//go:build avr && (atmega328p || atmega328pb) package machine import ( "device/avr" "runtime/interrupt" "runtime/volatile" ) // PWM is one PWM peripheral, which consists of a counter and two output // channels (that can be connected to two fixed pins). You can set the frequency // using SetPeriod, but only for all the channels in this PWM peripheral at // once. type PWM struct { num uint8 } var ( Timer0 = PWM{0} // 8 bit timer for PD5 and PD6 Timer1 = PWM{1} // 16 bit timer for PB1 and PB2 Timer2 = PWM{2} // 8 bit timer for PB3 and PD3 ) // Configure enables and configures this PWM. // // For the two 8 bit timers, there is only a limited number of periods // available, namely the CPU frequency divided by 256 and again divided by 1, 8, // 64, 256, or 1024. For a MCU running at 16MHz, this would be a period of 16µs, // 128µs, 1024µs, 4096µs, or 16384µs. func (pwm PWM) Configure(config PWMConfig) error { switch pwm.num { case 0, 2: // 8-bit timers (Timer/counter 0 and Timer/counter 2) // Calculate the timer prescaler. // While we could configure a flexible top, that would sacrifice one of // the PWM output compare registers and thus a PWM channel. I've chosen // to instead limit this timer to a fixed number of frequencies. var prescaler uint8 switch config.Period { case 0, (uint64(1e9) * 256 * 1) / uint64(CPUFrequency()): prescaler = 1 case (uint64(1e9) * 256 * 8) / uint64(CPUFrequency()): prescaler = 2 case (uint64(1e9) * 256 * 64) / uint64(CPUFrequency()): prescaler = 3 case (uint64(1e9) * 256 * 256) / uint64(CPUFrequency()): prescaler = 4 case (uint64(1e9) * 256 * 1024) / uint64(CPUFrequency()): prescaler = 5 default: return ErrPWMPeriodTooLong } if pwm.num == 0 { avr.TCCR0B.Set(prescaler) // Set the PWM mode to fast PWM (mode = 3). avr.TCCR0A.Set(avr.TCCR0A_WGM00 | avr.TCCR0A_WGM01) // monotonic timer is using the same time as PWM:0 // we must adjust internal settings of monotonic timer when PWM:0 settings changed adjustMonotonicTimer() } else { avr.TCCR2B.Set(prescaler) // Set the PWM mode to fast PWM (mode = 3). avr.TCCR2A.Set(avr.TCCR2A_WGM20 | avr.TCCR2A_WGM21) } case 1: // Timer/counter 1 // The top value is the number of PWM ticks a PWM period takes. It is // initially picked assuming an unlimited counter top and no PWM // prescaler. var top uint64 if config.Period == 0 { // Use a top appropriate for LEDs. Picking a relatively low period // here (0xff) for consistency with the other timers. top = 0xff } else { // The formula below calculates the following formula, optimized: // top = period * (CPUFrequency() / 1e9) // By dividing the CPU frequency first (an operation that is easily // optimized away) the period has less chance of overflowing. top = config.Period * (uint64(CPUFrequency()) / 1000000) / 1000 } avr.TCCR1A.Set(avr.TCCR1A_WGM11) // The ideal PWM period may be larger than would fit in the PWM counter, // which is 16 bits (see maxTop). Therefore, try to make the PWM clock // speed lower with a prescaler to make the top value fit the maximum // top value. const maxTop = 0x10000 switch { case top <= maxTop: avr.TCCR1B.Set(3<<3 | 1) // no prescaling case top/8 <= maxTop: avr.TCCR1B.Set(3<<3 | 2) // divide by 8 top /= 8 case top/64 <= maxTop: avr.TCCR1B.Set(3<<3 | 3) // divide by 64 top /= 64 case top/256 <= maxTop: avr.TCCR1B.Set(3<<3 | 4) // divide by 256 top /= 256 case top/1024 <= maxTop: avr.TCCR1B.Set(3<<3 | 5) // divide by 1024 top /= 1024 default: return ErrPWMPeriodTooLong } // A top of 0x10000 is at 100% duty cycle. Subtract one because the // counter counts from 0, not 1 (avoiding an off-by-one). top -= 1 avr.ICR1H.Set(uint8(top >> 8)) avr.ICR1L.Set(uint8(top)) } return nil } // SetPeriod updates the period of this PWM peripheral. // To set a particular frequency, use the following formula: // // period = 1e9 / frequency // // If you use a period of 0, a period that works well for LEDs will be picked. // // SetPeriod will not change the prescaler, but also won't change the current // value in any of the channels. This means that you may need to update the // value for the particular channel. // // Note that you cannot pick any arbitrary period after the PWM peripheral has // been configured. If you want to switch between frequencies, pick the lowest // frequency (longest period) once when calling Configure and adjust the // frequency here as needed. func (pwm PWM) SetPeriod(period uint64) error { if pwm.num != 1 { return ErrPWMPeriodTooLong // TODO better error message } // The top value is the number of PWM ticks a PWM period takes. It is // initially picked assuming an unlimited counter top and no PWM // prescaler. var top uint64 if period == 0 { // Use a top appropriate for LEDs. Picking a relatively low period // here (0xff) for consistency with the other timers. top = 0xff } else { // The formula below calculates the following formula, optimized: // top = period * (CPUFrequency() / 1e9) // By dividing the CPU frequency first (an operation that is easily // optimized away) the period has less chance of overflowing. top = period * (uint64(CPUFrequency()) / 1000000) / 1000 } prescaler := avr.TCCR1B.Get() & 0x7 switch prescaler { case 1: top /= 1 case 2: top /= 8 case 3: top /= 64 case 4: top /= 256 case 5: top /= 1024 } // A top of 0x10000 is at 100% duty cycle. Subtract one because the counter // counts from 0, not 1 (avoiding an off-by-one). top -= 1 if top > 0xffff { return ErrPWMPeriodTooLong } // Warning: this change is not atomic! avr.ICR1H.Set(uint8(top >> 8)) avr.ICR1L.Set(uint8(top)) // ... and because of that, set the counter back to zero to avoid most of // the effects of this non-atomicity. avr.TCNT1H.Set(0) avr.TCNT1L.Set(0) return nil } // Top returns the current counter top, for use in duty cycle calculation. It // will only change with a call to Configure or SetPeriod, otherwise it is // constant. // // The value returned here is hardware dependent. In general, it's best to treat // it as an opaque value that can be divided by some number and passed to Set // (see Set documentation for more information). func (pwm PWM) Top() uint32 { if pwm.num == 1 { // Timer 1 has a configurable top value. low := avr.ICR1L.Get() high := avr.ICR1H.Get() return uint32(high)<<8 | uint32(low) + 1 } // Other timers go from 0 to 0xff (0x100 or 256 in total). return 256 } // Counter returns the current counter value of the timer in this PWM // peripheral. It may be useful for debugging. func (pwm PWM) Counter() uint32 { switch pwm.num { case 0: return uint32(avr.TCNT0.Get()) case 1: mask := interrupt.Disable() low := avr.TCNT1L.Get() high := avr.TCNT1H.Get() interrupt.Restore(mask) return uint32(high)<<8 | uint32(low) case 2: return uint32(avr.TCNT2.Get()) } // Unknown PWM. return 0 } // Period returns the used PWM period in nanoseconds. It might deviate slightly // from the configured period due to rounding. func (pwm PWM) Period() uint64 { var prescaler uint8 switch pwm.num { case 0: prescaler = avr.TCCR0B.Get() & 0x7 case 1: prescaler = avr.TCCR1B.Get() & 0x7 case 2: prescaler = avr.TCCR2B.Get() & 0x7 } top := uint64(pwm.Top()) switch prescaler { case 1: // prescaler 1 return 1 * top * 1000 / uint64(CPUFrequency()/1e6) case 2: // prescaler 8 return 8 * top * 1000 / uint64(CPUFrequency()/1e6) case 3: // prescaler 64 return 64 * top * 1000 / uint64(CPUFrequency()/1e6) case 4: // prescaler 256 return 256 * top * 1000 / uint64(CPUFrequency()/1e6) case 5: // prescaler 1024 return 1024 * top * 1000 / uint64(CPUFrequency()/1e6) default: // unknown clock source return 0 } } // Channel returns a PWM channel for the given pin. func (pwm PWM) Channel(pin