1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
|
// Package builder is the compiler driver of TinyGo. It takes in a package name
// and an output path, and outputs an executable. It manages the entire
// compilation pipeline in between.
package builder
import (
"crypto/sha512"
"debug/elf"
"encoding/binary"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"go/types"
"io/ioutil"
"os"
"path/filepath"
"runtime"
"sort"
"strings"
"github.com/tinygo-org/tinygo/compileopts"
"github.com/tinygo-org/tinygo/compiler"
"github.com/tinygo-org/tinygo/goenv"
"github.com/tinygo-org/tinygo/interp"
"github.com/tinygo-org/tinygo/loader"
"github.com/tinygo-org/tinygo/stacksize"
"github.com/tinygo-org/tinygo/transform"
"tinygo.org/x/go-llvm"
)
// BuildResult is the output of a build. This includes the binary itself and
// some other metadata that is obtained while building the binary.
type BuildResult struct {
// A path to the output binary. It will be removed after Build returns, so
// if it should be kept it must be copied or moved away.
Binary string
// The directory of the main package. This is useful for testing as the test
// binary must be run in the directory of the tested package.
MainDir string
}
// packageAction is the struct that is serialized to JSON and hashed, to work as
// a cache key of compiled packages. It should contain all the information that
// goes into a compiled package to avoid using stale data.
//
// Right now it's still important to include a hash of every import, because a
// dependency might have a public constant that this package uses and thus this
// package will need to be recompiled if that constant changes. In the future,
// the type data should be serialized to disk which can then be used as cache
// key, avoiding the need for recompiling all dependencies when only the
// implementation of an imported package changes.
type packageAction struct {
ImportPath string
CompilerVersion int // compiler.Version
InterpVersion int // interp.Version
LLVMVersion string
Config *compiler.Config
CFlags []string
FileHashes map[string]string // hash of every file that's part of the package
Imports map[string]string // map from imported package to action ID hash
OptLevel int // LLVM optimization level (0-3)
SizeLevel int // LLVM optimization for size level (0-2)
UndefinedGlobals []string // globals that are left as external globals (no initializer)
}
// Build performs a single package to executable Go build. It takes in a package
// name, an output path, and set of compile options and from that it manages the
// whole compilation process.
//
// The error value may be of type *MultiError. Callers will likely want to check
// for this case and print such errors individually.
func Build(pkgName, outpath string, config *compileopts.Config, action func(BuildResult) error) error {
// Create a temporary directory for intermediary files.
dir, err := ioutil.TempDir("", "tinygo")
if err != nil {
return err
}
defer os.RemoveAll(dir)
compilerConfig := &compiler.Config{
Triple: config.Triple(),
CPU: config.CPU(),
Features: config.Features(),
GOOS: config.GOOS(),
GOARCH: config.GOARCH(),
CodeModel: config.CodeModel(),
RelocationModel: config.RelocationModel(),
Scheduler: config.Scheduler(),
FuncImplementation: config.FuncImplementation(),
AutomaticStackSize: config.AutomaticStackSize(),
DefaultStackSize: config.Target.DefaultStackSize,
NeedsStackObjects: config.NeedsStackObjects(),
Debug: config.Debug(),
}
// Load the target machine, which is the LLVM object that contains all
// details of a target (alignment restrictions, pointer size, default
// address spaces, etc).
machine, err := compiler.NewTargetMachine(compilerConfig)
if err != nil {
return err
}
// Load entire program AST into memory.
lprogram, err := loader.Load(config, []string{pkgName}, config.ClangHeaders, types.Config{
Sizes: compiler.Sizes(machine),
})
if err != nil {
return err
}
err = lprogram.Parse()
if err != nil {
return err
}
// The slice of jobs that orchestrates most of the build.
// This is somewhat like an in-memory Makefile with each job being a
// Makefile target.
var jobs []*compileJob
// Create the *ssa.Program. This does not yet build the entire SSA of the
// program so it's pretty fast and doesn't need to be parallelized.
program := lprogram.LoadSSA()
// Add jobs to compile each package.
