples */
  OSStatus r = AudioUnitRender(stm->input_unit,
                               flags,
                               tstamp,
                               bus,
                               input_frames,
                               &input_buffer_list);

  if (r != noErr) {
    LOG("AudioUnitRender rv=%d", r);
    if (r == kAudioUnitErr_CannotDoInCurrentContext) {
      audiounit_reinit_stream_async(stm, DEV_INPUT | DEV_OUTPUT);
    }
    return r;
  }

  /* Copy input data in linear buffer. */
  stm->input_linear_buffer->push(input_buffer_list.mBuffers[0].mData,
                                 input_frames * stm->input_desc.mChannelsPerFrame);

  /* Advance input frame counter. */
  assert(input_frames > 0);
  stm->frames_read += input_frames;
  stm->available_input_frames += input_frames;

  ALOGV("(%p) input: buffers %u, size %u, channels %u, rendered frames %d, total frames %u.",
        stm,
        (unsigned int) input_buffer_list.mNumberBuffers,
        (unsigned int) input_buffer_list.mBuffers[0].mDataByteSize,
        (unsigned int) input_buffer_list.mBuffers[0].mNumberChannels,
        (unsigned int) input_frames,
        stm->available_input_frames);

  return noErr;
}

static OSStatus
audiounit_input_callback(void * user_ptr,
                         AudioUnitRenderActionFlags * flags,
                         AudioTimeStamp const * tstamp,
                         UInt32 bus,
                         UInt32 input_frames,
                         AudioBufferList * /* bufs */)
{
  cubeb_stream * stm = static_cast<cubeb_stream *>(user_ptr);

  assert(stm->input_unit != NULL);
  assert(AU_IN_BUS == bus);

  if (stm->shutdown) {
    ALOG("(%p) input shutdown", stm);
    return noErr;
  }

  OSStatus r = audiounit_render_input(stm, flags, tstamp, bus, input_frames);
  if (r != noErr) {
    return r;
  }

  // Full Duplex. We'll call data_callback in the AudioUnit output callback.
  if (stm->output_unit != NULL) {
    return noErr;
  }

  /* Input only. Call the user callback through resampler.
     Resampler will deliver input buffer in the correct rate. */
  assert(input_frames <= stm->input_linear_buffer->length() / stm->input_desc.mChannelsPerFrame);
  long total_input_frames = stm->input_linear_buffer->length() / stm->input_desc.mChannelsPerFrame;
  long outframes = cubeb_resampler_fill(stm->resampler.get(),
                                        stm->input_linear_buffer->data(),
                                        &total_input_frames,
                                        NULL,
                                        0);
  if (outframes < total_input_frames) {
    OSStatus r = AudioOutputUnitStop(stm->input_unit);
    assert(r == 0);
    stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_DRAINED);
    return noErr;
  }

  // Reset input buffer
  stm->input_linear_buffer->clear();
  stm->available_input_frames = 0;

  return noErr;
}

static void
audiounit_mix_output_buffer(cubeb_stream * stm,
                            size_t output_frames,
                            void * input_buffer,
                            size_t input_buffer_size,
                            void * output_buffer,
                            size_t output_buffer_size)
{
  assert(input_buffer_size >=
         cubeb_sample_size(stm->output_stream_params.format) *
           stm->output_stream_params.channels * output_frames);
  assert(output_buffer_size >= stm->output_desc.mBytesPerFrame * output_frames);

  int r = cubeb_mixer_mix(stm->mixer.get(),
                          output_frames,
                          input_buffer,
                          input_buffer_size,
                          output_buffer,
                          output_buffer_size);
  if (r != 0) {
    LOG("Remix error = %d", r);
  }
}

static OSStatus
audiounit_output_callback(void * user_ptr,
                          AudioUnitRenderActionFlags * /* flags */,
                          AudioTimeStamp const * tstamp,
                          UInt32 bus,
                          UInt32 output_frames,
                          AudioBufferList * outBufferList)
{
  assert(AU_OUT_BUS == bus);
  assert(outBufferList->mNumberBuffers == 1);

  cubeb_stream * stm = static_cast<cubeb_stream *>(user_ptr);

  ALOGV("(%p) output: buffers %u, size %u, channels %u, frames %u, total input frames %u.",
        stm,
        (unsigned int) outBufferList->mNumberBuffers,
        (unsigned int) outBufferList->mBuffers[0].mDataByteSize,
        (unsigned int) outBufferList->mBuffers[0].mNumberChannels,
        (unsigned int) output_frames,
        stm->available_input_frames);

  long input_frames = 0, input_frames_before_fill = 0;
  void * output_buffer = NULL, * input_buffer = NULL;

  if (stm->shutdown) {
    ALOG("(%p) output shutdown.", stm);
    audiounit_make_silent(&outBufferList->mBuffers[0]);
    return noErr;
  }

  if (stm->draining) {
    OSStatus r = AudioOutputUnitStop(stm->output_unit);
    assert(r == 0);
    if (stm->input_unit) {
      r = AudioOutputUnitStop(stm->input_unit);
      assert(r == 0);
    }
    stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_DRAINED);
    audiounit_make_silent(&outBufferList->mBuffers[0]);
    return noErr;
  }

  /* Get output buffer. */
  if (stm->mixer) {
    // If remixing needs to occur, we can't directly work in our final
    // destination buffer as data may be overwritten or too small to start with.
    size_t size_needed = output_frames * stm->output_stream_params.channels *
                         cubeb_sample_size(stm->output_stream_params.format);
    if (stm->temp_buffer_size < size_needed) {
      stm->temp_buffer.reset(new uint8_t[size_needed]);
      stm->temp_buffer_size = size_needed;
    }
    output_buffer = stm->temp_buffer.get();
  } else {
    output_buffer = outBufferList->mBuffers[0].mData;
  }

  /* If Full duplex get also input buffer */
  if (stm->input_unit != NULL) {
    // In duplex mode, input rate is always output rate.
    assert(stm->input_hw_rate == stm->output_hw_rate);
    if (stm->available_input_frames < output_frames) {
      long missing_frames = output_frames - stm->available_input_frames;
      stm->input_linear_buffer->push_silence(missing_frames * stm->input_desc.mChannelsPerFrame);
      stm->available_input_frames += missing_frames;

      ALOG("(%p) %s pushed %ld frames of input silence.", stm, stm->frames_read == 0 ? "Input hasn't started," :
           stm->switching_device ? "Device switching," : "Drop out,", missing_frames);
    }
    input_buffer = stm->input_linear_buffer->data();
    // Number of input frames in the buffer. It will change to actually used frames
    // inside fill
    input_frames = stm->input_linear_buffer->length() / stm->input_desc.mChannelsPerFrame;
    // Number of input frames pushed inside resampler.
    input_frames_before_fill = input_frames;
    assert(input_frames == stm->available_input_frames);
  }

  /* Call user callback through resampler. */
  assert(!input_buffer ||
         (stm->input_stream_params.rate == stm->output_stream_params.rate &&
          input_frames >= output_frames));
  long outframes = cubeb_resampler_fill(stm->resampler.get(),
                                        input_buffer,
                                        input_buffer ? &input_frames : NULL,
                                        output_buffer,
                                        output_frames);

  if (input_buffer) {
    // Pop from the buffer the frames used by the the resampler.
    stm->input_linear_buffer->pop(input_frames * stm->input_desc.mChannelsPerFrame);
    // Decrease counter by the number of frames used by resampler
    assert(stm->available_input_frames >= input_frames);
    stm->available_input_frames -= input_frames;
  }

  if (outframes < 0 || outframes > output_frames) {
    stm->shutdown = true;
    OSStatus r = AudioOutputUnitStop(stm->output_unit);
    assert(r == 0);
    if (stm->input_unit) {
      r = AudioOutputUnitStop(stm->input_unit);
      assert(r == 0);
    }
    stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_ERROR);
    audiounit_make_silent(&outBufferList->mBuffers[0]);
    return noErr;
  }

  stm->draining = (UInt32) outframes < output_frames;
  stm->frames_played = stm->frames_queued;
  stm->frames_queued += outframes;

  AudioFormatFlags outaff = stm->output_desc.mFormatFlags;
  float panning = (stm->output_desc.mChannelsPerFrame == 2) ?
      stm->panning.load(memory_order_relaxed) : 0.0f;

  /* Post process output samples. */
  if (stm->draining) {
    size_t outbpf = cubeb_sample_size(stm->output_stream_params.format);
    /* Clear missing frames (silence) */
    memset((uint8_t*)output_buffer + outframes * outbpf, 0, (output_frames - outframes) * outbpf);
  }

  /* Mixing */
  if (stm->mixer) {
    audiounit_mix_output_buffer(stm,
                                output_frames,
                                output_buffer,
                                stm->temp_buffer_size,
                                outBufferList->mBuffers[0].mData,
                                outBufferList->mBuffers[0].mDataByteSize);
  } else {
    /* Pan stereo. */
    if (panning != 0.0f) {
      if (outaff & kAudioFormatFlagIsFloat) {
        cubeb_pan_stereo_buffer_float(
          (float*)output_buffer, outframes, panning);
      } else if (outaff & kAudioFormatFlagIsSignedInteger) {
        cubeb_pan_stereo_buffer_int((short*)output_buffer, outframes, panning);
      }
    }
  }

  return noErr;
}

extern "C" {
int
audiounit_init(cubeb ** context, char const * /* context_name */)
{
#if !TARGET_OS_IPHONE
  cubeb_set_coreaudio_notification_runloop();
#endif

  *context = new cubeb;

  return CUBEB_OK;
}
}

static char const *
audiounit_get_backend_id(cubeb * /* ctx */)
{
  return "audiounit";
}

#if !TARGET_OS_IPHONE

static int audiounit_stream_get_volume(cubeb_stream * stm, float * volume);
static int audiounit_stream_set_volume(cubeb_stream * stm, float volume);

static int
audiounit_set_device_info(cubeb_stream * stm, AudioDeviceID id, io_side side)
{
  assert(stm);

  device_info * info = nullptr;
  cubeb_device_type type = CUBEB_DEVICE_TYPE_UNKNOWN;

  if (side == INPUT) {
    info = &stm->input_device;
    type = CUBEB_DEVICE_TYPE_INPUT;
  } else if (side == OUTPUT) {
    info = &stm->output_device;
    type = CUBEB_DEVICE_TYPE_OUTPUT;
  }
  memset(info, 0, sizeof(device_info));
  info->id = id;

  if (side == INPUT) {
    info->flags |= DEV_INPUT;
  } else if (side == OUTPUT) {
    info->flags |= DEV_OUTPUT;
  }

  AudioDeviceID default_device_id = audiounit_get_default_device_id(type);
  if (default_device_id == kAudioObjectUnknown) {
    return CUBEB_ERROR;
  }
  if (id == kAudioObjectUnknown) {
    info->id = default_device_id;
    info->flags |= DEV_SELECTED_DEFAULT;
  }

  if (info->id == default_device_id) {
    info->flags |= DEV_SYSTEM_DEFAULT;
  }

  assert(info->id);
  assert(info->flags & DEV_INPUT && !(info->flags & DEV_OUTPUT) ||
           !(info->flags & DEV_INPUT) && info->flags & DEV_OUTPUT);

  return CUBEB_OK;
}


static int
audiounit_reinit_stream(cubeb_stream * stm, device_flags_value flags)
{
  auto_lock context_lock(stm->context->mutex);
  assert((flags & DEV_INPUT && stm->input_unit) ||
         (flags & DEV_OUTPUT && stm->output_unit));
  if (!stm->shutdown) {
    audiounit_stream_stop_internal(stm);
  }

  int r = audiounit_uninstall_device_changed_callback(stm);
  if (r != CUBEB_OK) {
    LOG("(%p) Could not uninstall all device change listeners.", stm);
  }

  {
    auto_lock lock(stm->mutex);
    float volume = 0.0;
    int vol_rv = CUBEB_ERROR;
    if (stm->output_unit) {
      vol_rv = audiounit_stream_get_volume(stm, &volume);
    }

    audiounit_close_stream(stm);

    /* Reinit occurs in one of the following case:
     * - When the device is not alive any more
     * - When the default system device change.
     * - The bluetooth device changed from A2DP to/from HFP/HSP profile
     * We first attempt to re-use the same device id, should that fail we will
     * default to the (potentially new) default device. */
    AudioDeviceID input_device = flags & DEV_INPUT ? stm->input_device.id : 0;
    if (flags & DEV_INPUT) {
      r = audiounit_set_device_info(stm, input_device, INPUT);
      if (r != CUBEB_OK) {
        LOG("(%p) Set input device info failed. This can happen when last media device is unplugged", stm);
        return CUBEB_ERROR;
      }
    }

    /* Always use the default output on reinit. This is not correct in every
     * case but it is sufficient for Firefox and prevent reinit from reporting
     * failures. It will change soon when reinit mechanism will be updated. */
    r = audiounit_set_device_info(stm, 0, OUTPUT);
    if (r != CUBEB_OK) {
      LOG("(%p) Set output device info failed. This can happen when last media device is unplugged", stm);
      return CUBEB_ERROR;
    }

    if (audiounit_setup_stream(stm) != CUBEB_OK) {
      LOG("(%p) Stream reinit failed.", stm);
      if (flags & DEV_INPUT && input_device != 0) {
        // Attempt to re-use the same device-id failed, so attempt again with
        // default input device.
        if (audiounit_set_device_info(stm, 0, INPUT) != CUBEB_OK ||
            audiounit_setup_stream(stm) != CUBEB_OK) {
          LOG("(%p) Second stream reinit failed.", stm);
          return CUBEB_ERROR;
        }
      }
    }

    if (vol_rv == CUBEB_OK) {
      audiounit_stream_set_volume(stm, volume);
    }

    // Reset input frames to force new stream pre-buffer
    // silence if needed, check `is_extra_input_needed()`
    stm->frames_read = 0;

