aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/cubeb_mixer.cpp
blob: 74bab713997c9e2bb50d38b95d082fe522eaebba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/*
 * Copyright © 2016 Mozilla Foundation
 *
 * This program is made available under an ISC-style license.  See the
 * accompanying file LICENSE for details.
 *
 * Adapted from code based on libswresample's rematrix.c
 */

#define NOMINMAX

#include "cubeb_mixer.h"
#include "cubeb-internal.h"
#include "cubeb_utils.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <memory>
#include <type_traits>

#ifndef FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a) (sizeof(a) / sizeof((a)[0]))
#endif

#define CHANNELS_MAX 32
#define FRONT_LEFT 0
#define FRONT_RIGHT 1
#define FRONT_CENTER 2
#define LOW_FREQUENCY 3
#define BACK_LEFT 4
#define BACK_RIGHT 5
#define FRONT_LEFT_OF_CENTER 6
#define FRONT_RIGHT_OF_CENTER 7
#define BACK_CENTER 8
#define SIDE_LEFT 9
#define SIDE_RIGHT 10
#define TOP_CENTER 11
#define TOP_FRONT_LEFT 12
#define TOP_FRONT_CENTER 13
#define TOP_FRONT_RIGHT 14
#define TOP_BACK_LEFT 15
#define TOP_BACK_CENTER 16
#define TOP_BACK_RIGHT 17
#define NUM_NAMED_CHANNELS 18

#ifndef M_SQRT1_2
#define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
#endif
#ifndef M_SQRT2
#define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
#endif
#define SQRT3_2 1.22474487139158904909 /* sqrt(3/2) */

#define C30DB M_SQRT2
#define C15DB 1.189207115
#define C__0DB 1.0
#define C_15DB 0.840896415
#define C_30DB M_SQRT1_2
#define C_45DB 0.594603558
#define C_60DB 0.5

static cubeb_channel_layout
cubeb_channel_layout_check(cubeb_channel_layout l, uint32_t c)
{
  if (l == CUBEB_LAYOUT_UNDEFINED) {
    switch (c) {
    case 1:
      return CUBEB_LAYOUT_MONO;
    case 2:
      return CUBEB_LAYOUT_STEREO;
    }
  }
  return l;
}

unsigned int
cubeb_channel_layout_nb_channels(cubeb_channel_layout x)
{
#if __GNUC__ || __clang__
  return __builtin_popcount(x);
#else
  x -= (x >> 1) & 0x55555555;
  x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
  x = (x + (x >> 4)) & 0x0F0F0F0F;
  x += x >> 8;
  return (x + (x >> 16)) & 0x3F;
#endif
}

struct MixerContext {
  MixerContext(cubeb_sample_format f, uint32_t in_channels,
               cubeb_channel_layout in, uint32_t out_channels,
               cubeb_channel_layout out)
      : _format(f), _in_ch_layout(cubeb_channel_layout_check(in, in_channels)),
        _out_ch_layout(cubeb_channel_layout_check(out, out_channels)),
        _in_ch_count(in_channels), _out_ch_count(out_channels)
  {
    if (in_channels != cubeb_channel_layout_nb_channels(in) ||
        out_channels != cubeb_channel_layout_nb_channels(out)) {
      // Mismatch between channels and layout, aborting.
      return;
    }
    _valid = init() >= 0;
  }

  static bool even(cubeb_channel_layout layout)
  {
    if (!layout) {
      return true;
    }
    if (layout & (layout - 1)) {
      return true;
    }
    return false;
  }

  // Ensure that the layout is sane (that is have symmetrical left/right
  // channels), if not, layout will be treated as mono.
  static cubeb_channel_layout clean_layout(cubeb_channel_layout layout)
  {
    if (layout && layout != CHANNEL_FRONT_LEFT && !(layout & (layout - 1))) {
      LOG("Treating layout as mono");
      return CHANNEL_FRONT_CENTER;
    }