// Packages that have a cache hit will not be compiled again.
var packageJobs []*compileJob
packageBitcodePaths := make(map[string]string)
packageActionIDs := make(map[string]string)
optLevel, sizeLevel, _ := config.OptLevels()
for _, pkg := range lprogram.Sorted() {
pkg := pkg // necessary to avoid a race condition
var undefinedGlobals []string
for name := range config.Options.GlobalValues[pkg.Pkg.Path()] {
undefinedGlobals = append(undefinedGlobals, name)
}
sort.Strings(undefinedGlobals)
// Create a cache key: a hash from the action ID below that contains all
// the parameters for the build.
actionID := packageAction{
ImportPath: pkg.ImportPath,
CompilerVersion: compiler.Version,
InterpVersion: interp.Version,
LLVMVersion: llvm.Version,
Config: compilerConfig,
CFlags: pkg.CFlags,
FileHashes: make(map[string]string, len(pkg.FileHashes)),
Imports: make(map[string]string, len(pkg.Pkg.Imports())),
OptLevel: optLevel,
SizeLevel: sizeLevel,
UndefinedGlobals: undefinedGlobals,
}
for filePath, hash := range pkg.FileHashes {
actionID.FileHashes[filePath] = hex.EncodeToString(hash)
}
for _, imported := range pkg.Pkg.Imports() {
hash, ok := packageActionIDs[imported.Path()]
if !ok {
return fmt.Errorf("package %s imports %s but couldn't find dependency", pkg.ImportPath, imported.Path())
}
actionID.Imports[imported.Path()] = hash
}
buf, err := json.Marshal(actionID)
if err != nil {
panic(err) // shouldn't happen
}
hash := sha512.Sum512_224(buf)
packageActionIDs[pkg.ImportPath] = hex.EncodeToString(hash[:])
// Determine the path of the bitcode file (which is a serialized version
// of a LLVM module).
cacheDir := goenv.Get("GOCACHE")
if cacheDir == "off" {
// Use temporary build directory instead, effectively disabling the
// build cache.
cacheDir = dir
}
bitcodePath := filepath.Join(cacheDir, "pkg-"+hex.EncodeToString(hash[:])+".bc")
packageBitcodePaths[pkg.ImportPath] = bitcodePath
// Check whether this package has been compiled before, and if so don't
// compile it again.
if _, err := os.Stat(bitcodePath); err == nil {
// Already cached, don't recreate this package.
continue
}
// The package has not yet been compiled, so create a job to do so.
job := &compileJob{
description: "compile package " + pkg.ImportPath,
run: func(*compileJob) error {
// Compile AST to IR. The compiler.CompilePackage function will
// build the SSA as needed.
mod, errs := compiler.CompilePackage(pkg.ImportPath, pkg, program.Package(pkg.Pkg), machine, compilerConfig, config.DumpSSA())
if errs != nil {
return newMultiError(errs)
}
if err := llvm.VerifyModule(mod, llvm.PrintMessageAction); err != nil {
return errors.New("verification error after compiling package " + pkg.ImportPath)
}
// Erase all globals that are part of the undefinedGlobals list.
// This list comes from the -ldflags="-X pkg.foo=val" option.
// Instead of setting the value directly in the AST (which would
// mean the value, which may be a secret, is stored in the build
// cache), the global itself is left external (undefined) and is
// only set at the end of the compilation.
for _, name := range undefinedGlobals {
globalName := pkg.Pkg.Path() + "." + name
global := mod.NamedGlobal(globalName)
if global.IsNil() {
return errors.New("global not found: " + globalName)
}
name := global.Name()
newGlobal := llvm.AddGlobal(mod, global.Type().ElementType(), name+".tmp")
global.ReplaceAllUsesWith(newGlobal)
global.EraseFromParentAsGlobal()
newGlobal.SetName(name)
}
// Try to interpret package initializers at compile time.
// It may only be possible to do this partially, in which case
// it is completed after all IR files are linked.
pkgInit := mod.NamedFunction(pkg.Pkg.Path() + ".init")
if pkgInit.IsNil() {
panic("init not found for " + pkg.Pkg.Path())
}
err := interp.RunFunc(pkgInit, config.DumpSSA())
if err != nil {
return err
}
if err := llvm.VerifyModule(mod, llvm.PrintMessageAction); err != nil {
return errors.New("verification error after interpreting " + pkgInit.Name())
}
if sizeLevel >= 2 {
// Set the "optsize" attribute to make slightly smaller
// binaries at the cost of some performance.
kind := llvm.AttributeKindID("optsize")
attr := mod.Context().CreateEnumAttribute(kind, 0)
for fn := mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
fn.AddFunctionAttr(attr)
}
}
// Run function passes for each function in the module.