    // If the stream was running, start it again.
    if (!stm->shutdown) {
      audiounit_stream_start_internal(stm);
    }
  }
  return CUBEB_OK;
}

static void
audiounit_reinit_stream_async(cubeb_stream * stm, device_flags_value flags)
{
  // Use a new thread, through the queue, to avoid deadlock when calling
  // Get/SetProperties method from inside notify callback
  dispatch_async(stm->context->serial_queue, ^() {
    if (audiounit_reinit_stream(stm, flags) != CUBEB_OK) {
      if (audiounit_uninstall_system_changed_callback(stm) != CUBEB_OK) {
        LOG("(%p) Could not uninstall system changed callback", stm);
      }
      stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_ERROR);
      LOG("(%p) Could not reopen the stream after switching.", stm);
    }
    stm->switching_device = false;
  });
}

static char const *
event_addr_to_string(AudioObjectPropertySelector selector)
{
  switch(selector) {
    case kAudioHardwarePropertyDefaultOutputDevice:
      return "kAudioHardwarePropertyDefaultOutputDevice";
    case kAudioHardwarePropertyDefaultInputDevice:
      return "kAudioHardwarePropertyDefaultInputDevice";
    case kAudioDevicePropertyDeviceIsAlive:
      return "kAudioDevicePropertyDeviceIsAlive";
    case kAudioDevicePropertyDataSource:
      return "kAudioDevicePropertyDataSource";
    default:
      return "Unknown";
  }
}

static OSStatus
audiounit_property_listener_callback(AudioObjectID id, UInt32 address_count,
                                     const AudioObjectPropertyAddress * addresses,
                                     void * user)
{
  cubeb_stream * stm = (cubeb_stream*) user;
  if (stm->switching_device) {
    LOG("Switching is already taking place. Skip Event %s for id=%d", event_addr_to_string(addresses[0].mSelector), id);
    return noErr;
  }
  stm->switching_device = true;

  LOG("(%p) Audio device changed, %u events.", stm, (unsigned int) address_count);
  for (UInt32 i = 0; i < address_count; i++) {
    switch(addresses[i].mSelector) {
      case kAudioHardwarePropertyDefaultOutputDevice: {
          LOG("Event[%u] - mSelector == kAudioHardwarePropertyDefaultOutputDevice for id=%d", (unsigned int) i, id);
        }
        break;
      case kAudioHardwarePropertyDefaultInputDevice: {
          LOG("Event[%u] - mSelector == kAudioHardwarePropertyDefaultInputDevice for id=%d", (unsigned int) i, id);
        }
      break;
      case kAudioDevicePropertyDeviceIsAlive: {
          LOG("Event[%u] - mSelector == kAudioDevicePropertyDeviceIsAlive for id=%d", (unsigned int) i, id);
          // If this is the default input device ignore the event,
          // kAudioHardwarePropertyDefaultInputDevice will take care of the switch
          if (stm->input_device.flags & DEV_SYSTEM_DEFAULT) {
            LOG("It's the default input device, ignore the event");
            stm->switching_device = false;
            return noErr;
          }
        }
        break;
      case kAudioDevicePropertyDataSource: {
          LOG("Event[%u] - mSelector == kAudioHardwarePropertyDataSource for id=%d", (unsigned int) i, id);
        }
        break;
      default:
        LOG("Event[%u] - mSelector == Unexpected Event id %d, return", (unsigned int) i, addresses[i].mSelector);
        stm->switching_device = false;
        return noErr;
    }
  }

  // Allow restart to choose the new default
  device_flags_value switch_side = DEV_UNKNOWN;
  if (has_input(stm)) {
    switch_side |= DEV_INPUT;
  }
  if (has_output(stm)) {
    switch_side |= DEV_OUTPUT;
  }

  for (UInt32 i = 0; i < address_count; i++) {
    switch(addresses[i].mSelector) {
    case kAudioHardwarePropertyDefaultOutputDevice:
    case kAudioHardwarePropertyDefaultInputDevice:
    case kAudioDevicePropertyDeviceIsAlive:
      /* fall through */
    case kAudioDevicePropertyDataSource: {
        auto_lock dev_cb_lock(stm->device_changed_callback_lock);
        if (stm->device_changed_callback) {
          stm->device_changed_callback(stm->user_ptr);
        }
        break;
      }
    }
  }

  audiounit_reinit_stream_async(stm, switch_side);

  return noErr;
}

OSStatus
audiounit_add_listener(const property_listener * listener)
{
  assert(listener);
  return AudioObjectAddPropertyListener(listener->device_id,
                                        listener->property_address,
                                        listener->callback,
                                        listener->stream);
}

OSStatus
audiounit_remove_listener(const property_listener * listener)
{
  assert(listener);
  return AudioObjectRemovePropertyListener(listener->device_id,
                                           listener->property_address,
                                           listener->callback,
                                           listener->stream);
}

static int
audiounit_install_device_changed_callback(cubeb_stream * stm)
{
  OSStatus rv;
  int r = CUBEB_OK;

  if (stm->output_unit) {
    /* This event will notify us when the data source on the same device changes,
     * for example when the user plugs in a normal (non-usb) headset in the
     * headphone jack. */
    stm->output_source_listener.reset(new property_listener(
      stm->output_device.id, &OUTPUT_DATA_SOURCE_PROPERTY_ADDRESS,
      &audiounit_property_listener_callback, stm));
    rv = audiounit_add_listener(stm->output_source_listener.get());
    if (rv != noErr) {
      stm->output_source_listener.reset();
      LOG("AudioObjectAddPropertyListener/output/kAudioDevicePropertyDataSource rv=%d, device id=%d", rv, stm->output_device.id);
      r = CUBEB_ERROR;
    }
  }

  if (stm->input_unit) {
    /* This event will notify us when the data source on the input device changes. */
    stm->input_source_listener.reset(new property_listener(
      stm->input_device.id, &INPUT_DATA_SOURCE_PROPERTY_ADDRESS,
      &audiounit_property_listener_callback, stm));
    rv = audiounit_add_listener(stm->input_source_listener.get());
    if (rv != noErr) {
      stm->input_source_listener.reset();
      LOG("AudioObjectAddPropertyListener/input/kAudioDevicePropertyDataSource rv=%d, device id=%d", rv, stm->input_device.id);
      r = CUBEB_ERROR;
    }

    /* Event to notify when the input is going away. */
    stm->input_alive_listener.reset(new property_listener(
      stm->input_device.id, &DEVICE_IS_ALIVE_PROPERTY_ADDRESS,
      &audiounit_property_listener_callback, stm));
    rv = audiounit_add_listener(stm->input_alive_listener.get());
    if (rv != noErr) {
      stm->input_alive_listener.reset();
      LOG("AudioObjectAddPropertyListener/input/kAudioDevicePropertyDeviceIsAlive rv=%d, device id =%d", rv, stm->input_device.id);
      r = CUBEB_ERROR;
    }
  }

  return r;
}

static int
audiounit_install_system_changed_callback(cubeb_stream * stm)
{
  OSStatus r;

  if (stm->output_unit) {
    /* This event will notify us when the default audio device changes,
     * for example when the user plugs in a USB headset and the system chooses it
     * automatically as the default, or when another device is chosen in the
     * dropdown list. */
    stm->default_output_listener.reset(new property_listener(
      kAudioObjectSystemObject, &DEFAULT_OUTPUT_DEVICE_PROPERTY_ADDRESS,
      &audiounit_property_listener_callback, stm));
    r = audiounit_add_listener(stm->default_output_listener.get());
    if (r != noErr) {
      stm->default_output_listener.reset();
      LOG("AudioObjectAddPropertyListener/output/kAudioHardwarePropertyDefaultOutputDevice rv=%d", r);
      return CUBEB_ERROR;
    }
  }

  if (stm->input_unit) {
    /* This event will notify us when the default input device changes. */
    stm->default_input_listener.reset(new property_listener(
      kAudioObjectSystemObject, &DEFAULT_INPUT_DEVICE_PROPERTY_ADDRESS,
      &audiounit_property_listener_callback, stm));
    r = audiounit_add_listener(stm->default_input_listener.get());
    if (r != noErr) {
      stm->default_input_listener.reset();
      LOG("AudioObjectAddPropertyListener/input/kAudioHardwarePropertyDefaultInputDevice rv=%d", r);
      return CUBEB_ERROR;
    }
  }

  return CUBEB_OK;
}

static int
audiounit_uninstall_device_changed_callback(cubeb_stream * stm)
{
  OSStatus rv;
  // Failing to uninstall listeners is not a fatal error.
  int r = CUBEB_OK;

  if (stm->output_source_listener) {
    rv = audiounit_remove_listener(stm->output_source_listener.get());
    if (rv != noErr) {
      LOG("AudioObjectRemovePropertyListener/output/kAudioDevicePropertyDataSource rv=%d, device id=%d", rv, stm->output_device.id);
      r = CUBEB_ERROR;
    }
    stm->output_source_listener.reset();
  }

  if (stm->input_source_listener) {
    rv = audiounit_remove_listener(stm->input_source_listener.get());
    if (rv != noErr) {
      LOG("AudioObjectRemovePropertyListener/input/kAudioDevicePropertyDataSource rv=%d, device id=%d", rv, stm->input_device.id);
      r = CUBEB_ERROR;
    }
    stm->input_source_listener.reset();
  }

  if (stm->input_alive_listener) {
    rv = audiounit_remove_listener(stm->input_alive_listener.get());
    if (rv != noErr) {
      LOG("AudioObjectRemovePropertyListener/input/kAudioDevicePropertyDeviceIsAlive rv=%d, device id=%d", rv, stm->input_device.id);
      r = CUBEB_ERROR;
    }
    stm->input_alive_listener.reset();
  }

  return r;
}

static int
audiounit_uninstall_system_changed_callback(cubeb_stream * stm)
{
  OSStatus r;

  if (stm->default_output_listener) {
    r = audiounit_remove_listener(stm->default_output_listener.get());
    if (r != noErr) {
      return CUBEB_ERROR;
    }
    stm->default_output_listener.reset();
  }

  if (stm->default_input_listener) {
    r = audiounit_remove_listener(stm->default_input_listener.get());
    if (r != noErr) {
      return CUBEB_ERROR;
    }
    stm->default_input_listener.reset();
  }
  return CUBEB_OK;
}

/* Get the acceptable buffer size (in frames) that this device can work with. */
static int
audiounit_get_acceptable_latency_range(AudioValueRange * latency_range)
{
  UInt32 size;
  OSStatus r;
  AudioDeviceID output_device_id;
  AudioObjectPropertyAddress output_device_buffer_size_range = {
    kAudioDevicePropertyBufferFrameSizeRange,
    kAudioDevicePropertyScopeOutput,
    kAudioObjectPropertyElementMaster
  };

  output_device_id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
  if (output_device_id == kAudioObjectUnknown) {
    LOG("Could not get default output device id.");
    return CUBEB_ERROR;
  }

  /* Get the buffer size range this device supports */
  size = sizeof(*latency_range);

  r = AudioObjectGetPropertyData(output_device_id,
                                 &output_device_buffer_size_range,
                                 0,
                                 NULL,
                                 &size,
                                 latency_range);
  if (r != noErr) {
    LOG("AudioObjectGetPropertyData/buffer size range rv=%d", r);
    return CUBEB_ERROR;
  }

  return CUBEB_OK;
}
#endif /* !TARGET_OS_IPHONE */

static AudioObjectID
audiounit_get_default_device_id(cubeb_device_type type)
{
  const AudioObjectPropertyAddress * adr;
  if (type == CUBEB_DEVICE_TYPE_OUTPUT) {
    adr = &DEFAULT_OUTPUT_DEVICE_PROPERTY_ADDRESS;
  } else if (type == CUBEB_DEVICE_TYPE_INPUT) {
    adr = &DEFAULT_INPUT_DEVICE_PROPERTY_ADDRESS;
  } else {
    return kAudioObjectUnknown;
  }

  AudioDeviceID devid;
  UInt32 size = sizeof(AudioDeviceID);
  if (AudioObjectGetPropertyData(kAudioObjectSystemObject,
                                 adr, 0, NULL, &size, &devid) != noErr) {
    return kAudioObjectUnknown;
  }

  return devid;
}

int
audiounit_get_max_channel_count(cubeb * ctx, uint32_t * max_channels)
{
#if TARGET_OS_IPHONE
  //TODO: [[AVAudioSession sharedInstance] maximumOutputNumberOfChannels]
  *max_channels = 2;
#else
  UInt32 size;
  OSStatus r;
  AudioDeviceID output_device_id;
  AudioStreamBasicDescription stream_format;
  AudioObjectPropertyAddress stream_format_address = {
    kAudioDevicePropertyStreamFormat,
    kAudioDevicePropertyScopeOutput,
    kAudioObjectPropertyElementMaster
  };

  assert(ctx && max_channels);

  output_device_id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
  if (output_device_id == kAudioObjectUnknown) {
    return CUBEB_ERROR;
  }

  size = sizeof(stream_format);

  r = AudioObjectGetPropertyData(output_device_id,
                                 &stream_format_address,
                                 0,
                                 NULL,
                                 &size,
                                 &stream_format);
  if (r != noErr) {
    LOG("AudioObjectPropertyAddress/StreamFormat rv=%d", r);
    return CUBEB_ERROR;
  }

  *max_channels = stream_format.mChannelsPerFrame;
#endif
  return CUBEB_OK;
}

static int
audiounit_get_min_latency(cubeb * /* ctx */,
                          cubeb_stream_params /* params */,
                          uint32_t * latency_frames)
{
#if TARGET_OS_IPHONE
  //TODO: [[AVAudioSession sharedInstance] inputLatency]
  return CUBEB_ERROR_NOT_SUPPORTED;
#else
  AudioValueRange latency_range;
  if (audiounit_get_acceptable_latency_range(&latency_range) != CUBEB_OK) {
    LOG("Could not get acceptable latency range.");
    return CUBEB_ERROR;
  }

