aboutsummaryrefslogtreecommitdiffhomepage
path: root/stacksize
diff options
context:
space:
mode:
authorAyke van Laethem <[email protected]>2020-07-10 17:05:09 +0200
committerRon Evans <[email protected]>2020-07-11 14:47:43 +0200
commitd60631551540799f4431b56d35d6e586c488c834 (patch)
tree96f93c630ed3285dbf1c78cfb6c6565b851e12e4 /stacksize
parent60fdf812093eb70ffe2f55d3ed52f14a81ec69fe (diff)
downloadtinygo-d60631551540799f4431b56d35d6e586c488c834.tar.gz
tinygo-d60631551540799f4431b56d35d6e586c488c834.zip
builder: try to determine stack size information at compile time
For now, this is just an extra flag that can be used to print stack frame information, but this is intended to provide a way to determine stack sizes for goroutines at compile time in many cases. Stack sizes are often somewhere around 350 bytes so are in fact not all that big usually. Once this can be determined at compile time in many cases, it is possible to use this information when available and as a result increase the fallback stack size if the size cannot be determined at compile time. This should reduce stack overflows while at the same time reducing RAM consumption in many cases. Interesting output for testdata/channel.go: function stack usage (in bytes) Reset_Handler 332 .Lcommand-line-arguments.fastreceiver 220 .Lcommand-line-arguments.fastsender 192 .Lcommand-line-arguments.iterator 192 .Lcommand-line-arguments.main$1 184 .Lcommand-line-arguments.main$2 200 .Lcommand-line-arguments.main$3 200 .Lcommand-line-arguments.main$4 328 .Lcommand-line-arguments.receive 176 .Lcommand-line-arguments.selectDeadlock 72 .Lcommand-line-arguments.selectNoOp 72 .Lcommand-line-arguments.send 184 .Lcommand-line-arguments.sendComplex 192 .Lcommand-line-arguments.sender 192 .Lruntime.run$1 548 This shows that the stack size (if these numbers are correct) can in fact be determined automatically in many cases, especially for small goroutines. One of the great things about Go is lightweight goroutines, and reducing stack sizes is very important to make goroutines lightweight on microcontrollers.
Diffstat (limited to 'stacksize')
-rw-r--r--stacksize/dwarf.go280
-rw-r--r--stacksize/stacksize.go296
2 files changed, 576 insertions, 0 deletions
diff --git a/stacksize/dwarf.go b/stacksize/dwarf.go
new file mode 100644
index 000000000..d913186f6
--- /dev/null
+++ b/stacksize/dwarf.go
@@ -0,0 +1,280 @@
+package stacksize
+
+// This file implements parsing DWARF call frame information and interpreting
+// the CFI bytecode, or enough of it for most practical code.
+
+import (
+ "bytes"
+ "debug/elf"
+ "encoding/binary"
+ "fmt"
+ "io"
+)
+
+// dwarfCIE represents one DWARF Call Frame Information structure.
+type dwarfCIE struct {
+ bytecode []byte
+ codeAlignmentFactor uint64
+}
+
+// parseFrames parses all call frame information from a .debug_frame section and
+// provides the passed in symbols map with frame size information.
+func parseFrames(f *elf.File, data []byte, symbols map[uint64]*CallNode) error {
+ if f.Class != elf.ELFCLASS32 {
+ // TODO: ELF64
+ return fmt.Errorf("expected ELF32")
+ }
+ cies := make(map[uint32]*dwarfCIE)
+
+ // Read each entity.
+ r := bytes.NewBuffer(data)
+ for {
+ start := len(data) - r.Len()
+ var length uint32
+ err := binary.Read(r, binary.LittleEndian, &length)
+ if err == io.EOF {
+ return nil
+ }
+ if err != nil {
+ return err
+ }
+ var cie uint32
+ err = binary.Read(r, binary.LittleEndian, &cie)
+ if err != nil {
+ return err
+ }
+ if cie == 0xffffffff {
+ // This is a CIE.
