aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--Makefile4
-rw-r--r--src/examples/pwm/arduino-mega1280.go12
-rw-r--r--src/machine/machine_atmega1280.go794
3 files changed, 809 insertions, 1 deletions
diff --git a/Makefile b/Makefile
index 51e78486e..ac6f82715 100644
--- a/Makefile
+++ b/Makefile
@@ -378,7 +378,9 @@ ifneq ($(AVR), 0)
@$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=arduino -scheduler=tasks examples/blinky1
@$(MD5SUM) test.hex
- $(TINYGO) build -size short -o test.hex -target=arduino-mega1280 examples/blinky1
+ $(TINYGO) build -size short -o test.hex -target=arduino-mega1280 examples/blinky1
+ @$(MD5SUM) test.hex
+ $(TINYGO) build -size short -o test.hex -target=arduino-mega1280 examples/pwm
@$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=arduino-nano examples/blinky1
@$(MD5SUM) test.hex
diff --git a/src/examples/pwm/arduino-mega1280.go b/src/examples/pwm/arduino-mega1280.go
new file mode 100644
index 000000000..824d2bdad
--- /dev/null
+++ b/src/examples/pwm/arduino-mega1280.go
@@ -0,0 +1,12 @@
+// +build arduino_mega1280
+
+package main
+
+import "machine"
+
+var (
+ // Configuration on an Arduino Uno.
+ pwm = machine.Timer3
+ pinA = machine.PH3 // pin 6 on the Mega
+ pinB = machine.PH4 // pin 7 on the Mega
+)
diff --git a/src/machine/machine_atmega1280.go b/src/machine/machine_atmega1280.go
index 22217a32b..ae06c028f 100644
--- a/src/machine/machine_atmega1280.go
+++ b/src/machine/machine_atmega1280.go
@@ -5,6 +5,7 @@ package machine
import (
"device/avr"
"runtime/volatile"
+ "runtime/interrupt"
)
const irq_USART0_RX = avr.IRQ_USART0_RX
@@ -127,6 +128,799 @@ func (p Pin) getPortMask() (*volatile.Register8, uint8) {
}
}
+// PWM is one PWM peripheral, which consists of a counter and two output
+// channels (that can be connected to two fixed pins). You can set the frequency
+// using SetPeriod, but only for all the channels in this PWM peripheral at
+// once.
+type PWM struct {
+ num uint8
+}
+
+var (
+ Timer0 = PWM{0} // 8 bit timer for PB7 and PG5
+ Timer1 = PWM{1} // 16 bit timer for PB5 and PB6
+ Timer2 = PWM{2} // 8 bit timer for PB4 and PH6
+ Timer3 = PWM{3} // 16 bit timer for PE3, PE4 and PE5
+ Timer4 = PWM{4} // 16 bit timer for PH3, PH4 and PH5
+ Timer5 = PWM{5} // 16 bit timer for PL3, PL4 and PL5
+)
+
+// Configure enables and configures this PWM.
+//
+// For the two 8 bit timers, there is only a limited number of periods
+// available, namely the CPU frequency divided by 256 and again divided by 1, 8,
+// 64, 256, or 1024. For a MCU running at 16MHz, this would be a period of 16µs,
+// 128µs, 1024µs, 4096µs, or 16384µs.
+func (pwm PWM) Configure(config PWMConfig) error {
+
+ switch pwm.num {
+ case 0, 2: // 8-bit timers (Timer/counter 0 and Timer/counter 2)
+ // Calculate the timer prescaler.
+ // While we could configure a flexible top, that would sacrifice one of
+ // the PWM output compare registers and thus a PWM channel. I've chosen
+ // to instead limit this timer to a fixed number of frequencies.