  *latency_frames = max<uint32_t>(latency_range.mMinimum,
                                       SAFE_MIN_LATENCY_FRAMES);
#endif

  return CUBEB_OK;
}

static int
audiounit_get_preferred_sample_rate(cubeb * /* ctx */, uint32_t * rate)
{
#if TARGET_OS_IPHONE
  //TODO
  return CUBEB_ERROR_NOT_SUPPORTED;
#else
  UInt32 size;
  OSStatus r;
  Float64 fsamplerate;
  AudioDeviceID output_device_id;
  AudioObjectPropertyAddress samplerate_address = {
    kAudioDevicePropertyNominalSampleRate,
    kAudioObjectPropertyScopeGlobal,
    kAudioObjectPropertyElementMaster
  };

  output_device_id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
  if (output_device_id == kAudioObjectUnknown) {
    return CUBEB_ERROR;
  }

  size = sizeof(fsamplerate);
  r = AudioObjectGetPropertyData(output_device_id,
                                 &samplerate_address,
                                 0,
                                 NULL,
                                 &size,
                                 &fsamplerate);

  if (r != noErr) {
    return CUBEB_ERROR;
  }

  *rate = static_cast<uint32_t>(fsamplerate);
#endif
  return CUBEB_OK;
}

static cubeb_channel_layout
audiounit_convert_channel_layout(AudioChannelLayout * layout)
{
  // When having on or two channel, force mono or stereo. Some devices (namely,
  //  Bose QC35, mark 1 and 2), expose a single channel mapped to the right for
  //  some reason.
  if (layout->mNumberChannelDescriptions == 1) {
    return CUBEB_LAYOUT_MONO;
  } else if (layout->mNumberChannelDescriptions == 2) {
    return CUBEB_LAYOUT_STEREO;
  }

  if (layout->mChannelLayoutTag != kAudioChannelLayoutTag_UseChannelDescriptions) {
    // kAudioChannelLayoutTag_UseChannelBitmap
    // kAudioChannelLayoutTag_Mono
    // kAudioChannelLayoutTag_Stereo
    // ....
    LOG("Only handle UseChannelDescriptions for now.\n");
    return CUBEB_LAYOUT_UNDEFINED;
  }

  cubeb_channel_layout cl = 0;
  for (UInt32 i = 0; i < layout->mNumberChannelDescriptions; ++i) {
    cubeb_channel cc = channel_label_to_cubeb_channel(
      layout->mChannelDescriptions[i].mChannelLabel);
    if (cc == CHANNEL_UNKNOWN) {
      return CUBEB_LAYOUT_UNDEFINED;
    }
    cl |= cc;
  }

  return cl;
}

static cubeb_channel_layout
audiounit_get_preferred_channel_layout(AudioUnit output_unit)
{
  OSStatus rv = noErr;
  UInt32 size = 0;
  rv = AudioUnitGetPropertyInfo(output_unit,
                                kAudioDevicePropertyPreferredChannelLayout,
                                kAudioUnitScope_Output,
                                AU_OUT_BUS,
                                &size,
                                nullptr);
  if (rv != noErr) {
    LOG("AudioUnitGetPropertyInfo/kAudioDevicePropertyPreferredChannelLayout rv=%d", rv);
    return CUBEB_LAYOUT_UNDEFINED;
  }
  assert(size > 0);

  auto layout = make_sized_audio_channel_layout(size);
  rv = AudioUnitGetProperty(output_unit,
                            kAudioDevicePropertyPreferredChannelLayout,
                            kAudioUnitScope_Output,
                            AU_OUT_BUS,
                            layout.get(),
                            &size);
  if (rv != noErr) {
    LOG("AudioUnitGetProperty/kAudioDevicePropertyPreferredChannelLayout rv=%d", rv);
    return CUBEB_LAYOUT_UNDEFINED;
  }

  return audiounit_convert_channel_layout(layout.get());
}

static cubeb_channel_layout
audiounit_get_current_channel_layout(AudioUnit output_unit)
{
  OSStatus rv = noErr;
  UInt32 size = 0;
  rv = AudioUnitGetPropertyInfo(output_unit,
                                kAudioUnitProperty_AudioChannelLayout,
                                kAudioUnitScope_Output,
                                AU_OUT_BUS,
                                &size,
                                nullptr);
  if (rv != noErr) {
    LOG("AudioUnitGetPropertyInfo/kAudioUnitProperty_AudioChannelLayout rv=%d", rv);
    // This property isn't known before macOS 10.12, attempt another method.
    return audiounit_get_preferred_channel_layout(output_unit);
  }
  assert(size > 0);

  auto layout = make_sized_audio_channel_layout(size);
  rv = AudioUnitGetProperty(output_unit,
                            kAudioUnitProperty_AudioChannelLayout,
                            kAudioUnitScope_Output,
                            AU_OUT_BUS,
                            layout.get(),
                            &size);
  if (rv != noErr) {
    LOG("AudioUnitGetProperty/kAudioUnitProperty_AudioChannelLayout rv=%d", rv);
    return CUBEB_LAYOUT_UNDEFINED;
  }

  return audiounit_convert_channel_layout(layout.get());
}

static int audiounit_create_unit(AudioUnit * unit, device_info * device);

static OSStatus audiounit_remove_device_listener(cubeb * context);

static void
audiounit_destroy(cubeb * ctx)
{
  {
    auto_lock lock(ctx->mutex);

    // Disabling this assert for bug 1083664 -- we seem to leak a stream
    // assert(ctx->active_streams == 0);
    if (audiounit_active_streams(ctx) > 0) {
      LOG("(%p) API misuse, %d streams active when context destroyed!", ctx, audiounit_active_streams(ctx));
    }

    /* Unregister the callback if necessary. */
    if (ctx->collection_changed_callback) {
      audiounit_remove_device_listener(ctx);
    }
  }

  delete ctx;
}

static void audiounit_stream_destroy(cubeb_stream * stm);

static int
audio_stream_desc_init(AudioStreamBasicDescription * ss,
                       const cubeb_stream_params * stream_params)
{
  switch (stream_params->format) {
  case CUBEB_SAMPLE_S16LE:
    ss->mBitsPerChannel = 16;
    ss->mFormatFlags = kAudioFormatFlagIsSignedInteger;
    break;
  case CUBEB_SAMPLE_S16BE:
    ss->mBitsPerChannel = 16;
    ss->mFormatFlags = kAudioFormatFlagIsSignedInteger |
      kAudioFormatFlagIsBigEndian;
    break;
  case CUBEB_SAMPLE_FLOAT32LE:
    ss->mBitsPerChannel = 32;
    ss->mFormatFlags = kAudioFormatFlagIsFloat;
    break;
  case CUBEB_SAMPLE_FLOAT32BE:
    ss->mBitsPerChannel = 32;
    ss->mFormatFlags = kAudioFormatFlagIsFloat |
      kAudioFormatFlagIsBigEndian;
    break;
  default:
    return CUBEB_ERROR_INVALID_FORMAT;
  }

  ss->mFormatID = kAudioFormatLinearPCM;
  ss->mFormatFlags |= kLinearPCMFormatFlagIsPacked;
  ss->mSampleRate = stream_params->rate;
  ss->mChannelsPerFrame = stream_params->channels;

  ss->mBytesPerFrame = (ss->mBitsPerChannel / 8) * ss->mChannelsPerFrame;
  ss->mFramesPerPacket = 1;
  ss->mBytesPerPacket = ss->mBytesPerFrame * ss->mFramesPerPacket;

  ss->mReserved = 0;

  return CUBEB_OK;
}

void
audiounit_init_mixer(cubeb_stream * stm)
{
  // We can't rely on macOS' AudioUnit to properly downmix (or upmix) the audio
  // data, it silently drop the channels so we need to remix the
  // audio data by ourselves to keep all the information.
  stm->mixer.reset(cubeb_mixer_create(stm->output_stream_params.format,
                                      stm->output_stream_params.channels,
                                      stm->output_stream_params.layout,
                                      stm->context->channels,
                                      stm->context->layout));
  assert(stm->mixer);
}

static int
audiounit_set_channel_layout(AudioUnit unit,
                             io_side side,
                             cubeb_channel_layout layout)
{
  if (side != OUTPUT) {
    return CUBEB_ERROR;
  }

  if (layout == CUBEB_LAYOUT_UNDEFINED) {
    // We leave everything as-is...
    return CUBEB_OK;
  }


  OSStatus r;
  uint32_t nb_channels = cubeb_channel_layout_nb_channels(layout);

  // We do not use CoreAudio standard layout for lack of documentation on what
  // the actual channel orders are. So we set a custom layout.
  size_t size = offsetof(AudioChannelLayout, mChannelDescriptions[nb_channels]);
  auto au_layout = make_sized_audio_channel_layout(size);
  au_layout->mChannelLayoutTag = kAudioChannelLayoutTag_UseChannelDescriptions;
  au_layout->mNumberChannelDescriptions = nb_channels;

  uint32_t channels = 0;
  cubeb_channel_layout channelMap = layout;
  for (uint32_t i = 0; channelMap != 0; ++i) {
    XASSERT(channels < nb_channels);
    uint32_t channel = (channelMap & 1) << i;
    if (channel != 0) {
      au_layout->mChannelDescriptions[channels].mChannelLabel =
        cubeb_channel_to_channel_label(static_cast<cubeb_channel>(channel));
      au_layout->mChannelDescriptions[channels].mChannelFlags = kAudioChannelFlags_AllOff;
      channels++;
    }
    channelMap = channelMap >> 1;
  }

  r = AudioUnitSetProperty(unit,
                           kAudioUnitProperty_AudioChannelLayout,
                           kAudioUnitScope_Input,
                           AU_OUT_BUS,
                           au_layout.get(),
                           size);
  if (r != noErr) {
    LOG("AudioUnitSetProperty/%s/kAudioUnitProperty_AudioChannelLayout rv=%d", to_string(side), r);
    return CUBEB_ERROR;
  }

  return CUBEB_OK;
}

void
audiounit_layout_init(cubeb_stream * stm, io_side side)
{
  // We currently don't support the input layout setting.
  if (side == INPUT) {
    return;
  }

  stm->context->layout = audiounit_get_current_channel_layout(stm->output_unit);

  audiounit_set_channel_layout(stm->output_unit, OUTPUT, stm->context->layout);
}

static vector<AudioObjectID>
audiounit_get_sub_devices(AudioDeviceID device_id)
{
  vector<AudioDeviceID> sub_devices;
  AudioObjectPropertyAddress property_address = { kAudioAggregateDevicePropertyActiveSubDeviceList,
                                                  kAudioObjectPropertyScopeGlobal,
                                                  kAudioObjectPropertyElementMaster };
  UInt32 size = 0;
  OSStatus rv = AudioObjectGetPropertyDataSize(device_id,
                                               &property_address,
                                               0,
                                               nullptr,
                                               &size);

  if (rv != noErr) {
    sub_devices.push_back(device_id);
    return sub_devices;
  }

  uint32_t count = static_cast<uint32_t>(size / sizeof(AudioObjectID));
  sub_devices.resize(count);
  rv = AudioObjectGetPropertyData(device_id,
                                  &property_address,
                                  0,
                                  nullptr,
                                  &size,
                                  sub_devices.data());
  if (rv != noErr) {
    sub_devices.clear();
    sub_devices.push_back(device_id);
  } else {
    LOG("Found %u sub-devices", count);
  }
  return sub_devices;
}

static int
audiounit_create_blank_aggregate_device(AudioObjectID * plugin_id, AudioDeviceID * aggregate_device_id)
{
  AudioObjectPropertyAddress address_plugin_bundle_id = { kAudioHardwarePropertyPlugInForBundleID,
                                                          kAudioObjectPropertyScopeGlobal,
                                                          kAudioObjectPropertyElementMaster };
  UInt32 size = 0;
  OSStatus r = AudioObjectGetPropertyDataSize(kAudioObjectSystemObject,
                                              &address_plugin_bundle_id,
                                              0, NULL,
                                              &size);
  if (r != noErr) {
    LOG("AudioHardwareGetPropertyInfo/kAudioHardwarePropertyPlugInForBundleID, rv=%d", r);
    return CUBEB_ERROR;
  }

  AudioValueTranslation translation_value;
  CFStringRef in_bundle_ref = CFSTR("com.apple.audio.CoreAudio");
  translation_value.mInputData = &in_bundle_ref;
  translation_value.mInputDataSize = sizeof(in_bundle_ref);
  translation_value.mOutputData = plugin_id;
  translation_value.mOutputDataSize = sizeof(*plugin_id);

  r = AudioObjectGetPropertyData(kAudioObjectSystemObject,
                                 &address_plugin_bundle_id,
                                 0,
                                 nullptr,
                                 &size,
                                 &translation_value);
  if (r != noErr) {
    LOG("AudioHardwareGetProperty/kAudioHardwarePropertyPlugInForBundleID, rv=%d", r);
    return CUBEB_ERROR;
  }

  AudioObjectPropertyAddress create_aggregate_device_address = { kAudioPlugInCreateAggregateDevice,
                                                                 kAudioObjectPropertyScopeGlobal,
                                                                 kAudioObjectPropertyElementMaster };
  r = AudioObjectGetPropertyDataSize(*plugin_id,
                                     &create_aggregate_device_address,
                                     0,
                                     nullptr,
                                     &size);
  if (r != noErr) {
    LOG("AudioObjectGetPropertyDataSize/kAudioPlugInCreateAggregateDevice, rv=%d", r);
    return CUBEB_ERROR;
  }

  CFMutableDictionaryRef aggregate_device_dict = CFDictionaryCreateMutable(kCFAllocatorDefault, 0,
                                                                           &kCFTypeDictionaryKeyCallBacks,
                                                                           &kCFTypeDictionaryValueCallBacks);
  struct timeval timestamp;
  gettimeofday(&timestamp, NULL);
  long long int time_id = timestamp.tv_sec * 1000000LL + timestamp.tv_usec;
  CFStringRef aggregate_device_name = CFStringCreateWithFormat(NULL, NULL, CFSTR("%s_%llx"), PRIVATE_AGGREGATE_DEVICE_NAME, time_id);
  CFDictionaryAddValue(aggregate_device_dict, CFSTR(kAudioAggregateDeviceNameKey), aggregate_device_name);
  CFRelease(aggregate_device_name);

