1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
|
package compiler
import (
"debug/dwarf"
"errors"
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"math/bits"
"path/filepath"
"sort"
"strconv"
"strings"
"github.com/tinygo-org/tinygo/compiler/llvmutil"
"github.com/tinygo-org/tinygo/loader"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// Version of the compiler pacakge. Must be incremented each time the compiler
// package changes in a way that affects the generated LLVM module.
// This version is independent of the TinyGo version number.
const Version = 11 // last change: change method name globals
func init() {
llvm.InitializeAllTargets()
llvm.InitializeAllTargetMCs()
llvm.InitializeAllTargetInfos()
llvm.InitializeAllAsmParsers()
llvm.InitializeAllAsmPrinters()
}
// The TinyGo import path.
const tinygoPath = "github.com/tinygo-org/tinygo"
// Config is the configuration for the compiler. Most settings should be copied
// directly from compileopts.Config, it recreated here to decouple the compiler
// package a bit and because it makes caching easier.
//
// This struct can be used for caching: if one of the flags here changes the
// code must be recompiled.
type Config struct {
// Target and output information.
Triple string
CPU string
Features []string
GOOS string
GOARCH string
CodeModel string
RelocationModel string
// Various compiler options that determine how code is generated.
Scheduler string
FuncImplementation string
AutomaticStackSize bool
DefaultStackSize uint64
NeedsStackObjects bool
Debug bool // Whether to emit debug information in the LLVM module.
LLVMFeatures string
}
// compilerContext contains function-independent data that should still be
// available while compiling every function. It is not strictly read-only, but
// must not contain function-dependent data such as an IR builder.
type compilerContext struct {
*Config
DumpSSA bool
mod llvm.Module
ctx llvm.Context
dibuilder *llvm.DIBuilder
cu llvm.Metadata
difiles map[string]llvm.Metadata
ditypes map[types.Type]llvm.Metadata
machine llvm.TargetMachine
targetData llvm.TargetData
intType llvm.Type
i8ptrType llvm.Type // for convenience
funcPtrAddrSpace int
uintptrType llvm.Type
program *ssa.Program
diagnostics []error
astComments map[string]*ast.CommentGroup
runtimePkg *types.Package
}
// newCompilerContext returns a new compiler context ready for use, most
// importantly with a newly created LLVM context and module.
func newCompilerContext(moduleName string, machine llvm.TargetMachine, config *Config, dumpSSA bool) *compilerContext {
c := &compilerContext{
Config: config,
DumpSSA: dumpSSA,
difiles: make(map[string]llvm.Metadata),
ditypes: make(map[types.Type]llvm.Metadata),
machine: machine,
targetData: machine.CreateTargetData(),
astComments: map[string]*ast.CommentGroup{},
}
c.ctx = llvm.NewContext()
c.mod = c.ctx.NewModule(moduleName)
c.mod.SetTarget(config.Triple)
c.mod.SetDataLayout(c.targetData.String())
if c.Debug {
c.dibuilder = llvm.NewDIBuilder(c.mod)
}
c.uintptrType = c.ctx.IntType(c.targetData.PointerSize() * 8)
if c.targetData.PointerSize() <= 4 {
// 8, 16, 32 bits targets
c.intType = c.ctx.Int32Type()
} else if c.targetData.PointerSize() == 8 {
// 64 bits target
c.intType = c.ctx.Int64Type()
} else {
panic("unknown pointer size")
}
c.i8ptrType = llvm.PointerType(c.ctx.Int8Type(), 0)
dummyFuncType := llvm.FunctionType(c.ctx.VoidType(), nil, false)
dummyFunc := llvm.AddFunction(c.mod, "tinygo.dummy", dummyFuncType)
c.funcPtrAddrSpace = dummyFunc.Type().PointerAddressSpace()
dummyFunc.EraseFromParentAsFunction()
return c
}
// builder contains all information relevant to build a single function.
type builder struct {
*compilerContext
llvm.Builder
fn *ssa.Function
llvmFn llvm.Value
info functionInfo
locals map[ssa.Value]llvm.Value // local variables
blockEntries map[*ssa.BasicBlock]llvm.BasicBlock // a *ssa.BasicBlock may be split up
blockExits map[*ssa.BasicBlock]llvm.BasicBlock // these are the exit blocks
currentBlock *ssa.BasicBlock
phis []phiNode
taskHandle llvm.Value
deferPtr llvm.Value
difunc llvm.Metadata
dilocals map[*types.Var]llvm.Metadata
allDeferFuncs []interface{}
deferFuncs map[*ssa.Function]int
deferInvokeFuncs map[string]int
deferClosureFuncs map[*ssa.Function]int
deferExprFuncs map[ssa.Value]int
selectRecvBuf map[*ssa.Select]llvm.Value
deferBuiltinFuncs map[ssa.Value]deferBuiltin
}
func newBuilder(c *compilerContext, irbuilder llvm.Builder, f *ssa.Function) *builder {
return &builder{
compilerContext: c,
Builder: irbuilder,
fn: f,
llvmFn: c.getFunction(f),
info: c.getFunctionInfo(f),
locals: make(map[ssa.Value]llvm.Value),
dilocals: make(map[*types.Var]llvm.Metadata),
blockEntries: make(map[*ssa.BasicBlock]llvm.BasicBlock),
blockExits: make(map[*ssa.BasicBlock]llvm.BasicBlock),
}
}
type deferBuiltin struct {
callName string
pos token.Pos
argTypes []types.Type
callback int
}
type phiNode struct {
ssa *ssa.Phi
llvm llvm.Value
}
// NewTargetMachine returns a new llvm.TargetMachine based on the passed-in
// configuration. It is used by the compiler and is needed for machine code
// emission.
func NewTargetMachine(config *Config) (llvm.TargetMachine, error) {
target, err := llvm.GetTargetFromTriple(config.Triple)
if err != nil {
return llvm.TargetMachine{}, err
}
feat := config.Features
if len(config.LLVMFeatures) > 0 {
feat = append(feat, config.LLVMFeatures)
}
features := strings.Join(feat, ",")
var codeModel llvm.CodeModel
var relocationModel llvm.RelocMode
switch config.CodeModel {
case "default":
codeModel = llvm.CodeModelDefault
case "tiny":
codeModel = llvm.CodeModelTiny
case "small":
codeModel = llvm.CodeModelSmall
case "kernel":
codeModel = llvm.CodeModelKernel
case "medium":
codeModel = llvm.CodeModelMedium
case "large":
codeModel = llvm.CodeModelLarge
}
switch config.RelocationModel {
case "static":
relocationModel = llvm.RelocStatic
case "pic":
relocationModel = llvm.RelocPIC
case "dynamicnopic":
relocationModel = llvm.RelocDynamicNoPic
}
machine := target.CreateTargetMachine(config.Triple, config.CPU, features, llvm.CodeGenLevelDefault, relocationModel, codeModel)
return machine, nil
}
// Sizes returns a types.Sizes appropriate for the given target machine. It
// includes the correct int size and aligment as is necessary for the Go
// typechecker.
func Sizes(machine llvm.TargetMachine) types.Sizes {
targetData := machine.CreateTargetData()
defer targetData.Dispose()
intPtrType := targetData.IntPtrType()
if intPtrType.IntTypeWidth()/8 <= 32 {
}
var intWidth int
if targetData.PointerSize() <= 4 {
// 8, 16, 32 bits targets
intWidth = 32
} else if targetData.PointerSize() == 8 {
// 64 bits target
intWidth = 64
} else {
panic("unknown pointer size")
}
return &stdSizes{
IntSize: int64(intWidth / 8),
PtrSize: int64(targetData.PointerSize()),
MaxAlign: int64(targetData.PrefTypeAlignment(intPtrType)),
}
}
// CompilePackage compiles a single package to a LLVM module.
func CompilePackage(moduleName string, pkg *loader.Package, ssaPkg *ssa.Package, machine llvm.TargetMachine, config *Config, dumpSSA bool) (llvm.Module, []error) {
c := newCompilerContext(moduleName, machine, config, dumpSSA)
c.runtimePkg = ssaPkg.Prog.ImportedPackage("runtime").Pkg
c.program = ssaPkg.Prog
// Convert AST to SSA.
ssaPkg.Build()
// Initialize debug information.
if c.Debug {
c.cu = c.dibuilder.CreateCompileUnit(llvm.DICompileUnit{
Language: 0xb, // DW_LANG_C99 (0xc, off-by-one?)
File: "<unknown>",
Dir: "",
Producer: "TinyGo",
Optimized: true,
})
}
// Load comments such as //go:extern on globals.
c.loadASTComments(pkg)
// Predeclare the runtime.alloc function, which is used by the wordpack
// functionality.
c.getFunction(c.program.ImportedPackage("runtime").Members["alloc"].(*ssa.Function))
// Compile all functions, methods, and global variables in this package.
irbuilder := c.ctx.NewBuilder()
defer irbuilder.Dispose()
c.createPackage(irbuilder, ssaPkg)
// see: https://reviews.llvm.org/D18355
if c.Debug {
c.mod.AddNamedMetadataOperand("llvm.module.flags",
c.ctx.MDNode([]llvm.Metadata{
llvm.ConstInt(c.ctx.Int32Type(), 1, false).ConstantAsMetadata(), // Error on mismatch
c.ctx.MDString("Debug Info Version"),
llvm.ConstInt(c.ctx.Int32Type(), 3, false).ConstantAsMetadata(), // DWARF version
}),
)
c.mod.AddNamedMetadataOperand("llvm.module.flags",
c.ctx.MDNode([]llvm.Metadata{
llvm.ConstInt(c.ctx.Int32Type(), 1, false).ConstantAsMetadata(),
c.ctx.MDString("Dwarf Version"),
llvm.ConstInt(c.ctx.Int32Type(), 4, false).ConstantAsMetadata(),
}),
)
c.dibuilder.Finalize()
}
return c.mod, c.diagnostics
}
// getLLVMRuntimeType obtains a named type from the runtime package and returns
// it as a LLVM type, creating it if necessary. It is a shorthand for
// getLLVMType(getRuntimeType(name)).
func (c *compilerContext) getLLVMRuntimeType(name string) llvm.Type {
typ := c.runtimePkg.Scope().Lookup(name).(*types.TypeName).Type()
return c.getLLVMType(typ)
}
// getLLVMType creates and returns a LLVM type for a Go type. In the case of
// named struct types (or Go types implemented as named LLVM structs such as
// strings) it also creates it first if necessary.
func (c *compilerContext) getLLVMType(goType types.Type) llvm.Type {
switch typ := goType.(type) {
case *types.Array:
elemType := c.getLLVMType(typ.Elem())
return llvm.ArrayType(elemType, int(typ.Len()))
case *types.Basic:
switch typ.Kind() {
case types.Bool, types.UntypedBool:
return c.ctx.Int1Type()
case types.Int8, types.Uint8:
return c.ctx.Int8Type()
case types.Int16, types.Uint16:
return c.ctx.Int16Type()
case types.Int32, types.Uint32:
return c.ctx.Int32Type()
case types.Int, types.Uint:
return c.intType
case types.Int64, types.Uint64:
return c.ctx.Int64Type()
case types.Float32:
return c.ctx.FloatType()
case types.Float64:
return c.ctx.DoubleType()
case types.Complex64:
return c.ctx.StructType([]llvm.Type{c.ctx.FloatType(), c.ctx.FloatType()}, false)
case types.Complex128:
return c.ctx.StructType([]llvm.Type{c.ctx.DoubleType(), c.ctx.DoubleType()}, false)
case types.String, types.UntypedString:
return c.getLLVMRuntimeType("_string")
case types.Uintptr:
return c.uintptrType
case types.UnsafePointer:
return c.i8ptrType
default:
panic("unknown basic type: " + typ.String())
}
case *types.Chan:
return llvm.PointerType(c.getLLVMRuntimeType("channel"), 0)
case *types.Interface:
return c.getLLVMRuntimeType("_interface")
case *types.Map:
return llvm.PointerType(c.getLLVMRuntimeType("hashmap"), 0)
case *types.Named:
if st, ok := typ.Underlying().(*types.Struct); ok {
// Structs are a special case. While other named types are ignored
// in LLVM IR, named structs are implemented as named structs in
// LLVM. This is because it is otherwise impossible to create
// self-referencing types such as linked lists.