+ var prescaler uint8
+ switch config.Period {
+ case 0, (uint64(1e9) * 256 * 1) / uint64(CPUFrequency()):
+ prescaler = 1
+ case (uint64(1e9) * 256 * 8) / uint64(CPUFrequency()):
+ prescaler = 2
+ case (uint64(1e9) * 256 * 64) / uint64(CPUFrequency()):
+ prescaler = 3
+ case (uint64(1e9) * 256 * 256) / uint64(CPUFrequency()):
+ prescaler = 4
+ case (uint64(1e9) * 256 * 1024) / uint64(CPUFrequency()):
+ prescaler = 5
+ default:
+ return ErrPWMPeriodTooLong
+ }
+
+ if pwm.num == 0 {
+ avr.TCCR0B.Set(prescaler)
+ // Set the PWM mode to fast PWM (mode = 3).
+ avr.TCCR0A.Set(avr.TCCR0A_WGM00 | avr.TCCR0A_WGM01)
+ } else {
+ avr.TCCR2B.Set(prescaler)
+ // Set the PWM mode to fast PWM (mode = 3).
+ avr.TCCR2A.Set(avr.TCCR2A_WGM20 | avr.TCCR2A_WGM21)
+ }
+ case 1, 3, 4, 5:
+ // The top value is the number of PWM ticks a PWM period takes. It is
+ // initially picked assuming an unlimited counter top and no PWM
+ // prescaler.
+ var top uint64
+ if config.Period == 0 {
+ // Use a top appropriate for LEDs. Picking a relatively low period
+ // here (0xff) for consistency with the other timers.
+ top = 0xff
+ } else {
+ // The formula below calculates the following formula, optimized:
+ // top = period * (CPUFrequency() / 1e9)
+ // By dividing the CPU frequency first (an operation that is easily
+ // optimized away) the period has less chance of overflowing.
+ top = config.Period * (uint64(CPUFrequency()) / 1000000) / 1000
+ }
+
+
+ // The ideal PWM period may be larger than would fit in the PWM counter,
+ // which is 16 bits (see maxTop). Therefore, try to make the PWM clock
+ // speed lower with a prescaler to make the top value fit the maximum
+ // top value.
+
+ const maxTop = 0x10000
+ var prescalingTop uint8
+ switch {
+ case top <= maxTop:
+ prescalingTop = 3<<3 | 1 // no prescaling
+ case top/8 <= maxTop:
+ prescalingTop = 3<<3 | 2 // divide by 8
+ top /= 8
+ case top/64 <= maxTop:
+ prescalingTop = 3<<3 | 3 // divide by 64
+ top /= 64
+ case top/256 <= maxTop:
+ prescalingTop = 3<<3 | 4 // divide by 256
+ top /= 256
+ case top/1024 <= maxTop:
+ prescalingTop = 3<<3 | 5 // divide by 1024
+ top /= 1024
+ default:
+ return ErrPWMPeriodTooLong
+ }
+
+ // A top of 0x10000 is at 100% duty cycle. Subtract one because the
+ // counter counts from 0, not 1 (avoiding an off-by-one).
+ top -= 1
+
+ switch pwm.num {
+ case 1:
+ avr.TCCR1A.Set(avr.TCCR1A_WGM11)
+ avr.TCCR1B.Set(prescalingTop)
+ avr.ICR1H.Set(uint8(top >> 8))
+ avr.ICR1L.Set(uint8(top))
+ case 3:
+ avr.TCCR3A.Set(avr.TCCR3A_WGM31)
+ avr.TCCR3B.Set(prescalingTop)
+ avr.ICR3H.Set(uint8(top >> 8))
+ avr.ICR3L.Set(uint8(top))
+ case 4:
+ avr.TCCR4A.Set(avr.TCCR4A_WGM41)
+ avr.TCCR4B.Set(prescalingTop)
+ avr.ICR4H.Set(uint8(top >> 8))
+ avr.ICR4L.Set(uint8(top))
+ case 5:
+ avr.TCCR5A.Set(avr.TCCR5A_WGM51)
+ avr.TCCR5B.Set(prescalingTop)
+ avr.ICR5H.Set(uint8(top >> 8))
+ avr.ICR5L.Set(uint8(top))
+ }
+ }
+ return nil
+}
+
+// SetPeriod updates the period of this PWM peripheral.
