aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/test_mixer.cpp
blob: fc9efefc551c3eaa649f7ce338b8b0e8890e9765 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
 * Copyright © 2016 Mozilla Foundation
 *
 * This program is made available under an ISC-style license.  See the
 * accompanying file LICENSE for details.
 */
#include "gtest/gtest.h"
#include "cubeb/cubeb.h"
#include "cubeb_mixer.h"
#include "common.h"
#include <memory>
#include <vector>

using std::vector;

#define STREAM_FREQUENCY 48000
#define STREAM_FORMAT CUBEB_SAMPLE_FLOAT32LE

float const M = 1.0f;     // Mono
float const L = 2.0f;     // Left
float const R = 3.0f;     // Right
float const C = 4.0f;     // Center
float const LS = 5.0f;    // Left Surround
float const RS = 6.0f;    // Right Surround
float const RLS = 7.0f;   // Rear Left Surround
float const RC = 8.0f;    // Rear Center
float const RRS = 9.0f;   // Rear Right Surround
float const LFE = 10.0f;  // Low Frequency Effects

float const INV_SQRT_2 = 0.707106f; // 1/sqrt(2)
static float const DOWNMIX_3F2_RESULTS[2][12][5] = {
  // 3F2
  {
    { INV_SQRT_2*(L+R) + C + 0.5f*(LS+RS) },                          // Mono
    { INV_SQRT_2*(L+R) + C + 0.5f*(LS+RS), 0 },                       // Mono-LFE
    { L + INV_SQRT_2*(C+LS), R + INV_SQRT_2*(C+RS) },                 // Stereo
    { L + INV_SQRT_2*(C+LS), R + INV_SQRT_2*(C+RS), 0 },              // Stereo-LFE
    { L + INV_SQRT_2*LS, R + INV_SQRT_2*RS, C },                      // 3F
    { L + INV_SQRT_2*LS, R + INV_SQRT_2*RS, C, 0 },                   // 3F-LFE
    { L + C*INV_SQRT_2, R + C*INV_SQRT_2, INV_SQRT_2*(LS+RS) },       // 2F1
    { L + C*INV_SQRT_2, R + C*INV_SQRT_2, 0, INV_SQRT_2*(LS+RS) },    // 2F1-LFE
    { L, R, C, INV_SQRT_2*(LS+RS) },                                  // 3F1
    { L, R, C, 0, INV_SQRT_2*(LS+RS) },                               // 3F1-LFE
    { L + INV_SQRT_2*C, R + INV_SQRT_2*C, LS, RS },                   // 2F2
    { L + INV_SQRT_2*C, R + INV_SQRT_2*C, 0, LS, RS }                 // 2F2-LFE
  },
  // 3F2-LFE
  {
    { INV_SQRT_2*(L+R) + C + 0.5f*(LS+RS) },                          // Mono
    { INV_SQRT_2*(L+R) + C + 0.5f*(LS+RS), LFE },                     // Mono-LFE
    { L + INV_SQRT_2*(C+LS), R + INV_SQRT_2*(C+RS) },                 // Stereo
    { L + INV_SQRT_2*(C+LS), R + INV_SQRT_2*(C+RS), LFE },            // Stereo-LFE
    { L + INV_SQRT_2*LS, R + INV_SQRT_2*RS, C },                      // 3F
    { L + INV_SQRT_2*LS, R + INV_SQRT_2*RS, C, LFE },                 // 3F-LFE
    { L + C*INV_SQRT_2, R + C*INV_SQRT_2, INV_SQRT_2*(LS+RS) },       // 2F1
    { L + C*INV_SQRT_2, R + C*INV_SQRT_2, LFE, INV_SQRT_2*(LS+RS) },  // 2F1-LFE
    { L, R, C, INV_SQRT_2*(LS+RS) },                                  // 3F1
    { L, R, C, LFE, INV_SQRT_2*(LS+RS) },                             // 3F1-LFE
    { L + INV_SQRT_2*C, R + INV_SQRT_2*C, LS, RS },                   // 2F2
    { L + INV_SQRT_2*C, R + INV_SQRT_2*C, LFE, LS, RS }               // 2F2-LFE
  }
};