llvmName := typ.Obj().Pkg().Path() + "." + typ.Obj().Name()
llvmType := c.mod.GetTypeByName(llvmName)
if llvmType.IsNil() {
llvmType = c.ctx.StructCreateNamed(llvmName)
underlying := c.getLLVMType(st)
llvmType.StructSetBody(underlying.StructElementTypes(), false)
}
return llvmType
}
return c.getLLVMType(typ.Underlying())
case *types.Pointer:
ptrTo := c.getLLVMType(typ.Elem())
return llvm.PointerType(ptrTo, 0)
case *types.Signature: // function value
return c.getFuncType(typ)
case *types.Slice:
elemType := c.getLLVMType(typ.Elem())
members := []llvm.Type{
llvm.PointerType(elemType, 0),
c.uintptrType, // len
c.uintptrType, // cap
}
return c.ctx.StructType(members, false)
case *types.Struct:
members := make([]llvm.Type, typ.NumFields())
for i := 0; i < typ.NumFields(); i++ {
members[i] = c.getLLVMType(typ.Field(i).Type())
}
return c.ctx.StructType(members, false)
case *types.Tuple:
members := make([]llvm.Type, typ.Len())
for i := 0; i < typ.Len(); i++ {
members[i] = c.getLLVMType(typ.At(i).Type())
}
return c.ctx.StructType(members, false)
default:
panic("unknown type: " + goType.String())
}
}
// Is this a pointer type of some sort? Can be unsafe.Pointer or any *T pointer.
func isPointer(typ types.Type) bool {
if _, ok := typ.(*types.Pointer); ok {
return true
} else if typ, ok := typ.(*types.Basic); ok && typ.Kind() == types.UnsafePointer {
return true
} else {
return false
}
}
// Get the DWARF type for this Go type.
func (c *compilerContext) getDIType(typ types.Type) llvm.Metadata {
if md, ok := c.ditypes[typ]; ok {
return md
}
md := c.createDIType(typ)
c.ditypes[typ] = md
return md
}
// createDIType creates a new DWARF type. Don't call this function directly,
// call getDIType instead.
func (c *compilerContext) createDIType(typ types.Type) llvm.Metadata {
llvmType := c.getLLVMType(typ)
sizeInBytes := c.targetData.TypeAllocSize(llvmType)
switch typ := typ.(type) {
case *types.Array:
return c.dibuilder.CreateArrayType(llvm.DIArrayType{
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
ElementType: c.getDIType(typ.Elem()),
Subscripts: []llvm.DISubrange{
llvm.DISubrange{
Lo: 0,
Count: typ.Len(),
},
},
})
case *types.Basic:
var encoding llvm.DwarfTypeEncoding
if typ.Info()&types.IsBoolean != 0 {
encoding = llvm.DW_ATE_boolean
} else if typ.Info()&types.IsFloat != 0 {
encoding = llvm.DW_ATE_float
} else if typ.Info()&types.IsComplex != 0 {
encoding = llvm.DW_ATE_complex_float
} else if typ.Info()&types.IsUnsigned != 0 {
encoding = llvm.DW_ATE_unsigned
} else if typ.Info()&types.IsInteger != 0 {
encoding = llvm.DW_ATE_signed
} else if typ.Kind() == types.UnsafePointer {
return c.dibuilder.CreatePointerType(llvm.DIPointerType{
Name: "unsafe.Pointer",
SizeInBits: c.targetData.TypeAllocSize(llvmType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
AddressSpace: 0,
})
} else if typ.Info()&types.IsString != 0 {
return c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{
Name: "string",
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
Elements: []llvm.Metadata{
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "ptr",
SizeInBits: c.targetData.TypeAllocSize(c.i8ptrType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(c.i8ptrType)) * 8,
OffsetInBits: 0,
Type: c.getDIType(types.NewPointer(types.Typ[types.Byte])),
}),
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "len",
SizeInBits: c.targetData.TypeAllocSize(c.uintptrType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(c.uintptrType)) * 8,
OffsetInBits: c.targetData.ElementOffset(llvmType, 1) * 8,
Type: c.getDIType(types.Typ[types.Uintptr]),
}),
},
})
} else {
panic("unknown basic type")
}
return c.dibuilder.CreateBasicType(llvm.DIBasicType{
Name: typ.String(),
SizeInBits: sizeInBytes * 8,
Encoding: encoding,
})
case *types.Chan:
return c.getDIType(types.NewPointer(c.program.ImportedPackage("runtime").Members["channel"].(*ssa.Type).Type()))
case *types.Interface:
return c.getDIType(c.program.ImportedPackage("runtime").Members["_interface"].(*ssa.Type).Type())
case *types.Map:
return c.getDIType(types.NewPointer(c.program.ImportedPackage("runtime").Members["hashmap"].(*ssa.Type).Type()))
case *types.Named:
return c.dibuilder.CreateTypedef(llvm.DITypedef{
Type: c.getDIType(typ.Underlying()),
Name: typ.String(),
})
case *types.Pointer:
return c.dibuilder.CreatePointerType(llvm.DIPointerType{
Pointee: c.getDIType(typ.Elem()),
SizeInBits: c.targetData.TypeAllocSize(llvmType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
AddressSpace: 0,
})
case *types.Signature:
// actually a closure
fields := llvmType.StructElementTypes()
return c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
Elements: []llvm.Metadata{
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "context",
SizeInBits: c.targetData.TypeAllocSize(fields[1]) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(fields[1])) * 8,
OffsetInBits: 0,
Type: c.getDIType(types.Typ[types.UnsafePointer]),
}),
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "fn",
SizeInBits: c.targetData.TypeAllocSize(fields[0]) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(fields[0])) * 8,
OffsetInBits: c.targetData.ElementOffset(llvmType, 1) * 8,
Type: c.getDIType(types.Typ[types.UnsafePointer]),
}),
},
})
case *types.Slice:
fields := llvmType.StructElementTypes()
return c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{
Name: typ.String(),
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
Elements: []llvm.Metadata{
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "ptr",
SizeInBits: c.targetData.TypeAllocSize(fields[0]) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(fields[0])) * 8,
OffsetInBits: 0,
Type: c.getDIType(types.NewPointer(typ.Elem())),
}),
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "len",
SizeInBits: c.targetData.TypeAllocSize(c.uintptrType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(c.uintptrType)) * 8,
OffsetInBits: c.targetData.ElementOffset(llvmType, 1) * 8,
Type: c.getDIType(types.Typ[types.Uintptr]),
}),
c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: "cap",
SizeInBits: c.targetData.TypeAllocSize(c.uintptrType) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(c.uintptrType)) * 8,
OffsetInBits: c.targetData.ElementOffset(llvmType, 2) * 8,
Type: c.getDIType(types.Typ[types.Uintptr]),
}),
},
})
case *types.Struct:
// Placeholder metadata node, to be replaced afterwards.
temporaryMDNode := c.dibuilder.CreateReplaceableCompositeType(llvm.Metadata{}, llvm.DIReplaceableCompositeType{
Tag: dwarf.TagStructType,
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
})
c.ditypes[typ] = temporaryMDNode
elements := make([]llvm.Metadata, typ.NumFields())
for i := range elements {
field := typ.Field(i)
fieldType := field.Type()
llvmField := c.getLLVMType(fieldType)
elements[i] = c.dibuilder.CreateMemberType(llvm.Metadata{}, llvm.DIMemberType{
Name: field.Name(),
SizeInBits: c.targetData.TypeAllocSize(llvmField) * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmField)) * 8,
OffsetInBits: c.targetData.ElementOffset(llvmType, i) * 8,
Type: c.getDIType(fieldType),
})
}
md := c.dibuilder.CreateStructType(llvm.Metadata{}, llvm.DIStructType{
SizeInBits: sizeInBytes * 8,
AlignInBits: uint32(c.targetData.ABITypeAlignment(llvmType)) * 8,
Elements: elements,
})
temporaryMDNode.ReplaceAllUsesWith(md)
return md
default:
panic("unknown type while generating DWARF debug type: " + typ.String())
}
}
// getLocalVariable returns a debug info entry for a local variable, which may
// either be a parameter or a regular variable. It will create a new metadata
// entry if there isn't one for the variable yet.
func (b *builder) getLocalVariable(variable *types.Var) llvm.Metadata {
if dilocal, ok := b.dilocals[variable]; ok {
// DILocalVariable was already created, return it directly.
return dilocal
}
pos := b.program.Fset.Position(variable.Pos())
// Check whether this is a function parameter.
for i, param := range b.fn.Params {
if param.Object().(*types.Var) == variable {
// Yes it is, create it as a function parameter.
dilocal := b.dibuilder.CreateParameterVariable(b.difunc, llvm.DIParameterVariable{
Name: param.Name(),
File: b.getDIFile(pos.Filename),
Line: pos.Line,
Type: b.getDIType(variable.Type()),
AlwaysPreserve: true,
ArgNo: i + 1,
})
b.dilocals[variable] = dilocal
return dilocal
}
}
// No, it's not a parameter. Create a regular (auto) variable.
dilocal := b.dibuilder.CreateAutoVariable(b.difunc, llvm.DIAutoVariable{
Name: variable.Name(),
File: b.getDIFile(pos.Filename),
Line: pos.Line,
Type: b.getDIType(variable.Type()),
AlwaysPreserve: true,
})
b.dilocals[variable] = dilocal
return dilocal
}
// attachDebugInfo adds debug info to a function declaration. It returns the
// DISubprogram metadata node.
func (c *compilerContext) attachDebugInfo(f *ssa.Function) llvm.Metadata {
pos := c.program.Fset.Position(f.Syntax().Pos())
return c.attachDebugInfoRaw(f, c.getFunction(f), "", pos.Filename, pos.Line)
}
// attachDebugInfo adds debug info to a function declaration. It returns the
// DISubprogram metadata node. This method allows some more control over how
// debug info is added to the function.
func (c *compilerContext) attachDebugInfoRaw(f *ssa.Function, llvmFn llvm.Value, suffix, filename string, line int) llvm.Metadata {
// Debug info for this function.
params := getParams(f.Signature)
diparams := make([]llvm.Metadata, 0, len(params))
for _, param := range params {
diparams = append(diparams, c.getDIType(param.Type()))
}
diFuncType := c.dibuilder.CreateSubroutineType(llvm.DISubroutineType{
File: c.getDIFile(filename),
Parameters: diparams,
Flags: 0, // ?
})
difunc := c.dibuilder.CreateFunction(c.getDIFile(filename), llvm.DIFunction{
Name: f.RelString(nil) + suffix,
LinkageName: c.getFunctionInfo(f).linkName + suffix,
File: c.getDIFile(filename),
Line: line,
Type: diFuncType,
LocalToUnit: true,
IsDefinition: true,
ScopeLine: 0,
Flags: llvm.FlagPrototyped,
Optimized: true,
})
llvmFn.SetSubprogram(difunc)
return difunc
}
// getDIFile returns a DIFile metadata node for the given filename. It tries to
// use one that was already created, otherwise it falls back to creating a new
// one.
func (c *compilerContext) getDIFile(filename string) llvm.Metadata {
if _, ok := c.difiles[filename]; !ok {
dir, file := filepath.Split(filename)
if dir != "" {
dir = dir[:len(dir)-1]
}
c.difiles[filename] = c.dibuilder.CreateFile(file, dir)
}
return c.difiles[filename]
}
// createPackage builds the LLVM IR for all types, methods, and global variables
// in the given package.
func (c *compilerContext) createPackage(irbuilder llvm.Builder, pkg *ssa.Package) {
// Sort by position, so that the order of the functions in the IR matches
// the order of functions in the source file. This is useful for testing,
// for example.
var members []string
for name := range pkg.Members {
members = append(members, name)
}
sort.Slice(members, func(i, j int) bool {
iPos := pkg.Members[members[i]].Pos()
jPos := pkg.Members[members[j]].Pos()
if i == j {
// Cannot sort by pos, so do it by name.
return members[i] < members[j]
}
return iPos < jPos
})
// Define all functions.
for _, name := range members {
member := pkg.Members[name]
switch member := member.(type) {
case *ssa.Function:
// Create the function definition.
b := newBuilder(c, irbuilder, member)
if member.Blocks == nil {
continue // external function
}
b.createFunction()
case *ssa.Type:
if types.IsInterface(member.Type()) {
// Interfaces don't have concrete methods.
continue
}
// Named type. We should make sure all methods are created.
// This includes both functions with pointer receivers and those
// without.
methods := getAllMethods(pkg.Prog, member.Type())
methods = append(methods, getAllMethods(pkg.Prog, types.NewPointer(member.Type()))...)
for _, method := range methods {
// Parse this method.
fn := pkg.Prog.MethodValue(method)
if fn.Blocks == nil {
continue // external function
}
if member.Type().String() != member.String() {
// This is a member on a type alias. Do not build such a
// function.
continue
}
if fn.Synthetic != "" && fn.Synthetic != "package initializer" {
// This function is a kind of wrapper function (created by
// the ssa package, not appearing in the source code) that
// is created by the getFunction method as needed.