  CFStringRef aggregate_device_UID = CFStringCreateWithFormat(NULL, NULL, CFSTR("org.mozilla.%s_%llx"), PRIVATE_AGGREGATE_DEVICE_NAME, time_id);
  CFDictionaryAddValue(aggregate_device_dict, CFSTR(kAudioAggregateDeviceUIDKey), aggregate_device_UID);
  CFRelease(aggregate_device_UID);

  int private_value = 1;
  CFNumberRef aggregate_device_private_key = CFNumberCreate(kCFAllocatorDefault, kCFNumberIntType, &private_value);
  CFDictionaryAddValue(aggregate_device_dict, CFSTR(kAudioAggregateDeviceIsPrivateKey), aggregate_device_private_key);
  CFRelease(aggregate_device_private_key);

  int stacked_value = 0;
  CFNumberRef aggregate_device_stacked_key = CFNumberCreate(kCFAllocatorDefault, kCFNumberIntType, &stacked_value);
  CFDictionaryAddValue(aggregate_device_dict, CFSTR(kAudioAggregateDeviceIsStackedKey), aggregate_device_stacked_key);
  CFRelease(aggregate_device_stacked_key);

  r = AudioObjectGetPropertyData(*plugin_id,
                                 &create_aggregate_device_address,
                                 sizeof(aggregate_device_dict),
                                 &aggregate_device_dict,
                                 &size,
                                 aggregate_device_id);
  CFRelease(aggregate_device_dict);
  if (r != noErr) {
    LOG("AudioObjectGetPropertyData/kAudioPlugInCreateAggregateDevice, rv=%d", r);
    return CUBEB_ERROR;
  }
  LOG("New aggregate device %u", *aggregate_device_id);

  return CUBEB_OK;
}

static CFStringRef
get_device_name(AudioDeviceID id)
{
  UInt32 size = sizeof(CFStringRef);
  CFStringRef UIname = nullptr;
  AudioObjectPropertyAddress address_uuid = { kAudioDevicePropertyDeviceUID,
                                              kAudioObjectPropertyScopeGlobal,
                                              kAudioObjectPropertyElementMaster };
  OSStatus err = AudioObjectGetPropertyData(id, &address_uuid, 0, nullptr, &size, &UIname);
  return (err == noErr) ? UIname : NULL;
}

static int
audiounit_set_aggregate_sub_device_list(AudioDeviceID aggregate_device_id,
                                        AudioDeviceID input_device_id,
                                        AudioDeviceID output_device_id)
{
  LOG("Add devices input %u and output %u into aggregate device %u",
      input_device_id, output_device_id, aggregate_device_id);
  const vector<AudioDeviceID> output_sub_devices = audiounit_get_sub_devices(output_device_id);
  const vector<AudioDeviceID> input_sub_devices = audiounit_get_sub_devices(input_device_id);

  CFMutableArrayRef aggregate_sub_devices_array = CFArrayCreateMutable(NULL, 0, &kCFTypeArrayCallBacks);
  /* The order of the items in the array is significant and is used to determine the order of the streams
     of the AudioAggregateDevice. */
  for (UInt32 i = 0; i < output_sub_devices.size(); i++) {
    CFStringRef ref = get_device_name(output_sub_devices[i]);
    if (ref == NULL) {
      CFRelease(aggregate_sub_devices_array);
      return CUBEB_ERROR;
    }
    CFArrayAppendValue(aggregate_sub_devices_array, ref);
  }
  for (UInt32 i = 0; i < input_sub_devices.size(); i++) {
    CFStringRef ref = get_device_name(input_sub_devices[i]);
    if (ref == NULL) {
      CFRelease(aggregate_sub_devices_array);
      return CUBEB_ERROR;
    }
    CFArrayAppendValue(aggregate_sub_devices_array, ref);
  }

  AudioObjectPropertyAddress aggregate_sub_device_list = { kAudioAggregateDevicePropertyFullSubDeviceList,
                                                           kAudioObjectPropertyScopeGlobal,
                                                           kAudioObjectPropertyElementMaster };
  UInt32 size = sizeof(CFMutableArrayRef);
  OSStatus rv = AudioObjectSetPropertyData(aggregate_device_id,
                                           &aggregate_sub_device_list,
                                           0,
                                           nullptr,
                                           size,
                                           &aggregate_sub_devices_array);
  CFRelease(aggregate_sub_devices_array);
  if (rv != noErr) {
    LOG("AudioObjectSetPropertyData/kAudioAggregateDevicePropertyFullSubDeviceList, rv=%d", rv);
    return CUBEB_ERROR;
  }

  return CUBEB_OK;
}

static int
audiounit_set_master_aggregate_device(const AudioDeviceID aggregate_device_id)
{
  assert(aggregate_device_id);
  AudioObjectPropertyAddress master_aggregate_sub_device =  { kAudioAggregateDevicePropertyMasterSubDevice,
                                                              kAudioObjectPropertyScopeGlobal,
                                                              kAudioObjectPropertyElementMaster };

  // Master become the 1st output sub device
  AudioDeviceID output_device_id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
  const vector<AudioDeviceID> output_sub_devices = audiounit_get_sub_devices(output_device_id);
  CFStringRef master_sub_device = get_device_name(output_sub_devices[0]);

  UInt32 size = sizeof(CFStringRef);
  OSStatus rv = AudioObjectSetPropertyData(aggregate_device_id,
                                           &master_aggregate_sub_device,
                                           0,
                                           NULL,
                                           size,
                                           &master_sub_device);
  if (rv != noErr) {
    LOG("AudioObjectSetPropertyData/kAudioAggregateDevicePropertyMasterSubDevice, rv=%d", rv);
    return CUBEB_ERROR;
  }

  return CUBEB_OK;
}

static int
audiounit_activate_clock_drift_compensation(const AudioDeviceID aggregate_device_id)
{
  assert(aggregate_device_id);
  AudioObjectPropertyAddress address_owned = { kAudioObjectPropertyOwnedObjects,
                                               kAudioObjectPropertyScopeGlobal,
                                               kAudioObjectPropertyElementMaster };

  UInt32 qualifier_data_size = sizeof(AudioObjectID);
  AudioClassID class_id = kAudioSubDeviceClassID;
  void * qualifier_data = &class_id;
  UInt32 size = 0;
  OSStatus rv = AudioObjectGetPropertyDataSize(aggregate_device_id,
                                               &address_owned,
                                               qualifier_data_size,
                                               qualifier_data,
                                               &size);
  if (rv != noErr) {
    LOG("AudioObjectGetPropertyDataSize/kAudioObjectPropertyOwnedObjects, rv=%d", rv);
    return CUBEB_ERROR;
  }

  UInt32 subdevices_num = 0;
  subdevices_num = size / sizeof(AudioObjectID);
  AudioObjectID sub_devices[subdevices_num];
  size = sizeof(sub_devices);

  rv = AudioObjectGetPropertyData(aggregate_device_id,
                                  &address_owned,
                                  qualifier_data_size,
                                  qualifier_data,
                                  &size,
                                  sub_devices);
  if (rv != noErr) {
    LOG("AudioObjectGetPropertyData/kAudioObjectPropertyOwnedObjects, rv=%d", rv);
    return CUBEB_ERROR;
  }

  AudioObjectPropertyAddress address_drift = { kAudioSubDevicePropertyDriftCompensation,
                                               kAudioObjectPropertyScopeGlobal,
                                               kAudioObjectPropertyElementMaster };

  // Start from the second device since the first is the master clock
  for (UInt32 i = 1; i < subdevices_num; ++i) {
    UInt32 drift_compensation_value = 1;
    rv = AudioObjectSetPropertyData(sub_devices[i],
                                    &address_drift,
                                    0,
                                    nullptr,
                                    sizeof(UInt32),
                                    &drift_compensation_value);
    if (rv != noErr) {
      LOG("AudioObjectSetPropertyData/kAudioSubDevicePropertyDriftCompensation, rv=%d", rv);
      return CUBEB_OK;
    }
  }
  return CUBEB_OK;
}

static int audiounit_destroy_aggregate_device(AudioObjectID plugin_id, AudioDeviceID * aggregate_device_id);
static void audiounit_get_available_samplerate(AudioObjectID devid, AudioObjectPropertyScope scope,
                                   uint32_t * min, uint32_t * max, uint32_t * def);
static int
audiounit_create_device_from_hwdev(cubeb_device_info * dev_info, AudioObjectID devid, cubeb_device_type type);

static void
audiounit_workaround_for_airpod(cubeb_stream * stm)
{
  cubeb_device_info input_device_info;
  audiounit_create_device_from_hwdev(&input_device_info, stm->input_device.id, CUBEB_DEVICE_TYPE_INPUT);

  cubeb_device_info output_device_info;
  audiounit_create_device_from_hwdev(&output_device_info, stm->output_device.id, CUBEB_DEVICE_TYPE_OUTPUT);

  std::string input_name_str(input_device_info.friendly_name);
  std::string output_name_str(output_device_info.friendly_name);

  if( input_name_str.find("AirPods") != std::string::npos
    && output_name_str.find("AirPods") != std::string::npos ) {
    uint32_t input_min_rate = 0;
    uint32_t input_max_rate = 0;
    uint32_t input_nominal_rate = 0;
    audiounit_get_available_samplerate(stm->input_device.id, kAudioObjectPropertyScopeGlobal,
                                       &input_min_rate, &input_max_rate, &input_nominal_rate);
    LOG("(%p) Input device %u, name: %s, min: %u, max: %u, nominal rate: %u", stm, stm->input_device.id
    , input_device_info.friendly_name, input_min_rate, input_max_rate, input_nominal_rate);
    uint32_t output_min_rate = 0;
    uint32_t output_max_rate = 0;
    uint32_t output_nominal_rate = 0;
    audiounit_get_available_samplerate(stm->output_device.id, kAudioObjectPropertyScopeGlobal,
                                       &output_min_rate, &output_max_rate, &output_nominal_rate);
    LOG("(%p) Output device %u, name: %s, min: %u, max: %u, nominal rate: %u", stm, stm->output_device.id
    , output_device_info.friendly_name, output_min_rate, output_max_rate, output_nominal_rate);

    Float64 rate = input_nominal_rate;
    AudioObjectPropertyAddress addr = {kAudioDevicePropertyNominalSampleRate,
                                       kAudioObjectPropertyScopeGlobal,
                                       kAudioObjectPropertyElementMaster};

    OSStatus rv = AudioObjectSetPropertyData(stm->aggregate_device_id,
                                             &addr,
                                             0,
                                             nullptr,
                                             sizeof(Float64),
                                             &rate);
    if (rv != noErr) {
      LOG("Non fatal error, AudioObjectSetPropertyData/kAudioDevicePropertyNominalSampleRate, rv=%d", rv);
    }
  }
}

/*
 * Aggregate Device is a virtual audio interface which utilizes inputs and outputs
 * of one or more physical audio interfaces. It is possible to use the clock of
 * one of the devices as a master clock for all the combined devices and enable
 * drift compensation for the devices that are not designated clock master.
 *
 * Creating a new aggregate device programmatically requires [0][1]:
 * 1. Locate the base plug-in ("com.apple.audio.CoreAudio")
 * 2. Create a dictionary that describes the aggregate device
 *    (don't add sub-devices in that step, prone to fail [0])
 * 3. Ask the base plug-in to create the aggregate device (blank)
 * 4. Add the array of sub-devices.
 * 5. Set the master device (1st output device in our case)
 * 6. Enable drift compensation for the non-master devices
 *
 * [0] https://lists.apple.com/archives/coreaudio-api/2006/Apr/msg00092.html
 * [1] https://lists.apple.com/archives/coreaudio-api/2005/Jul/msg00150.html
 * [2] CoreAudio.framework/Headers/AudioHardware.h
 * */
static int
audiounit_create_aggregate_device(cubeb_stream * stm)
{
  int r = audiounit_create_blank_aggregate_device(&stm->plugin_id, &stm->aggregate_device_id);
  if (r != CUBEB_OK) {
    LOG("(%p) Failed to create blank aggregate device", stm);
    return CUBEB_ERROR;
  }

  r = audiounit_set_aggregate_sub_device_list(stm->aggregate_device_id, stm->input_device.id, stm->output_device.id);
  if (r != CUBEB_OK) {
    LOG("(%p) Failed to set aggregate sub-device list", stm);
    audiounit_destroy_aggregate_device(stm->plugin_id, &stm->aggregate_device_id);
    return CUBEB_ERROR;
  }

  r = audiounit_set_master_aggregate_device(stm->aggregate_device_id);
  if (r != CUBEB_OK) {
    LOG("(%p) Failed to set master sub-device for aggregate device", stm);
    audiounit_destroy_aggregate_device(stm->plugin_id, &stm->aggregate_device_id);
    return  CUBEB_ERROR;
  }

  r = audiounit_activate_clock_drift_compensation(stm->aggregate_device_id);
  if (r != CUBEB_OK) {
    LOG("(%p) Failed to activate clock drift compensation for aggregate device", stm);
    audiounit_destroy_aggregate_device(stm->plugin_id, &stm->aggregate_device_id);
    return  CUBEB_ERROR;
  }

  audiounit_workaround_for_airpod(stm);

  return CUBEB_OK;
}

static int
audiounit_destroy_aggregate_device(AudioObjectID plugin_id, AudioDeviceID * aggregate_device_id)
{
  assert(aggregate_device_id &&
         *aggregate_device_id != kAudioDeviceUnknown &&
         plugin_id != kAudioObjectUnknown);
  AudioObjectPropertyAddress destroy_aggregate_device_addr = { kAudioPlugInDestroyAggregateDevice,
                                                               kAudioObjectPropertyScopeGlobal,
                                                               kAudioObjectPropertyElementMaster};
  UInt32 size;
  OSStatus rv = AudioObjectGetPropertyDataSize(plugin_id,
                                               &destroy_aggregate_device_addr,
                                               0,
                                               NULL,
                                               &size);
  if (rv != noErr) {
    LOG("AudioObjectGetPropertyDataSize/kAudioPlugInDestroyAggregateDevice, rv=%d", rv);
    return CUBEB_ERROR;
  }

  rv = AudioObjectGetPropertyData(plugin_id,
                                  &destroy_aggregate_device_addr,
                                  0,
                                  NULL,
                                  &size,
                                  aggregate_device_id);
  if (rv != noErr) {
    LOG("AudioObjectGetPropertyData/kAudioPlugInDestroyAggregateDevice, rv=%d", rv);
    return CUBEB_ERROR;
  }