typedef struct {
  cubeb_channel_layout layout;
  float data[10];
} audio_input;

audio_input audio_inputs[CUBEB_LAYOUT_MAX] = {
  { CUBEB_LAYOUT_UNDEFINED,     { } },
  { CUBEB_LAYOUT_DUAL_MONO,     { L, R } },
  { CUBEB_LAYOUT_DUAL_MONO_LFE, { L, R, LFE } },
  { CUBEB_LAYOUT_MONO,          { M } },
  { CUBEB_LAYOUT_MONO_LFE,      { M, LFE } },
  { CUBEB_LAYOUT_STEREO,        { L, R } },
  { CUBEB_LAYOUT_STEREO_LFE,    { L, R, LFE } },
  { CUBEB_LAYOUT_3F,            { L, R, C } },
  { CUBEB_LAYOUT_3F_LFE,        { L, R, C, LFE } },
  { CUBEB_LAYOUT_2F1,           { L, R, RC } },
  { CUBEB_LAYOUT_2F1_LFE,       { L, R, LFE, RC } },
  { CUBEB_LAYOUT_3F1,           { L, R, C, RC } },
  { CUBEB_LAYOUT_3F1_LFE,       { L, R, C, LFE, RC } },
  { CUBEB_LAYOUT_2F2,           { L, R, LS, RS } },
  { CUBEB_LAYOUT_2F2_LFE,       { L, R, LFE, LS, RS } },
  { CUBEB_LAYOUT_3F2,           { L, R, C, LS, RS } },
  { CUBEB_LAYOUT_3F2_LFE,       { L, R, C, LFE, LS, RS } },
  { CUBEB_LAYOUT_3F3R_LFE,      { L, R, C, LFE, RC, LS, RS } },
  { CUBEB_LAYOUT_3F4_LFE,       { L, R, C, LFE, RLS, RRS, LS, RS } }
};

char const * channel_names[CHANNEL_UNMAPPED + 1] = {
  "mono",                   // CHANNEL_MONO
  "left",                   // CHANNEL_LEFT
  "right",                  // CHANNEL_RIGHT
  "center",                 // CHANNEL_CENTER
  "left surround",          // CHANNEL_LS
  "right surround",         // CHANNEL_RS
  "rear left surround",     // CHANNEL_RLS
  "rear center",            // CHANNEL_RCENTER
  "rear right surround",    // CHANNEL_RRS
  "low frequency effects",  // CHANNEL_LFE
  "unmapped"                // CHANNEL_UNMAPPED
};

// The test cases must be aligned with cubeb_downmix.
void
downmix_test(float const * data, cubeb_channel_layout in_layout, cubeb_channel_layout out_layout)
{
  if (in_layout == CUBEB_LAYOUT_UNDEFINED) {
    return; // Only possible output layout would be UNDEFINED.
  }

  cubeb_stream_params in_params = {
    STREAM_FORMAT,
    STREAM_FREQUENCY,
    layout_infos[in_layout].channels,
    in_layout
  };

  cubeb_stream_params out_params = {
    STREAM_FORMAT,
    STREAM_FREQUENCY,
    // To downmix audio data with undefined layout, its channel number must be
    // smaller than or equal to the input channels.
    (out_layout == CUBEB_LAYOUT_UNDEFINED) ?
      layout_infos[in_layout].channels : layout_infos[out_layout].channels,
    out_layout
   };

  if (!cubeb_should_downmix(&in_params, &out_params)) {
    return;
  }

  fprintf(stderr, "Downmix from %s to %s\n", layout_infos[in_layout].name, layout_infos[out_layout].name);

  unsigned int const inframes = 10;
  vector<float> in(in_params.channels * inframes);
#if defined(__APPLE__)
  // The mixed buffer size doesn't be changed based on the channel layout set on OSX.
  // Please see the comment above downmix_3f2 in cubeb_mixer.cpp.
  vector<float> out(in_params.channels * inframes);
#else
  // In normal case, the mixed buffer size is based on the mixing channel layout.
  vector<float> out(out_params.channels * inframes);
#endif

  for (unsigned int offset = 0 ; offset < inframes * in_params.channels ; offset += in_params.channels) {
    for (unsigned int i = 0 ; i < in_params.channels ; ++i) {
      in[offset + i] = data[i];
    }
  }