// Therefore, don't build it here to avoid "function
// redeclared" errors.
continue
}
// Create the function definition.
b := newBuilder(c, irbuilder, fn)
b.createFunction()
}
case *ssa.Global:
// Global variable.
info := c.getGlobalInfo(member)
global := c.getGlobal(member)
if !info.extern {
global.SetInitializer(llvm.ConstNull(global.Type().ElementType()))
global.SetVisibility(llvm.HiddenVisibility)
if info.section != "" {
global.SetSection(info.section)
}
}
}
}
}
// createFunction builds the LLVM IR implementation for this function. The
// function must not yet be defined, otherwise this function will create a
// diagnostic.
func (b *builder) createFunction() {
if b.DumpSSA {
fmt.Printf("\nfunc %s:\n", b.fn)
}
if !b.llvmFn.IsDeclaration() {
errValue := b.llvmFn.Name() + " redeclared in this program"
fnPos := getPosition(b.llvmFn)
if fnPos.IsValid() {
errValue += "\n\tprevious declaration at " + fnPos.String()
}
b.addError(b.fn.Pos(), errValue)
return
}
if !b.info.exported {
b.llvmFn.SetVisibility(llvm.HiddenVisibility)
b.llvmFn.SetUnnamedAddr(true)
}
if b.info.section != "" {
b.llvmFn.SetSection(b.info.section)
}
if b.info.exported && strings.HasPrefix(b.Triple, "wasm") {
// Set the exported name. This is necessary for WebAssembly because
// otherwise the function is not exported.
functionAttr := b.ctx.CreateStringAttribute("wasm-export-name", b.info.linkName)
b.llvmFn.AddFunctionAttr(functionAttr)
}
// Some functions have a pragma controlling the inlining level.
switch b.info.inline {
case inlineHint:
// Add LLVM inline hint to functions with //go:inline pragma.
inline := b.ctx.CreateEnumAttribute(llvm.AttributeKindID("inlinehint"), 0)
b.llvmFn.AddFunctionAttr(inline)
case inlineNone:
// Add LLVM attribute to always avoid inlining this function.
noinline := b.ctx.CreateEnumAttribute(llvm.AttributeKindID("noinline"), 0)
b.llvmFn.AddFunctionAttr(noinline)
}
// Add debug info, if needed.
if b.Debug {
if b.fn.Synthetic == "package initializer" {
// Package initializers have no debug info. Create some fake debug
// info to at least have *something*.
filename := b.fn.Package().Pkg.Path() + "/<init>"
b.difunc = b.attachDebugInfoRaw(b.fn, b.llvmFn, "", filename, 0)
} else if b.fn.Syntax() != nil {
// Create debug info file if needed.
b.difunc = b.attachDebugInfo(b.fn)
}
pos := b.program.Fset.Position(b.fn.Pos())
b.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), b.difunc, llvm.Metadata{})
}
// Pre-create all basic blocks in the function.
for _, block := range b.fn.DomPreorder() {
llvmBlock := b.ctx.AddBasicBlock(b.llvmFn, block.Comment)
b.blockEntries[block] = llvmBlock
b.blockExits[block] = llvmBlock
}
entryBlock := b.blockEntries[b.fn.Blocks[0]]
b.SetInsertPointAtEnd(entryBlock)
// Load function parameters
llvmParamIndex := 0
for _, param := range b.fn.Params {
llvmType := b.getLLVMType(param.Type())
fields := make([]llvm.Value, 0, 1)
for _, info := range b.expandFormalParamType(llvmType, param.Name(), param.Type()) {
param := b.llvmFn.Param(llvmParamIndex)
param.SetName(info.name)
fields = append(fields, param)
llvmParamIndex++
}
b.locals[param] = b.collapseFormalParam(llvmType, fields)
// Add debug information to this parameter (if available)
if b.Debug && b.fn.Syntax() != nil {
dbgParam := b.getLocalVariable(param.Object().(*types.Var))
loc := b.GetCurrentDebugLocation()
if len(fields) == 1 {
expr := b.dibuilder.CreateExpression(nil)
b.dibuilder.InsertValueAtEnd(fields[0], dbgParam, expr, loc, entryBlock)
} else {
fieldOffsets := b.expandFormalParamOffsets(llvmType)
for i, field := range fields {
expr := b.dibuilder.CreateExpression([]int64{
0x1000, // DW_OP_LLVM_fragment
int64(fieldOffsets[i]) * 8, // offset in bits
int64(b.targetData.TypeAllocSize(field.Type())) * 8, // size in bits
})
b.dibuilder.InsertValueAtEnd(field, dbgParam, expr, loc, entryBlock)
}
}
}
}
// Load free variables from the context. This is a closure (or bound
// method).
var context llvm.Value
if !b.info.exported {
parentHandle := b.llvmFn.LastParam()
parentHandle.SetName("parentHandle")
context = llvm.PrevParam(parentHandle)
context.SetName("context")
}
if len(b.fn.FreeVars) != 0 {
// Get a list of all variable types in the context.
freeVarTypes := make([]llvm.Type, len(b.fn.FreeVars))
for i, freeVar := range b.fn.FreeVars {
freeVarTypes[i] = b.getLLVMType(freeVar.Type())
}
// Load each free variable from the context pointer.
// A free variable is always a pointer when this is a closure, but it
// can be another type when it is a wrapper for a bound method (these
// wrappers are generated by the ssa package).
for i, val := range b.emitPointerUnpack(context, freeVarTypes) {
b.locals[b.fn.FreeVars[i]] = val
}
}
if b.fn.Recover != nil {
// This function has deferred function calls. Set some things up for
// them.
b.deferInitFunc()
}
// Fill blocks with instructions.
for _, block := range b.fn.DomPreorder() {
if b.DumpSSA {
fmt.Printf("%d: %s:\n", block.Index, block.Comment)
}
b.SetInsertPointAtEnd(b.blockEntries[block])
b.currentBlock = block
for _, instr := range block.Instrs {
if instr, ok := instr.(*ssa.DebugRef); ok {
if !b.Debug {
continue
}
object := instr.Object()
variable, ok := object.(*types.Var)
if !ok {
// Not a local variable.
continue
}
if instr.IsAddr {
// TODO, this may happen for *ssa.Alloc and *ssa.FieldAddr
// for example.
continue
}
dbgVar := b.getLocalVariable(variable)
pos := b.program.Fset.Position(instr.Pos())
b.dibuilder.InsertValueAtEnd(b.getValue(instr.X), dbgVar, b.dibuilder.CreateExpression(nil), llvm.DebugLoc{
Line: uint(pos.Line),
Col: uint(pos.Column),
Scope: b.difunc,
}, b.GetInsertBlock())
continue
}
if b.DumpSSA {
if val, ok := instr.(ssa.Value); ok && val.Name() != "" {
fmt.Printf("\t%s = %s\n", val.Name(), val.String())
} else {
fmt.Printf("\t%s\n", instr.String())
}
}
b.createInstruction(instr)
}
if b.fn.Name() == "init" && len(block.Instrs) == 0 {
b.CreateRetVoid()
}
}
// Resolve phi nodes
for _, phi := range b.phis {
block := phi.ssa.Block()
for i, edge := range phi.ssa.Edges {
llvmVal := b.getValue(edge)
llvmBlock := b.blockExits[block.Preds[i]]
phi.llvm.AddIncoming([]llvm.Value{llvmVal}, []llvm.BasicBlock{llvmBlock})
}
}
if b.NeedsStackObjects {
// Track phi nodes.
for _, phi := range b.phis {
insertPoint := llvm.NextInstruction(phi.llvm)
for !insertPoint.IsAPHINode().IsNil() {
insertPoint = llvm.NextInstruction(insertPoint)
}
b.SetInsertPointBefore(insertPoint)
b.trackValue(phi.llvm)
}
}
// Create anonymous functions (closures etc.).
for _, sub := range b.fn.AnonFuncs {
b := newBuilder(b.compilerContext, b.Builder, sub)
b.createFunction()
}
}
// posser is an interface that's implemented by both ssa.Value and
// ssa.Instruction. It is implemented by everything that has a Pos() method,
// which is all that getPos() needs.
type posser interface {
Pos() token.Pos
}
// getPos returns position information for a ssa.Value or ssa.Instruction.
//
// Not all instructions have position information, especially when they're
// implicit (such as implicit casts or implicit returns at the end of a
// function). In these cases, it makes sense to try a bit harder to guess what
// the position really should be.
func getPos(val posser) token.Pos {
pos := val.Pos()
if pos != token.NoPos {
// Easy: position is known.
return pos
}
// No position information is known.
switch val := val.(type) {
case *ssa.MakeInterface:
return getPos(val.X)
case *ssa.MakeClosure:
return val.Fn.(*ssa.Function).Pos()
case *ssa.Return:
syntax := val.Parent().Syntax()
if syntax != nil {
// non-synthetic
return syntax.End()
}
return token.NoPos
case *ssa.FieldAddr:
return getPos(val.X)
case *ssa.IndexAddr:
return getPos(val.X)
case *ssa.Slice:
return getPos(val.X)
case *ssa.Store:
return getPos(val.Addr)
case *ssa.Extract:
return getPos(val.Tuple)
default:
// This is reachable, for example with *ssa.Const, *ssa.If, and
// *ssa.Jump. They might be implemented in some way in the future.
return token.NoPos
}
}
// createInstruction builds the LLVM IR equivalent instructions for the
// particular Go SSA instruction.
func (b *builder) createInstruction(instr ssa.Instruction) {
if b.Debug {
pos := b.program.Fset.Position(getPos(instr))
b.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), b.difunc, llvm.Metadata{})
}
switch instr := instr.(type) {
case ssa.Value:
if value, err := b.createExpr(instr); err != nil {
// This expression could not be parsed. Add the error to the list
// of diagnostics and continue with an undef value.
// The resulting IR will be incorrect (but valid). However,
// compilation can proceed which is useful because there may be
// more compilation errors which can then all be shown together to
// the user.
b.diagnostics = append(b.diagnostics, err)
b.locals[instr] = llvm.Undef(b.getLLVMType(instr.Type()))
} else {
b.locals[instr] = value
if len(*instr.Referrers()) != 0 && b.NeedsStackObjects {
b.trackExpr(instr, value)
}
}
case *ssa.DebugRef:
// ignore
case *ssa.Defer:
b.createDefer(instr)
case *ssa.Go:
// Start a new goroutine.
b.createGo(instr)
case *ssa.If:
cond := b.getValue(instr.Cond)
block := instr.Block()
blockThen := b.blockEntries[block.Succs[0]]
blockElse := b.blockEntries[block.Succs[1]]
b.CreateCondBr(cond, blockThen, blockElse)
case *ssa.Jump:
blockJump := b.blockEntries[instr.Block().Succs[0]]
b.CreateBr(blockJump)
case *ssa.MapUpdate:
m := b.getValue(instr.Map)
key := b.getValue(instr.Key)
value := b.getValue(instr.Value)
mapType := instr.Map.Type().Underlying().(*types.Map)
b.createMapUpdate(mapType.Key(), m, key, value, instr.Pos())
case *ssa.Panic:
value := b.getValue(instr.X)
b.createRuntimeCall("_panic", []llvm.Value{value}, "")
b.CreateUnreachable()
case *ssa.Return:
if len(instr.Results) == 0 {
b.CreateRetVoid()
} else if len(instr.Results) == 1 {
b.CreateRet(b.getValue(instr.Results[0]))
} else {
// Multiple return values. Put them all in a struct.
retVal := llvm.ConstNull(b.llvmFn.Type().ElementType().ReturnType())
for i, result := range instr.Results {
val := b.getValue(result)
retVal = b.CreateInsertValue(retVal, val, i, "")
}
b.CreateRet(retVal)
}
case *ssa.RunDefers:
b.createRunDefers()
case *ssa.Send:
b.createChanSend(instr)
case *ssa.Store:
llvmAddr := b.getValue(instr.Addr)
llvmVal := b.getValue(instr.Val)
b.createNilCheck(instr.Addr, llvmAddr, "store")
if b.targetData.TypeAllocSize(llvmVal.Type()) == 0 {
// nothing to store
return
}
b.CreateStore(llvmVal, llvmAddr)
default:
b.addError(instr.Pos(), "unknown instruction: "+instr.String())
}
}
// createBuiltin lowers a builtin Go function (append, close, delete, etc.) to
// LLVM IR. It uses runtime calls for some builtins.