  LOG("Destroyed aggregate device %d", *aggregate_device_id);
  *aggregate_device_id = 0;
  return CUBEB_OK;
}

static int
audiounit_new_unit_instance(AudioUnit * unit, device_info * device)
{
  AudioComponentDescription desc;
  AudioComponent comp;
  OSStatus rv;

  desc.componentType = kAudioUnitType_Output;
#if TARGET_OS_IPHONE
  desc.componentSubType = kAudioUnitSubType_RemoteIO;
#else
  // Use the DefaultOutputUnit for output when no device is specified
  // so we retain automatic output device switching when the default
  // changes.  Once we have complete support for device notifications
  // and switching, we can use the AUHAL for everything.
  if ((device->flags & DEV_SYSTEM_DEFAULT)
      && (device->flags & DEV_OUTPUT)) {
    desc.componentSubType = kAudioUnitSubType_DefaultOutput;
  } else {
    desc.componentSubType = kAudioUnitSubType_HALOutput;
  }
#endif
  desc.componentManufacturer = kAudioUnitManufacturer_Apple;
  desc.componentFlags = 0;
  desc.componentFlagsMask = 0;
  comp = AudioComponentFindNext(NULL, &desc);
  if (comp == NULL) {
    LOG("Could not find matching audio hardware.");
    return CUBEB_ERROR;
  }

  rv = AudioComponentInstanceNew(comp, unit);
  if (rv != noErr) {
    LOG("AudioComponentInstanceNew rv=%d", rv);
    return CUBEB_ERROR;
  }
  return CUBEB_OK;
}

enum enable_state {
  DISABLE,
  ENABLE,
};

static int
audiounit_enable_unit_scope(AudioUnit * unit, io_side side, enable_state state)
{
  OSStatus rv;
  UInt32 enable = state;
  rv = AudioUnitSetProperty(*unit, kAudioOutputUnitProperty_EnableIO,
                            (side == INPUT) ? kAudioUnitScope_Input : kAudioUnitScope_Output,
                            (side == INPUT) ? AU_IN_BUS : AU_OUT_BUS,
                            &enable,
                            sizeof(UInt32));
  if (rv != noErr) {
    LOG("AudioUnitSetProperty/kAudioOutputUnitProperty_EnableIO rv=%d", rv);
    return CUBEB_ERROR;
  }
  return CUBEB_OK;
}

static int
audiounit_create_unit(AudioUnit * unit, device_info * device)
{
  assert(*unit == nullptr);
  assert(device);

  OSStatus rv;
  int r;

  r = audiounit_new_unit_instance(unit, device);
  if (r != CUBEB_OK) {
    return r;
  }
  assert(*unit);

  if ((device->flags & DEV_SYSTEM_DEFAULT)
      && (device->flags & DEV_OUTPUT)) {
    return CUBEB_OK;
  }


  if (device->flags & DEV_INPUT) {
    r = audiounit_enable_unit_scope(unit, INPUT, ENABLE);
    if (r != CUBEB_OK) {
      LOG("Failed to enable audiounit input scope ");
      return r;
    }
    r = audiounit_enable_unit_scope(unit, OUTPUT, DISABLE);
    if (r != CUBEB_OK) {
      LOG("Failed to disable audiounit output scope ");
      return r;
    }
  } else if (device->flags & DEV_OUTPUT) {
    r = audiounit_enable_unit_scope(unit, OUTPUT, ENABLE);
    if (r != CUBEB_OK) {
      LOG("Failed to enable audiounit output scope ");
      return r;
    }
    r = audiounit_enable_unit_scope(unit, INPUT, DISABLE);
    if (r != CUBEB_OK) {
      LOG("Failed to disable audiounit input scope ");
      return r;
    }
  } else {
    assert(false);
  }

  rv = AudioUnitSetProperty(*unit,
                            kAudioOutputUnitProperty_CurrentDevice,
                            kAudioUnitScope_Global,
                            0,
                            &device->id, sizeof(AudioDeviceID));
  if (rv != noErr) {
    LOG("AudioUnitSetProperty/kAudioOutputUnitProperty_CurrentDevice rv=%d", rv);
    return CUBEB_ERROR;
  }

  return CUBEB_OK;
}

static int
audiounit_init_input_linear_buffer(cubeb_stream * stream, uint32_t capacity)
{
  uint32_t size = capacity * stream->latency_frames * stream->input_desc.mChannelsPerFrame;
  if (stream->input_desc.mFormatFlags & kAudioFormatFlagIsSignedInteger) {
    stream->input_linear_buffer.reset(new auto_array_wrapper_impl<short>(size));
  } else {
    stream->input_linear_buffer.reset(new auto_array_wrapper_impl<float>(size));
  }
  assert(stream->input_linear_buffer->length() == 0);
  stream->available_input_frames = 0;

  return CUBEB_OK;
}

static uint32_t
audiounit_clamp_latency(cubeb_stream * stm, uint32_t latency_frames)
{
  // For the 1st stream set anything within safe min-max
  assert(audiounit_active_streams(stm->context) > 0);
  if (audiounit_active_streams(stm->context) == 1) {
    return max(min<uint32_t>(latency_frames, SAFE_MAX_LATENCY_FRAMES),
                    SAFE_MIN_LATENCY_FRAMES);
  }
  assert(stm->output_unit);

  // If more than one stream operates in parallel
  // allow only lower values of latency
  int r;
  UInt32 output_buffer_size = 0;
  UInt32 size = sizeof(output_buffer_size);
  if (stm->output_unit) {
    r = AudioUnitGetProperty(stm->output_unit,
                            kAudioDevicePropertyBufferFrameSize,
                            kAudioUnitScope_Output,
                            AU_OUT_BUS,
                            &output_buffer_size,
                            &size);
    if (r != noErr) {
      LOG("AudioUnitGetProperty/output/kAudioDevicePropertyBufferFrameSize rv=%d", r);
      return 0;
    }

    output_buffer_size = max(min<uint32_t>(output_buffer_size, SAFE_MAX_LATENCY_FRAMES),
                                  SAFE_MIN_LATENCY_FRAMES);
  }

  UInt32 input_buffer_size = 0;
  if (stm->input_unit) {
    r = AudioUnitGetProperty(stm->input_unit,
                            kAudioDevicePropertyBufferFrameSize,
                            kAudioUnitScope_Input,
                            AU_IN_BUS,
                            &input_buffer_size,
                            &size);
    if (r != noErr) {
      LOG("AudioUnitGetProperty/input/kAudioDevicePropertyBufferFrameSize rv=%d", r);
      return 0;
    }

    input_buffer_size = max(min<uint32_t>(input_buffer_size, SAFE_MAX_LATENCY_FRAMES),
                                 SAFE_MIN_LATENCY_FRAMES);
  }

  // Every following active streams can only set smaller latency
  UInt32 upper_latency_limit = 0;
  if (input_buffer_size != 0 && output_buffer_size != 0) {
    upper_latency_limit = min<uint32_t>(input_buffer_size, output_buffer_size);
  } else if (input_buffer_size != 0) {
    upper_latency_limit = input_buffer_size;
  } else if (output_buffer_size != 0) {
    upper_latency_limit = output_buffer_size;
  } else {
    upper_latency_limit = SAFE_MAX_LATENCY_FRAMES;
  }

  return max(min<uint32_t>(latency_frames, upper_latency_limit),
                  SAFE_MIN_LATENCY_FRAMES);
}

/*
 * Change buffer size is prone to deadlock thus we change it
 * following the steps:
 * - register a listener for the buffer size property
 * - change the property
 * - wait until the listener is executed
 * - property has changed, remove the listener
 * */
static void
buffer_size_changed_callback(void * inClientData,
                             AudioUnit inUnit,
                             AudioUnitPropertyID inPropertyID,
                             AudioUnitScope inScope,
                             AudioUnitElement inElement)
{
  cubeb_stream * stm = (cubeb_stream *)inClientData;

  AudioUnit au = inUnit;
  AudioUnitScope au_scope = kAudioUnitScope_Input;
  AudioUnitElement au_element = inElement;
  char const * au_type = "output";

  if (AU_IN_BUS == inElement) {
    au_scope = kAudioUnitScope_Output;
    au_type = "input";
  }

  switch (inPropertyID) {

    case kAudioDevicePropertyBufferFrameSize: {
      if (inScope != au_scope) {
        break;
      }
      UInt32 new_buffer_size;
      UInt32 outSize = sizeof(UInt32);
      OSStatus r = AudioUnitGetProperty(au,
                                        kAudioDevicePropertyBufferFrameSize,
                                        au_scope,
                                        au_element,
                                        &new_buffer_size,
                                        &outSize);
      if (r != noErr) {
        LOG("(%p) Event: kAudioDevicePropertyBufferFrameSize: Cannot get current buffer size", stm);
      } else {
        LOG("(%p) Event: kAudioDevicePropertyBufferFrameSize: New %s buffer size = %d for scope %d", stm,
            au_type, new_buffer_size, inScope);
      }
      stm->buffer_size_change_state = true;
      break;
    }
  }
}

static int
audiounit_set_buffer_size(cubeb_stream * stm, uint32_t new_size_frames, io_side side)
{
  AudioUnit au = stm->output_unit;
  AudioUnitScope au_scope = kAudioUnitScope_Input;
  AudioUnitElement au_element = AU_OUT_BUS;

  if (side == INPUT) {
    au = stm->input_unit;
    au_scope = kAudioUnitScope_Output;
    au_element = AU_IN_BUS;
  }

  uint32_t buffer_frames = 0;
  UInt32 size = sizeof(buffer_frames);
  int r = AudioUnitGetProperty(au,
                               kAudioDevicePropertyBufferFrameSize,
                               au_scope,
                               au_element,
                               &buffer_frames,
                               &size);
  if (r != noErr) {
    LOG("AudioUnitGetProperty/%s/kAudioDevicePropertyBufferFrameSize rv=%d", to_string(side), r);
    return CUBEB_ERROR;
  }

  if (new_size_frames == buffer_frames) {
    LOG("(%p) No need to update %s buffer size already %u frames", stm, to_string(side), buffer_frames);
    return CUBEB_OK;
  }

  r = AudioUnitAddPropertyListener(au,
                                   kAudioDevicePropertyBufferFrameSize,
                                   buffer_size_changed_callback,
                                   stm);
  if (r != noErr) {
    LOG("AudioUnitAddPropertyListener/%s/kAudioDevicePropertyBufferFrameSize rv=%d", to_string(side), r);
    return CUBEB_ERROR;
  }

  stm->buffer_size_change_state = false;

  r = AudioUnitSetProperty(au,
                           kAudioDevicePropertyBufferFrameSize,
                           au_scope,
                           au_element,
                           &new_size_frames,
                           sizeof(new_size_frames));
  if (r != noErr) {
    LOG("AudioUnitSetProperty/%s/kAudioDevicePropertyBufferFrameSize rv=%d", to_string(side), r);

    r = AudioUnitRemovePropertyListenerWithUserData(au,
                                                    kAudioDevicePropertyBufferFrameSize,
                                                    buffer_size_changed_callback,
                                                    stm);
    if (r != noErr) {
      LOG("AudioUnitAddPropertyListener/%s/kAudioDevicePropertyBufferFrameSize rv=%d", to_string(side), r);
    }

    return CUBEB_ERROR;
  }

  int count = 0;
  while (!stm->buffer_size_change_state && count++ < 30) {
    struct timespec req, rem;
    req.tv_sec = 0;
    req.tv_nsec = 100000000L; // 0.1 sec
    if (nanosleep(&req , &rem) < 0 ) {
      LOG("(%p) Warning: nanosleep call failed or interrupted. Remaining time %ld nano secs \n", stm, rem.tv_nsec);
    }
    LOG("(%p) audiounit_set_buffer_size : wait count = %d", stm, count);
  }

  r = AudioUnitRemovePropertyListenerWithUserData(au,
                                                  kAudioDevicePropertyBufferFrameSize,
                                                  buffer_size_changed_callback,
                                                  stm);
  if (r != noErr) {
    LOG("AudioUnitAddPropertyListener/%s/kAudioDevicePropertyBufferFrameSize rv=%d", to_string(side), r);
    return CUBEB_ERROR;
  }

  if (!stm->buffer_size_change_state && count >= 30) {
    LOG("(%p) Error, did not get buffer size change callback ...", stm);
    return CUBEB_ERROR;
  }

  LOG("(%p) %s buffer size changed to %u frames.", stm, to_string(side), new_size_frames);
  return CUBEB_OK;
}

static int
audiounit_configure_input(cubeb_stream * stm)
{
  assert(stm && stm->input_unit);

  int r = 0;
  UInt32 size;
  AURenderCallbackStruct aurcbs_in;

  LOG("(%p) Opening input side: rate %u, channels %u, format %d, latency in frames %u.",
      stm, stm->input_stream_params.rate, stm->input_stream_params.channels,
      stm->input_stream_params.format, stm->latency_frames);

  /* Get input device sample rate. */
  AudioStreamBasicDescription input_hw_desc;
  size = sizeof(AudioStreamBasicDescription);
  r = AudioUnitGetProperty(stm->input_unit,
                           kAudioUnitProperty_StreamFormat,
                           kAudioUnitScope_Input,
                           AU_IN_BUS,
                           &input_hw_desc,
                           &size);
  if (r != noErr) {
    LOG("AudioUnitGetProperty/input/kAudioUnitProperty_StreamFormat rv=%d", r);
    return CUBEB_ERROR;
  }
  stm->input_hw_rate = input_hw_desc.mSampleRate;
  LOG("(%p) Input device sampling rate: %.2f", stm, stm->input_hw_rate);

  /* Set format description according to the input params. */
  r = audio_stream_desc_init(&stm->input_desc, &stm->input_stream_params);
  if (r != CUBEB_OK) {
    LOG("(%p) Setting format description for input failed.", stm);
    return r;
  }

  // Use latency to set buffer size
  r = audiounit_set_buffer_size(stm, stm->latency_frames, INPUT);
  if (r != CUBEB_OK) {
    LOG("(%p) Error in change input buffer size.", stm);
    return CUBEB_ERROR;
  }

  AudioStreamBasicDescription src_desc = stm->input_desc;
  /* Input AudioUnit must be configured with device's sample rate.
     we will resample inside input callback. */
  src_desc.mSampleRate = stm->input_hw_rate;

  r = AudioUnitSetProperty(stm->input_unit,
                           kAudioUnitProperty_StreamFormat,
                           kAudioUnitScope_Output,
                           AU_IN_BUS,
                           &src_desc,
                           sizeof(AudioStreamBasicDescription));
  if (r != noErr) {
    LOG("AudioUnitSetProperty/input/kAudioUnitProperty_StreamFormat rv=%d", r);
    return CUBEB_ERROR;
  }

  /* Frames per buffer in the input callback. */
  r = AudioUnitSetProperty(stm->input_unit,
                           kAudioUnitProperty_MaximumFramesPerSlice,
                           kAudioUnitScope_Global,
                           AU_IN_BUS,
                           &stm->latency_frames,
                           sizeof(UInt32));
  if (r != noErr) {
    LOG("AudioUnitSetProperty/input/kAudioUnitProperty_MaximumFramesPerSlice rv=%d", r);
    return CUBEB_ERROR;
  }