// These passes are intended to be run on each function right
// after they're created to reduce IR size (and maybe also for
// cache locality to improve performance), but for now they're
// run here for each function in turn. Maybe this can be
// improved in the future.
builder := llvm.NewPassManagerBuilder()
defer builder.Dispose()
builder.SetOptLevel(optLevel)
builder.SetSizeLevel(sizeLevel)
funcPasses := llvm.NewFunctionPassManagerForModule(mod)
defer funcPasses.Dispose()
builder.PopulateFunc(funcPasses)
funcPasses.InitializeFunc()
for fn := mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
if fn.IsDeclaration() {
continue
}
funcPasses.RunFunc(fn)
}
funcPasses.FinalizeFunc()
// Serialize the LLVM module as a bitcode file.
// Write to a temporary path that is renamed to the destination
// file to avoid race conditions with other TinyGo invocatiosn
// that might also be compiling this package at the same time.
f, err := ioutil.TempFile(filepath.Dir(bitcodePath), filepath.Base(bitcodePath))
if err != nil {
return err
}
if runtime.GOOS == "windows" {
// Work around a problem on Windows.
// For some reason, WriteBitcodeToFile causes TinyGo to
// exit with the following message:
// LLVM ERROR: IO failure on output stream: Bad file descriptor
buf := llvm.WriteBitcodeToMemoryBuffer(mod)
defer buf.Dispose()
_, err = f.Write(buf.Bytes())
} else {
// Otherwise, write bitcode directly to the file (probably
// faster).
err = llvm.WriteBitcodeToFile(mod, f)
}
if err != nil {
// WriteBitcodeToFile doesn't produce a useful error on its
// own, so create a somewhat useful error message here.
return fmt.Errorf("failed to write bitcode for package %s to file %s", pkg.ImportPath, bitcodePath)
}
err = f.Close()
if err != nil {
return err
}
return os.Rename(f.Name(), bitcodePath)
},
}
jobs = append(jobs, job)
packageJobs = append(packageJobs, job)
}
// Add job that links and optimizes all packages together.
var mod llvm.Module
var stackSizeLoads []string
programJob := &compileJob{
description: "link+optimize packages (LTO)",
dependencies: packageJobs,
run: func(*compileJob) error {
// Load and link all the bitcode files. This does not yet optimize
// anything, it only links the bitcode files together.
ctx := llvm.NewContext()
mod = ctx.NewModule("")
for _, pkg := range lprogram.Sorted() {
pkgMod, err := ctx.ParseBitcodeFile(packageBitcodePaths[pkg.ImportPath])
if err != nil {
return fmt.Errorf("failed to load bitcode file: %w", err)
}
err = llvm.LinkModules(mod, pkgMod)
if err != nil {
return fmt.Errorf("failed to link module: %w", err)
}
}
// Create runtime.initAll function that calls the runtime
// initializer of each package.
llvmInitFn := mod.NamedFunction("runtime.initAll")
llvmInitFn.SetLinkage(llvm.InternalLinkage)
llvmInitFn.SetUnnamedAddr(true)
llvmInitFn.Param(0).SetName("context")
llvmInitFn.Param(1).SetName("parentHandle")
block := mod.Context().AddBasicBlock(llvmInitFn, "entry")
irbuilder := mod.Context().NewBuilder()
defer irbuilder.Dispose()
irbuilder.SetInsertPointAtEnd(block)
i8ptrType := llvm.PointerType(mod.Context().Int8Type(), 0)
for _, pkg := range lprogram.Sorted() {
pkgInit := mod.NamedFunction(pkg.Pkg.Path() + ".init")
if pkgInit.IsNil() {
panic("init not found for " + pkg.Pkg.Path())
}
irbuilder.CreateCall(pkgInit, []llvm.Value{llvm.Undef(i8ptrType), llvm.Undef(i8ptrType)}, "")
}
irbuilder.CreateRetVoid()
// After linking, functions should (as far as possible) be set to
// private linkage or internal linkage. The compiler package marks
// non-exported functions by setting the visibility to hidden or
// (for thunks) to linkonce_odr linkage. Change the linkage here to
// internal to benefit much more from interprocedural optimizations.
for fn := mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
if fn.Visibility() == llvm.HiddenVisibility {
fn.SetVisibility(llvm.DefaultVisibility)
fn.SetLinkage(llvm.InternalLinkage)
} else if fn.Linkage() == llvm.LinkOnceODRLinkage {
fn.SetLinkage(llvm.InternalLinkage)
}
}
// Do the same for globals.