+ var fields struct {
+ Version uint8
+ Augmentation uint8
+ AddressSize uint8
+ SegmentSize uint8
+ }
+ err = binary.Read(r, binary.LittleEndian, &fields)
+ if err != nil {
+ return err
+ }
+ if fields.Version != 4 {
+ return fmt.Errorf("unimplemented: .debug_frame version %d", fields.Version)
+ }
+ if fields.Augmentation != 0 {
+ return fmt.Errorf("unimplemented: .debug_frame with augmentation")
+ }
+ if fields.SegmentSize != 0 {
+ return fmt.Errorf("unimplemented: .debug_frame with segment size")
+ }
+ codeAlignmentFactor, err := readULEB128(r)
+ if err != nil {
+ return err
+ }
+ _, err = readSLEB128(r) // data alignment factor
+ if err != nil {
+ return err
+ }
+ _, err = readULEB128(r) // return address register
+ if err != nil {
+ return err
+ }
+ rest := (start + int(length) + 4) - (len(data) - r.Len())
+ bytecode := r.Next(rest)
+ cies[uint32(start)] = &dwarfCIE{
+ codeAlignmentFactor: codeAlignmentFactor,
+ bytecode: bytecode,
+ }
+ } else {
+ // This is a FDE.
+ var fields struct {
+ InitialLocation uint32
+ AddressRange uint32
+ }
+ err = binary.Read(r, binary.LittleEndian, &fields)
+ if err != nil {
+ return err
+ }
+ if _, ok := cies[cie]; !ok {
+ return fmt.Errorf("could not find CIE 0x%x in .debug_frame section", cie)
+ }
+ frame := frameInfo{
+ cie: cies[cie],
+ start: uint64(fields.InitialLocation),
+ loc: uint64(fields.InitialLocation),
+ length: uint64(fields.AddressRange),
+ }
+ rest := (start + int(length) + 4) - (len(data) - r.Len())
+ bytecode := r.Next(rest)
+
+ if frame.start == 0 {
+ // Not sure where these come from but they don't seem to be
+ // important.
+ continue
+ }
+
+ _, err = frame.exec(frame.cie.bytecode)
+ if err != nil {
+ return err
+ }
+ entries, err := frame.exec(bytecode)
+ if err != nil {
+ return err
+ }
+ var maxFrameSize uint64
+ for _, entry := range entries {
+ switch f.Machine {
+ case elf.EM_ARM:
+ if entry.cfaRegister != 13 { // r13 or sp
+ // something other than a stack pointer (on ARM)
+ return fmt.Errorf("%08x..%08x: unknown CFA register number %d", frame.start, frame.start+frame.length, entry.cfaRegister)
+ }
+ default:
+ return fmt.Errorf("unknown architecture: %s", f.Machine)
+ }
+ if entry.cfaOffset > maxFrameSize {
+ maxFrameSize = entry.cfaOffset
+ }
+ }
+ node := symbols[frame.start]
+ if node.Size != frame.length {
+ return fmt.Errorf("%s: symtab gives symbol length %d while DWARF gives symbol length %d", node, node.Size, frame.length)
+ }
+ node.FrameSize = maxFrameSize
+ node.FrameSizeType = Bounded
+ if debugPrint {
+ fmt.Printf("%08x..%08x: frame size %4d %s\n", frame.start, frame.start+frame.length, maxFrameSize, node)
+ }
+ }
+ }
+}
+
+// frameInfo contains the state of executing call frame information bytecode.
+type frameInfo struct {
+ cie *dwarfCIE
+ start uint64
+ loc uint64
+ length uint64
+ cfaRegister uint64
+ cfaOffset uint64
+}
+
+// frameInfoLine represents one line in the frame table (.debug_frame) at one
+// point in the execution of the bytecode.
+type frameInfoLine struct {
+ loc uint64
+ cfaRegister uint64
+ cfaOffset uint64
+}
+
+func (fi *frameInfo) newLine() frameInfoLine {
+ return frameInfoLine{
+ loc: fi.loc,
+ cfaRegister: fi.cfaRegister,
+ cfaOffset: fi.cfaOffset,
+ }
+}
+
+// exec executes the given bytecode in the CFI. Most CFI bytecode is actually
+// very simple and provides a way to determine the maximum call frame size.
+//
+// The frame size often changes multiple times in a function, for example the
+// frame size may be adjusted in the prologue and epilogue. Each frameInfoLine
+// may contain such a change.
+func (fi *frameInfo) exec(bytecode []byte) ([]frameInfoLine, error) {
+ var entries []frameInfoLine
+ r := bytes.NewBuffer(bytecode)
+ for {
+ op, err := r.ReadByte()
+ if err != nil {
+ if err == io.EOF {
+ entries = append(entries, fi.newLine())
+ return entries, nil
+ }
+ return nil, err
+ }
+ highBits := op >> 6 // high order 2 bits
+ lowBits := op & 0x1f
+ switch highBits {
+ case 1: // DW_CFA_advance_loc
+ fi.loc += uint64(lowBits) * fi.cie.codeAlignmentFactor
+ entries = append(entries, fi.newLine())
+ case 2: // DW_CFA_offset
+ // This indicates where a register is saved on the stack in the
+ // prologue. We can ignore that for our purposes.