    return layout;
  }

  static bool sane_layout(cubeb_channel_layout layout)
  {
    if (!(layout & CUBEB_LAYOUT_3F)) { // at least 1 front speaker
      return false;
    }
    if (!even(layout & (CHANNEL_FRONT_LEFT |
                        CHANNEL_FRONT_RIGHT))) { // no asymetric front
      return false;
    }
    if (!even(layout &
              (CHANNEL_SIDE_LEFT | CHANNEL_SIDE_RIGHT))) { // no asymetric side
      return false;
    }
    if (!even(layout & (CHANNEL_BACK_LEFT | CHANNEL_BACK_RIGHT))) {
      return false;
    }
    if (!even(layout &
              (CHANNEL_FRONT_LEFT_OF_CENTER | CHANNEL_FRONT_RIGHT_OF_CENTER))) {
      return false;
    }
    if (cubeb_channel_layout_nb_channels(layout) >= CHANNELS_MAX) {
      return false;
    }
    return true;
  }

  int auto_matrix();
  int init();

  const cubeb_sample_format _format;
  const cubeb_channel_layout _in_ch_layout;  ///< input channel layout
  const cubeb_channel_layout _out_ch_layout; ///< output channel layout
  const uint32_t _in_ch_count;               ///< input channel count
  const uint32_t _out_ch_count;              ///< output channel count
  const float _surround_mix_level = C_30DB;  ///< surround mixing level
  const float _center_mix_level = C_30DB;    ///< center mixing level
  const float _lfe_mix_level = 1;            ///< LFE mixing level
  double _matrix[CHANNELS_MAX][CHANNELS_MAX] = {
      {0}}; ///< floating point rematrixing coefficients
  float _matrix_flt[CHANNELS_MAX][CHANNELS_MAX] = {
      {0}}; ///< single precision floating point rematrixing coefficients
  int32_t _matrix32[CHANNELS_MAX][CHANNELS_MAX] = {
      {0}}; ///< 17.15 fixed point rematrixing coefficients
  uint8_t _matrix_ch[CHANNELS_MAX][CHANNELS_MAX + 1] = {
      {0}}; ///< Lists of input channels per output channel that have non zero
            ///< rematrixing coefficients
  bool _clipping = false; ///< Set to true if clipping detection is required
  bool _valid = false;    ///< Set to true if context is valid.
};

int
MixerContext::auto_matrix()
{
  double matrix[NUM_NAMED_CHANNELS][NUM_NAMED_CHANNELS] = {{0}};
  double maxcoef = 0;
  float maxval;

  cubeb_channel_layout in_ch_layout = clean_layout(_in_ch_layout);
  cubeb_channel_layout out_ch_layout = clean_layout(_out_ch_layout);

  if (!sane_layout(in_ch_layout)) {
    // Channel Not Supported
    LOG("Input Layout %x is not supported", _in_ch_layout);
    return -1;
  }

  if (!sane_layout(out_ch_layout)) {
    LOG("Output Layout %x is not supported", _out_ch_layout);
    return -1;
  }

  for (uint32_t i = 0; i < FF_ARRAY_ELEMS(matrix); i++) {
    if (in_ch_layout & out_ch_layout & (1U << i)) {
      matrix[i][i] = 1.0;
    }
  }

  cubeb_channel_layout unaccounted = in_ch_layout & ~out_ch_layout;

  // Rematrixing is done via a matrix of coefficient that should be applied to
  // all channels. Channels are treated as pair and must be symmetrical (if a
  // left channel exists, the corresponding right should exist too) unless the
  // output layout has similar layout. Channels are then mixed toward the front
  // center or back center if they exist with a slight bias toward the front.

  if (unaccounted & CHANNEL_FRONT_CENTER) {
    if ((out_ch_layout & CUBEB_LAYOUT_STEREO) == CUBEB_LAYOUT_STEREO) {
      if (in_ch_layout & CUBEB_LAYOUT_STEREO) {
        matrix[FRONT_LEFT][FRONT_CENTER] += _center_mix_level;
        matrix[FRONT_RIGHT][FRONT_CENTER] += _center_mix_level;
      } else {
        matrix[FRONT_LEFT][FRONT_CENTER] += M_SQRT1_2;
        matrix[FRONT_RIGHT][FRONT_CENTER] += M_SQRT1_2;
      }
    }
  }
  if (unaccounted & CUBEB_LAYOUT_STEREO) {
    if (out_ch_layout & CHANNEL_FRONT_CENTER) {
      matrix[FRONT_CENTER][FRONT_LEFT] += M_SQRT1_2;
      matrix[FRONT_CENTER][FRONT_RIGHT] += M_SQRT1_2;
      if (in_ch_layout & CHANNEL_FRONT_CENTER)
        matrix[FRONT_CENTER][FRONT_CENTER] = _center_mix_level * M_SQRT2;
    }
  }

