1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
package compiler
// This file implements inline asm support by calling special functions.
import (
"fmt"
"go/constant"
"regexp"
"strconv"
"strings"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// This is a compiler builtin, which emits a piece of inline assembly with no
// operands or return values. It is useful for trivial instructions, like wfi in
// ARM or sleep in AVR.
//
// func Asm(asm string)
//
// The provided assembly must be a constant.
func (b *builder) createInlineAsm(args []ssa.Value) (llvm.Value, error) {
// Magic function: insert inline assembly instead of calling it.
fnType := llvm.FunctionType(b.ctx.VoidType(), []llvm.Type{}, false)
asm := constant.StringVal(args[0].(*ssa.Const).Value)
target := llvm.InlineAsm(fnType, asm, "", true, false, 0)
return b.CreateCall(target, nil, ""), nil
}
// This is a compiler builtin, which allows assembly to be called in a flexible
// way.
//
// func AsmFull(asm string, regs map[string]interface{}) uintptr
//
// The asm parameter must be a constant string. The regs parameter must be
// provided immediately. For example:
//
// arm.AsmFull(
// "str {value}, {result}",
// map[string]interface{}{
// "value": 1
// "result": &dest,
// })
func (b *builder) createInlineAsmFull(instr *ssa.CallCommon) (llvm.Value, error) {
asmString := constant.StringVal(instr.Args[0].(*ssa.Const).Value)
registers := map[string]llvm.Value{}
if registerMap, ok := instr.Args[1].(*ssa.MakeMap); ok {
for _, r := range *registerMap.Referrers() {
switch r := r.(type) {
case *ssa.DebugRef:
// ignore
case *ssa.MapUpdate:
if r.Block() != registerMap.Block() {
return llvm.Value{}, b.makeError(instr.Pos(), "register value map must be created in the same basic block")
}
key := constant.StringVal(r.Key.(*ssa.Const).Value)
registers[key] = b.getValue(r.Value.(*ssa.MakeInterface).X)
case *ssa.Call:
if r.Common() == instr {
break
}
default:
return llvm.Value{}, b.makeError(instr.Pos(), "don't know how to handle argument to inline assembly: "+r.String())
}
}
}
// TODO: handle dollar signs in asm string
registerNumbers := map[string]int{}
var err error
argTypes := []llvm.Type{}
args := []llvm.Value{}
constraints := []string{}
hasOutput := false
asmString = regexp.MustCompile(`\{\}`).ReplaceAllStringFunc(asmString, func(s string) string {
hasOutput = true
return "$0"
})
if hasOutput {
constraints = append(constraints, "=&r")
registerNumbers[""] = 0
}
asmString = regexp.MustCompile(`\{[a-zA-Z]+\}`).ReplaceAllStringFunc(asmString, func(s string) string {
// TODO: skip strings like {r4} etc. that look like ARM push/pop
// instructions.
name := s[1 : len(s)-1]
if _, ok := registers[name]; !ok {
if err == nil {
err = b.makeError(instr.Pos(), "unknown register name: "+name)
}
return s
}
if _, ok := registerNumbers[name]; !ok {
registerNumbers[name] = len(registerNumbers)
argTypes = append(argTypes, registers[name].Type())
args = append(args, registers[name])
switch registers[name].Type().TypeKind() {
case llvm.IntegerTypeKind:
constraints = append(constraints, "r")
case llvm.PointerTypeKind:
constraints = append(constraints, "*m")
default:
err = b.makeError(instr.Pos(), "unknown type in inline assembly for value: "+name)
return s
}
}
return fmt.Sprintf("${%v}", registerNumbers[name])
})
if err != nil {
return llvm.Value{}, err
}
var outputType llvm.Type
if hasOutput {
outputType = b.uintptrType
} else {
outputType = b.ctx.VoidType()
}
fnType := llvm.FunctionType(outputType, argTypes, false)
target := llvm.InlineAsm(fnType, asmString, strings.Join(constraints, ","), true, false, 0)
result := b.CreateCall(target, args, "")
if hasOutput {
return result, nil
} else {
// Make sure we return something valid.
return llvm.ConstInt(b.uintptrType, 0, false), nil
}
}
// This is a compiler builtin which emits an inline SVCall instruction. It can
// be one of:
//
// func SVCall0(num uintptr) uintptr
// func SVCall1(num uintptr, a1 interface{}) uintptr
// func SVCall2(num uintptr, a1, a2 interface{}) uintptr
// func SVCall3(num uintptr, a1, a2, a3 interface{}) uintptr
// func SVCall4(num uintptr, a1, a2, a3, a4 interface{}) uintptr
//
// The num parameter must be a constant. All other parameters may be any scalar
// value supported by LLVM inline assembly.