+// To set a particular frequency, use the following formula:
+//
+// period = 1e9 / frequency
+//
+// If you use a period of 0, a period that works well for LEDs will be picked.
+//
+// SetPeriod will not change the prescaler, but also won't change the current
+// value in any of the channels. This means that you may need to update the
+// value for the particular channel.
+//
+// Note that you cannot pick any arbitrary period after the PWM peripheral has
+// been configured. If you want to switch between frequencies, pick the lowest
+// frequency (longest period) once when calling Configure and adjust the
+// frequency here as needed.
+func (pwm PWM) SetPeriod(period uint64) error {
+ if pwm.num == 0 || pwm.num == 2 {
+ return ErrPWMPeriodTooLong // TODO better error message
+ }
+
+ // The top value is the number of PWM ticks a PWM period takes. It is
+ // initially picked assuming an unlimited counter top and no PWM
+ // prescaler.
+ var top uint64
+ if period == 0 {
+ // Use a top appropriate for LEDs. Picking a relatively low period
+ // here (0xff) for consistency with the other timers.
+ top = 0xff
+ } else {
+ // The formula below calculates the following formula, optimized:
+ // top = period * (CPUFrequency() / 1e9)
+ // By dividing the CPU frequency first (an operation that is easily
+ // optimized away) the period has less chance of overflowing.
+ top = period * (uint64(CPUFrequency()) / 1000000) / 1000
+ }
+
+ var prescaler uint8
+
+ switch pwm.num {
+ case 1:
+ prescaler = avr.TCCR1B.Get() & 0x7
+ case 3:
+ prescaler = avr.TCCR3B.Get() & 0x7
+ case 4:
+ prescaler = avr.TCCR4B.Get() & 0x7
+ case 5:
+ prescaler = avr.TCCR5B.Get() & 0x7
+ }
+
+ switch prescaler {
+ case 1:
+ top /= 1
+ case 2:
+ top /= 8
+ case 3:
+ top /= 64
+ case 4:
+ top /= 256
+ case 5:
+ top /= 1024
+ }
+
+ // A top of 0x10000 is at 100% duty cycle. Subtract one because the counter
+ // counts from 0, not 1 (avoiding an off-by-one).
+ top -= 1
+
+ if top > 0xffff {
+ return ErrPWMPeriodTooLong
+ }
+
+ switch pwm.num {
+ case 1:
+ // Warning: this change is not atomic!
+ avr.ICR1H.Set(uint8(top >> 8))
+ avr.ICR1L.Set(uint8(top))
+
+ // ... and because of that, set the counter back to zero to avoid most of
+ // the effects of this non-atomicity.
+ avr.TCNT1H.Set(0)
+ avr.TCNT1L.Set(0)
+ case 3:
+ // Warning: this change is not atomic!
+ avr.ICR3H.Set(uint8(top >> 8))
+ avr.ICR3L.Set(uint8(top))
+
+ // ... and because of that, set the counter back to zero to avoid most of
+ // the effects of this non-atomicity.
+ avr.TCNT3H.Set(0)
+ avr.TCNT3L.Set(0)
+ case 4:
+ // Warning: this change is not atomic!
+ avr.ICR4H.Set(uint8(top >> 8))
+ avr.ICR4L.Set(uint8(top))
+
+ // ... and because of that, set the counter back to zero to avoid most of
+ // the effects of this non-atomicity.
+ avr.TCNT4H.Set(0)
+ avr.TCNT4L.Set(0)
+ case 5:
+ // Warning: this change is not atomic!
+ avr.ICR5H.Set(uint8(top >> 8))
+ avr.ICR5L.Set(uint8(top))
+
+ // ... and because of that, set the counter back to zero to avoid most of
+ // the effects of this non-atomicity.