for global := mod.FirstGlobal(); !global.IsNil(); global = llvm.NextGlobal(global) {
if global.Visibility() == llvm.HiddenVisibility {
global.SetVisibility(llvm.DefaultVisibility)
global.SetLinkage(llvm.InternalLinkage)
} else if global.Linkage() == llvm.LinkOnceODRLinkage {
global.SetLinkage(llvm.InternalLinkage)
}
}
if config.Options.PrintIR {
fmt.Println("; Generated LLVM IR:")
fmt.Println(mod.String())
}
// Run all optimization passes, which are much more effective now
// that the optimizer can see the whole program at once.
err := optimizeProgram(mod, config)
if err != nil {
return err
}
// Make sure stack sizes are loaded from a separate section so they can be
// modified after linking.
if config.AutomaticStackSize() {
stackSizeLoads = transform.CreateStackSizeLoads(mod, config)
}
return nil
},
}
jobs = append(jobs, programJob)
// Check whether we only need to create an object file.
// If so, we don't need to link anything and will be finished quickly.
outext := filepath.Ext(outpath)
if outext == ".o" || outext == ".bc" || outext == ".ll" {
// Run jobs to produce the LLVM module.
err := runJobs(jobs)
if err != nil {
return err
}
// Generate output.
switch outext {
case ".o":
llvmBuf, err := machine.EmitToMemoryBuffer(mod, llvm.ObjectFile)
if err != nil {
return err
}
return ioutil.WriteFile(outpath, llvmBuf.Bytes(), 0666)
case ".bc":
data := llvm.WriteBitcodeToMemoryBuffer(mod).Bytes()
return ioutil.WriteFile(outpath, data, 0666)
case ".ll":
data := []byte(mod.String())
return ioutil.WriteFile(outpath, data, 0666)
default:
panic("unreachable")
}
}
// Act as a compiler driver, as we need to produce a complete executable.
// First add all jobs necessary to build this object file, then afterwards
// run all jobs in parallel as far as possible.
// Add job to write the output object file.
objfile := filepath.Join(dir, "main.o")
outputObjectFileJob := &compileJob{
description: "generate output file",
dependencies: []*compileJob{programJob},
result: objfile,
run: func(*compileJob) error {
llvmBuf, err := machine.EmitToMemoryBuffer(mod, llvm.ObjectFile)
if err != nil {
return err
}
return ioutil.WriteFile(objfile, llvmBuf.Bytes(), 0666)
},
}
jobs = append(jobs, outputObjectFileJob)
// Prepare link command.
linkerDependencies := []*compileJob{outputObjectFileJob}
executable := filepath.Join(dir, "main")
tmppath := executable // final file
ldflags := append(config.LDFlags(), "-o", executable)
// Add compiler-rt dependency if needed. Usually this is a simple load from
// a cache.
if config.Target.RTLib == "compiler-rt" {
job, err := CompilerRT.load(config.Triple(), config.CPU(), dir)
if err != nil {
return err
}
jobs = append(jobs, job.dependencies...)
jobs = append(jobs, job)
linkerDependencies = append(linkerDependencies, job)
}
// Add libc dependency if needed.
root := goenv.Get("TINYGOROOT")
switch config.Target.Libc {
case "picolibc":
job, err := Picolibc.load(config.Triple(), config.CPU(), dir)
if err != nil {
return err
}
// The library needs to be compiled (cache miss).
jobs = append(jobs, job.dependencies...)
jobs = append(jobs, job)
linkerDependencies = append(linkerDependencies, job)
case "wasi-libc":
path := filepath.Join(root, "lib/wasi-libc/sysroot/lib/wasm32-wasi/libc.a")
if _, err := os.Stat(path); os.IsNotExist(err) {
return errors.New("could not find wasi-libc, perhaps you need to run `make wasi-libc`?")
}
ldflags = append(ldflags, path)
case "":
// no library specified, so nothing to do
default:
return fmt.Errorf("unknown libc: %s", config.Target.Libc)
}
// Add jobs to compile extra files. These files are in C or assembly and
// contain things like the interrupt vector table and low level operations
// such as stack switching.
for _, path := range config.ExtraFiles() {
abspath := filepath.Join(root, path)
job := &compileJob{
description: "compile extra file " + path,
run: func(job *compileJob) error {
result, err := compileAndCacheCFile(abspath, dir, config.CFlags(), config.Options.PrintCommands)
job.result = result
return err
},
}
jobs = append(jobs, job)
linkerDependencies = append(linkerDependencies, job)
}
// Add jobs to compile C files in all packages. This is part of CGo.