  // Input only capacity
  unsigned int array_capacity = 1;
  if (has_output(stm)) {
    // Full-duplex increase capacity
    array_capacity = 8;
  }
  if (audiounit_init_input_linear_buffer(stm, array_capacity) != CUBEB_OK) {
    return CUBEB_ERROR;
  }

  aurcbs_in.inputProc = audiounit_input_callback;
  aurcbs_in.inputProcRefCon = stm;

  r = AudioUnitSetProperty(stm->input_unit,
                           kAudioOutputUnitProperty_SetInputCallback,
                           kAudioUnitScope_Global,
                           AU_OUT_BUS,
                           &aurcbs_in,
                           sizeof(aurcbs_in));
  if (r != noErr) {
    LOG("AudioUnitSetProperty/input/kAudioOutputUnitProperty_SetInputCallback rv=%d", r);
    return CUBEB_ERROR;
  }

  LOG("(%p) Input audiounit init successfully.", stm);

  return CUBEB_OK;
}

static int
audiounit_configure_output(cubeb_stream * stm)
{
  assert(stm && stm->output_unit);

  int r;
  AURenderCallbackStruct aurcbs_out;
  UInt32 size;


  LOG("(%p) Opening output side: rate %u, channels %u, format %d, latency in frames %u.",
      stm, stm->output_stream_params.rate, stm->output_stream_params.channels,
      stm->output_stream_params.format, stm->latency_frames);

  r = audio_stream_desc_init(&stm->output_desc, &stm->output_stream_params);
  if (r != CUBEB_OK) {
    LOG("(%p) Could not initialize the audio stream description.", stm);
    return r;
  }

  /* Get output device sample rate. */
  AudioStreamBasicDescription output_hw_desc;
  size = sizeof(AudioStreamBasicDescription);
  memset(&output_hw_desc, 0, size);
  r = AudioUnitGetProperty(stm->output_unit,
                           kAudioUnitProperty_StreamFormat,
                           kAudioUnitScope_Output,
                           AU_OUT_BUS,
                           &output_hw_desc,
                           &size);
  if (r != noErr) {
    LOG("AudioUnitGetProperty/output/kAudioUnitProperty_StreamFormat rv=%d", r);
    return CUBEB_ERROR;
  }
  stm->output_hw_rate = output_hw_desc.mSampleRate;
  LOG("(%p) Output device sampling rate: %.2f", stm, output_hw_desc.mSampleRate);
  stm->context->channels = output_hw_desc.mChannelsPerFrame;

  // Set the input layout to match the output device layout.
  audiounit_layout_init(stm, OUTPUT);
  if (stm->context->channels != stm->output_stream_params.channels ||
      stm->context->layout != stm->output_stream_params.layout) {
    LOG("Incompatible channel layouts detected, setting up remixer");
    audiounit_init_mixer(stm);
    // We will be remixing the data before it reaches the output device.
    // We need to adjust the number of channels and other
    // AudioStreamDescription details.
    stm->output_desc.mChannelsPerFrame = stm->context->channels;
    stm->output_desc.mBytesPerFrame = (stm->output_desc.mBitsPerChannel / 8) *
                                      stm->output_desc.mChannelsPerFrame;
    stm->output_desc.mBytesPerPacket =
      stm->output_desc.mBytesPerFrame * stm->output_desc.mFramesPerPacket;
  } else {
    stm->mixer = nullptr;
  }

  r = AudioUnitSetProperty(stm->output_unit,
                           kAudioUnitProperty_StreamFormat,
                           kAudioUnitScope_Input,
                           AU_OUT_BUS,
                           &stm->output_desc,
                           sizeof(AudioStreamBasicDescription));
  if (r != noErr) {
    LOG("AudioUnitSetProperty/output/kAudioUnitProperty_StreamFormat rv=%d", r);
    return CUBEB_ERROR;
  }

  r = audiounit_set_buffer_size(stm, stm->latency_frames, OUTPUT);
  if (r != CUBEB_OK) {
    LOG("(%p) Error in change output buffer size.", stm);
    return CUBEB_ERROR;
  }

  /* Frames per buffer in the input callback. */
  r = AudioUnitSetProperty(stm->output_unit,
                           kAudioUnitProperty_MaximumFramesPerSlice,
                           kAudioUnitScope_Global,
                           AU_OUT_BUS,
                           &stm->latency_frames,
                           sizeof(UInt32));
  if (r != noErr) {
    LOG("AudioUnitSetProperty/output/kAudioUnitProperty_MaximumFramesPerSlice rv=%d", r);
    return CUBEB_ERROR;
  }

  aurcbs_out.inputProc = audiounit_output_callback;
  aurcbs_out.inputProcRefCon = stm;
  r = AudioUnitSetProperty(stm->output_unit,
                           kAudioUnitProperty_SetRenderCallback,
                           kAudioUnitScope_Global,
                           AU_OUT_BUS,
                           &aurcbs_out,
                           sizeof(aurcbs_out));
  if (r != noErr) {
    LOG("AudioUnitSetProperty/output/kAudioUnitProperty_SetRenderCallback rv=%d", r);
    return CUBEB_ERROR;
  }

  LOG("(%p) Output audiounit init successfully.", stm);
  return CUBEB_OK;
}

static int
audiounit_setup_stream(cubeb_stream * stm)
{
  stm->mutex.assert_current_thread_owns();

  if ((stm->input_stream_params.prefs & CUBEB_STREAM_PREF_LOOPBACK) ||
      (stm->output_stream_params.prefs & CUBEB_STREAM_PREF_LOOPBACK)) {
    LOG("(%p) Loopback not supported for audiounit.", stm);
    return CUBEB_ERROR_NOT_SUPPORTED;
  }

  int r = 0;

  device_info in_dev_info = stm->input_device;
  device_info out_dev_info = stm->output_device;

  if (has_input(stm) && has_output(stm) &&
      stm->input_device.id != stm->output_device.id) {
    r = audiounit_create_aggregate_device(stm);
    if (r != CUBEB_OK) {
      stm->aggregate_device_id = 0;
      LOG("(%p) Create aggregate devices failed.", stm);
      // !!!NOTE: It is not necessary to return here. If it does not
      // return it will fallback to the old implementation. The intention
      // is to investigate how often it fails. I plan to remove
      // it after a couple of weeks.
      return r;
    } else {
      in_dev_info.id = out_dev_info.id = stm->aggregate_device_id;
      in_dev_info.flags = DEV_INPUT;
      out_dev_info.flags = DEV_OUTPUT;
    }
  }

  if (has_input(stm)) {
    r = audiounit_create_unit(&stm->input_unit, &in_dev_info);
    if (r != CUBEB_OK) {
      LOG("(%p) AudioUnit creation for input failed.", stm);
      return r;
    }
  }

  if (has_output(stm)) {
    r = audiounit_create_unit(&stm->output_unit, &out_dev_info);
    if (r != CUBEB_OK) {
      LOG("(%p) AudioUnit creation for output failed.", stm);
      return r;
    }
  }

  /* Latency cannot change if another stream is operating in parallel. In this case
  * latecy is set to the other stream value. */
  if (audiounit_active_streams(stm->context) > 1) {
    LOG("(%p) More than one active stream, use global latency.", stm);
    stm->latency_frames = stm->context->global_latency_frames;
  } else {
    /* Silently clamp the latency down to the platform default, because we
    * synthetize the clock from the callbacks, and we want the clock to update
    * often. */
    stm->latency_frames = audiounit_clamp_latency(stm, stm->latency_frames);
    assert(stm->latency_frames); // Ungly error check
    audiounit_set_global_latency(stm->context, stm->latency_frames);
  }

  /* Configure I/O stream */
  if (has_input(stm)) {
    r = audiounit_configure_input(stm);
    if (r != CUBEB_OK) {
      LOG("(%p) Configure audiounit input failed.", stm);
      return r;
    }
  }

  if (has_output(stm)) {
    r = audiounit_configure_output(stm);
    if (r != CUBEB_OK) {
      LOG("(%p) Configure audiounit output failed.", stm);
      return r;
    }
  }

  // Setting the latency doesn't work well for USB headsets (eg. plantronics).
  // Keep the default latency for now.
#if 0
  buffer_size = latency;

  /* Get the range of latency this particular device can work with, and clamp
   * the requested latency to this acceptable range. */
#if !TARGET_OS_IPHONE
  if (audiounit_get_acceptable_latency_range(&latency_range) != CUBEB_OK) {
    return CUBEB_ERROR;
  }

  if (buffer_size < (unsigned int) latency_range.mMinimum) {
    buffer_size = (unsigned int) latency_range.mMinimum;
  } else if (buffer_size > (unsigned int) latency_range.mMaximum) {
    buffer_size = (unsigned int) latency_range.mMaximum;
  }

  /**
   * Get the default buffer size. If our latency request is below the default,
   * set it. Otherwise, use the default latency.
   **/
  size = sizeof(default_buffer_size);
  if (AudioUnitGetProperty(stm->output_unit, kAudioDevicePropertyBufferFrameSize,
        kAudioUnitScope_Output, 0, &default_buffer_size, &size) != 0) {
    return CUBEB_ERROR;
  }

  if (buffer_size < default_buffer_size) {
    /* Set the maximum number of frame that the render callback will ask for,
     * effectively setting the latency of the stream. This is process-wide. */
    if (AudioUnitSetProperty(stm->output_unit, kAudioDevicePropertyBufferFrameSize,
          kAudioUnitScope_Output, 0, &buffer_size, sizeof(buffer_size)) != 0) {
      return CUBEB_ERROR;
    }
  }
#else  // TARGET_OS_IPHONE
  //TODO: [[AVAudioSession sharedInstance] inputLatency]
  // http://stackoverflow.com/questions/13157523/kaudiodevicepropertybufferframesize-replacement-for-ios
#endif
#endif

  /* We use a resampler because input AudioUnit operates
   * reliable only in the capture device sample rate.
   * Resampler will convert it to the user sample rate
   * and deliver it to the callback. */
  uint32_t target_sample_rate;
  if (has_input(stm)) {
    target_sample_rate = stm->input_stream_params.rate;
  } else {
    assert(has_output(stm));
    target_sample_rate = stm->output_stream_params.rate;
  }

  cubeb_stream_params input_unconverted_params;
  if (has_input(stm)) {
    input_unconverted_params = stm->input_stream_params;
    /* Use the rate of the input device. */
    input_unconverted_params.rate = stm->input_hw_rate;
  }

  /* Create resampler. Output params are unchanged
   * because we do not need conversion on the output. */
  stm->resampler.reset(cubeb_resampler_create(stm,
                                              has_input(stm) ? &input_unconverted_params : NULL,
                                              has_output(stm) ? &stm->output_stream_params : NULL,
                                              target_sample_rate,
                                              stm->data_callback,
                                              stm->user_ptr,
                                              CUBEB_RESAMPLER_QUALITY_DESKTOP));
  if (!stm->resampler) {
    LOG("(%p) Could not create resampler.", stm);
    return CUBEB_ERROR;
  }

  if (stm->input_unit != NULL) {
    r = AudioUnitInitialize(stm->input_unit);
    if (r != noErr) {
      LOG("AudioUnitInitialize/input rv=%d", r);
      return CUBEB_ERROR;
    }
  }

  if (stm->output_unit != NULL) {
    r = AudioUnitInitialize(stm->output_unit);
    if (r != noErr) {
      LOG("AudioUnitInitialize/output rv=%d", r);
      return CUBEB_ERROR;
    }

    stm->current_latency_frames = audiounit_get_device_presentation_latency(stm->output_device.id, kAudioDevicePropertyScopeOutput);

    Float64 unit_s;
    UInt32 size = sizeof(unit_s);
    if (AudioUnitGetProperty(stm->output_unit, kAudioUnitProperty_Latency, kAudioUnitScope_Global, 0, &unit_s, &size) == noErr) {
      stm->current_latency_frames += static_cast<uint32_t>(unit_s * stm->output_desc.mSampleRate);
    }
  }

  if (stm->input_unit && stm->output_unit) {
    // According to the I/O hardware rate it is expected a specific pattern of callbacks
    // for example is input is 44100 and output is 48000 we expected no more than 2
    // out callback in a row.
    stm->expected_output_callbacks_in_a_row = ceilf(stm->output_hw_rate / stm->input_hw_rate);
  }

  r = audiounit_install_device_changed_callback(stm);
  if (r != CUBEB_OK) {
    LOG("(%p) Could not install all device change callback.", stm);
  }


  return CUBEB_OK;
}

cubeb_stream::cubeb_stream(cubeb * context)
  : context(context)
  , resampler(nullptr, cubeb_resampler_destroy)
  , mixer(nullptr, cubeb_mixer_destroy)
{
  PodZero(&input_desc, 1);
  PodZero(&output_desc, 1);
}

static void audiounit_stream_destroy_internal(cubeb_stream * stm);

static int
audiounit_stream_init(cubeb * context,
                      cubeb_stream ** stream,
                      char const * /* stream_name */,
                      cubeb_devid input_device,
                      cubeb_stream_params * input_stream_params,
                      cubeb_devid output_device,
                      cubeb_stream_params * output_stream_params,
                      unsigned int latency_frames,
                      cubeb_data_callback data_callback,
                      cubeb_state_callback state_callback,
                      void * user_ptr)
{
  assert(context);
  auto_lock context_lock(context->mutex);
  audiounit_increment_active_streams(context);
  unique_ptr<cubeb_stream, decltype(&audiounit_stream_destroy)> stm(new cubeb_stream(context),
                                                                    audiounit_stream_destroy_internal);
  int r;
  *stream = NULL;
  assert(latency_frames > 0);

  /* These could be different in the future if we have both
   * full-duplex stream and different devices for input vs output. */
  stm->data_callback = data_callback;
  stm->state_callback = state_callback;
  stm->user_ptr = user_ptr;
  stm->latency_frames = latency_frames;

  if ((input_device && !input_stream_params) ||
      (output_device && !output_stream_params)) {
    return CUBEB_ERROR_INVALID_PARAMETER;
  }
  if (input_stream_params) {
    stm->input_stream_params = *input_stream_params;
    r = audiounit_set_device_info(stm.get(), reinterpret_cast<uintptr_t>(input_device), INPUT);
    if (r != CUBEB_OK) {
      LOG("(%p) Fail to set device info for input.", stm.get());
      return r;
    }
  }
  if (output_stream_params) {
    stm->output_stream_params = *output_stream_params;
    r = audiounit_set_device_info(stm.get(), reinterpret_cast<uintptr_t>(output_device), OUTPUT);
    if (r != CUBEB_OK) {
      LOG("(%p) Fail to set device info for output.", stm.get());
      return r;
    }
  }