+ _, err := readULEB128(r)
+ if err != nil {
+ return nil, err
+ }
+ case 0:
+ switch lowBits {
+ case 0: // DW_CFA_nop
+ // no operation
+ case 0x0c: // DW_CFA_def_cfa
+ register, err := readULEB128(r)
+ if err != nil {
+ return nil, err
+ }
+ offset, err := readULEB128(r)
+ if err != nil {
+ return nil, err
+ }
+ fi.cfaRegister = register
+ fi.cfaOffset = offset
+ case 0x0e: // DW_CFA_def_cfa_offset
+ offset, err := readULEB128(r)
+ if err != nil {
+ return nil, err
+ }
+ fi.cfaOffset = offset
+ default:
+ return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x", op)
+ }
+ default:
+ return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x", op)
+ }
+ }
+}
+
+// Source: https://en.wikipedia.org/wiki/LEB128#Decode_unsigned_integer
+func readULEB128(r *bytes.Buffer) (result uint64, err error) {
+ // TODO: guard against overflowing 64-bit integers.
+ var shift uint8
+ for {
+ b, err := r.ReadByte()
+ if err != nil {
+ return 0, err
+ }
+ result |= uint64(b&0x7f) << shift
+ if b&0x80 == 0 {
+ break
+ }
+ shift += 7
+ }
+ return
+}
+
+// Source: https://en.wikipedia.org/wiki/LEB128#Decode_signed_integer
+func readSLEB128(r *bytes.Buffer) (result int64, err error) {
+ var shift uint8
+
+ var b byte
+ var rawResult uint64
+ for {
+ b, err = r.ReadByte()
+ if err != nil {
+ return 0, err
+ }
+ rawResult |= uint64(b&0x7f) << shift
+ shift += 7
+ if b&0x80 == 0 {
+ break
+ }
+ }
+
+ // sign bit of byte is second high order bit (0x40)
+ if shift < 64 && b&0x40 != 0 {
+ // sign extend
+ rawResult |= ^uint64(0) << shift
+ }
+ result = int64(rawResult)
+
+ return
+}
diff --git a/stacksize/stacksize.go b/stacksize/stacksize.go
new file mode 100644
index 000000000..da9143b20
--- /dev/null
+++ b/stacksize/stacksize.go
@@ -0,0 +1,296 @@
+// Package stacksize tries to determine the call graph for ELF binaries and
+// tries to parse stack size information from DWARF call frame information.
+package stacksize
+
+import (
+ "debug/elf"
+ "encoding/binary"
+ "errors"
+ "fmt"
+ "os"
+ "sort"
+)
+
+// set to true to print information useful for debugging
+const debugPrint = false
+
+type sizeType uint8
+
+// Results after trying to determine the stack size of a function in the call
+// graph. The goal is to find a maximum (bounded) stack size, but sometimes this
+// is not possible for some reasons such as recursion or indirect calls.
+const (
+ Undefined sizeType = iota // not yet calculated
+ Unknown // child has unknown stack size
+ Bounded // stack size is fixed at compile time (no recursion etc)
+ Recursive
+ IndirectCall
+)
+
+// CallNode is a node in the call graph (that is, a function). Because this is
+// determined after linking, there may be multiple names for a single function
+// (due to aliases). It is also possible multiple functions have the same name
+// (but are in fact different), for example for static functions in C.
+type CallNode struct {
+ Names []string
+ Address uint64 // address at which the function is linked (without T bit on ARM)
+ Size uint64 // symbol size, in bytes
+ Children []*CallNode // functions this function calls
+ FrameSize uint64 // frame size, if FrameSizeType is Bounded
+ FrameSizeType sizeType // can be Undefined or Bounded
+ stackSize uint64
+ stackSizeType sizeType
+ missingFrameInfo *CallNode // the child function that is the cause for not being able to determine the stack size
+}
+
+func (n *CallNode) String() string {
+ if n == nil {
+ return "<nil>"
+ }
+ return n.Names[0]
+}
+
+// CallGraph parses the ELF file and reads DWARF call frame information to
+// determine frame sizes for each function, as far as that's possible. Because
+// at this point it is not possible to determine indirect calls, a list of
+// indirect function calling functions needs to be supplied separately.
+//
+// This function does not attempt to determine the stack size for functions.