+ avr.TCNT5H.Set(0)
+ avr.TCNT5L.Set(0)
+ }
+
+ return nil
+}
+
+// Top returns the current counter top, for use in duty cycle calculation. It
+// will only change with a call to Configure or SetPeriod, otherwise it is
+// constant.
+//
+// The value returned here is hardware dependent. In general, it's best to treat
+// it as an opaque value that can be divided by some number and passed to Set
+// (see Set documentation for more information).
+func (pwm PWM) Top() uint32 {
+ switch pwm.num {
+ case 1:
+ // Timer 1 has a configurable top value.
+ low := avr.ICR1L.Get()
+ high := avr.ICR1H.Get()
+ return uint32(high)<<8 | uint32(low) + 1
+ case 3:
+ // Timer 3 has a configurable top value.
+ low := avr.ICR3L.Get()
+ high := avr.ICR3H.Get()
+ return uint32(high)<<8 | uint32(low) + 1
+ case 4:
+ // Timer 4 has a configurable top value.
+ low := avr.ICR4L.Get()
+ high := avr.ICR4H.Get()
+ return uint32(high)<<8 | uint32(low) + 1
+ case 5:
+ // Timer 5 has a configurable top value.
+ low := avr.ICR5L.Get()
+ high := avr.ICR5H.Get()
+ return uint32(high)<<8 | uint32(low) + 1
+ }
+
+ // Other timers go from 0 to 0xff (0x100 or 256 in total).
+ return 256
+}
+
+// Counter returns the current counter value of the timer in this PWM
+// peripheral. It may be useful for debugging.
+func (pwm PWM) Counter() uint32 {
+ switch pwm.num {
+ case 0:
+ return uint32(avr.TCNT0.Get())
+ case 1:
+ mask := interrupt.Disable()
+ low := avr.TCNT1L.Get()
+ high := avr.TCNT1H.Get()
+ interrupt.Restore(mask)
+ return uint32(high)<<8 | uint32(low)
+ case 2:
+ return uint32(avr.TCNT2.Get())
+ case 3:
+ mask := interrupt.Disable()
+ low := avr.TCNT3L.Get()
+ high := avr.TCNT3H.Get()
+ interrupt.Restore(mask)
+ return uint32(high)<<8 | uint32(low)
+ case 4:
+ mask := interrupt.Disable()
+ low := avr.TCNT4L.Get()
+ high := avr.TCNT4H.Get()
+ interrupt.Restore(mask)
+ return uint32(high)<<8 | uint32(low)
+ case 5:
+ mask := interrupt.Disable()
+ low := avr.TCNT5L.Get()
+ high := avr.TCNT5H.Get()
+ interrupt.Restore(mask)
+ return uint32(high)<<8 | uint32(low)
+ }
+
+ // Unknown PWM.
+ return 0
+}
+
+// Period returns the used PWM period in nanoseconds. It might deviate slightly
+// from the configured period due to rounding.
+func (pwm PWM) Period() uint64 {
+ var prescaler uint8
+ switch pwm.num {
+ case 0:
+ prescaler = avr.TCCR0B.Get() & 0x7
+ case 1:
+ prescaler = avr.TCCR1B.Get() & 0x7
+ case 2:
+ prescaler = avr.TCCR2B.Get() & 0x7
+ case 3:
+ prescaler = avr.TCCR3B.Get() & 0x7
+ case 4:
+ prescaler = avr.TCCR4B.Get() & 0x7
+ case 5:
+ prescaler = avr.TCCR5B.Get() & 0x7
+ }
+ top := uint64(pwm.Top())
+ switch prescaler {
+ case 1: // prescaler 1
+ return 1 * top * 1000 / uint64(CPUFrequency()/1e6)
+ case 2: // prescaler 8
+ return 8 * top * 1000 / uint64(CPUFrequency()/1e6)
+ case 3: // prescaler 64
+ return 64 * top * 1000 / uint64(CPUFrequency()/1e6)
+ case 4: // prescaler 256
+ return 256 * top * 1000 / uint64(CPUFrequency()/1e6)
+ case 5: // prescaler 1024
+ return 1024 * top * 1000 / uint64(CPUFrequency()/1e6)
+ default: // unknown clock source
+ return 0
+ }
+}
+
+// Channel returns a PWM channel for the given pin.
