// +build nrf package machine import ( "device/nrf" "errors" "runtime/interrupt" "unsafe" ) var ( ErrTxInvalidSliceSize = errors.New("SPI write and read slices must be same size") ) type PinMode uint8 const ( PinInput PinMode = (nrf.GPIO_PIN_CNF_DIR_Input << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos) PinInputPullup PinMode = PinInput | (nrf.GPIO_PIN_CNF_PULL_Pullup << nrf.GPIO_PIN_CNF_PULL_Pos) PinInputPulldown PinMode = PinInput | (nrf.GPIO_PIN_CNF_PULL_Pulldown << nrf.GPIO_PIN_CNF_PULL_Pos) PinOutput PinMode = (nrf.GPIO_PIN_CNF_DIR_Output << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Disconnect << nrf.GPIO_PIN_CNF_INPUT_Pos) ) type PinChange uint8 // Pin change interrupt constants for SetInterrupt. const ( PinRising PinChange = nrf.GPIOTE_CONFIG_POLARITY_LoToHi PinFalling PinChange = nrf.GPIOTE_CONFIG_POLARITY_HiToLo PinToggle PinChange = nrf.GPIOTE_CONFIG_POLARITY_Toggle ) // Callbacks to be called for pins configured with SetInterrupt. var pinCallbacks [len(nrf.GPIOTE.CONFIG)]func(Pin) // Configure this pin with the given configuration. func (p Pin) Configure(config PinConfig) { cfg := config.Mode | nrf.GPIO_PIN_CNF_DRIVE_S0S1 | nrf.GPIO_PIN_CNF_SENSE_Disabled port, pin := p.getPortPin() port.PIN_CNF[pin].Set(uint32(cfg)) } // Set the pin to high or low. // Warning: only use this on an output pin! func (p Pin) Set(high bool) { port, pin := p.getPortPin() if high { port.OUTSET.Set(1 << pin) } else { port.OUTCLR.Set(1 << pin) } } // Return the register and mask to enable a given GPIO pin. This can be used to // implement bit-banged drivers. func (p Pin) PortMaskSet() (*uint32, uint32) { port, pin := p.getPortPin() return &port.OUTSET.Reg, 1 << pin } // Return the register and mask to disable a given port. This can be used to // implement bit-banged drivers. func (p Pin) PortMaskClear() (*uint32, uint32) { port, pin := p.getPortPin() return &port.OUTCLR.Reg, 1 << pin } // Get returns the current value of a GPIO pin. func (p Pin) Get() bool { port, pin := p.getPortPin() return (port.IN.Get()>>pin)&1 != 0 } // SetInterrupt sets an interrupt to be executed when a particular pin changes // state. The pin should already be configured as an input, including a pull up // or down if no external pull is provided. // // This call will replace a previously set callback on this pin. You can pass a // nil func to unset the pin change interrupt. If you do so, the change // parameter is ignored and can be set to any value (such as 0). func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error { // Some variables to easily check whether a channel was already configured // as an event channel for the given pin. // This is not just an optimization, this is requred: the datasheet says // that configuring more than one channel for a given pin results in // unpredictable behavior. expectedConfigMask := uint32(nrf.GPIOTE_CONFIG_MODE_Msk | nrf.GPIOTE_CONFIG_PSEL_Msk) expectedConfig := nrf.GPIOTE_CONFIG_MODE_Event<> nrf.GPIOTE_CONFIG_PSEL_Pos) pinCallbacks[i](pin) } } }).Enable() // Everything was configured correctly. return nil } // UART on the NRF. type UART struct { Buffer *RingBuffer } // UART var ( // NRF_UART0 is the hardware UART on the NRF SoC. NRF_UART0 = UART{Buffer: NewRingBuffer()} ) // Configure the UART. func (uart UART) Configure(config UARTConfig) { // Default baud rate to 115200. if config.BaudRate == 0 { config.BaudRate = 115200 } uart.SetBaudRate(config.BaudRate) // Set TX and RX pins if config.TX == 0 && config.RX == 0 { // Use default pins uart.setPins(UART_TX_PIN, UART_RX_PIN) } else { uart.setPins(config.TX, config.RX) } nrf.UART0.ENABLE.Set(nrf.UART_ENABLE_ENABLE_Enabled) nrf.UART0.TASKS_STARTTX.Set(1) nrf.UART0.TASKS_STARTRX.Set(1) nrf.UART0.INTENSET.Set(nrf.UART_INTENSET_RXDRDY_Msk) // Enable RX IRQ. intr := interrupt.New(nrf.IRQ_UART0, NRF_UART0.handleInterrupt) intr.SetPriority(0xc0) // low priority intr.Enable() } // SetBaudRate sets the communication speed for the UART. func (uart UART) SetBaudRate(br uint32) { // Magic: calculate 'baudrate' register from the input number. // Every value listed in the datasheet will be converted to the // correct register value, except for 192600. I suspect the value // listed in the nrf52 datasheet (0x0EBED000) is incorrectly rounded // and should be 0x0EBEE000, as the