  if (unaccounted & CHANNEL_BACK_CENTER) {
    if (out_ch_layout & CHANNEL_BACK_LEFT) {
      matrix[BACK_LEFT][BACK_CENTER] += M_SQRT1_2;
      matrix[BACK_RIGHT][BACK_CENTER] += M_SQRT1_2;
    } else if (out_ch_layout & CHANNEL_SIDE_LEFT) {
      matrix[SIDE_LEFT][BACK_CENTER] += M_SQRT1_2;
      matrix[SIDE_RIGHT][BACK_CENTER] += M_SQRT1_2;
    } else if (out_ch_layout & CHANNEL_FRONT_LEFT) {
      matrix[FRONT_LEFT][BACK_CENTER] += _surround_mix_level * M_SQRT1_2;
      matrix[FRONT_RIGHT][BACK_CENTER] += _surround_mix_level * M_SQRT1_2;
    } else if (out_ch_layout & CHANNEL_FRONT_CENTER) {
      matrix[FRONT_CENTER][BACK_CENTER] += _surround_mix_level * M_SQRT1_2;
    }
  }
  if (unaccounted & CHANNEL_BACK_LEFT) {
    if (out_ch_layout & CHANNEL_BACK_CENTER) {
      matrix[BACK_CENTER][BACK_LEFT] += M_SQRT1_2;
      matrix[BACK_CENTER][BACK_RIGHT] += M_SQRT1_2;
    } else if (out_ch_layout & CHANNEL_SIDE_LEFT) {
      if (in_ch_layout & CHANNEL_SIDE_LEFT) {
        matrix[SIDE_LEFT][BACK_LEFT] += M_SQRT1_2;
        matrix[SIDE_RIGHT][BACK_RIGHT] += M_SQRT1_2;
      } else {
        matrix[SIDE_LEFT][BACK_LEFT] += 1.0;
        matrix[SIDE_RIGHT][BACK_RIGHT] += 1.0;
      }
    } else if (out_ch_layout & CHANNEL_FRONT_LEFT) {
      matrix[FRONT_LEFT][BACK_LEFT] += _surround_mix_level;
      matrix[FRONT_RIGHT][BACK_RIGHT] += _surround_mix_level;
    } else if (out_ch_layout & CHANNEL_FRONT_CENTER) {
      matrix[FRONT_CENTER][BACK_LEFT] += _surround_mix_level * M_SQRT1_2;
      matrix[FRONT_CENTER][BACK_RIGHT] += _surround_mix_level * M_SQRT1_2;
    }
  }

  if (unaccounted & CHANNEL_SIDE_LEFT) {
    if (out_ch_layout & CHANNEL_BACK_LEFT) {
      /* if back channels do not exist in the input, just copy side
         channels to back channels, otherwise mix side into back */
      if (in_ch_layout & CHANNEL_BACK_LEFT) {
        matrix[BACK_LEFT][SIDE_LEFT] += M_SQRT1_2;
        matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
      } else {
        matrix[BACK_LEFT][SIDE_LEFT] += 1.0;
        matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
      }
    } else if (out_ch_layout & CHANNEL_BACK_CENTER) {
      matrix[BACK_CENTER][SIDE_LEFT] += M_SQRT1_2;
      matrix[BACK_CENTER][SIDE_RIGHT] += M_SQRT1_2;
    } else if (out_ch_layout & CHANNEL_FRONT_LEFT) {
      matrix[FRONT_LEFT][SIDE_LEFT] += _surround_mix_level;
      matrix[FRONT_RIGHT][SIDE_RIGHT] += _surround_mix_level;
    } else if (out_ch_layout & CHANNEL_FRONT_CENTER) {
      matrix[FRONT_CENTER][SIDE_LEFT] += _surround_mix_level * M_SQRT1_2;
      matrix[FRONT_CENTER][SIDE_RIGHT] += _surround_mix_level * M_SQRT1_2;
    }
  }

