1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
package compiler
// This file implements the 'go' keyword to start a new goroutine. See
// goroutine-lowering.go for more details.
import (
"go/token"
"go/types"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// createGo emits code to start a new goroutine.
func (b *builder) createGo(instr *ssa.Go) {
if builtin, ok := instr.Call.Value.(*ssa.Builtin); ok {
// We cheat. None of the builtins do any long or blocking operation, so
// we might as well run these builtins right away without the program
// noticing the difference.
// Possible exceptions:
// - copy: this is a possibly long operation, but not a blocking
// operation. Semantically it makes no difference to run it right
// away (not in a goroutine). However, in practice it makes no sense
// to run copy in a goroutine as there is no way to (safely) know
// when it is finished.
// - panic: the error message would appear in the parent goroutine.
// But because `go panic("err")` would halt the program anyway
// (there is no recover), panicking right away would give the same
// behavior as creating a goroutine, switching the scheduler to that
// goroutine, and panicking there. So this optimization seems
// correct.
// - recover: because it runs in a new goroutine, it is never a
// deferred function. Thus this is a no-op.
if builtin.Name() == "recover" {
// This is a no-op, even in a deferred function:
// go recover()
return
}
var argTypes []types.Type
var argValues []llvm.Value
for _, arg := range instr.Call.Args {
argTypes = append(argTypes, arg.Type())
argValues = append(argValues, b.getValue(arg, getPos(instr)))
}
b.createBuiltin(argTypes, argValues, builtin.Name(), instr.Pos())
return
}
// Get all function parameters to pass to the goroutine.
var params []llvm.Value
for _, param := range instr.Call.Args {
params = append(params, b.getValue(param, getPos(instr)))
}
var prefix string
var funcPtr llvm.Value
var funcType llvm.Type
hasContext := false
if callee := instr.Call.StaticCallee(); callee != nil {
// Static callee is known. This makes it easier to start a new
// goroutine.
var context llvm.Value
switch value := instr.Call.Value.(type) {
case *ssa.Function:
// Goroutine call is regular function call. No context is necessary.
case *ssa.MakeClosure:
// A goroutine call on a func value, but the callee is trivial to find. For
// example: immediately applied functions.
funcValue := b.getValue(value, getPos(instr))
context = b.extractFuncContext(funcValue)
default:
panic("StaticCallee returned an unexpected value")
}
if !context.IsNil() {
params = append(params, context) // context parameter
hasContext = true
}
funcType, funcPtr = b.getFunction(callee)
} else if instr.Call.IsInvoke() {
// This is a method call on an interface value.
itf := b.getValue(instr.Call.Value, getPos(instr))
itfTypeCode := b.CreateExtractValue(itf, 0, "")
itfValue := b.CreateExtractValue(itf, 1, "")
funcPtr = b.getInvokeFunction(&instr.Call)
funcType = funcPtr.GlobalValueType()
params = append([]llvm.Value{itfValue}, params...) // start with receiver
params = append(params, itfTypeCode) // end with typecode
} else {
// This is a function pointer.
// At the moment, two extra params are passed to the newly started
// goroutine:
// * The function context, for closures.
// * The function pointer (for tasks).
var context llvm.Value
funcPtr, context = b.decodeFuncValue(b.getValue(instr.Call.Value, getPos(instr)))
funcType = b.getLLVMFunctionType(instr.Call.Value.Type().Underlying().(*types.Signature))
params = append(params, context, funcPtr)
hasContext = true
prefix = b.fn.RelString(nil)
}
paramBundle := b.emitPointerPack(params)
var stackSize llvm.Value
callee := b.createGoroutineStartWrapper(funcType, funcPtr, prefix, hasContext, instr.Pos())
if b.AutomaticStackSize {
// The stack size is not known until after linking. Call a dummy
// function that will be replaced with a load from a special ELF
// section that contains the stack size (and is modified after
// linking).
stackSizeFnType, stackSizeFn := b.getFunction(b.program.ImportedPackage("internal/task").Members["getGoroutineStackSize"].(*ssa.Function))
stackSize = b.createCall(stackSizeFnType, stackSizeFn, []llvm.Value{callee, llvm.Undef(b.dataPtrType)}, "stacksize")
} else {
// The stack size is fixed at compile time. By emitting it here as a
// constant, it can be optimized.
if (b.Scheduler == "tasks" || b.Scheduler == "asyncify") && b.DefaultStackSize == 0 {
b.addError(instr.Pos(), "default stack size for goroutines is not set")
}
stackSize = llvm.ConstInt(b.uintptrType, b.DefaultStackSize, false)
}
fnType, start := b.getFunction(b.program.ImportedPackage("internal/task").Members["start"].(*ssa.Function))
b.createCall(fnType, start, []llvm.Value{callee, paramBundle, stackSize, llvm.Undef(b.dataPtrType)}, "")
}
// createGoroutineStartWrapper creates a wrapper for the task-based
// implementation of goroutines. For example, to call a function like this:
//
// func add(x, y int) int { ... }
//
// It creates a wrapper like this:
//
// func add$gowrapper(ptr *unsafe.Pointer) {
// args := (*struct{
// x, y int
// })(ptr)
// add(args.x, args.y)
// }
//
// This is useful because the task-based goroutine start implementation only
// allows a single (pointer) argument to the newly started goroutine. Also, it
// ignores the return value because newly started goroutines do not have a
// return value.