// TODO: do this as part of building the package to be able to link the
// bitcode files together.
for _, pkg := range lprogram.Sorted() {
pkg := pkg
for _, filename := range pkg.CFiles {
abspath := filepath.Join(pkg.Dir, filename)
job := &compileJob{
description: "compile CGo file " + abspath,
run: func(job *compileJob) error {
result, err := compileAndCacheCFile(abspath, dir, pkg.CFlags, config.Options.PrintCommands)
job.result = result
return err
},
}
jobs = append(jobs, job)
linkerDependencies = append(linkerDependencies, job)
}
}
// Linker flags from CGo lines:
// #cgo LDFLAGS: foo
if len(lprogram.LDFlags) > 0 {
ldflags = append(ldflags, lprogram.LDFlags...)
}
// Create a linker job, which links all object files together and does some
// extra stuff that can only be done after linking.
jobs = append(jobs, &compileJob{
description: "link",
dependencies: linkerDependencies,
run: func(job *compileJob) error {
for _, dependency := range job.dependencies {
if dependency.result == "" {
return errors.New("dependency without result: " + dependency.description)
}
ldflags = append(ldflags, dependency.result)
}
if config.Options.PrintCommands {
fmt.Printf("%s %s\n", config.Target.Linker, strings.Join(ldflags, " "))
}
err = link(config.Target.Linker, ldflags...)
if err != nil {
return &commandError{"failed to link", executable, err}
}
var calculatedStacks []string
var stackSizes map[string]functionStackSize
if config.Options.PrintStacks || config.AutomaticStackSize() {
// Try to determine stack sizes at compile time.
// Don't do this by default as it usually doesn't work on
// unsupported architectures.
calculatedStacks, stackSizes, err = determineStackSizes(mod, executable)
if err != nil {
return err
}
}
if config.AutomaticStackSize() {
// Modify the .tinygo_stacksizes section that contains a stack size
// for each goroutine.
err = modifyStackSizes(executable, stackSizeLoads, stackSizes)
if err != nil {
return fmt.Errorf("could not modify stack sizes: %w", err)
}
}
if config.Options.PrintSizes == "short" || config.Options.PrintSizes == "full" {
sizes, err := loadProgramSize(executable)
if err != nil {
return err
}
if config.Options.PrintSizes == "short" {
fmt.Printf(" code data bss | flash ram\n")
fmt.Printf("%7d %7d %7d | %7d %7d\n", sizes.Code, sizes.Data, sizes.BSS, sizes.Code+sizes.Data, sizes.Data+sizes.BSS)
} else {
fmt.Printf(" code rodata data bss | flash ram | package\n")
for _, name := range sizes.sortedPackageNames() {
pkgSize := sizes.Packages[name]
fmt.Printf("%7d %7d %7d %7d | %7d %7d | %s\n", pkgSize.Code, pkgSize.ROData, pkgSize.Data, pkgSize.BSS, pkgSize.Flash(), pkgSize.RAM(), name)
}
fmt.Printf("%7d %7d %7d %7d | %7d %7d | (sum)\n", sizes.Sum.Code, sizes.Sum.ROData, sizes.Sum.Data, sizes.Sum.BSS, sizes.Sum.Flash(), sizes.Sum.RAM())
fmt.Printf("%7d - %7d %7d | %7d %7d | (all)\n", sizes.Code, sizes.Data, sizes.BSS, sizes.Code+sizes.Data, sizes.Data+sizes.BSS)
}
}
// Print goroutine stack sizes, as far as possible.
if config.Options.PrintStacks {
printStacks(calculatedStacks, stackSizes)
}
return nil
},
})
// Run all jobs to compile and link the program.
// Do this now (instead of after elf-to-hex and similar conversions) as it
// is simpler and cannot be parallelized.
err = runJobs(jobs)
if err != nil {
return err
}
// Get an Intel .hex file or .bin file from the .elf file.
outputBinaryFormat := config.BinaryFormat(outext)
switch outputBinaryFormat {
case "elf":
// do nothing, file is already in ELF format
case "hex", "bin":
// Extract raw binary, either encoding it as a hex file or as a raw
// firmware file.
tmppath = filepath.Join(dir, "main"+outext)
err := objcopy(executable, tmppath, outputBinaryFormat)
if err != nil {
return err
}
case "uf2":
// Get UF2 from the .elf file.
tmppath = filepath.Join(dir, "main"+outext)
err := convertELFFileToUF2File(executable, tmppath, config.Target.UF2FamilyID)
if err != nil {
return err
}
case "esp32", "esp8266":
// Special format for the ESP family of chips (parsed by the ROM
// bootloader).