  if (unaccounted & CHANNEL_FRONT_LEFT_OF_CENTER) {
    if (out_ch_layout & CHANNEL_FRONT_LEFT) {
      matrix[FRONT_LEFT][FRONT_LEFT_OF_CENTER] += 1.0;
      matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER] += 1.0;
    } else if (out_ch_layout & CHANNEL_FRONT_CENTER) {
      matrix[FRONT_CENTER][FRONT_LEFT_OF_CENTER] += M_SQRT1_2;
      matrix[FRONT_CENTER][FRONT_RIGHT_OF_CENTER] += M_SQRT1_2;
    }
  }
  /* mix LFE into front left/right or center */
  if (unaccounted & CHANNEL_LOW_FREQUENCY) {
    if (out_ch_layout & CHANNEL_FRONT_CENTER) {
      matrix[FRONT_CENTER][LOW_FREQUENCY] += _lfe_mix_level;
    } else if (out_ch_layout & CHANNEL_FRONT_LEFT) {
      matrix[FRONT_LEFT][LOW_FREQUENCY] += _lfe_mix_level * M_SQRT1_2;
      matrix[FRONT_RIGHT][LOW_FREQUENCY] += _lfe_mix_level * M_SQRT1_2;
    }
  }

  // Normalize the conversion matrix.
  for (uint32_t out_i = 0, i = 0; i < CHANNELS_MAX; i++) {
    double sum = 0;
    int in_i = 0;
    if ((out_ch_layout & (1U << i)) == 0) {
      continue;
    }
    for (uint32_t j = 0; j < CHANNELS_MAX; j++) {
      if ((in_ch_layout & (1U << j)) == 0) {
        continue;
      }
      if (i < FF_ARRAY_ELEMS(matrix) && j < FF_ARRAY_ELEMS(matrix[0])) {
        _matrix[out_i][in_i] = matrix[i][j];
      } else {
        _matrix[out_i][in_i] =
            i == j && (in_ch_layout & out_ch_layout & (1U << i));
      }
      sum += fabs(_matrix[out_i][in_i]);
      in_i++;
    }
    maxcoef = std::max(maxcoef, sum);
    out_i++;
  }

  if (_format == CUBEB_SAMPLE_S16NE) {
    maxval = 1.0;
  } else {
    maxval = INT_MAX;
  }

  // Normalize matrix if needed.
  if (maxcoef > maxval) {
    maxcoef /= maxval;
    for (uint32_t i = 0; i < CHANNELS_MAX; i++)
      for (uint32_t j = 0; j < CHANNELS_MAX; j++) {
        _matrix[i][j] /= maxcoef;
      }
  }

  if (_format == CUBEB_SAMPLE_FLOAT32NE) {
    for (uint32_t i = 0; i < FF_ARRAY_ELEMS(_matrix); i++) {
      for (uint32_t j = 0; j < FF_ARRAY_ELEMS(_matrix[0]); j++) {
        _matrix_flt[i][j] = _matrix[i][j];
      }
    }
  }

  return 0;
}

int
MixerContext::init()
{
  int r = auto_matrix();
  if (r) {
    return r;
  }

  // Determine if matrix operation would overflow
  if (_format == CUBEB_SAMPLE_S16NE) {
    int maxsum = 0;
    for (uint32_t i = 0; i < _out_ch_count; i++) {
      double rem = 0;
      int sum = 0;

      for (uint32_t j = 0; j < _in_ch_count; j++) {
        double target = _matrix[i][j] * 32768 + rem;
        int value = lrintf(target);
        rem += target - value;
        sum += std::abs(value);
      }
      maxsum = std::max(maxsum, sum);
    }
    if (maxsum > 32768) {
      _clipping = true;
    }
  }