+// This is done by calling StackSize on a function in the call graph.
+func CallGraph(f *elf.File, callsIndirectFunction []string) (map[string][]*CallNode, error) {
+ // Sanity check that there is exactly one symbol table.
+ // Multiple symbol tables are possible, but aren't yet supported below.
+ numSymbolTables := 0
+ for _, section := range f.Sections {
+ if section.Type == elf.SHT_SYMTAB {
+ numSymbolTables++
+ }
+ }
+ if numSymbolTables != 1 {
+ return nil, fmt.Errorf("expected exactly one symbol table, got %d", numSymbolTables)
+ }
+
+ // Collect all symbols in the executable.
+ symbols := make(map[uint64]*CallNode)
+ symbolList := make([]*CallNode, 0)
+ symbolNames := make(map[string][]*CallNode)
+ elfSymbols, err := f.Symbols()
+ if err != nil {
+ return nil, err
+ }
+ for _, elfSymbol := range elfSymbols {
+ if elf.ST_TYPE(elfSymbol.Info) != elf.STT_FUNC {
+ continue
+ }
+ address := elfSymbol.Value
+ if f.Machine == elf.EM_ARM {
+ address = address &^ 1
+ }
+ var node *CallNode
+ if n, ok := symbols[address]; ok {
+ // Existing symbol.
+ if n.Size != elfSymbol.Size {
+ return nil, fmt.Errorf("symbol at 0x%x has inconsistent size (%d for %s and %d for %s)", address, n.Size, n.Names[0], elfSymbol.Size, elfSymbol.Name)
+ }
+ node = n
+ node.Names = append(node.Names, elfSymbol.Name)
+ } else {
+ // New symbol.
+ node = &CallNode{
+ Names: []string{elfSymbol.Name},
+ Address: address,
+ Size: elfSymbol.Size,
+ }
+ symbols[address] = node
+ symbolList = append(symbolList, node)
+ }
+ symbolNames[elfSymbol.Name] = append(symbolNames[elfSymbol.Name], node)
+ }
+
+ // Sort symbols by address, for binary searching.
+ sort.Slice(symbolList, func(i, j int) bool {
+ return symbolList[i].Address < symbolList[j].Address
+ })
+
+ // Load relocations and construct the call graph.
+ for _, section := range f.Sections {
+ if section.Type != elf.SHT_REL {
+ continue
+ }
+ if section.Entsize != 8 {
+ // Assume ELF32, this should be fixed.
+ return nil, fmt.Errorf("only ELF32 is supported at this time")
+ }
+ data, err := section.Data()
+ if err != nil {
+ return nil, err
+ }
+ for i := uint64(0); i < section.Size/section.Entsize; i++ {
+ offset := binary.LittleEndian.Uint32(data[i*section.Entsize:])
+ info := binary.LittleEndian.Uint32(data[i*section.Entsize+4:])
+ if elf.R_SYM32(info) == 0 {
+ continue
+ }
+ elfSymbol := elfSymbols[elf.R_SYM32(info)-1]
+ if elf.ST_TYPE(elfSymbol.Info) != elf.STT_FUNC {
+ continue
+ }
+ address := elfSymbol.Value
+ if f.Machine == elf.EM_ARM {
+ address = address &^ 1
+ }
+ childSym := symbols[address]
+ switch f.Machine {
+ case elf.EM_ARM:
+ relocType := elf.R_ARM(elf.R_TYPE32(info))
+ parentSym := findSymbol(symbolList, uint64(offset))
+ if debugPrint {
+ fmt.Fprintf(os.Stderr, "found relocation %-24s at %s (0x%x) to %s (0x%x)\n", relocType, parentSym, offset, childSym, childSym.Address)
+ }
+ isCall := true
+ switch relocType {
+ case elf.R_ARM_THM_PC22: // actually R_ARM_THM_CALL
+ // used for bl calls
+ case elf.R_ARM_THM_JUMP24:
+ // used for b.w jumps
+ isCall = parentSym != childSym
+ case elf.R_ARM_THM_JUMP11:
+ // used for b.n jumps
+ isCall = parentSym != childSym
+ case elf.R_ARM_THM_MOVW_ABS_NC, elf.R_ARM_THM_MOVT_ABS:
+ // used for getting a function pointer
+ isCall = false
+ case elf.R_ARM_ABS32:
+ // used in the reset vector for pointers
+ isCall = false
+ default:
+ return nil, fmt.Errorf("unknown relocation: %s", relocType)
+ }
+ if isCall {
+ if parentSym != nil {
+ parentSym.Children = append(parentSym.Children, childSym)
+ }
+ }
+ default:
+ return nil, fmt.Errorf("unknown architecture: %s", f.Machine)
+ }
+ }
+ }
+
+ // Set fixed frame size information, depending on the architecture.