tmppath = filepath.Join(dir, "main"+outext)
err := makeESPFirmareImage(executable, tmppath, outputBinaryFormat)
if err != nil {
return err
}
default:
return fmt.Errorf("unknown output binary format: %s", outputBinaryFormat)
}
return action(BuildResult{
Binary: tmppath,
MainDir: lprogram.MainPkg().Dir,
})
}
// optimizeProgram runs a series of optimizations and transformations that are
// needed to convert a program to its final form. Some transformations are not
// optional and must be run as the compiler expects them to run.
func optimizeProgram(mod llvm.Module, config *compileopts.Config) error {
err := interp.Run(mod, config.DumpSSA())
if err != nil {
return err
}
if config.VerifyIR() {
// Only verify if we really need it.
// The IR has already been verified before writing the bitcode to disk
// and the interp function above doesn't need to do a lot as most of the
// package initializers have already run. Additionally, verifying this
// linked IR is _expensive_ because dead code hasn't been removed yet,
// easily costing a few hundred milliseconds. Therefore, only do it when
// specifically requested.
if err := llvm.VerifyModule(mod, llvm.PrintMessageAction); err != nil {
return errors.New("verification error after interpreting runtime.initAll")
}
}
if config.GOOS() != "darwin" {
transform.ApplyFunctionSections(mod) // -ffunction-sections
}
// Insert values from -ldflags="-X ..." into the IR.
err = setGlobalValues(mod, config.Options.GlobalValues)
if err != nil {
return err
}
// Browsers cannot handle external functions that have type i64 because it
// cannot be represented exactly in JavaScript (JS only has doubles). To
// keep functions interoperable, pass int64 types as pointers to
// stack-allocated values.
// Use -wasm-abi=generic to disable this behaviour.
if config.WasmAbi() == "js" {
err := transform.ExternalInt64AsPtr(mod)
if err != nil {
return err
}
}
// Optimization levels here are roughly the same as Clang, but probably not
// exactly.
optLevel, sizeLevel, inlinerThreshold := config.OptLevels()
errs := transform.Optimize(mod, config, optLevel, sizeLevel, inlinerThreshold)
if len(errs) > 0 {
return newMultiError(errs)
}
if err := llvm.VerifyModule(mod, llvm.PrintMessageAction); err != nil {
return errors.New("verification failure after LLVM optimization passes")
}
// LLVM 11 by default tries to emit tail calls (even with the target feature
// disabled) unless it is explicitly disabled with a function attribute.
// This is a problem, as it tries to emit them and prints an error when it
// can't with this feature disabled.
// Because as of september 2020 tail calls are not yet widely supported,
// they need to be disabled until they are widely supported (at which point
// the +tail-call target feautre can be set).
if strings.HasPrefix(config.Triple(), "wasm") {
transform.DisableTailCalls(mod)
}
return nil
}
// setGlobalValues sets the global values from the -ldflags="-X ..." compiler
// option in the given module. An error may be returned if the global is not of
// the expected type.
func setGlobalValues(mod llvm.Module, globals map[string]map[string]string) error {
var pkgPaths []string
for pkgPath := range globals {
pkgPaths = append(pkgPaths, pkgPath)
}
sort.Strings(pkgPaths)
for _, pkgPath := range pkgPaths {
pkg := globals[pkgPath]
var names []string
for name := range pkg {
names = append(names, name)
}
sort.Strings(names)
for _, name := range names {
value := pkg[name]
globalName := pkgPath + "." + name
global := mod.NamedGlobal(globalName)
if global.IsNil() || !global.Initializer().IsNil() {
// The global either does not exist (optimized away?) or has
// some value, in which case it has already been initialized at
// package init time.
continue
}
// A strin is a {ptr, len} pair. We need these types to build the
// initializer.
initializerType := global.Type().ElementType()
if initializerType.TypeKind() != llvm.StructTypeKind || initializerType.StructName() == "" {
return fmt.Errorf("%s: not a string", globalName)
}
elementTypes := initializerType.StructElementTypes()
if len(elementTypes) != 2 {
return fmt.Errorf("%s: not a string", globalName)
}
// Create a buffer for the string contents.
bufInitializer := mod.Context().ConstString(value, false)
buf := llvm.AddGlobal(mod, bufInitializer.Type(), ".string")
buf.SetInitializer(bufInitializer)
buf.SetAlignment(1)
buf.SetUnnamedAddr(true)
buf.SetLinkage(llvm.PrivateLinkage)
// Create the string value, which is a {ptr, len} pair.