+func (pwm PWM) Channel(pin Pin) (uint8, error) {
+ pin.Configure(PinConfig{Mode: PinOutput})
+ pin.Low()
+ switch pwm.num {
+ case 0:
+ switch pin {
+ case PB7: // channel A
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1)
+ return 0, nil
+ case PG5: // channel B
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1)
+ return 1, nil
+ }
+ case 1:
+ switch pin {
+ case PB5: // channel A
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1)
+ return 0, nil
+ case PB6: // channel B
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1)
+ return 1, nil
+ }
+ case 2:
+ switch pin {
+ case PB4: // channel A
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1)
+ return 0, nil
+ case PH6: // channel B
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1)
+ return 1, nil
+ }
+ case 3:
+ switch pin {
+ case PE3: // channel A
+ avr.TCCR3A.SetBits(avr.TCCR3A_COM3A1)
+ return 0, nil
+ case PE4: //channel B
+ avr.TCCR3A.SetBits(avr.TCCR3A_COM3B1)
+ return 1, nil
+ case PE5: //channel C
+ avr.TCCR3A.SetBits(avr.TCCR3A_COM3C1)
+ return 2, nil
+ }
+ case 4:
+ switch pin {
+ case PH3: // channel A
+ avr.TCCR4A.SetBits(avr.TCCR4A_COM4A1)
+ return 0, nil
+ case PH4: //channel B
+ avr.TCCR4A.SetBits(avr.TCCR4A_COM4B1)
+ return 1, nil
+ case PH5: //channel C
+ avr.TCCR4A.SetBits(avr.TCCR4A_COM4C1)
+ return 2, nil
+ }
+ case 5:
+ switch pin {
+ case PL3: // channel A
+ avr.TCCR5A.SetBits(avr.TCCR5A_COM5A1)
+ return 0, nil
+ case PL4: //channel B
+ avr.TCCR5A.SetBits(avr.TCCR5A_COM5B1)
+ return 1, nil
+ case PL5: //channel C
+ avr.TCCR5A.SetBits(avr.TCCR5A_COM5C1)
+ return 2, nil
+ }
+ }
+ return 0, ErrInvalidOutputPin
+}
+
+// SetInverting sets whether to invert the output of this channel.
+// Without inverting, a 25% duty cycle would mean the output is high for 25% of
+// the time and low for the rest. Inverting flips the output as if a NOT gate
+// was placed at the output, meaning that the output would be 25% low and 75%
+// high with a duty cycle of 25%.
+//
+// Note: the invert state may not be applied on the AVR until the next call to
+// ch.Set().
+func (pwm PWM) SetInverting(channel uint8, inverting bool) {
+ switch pwm.num {
+ case 0:
+ switch channel {
+ case 0: // channel A, PB7
+ if inverting {
+ avr.PORTB.SetBits(1 << 7) // PB7 high
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0A0)
+ } else {
+ avr.PORTB.ClearBits(1 << 7) // PB7 low
+ avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A0)
+ }
+ case 1: // channel B, PG5
+ if inverting {
+ avr.PORTG.SetBits(1 << 5) // PG5 high
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0B0)
+ } else {
+ avr.PORTG.ClearBits(1 << 5) // PG5 low
+ avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B0)
+ }
+ }
+ case 1:
+ // Note: the COM1A0/COM1B0 bit is not set with the configuration below.
+ // It will be set the following call to Set(), however.