func (b *builder) createBuiltin(argTypes []types.Type, argValues []llvm.Value, callName string, pos token.Pos) (llvm.Value, error) {
switch callName {
case "append":
src := argValues[0]
elems := argValues[1]
srcBuf := b.CreateExtractValue(src, 0, "append.srcBuf")
srcPtr := b.CreateBitCast(srcBuf, b.i8ptrType, "append.srcPtr")
srcLen := b.CreateExtractValue(src, 1, "append.srcLen")
srcCap := b.CreateExtractValue(src, 2, "append.srcCap")
elemsBuf := b.CreateExtractValue(elems, 0, "append.elemsBuf")
elemsPtr := b.CreateBitCast(elemsBuf, b.i8ptrType, "append.srcPtr")
elemsLen := b.CreateExtractValue(elems, 1, "append.elemsLen")
elemType := srcBuf.Type().ElementType()
elemSize := llvm.ConstInt(b.uintptrType, b.targetData.TypeAllocSize(elemType), false)
result := b.createRuntimeCall("sliceAppend", []llvm.Value{srcPtr, elemsPtr, srcLen, srcCap, elemsLen, elemSize}, "append.new")
newPtr := b.CreateExtractValue(result, 0, "append.newPtr")
newBuf := b.CreateBitCast(newPtr, srcBuf.Type(), "append.newBuf")
newLen := b.CreateExtractValue(result, 1, "append.newLen")
newCap := b.CreateExtractValue(result, 2, "append.newCap")
newSlice := llvm.Undef(src.Type())
newSlice = b.CreateInsertValue(newSlice, newBuf, 0, "")
newSlice = b.CreateInsertValue(newSlice, newLen, 1, "")
newSlice = b.CreateInsertValue(newSlice, newCap, 2, "")
return newSlice, nil
case "cap":
value := argValues[0]
var llvmCap llvm.Value
switch argTypes[0].(type) {
case *types.Chan:
llvmCap = b.createRuntimeCall("chanCap", []llvm.Value{value}, "cap")
case *types.Slice:
llvmCap = b.CreateExtractValue(value, 2, "cap")
default:
return llvm.Value{}, b.makeError(pos, "todo: cap: unknown type")
}
if b.targetData.TypeAllocSize(llvmCap.Type()) < b.targetData.TypeAllocSize(b.intType) {
llvmCap = b.CreateZExt(llvmCap, b.intType, "len.int")
}
return llvmCap, nil
case "close":
b.createChanClose(argValues[0])
return llvm.Value{}, nil
case "complex":
r := argValues[0]
i := argValues[1]
t := argTypes[0].Underlying().(*types.Basic)
var cplx llvm.Value
switch t.Kind() {
case types.Float32:
cplx = llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.FloatType(), b.ctx.FloatType()}, false))
case types.Float64:
cplx = llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.DoubleType(), b.ctx.DoubleType()}, false))
default:
return llvm.Value{}, b.makeError(pos, "unsupported type in complex builtin: "+t.String())
}
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
case "copy":
dst := argValues[0]
src := argValues[1]
dstLen := b.CreateExtractValue(dst, 1, "copy.dstLen")
srcLen := b.CreateExtractValue(src, 1, "copy.srcLen")
dstBuf := b.CreateExtractValue(dst, 0, "copy.dstArray")
srcBuf := b.CreateExtractValue(src, 0, "copy.srcArray")
elemType := dstBuf.Type().ElementType()
dstBuf = b.CreateBitCast(dstBuf, b.i8ptrType, "copy.dstPtr")
srcBuf = b.CreateBitCast(srcBuf, b.i8ptrType, "copy.srcPtr")
elemSize := llvm.ConstInt(b.uintptrType, b.targetData.TypeAllocSize(elemType), false)
return b.createRuntimeCall("sliceCopy", []llvm.Value{dstBuf, srcBuf, dstLen, srcLen, elemSize}, "copy.n"), nil
case "delete":
m := argValues[0]
key := argValues[1]
return llvm.Value{}, b.createMapDelete(argTypes[1], m, key, pos)
case "imag":
cplx := argValues[0]
return b.CreateExtractValue(cplx, 1, "imag"), nil
case "len":
value := argValues[0]
var llvmLen llvm.Value
switch argTypes[0].Underlying().(type) {
case *types.Basic, *types.Slice:
// string or slice
llvmLen = b.CreateExtractValue(value, 1, "len")
case *types.Chan:
llvmLen = b.createRuntimeCall("chanLen", []llvm.Value{value}, "len")
case *types.Map:
llvmLen = b.createRuntimeCall("hashmapLen", []llvm.Value{value}, "len")
default:
return llvm.Value{}, b.makeError(pos, "todo: len: unknown type")
}
if b.targetData.TypeAllocSize(llvmLen.Type()) < b.targetData.TypeAllocSize(b.intType) {
llvmLen = b.CreateZExt(llvmLen, b.intType, "len.int")
}
return llvmLen, nil
case "print", "println":
for i, value := range argValues {
if i >= 1 && callName == "println" {
b.createRuntimeCall("printspace", nil, "")
}
typ := argTypes[i].Underlying()
switch typ := typ.(type) {
case *types.Basic:
switch typ.Kind() {
case types.String, types.UntypedString:
b.createRuntimeCall("printstring", []llvm.Value{value}, "")
case types.Uintptr:
b.createRuntimeCall("printptr", []llvm.Value{value}, "")
case types.UnsafePointer:
ptrValue := b.CreatePtrToInt(value, b.uintptrType, "")
b.createRuntimeCall("printptr", []llvm.Value{ptrValue}, "")
default:
// runtime.print{int,uint}{8,16,32,64}
if typ.Info()&types.IsInteger != 0 {
name := "print"
if typ.Info()&types.IsUnsigned != 0 {
name += "uint"
} else {
name += "int"
}
name += strconv.FormatUint(b.targetData.TypeAllocSize(value.Type())*8, 10)
b.createRuntimeCall(name, []llvm.Value{value}, "")
} else if typ.Kind() == types.Bool {
b.createRuntimeCall("printbool", []llvm.Value{value}, "")
} else if typ.Kind() == types.Float32 {
b.createRuntimeCall("printfloat32", []llvm.Value{value}, "")
} else if typ.Kind() == types.Float64 {
b.createRuntimeCall("printfloat64", []llvm.Value{value}, "")
} else if typ.Kind() == types.Complex64 {
b.createRuntimeCall("printcomplex64", []llvm.Value{value}, "")
} else if typ.Kind() == types.Complex128 {
b.createRuntimeCall("printcomplex128", []llvm.Value{value}, "")
} else {
return llvm.Value{}, b.makeError(pos, "unknown basic arg type: "+typ.String())
}
}
case *types.Interface:
b.createRuntimeCall("printitf", []llvm.Value{value}, "")
case *types.Map:
b.createRuntimeCall("printmap", []llvm.Value{value}, "")
case *types.Pointer:
ptrValue := b.CreatePtrToInt(value, b.uintptrType, "")
b.createRuntimeCall("printptr", []llvm.Value{ptrValue}, "")
default:
return llvm.Value{}, b.makeError(pos, "unknown arg type: "+typ.String())
}
}
if callName == "println" {
b.createRuntimeCall("printnl", nil, "")
}
return llvm.Value{}, nil // print() or println() returns void
case "real":
cplx := argValues[0]
return b.CreateExtractValue(cplx, 0, "real"), nil
case "recover":
return b.createRuntimeCall("_recover", nil, ""), nil
case "ssa:wrapnilchk":
// TODO: do an actual nil check?
return argValues[0], nil
default:
return llvm.Value{}, b.makeError(pos, "todo: builtin: "+callName)
}
}
// createFunctionCall lowers a Go SSA call instruction (to a simple function,
// closure, function pointer, builtin, method, etc.) to LLVM IR, usually a call
// instruction.
//
// This is also where compiler intrinsics are implemented.
func (b *builder) createFunctionCall(instr *ssa.CallCommon) (llvm.Value, error) {
if instr.IsInvoke() {
fnCast, args := b.getInvokeCall(instr)
return b.createCall(fnCast, args, ""), nil
}
// Try to call the function directly for trivially static calls.
var callee, context llvm.Value
exported := false
if fn := instr.StaticCallee(); fn != nil {
// Direct function call, either to a named or anonymous (directly
// applied) function call. If it is anonymous, it may be a closure.
name := fn.RelString(nil)
switch {
case name == "runtime.memcpy" || name == "runtime.memmove" || name == "reflect.memcpy":
return b.createMemoryCopyCall(fn, instr.Args)
case name == "runtime.memzero":
return b.createMemoryZeroCall(instr.Args)
case name == "device.Asm" || name == "device/arm.Asm" || name == "device/arm64.Asm" || name == "device/avr.Asm" || name == "device/riscv.Asm":
return b.createInlineAsm(instr.Args)
case name == "device.AsmFull" || name == "device/arm.AsmFull" || name == "device/arm64.AsmFull" || name == "device/avr.AsmFull" || name == "device/riscv.AsmFull":
return b.createInlineAsmFull(instr)
case strings.HasPrefix(name, "device/arm.SVCall"):
return b.emitSVCall(instr.Args)
case strings.HasPrefix(name, "device/arm64.SVCall"):
return b.emitSV64Call(instr.Args)
case strings.HasPrefix(name, "(device/riscv.CSR)."):
return b.emitCSROperation(instr)
case strings.HasPrefix(name, "syscall.Syscall"):
return b.createSyscall(instr)
case strings.HasPrefix(name, "runtime/volatile.Load"):
return b.createVolatileLoad(instr)
case strings.HasPrefix(name, "runtime/volatile.Store"):
return b.createVolatileStore(instr)
case strings.HasPrefix(name, "sync/atomic."):
val, ok := b.createAtomicOp(instr)
if ok {
// This call could be lowered as an atomic operation.
return val, nil
}
// This call couldn't be lowered as an atomic operation, it's
// probably something else. Continue as usual.
case name == "runtime/interrupt.New":
return b.createInterruptGlobal(instr)
}
callee = b.getFunction(fn)
info := b.getFunctionInfo(fn)
if callee.IsNil() {
return llvm.Value{}, b.makeError(instr.Pos(), "undefined function: "+info.linkName)
}
switch value := instr.Value.(type) {
case *ssa.Function:
// Regular function call. No context is necessary.
context = llvm.Undef(b.i8ptrType)
case *ssa.MakeClosure:
// A call on a func value, but the callee is trivial to find. For
// example: immediately applied functions.
funcValue := b.getValue(value)
context = b.extractFuncContext(funcValue)
default:
panic("StaticCallee returned an unexpected value")
}
exported = info.exported
} else if call, ok := instr.Value.(*ssa.Builtin); ok {
// Builtin function (append, close, delete, etc.).)
var argTypes []types.Type
var argValues []llvm.Value
for _, arg := range instr.Args {
argTypes = append(argTypes, arg.Type())
argValues = append(argValues, b.getValue(arg))
}
return b.createBuiltin(argTypes, argValues, call.Name(), instr.Pos())
} else {
// Function pointer.
value := b.getValue(instr.Value)
// This is a func value, which cannot be called directly. We have to
// extract the function pointer and context first from the func value.
callee, context = b.decodeFuncValue(value, instr.Value.Type().Underlying().(*types.Signature))
b.createNilCheck(instr.Value, callee, "fpcall")
}
var params []llvm.Value
for _, param := range instr.Args {
params = append(params, b.getValue(param))
}
if !exported {
// This function takes a context parameter.