  // Create a mixer for downmix only.
  std::unique_ptr<cubeb_mixer, decltype(&cubeb_mixer_destroy)>
    mixer(cubeb_mixer_create(in_params.format, CUBEB_MIXER_DIRECTION_DOWNMIX), cubeb_mixer_destroy);

  assert(!in.empty() && !out.empty() && out.size() <= in.size());
  cubeb_mixer_mix(mixer.get(), inframes, in.data(), in.size(), out.data(), out.size(), &in_params, &out_params);

  uint32_t in_layout_mask = 0;
  for (unsigned int i = 0 ; i < in_params.channels; ++i) {
    in_layout_mask |= 1 << CHANNEL_INDEX_TO_ORDER[in_layout][i];
  }

  uint32_t out_layout_mask = 0;
  for (unsigned int i = 0 ; out_layout != CUBEB_LAYOUT_UNDEFINED && i < out_params.channels; ++i) {
    out_layout_mask |= 1 << CHANNEL_INDEX_TO_ORDER[out_layout][i];
  }

  for (unsigned int i = 0 ; i < out.size() ; ++i) {
    assert(in_params.channels && out_params.channels); // to pass the scan-build warning: Division by zero.
#if defined(__APPLE__)
    // The size of audio mix buffer(vector out above) on OS X is same as input,
    // so we need to check whether the out[i] will be dropped or not.
    unsigned int index = i % in_params.channels;
    if (index >= out_params.channels) {
      // The out[i] will be dropped, so we don't care the data inside.
      fprintf(stderr, "\tOS X: %d will be dropped. Ignore it.\n", i);
      continue;
    }
#else
    unsigned int index = i % out_params.channels;
#endif

    // downmix_3f2
    if ((in_layout == CUBEB_LAYOUT_3F2 || in_layout == CUBEB_LAYOUT_3F2_LFE) &&
        out_layout >= CUBEB_LAYOUT_MONO && out_layout <= CUBEB_LAYOUT_2F2_LFE) {
      auto & downmix_results = DOWNMIX_3F2_RESULTS[in_layout - CUBEB_LAYOUT_3F2][out_layout - CUBEB_LAYOUT_MONO];
      fprintf(stderr, "\t[3f2] %d(%s) - Expect: %lf, Get: %lf\n", i, channel_names[ CHANNEL_INDEX_TO_ORDER[out_layout][index] ], downmix_results[index], out[i]);
      ASSERT_EQ(downmix_results[index], out[i]);
      continue;
    }

#if defined(__APPLE__)
    fprintf(stderr, "\tOS X: We only support downmix for audio 5.1 currently.\n");
    return;
#endif

    // mix_remap
    if (out_layout_mask & in_layout_mask) {
      uint32_t mask = 1 << CHANNEL_INDEX_TO_ORDER[out_layout][index];
      fprintf(stderr, "\t[remap] %d(%s) - Expect: %lf, Get: %lf\n", i, channel_names[ CHANNEL_INDEX_TO_ORDER[out_layout][index] ], (mask & in_layout_mask) ? audio_inputs[out_layout].data[index] : 0, out[i]);
      ASSERT_EQ((mask & in_layout_mask) ? audio_inputs[out_layout].data[index] : 0, out[i]);
      continue;
    }

    // downmix_fallback
    fprintf(stderr, "\t[fallback] %d - Expect: %lf, Get: %lf\n", i, audio_inputs[in_layout].data[index], out[i]);
    ASSERT_EQ(audio_inputs[in_layout].data[index], out[i]);
  }
}

TEST(cubeb, mixer)
{
  for (auto audio_input : audio_inputs) {
    for (auto audio_output : layout_infos) {
      downmix_test(audio_input.data, audio_input.layout, audio_output.layout);
    }
  }
}