  // FIXME quantize for integers
  for (uint32_t i = 0; i < CHANNELS_MAX; i++) {
    int ch_in = 0;
    for (uint32_t j = 0; j < CHANNELS_MAX; j++) {
      _matrix32[i][j] = lrintf(_matrix[i][j] * 32768);
      if (_matrix[i][j]) {
        _matrix_ch[i][++ch_in] = j;
      }
    }
    _matrix_ch[i][0] = ch_in;
  }

  return 0;
}

template <typename TYPE_SAMPLE, typename TYPE_COEFF, typename F>
void
sum2(TYPE_SAMPLE * out, uint32_t stride_out, const TYPE_SAMPLE * in1,
     const TYPE_SAMPLE * in2, uint32_t stride_in, TYPE_COEFF coeff1,
     TYPE_COEFF coeff2, F && operand, uint32_t frames)
{
  static_assert(
      std::is_same<TYPE_COEFF, decltype(operand(coeff1))>::value,
      "function must return the same type as used by coeff1 and coeff2");
  for (uint32_t i = 0; i < frames; i++) {
    *out = operand(coeff1 * *in1 + coeff2 * *in2);
    out += stride_out;
    in1 += stride_in;
    in2 += stride_in;
  }
}

template <typename TYPE_SAMPLE, typename TYPE_COEFF, typename F>
void
copy(TYPE_SAMPLE * out, uint32_t stride_out, const TYPE_SAMPLE * in,
     uint32_t stride_in, TYPE_COEFF coeff, F && operand, uint32_t frames)
{
  static_assert(std::is_same<TYPE_COEFF, decltype(operand(coeff))>::value,
                "function must return the same type as used by coeff");
  for (uint32_t i = 0; i < frames; i++) {
    *out = operand(coeff * *in);
    out += stride_out;
    in += stride_in;
  }
}

template <typename TYPE, typename TYPE_COEFF, size_t COLS, typename F>
static int
rematrix(const MixerContext * s, TYPE * aOut, const TYPE * aIn,
         const TYPE_COEFF (&matrix_coeff)[COLS][COLS], F && aF, uint32_t frames)
{
  static_assert(
      std::is_same<TYPE_COEFF, decltype(aF(matrix_coeff[0][0]))>::value,
      "function must return the same type as used by matrix_coeff");

  for (uint32_t out_i = 0; out_i < s->_out_ch_count; out_i++) {
    TYPE * out = aOut + out_i;
    switch (s->_matrix_ch[out_i][0]) {
    case 0:
      for (uint32_t i = 0; i < frames; i++) {
        out[i * s->_out_ch_count] = 0;
      }
      break;
    case 1: {
      int in_i = s->_matrix_ch[out_i][1];
      copy(out, s->_out_ch_count, aIn + in_i, s->_in_ch_count,
           matrix_coeff[out_i][in_i], aF, frames);
    } break;
    case 2:
      sum2(out, s->_out_ch_count, aIn + s->_matrix_ch[out_i][1],
           aIn + s->_matrix_ch[out_i][2], s->_in_ch_count,
           matrix_coeff[out_i][s->_matrix_ch[out_i][1]],
           matrix_coeff[out_i][s->_matrix_ch[out_i][2]], aF, frames);
      break;
    default:
      for (uint32_t i = 0; i < frames; i++) {
        TYPE_COEFF v = 0;
        for (uint32_t j = 0; j < s->_matrix_ch[out_i][0]; j++) {
          uint32_t in_i = s->_matrix_ch[out_i][1 + j];
          v += *(aIn + in_i + i * s->_in_ch_count) * matrix_coeff[out_i][in_i];
        }
        out[i * s->_out_ch_count] = aF(v);
      }
      break;
    }
  }
  return 0;
}

struct cubeb_mixer {
  cubeb_mixer(cubeb_sample_format format, uint32_t in_channels,
              cubeb_channel_layout in_layout, uint32_t out_channels,
              cubeb_channel_layout out_layout)
      : _context(format, in_channels, in_layout, out_channels, out_layout)
  {
  }