// Add it to the end of the parameter list.
params = append(params, context)
// Parent coroutine handle.
params = append(params, llvm.Undef(b.i8ptrType))
}
return b.createCall(callee, params, ""), nil
}
// getValue returns the LLVM value of a constant, function value, global, or
// already processed SSA expression.
func (b *builder) getValue(expr ssa.Value) llvm.Value {
switch expr := expr.(type) {
case *ssa.Const:
return b.createConst(b.info.linkName, expr)
case *ssa.Function:
if b.getFunctionInfo(expr).exported {
b.addError(expr.Pos(), "cannot use an exported function as value: "+expr.String())
return llvm.Undef(b.getLLVMType(expr.Type()))
}
return b.createFuncValue(b.getFunction(expr), llvm.Undef(b.i8ptrType), expr.Signature)
case *ssa.Global:
value := b.getGlobal(expr)
if value.IsNil() {
b.addError(expr.Pos(), "global not found: "+expr.RelString(nil))
return llvm.Undef(b.getLLVMType(expr.Type()))
}
return value
default:
// other (local) SSA value
if value, ok := b.locals[expr]; ok {
return value
} else {
// indicates a compiler bug
panic("local has not been parsed: " + expr.String())
}
}
}
// createExpr translates a Go SSA expression to LLVM IR. This can be zero, one,
// or multiple LLVM IR instructions and/or runtime calls.
func (b *builder) createExpr(expr ssa.Value) (llvm.Value, error) {
if _, ok := b.locals[expr]; ok {
// sanity check
panic("instruction has already been created: " + expr.String())
}
switch expr := expr.(type) {
case *ssa.Alloc:
typ := b.getLLVMType(expr.Type().Underlying().(*types.Pointer).Elem())
if expr.Heap {
size := b.targetData.TypeAllocSize(typ)
// Calculate ^uintptr(0)
maxSize := llvm.ConstNot(llvm.ConstInt(b.uintptrType, 0, false)).ZExtValue()
if size > maxSize {
// Size would be truncated if truncated to uintptr.
return llvm.Value{}, b.makeError(expr.Pos(), fmt.Sprintf("value is too big (%v bytes)", size))
}
sizeValue := llvm.ConstInt(b.uintptrType, size, false)
buf := b.createRuntimeCall("alloc", []llvm.Value{sizeValue}, expr.Comment)
buf = b.CreateBitCast(buf, llvm.PointerType(typ, 0), "")
return buf, nil
} else {
buf := llvmutil.CreateEntryBlockAlloca(b.Builder, typ, expr.Comment)
if b.targetData.TypeAllocSize(typ) != 0 {
b.CreateStore(llvm.ConstNull(typ), buf) // zero-initialize var
}
return buf, nil
}
case *ssa.BinOp:
x := b.getValue(expr.X)
y := b.getValue(expr.Y)
return b.createBinOp(expr.Op, expr.X.Type(), expr.Y.Type(), x, y, expr.Pos())
case *ssa.Call:
return b.createFunctionCall(expr.Common())
case *ssa.ChangeInterface:
// Do not change between interface types: always use the underlying
// (concrete) type in the type number of the interface. Every method
// call on an interface will do a lookup which method to call.
// This is different from how the official Go compiler works, because of
// heap allocation and because it's easier to implement, see:
// https://research.swtch.com/interfaces
return b.getValue(expr.X), nil
case *ssa.ChangeType:
// This instruction changes the type, but the underlying value remains
// the same. This is often a no-op, but sometimes we have to change the
// LLVM type as well.
x := b.getValue(expr.X)
llvmType := b.getLLVMType(expr.Type())
if x.Type() == llvmType {
// Different Go type but same LLVM type (for example, named int).
// This is the common case.
return x, nil
}
// Figure out what kind of type we need to cast.
switch llvmType.TypeKind() {
case llvm.StructTypeKind:
// Unfortunately, we can't just bitcast structs. We have to
// actually create a new struct of the correct type and insert the
// values from the previous struct in there.
value := llvm.Undef(llvmType)
for i := 0; i < llvmType.StructElementTypesCount(); i++ {
field := b.CreateExtractValue(x, i, "changetype.field")
value = b.CreateInsertValue(value, field, i, "changetype.struct")
}
return value, nil
case llvm.PointerTypeKind:
// This can happen with pointers to structs. This case is easy:
// simply bitcast the pointer to the destination type.
return b.CreateBitCast(x, llvmType, "changetype.pointer"), nil
default:
return llvm.Value{}, errors.New("todo: unknown ChangeType type: " + expr.X.Type().String())
}
case *ssa.Const:
panic("const is not an expression")
case *ssa.Convert:
x := b.getValue(expr.X)
return b.createConvert(expr.X.Type(), expr.Type(), x, expr.Pos())
case *ssa.Extract:
if _, ok := expr.Tuple.(*ssa.Select); ok {
return b.getChanSelectResult(expr), nil
}
value := b.getValue(expr.Tuple)
return b.CreateExtractValue(value, expr.Index, ""), nil
case *ssa.Field:
value := b.getValue(expr.X)
result := b.CreateExtractValue(value, expr.Field, "")
return result, nil
case *ssa.FieldAddr:
val := b.getValue(expr.X)
// Check for nil pointer before calculating the address, from the spec:
// > For an operand x of type T, the address operation &x generates a
// > pointer of type *T to x. [...] If the evaluation of x would cause a
// > run-time panic, then the evaluation of &x does too.
b.createNilCheck(expr.X, val, "gep")
// Do a GEP on the pointer to get the field address.
indices := []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
llvm.ConstInt(b.ctx.Int32Type(), uint64(expr.Field), false),
}
return b.CreateInBoundsGEP(val, indices, ""), nil
case *ssa.Function:
panic("function is not an expression")
case *ssa.Global:
panic("global is not an expression")
case *ssa.Index:
array := b.getValue(expr.X)
index := b.getValue(expr.Index)
// Check bounds.
arrayLen := expr.X.Type().Underlying().(*types.Array).Len()
arrayLenLLVM := llvm.ConstInt(b.uintptrType, uint64(arrayLen), false)
b.createLookupBoundsCheck(arrayLenLLVM, index, expr.Index.Type())
// Can't load directly from array (as index is non-constant), so have to
// do it using an alloca+gep+load.
alloca, allocaPtr, allocaSize := b.createTemporaryAlloca(array.Type(), "index.alloca")
b.CreateStore(array, alloca)
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
ptr := b.CreateInBoundsGEP(alloca, []llvm.Value{zero, index}, "index.gep")
result := b.CreateLoad(ptr, "index.load")
b.emitLifetimeEnd(allocaPtr, allocaSize)
return result, nil
case *ssa.IndexAddr:
val := b.getValue(expr.X)
index := b.getValue(expr.Index)
// Get buffer pointer and length
var bufptr, buflen llvm.Value
switch ptrTyp := expr.X.Type().Underlying().(type) {
case *types.Pointer:
typ := expr.X.Type().Underlying().(*types.Pointer).Elem().Underlying()
switch typ := typ.(type) {
case *types.Array:
bufptr = val
buflen = llvm.ConstInt(b.uintptrType, uint64(typ.Len()), false)
// Check for nil pointer before calculating the address, from
// the spec:
// > For an operand x of type T, the address operation &x
// > generates a pointer of type *T to x. [...] If the
// > evaluation of x would cause a run-time panic, then the
// > evaluation of &x does too.
b.createNilCheck(expr.X, bufptr, "gep")
default:
return llvm.Value{}, b.makeError(expr.Pos(), "todo: indexaddr: "+typ.String())
}
case *types.Slice:
bufptr = b.CreateExtractValue(val, 0, "indexaddr.ptr")
buflen = b.CreateExtractValue(val, 1, "indexaddr.len")
default:
return llvm.Value{}, b.makeError(expr.Pos(), "todo: indexaddr: "+ptrTyp.String())
}
// Bounds check.
b.createLookupBoundsCheck(buflen, index, expr.Index.Type())
switch expr.X.Type().Underlying().(type) {
case *types.Pointer:
indices := []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
index,
}
return b.CreateInBoundsGEP(bufptr, indices, ""), nil
case *types.Slice:
return b.CreateInBoundsGEP(bufptr, []llvm.Value{index}, ""), nil
default:
panic("unreachable")
}
case *ssa.Lookup:
value := b.getValue(expr.X)
index := b.getValue(expr.Index)
switch xType := expr.X.Type().Underlying().(type) {
case *types.Basic:
// Value type must be a string, which is a basic type.
if xType.Info()&types.IsString == 0 {
panic("lookup on non-string?")
}
// Bounds check.
length := b.CreateExtractValue(value, 1, "len")
b.createLookupBoundsCheck(length, index, expr.Index.Type())
// Lookup byte
buf := b.CreateExtractValue(value, 0, "")
bufPtr := b.CreateInBoundsGEP(buf, []llvm.Value{index}, "")
return b.CreateLoad(bufPtr, ""), nil
case *types.Map:
valueType := expr.Type()
if expr.CommaOk {
valueType = valueType.(*types.Tuple).At(0).Type()
}
return b.createMapLookup(xType.Key(), valueType, value, index, expr.CommaOk, expr.Pos())
default:
panic("unknown lookup type: " + expr.String())
}
case *ssa.MakeChan:
return b.createMakeChan(expr), nil
case *ssa.MakeClosure:
return b.parseMakeClosure(expr)
case *ssa.MakeInterface:
val := b.getValue(expr.X)
return b.createMakeInterface(val, expr.X.Type(), expr.Pos()), nil
case *ssa.MakeMap:
return b.createMakeMap(expr)
case *ssa.MakeSlice:
sliceLen := b.getValue(expr.Len)
sliceCap := b.getValue(expr.Cap)
sliceType := expr.Type().Underlying().(*types.Slice)
llvmElemType := b.getLLVMType(sliceType.Elem())
elemSize := b.targetData.TypeAllocSize(llvmElemType)
elemSizeValue := llvm.ConstInt(b.uintptrType, elemSize, false)
// Calculate (^uintptr(0)) >> 1, which is the max value that fits in
// uintptr if uintptr were signed.
maxSize := llvm.ConstLShr(llvm.ConstNot(llvm.ConstInt(b.uintptrType, 0, false)), llvm.ConstInt(b.uintptrType, 1, false))
if elemSize > maxSize.ZExtValue() {
// This seems to be checked by the typechecker already, but let's
// check it again just to be sure.
return llvm.Value{}, b.makeError(expr.Pos(), fmt.Sprintf("slice element type is too big (%v bytes)", elemSize))
}
// Bounds checking.
lenType := expr.Len.Type().Underlying().(*types.Basic)
capType := expr.Cap.Type().Underlying().(*types.Basic)
b.createSliceBoundsCheck(maxSize, sliceLen, sliceCap, sliceCap, lenType, capType, capType)
// Allocate the backing array.
sliceCapCast, err := b.createConvert(expr.Cap.Type(), types.Typ[types.Uintptr], sliceCap, expr.Pos())
if err != nil {
return llvm.Value{}, err
}
sliceSize := b.CreateBinOp(llvm.Mul, elemSizeValue, sliceCapCast, "makeslice.cap")
slicePtr := b.createRuntimeCall("alloc", []llvm.Value{sliceSize}, "makeslice.buf")
slicePtr = b.CreateBitCast(slicePtr, llvm.PointerType(llvmElemType, 0), "makeslice.array")
// Extend or truncate if necessary. This is safe as we've already done
// the bounds check.
sliceLen, err = b.createConvert(expr.Len.Type(), types.Typ[types.Uintptr], sliceLen, expr.Pos())
if err != nil {
return llvm.Value{}, err
}
sliceCap, err = b.createConvert(expr.Cap.Type(), types.Typ[types.Uintptr], sliceCap, expr.Pos())
if err != nil {
return llvm.Value{}, err
}
// Create the slice.