zero := llvm.ConstInt(mod.Context().Int32Type(), 0, false)
ptr := llvm.ConstGEP(buf, []llvm.Value{zero, zero})
if ptr.Type() != elementTypes[0] {
return fmt.Errorf("%s: not a string", globalName)
}
length := llvm.ConstInt(elementTypes[1], uint64(len(value)), false)
initializer := llvm.ConstNamedStruct(initializerType, []llvm.Value{
ptr,
length,
})
// Set the initializer. No initializer should be set at this point.
global.SetInitializer(initializer)
}
}
return nil
}
// functionStackSizes keeps stack size information about a single function
// (usually a goroutine).
type functionStackSize struct {
humanName string
stackSize uint64
stackSizeType stacksize.SizeType
missingStackSize *stacksize.CallNode
}
// determineStackSizes tries to determine the stack sizes of all started
// goroutines and of the reset vector. The LLVM module is necessary to find
// functions that call a function pointer.
func determineStackSizes(mod llvm.Module, executable string) ([]string, map[string]functionStackSize, error) {
var callsIndirectFunction []string
gowrappers := []string{}
gowrapperNames := make(map[string]string)
for fn := mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
// Determine which functions call a function pointer.
for bb := fn.FirstBasicBlock(); !bb.IsNil(); bb = llvm.NextBasicBlock(bb) {
for inst := bb.FirstInstruction(); !inst.IsNil(); inst = llvm.NextInstruction(inst) {
if inst.IsACallInst().IsNil() {
continue
}
if callee := inst.CalledValue(); callee.IsAFunction().IsNil() && callee.IsAInlineAsm().IsNil() {
callsIndirectFunction = append(callsIndirectFunction, fn.Name())
}
}
}
// Get a list of "go wrappers", small wrapper functions that decode
// parameters when starting a new goroutine.
attr := fn.GetStringAttributeAtIndex(-1, "tinygo-gowrapper")
if !attr.IsNil() {
gowrappers = append(gowrappers, fn.Name())
gowrapperNames[fn.Name()] = attr.GetStringValue()
}
}
sort.Strings(gowrappers)
// Load the ELF binary.
f, err := elf.Open(executable)
if err != nil {
return nil, nil, fmt.Errorf("could not load executable for stack size analysis: %w", err)
}
defer f.Close()
// Determine the frame size of each function (if available) and the callgraph.
functions, err := stacksize.CallGraph(f, callsIndirectFunction)
if err != nil {
return nil, nil, fmt.Errorf("could not parse executable for stack size analysis: %w", err)
}
// Goroutines need to be started and finished and take up some stack space
// that way. This can be measured by measuing the stack size of
// tinygo_startTask.
if numFuncs := len(functions["tinygo_startTask"]); numFuncs != 1 {
return nil, nil, fmt.Errorf("expected exactly one definition of tinygo_startTask, got %d", numFuncs)
}
baseStackSize, baseStackSizeType, baseStackSizeFailedAt := functions["tinygo_startTask"][0].StackSize()
sizes := make(map[string]functionStackSize)
// Add the reset handler function, for convenience. The reset handler runs
// startup code and the scheduler. The listed stack size is not the full
// stack size: interrupts are not counted.
var resetFunction string
switch f.Machine {
case elf.EM_ARM:
// Note: all interrupts happen on this stack so the real size is bigger.
resetFunction = "Reset_Handler"
}
if resetFunction != "" {
funcs := functions[resetFunction]
if len(funcs) != 1 {
return nil, nil, fmt.Errorf("expected exactly one definition of %s in the callgraph, found %d", resetFunction, len(funcs))
}
stackSize, stackSizeType, missingStackSize := funcs[0].StackSize()
sizes[resetFunction] = functionStackSize{
stackSize: stackSize,
stackSizeType: stackSizeType,
missingStackSize: missingStackSize,
humanName: resetFunction,
}
}
// Add all goroutine wrapper functions.
for _, name := range gowrappers {
funcs := functions[name]
if len(funcs) != 1 {
return nil, nil, fmt.Errorf("expected exactly one definition of %s in the callgraph, found %d", name, len(funcs))
}
humanName := gowrapperNames[name]
if humanName == "" {
humanName = name // fallback
}
stackSize, stackSizeType, missingStackSize := funcs[0].StackSize()
if baseStackSizeType != stacksize.Bounded {
// It was not possible to determine the stack size at compile time
// because tinygo_startTask does not have a fixed stack size. This
// can happen when using -opt=1.