nrf51 datasheet lists the // nonrounded value 0x0EBEDFA4. // Some background: // https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values/2046#2046 rate := uint32((uint64(br/400)*uint64(400*0xffffffff/16000000) + 0x800) & 0xffffff000) nrf.UART0.BAUDRATE.Set(rate) } // WriteByte writes a byte of data to the UART. func (uart UART) WriteByte(c byte) error { nrf.UART0.EVENTS_TXDRDY.Set(0) nrf.UART0.TXD.Set(uint32(c)) for nrf.UART0.EVENTS_TXDRDY.Get() == 0 { } return nil } func (uart *UART) handleInterrupt(interrupt.Interrupt) { if nrf.UART0.EVENTS_RXDRDY.Get() != 0 { uart.Receive(byte(nrf.UART0.RXD.Get())) nrf.UART0.EVENTS_RXDRDY.Set(0x0) } } // I2C on the NRF. type I2C struct { Bus nrf.TWI_Type } // There are 2 I2C interfaces on the NRF. var ( I2C0 = (*I2C)(unsafe.Pointer(nrf.TWI0)) I2C1 = (*I2C)(unsafe.Pointer(nrf.TWI1)) ) // I2CConfig is used to store config info for I2C. type I2CConfig struct { Frequency uint32 SCL Pin SDA Pin } // Configure is intended to setup the I2C interface. func (i2c *I2C) Configure(config I2CConfig) error { // Default I2C bus speed is 100 kHz. if config.Frequency == 0 { config.Frequency = TWI_FREQ_100KHZ } // Default I2C pins if not set. if config.SDA == 0 && config.SCL == 0 { config.SDA = SDA_PIN config.SCL = SCL_PIN } // do config sclPort, sclPin := config.SCL.getPortPin() sclPort.PIN_CNF[sclPin].Set((nrf.GPIO_PIN_CNF_DIR_Input << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos) | (nrf.GPIO_PIN_CNF_PULL_Pullup << nrf.GPIO_PIN_CNF_PULL_Pos) | (nrf.GPIO_PIN_CNF_DRIVE_S0D1 << nrf.GPIO_PIN_CNF_DRIVE_Pos) | (nrf.GPIO_PIN_CNF_SENSE_Disabled << nrf.GPIO_PIN_CNF_SENSE_Pos)) sdaPort, sdaPin := config.SDA.getPortPin() sdaPort.PIN_CNF[sdaPin].Set((nrf.GPIO_PIN_CNF_DIR_Input << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos) | (nrf.GPIO_PIN_CNF_PULL_Pullup << nrf.GPIO_PIN_CNF_PULL_Pos) | (nrf.GPIO_PIN_CNF_DRIVE_S0D1 << nrf.GPIO_PIN_CNF_DRIVE_Pos) | (nrf.GPIO_PIN_CNF_SENSE_Disabled << nrf.GPIO_PIN_CNF_SENSE_Pos)) if config.Frequency == TWI_FREQ_400KHZ { i2c.Bus.FREQUENCY.Set(nrf.TWI_FREQUENCY_FREQUENCY_K400) } else { i2c.Bus.FREQUENCY.Set(nrf.TWI_FREQUENCY_FREQUENCY_K100) } i2c.Bus.ENABLE.Set(nrf.TWI_ENABLE_ENABLE_Enabled) i2c.setPins(config.SCL, config.SDA) return nil } // Tx does a single I2C transaction at the specified address. // It clocks out the given address, writes the bytes in w, reads back len(r) // bytes and stores them in r, and generates a stop condition on the bus. func (i2c *I2C) Tx(addr uint16, w, r []byte) (err error) { i2c.Bus.ADDRESS.Set(uint32(addr)) if len(w) != 0 { i2c.Bus.TASKS_STARTTX.Set(1) // start transmission for writing for _, b := range w { if err = i2c.writeByte(b); err != nil { goto cleanUp } } } if len(r) != 0 { // To trigger suspend task when a byte is received i2c.Bus.SHORTS.Set(nrf.TWI_SHORTS_BB_SUSPEND) i2c.Bus.TASKS_STARTRX.Set(1) // re-start transmission for reading for i := range r { // read each char if i+1 == len(r) { // To trigger stop task when last byte is received, set before resume task. i2c.Bus.SHORTS.Set(nrf.TWI_SHORTS_BB_STOP) } i2c.Bus.TASKS_RESUME.Set(1) // re-start transmission for reading if r[i], err = i2c.readByte(); err != nil { // goto/break are practically equivalent here, // but goto makes this more easily understandable for maintenance. goto cleanUp } } } cleanUp: i2c.signalStop() i2c.Bus.SHORTS.Set(nrf.TWI_SHORTS_BB_SUSPEND_Disabled) return } // signalStop sends a stop signal when writing or tells the I2C peripheral that // it must generate a stop condition after the next character is retrieved when // reading. func (i2c *I2C) signalStop() { i2c.Bus.TASKS_STOP.Set(1) for i2c.Bus.EVENTS_STOPPED.Get() == 0 { } i2c.Bus.EVENTS_STOPPED.Set(0) } // writeByte writes a single byte to the I2C bus. func (i2c *I2C) writeByte(data byte) error { i2c.Bus.TXD.Set(uint32(data)) for i2c.Bus.EVENTS_TXDSENT.Get() == 0 { if e := i2c.Bus.EVENTS_ERROR.Get(); e != 0 { i2c.Bus.EVENTS_ERROR.Set(0) return errI2CBusError } } i2c.Bus.EVENTS_TXDSENT.Set(0) return nil } // readByte reads a single byte from the I2C bus. func (i2c *I2C) readByte() (byte, error) { for i2c.Bus.EVENTS_RXDREADY.Get() == 0 { if e := i2c.Bus.EVENTS_ERROR.Get(); e != 0 { i2c.Bus.EVENTS_ERROR.Set(0) return 0, errI2CBusError } } i2c.Bus.EVENTS_RXDREADY.Set(0) return byte(i2c.Bus.RXD.Get()), nil }