+ switch f.Machine {
+ case elf.EM_ARM:
+ knownFrameSizes := map[string]uint64{
+ // implemented in assembly in TinyGo
+ "tinygo_startTask": 0, // thunk
+ "tinygo_getSystemStackPointer": 0, // getter
+ "tinygo_switchToScheduler": 0, // calls tinygo_swapTask
+ "tinygo_switchToTask": 0, // calls tinygo_swapTask
+ "tinygo_swapTask": 9 * 4, // 9 registers saved
+ "tinygo_scanCurrentStack": 9 * 4, // 9 registers saved
+
+ // implemented with assembly in compiler-rt
+ "__aeabi_uidivmod": 3 * 4, // 3 registers on thumb1 but 1 register on thumb2
+ }
+ for name, size := range knownFrameSizes {
+ if sym, ok := symbolNames[name]; ok {
+ if len(sym) > 1 {
+ return nil, fmt.Errorf("expected zero or one occurence of the symbol %s, found %d", name, len(sym))
+ }
+ sym[0].FrameSize = size
+ sym[0].FrameSizeType = Bounded
+ }
+ }
+ }
+
+ // Mark functions that do indirect calls (which cannot be determined
+ // directly from ELF/DWARF information).
+ for _, name := range callsIndirectFunction {
+ for _, fn := range symbolNames[name] {
+ fn.stackSizeType = IndirectCall
+ fn.missingFrameInfo = fn
+ }
+ }
+
+ // Read the .debug_frame section.
+ section := f.Section(".debug_frame")
+ if section == nil {
+ return nil, errors.New("no .debug_frame section present, binary was compiled without debug information")
+ }
+ data, err := section.Data()
+ if err != nil {
+ return nil, fmt.Errorf("could not read .debug_frame section: %w", err)
+ }
+ err = parseFrames(f, data, symbols)
+ if err != nil {
+ return nil, err
+ }
+
+ return symbolNames, nil
+}
+
+// findSymbol determines in which symbol the given address lies.
+func findSymbol(symbolList []*CallNode, address uint64) *CallNode {
+ // TODO: binary search
+ for _, sym := range symbolList {
+ if address >= sym.Address && address < sym.Address+sym.Size {
+ return sym
+ }
+ }
+ return nil
+}
+
+// StackSize tries to determine the stack size of the given call graph node. It
+// returns the maximum stack size, whether this size can be known at compile
+// time and the call node responsible for failing to determine the maximum stack
+// usage. The stack size is only valid if sizeType is Bounded.
+func (node *CallNode) StackSize() (uint64, sizeType, *CallNode) {
+ if node.stackSizeType == Undefined {
+ node.determineStackSize(make(map[*CallNode]struct{}))
+ }
+ return node.stackSize, node.stackSizeType, node.missingFrameInfo
+}
+
+// determineStackSize tries to determine the maximum stack size for this
+// function, recursively.
+func (node *CallNode) determineStackSize(parents map[*CallNode]struct{}) {
+ if _, ok := parents[node]; ok {
+ // The function calls itself (directly or indirectly).
+ node.stackSizeType = Recursive
+ node.missingFrameInfo = node
+ return
+ }
+ parents[node] = struct{}{}
+ defer func() {
+ delete(parents, node)
+ }()
+ switch node.FrameSizeType {
+ case Bounded:
+ // Determine the stack size recursively.
+ childMaxStackSize := uint64(0)
+ for _, child := range node.Children {
+ if child.stackSizeType == Undefined {
+ child.determineStackSize(parents)
+ }
+ switch child.stackSizeType {
+ case Bounded:
+ if child.stackSize > childMaxStackSize {
+ childMaxStackSize = child.stackSize
+ }
+ case Unknown, Recursive, IndirectCall:
+ node.stackSizeType = child.stackSizeType
+ node.missingFrameInfo = child.missingFrameInfo
+ return
+ default:
+ panic("unknown child stack size type")
+ }
+ }
+ node.stackSize = node.FrameSize + childMaxStackSize
+ node.stackSizeType = Bounded
+ case Undefined:
+ node.stackSizeType = Unknown
+ node.missingFrameInfo = node
+ default:
+ panic("unknown frame size type") // unreachable
+ }
+}