+ switch channel {
+ case 0: // channel A, PB5
+ if inverting {
+ avr.PORTB.SetBits(1 << 5) // PB5 high
+ } else {
+ avr.PORTB.ClearBits(1 << 5) // PB5 low
+ }
+ case 1: // channel B, PB6
+ if inverting {
+ avr.PORTB.SetBits(1 << 6) // PB6 high
+ } else {
+ avr.PORTB.ClearBits(1 << 6) // PB6 low
+ }
+ }
+ case 2:
+ switch channel {
+ case 0: // channel A, PB4
+ if inverting {
+ avr.PORTB.SetBits(1 << 4) // PB4 high
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2A0)
+ } else {
+ avr.PORTB.ClearBits(1 << 4) // PB4 low
+ avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A0)
+ }
+ case 1: // channel B, PH6
+ if inverting {
+ avr.PORTH.SetBits(1 << 6) // PH6 high
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2B0)
+ } else {
+ avr.PORTH.ClearBits(1 << 6) // PH6 low
+ avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B0)
+ }
+ }
+ case 3:
+ // Note: the COM3A0/COM3B0 bit is not set with the configuration below.
+ // It will be set the following call to Set(), however.
+ switch channel {
+ case 0: // channel A, PE3
+ if inverting {
+ avr.PORTE.SetBits(1 << 3) // PE3 high
+ } else {
+ avr.PORTE.ClearBits(1 << 3) // PE3 low
+ }
+ case 1: // channel B, PE4
+ if inverting {
+ avr.PORTE.SetBits(1 << 4) // PE4 high
+ } else {
+ avr.PORTE.ClearBits(1 << 4) // PE4 low
+ }
+ case 2: // channel C, PE5
+ if inverting {
+ avr.PORTE.SetBits(1 << 5) // PE4 high
+ } else {
+ avr.PORTE.ClearBits(1 << 5) // PE4 low
+ }
+ }
+ case 4:
+ // Note: the COM3A0/COM3B0 bit is not set with the configuration below.
+ // It will be set the following call to Set(), however.
+ switch channel {
+ case 0: // channel A, PH3
+ if inverting {
+ avr.PORTH.SetBits(1 << 3) // PH3 high
+ } else {
+ avr.PORTH.ClearBits(1 << 3) // PH3 low
+ }
+ case 1: // channel B, PH4
+ if inverting {
+ avr.PORTH.SetBits(1 << 4) // PH4 high
+ } else {
+ avr.PORTH.ClearBits(1 << 4) // PH4 low
+ }
+ case 2: // channel C, PH5
+ if inverting {
+ avr.PORTH.SetBits(1 << 5) // PH4 high
+ } else {
+ avr.PORTH.ClearBits(1 << 5) // PH4 low
+ }
+ }
+ case 5:
+ // Note: the COM3A0/COM3B0 bit is not set with the configuration below.
+ // It will be set the following call to Set(), however.
+ switch channel {
+ case 0: // channel A, PL3
+ if inverting {
+ avr.PORTL.SetBits(1 << 3) // PL3 high
+ } else {
+ avr.PORTL.ClearBits(1 << 3) // PL3 low
+ }
+ case 1: // channel B, PL4
+ if inverting {
+ avr.PORTL.SetBits(1 << 4) // PL4 high
+ } else {
+ avr.PORTL.ClearBits(1 << 4) // PL4 low
+ }
+ case 2: // channel C, PH5
+ if inverting {
+ avr.PORTL.SetBits(1 << 5) // PL4 high
+ } else {
+ avr.PORTL.ClearBits(1 << 5) // PL4 low
+ }
+ }
+ }
+}
+
+// Set updates the channel value. This is used to control the channel duty
+// cycle, in other words the fraction of time the channel output is high (or low
+// when inverted). For example, to set it to a 25% duty cycle, use:
+//
+// pwm.Set(channel, pwm.Top() / 4)
+//
+// pwm.Set(channel, 0) will set the output to low and pwm.Set(channel,
+// pwm.Top()) will set the output to high, assuming the output isn't inverted.