slice := b.ctx.ConstStruct([]llvm.Value{
llvm.Undef(slicePtr.Type()),
llvm.Undef(b.uintptrType),
llvm.Undef(b.uintptrType),
}, false)
slice = b.CreateInsertValue(slice, slicePtr, 0, "")
slice = b.CreateInsertValue(slice, sliceLen, 1, "")
slice = b.CreateInsertValue(slice, sliceCap, 2, "")
return slice, nil
case *ssa.Next:
rangeVal := expr.Iter.(*ssa.Range).X
llvmRangeVal := b.getValue(rangeVal)
it := b.getValue(expr.Iter)
if expr.IsString {
return b.createRuntimeCall("stringNext", []llvm.Value{llvmRangeVal, it}, "range.next"), nil
} else { // map
llvmKeyType := b.getLLVMType(rangeVal.Type().Underlying().(*types.Map).Key())
llvmValueType := b.getLLVMType(rangeVal.Type().Underlying().(*types.Map).Elem())
mapKeyAlloca, mapKeyPtr, mapKeySize := b.createTemporaryAlloca(llvmKeyType, "range.key")
mapValueAlloca, mapValuePtr, mapValueSize := b.createTemporaryAlloca(llvmValueType, "range.value")
ok := b.createRuntimeCall("hashmapNext", []llvm.Value{llvmRangeVal, it, mapKeyPtr, mapValuePtr}, "range.next")
tuple := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.Int1Type(), llvmKeyType, llvmValueType}, false))
tuple = b.CreateInsertValue(tuple, ok, 0, "")
tuple = b.CreateInsertValue(tuple, b.CreateLoad(mapKeyAlloca, ""), 1, "")
tuple = b.CreateInsertValue(tuple, b.CreateLoad(mapValueAlloca, ""), 2, "")
b.emitLifetimeEnd(mapKeyPtr, mapKeySize)
b.emitLifetimeEnd(mapValuePtr, mapValueSize)
return tuple, nil
}
case *ssa.Phi:
phi := b.CreatePHI(b.getLLVMType(expr.Type()), "")
b.phis = append(b.phis, phiNode{expr, phi})
return phi, nil
case *ssa.Range:
var iteratorType llvm.Type
switch typ := expr.X.Type().Underlying().(type) {
case *types.Basic: // string
iteratorType = b.getLLVMRuntimeType("stringIterator")
case *types.Map:
iteratorType = b.getLLVMRuntimeType("hashmapIterator")
default:
panic("unknown type in range: " + typ.String())
}
it, _, _ := b.createTemporaryAlloca(iteratorType, "range.it")
b.CreateStore(llvm.ConstNull(iteratorType), it)
return it, nil
case *ssa.Select:
return b.createSelect(expr), nil
case *ssa.Slice:
value := b.getValue(expr.X)
var lowType, highType, maxType *types.Basic
var low, high, max llvm.Value
if expr.Low != nil {
lowType = expr.Low.Type().Underlying().(*types.Basic)
low = b.getValue(expr.Low)
if low.Type().IntTypeWidth() < b.uintptrType.IntTypeWidth() {
if lowType.Info()&types.IsUnsigned != 0 {
low = b.CreateZExt(low, b.uintptrType, "")
} else {
low = b.CreateSExt(low, b.uintptrType, "")
}
}
} else {
lowType = types.Typ[types.Uintptr]
low = llvm.ConstInt(b.uintptrType, 0, false)
}
if expr.High != nil {
highType = expr.High.Type().Underlying().(*types.Basic)
high = b.getValue(expr.High)
if high.Type().IntTypeWidth() < b.uintptrType.IntTypeWidth() {
if highType.Info()&types.IsUnsigned != 0 {
high = b.CreateZExt(high, b.uintptrType, "")
} else {
high = b.CreateSExt(high, b.uintptrType, "")
}
}
} else {
highType = types.Typ[types.Uintptr]
}
if expr.Max != nil {
maxType = expr.Max.Type().Underlying().(*types.Basic)
max = b.getValue(expr.Max)
if max.Type().IntTypeWidth() < b.uintptrType.IntTypeWidth() {
if maxType.Info()&types.IsUnsigned != 0 {
max = b.CreateZExt(max, b.uintptrType, "")
} else {
max = b.CreateSExt(max, b.uintptrType, "")
}
}
} else {
maxType = types.Typ[types.Uintptr]
}
switch typ := expr.X.Type().Underlying().(type) {
case *types.Pointer: // pointer to array
// slice an array
length := typ.Elem().Underlying().(*types.Array).Len()
llvmLen := llvm.ConstInt(b.uintptrType, uint64(length), false)
if high.IsNil() {
high = llvmLen
}
if max.IsNil() {
max = llvmLen
}
indices := []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
low,
}
b.createNilCheck(expr.X, value, "slice")
b.createSliceBoundsCheck(llvmLen, low, high, max, lowType, highType, maxType)
// Truncate ints bigger than uintptr. This is after the bounds
// check so it's safe.
if b.targetData.TypeAllocSize(low.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
low = b.CreateTrunc(low, b.uintptrType, "")
}
if b.targetData.TypeAllocSize(high.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
high = b.CreateTrunc(high, b.uintptrType, "")
}
if b.targetData.TypeAllocSize(max.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
max = b.CreateTrunc(max, b.uintptrType, "")
}
sliceLen := b.CreateSub(high, low, "slice.len")
slicePtr := b.CreateInBoundsGEP(value, indices, "slice.ptr")
sliceCap := b.CreateSub(max, low, "slice.cap")
slice := b.ctx.ConstStruct([]llvm.Value{
llvm.Undef(slicePtr.Type()),
llvm.Undef(b.uintptrType),
llvm.Undef(b.uintptrType),
}, false)
slice = b.CreateInsertValue(slice, slicePtr, 0, "")
slice = b.CreateInsertValue(slice, sliceLen, 1, "")
slice = b.CreateInsertValue(slice, sliceCap, 2, "")
return slice, nil
case *types.Slice:
// slice a slice
oldPtr := b.CreateExtractValue(value, 0, "")
oldLen := b.CreateExtractValue(value, 1, "")
oldCap := b.CreateExtractValue(value, 2, "")
if high.IsNil() {
high = oldLen
}
if max.IsNil() {
max = oldCap
}
b.createSliceBoundsCheck(oldCap, low, high, max, lowType, highType, maxType)
// Truncate ints bigger than uintptr. This is after the bounds
// check so it's safe.
if b.targetData.TypeAllocSize(low.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
low = b.CreateTrunc(low, b.uintptrType, "")
}
if b.targetData.TypeAllocSize(high.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
high = b.CreateTrunc(high, b.uintptrType, "")
}
if b.targetData.TypeAllocSize(max.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
max = b.CreateTrunc(max, b.uintptrType, "")
}
newPtr := b.CreateInBoundsGEP(oldPtr, []llvm.Value{low}, "")
newLen := b.CreateSub(high, low, "")
newCap := b.CreateSub(max, low, "")
slice := b.ctx.ConstStruct([]llvm.Value{
llvm.Undef(newPtr.Type()),
llvm.Undef(b.uintptrType),
llvm.Undef(b.uintptrType),
}, false)
slice = b.CreateInsertValue(slice, newPtr, 0, "")
slice = b.CreateInsertValue(slice, newLen, 1, "")
slice = b.CreateInsertValue(slice, newCap, 2, "")
return slice, nil
case *types.Basic:
if typ.Info()&types.IsString == 0 {
return llvm.Value{}, b.makeError(expr.Pos(), "unknown slice type: "+typ.String())
}
// slice a string
if expr.Max != nil {
// This might as well be a panic, as the frontend should have
// handled this already.
return llvm.Value{}, b.makeError(expr.Pos(), "slicing a string with a max parameter is not allowed by the spec")
}
oldPtr := b.CreateExtractValue(value, 0, "")
oldLen := b.CreateExtractValue(value, 1, "")
if high.IsNil() {
high = oldLen
}
b.createSliceBoundsCheck(oldLen, low, high, high, lowType, highType, maxType)
// Truncate ints bigger than uintptr. This is after the bounds
// check so it's safe.
if b.targetData.TypeAllocSize(low.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
low = b.CreateTrunc(low, b.uintptrType, "")
}
if b.targetData.TypeAllocSize(high.Type()) > b.targetData.TypeAllocSize(b.uintptrType) {
high = b.CreateTrunc(high, b.uintptrType, "")
}
newPtr := b.CreateInBoundsGEP(oldPtr, []llvm.Value{low}, "")
newLen := b.CreateSub(high, low, "")
str := llvm.Undef(b.getLLVMRuntimeType("_string"))
str = b.CreateInsertValue(str, newPtr, 0, "")
str = b.CreateInsertValue(str, newLen, 1, "")
return str, nil
default:
return llvm.Value{}, b.makeError(expr.Pos(), "unknown slice type: "+typ.String())
}
case *ssa.TypeAssert:
return b.createTypeAssert(expr), nil
case *ssa.UnOp:
return b.createUnOp(expr)
default:
return llvm.Value{}, b.makeError(expr.Pos(), "todo: unknown expression: "+expr.String())
}
}
// createBinOp creates a LLVM binary operation (add, sub, mul, etc) for a Go
// binary operation. This is almost a direct mapping, but there are some subtle
// differences such as the requirement in LLVM IR that both sides must have the
// same type, even for bitshifts. Also, signedness in Go is encoded in the type
// and is encoded in the operation in LLVM IR: this is important for some
// operations such as divide.
func (b *builder) createBinOp(op token.Token, typ, ytyp types.Type, x, y llvm.Value, pos token.Pos) (llvm.Value, error) {
switch typ := typ.Underlying().(type) {
case *types.Basic:
if typ.Info()&types.IsInteger != 0 {
// Operations on integers
signed := typ.Info()&types.IsUnsigned == 0
switch op {
case token.ADD: // +
return b.CreateAdd(x, y, ""), nil
case token.SUB: // -
return b.CreateSub(x, y, ""), nil
case token.MUL: // *
return b.CreateMul(x, y, ""), nil
case token.QUO: // /
if signed {
return b.CreateSDiv(x, y, ""), nil
} else {
return b.CreateUDiv(x, y, ""), nil
}
case token.REM: // %
if signed {
return b.CreateSRem(x, y, ""), nil
} else {
return b.CreateURem(x, y, ""), nil
}
case token.AND: // &
return b.CreateAnd(x, y, ""), nil
case token.OR: // |
return b.CreateOr(x, y, ""), nil
case token.XOR: // ^
return b.CreateXor(x, y, ""), nil
case token.SHL, token.SHR:
if ytyp.Underlying().(*types.Basic).Info()&types.IsUnsigned == 0 {
// Ensure that y is not negative.
b.createNegativeShiftCheck(y)
}
sizeX := b.targetData.TypeAllocSize(x.Type())
sizeY := b.targetData.TypeAllocSize(y.Type())
// Check if the shift is bigger than the bit-width of the shifted value.
// This is UB in LLVM, so it needs to be handled seperately.
// The Go spec indirectly defines the result as 0.
// Negative shifts are handled earlier, so we can treat y as unsigned.
overshifted := b.CreateICmp(llvm.IntUGE, y, llvm.ConstInt(y.Type(), 8*sizeX, false), "shift.overflow")
// Adjust the size of y to match x.
switch {
case sizeX > sizeY:
y = b.CreateZExt(y, x.Type(), "")
case sizeX < sizeY:
// If it gets truncated, overshifted will be true and it will not matter.
y = b.CreateTrunc(y, x.Type(), "")
}
// Create a shift operation.
var val llvm.Value
switch op {
case token.SHL: // <<
val = b.CreateShl(x, y, "")
case token.SHR: // >>
if signed {
// Arithmetic right shifts work differently, since shifting a negative number right yields -1.
// Cap the shift input rather than selecting the output.
y = b.CreateSelect(overshifted, llvm.ConstInt(y.Type(), 8*sizeX-1, false), y, "shift.offset")
return b.CreateAShr(x, y, ""), nil
} else {
val = b.CreateLShr(x, y, "")
}
default:
panic("unreachable")
}
// Select between the shift result and zero depending on whether there was an overshift.
return b.CreateSelect(overshifted, llvm.ConstInt(val.Type(), 0, false), val, "shift.result"), nil
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, x, y, ""), nil
case token.AND_NOT: // &^
// Go specific. Calculate "and not" with x & (~y)
inv := b.CreateNot(y, "") // ~y
return b.CreateAnd(x, inv, ""), nil
case token.LSS: // <
if signed {
return b.CreateICmp(llvm.IntSLT, x, y, ""), nil
} else {
return b.CreateICmp(llvm.IntULT, x, y, ""), nil
}
case token.LEQ: // <=
if signed {
return b.CreateICmp(llvm.IntSLE, x, y, ""), nil
} else {
return b.CreateICmp(llvm.IntULE, x, y, ""), nil
}
case token.GTR: // >
if signed {
return b.CreateICmp(llvm.IntSGT, x, y, ""), nil
} else {
return b.CreateICmp(llvm.IntUGT, x, y, ""), nil
}
case token.GEQ: // >=
if signed {
return b.CreateICmp(llvm.IntSGE, x, y, ""), nil
} else {
return b.CreateICmp(llvm.IntUGE, x, y, ""), nil
}
default:
panic("binop on integer: " + op.String())
}
} else if typ.Info()&types.IsFloat != 0 {
// Operations on floats
switch op {
case token.ADD: // +
return b.CreateFAdd(x, y, ""), nil
case token.SUB: // -
return b.CreateFSub(x, y, ""), nil
case token.MUL: // *
return b.CreateFMul(x, y, ""), nil
case token.QUO: // /
return b.CreateFDiv(x, y, ""), nil
case token.EQL: // ==
return b.CreateFCmp(llvm.FloatOEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateFCmp(llvm.FloatUNE, x, y, ""), nil
case token.LSS: // <
return b.CreateFCmp(llvm.FloatOLT, x, y, ""), nil
case token.LEQ: // <=
return b.CreateFCmp(llvm.FloatOLE, x, y, ""), nil
case token.GTR: // >
return b.CreateFCmp(llvm.FloatOGT, x, y, ""), nil
case token.GEQ: // >=
return b.CreateFCmp(llvm.FloatOGE, x, y, ""), nil
default:
panic("binop on float: " + op.String())
}
} else if typ.Info()&types.IsComplex != 0 {
r1 := b.CreateExtractValue(x, 0, "r1")
r2 := b.CreateExtractValue(y, 0, "r2")
i1 := b.CreateExtractValue(x, 1, "i1")
i2 := b.CreateExtractValue(y, 1, "i2")
switch op {
case token.EQL: // ==
req := b.CreateFCmp(llvm.FloatOEQ, r1, r2, "")
ieq := b.CreateFCmp(llvm.FloatOEQ, i1, i2, "")
return b.CreateAnd(req, ieq, ""), nil
case token.NEQ: // !=
req := b.CreateFCmp(llvm.FloatOEQ, r1, r2, "")
ieq := b.CreateFCmp(llvm.FloatOEQ, i1, i2, "")
neq := b.CreateAnd(req, ieq, "")
return b.CreateNot(neq, ""), nil
case token.ADD, token.SUB:
var r, i llvm.Value
switch op {
case token.ADD:
r = b.CreateFAdd(r1, r2, "")
i = b.CreateFAdd(i1, i2, "")
case token.SUB:
r = b.CreateFSub(r1, r2, "")
i = b.CreateFSub(i1, i2, "")
default:
panic("unreachable")
}
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{r.Type(), i.Type()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
case token.MUL:
// Complex multiplication follows the current implementation in
// the Go compiler, with the difference that complex64
// components are not first scaled up to float64 for increased
// precision.