//
// The hasContext parameter indicates whether the context parameter (the second
// to last parameter of the function) is used for this wrapper. If hasContext is
// false, the parameter bundle is assumed to have no context parameter and undef
// is passed instead.
func (c *compilerContext) createGoroutineStartWrapper(fnType llvm.Type, fn llvm.Value, prefix string, hasContext bool, pos token.Pos) llvm.Value {
var wrapper llvm.Value
b := &builder{
compilerContext: c,
Builder: c.ctx.NewBuilder(),
}
defer b.Dispose()
var deadlock llvm.Value
var deadlockType llvm.Type
if c.Scheduler == "asyncify" {
deadlockType, deadlock = c.getFunction(c.program.ImportedPackage("runtime").Members["deadlock"].(*ssa.Function))
}
if !fn.IsAFunction().IsNil() {
// See whether this wrapper has already been created. If so, return it.
name := fn.Name()
wrapper = c.mod.NamedFunction(name + "$gowrapper")
if !wrapper.IsNil() {
return llvm.ConstPtrToInt(wrapper, c.uintptrType)
}
// Create the wrapper.
wrapperType := llvm.FunctionType(c.ctx.VoidType(), []llvm.Type{c.dataPtrType}, false)
wrapper = llvm.AddFunction(c.mod, name+"$gowrapper", wrapperType)
c.addStandardAttributes(wrapper)
wrapper.SetLinkage(llvm.LinkOnceODRLinkage)
wrapper.SetUnnamedAddr(true)
wrapper.AddAttributeAtIndex(-1, c.ctx.CreateStringAttribute("tinygo-gowrapper", name))
entry := c.ctx.AddBasicBlock(wrapper, "entry")
b.SetInsertPointAtEnd(entry)
if c.Debug {
pos := c.program.Fset.Position(pos)
diFuncType := c.dibuilder.CreateSubroutineType(llvm.DISubroutineType{
File: c.getDIFile(pos.Filename),
Parameters: nil, // do not show parameters in debugger
Flags: 0, // ?
})
difunc := c.dibuilder.CreateFunction(c.getDIFile(pos.Filename), llvm.DIFunction{
Name: "<goroutine wrapper>",
File: c.getDIFile(pos.Filename),
Line: pos.Line,
Type: diFuncType,
LocalToUnit: true,
IsDefinition: true,
ScopeLine: 0,
Flags: llvm.FlagPrototyped,
Optimized: true,
})
wrapper.SetSubprogram(difunc)
b.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), difunc, llvm.Metadata{})
}
// Create the list of params for the call.
paramTypes := fnType.ParamTypes()
if !hasContext {
paramTypes = paramTypes[:len(paramTypes)-1] // strip context parameter
}
params := b.emitPointerUnpack(wrapper.Param(0), paramTypes)
if !hasContext {
params = append(params, llvm.Undef(c.dataPtrType)) // add dummy context parameter
}
// Create the call.
b.CreateCall(fnType, fn, params, "")
if c.Scheduler == "asyncify" {
b.CreateCall(deadlockType, deadlock, []llvm.Value{
llvm.Undef(c.dataPtrType),
}, "")
}
} else {
// For a function pointer like this:
//
// var funcPtr func(x, y int) int
//
// A wrapper like the following is created:
//
// func .gowrapper(ptr *unsafe.Pointer) {
// args := (*struct{
// x, y int
// fn func(x, y int) int
// })(ptr)
// args.fn(x, y)
// }
//
// With a bit of luck, identical wrapper functions like these can be
// merged into one.
// Create the wrapper.
wrapperType := llvm.FunctionType(c.ctx.VoidType(), []llvm.Type{c.dataPtrType}, false)
wrapper = llvm.AddFunction(c.mod, prefix+".gowrapper", wrapperType)
c.addStandardAttributes(wrapper)
wrapper.SetLinkage(llvm.LinkOnceODRLinkage)
wrapper.SetUnnamedAddr(true)
wrapper.AddAttributeAtIndex(-1, c.ctx.CreateStringAttribute("tinygo-gowrapper", ""))
entry := c.ctx.AddBasicBlock(wrapper, "entry")
b.SetInsertPointAtEnd(entry)
if c.Debug {
pos := c.program.Fset.Position(pos)
diFuncType := c.dibuilder.CreateSubroutineType(llvm.DISubroutineType{
File: c.getDIFile(pos.Filename),
Parameters: nil, // do not show parameters in debugger
Flags: 0, // ?
})
difunc := c.dibuilder.CreateFunction(c.getDIFile(pos.Filename), llvm.DIFunction{
Name: "<goroutine wrapper>",
File: c.getDIFile(pos.Filename),
Line: pos.Line,
Type: diFuncType,
LocalToUnit: true,
IsDefinition: true,
ScopeLine: 0,
Flags: llvm.FlagPrototyped,
Optimized: true,
})
wrapper.SetSubprogram(difunc)
b.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), difunc, llvm.Metadata{})
}
// Get the list of parameters, with the extra parameters at the end.
paramTypes := fnType.ParamTypes()
paramTypes = append(paramTypes, fn.Type()) // the last element is the function pointer
params := b.emitPointerUnpack(wrapper.Param(0), paramTypes)
// Get the function pointer.
fnPtr := params[len(params)-1]
params = params[:len(params)-1]
// Create the call.
b.CreateCall(fnType, fnPtr, params, "")
if c.Scheduler == "asyncify" {
b.CreateCall(deadlockType, deadlock, []llvm.Value{
llvm.Undef(c.dataPtrType),
}, "")
}
}
if c.Scheduler == "asyncify" {
// The goroutine was terminated via deadlock.
b.CreateUnreachable()
} else {
// Finish the function. Every basic block must end in a terminator, and
// because goroutines never return a value we can simply return void.
b.CreateRetVoid()
}
// Return a ptrtoint of the wrapper, not the function itself.
return b.CreatePtrToInt(wrapper, c.uintptrType, "")
}
|