+func (pwm PWM) Set(channel uint8, value uint32) {
+ switch pwm.num {
+ case 0:
+ value := uint16(value)
+ switch channel {
+ case 0: // channel A
+ if value == 0 {
+ avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A1)
+ } else {
+ avr.OCR0A.Set(uint8(value - 1))
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1)
+ }
+ case 1: // channel B
+ if value == 0 {
+ avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B1)
+ } else {
+ avr.OCR0B.Set(uint8(value) - 1)
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1)
+ }
+ }
+ case 1:
+ mask := interrupt.Disable()
+ switch channel {
+ case 0: // channel A, PB5
+ if value == 0 {
+ avr.TCCR1A.ClearBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR1AH.Set(uint8(value >> 8))
+ avr.OCR1AL.Set(uint8(value))
+ if avr.PORTB.HasBits(1 << 5) { // is PB1 high?
+ // Yes, set the inverting bit.
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1)
+ }
+ }
+ case 1: // channel B, PB6
+ if value == 0 {
+ avr.TCCR1A.ClearBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR1BH.Set(uint8(value >> 8))
+ avr.OCR1BL.Set(uint8(value))
+ if avr.PORTB.HasBits(1 << 6) { // is PB6 high?
+ // Yes, set the inverting bit.
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1)
+ }
+ }
+ }
+ interrupt.Restore(mask)
+ case 2:
+ value := uint16(value)
+ switch channel {
+ case 0: // channel A
+ if value == 0 {
+ avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A1)
+ } else {
+ avr.OCR2A.Set(uint8(value - 1))
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1)
+ }
+ case 1: // channel B
+ if value == 0 {
+ avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B1)
+ } else {
+ avr.OCR2B.Set(uint8(value - 1))
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1)
+ }
+ }
+ case 3:
+ mask := interrupt.Disable()
+ switch channel {
+ case 0: // channel A, PE3
+ if value == 0 {
+ avr.TCCR3A.ClearBits(avr.TCCR3A_COM3A1 | avr.TCCR3A_COM3A0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR3AH.Set(uint8(value >> 8))
+ avr.OCR3AL.Set(uint8(value))
+ if avr.PORTE.HasBits(1 << 3) { // is PE3 high?
+ // Yes, set the inverting bit.
+ avr.TCCR3A.SetBits(avr.TCCR3A_COM3A1 | avr.TCCR3A_COM3A0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR3A.SetBits(avr.TCCR3A_COM3A1)
+ }
+ }
+ case 1: // channel B, PE4
+ if value == 0 {
+ avr.TCCR3A.ClearBits(avr.TCCR3A_COM3B1 | avr.TCCR3A_COM3B0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR3BH.Set(uint8(value >> 8))
+ avr.OCR3BL.Set(uint8(value))
+ if avr.PORTE.HasBits(1 << 4) { // is PE4 high?
+ // Yes, set the inverting bit.
+ avr.TCCR3A.SetBits(avr.TCCR3A_COM3B1 | avr.TCCR3A_COM3B0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR3A.SetBits(avr.TCCR3A_COM3B1)
+ }
+ }
+ case 2: // channel C, PE5
+ if value == 0 {
+ avr.TCCR3A.ClearBits(avr.TCCR3A_COM3C1 | avr.TCCR3A_COM3C0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR3CH.Set(uint8(value >> 8))
+ avr.OCR3CL.Set(uint8(value))
+ if avr.PORTE.HasBits(1 << 5) { // is PE5 high?
+ // Yes, set the inverting bit.
+ avr.TCCR3A.SetBits(avr.TCCR3A_COM3C1 | avr.TCCR3A_COM3C0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR3A.SetBits(avr.TCCR3A_COM3C1)
+ }
+ }
+ }
+ interrupt.Restore(mask)
+ case 4:
+ mask := interrupt.Disable()
+ switch channel {
+ case 0: // channel A, PH3
+ if value == 0 {
+ avr.TCCR4A.ClearBits(avr.TCCR4A_COM4A1 | avr.TCCR4A_COM4A0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR4AH.Set(uint8(value >> 8))
+ avr.OCR4AL.Set(uint8(value))
+ if avr.PORTH.HasBits(1 << 3) { // is PH3 high?