  template <typename T>
  void copy_and_trunc(size_t frames, const T * input_buffer,
                      T * output_buffer) const
  {
    if (_context._in_ch_count <= _context._out_ch_count) {
      // Not enough channels to copy, fill the gaps with silence.
      if (_context._in_ch_count == 1 && _context._out_ch_count >= 2) {
        // Special case for upmixing mono input to stereo and more. We will
        // duplicate the mono channel to the first two channels. On most system,
        // the first two channels are for left and right. It is commonly
        // expected that mono will on both left+right channels
        for (uint32_t i = 0; i < frames; i++) {
          output_buffer[0] = output_buffer[1] = *input_buffer;
          PodZero(output_buffer + 2, _context._out_ch_count - 2);
          output_buffer += _context._out_ch_count;
          input_buffer++;
        }
        return;
      }
      for (uint32_t i = 0; i < frames; i++) {
        PodCopy(output_buffer, input_buffer, _context._in_ch_count);
        output_buffer += _context._in_ch_count;
        input_buffer += _context._in_ch_count;
        PodZero(output_buffer, _context._out_ch_count - _context._in_ch_count);
        output_buffer += _context._out_ch_count - _context._in_ch_count;
      }
    } else {
      for (uint32_t i = 0; i < frames; i++) {
        PodCopy(output_buffer, input_buffer, _context._out_ch_count);
        output_buffer += _context._out_ch_count;
        input_buffer += _context._in_ch_count;
      }
    }
  }

  int mix(size_t frames, const void * input_buffer, size_t input_buffer_size,
          void * output_buffer, size_t output_buffer_size) const
  {
    if (frames <= 0 || _context._out_ch_count == 0) {
      return 0;
    }

    // Check if output buffer is of sufficient size.
    size_t size_read_needed =
        frames * _context._in_ch_count * cubeb_sample_size(_context._format);
    if (input_buffer_size < size_read_needed) {
      // We don't have enough data to read!
      return -1;
    }
    if (output_buffer_size * _context._in_ch_count <
        size_read_needed * _context._out_ch_count) {
      return -1;
    }

    if (!valid()) {
      // The channel layouts were invalid or unsupported, instead we will simply
      // either drop the extra channels, or fill with silence the missing ones
      if (_context._format == CUBEB_SAMPLE_FLOAT32NE) {
        copy_and_trunc(frames, static_cast<const float *>(input_buffer),
                       static_cast<float *>(output_buffer));
      } else {
        assert(_context._format == CUBEB_SAMPLE_S16NE);
        copy_and_trunc(frames, static_cast<const int16_t *>(input_buffer),
                       reinterpret_cast<int16_t *>(output_buffer));
      }
      return 0;
    }

    switch (_context._format) {
    case CUBEB_SAMPLE_FLOAT32NE: {
      auto f = [](float x) { return x; };
      return rematrix(&_context, static_cast<float *>(output_buffer),
                      static_cast<const float *>(input_buffer),
                      _context._matrix_flt, f, frames);
    }
    case CUBEB_SAMPLE_S16NE:
      if (_context._clipping) {
        auto f = [](int x) {
          int y = (x + 16384) >> 15;
          // clip the signed integer value into the -32768,32767 range.
          if ((y + 0x8000U) & ~0xFFFF) {
            return (y >> 31) ^ 0x7FFF;
          }
          return y;
        };
        return rematrix(&_context, static_cast<int16_t *>(output_buffer),
                        static_cast<const int16_t *>(input_buffer),
                        _context._matrix32, f, frames);
      } else {
        auto f = [](int x) { return (x + 16384) >> 15; };
        return rematrix(&_context, static_cast<int16_t *>(output_buffer),
                        static_cast<const int16_t *>(input_buffer),
                        _context._matrix32, f, frames);
      }
      break;
    default:
      assert(false);
      break;
    }

    return -1;
  }

  // Return false if any of the input or ouput layout were invalid.
  bool valid() const { return _context._valid; }

  virtual ~cubeb_mixer(){};

  MixerContext _context;
};

cubeb_mixer *
cubeb_mixer_create(cubeb_sample_format format, uint32_t in_channels,
                   cubeb_channel_layout in_layout, uint32_t out_channels,
                   cubeb_channel_layout out_layout)
{
  return new cubeb_mixer(format, in_channels, in_layout, out_channels,
                         out_layout);
}

void
cubeb_mixer_destroy(cubeb_mixer * mixer)
{
  delete mixer;
}

int
cubeb_mixer_mix(cubeb_mixer * mixer, size_t frames, const void * input_buffer,
                size_t input_buffer_size, void * output_buffer,
                size_t output_buffer_size)
{
  return mixer->mix(frames, input_buffer, input_buffer_size, output_buffer,
                    output_buffer_size);
}