func (b *builder) emitSVCall(args []ssa.Value) (llvm.Value, error) {
num, _ := constant.Uint64Val(args[0].(*ssa.Const).Value)
llvmArgs := []llvm.Value{}
argTypes := []llvm.Type{}
asm := "svc #" + strconv.FormatUint(num, 10)
constraints := "={r0}"
for i, arg := range args[1:] {
arg = arg.(*ssa.MakeInterface).X
if i == 0 {
constraints += ",0"
} else {
constraints += ",{r" + strconv.Itoa(i) + "}"
}
llvmValue := b.getValue(arg)
llvmArgs = append(llvmArgs, llvmValue)
argTypes = append(argTypes, llvmValue.Type())
}
// Implement the ARM calling convention by marking r1-r3 as
// clobbered. r0 is used as an output register so doesn't have to be
// marked as clobbered.
constraints += ",~{r1},~{r2},~{r3}"
fnType := llvm.FunctionType(b.uintptrType, argTypes, false)
target := llvm.InlineAsm(fnType, asm, constraints, true, false, 0)
return b.CreateCall(target, llvmArgs, ""), nil
}
// This is a compiler builtin which emits an inline SVCall instruction. It can
// be one of:
//
// func SVCall0(num uintptr) uintptr
// func SVCall1(num uintptr, a1 interface{}) uintptr
// func SVCall2(num uintptr, a1, a2 interface{}) uintptr
// func SVCall3(num uintptr, a1, a2, a3 interface{}) uintptr
// func SVCall4(num uintptr, a1, a2, a3, a4 interface{}) uintptr
//
// The num parameter must be a constant. All other parameters may be any scalar
// value supported by LLVM inline assembly.
// Same as emitSVCall but for AArch64
func (b *builder) emitSV64Call(args []ssa.Value) (llvm.Value, error) {
num, _ := constant.Uint64Val(args[0].(*ssa.Const).Value)
llvmArgs := []llvm.Value{}
argTypes := []llvm.Type{}
asm := "svc #" + strconv.FormatUint(num, 10)
constraints := "={x0}"
for i, arg := range args[1:] {
arg = arg.(*ssa.MakeInterface).X
if i == 0 {
constraints += ",0"
} else {
constraints += ",{x" + strconv.Itoa(i) + "}"
}
llvmValue := b.getValue(arg)
llvmArgs = append(llvmArgs, llvmValue)
argTypes = append(argTypes, llvmValue.Type())
}
// Implement the ARM64 calling convention by marking x1-x7 as
// clobbered. x0 is used as an output register so doesn't have to be
// marked as clobbered.
constraints += ",~{x1},~{x2},~{x3},~{x4},~{x5},~{x6},~{x7}"
fnType := llvm.FunctionType(b.uintptrType, argTypes, false)
target := llvm.InlineAsm(fnType, asm, constraints, true, false, 0)
return b.CreateCall(target, llvmArgs, ""), nil
}
// This is a compiler builtin which emits CSR instructions. It can be one of:
//
// func (csr CSR) Get() uintptr
// func (csr CSR) Set(uintptr)
// func (csr CSR) SetBits(uintptr) uintptr
// func (csr CSR) ClearBits(uintptr) uintptr
//
// The csr parameter (method receiver) must be a constant. Other parameter can
// be any value.
func (b *builder) emitCSROperation(call *ssa.CallCommon) (llvm.Value, error) {
csrConst, ok := call.Args[0].(*ssa.Const)
if !ok {
return llvm.Value{}, b.makeError(call.Pos(), "CSR must be constant")
}
csr := csrConst.Uint64()
switch name := call.StaticCallee().Name(); name {
case "Get":
// Note that this instruction may have side effects, and thus must be
// marked as such.
fnType := llvm.FunctionType(b.uintptrType, nil, false)
asm := fmt.Sprintf("csrr $0, %d", csr)
target := llvm.InlineAsm(fnType, asm, "=r", true, false, 0)
return b.CreateCall(target, nil, ""), nil
case "Set":
fnType := llvm.FunctionType(b.ctx.VoidType(), []llvm.Type{b.uintptrType}, false)
asm := fmt.Sprintf("csrw %d, $0", csr)
target := llvm.InlineAsm(fnType, asm, "r", true, false, 0)
return b.CreateCall(target, []llvm.Value{b.getValue(call.Args[1])}, ""), nil
case "SetBits":
// Note: it may be possible to optimize this to csrrsi in many cases.
fnType := llvm.FunctionType(b.uintptrType, []llvm.Type{b.uintptrType}, false)
asm := fmt.Sprintf("csrrs $0, %d, $1", csr)
target := llvm.InlineAsm(fnType, asm, "=r,r", true, false, 0)
return b.CreateCall(target, []llvm.Value{b.getValue(call.Args[1])}, ""), nil
case "ClearBits":
// Note: it may be possible to optimize this to csrrci in many cases.
fnType := llvm.FunctionType(b.uintptrType, []llvm.Type{b.uintptrType}, false)
asm := fmt.Sprintf("csrrc $0, %d, $1", csr)
target := llvm.InlineAsm(fnType, asm, "=r,r", true, false, 0)
return b.CreateCall(target, []llvm.Value{b.getValue(call.Args[1])}, ""), nil
default:
return llvm.Value{}, b.makeError(call.Pos(), "unknown CSR operation: "+name)
}
}
|