stackSizeType = baseStackSizeType
missingStackSize = baseStackSizeFailedAt
} else if stackSize < baseStackSize {
// This goroutine has a very small stack, but still needs to fit all
// registers to start and suspend the goroutine. Otherwise a stack
// overflow will occur even before the goroutine is started.
stackSize = baseStackSize
}
sizes[name] = functionStackSize{
stackSize: stackSize,
stackSizeType: stackSizeType,
missingStackSize: missingStackSize,
humanName: humanName,
}
}
if resetFunction != "" {
return append([]string{resetFunction}, gowrappers...), sizes, nil
}
return gowrappers, sizes, nil
}
// modifyStackSizes modifies the .tinygo_stacksizes section with the updated
// stack size information. Before this modification, all stack sizes in the
// section assume the default stack size (which is relatively big).
func modifyStackSizes(executable string, stackSizeLoads []string, stackSizes map[string]functionStackSize) error {
fp, err := os.OpenFile(executable, os.O_RDWR, 0)
if err != nil {
return err
}
defer fp.Close()
elfFile, err := elf.NewFile(fp)
if err != nil {
return err
}
section := elfFile.Section(".tinygo_stacksizes")
if section == nil {
return errors.New("could not find .tinygo_stacksizes section")
}
if section.Size != section.FileSize {
// Sanity check.
return fmt.Errorf("expected .tinygo_stacksizes to have identical size and file size, got %d and %d", section.Size, section.FileSize)
}
// Read all goroutine stack sizes.
data := make([]byte, section.Size)
_, err = fp.ReadAt(data, int64(section.Offset))
if err != nil {
return err
}
if len(stackSizeLoads)*4 != len(data) {
// Note: while AVR should use 2 byte stack sizes, even 64-bit platforms
// should probably stick to 4 byte stack sizes as a larger than 4GB
// stack doesn't make much sense.
return errors.New("expected 4 byte stack sizes")
}
// Modify goroutine stack sizes with a compile-time known worst case stack
// size.
for i, name := range stackSizeLoads {
fn, ok := stackSizes[name]
if !ok {
return fmt.Errorf("could not find symbol %s in ELF file", name)
}
if fn.stackSizeType == stacksize.Bounded {
stackSize := uint32(fn.stackSize)
// Adding 4 for the stack canary. Even though the size may be
// automatically determined, stack overflow checking is still
// important as the stack size cannot be determined for all
// goroutines.
stackSize += 4
// Add stack size used by interrupts.
switch elfFile.Machine {
case elf.EM_ARM:
// On Cortex-M (assumed here), this stack size is 8 words or 32
// bytes. This is only to store the registers that the interrupt
// may modify, the interrupt will switch to the interrupt stack
// (MSP).
// Some background:
// https://interrupt.memfault.com/blog/cortex-m-rtos-context-switching
stackSize += 32
}
// Finally write the stack size to the binary.
binary.LittleEndian.PutUint32(data[i*4:], stackSize)
}
}
// Write back the modified stack sizes.
_, err = fp.WriteAt(data, int64(section.Offset))
if err != nil {
return err
}
return nil
}
// printStacks prints the maximum stack depth for functions that are started as
// goroutines. Stack sizes cannot always be determined statically, in particular
// recursive functions and functions that call interface methods or function
// pointers may have an unknown stack depth (depending on what the optimizer
// manages to optimize away).
//
// It might print something like the following:
//
// function stack usage (in bytes)
// Reset_Handler 316
// examples/blinky2.led1 92
// runtime.run$1 300
func printStacks(calculatedStacks []string, stackSizes map[string]functionStackSize) {
// Print the sizes of all stacks.
fmt.Printf("%-32s %s\n", "function", "stack usage (in bytes)")
for _, name := range calculatedStacks {
fn := stackSizes[name]
switch fn.stackSizeType {
case stacksize.Bounded:
fmt.Printf("%-32s %d\n", fn.humanName, fn.stackSize)
case stacksize.Unknown:
fmt.Printf("%-32s unknown, %s does not have stack frame information\n", fn.humanName, fn.missingStackSize)
case stacksize.Recursive:
fmt.Printf("%-32s recursive, %s may call itself\n", fn.humanName, fn.missingStackSize)
case stacksize.IndirectCall:
fmt.Printf("%-32s unknown, %s calls a function pointer\n", fn.humanName, fn.missingStackSize)
}
}
}
|