+ // Yes, set the inverting bit.
+ avr.TCCR4A.SetBits(avr.TCCR4A_COM4A1 | avr.TCCR4A_COM4A0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR4A.SetBits(avr.TCCR4A_COM4A1)
+ }
+ }
+ case 1: // channel B, PH4
+ if value == 0 {
+ avr.TCCR4A.ClearBits(avr.TCCR4A_COM4B1 | avr.TCCR4A_COM4B0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR4BH.Set(uint8(value >> 8))
+ avr.OCR4BL.Set(uint8(value))
+ if avr.PORTH.HasBits(1 << 4) { // is PH4 high?
+ // Yes, set the inverting bit.
+ avr.TCCR4A.SetBits(avr.TCCR4A_COM4B1 | avr.TCCR4A_COM4B0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR4A.SetBits(avr.TCCR4A_COM4B1)
+ }
+ }
+ case 2: // channel C, PH5
+ if value == 0 {
+ avr.TCCR4A.ClearBits(avr.TCCR4A_COM4C1 | avr.TCCR4A_COM4C0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR4CH.Set(uint8(value >> 8))
+ avr.OCR4CL.Set(uint8(value))
+ if avr.PORTH.HasBits(1 << 5) { // is PH5 high?
+ // Yes, set the inverting bit.
+ avr.TCCR4A.SetBits(avr.TCCR4A_COM4C1 | avr.TCCR4A_COM4C0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR4A.SetBits(avr.TCCR4A_COM4C1)
+ }
+ }
+ }
+ interrupt.Restore(mask)
+ case 5:
+ mask := interrupt.Disable()
+ switch channel {
+ case 0: // channel A, PL3
+ if value == 0 {
+ avr.TCCR5A.ClearBits(avr.TCCR5A_COM5A1 | avr.TCCR5A_COM5A0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR5AH.Set(uint8(value >> 8))
+ avr.OCR5AL.Set(uint8(value))
+ if avr.PORTL.HasBits(1 << 3) { // is PL3 high?
+ // Yes, set the inverting bit.
+ avr.TCCR5A.SetBits(avr.TCCR5A_COM5A1 | avr.TCCR5A_COM5A0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR5A.SetBits(avr.TCCR5A_COM5A1)
+ }
+ }
+ case 1: // channel B, PL4
+ if value == 0 {
+ avr.TCCR5A.ClearBits(avr.TCCR5A_COM5B1 | avr.TCCR5A_COM5B0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR5BH.Set(uint8(value >> 8))
+ avr.OCR5BL.Set(uint8(value))
+ if avr.PORTL.HasBits(1 << 4) { // is PL4 high?
+ // Yes, set the inverting bit.
+ avr.TCCR5A.SetBits(avr.TCCR5A_COM5B1 | avr.TCCR5A_COM5B0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR5A.SetBits(avr.TCCR5A_COM5B1)
+ }
+ }
+ case 2: // channel C, PL5
+ if value == 0 {
+ avr.TCCR5A.ClearBits(avr.TCCR5A_COM5C1 | avr.TCCR5A_COM5C0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR5CH.Set(uint8(value >> 8))
+ avr.OCR5CL.Set(uint8(value))
+ if avr.PORTL.HasBits(1 << 5) { // is PL5 high?
+ // Yes, set the inverting bit.
+ avr.TCCR5A.SetBits(avr.TCCR5A_COM5C1 | avr.TCCR5A_COM5C0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR5A.SetBits(avr.TCCR5A_COM5C1)
+ }
+ }
+ }
+ interrupt.Restore(mask)
+ }
+}
+
// SPI configuration
var SPI0 = SPI{
spcr: avr.SPCR,