// https://github.com/golang/go/blob/170b8b4b12be50eeccbcdadb8523fb4fc670ca72/src/cmd/compile/internal/gc/ssa.go#L2089-L2127
// The implementation is as follows:
// r := real(a) * real(b) - imag(a) * imag(b)
// i := real(a) * imag(b) + imag(a) * real(b)
// Note: this does NOT follow the C11 specification (annex G):
// http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=549
// See https://github.com/golang/go/issues/29846 for a related
// discussion.
r := b.CreateFSub(b.CreateFMul(r1, r2, ""), b.CreateFMul(i1, i2, ""), "")
i := b.CreateFAdd(b.CreateFMul(r1, i2, ""), b.CreateFMul(i1, r2, ""), "")
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{r.Type(), i.Type()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
case token.QUO:
// Complex division.
// Do this in a library call because it's too difficult to do
// inline.
switch r1.Type().TypeKind() {
case llvm.FloatTypeKind:
return b.createRuntimeCall("complex64div", []llvm.Value{x, y}, ""), nil
case llvm.DoubleTypeKind:
return b.createRuntimeCall("complex128div", []llvm.Value{x, y}, ""), nil
default:
panic("unexpected complex type")
}
default:
panic("binop on complex: " + op.String())
}
} else if typ.Info()&types.IsBoolean != 0 {
// Operations on booleans
switch op {
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
panic("binop on bool: " + op.String())
}
} else if typ.Kind() == types.UnsafePointer {
// Operations on pointers
switch op {
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
panic("binop on pointer: " + op.String())
}
} else if typ.Info()&types.IsString != 0 {
// Operations on strings
switch op {
case token.ADD: // +
return b.createRuntimeCall("stringConcat", []llvm.Value{x, y}, ""), nil
case token.EQL: // ==
return b.createRuntimeCall("stringEqual", []llvm.Value{x, y}, ""), nil
case token.NEQ: // !=
result := b.createRuntimeCall("stringEqual", []llvm.Value{x, y}, "")
return b.CreateNot(result, ""), nil
case token.LSS: // <
return b.createRuntimeCall("stringLess", []llvm.Value{x, y}, ""), nil
case token.LEQ: // <=
result := b.createRuntimeCall("stringLess", []llvm.Value{y, x}, "")
return b.CreateNot(result, ""), nil
case token.GTR: // >
result := b.createRuntimeCall("stringLess", []llvm.Value{x, y}, "")
return b.CreateNot(result, ""), nil
case token.GEQ: // >=
return b.createRuntimeCall("stringLess", []llvm.Value{y, x}, ""), nil
default:
panic("binop on string: " + op.String())
}
} else {
return llvm.Value{}, b.makeError(pos, "todo: unknown basic type in binop: "+typ.String())
}
case *types.Signature:
// Get raw scalars from the function value and compare those.
// Function values may be implemented in multiple ways, but they all
// have some way of getting a scalar value identifying the function.
// This is safe: function pointers are generally not comparable
// against each other, only against nil. So one of these has to be nil.
x = b.extractFuncScalar(x)
y = b.extractFuncScalar(y)
switch op {
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "binop on signature: "+op.String())
}
case *types.Interface:
switch op {
case token.EQL, token.NEQ: // ==, !=
nilInterface := llvm.ConstNull(x.Type())
var result llvm.Value
if x == nilInterface || y == nilInterface {
// An interface value is compared against nil.
// This is a very common case and is easy to optimize: simply
// compare the typecodes (of which one is nil).
typecodeX := b.CreateExtractValue(x, 0, "")
typecodeY := b.CreateExtractValue(y, 0, "")
result = b.CreateICmp(llvm.IntEQ, typecodeX, typecodeY, "")
} else {
// Fall back to a full interface comparison.
result = b.createRuntimeCall("interfaceEqual", []llvm.Value{x, y}, "")
}
if op == token.NEQ {
result = b.CreateNot(result, "")
}
return result, nil
default:
return llvm.Value{}, b.makeError(pos, "binop on interface: "+op.String())
}
case *types.Chan, *types.Map, *types.Pointer:
// Maps are in general not comparable, but can be compared against nil
// (which is a nil pointer). This means they can be trivially compared
// by treating them as a pointer.
// Channels behave as pointers in that they are equal as long as they
// are created with the same call to make or if both are nil.
switch op {
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "todo: binop on pointer: "+op.String())
}
case *types.Slice:
// Slices are in general not comparable, but can be compared against
// nil. Assume at least one of them is nil to make the code easier.
xPtr := b.CreateExtractValue(x, 0, "")
yPtr := b.CreateExtractValue(y, 0, "")
switch op {
case token.EQL: // ==
return b.CreateICmp(llvm.IntEQ, xPtr, yPtr, ""), nil
case token.NEQ: // !=
return b.CreateICmp(llvm.IntNE, xPtr, yPtr, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "todo: binop on slice: "+op.String())
}
case *types.Array:
// Compare each array element and combine the result. From the spec:
// Array values are comparable if values of the array element type
// are comparable. Two array values are equal if their corresponding
// elements are equal.
result := llvm.ConstInt(b.ctx.Int1Type(), 1, true)
for i := 0; i < int(typ.Len()); i++ {
xField := b.CreateExtractValue(x, i, "")
yField := b.CreateExtractValue(y, i, "")
fieldEqual, err := b.createBinOp(token.EQL, typ.Elem(), typ.Elem(), xField, yField, pos)
if err != nil {
return llvm.Value{}, err
}
result = b.CreateAnd(result, fieldEqual, "")
}
switch op {
case token.EQL: // ==
return result, nil
case token.NEQ: // !=
return b.CreateNot(result, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "unknown: binop on struct: "+op.String())
}
case *types.Struct:
// Compare each struct field and combine the result. From the spec:
// Struct values are comparable if all their fields are comparable.
// Two struct values are equal if their corresponding non-blank
// fields are equal.
result := llvm.ConstInt(b.ctx.Int1Type(), 1, true)
for i := 0; i < typ.NumFields(); i++ {
if typ.Field(i).Name() == "_" {
// skip blank fields
continue
}
fieldType := typ.Field(i).Type()
xField := b.CreateExtractValue(x, i, "")
yField := b.CreateExtractValue(y, i, "")
fieldEqual, err := b.createBinOp(token.EQL, fieldType, fieldType, xField, yField, pos)
if err != nil {
return llvm.Value{}, err
}
result = b.CreateAnd(result, fieldEqual, "")
}
switch op {
case token.EQL: // ==
return result, nil
case token.NEQ: // !=
return b.CreateNot(result, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "unknown: binop on struct: "+op.String())
}
default:
return llvm.Value{}, b.makeError(pos, "todo: binop type: "+typ.String())
}
}
// createConst creates a LLVM constant value from a Go constant.
func (b *builder) createConst(prefix string, expr *ssa.Const) llvm.Value {
switch typ := expr.Type().Underlying().(type) {
case *types.Basic:
llvmType := b.getLLVMType(typ)
if typ.Info()&types.IsBoolean != 0 {
b := constant.BoolVal(expr.Value)
n := uint64(0)
if b {
n = 1
}
return llvm.ConstInt(llvmType, n, false)
} else if typ.Info()&types.IsString != 0 {
str := constant.StringVal(expr.Value)
strLen := llvm.ConstInt(b.uintptrType, uint64(len(str)), false)
var strPtr llvm.Value
if str != "" {
objname := prefix + "$string"
global := llvm.AddGlobal(b.mod, llvm.ArrayType(b.ctx.Int8Type(), len(str)), objname)
global.SetInitializer(b.ctx.ConstString(str, false))
global.SetLinkage(llvm.InternalLinkage)
global.SetGlobalConstant(true)
global.SetUnnamedAddr(true)
global.SetAlignment(1)
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
strPtr = b.CreateInBoundsGEP(global, []llvm.Value{zero, zero}, "")
} else {
strPtr = llvm.ConstNull(b.i8ptrType)
}
strObj := llvm.ConstNamedStruct(b.getLLVMRuntimeType("_string"), []llvm.Value{strPtr, strLen})
return strObj
} else if typ.Kind() == types.UnsafePointer {
if !expr.IsNil() {
value, _ := constant.Uint64Val(constant.ToInt(expr.Value))
return llvm.ConstIntToPtr(llvm.ConstInt(b.uintptrType, value, false), b.i8ptrType)
}
return llvm.ConstNull(b.i8ptrType)
} else if typ.Info()&types.IsUnsigned != 0 {
n, _ := constant.Uint64Val(constant.ToInt(expr.Value))
return llvm.ConstInt(llvmType, n, false)
} else if typ.Info()&types.IsInteger != 0 { // signed
n, _ := constant.Int64Val(constant.ToInt(expr.Value))
return llvm.ConstInt(llvmType, uint64(n), true)
} else if typ.Info()&types.IsFloat != 0 {
n, _ := constant.Float64Val(expr.Value)
return llvm.ConstFloat(llvmType, n)
} else if typ.Kind() == types.Complex64 {
r := b.createConst(prefix, ssa.NewConst(constant.Real(expr.Value), types.Typ[types.Float32]))
i := b.createConst(prefix, ssa.NewConst(constant.Imag(expr.Value), types.Typ[types.Float32]))
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.FloatType(), b.ctx.FloatType()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx
} else if typ.Kind() == types.Complex128 {
r := b.createConst(prefix, ssa.NewConst(constant.Real(expr.Value), types.Typ[types.Float64]))
i := b.createConst(prefix, ssa.NewConst(constant.Imag(expr.Value), types.Typ[types.Float64]))
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.DoubleType(), b.ctx.DoubleType()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx
} else {
panic("unknown constant of basic type: " + expr.String())
}
case *types.Chan:
if expr.Value != nil {
panic("expected nil chan constant")
}
return llvm.ConstNull(b.getLLVMType(expr.Type()))
case *types.Signature:
if expr.Value != nil {
panic("expected nil signature constant")
}
return llvm.ConstNull(b.getLLVMType(expr.Type()))
case *types.Interface:
if expr.Value != nil {
panic("expected nil interface constant")
}
// Create a generic nil interface with no dynamic type (typecode=0).
fields := []llvm.Value{
llvm.ConstInt(b.uintptrType, 0, false),
llvm.ConstPointerNull(b.i8ptrType),
}
return llvm.ConstNamedStruct(b.getLLVMRuntimeType("_interface"), fields)
case *types.Pointer:
if expr.Value != nil {
panic("expected nil pointer constant")
}
return llvm.ConstPointerNull(b.getLLVMType(typ))
case *types.Slice:
if expr.Value != nil {
panic("expected nil slice constant")
}
elemType := b.getLLVMType(typ.Elem())
llvmPtr := llvm.ConstPointerNull(llvm.PointerType(elemType, 0))
llvmLen := llvm.ConstInt(b.uintptrType, 0, false)
slice := b.ctx.ConstStruct([]llvm.Value{
llvmPtr, // backing array
llvmLen, // len
llvmLen, // cap
}, false)
return slice
case *types.Map:
if !expr.IsNil() {
// I believe this is not allowed by the Go spec.
panic("non-nil map constant")
}
llvmType := b.getLLVMType(typ)
return llvm.ConstNull(llvmType)
default:
panic("unknown constant: " + expr.String())
}
}
// createConvert creates a Go type conversion instruction.
func (b *builder) createConvert(typeFrom, typeTo types.Type, value llvm.Value, pos token.Pos) (llvm.Value, error) {
llvmTypeFrom := value.Type()
llvmTypeTo := b.getLLVMType(typeTo)
// Conversion between unsafe.Pointer and uintptr.
isPtrFrom := isPointer(typeFrom.Underlying())
isPtrTo := isPointer(typeTo.Underlying())
if isPtrFrom && !isPtrTo {
return b.CreatePtrToInt(value, llvmTypeTo, ""), nil
} else if !isPtrFrom && isPtrTo {
if !value.IsABinaryOperator().IsNil() && value.InstructionOpcode() == llvm.Add {
// This is probably a pattern like the following:
// unsafe.Pointer(uintptr(ptr) + index)
// Used in functions like memmove etc. for lack of pointer
// arithmetic. Convert it to real pointer arithmatic here.
ptr := value.Operand(0)
index := value.Operand(1)
if !index.IsAPtrToIntInst().IsNil() {
// Swap if necessary, if ptr and index are reversed.
ptr, index = index, ptr
}
if !ptr.IsAPtrToIntInst().IsNil() {
origptr := ptr.Operand(0)
if origptr.Type() == b.i8ptrType {
// This pointer can be calculated from the original
// ptrtoint instruction with a GEP. The leftover inttoptr
// instruction is trivial to optimize away.