Pin) (uint8, error) { pin.Configure(PinConfig{Mode: PinOutput}) pin.Low() switch pwm.num { case 0: switch pin { case PD6: // channel A avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1) return 0, nil case PD5: // channel B avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1) return 1, nil } case 1: switch pin { case PB1: // channel A avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1) return 0, nil case PB2: // channel B avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1) return 1, nil } case 2: switch pin { case PB3: // channel A avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1) return 0, nil case PD3: // channel B avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1) return 1, nil } } return 0, ErrInvalidOutputPin } // SetInverting sets whether to invert the output of this channel. // Without inverting, a 25% duty cycle would mean the output is high for 25% of // the time and low for the rest. Inverting flips the output as if a NOT gate // was placed at the output, meaning that the output would be 25% low and 75% // high with a duty cycle of 25%. // // Note: the invert state may not be applied on the AVR until the next call to // ch.Set(). func (pwm PWM) SetInverting(channel uint8, inverting bool) { switch pwm.num { case 0: switch channel { case 0: // channel A if inverting { avr.PORTB.SetBits(1 << 6) // PB6 high avr.TCCR0A.SetBits(avr.TCCR0A_COM0A0) } else { avr.PORTB.ClearBits(1 << 6) // PB6 low avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A0) } case 1: // channel B if inverting { avr.PORTB.SetBits(1 << 5) // PB5 high avr.TCCR0A.SetBits(avr.TCCR0A_COM0B0) } else { avr.PORTB.ClearBits(1 << 5) // PB5 low avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B0) } } case 1: // Note: the COM1A0/COM1B0 bit is not set with the configuration below. // It will be set the following call to Set(), however. switch channel { case 0: // channel A, PB1 if inverting { avr.PORTB.SetBits(1 << 1) // PB1 high } else { avr.PORTB.ClearBits(1 << 1) // PB1 low } case 1: // channel B, PB2 if inverting { avr.PORTB.SetBits(1 << 2) // PB2 high } else { avr.PORTB.ClearBits(1 << 2) // PB2 low } } case 2: switch channel { case 0: // channel A if inverting { avr.PORTB.SetBits(1 << 3) // PB3 high avr.TCCR2A.SetBits(avr.TCCR2A_COM2A0) } else { avr.PORTB.ClearBits(1 << 3) // PB3 low avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A0) } case 1: // channel B if inverting { avr.PORTD.SetBits(1 << 3) // PD3 high avr.TCCR2A.SetBits(avr.TCCR2A_COM2B0) } else { avr.PORTD.ClearBits(1 << 3) // PD3 low avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B0) } } } } // Set updates the channel value. This is used to control the channel duty // cycle, in other words the fraction of time the channel output is high (or low // when inverted). For example, to set it to a 25% duty cycle, use: // // pwm.Set(channel, pwm.Top() / 4) // // pwm.Set(channel, 0) will set the output to low and pwm.Set(channel, // pwm.Top()) will set the output to high, assuming the output isn't inverted. func (pwm PWM) Set(channel uint8, value uint32) { switch pwm.num { case 0: value := uint16(value) switch channel { case 0: // channel A if value == 0 { avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A1) } else { avr.OCR0A.Set(uint8(value - 1)) avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1) } case 1: // channel B if value == 0 { avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B1) } else { avr.OCR0B.Set(uint8(value) - 1) avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1) } } // monotonic timer is using the same time as PWM:0 // we must adjust internal settings of monotonic timer when PWM:0 settings changed adjustMonotonicTimer() case 1: mask := interrupt.Disable() switch channel { case 0: // channel A, PB1 if