  {
    // It's not critical to lock here, because no other thread has been started
    // yet, but it allows to assert that the lock has been taken in
    // `audiounit_setup_stream`.
    auto_lock lock(stm->mutex);
    r = audiounit_setup_stream(stm.get());
  }

  if (r != CUBEB_OK) {
    LOG("(%p) Could not setup the audiounit stream.", stm.get());
    return r;
  }

  r = audiounit_install_system_changed_callback(stm.get());
  if (r != CUBEB_OK) {
    LOG("(%p) Could not install the device change callback.", stm.get());
    return r;
  }

  *stream = stm.release();
  LOG("(%p) Cubeb stream init successful.", *stream);
  return CUBEB_OK;
}

static void
audiounit_close_stream(cubeb_stream *stm)
{
  stm->mutex.assert_current_thread_owns();

  if (stm->input_unit) {
    AudioUnitUninitialize(stm->input_unit);
    AudioComponentInstanceDispose(stm->input_unit);
    stm->input_unit = nullptr;
  }

  stm->input_linear_buffer.reset();

  if (stm->output_unit) {
    AudioUnitUninitialize(stm->output_unit);
    AudioComponentInstanceDispose(stm->output_unit);
    stm->output_unit = nullptr;
  }

  stm->resampler.reset();
  stm->mixer.reset();

  if (stm->aggregate_device_id) {
    audiounit_destroy_aggregate_device(stm->plugin_id, &stm->aggregate_device_id);
    stm->aggregate_device_id = 0;
  }
}

static void
audiounit_stream_destroy_internal(cubeb_stream *stm)
{
  stm->context->mutex.assert_current_thread_owns();

  int r = audiounit_uninstall_system_changed_callback(stm);
  if (r != CUBEB_OK) {
    LOG("(%p) Could not uninstall the device changed callback", stm);
  }
  r = audiounit_uninstall_device_changed_callback(stm);
  if (r != CUBEB_OK) {
    LOG("(%p) Could not uninstall all device change listeners", stm);
  }

  auto_lock lock(stm->mutex);
  audiounit_close_stream(stm);
  assert(audiounit_active_streams(stm->context) >= 1);
  audiounit_decrement_active_streams(stm->context);
}

static void
audiounit_stream_destroy(cubeb_stream * stm)
{
  if (!stm->shutdown.load()){
    auto_lock context_lock(stm->context->mutex);
    audiounit_stream_stop_internal(stm);
    stm->shutdown = true;
  }

  // Execute close in serial queue to avoid collision
  // with reinit when un/plug devices
  dispatch_sync(stm->context->serial_queue, ^() {
    auto_lock context_lock(stm->context->mutex);
    audiounit_stream_destroy_internal(stm);
  });

  LOG("Cubeb stream (%p) destroyed successful.", stm);
  delete stm;
}

void
audiounit_stream_start_internal(cubeb_stream * stm)
{
  OSStatus r;
  if (stm->input_unit != NULL) {
    r = AudioOutputUnitStart(stm->input_unit);
    assert(r == 0);
  }
  if (stm->output_unit != NULL) {
    r = AudioOutputUnitStart(stm->output_unit);
    assert(r == 0);
  }
}

static int
audiounit_stream_start(cubeb_stream * stm)
{
  auto_lock context_lock(stm->context->mutex);
  stm->shutdown = false;
  stm->draining = false;

  audiounit_stream_start_internal(stm);

  stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_STARTED);

  LOG("Cubeb stream (%p) started successfully.", stm);
  return CUBEB_OK;
}

void
audiounit_stream_stop_internal(cubeb_stream * stm)
{
  OSStatus r;
  if (stm->input_unit != NULL) {
    r = AudioOutputUnitStop(stm->input_unit);
    assert(r == 0);
  }
  if (stm->output_unit != NULL) {
    r = AudioOutputUnitStop(stm->output_unit);
    assert(r == 0);
  }
}

static int
audiounit_stream_stop(cubeb_stream * stm)
{
  auto_lock context_lock(stm->context->mutex);
  stm->shutdown = true;

  audiounit_stream_stop_internal(stm);

  stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_STOPPED);

  LOG("Cubeb stream (%p) stopped successfully.", stm);
  return CUBEB_OK;
}

static int
audiounit_stream_get_position(cubeb_stream * stm, uint64_t * position)
{
  assert(stm);
  if (stm->current_latency_frames > stm->frames_played) {
    *position = 0;
  } else {
    *position = stm->frames_played - stm->current_latency_frames;
  }
  return CUBEB_OK;
}

int
audiounit_stream_get_latency(cubeb_stream * stm, uint32_t * latency)
{
#if TARGET_OS_IPHONE
  //TODO
  return CUBEB_ERROR_NOT_SUPPORTED;
#else
  *latency = stm->current_latency_frames;
  return CUBEB_OK;
#endif
}

static int
audiounit_stream_get_volume(cubeb_stream * stm, float * volume)
{
  assert(stm->output_unit);
  OSStatus r = AudioUnitGetParameter(stm->output_unit,
                                     kHALOutputParam_Volume,
                                     kAudioUnitScope_Global,
                                     0, volume);
  if (r != noErr) {
    LOG("AudioUnitGetParameter/kHALOutputParam_Volume rv=%d", r);
    return CUBEB_ERROR;
  }
  return CUBEB_OK;
}

static int
audiounit_stream_set_volume(cubeb_stream * stm, float volume)
{
  assert(stm->output_unit);
  OSStatus r;
  r = AudioUnitSetParameter(stm->output_unit,
                            kHALOutputParam_Volume,
                            kAudioUnitScope_Global,
                            0, volume, 0);

  if (r != noErr) {
    LOG("AudioUnitSetParameter/kHALOutputParam_Volume rv=%d", r);
    return CUBEB_ERROR;
  }
  return CUBEB_OK;
}

int audiounit_stream_set_panning(cubeb_stream * stm, float panning)
{
  if (stm->output_desc.mChannelsPerFrame > 2) {
    return CUBEB_ERROR_INVALID_PARAMETER;
  }

  stm->panning.store(panning, memory_order_relaxed);
  return CUBEB_OK;
}

unique_ptr<char[]> convert_uint32_into_string(UInt32 data)
{
  // Simply create an empty string if no data.
  size_t size = data == 0 ? 0 : 4; // 4 bytes for uint32.
  auto str = unique_ptr<char[]> { new char[size + 1] }; // + 1 for '\0'.
  str[size] = '\0';
  if (size < 4) {
    return str;
  }

  // Reverse 0xWXYZ into 0xZYXW.
  str[0] = (char)(data >> 24);
  str[1] = (char)(data >> 16);
  str[2] = (char)(data >> 8);
  str[3] = (char)(data);
  return str;
}

int audiounit_get_default_device_datasource(cubeb_device_type type,
                                            UInt32 * data)
{
  AudioDeviceID id = audiounit_get_default_device_id(type);
  if (id == kAudioObjectUnknown) {
    return CUBEB_ERROR;
  }

  UInt32 size = sizeof(*data);
  /* This fails with some USB headsets (e.g., Plantronic .Audio 628). */
  OSStatus r = AudioObjectGetPropertyData(id,
                                          type == CUBEB_DEVICE_TYPE_INPUT ?
                                            &INPUT_DATA_SOURCE_PROPERTY_ADDRESS :
                                            &OUTPUT_DATA_SOURCE_PROPERTY_ADDRESS,
                                          0, NULL, &size, data);
  if (r != noErr) {
    *data = 0;
  }

  return CUBEB_OK;
}

int audiounit_get_default_device_name(cubeb_stream * stm,
                                      cubeb_device * const device,
                                      cubeb_device_type type)
{
  assert(stm);
  assert(device);

  UInt32 data;
  int r = audiounit_get_default_device_datasource(type, &data);
  if (r != CUBEB_OK) {
    return r;
  }
  char ** name = type == CUBEB_DEVICE_TYPE_INPUT ?
    &device->input_name : &device->output_name;
  *name = convert_uint32_into_string(data).release();
  if (!strlen(*name)) { // empty string.
    LOG("(%p) name of %s device is empty!", stm,
        type == CUBEB_DEVICE_TYPE_INPUT ? "input" : "output");
  }
  return CUBEB_OK;
}


int audiounit_stream_get_current_device(cubeb_stream * stm,
                                        cubeb_device ** const device)
{
#if TARGET_OS_IPHONE
  //TODO
  return CUBEB_ERROR_NOT_SUPPORTED;
#else
  *device = new cubeb_device;
  if (!*device) {
    return CUBEB_ERROR;
  }
  PodZero(*device, 1);

  int r = audiounit_get_default_device_name(stm, *device,
                                            CUBEB_DEVICE_TYPE_OUTPUT);
  if (r != CUBEB_OK) {
    return r;
  }

  r = audiounit_get_default_device_name(stm, *device,
                                        CUBEB_DEVICE_TYPE_INPUT);
  if (r != CUBEB_OK) {
    return r;
  }

  return CUBEB_OK;
#endif
}

int audiounit_stream_device_destroy(cubeb_stream * /* stream */,
                                    cubeb_device * device)
{
  delete [] device->output_name;
  delete [] device->input_name;
  delete device;
  return CUBEB_OK;
}

int audiounit_stream_register_device_changed_callback(cubeb_stream * stream,
                                                      cubeb_device_changed_callback device_changed_callback)
{
  auto_lock dev_cb_lock(stream->device_changed_callback_lock);
  /* Note: second register without unregister first causes 'nope' error.
   * Current implementation requires unregister before register a new cb. */
  assert(!stream->device_changed_callback);
  stream->device_changed_callback = device_changed_callback;
  return CUBEB_OK;
}

static char *
audiounit_strref_to_cstr_utf8(CFStringRef strref)
{
  CFIndex len, size;
  char * ret;
  if (strref == NULL) {
    return NULL;
  }

  len = CFStringGetLength(strref);
  // Add 1 to size to allow for '\0' termination character.
  size = CFStringGetMaximumSizeForEncoding(len, kCFStringEncodingUTF8) + 1;
  ret = new char[size];

  if (!CFStringGetCString(strref, ret, size, kCFStringEncodingUTF8)) {
    delete [] ret;
    ret = NULL;
  }

  return ret;
}

static uint32_t
audiounit_get_channel_count(AudioObjectID devid, AudioObjectPropertyScope scope)
{
  AudioObjectPropertyAddress adr = { 0, scope, kAudioObjectPropertyElementMaster };
  UInt32 size = 0;
  uint32_t i, ret = 0;

  adr.mSelector = kAudioDevicePropertyStreamConfiguration;

  if (AudioObjectGetPropertyDataSize(devid, &adr, 0, NULL, &size) == noErr && size > 0) {
    AudioBufferList * list = static_cast<AudioBufferList *>(alloca(size));
    if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, list) == noErr) {
      for (i = 0; i < list->mNumberBuffers; i++)
        ret += list->mBuffers[i].mNumberChannels;
    }
  }

  return ret;
}

static void
audiounit_get_available_samplerate(AudioObjectID devid, AudioObjectPropertyScope scope,
                                   uint32_t * min, uint32_t * max, uint32_t * def)
{
  AudioObjectPropertyAddress adr = { 0, scope, kAudioObjectPropertyElementMaster };

  adr.mSelector = kAudioDevicePropertyNominalSampleRate;
  if (AudioObjectHasProperty(devid, &adr)) {
    UInt32 size = sizeof(Float64);
    Float64 fvalue = 0.0;
    if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &fvalue) == noErr) {
      *def = fvalue;
    }
  }

  adr.mSelector = kAudioDevicePropertyAvailableNominalSampleRates;
  UInt32 size = 0;
  AudioValueRange range;
  if (AudioObjectHasProperty(devid, &adr) &&
      AudioObjectGetPropertyDataSize(devid, &adr, 0, NULL, &size) == noErr) {
    uint32_t count = size / sizeof(AudioValueRange);
    vector<AudioValueRange> ranges(count);
    range.mMinimum = 9999999999.0;
    range.mMaximum = 0.0;
    if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, ranges.data()) == noErr) {
      for (uint32_t i = 0; i < count; i++) {
        if (ranges[i].mMaximum > range.mMaximum)
          range.mMaximum = ranges[i].mMaximum;
        if (ranges[i].mMinimum < range.mMinimum)
          range.mMinimum = ranges[i].mMinimum;
      }
    }
    *max = static_cast<uint32_t>(range.mMaximum);
    *min = static_cast<uint32_t>(range.mMinimum);
  } else {
    *min = *max = 0;
  }

}

static UInt32
audiounit_get_device_presentation_latency(AudioObjectID devid, AudioObjectPropertyScope scope)
{
  AudioObjectPropertyAddress adr = { 0, scope, kAudioObjectPropertyElementMaster };
  UInt32 size, dev, stream = 0;
  AudioStreamID sid[1];

  adr.mSelector = kAudioDevicePropertyLatency;
  size = sizeof(UInt32);
  if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &dev) != noErr) {
    dev = 0;
  }

  adr.mSelector = kAudioDevicePropertyStreams;
  size = sizeof(sid);
  if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, sid) == noErr) {
    adr.mSelector = kAudioStreamPropertyLatency;
    size = sizeof(UInt32);
    AudioObjectGetPropertyData(sid[0], &adr, 0, NULL, &size, &stream);
  }

  return dev + stream;
}

static int
audiounit_create_device_from_hwdev(cubeb_device_info * dev_info, AudioObjectID devid, cubeb_device_type type)
{
  AudioObjectPropertyAddress adr = { 0, 0, kAudioObjectPropertyElementMaster };
  UInt32 size;

  if (type == CUBEB_DEVICE_TYPE_OUTPUT) {
    adr.mScope = kAudioDevicePropertyScopeOutput;
  } else if (type == CUBEB_DEVICE_TYPE_INPUT) {
    adr.mScope = kAudioDevicePropertyScopeInput;
  } else {
    return CUBEB_ERROR;
  }