// Making it an in bounds GEP even though it's easy to
// create a GEP that is not in bounds. However, we're
// talking about unsafe code here so the programmer has to
// be careful anyway.
return b.CreateInBoundsGEP(origptr, []llvm.Value{index}, ""), nil
}
}
}
return b.CreateIntToPtr(value, llvmTypeTo, ""), nil
}
// Conversion between pointers and unsafe.Pointer.
if isPtrFrom && isPtrTo {
return b.CreateBitCast(value, llvmTypeTo, ""), nil
}
switch typeTo := typeTo.Underlying().(type) {
case *types.Basic:
sizeFrom := b.targetData.TypeAllocSize(llvmTypeFrom)
if typeTo.Info()&types.IsString != 0 {
switch typeFrom := typeFrom.Underlying().(type) {
case *types.Basic:
// Assume a Unicode code point, as that is the only possible
// value here.
// Cast to an i32 value as expected by
// runtime.stringFromUnicode.
if sizeFrom > 4 {
value = b.CreateTrunc(value, b.ctx.Int32Type(), "")
} else if sizeFrom < 4 && typeTo.Info()&types.IsUnsigned != 0 {
value = b.CreateZExt(value, b.ctx.Int32Type(), "")
} else if sizeFrom < 4 {
value = b.CreateSExt(value, b.ctx.Int32Type(), "")
}
return b.createRuntimeCall("stringFromUnicode", []llvm.Value{value}, ""), nil
case *types.Slice:
switch typeFrom.Elem().(*types.Basic).Kind() {
case types.Byte:
return b.createRuntimeCall("stringFromBytes", []llvm.Value{value}, ""), nil
case types.Rune:
return b.createRuntimeCall("stringFromRunes", []llvm.Value{value}, ""), nil
default:
return llvm.Value{}, b.makeError(pos, "todo: convert to string: "+typeFrom.String())
}
default:
return llvm.Value{}, b.makeError(pos, "todo: convert to string: "+typeFrom.String())
}
}
typeFrom := typeFrom.Underlying().(*types.Basic)
sizeTo := b.targetData.TypeAllocSize(llvmTypeTo)
if typeFrom.Info()&types.IsInteger != 0 && typeTo.Info()&types.IsInteger != 0 {
// Conversion between two integers.
if sizeFrom > sizeTo {
return b.CreateTrunc(value, llvmTypeTo, ""), nil
} else if typeFrom.Info()&types.IsUnsigned != 0 { // if unsigned
return b.CreateZExt(value, llvmTypeTo, ""), nil
} else { // if signed
return b.CreateSExt(value, llvmTypeTo, ""), nil
}
}
if typeFrom.Info()&types.IsFloat != 0 && typeTo.Info()&types.IsFloat != 0 {
// Conversion between two floats.
if sizeFrom > sizeTo {
return b.CreateFPTrunc(value, llvmTypeTo, ""), nil
} else if sizeFrom < sizeTo {
return b.CreateFPExt(value, llvmTypeTo, ""), nil
} else {
return value, nil
}
}
if typeFrom.Info()&types.IsFloat != 0 && typeTo.Info()&types.IsInteger != 0 {
// Conversion from float to int.
// Passing an out-of-bounds float to LLVM would cause UB, so that UB is trapped by select instructions.
// The Go specification says that this should be implementation-defined behavior.
// This implements saturating behavior, except that NaN is mapped to the minimum value.
var significandBits int
switch typeFrom.Kind() {
case types.Float32:
significandBits = 23
case types.Float64:
significandBits = 52
}
if typeTo.Info()&types.IsUnsigned != 0 { // if unsigned
// Select the maximum value for this unsigned integer type.
max := ^(^uint64(0) << uint(llvmTypeTo.IntTypeWidth()))
maxFloat := float64(max)
if bits.Len64(max) > significandBits {
// Round the max down to fit within the significand.
maxFloat = float64(max & (^uint64(0) << uint(bits.Len64(max)-significandBits)))
}
// Check if the value is in-bounds (0 <= value <= max).
positive := b.CreateFCmp(llvm.FloatOLE, llvm.ConstNull(llvmTypeFrom), value, "positive")
withinMax := b.CreateFCmp(llvm.FloatOLE, value, llvm.ConstFloat(llvmTypeFrom, maxFloat), "withinmax")
inBounds := b.CreateAnd(positive, withinMax, "inbounds")
// Assuming that the value is out-of-bounds, select a saturated value.
saturated := b.CreateSelect(positive,
llvm.ConstInt(llvmTypeTo, max, false), // value > max
llvm.ConstNull(llvmTypeTo), // value < 0 (or NaN)
"saturated",
)
// Do a normal conversion.
normal := b.CreateFPToUI(value, llvmTypeTo, "normal")
return b.CreateSelect(inBounds, normal, saturated, ""), nil
} else { // if signed
// Select the minimum value for this signed integer type.
min := uint64(1) << uint(llvmTypeTo.IntTypeWidth()-1)
minFloat := -float64(min)
// Select the maximum value for this signed integer type.
max := ^(^uint64(0) << uint(llvmTypeTo.IntTypeWidth()-1))
maxFloat := float64(max)
if bits.Len64(max) > significandBits {
// Round the max down to fit within the significand.
maxFloat = float64(max & (^uint64(0) << uint(bits.Len64(max)-significandBits)))
}
// Check if the value is in-bounds (min <= value <= max).
aboveMin := b.CreateFCmp(llvm.FloatOLE, llvm.ConstFloat(llvmTypeFrom, minFloat), value, "abovemin")
belowMax := b.CreateFCmp(llvm.FloatOLE, value, llvm.ConstFloat(llvmTypeFrom, maxFloat), "belowmax")
inBounds := b.CreateAnd(aboveMin, belowMax, "inbounds")
// Assuming that the value is out-of-bounds, select a saturated value.
saturated := b.CreateSelect(aboveMin,
llvm.ConstInt(llvmTypeTo, max, false), // value > max
llvm.ConstInt(llvmTypeTo, min, false), // value < min
"saturated",
)
// Map NaN to 0.
saturated = b.CreateSelect(b.CreateFCmp(llvm.FloatUNO, value, value, "isnan"),
llvm.ConstNull(llvmTypeTo),
saturated,
"remapped",
)
// Do a normal conversion.
normal := b.CreateFPToSI(value, llvmTypeTo, "normal")
return b.CreateSelect(inBounds, normal, saturated, ""), nil
}
}
if typeFrom.Info()&types.IsInteger != 0 && typeTo.Info()&types.IsFloat != 0 {
// Conversion from int to float.
if typeFrom.Info()&types.IsUnsigned != 0 { // if unsigned
return b.CreateUIToFP(value, llvmTypeTo, ""), nil
} else { // if signed
return b.CreateSIToFP(value, llvmTypeTo, ""), nil
}
}
if typeFrom.Kind() == types.Complex128 && typeTo.Kind() == types.Complex64 {
// Conversion from complex128 to complex64.
r := b.CreateExtractValue(value, 0, "real.f64")
i := b.CreateExtractValue(value, 1, "imag.f64")
r = b.CreateFPTrunc(r, b.ctx.FloatType(), "real.f32")
i = b.CreateFPTrunc(i, b.ctx.FloatType(), "imag.f32")
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.FloatType(), b.ctx.FloatType()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
}
if typeFrom.Kind() == types.Complex64 && typeTo.Kind() == types.Complex128 {
// Conversion from complex64 to complex128.
r := b.CreateExtractValue(value, 0, "real.f32")
i := b.CreateExtractValue(value, 1, "imag.f32")
r = b.CreateFPExt(r, b.ctx.DoubleType(), "real.f64")
i = b.CreateFPExt(i, b.ctx.DoubleType(), "imag.f64")
cplx := llvm.Undef(b.ctx.StructType([]llvm.Type{b.ctx.DoubleType(), b.ctx.DoubleType()}, false))
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
}
return llvm.Value{}, b.makeError(pos, "todo: convert: basic non-integer type: "+typeFrom.String()+" -> "+typeTo.String())
case *types.Slice:
if basic, ok := typeFrom.Underlying().(*types.Basic); !ok || basic.Info()&types.IsString == 0 {
panic("can only convert from a string to a slice")
}
elemType := typeTo.Elem().Underlying().(*types.Basic) // must be byte or rune
switch elemType.Kind() {
case types.Byte:
return b.createRuntimeCall("stringToBytes", []llvm.Value{value}, ""), nil
case types.Rune:
return b.createRuntimeCall("stringToRunes", []llvm.Value{value}, ""), nil
default:
panic("unexpected type in string to slice conversion")
}
default:
return llvm.Value{}, b.makeError(pos, "todo: convert "+typeTo.String()+" <- "+typeFrom.String())
}
}
// createUnOp creates LLVM IR for a given Go unary operation.
// Most unary operators are pretty simple, such as the not and minus operator
// which can all be directly lowered to IR. However, there is also the channel
// receive operator which is handled in the runtime directly.
func (b *builder) createUnOp(unop *ssa.UnOp) (llvm.Value, error) {
x := b.getValue(unop.X)
switch unop.Op {
case token.NOT: // !x
return b.CreateNot(x, ""), nil
case token.SUB: // -x
if typ, ok := unop.X.Type().Underlying().(*types.Basic); ok {
if typ.Info()&types.IsInteger != 0 {
return b.CreateSub(llvm.ConstInt(x.Type(), 0, false), x, ""), nil
} else if typ.Info()&types.IsFloat != 0 {
return b.CreateFNeg(x, ""), nil
} else if typ.Info()&types.IsComplex != 0 {
// Negate both components of the complex number.
r := b.CreateExtractValue(x, 0, "r")
i := b.CreateExtractValue(x, 1, "i")
r = b.CreateFNeg(r, "")
i = b.CreateFNeg(i, "")
cplx := llvm.Undef(x.Type())
cplx = b.CreateInsertValue(cplx, r, 0, "")
cplx = b.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
} else {
return llvm.Value{}, b.makeError(unop.Pos(), "todo: unknown basic type for negate: "+typ.String())
}
} else {
return llvm.Value{}, b.makeError(unop.Pos(), "todo: unknown type for negate: "+unop.X.Type().Underlying().String())
}
case token.MUL: // *x, dereference pointer
unop.X.Type().Underlying().(*types.Pointer).Elem()
if b.targetData.TypeAllocSize(x.Type().ElementType()) == 0 {
// zero-length data
return llvm.ConstNull(x.Type().ElementType()), nil
} else if strings.HasSuffix(unop.X.String(), "$funcaddr") {
// CGo function pointer. The cgo part has rewritten CGo function
// pointers as stub global variables of the form:
// var C.add unsafe.Pointer
// Instead of a load from the global, create a bitcast of the
// function pointer itself.
globalName := b.getGlobalInfo(unop.X.(*ssa.Global)).linkName
name := globalName[:len(globalName)-len("$funcaddr")]
fn := b.getFunction(b.fn.Pkg.Members["C."+name].(*ssa.Function))
if fn.IsNil() {
return llvm.Value{}, b.makeError(unop.Pos(), "cgo function not found: "+name)
}
return b.CreateBitCast(fn, b.i8ptrType, ""), nil
} else {
b.createNilCheck(unop.X, x, "deref")
load := b.CreateLoad(x, "")
return load, nil
}
case token.XOR: // ^x, toggle all bits in integer
return b.CreateXor(x, llvm.ConstInt(x.Type(), ^uint64(0), false), ""), nil
case token.ARROW: // <-x, receive from channel
return b.createChanRecv(unop), nil
default:
return llvm.Value{}, b.makeError(unop.Pos(), "todo: unknown unop")
}
}
|