value == 0 { avr.TCCR1A.ClearBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0) } else { value := uint16(value) - 1 // yes, this is safe (it relies on underflow) avr.OCR1AH.Set(uint8(value >> 8)) avr.OCR1AL.Set(uint8(value)) if avr.PORTB.HasBits(1 << 1) { // is PB1 high? // Yes, set the inverting bit. avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0) } else { // No, output is non-inverting. avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1) } } case 1: // channel B, PB2 if value == 0 { avr.TCCR1A.ClearBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0) } else { value := uint16(value) - 1 // yes, this is safe (it relies on underflow) avr.OCR1BH.Set(uint8(value >> 8)) avr.OCR1BL.Set(uint8(value)) if avr.PORTB.HasBits(1 << 2) { // is PB2 high? // Yes, set the inverting bit. avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0) } else { // No, output is non-inverting. avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1) } } } interrupt.Restore(mask) case 2: value := uint16(value) switch channel { case 0: // channel A if value == 0 { avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A1) } else { avr.OCR2A.Set(uint8(value - 1)) avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1) } case 1: // channel B if value == 0 { avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B1) } else { avr.OCR2B.Set(uint8(value - 1)) avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1) } } } } // Pin Change Interrupts type PinChange uint8 const ( PinRising PinChange = 1 << iota PinFalling PinToggle = PinRising | PinFalling ) func (pin Pin) SetInterrupt(pinChange PinChange, callback func(Pin)) (err error) { switch { case pin >= PB0 && pin <= PB7: // PCMSK0 - PCINT0-7 pinStates[0] = avr.PINB.Get() pinIndex := pin - PB0 if pinChange&PinRising > 0 { pinCallbacks[0][pinIndex][0] = callback } if pinChange&PinFalling > 0 { pinCallbacks[0][pinIndex][1] = callback } if callback != nil { avr.PCMSK0.SetBits(1 << pinIndex) } else { avr.PCMSK0.ClearBits(1 << pinIndex) } avr.PCICR.SetBits(avr.PCICR_PCIE0) interrupt.New(avr.IRQ_PCINT0, handlePCINT0Interrupts) case pin >= PC0 && pin <= PC7: // PCMSK1 - PCINT8-14 pinStates[1] = avr.PINC.Get() pinIndex := pin - PC0 if pinChange&PinRising > 0 { pinCallbacks[1][pinIndex][0] = callback } if pinChange&PinFalling > 0 { pinCallbacks[1][pinIndex][1] = callback } if callback != nil { avr.PCMSK1.SetBits(1 << pinIndex) } else { avr.PCMSK1.ClearBits(1 << pinIndex) } avr.PCICR.SetBits(avr.PCICR_PCIE1) interrupt.New(avr.IRQ_PCINT1, handlePCINT1Interrupts) case pin >= PD0 && pin <= PD7: // PCMSK2 - PCINT16-23 pinStates[2] = avr.PIND.Get() pinIndex := pin - PD0 if pinChange&PinRising > 0 { pinCallbacks[2][pinIndex][0] = callback } if pinChange&PinFalling > 0 { pinCallbacks[2][pinIndex][1] = callback } if callback != nil { avr.PCMSK2.SetBits(1 << pinIndex) } else { avr.PCMSK2.ClearBits(1 << pinIndex) } avr.PCICR.SetBits(avr.PCICR_PCIE2) interrupt.New(avr.IRQ_PCINT2, handlePCINT2Interrupts) default: return ErrInvalidInputPin } return nil } var pinCallbacks [3][8][2]func(Pin) var pinStates [3]uint8 func handlePCINTInterrupts(intr uint8, port *volatile.Register8) { current := port.Get() change := pinStates[intr] ^ current pinStates[intr] = current for i := uint8(0); i < 8; i++ { if (change>>i)&0x01 != 0x01 { continue } pin := Pin(intr*8 + i) value := pin.Get() if value && pinCallbacks[intr][i][0] != nil { pinCallbacks[intr][i][0](pin) } if !value && pinCallbacks[intr][i][1] != nil { pinCallbacks[intr][i][1](pin) } } } func handlePCINT0Interrupts(intr interrupt.Interrupt) { handlePCINTInterrupts(0, avr.PINB) } func handlePCINT1Interrupts(intr interrupt.Interrupt) { handlePCINTInterrupts(1, avr.PINC) } func handlePCINT2Interrupts(intr interrupt.Interrupt) { handlePCINTInterrupts(2, avr.PIND) }