  UInt32 ch = audiounit_get_channel_count(devid, adr.mScope);
  if (ch == 0) {
    return CUBEB_ERROR;
  }

  PodZero(dev_info, 1);

  CFStringRef device_id_str = nullptr;
  size = sizeof(CFStringRef);
  adr.mSelector = kAudioDevicePropertyDeviceUID;
  OSStatus ret = AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &device_id_str);
  if ( ret == noErr && device_id_str != NULL) {
    dev_info->device_id = audiounit_strref_to_cstr_utf8(device_id_str);
    static_assert(sizeof(cubeb_devid) >= sizeof(decltype(devid)), "cubeb_devid can't represent devid");
    dev_info->devid = reinterpret_cast<cubeb_devid>(devid);
    dev_info->group_id = dev_info->device_id;
    CFRelease(device_id_str);
  }

  CFStringRef friendly_name_str = nullptr;
  UInt32 ds;
  size = sizeof(UInt32);
  adr.mSelector = kAudioDevicePropertyDataSource;
  ret = AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &ds);
  if (ret == noErr) {
    AudioValueTranslation trl = { &ds, sizeof(ds), &friendly_name_str, sizeof(CFStringRef) };
    adr.mSelector = kAudioDevicePropertyDataSourceNameForIDCFString;
    size = sizeof(AudioValueTranslation);
    AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &trl);
  }

  // If there is no datasource for this device, fall back to the
  // device name.
  if (!friendly_name_str) {
    size = sizeof(CFStringRef);
    adr.mSelector = kAudioObjectPropertyName;
    AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &friendly_name_str);
  }

  if (friendly_name_str) {
    dev_info->friendly_name = audiounit_strref_to_cstr_utf8(friendly_name_str);
    CFRelease(friendly_name_str);
  } else {
    // Couldn't get a datasource name nor a device name, return a
    // valid string of length 0.
    char * fallback_name = new char[1];
    fallback_name[0] = '\0';
    dev_info->friendly_name = fallback_name;
  }

  CFStringRef vendor_name_str = nullptr;
  size = sizeof(CFStringRef);
  adr.mSelector = kAudioObjectPropertyManufacturer;
  ret = AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &vendor_name_str);
  if (ret == noErr && vendor_name_str != NULL) {
    dev_info->vendor_name = audiounit_strref_to_cstr_utf8(vendor_name_str);
    CFRelease(vendor_name_str);
  }

  dev_info->type = type;
  dev_info->state = CUBEB_DEVICE_STATE_ENABLED;
  dev_info->preferred = (devid == audiounit_get_default_device_id(type)) ?
    CUBEB_DEVICE_PREF_ALL : CUBEB_DEVICE_PREF_NONE;

  dev_info->max_channels = ch;
  dev_info->format = (cubeb_device_fmt)CUBEB_DEVICE_FMT_ALL; /* CoreAudio supports All! */
  /* kAudioFormatFlagsAudioUnitCanonical is deprecated, prefer floating point */
  dev_info->default_format = CUBEB_DEVICE_FMT_F32NE;
  audiounit_get_available_samplerate(devid, adr.mScope,
                                     &dev_info->min_rate, &dev_info->max_rate, &dev_info->default_rate);

  UInt32 latency = audiounit_get_device_presentation_latency(devid, adr.mScope);

  AudioValueRange range;
  adr.mSelector = kAudioDevicePropertyBufferFrameSizeRange;
  size = sizeof(AudioValueRange);
  ret = AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &range);
  if (ret == noErr) {
    dev_info->latency_lo = latency + range.mMinimum;
    dev_info->latency_hi = latency + range.mMaximum;
  } else {
    dev_info->latency_lo = 10 * dev_info->default_rate / 1000;  /* Default to 10ms */
    dev_info->latency_hi = 100 * dev_info->default_rate / 1000; /* Default to 100ms */
  }

  return CUBEB_OK;
}

bool
is_aggregate_device(cubeb_device_info * device_info)
{
  assert(device_info->friendly_name);
  return !strncmp(device_info->friendly_name, PRIVATE_AGGREGATE_DEVICE_NAME,
                  strlen(PRIVATE_AGGREGATE_DEVICE_NAME));
}

static int
audiounit_enumerate_devices(cubeb * /* context */, cubeb_device_type type,
                            cubeb_device_collection * collection)
{
  vector<AudioObjectID> input_devs;
  vector<AudioObjectID> output_devs;

  // Count number of input and output devices.  This is not
  // necessarily the same as the count of raw devices supported by the
  // system since, for example, with Soundflower installed, some
  // devices may report as being both input *and* output and cubeb
  // separates those into two different devices.

  if (type & CUBEB_DEVICE_TYPE_OUTPUT) {
    output_devs = audiounit_get_devices_of_type(CUBEB_DEVICE_TYPE_OUTPUT);
  }

  if (type & CUBEB_DEVICE_TYPE_INPUT) {
    input_devs = audiounit_get_devices_of_type(CUBEB_DEVICE_TYPE_INPUT);
  }

  auto devices = new cubeb_device_info[output_devs.size() + input_devs.size()];
  collection->count = 0;

  if (type & CUBEB_DEVICE_TYPE_OUTPUT) {
    for (auto dev: output_devs) {
      auto device = &devices[collection->count];
      auto err = audiounit_create_device_from_hwdev(device, dev, CUBEB_DEVICE_TYPE_OUTPUT);
      if (err != CUBEB_OK || is_aggregate_device(device)) {
        continue;
      }
      collection->count += 1;
    }
  }

  if (type & CUBEB_DEVICE_TYPE_INPUT) {
    for (auto dev: input_devs) {
      auto device = &devices[collection->count];
      auto err = audiounit_create_device_from_hwdev(device, dev, CUBEB_DEVICE_TYPE_INPUT);
      if (err != CUBEB_OK || is_aggregate_device(device)) {
        continue;
      }
      collection->count += 1;
    }
  }

  if (collection->count > 0) {
    collection->device = devices;
  } else {
    delete [] devices;
    collection->device = NULL;
  }

  return CUBEB_OK;
}

static int
audiounit_device_collection_destroy(cubeb * /* context */,
                                    cubeb_device_collection * collection)
{
  for (size_t i = 0; i < collection->count; i++) {
    delete [] collection->device[i].device_id;
    delete [] collection->device[i].friendly_name;
    delete [] collection->device[i].vendor_name;
  }
  delete [] collection->device;

  return CUBEB_OK;
}

static vector<AudioObjectID>
audiounit_get_devices_of_type(cubeb_device_type devtype)
{
  UInt32 size = 0;
  OSStatus ret = AudioObjectGetPropertyDataSize(kAudioObjectSystemObject,
                                                &DEVICES_PROPERTY_ADDRESS, 0,
                                                NULL, &size);
  if (ret != noErr) {
    return vector<AudioObjectID>();
  }
  /* Total number of input and output devices. */
  uint32_t count = (uint32_t)(size / sizeof(AudioObjectID));

  vector<AudioObjectID> devices(count);
  ret = AudioObjectGetPropertyData(kAudioObjectSystemObject,
                                   &DEVICES_PROPERTY_ADDRESS, 0, NULL, &size,
                                   devices.data());
  if (ret != noErr) {
    return vector<AudioObjectID>();
  }
  /* Expected sorted but did not find anything in the docs. */
  sort(devices.begin(), devices.end(), [](AudioObjectID a, AudioObjectID b) {
      return a < b;
    });

  if (devtype == (CUBEB_DEVICE_TYPE_INPUT | CUBEB_DEVICE_TYPE_OUTPUT)) {
    return devices;
  }

  AudioObjectPropertyScope scope = (devtype == CUBEB_DEVICE_TYPE_INPUT) ?
                                         kAudioDevicePropertyScopeInput :
                                         kAudioDevicePropertyScopeOutput;

  vector<AudioObjectID> devices_in_scope;
  for (uint32_t i = 0; i < count; ++i) {
    /* For device in the given scope channel must be > 0. */
    if (audiounit_get_channel_count(devices[i], scope) > 0) {
      devices_in_scope.push_back(devices[i]);
    }
  }

  return devices_in_scope;
}

static OSStatus
audiounit_collection_changed_callback(AudioObjectID /* inObjectID */,
                                      UInt32 /* inNumberAddresses */,
                                      const AudioObjectPropertyAddress * /* inAddresses */,
                                      void * inClientData)
{
  cubeb * context = static_cast<cubeb *>(inClientData);

  // This can be called from inside an AudioUnit function, dispatch to another queue.
  dispatch_async(context->serial_queue, ^() {
    auto_lock lock(context->mutex);
    if (context->collection_changed_callback == NULL) {
      /* Listener removed while waiting in mutex, abort. */
      return;
    }

    /* Differentiate input from output changes. */
    if (context->collection_changed_devtype == CUBEB_DEVICE_TYPE_INPUT ||
        context->collection_changed_devtype == CUBEB_DEVICE_TYPE_OUTPUT) {
      vector<AudioObjectID> devices = audiounit_get_devices_of_type(context->collection_changed_devtype);
      /* When count is the same examine the devid for the case of coalescing. */
      if (context->devtype_device_array == devices) {
        /* Device changed for the other scope, ignore. */
        return;
      } else {
        /* Also don't trigger the user callback if the new added device is private
         * aggregate device: compute the set of new devices, and remove those
         * with the name of our private aggregate devices. */
        set<AudioObjectID> current_devices(devices.begin(), devices.end());
        set<AudioObjectID> previous_devices(context->devtype_device_array.begin(),
                                            context->devtype_device_array.end());
        set<AudioObjectID> new_devices;
        set_difference(current_devices.begin(), current_devices.end(),
                       previous_devices.begin(), previous_devices.end(),
                       inserter(new_devices, new_devices.begin()));

        for (auto it = new_devices.begin(); it != new_devices.end();) {
          CFStringRef name = get_device_name(*it);
          if (CFStringFind(name, CFSTR("CubebAggregateDevice"), 0).location !=
              kCFNotFound) {
            it = new_devices.erase(it);
          } else {
            it++;
          }
        }

        // If this set of new devices is empty, it means this was triggerd
        // solely by creating an aggregate device, no need to trigger the user
        // callback.
        if (new_devices.empty()) {
          return;
        }
      }
      /* Device on desired scope changed. */
      context->devtype_device_array = devices;
    }

    context->collection_changed_callback(context, context->collection_changed_user_ptr);
  });
  return noErr;
}

static OSStatus
audiounit_add_device_listener(cubeb * context,
                              cubeb_device_type devtype,
                              cubeb_device_collection_changed_callback collection_changed_callback,
                              void * user_ptr)
{
  /* Note: second register without unregister first causes 'nope' error.
   * Current implementation requires unregister before register a new cb. */
  assert(context->collection_changed_callback == NULL);

  OSStatus ret = AudioObjectAddPropertyListener(kAudioObjectSystemObject,
                                                &DEVICES_PROPERTY_ADDRESS,
                                                audiounit_collection_changed_callback,
                                                context);
  if (ret == noErr) {
    /* Expected empty after unregister. */
    assert(context->devtype_device_array.empty());
    /* Listener works for input and output.
     * When requested one of them we need to differentiate. */
    if (devtype == CUBEB_DEVICE_TYPE_INPUT ||
        devtype == CUBEB_DEVICE_TYPE_OUTPUT) {
      /* Used to differentiate input from output device changes. */
      context->devtype_device_array = audiounit_get_devices_of_type(devtype);
    }
    context->collection_changed_devtype = devtype;
    context->collection_changed_callback = collection_changed_callback;
    context->collection_changed_user_ptr = user_ptr;
  }
  return ret;
}

static OSStatus
audiounit_remove_device_listener(cubeb * context)
{
  /* Note: unregister a non registered cb is not a problem, not checking. */
  OSStatus ret = AudioObjectRemovePropertyListener(kAudioObjectSystemObject,
                                                   &DEVICES_PROPERTY_ADDRESS,
                                                   audiounit_collection_changed_callback,
                                                   context);
  if (ret == noErr) {
    /* Reset all values. */
    context->collection_changed_devtype = CUBEB_DEVICE_TYPE_UNKNOWN;
    context->collection_changed_callback = NULL;
    context->collection_changed_user_ptr = NULL;
    context->devtype_device_array.clear();
  }
  return ret;
}

int audiounit_register_device_collection_changed(cubeb * context,
                                                 cubeb_device_type devtype,
                                                 cubeb_device_collection_changed_callback collection_changed_callback,
                                                 void * user_ptr)
{
  OSStatus ret;
  auto_lock lock(context->mutex);
  if (collection_changed_callback) {
    ret = audiounit_add_device_listener(context, devtype,
                                        collection_changed_callback,
                                        user_ptr);
  } else {
    ret = audiounit_remove_device_listener(context);
  }
  return (ret == noErr) ? CUBEB_OK : CUBEB_ERROR;
}

cubeb_ops const audiounit_ops = {
  /*.init =*/ audiounit_init,
  /*.get_backend_id =*/ audiounit_get_backend_id,
  /*.get_max_channel_count =*/ audiounit_get_max_channel_count,
  /*.get_min_latency =*/ audiounit_get_min_latency,
  /*.get_preferred_sample_rate =*/ audiounit_get_preferred_sample_rate,
  /*.enumerate_devices =*/ audiounit_enumerate_devices,
  /*.device_collection_destroy =*/ audiounit_device_collection_destroy,
  /*.destroy =*/ audiounit_destroy,
  /*.stream_init =*/ audiounit_stream_init,
  /*.stream_destroy =*/ audiounit_stream_destroy,
  /*.stream_start =*/ audiounit_stream_start,
  /*.stream_stop =*/ audiounit_stream_stop,
  /*.stream_reset_default_device =*/ nullptr,
  /*.stream_get_position =*/ audiounit_stream_get_position,
  /*.stream_get_latency =*/ audiounit_stream_get_latency,
  /*.stream_set_volume =*/ audiounit_stream_set_volume,
  /*.stream_set_panning =*/ audiounit_stream_set_panning,
  /*.stream_get_current_device =*/ audiounit_stream_get_current_device,
  /*.stream_device_destroy =*/ audiounit_stream_device_destroy,
  /*.stream_register_device_changed_callback =*/ audiounit_stream_register_device_changed_callback,
  /*.register_device_collection_changed =*/ audiounit_register_device_collection_changed
};