1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
|
package compiler
// This file transforms interface-related instructions (*ssa.MakeInterface,
// *ssa.TypeAssert, calls on interface types) to an intermediate IR form, to be
// lowered to the final form by the interface lowering pass. See
// interface-lowering.go for more details.
import (
"go/token"
"go/types"
"strconv"
"strings"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// createMakeInterface emits the LLVM IR for the *ssa.MakeInterface instruction.
// It tries to put the type in the interface value, but if that's not possible,
// it will do an allocation of the right size and put that in the interface
// value field.
//
// An interface value is a {typecode, value} tuple named runtime._interface.
func (b *builder) createMakeInterface(val llvm.Value, typ types.Type, pos token.Pos) llvm.Value {
itfValue := b.emitPointerPack([]llvm.Value{val})
itfTypeCodeGlobal := b.getTypeCode(typ)
itfTypeCode := b.CreatePtrToInt(itfTypeCodeGlobal, b.uintptrType, "")
itf := llvm.Undef(b.getLLVMRuntimeType("_interface"))
itf = b.CreateInsertValue(itf, itfTypeCode, 0, "")
itf = b.CreateInsertValue(itf, itfValue, 1, "")
return itf
}
// getTypeCode returns a reference to a type code.
// It returns a pointer to an external global which should be replaced with the
// real type in the interface lowering pass.
func (c *compilerContext) getTypeCode(typ types.Type) llvm.Value {
globalName := "reflect/types.type:" + getTypeCodeName(typ)
global := c.mod.NamedGlobal(globalName)
if global.IsNil() {
// Create a new typecode global.
global = llvm.AddGlobal(c.mod, c.getLLVMRuntimeType("typecodeID"), globalName)
// Some type classes contain more information for underlying types or
// element types. Store it directly in the typecode global to make
// reflect lowering simpler.
var references llvm.Value
var length int64
var methodSet llvm.Value
switch typ := typ.(type) {
case *types.Named:
references = c.getTypeCode(typ.Underlying())
case *types.Chan:
references = c.getTypeCode(typ.Elem())
case *types.Pointer:
references = c.getTypeCode(typ.Elem())
case *types.Slice:
references = c.getTypeCode(typ.Elem())
case *types.Array:
references = c.getTypeCode(typ.Elem())
length = typ.Len()
case *types.Struct:
// Take a pointer to the typecodeID of the first field (if it exists).
structGlobal := c.makeStructTypeFields(typ)
references = llvm.ConstBitCast(structGlobal, global.Type())
case *types.Interface:
methodSetGlobal := c.getInterfaceMethodSet(typ)
references = llvm.ConstBitCast(methodSetGlobal, global.Type())
}
if _, ok := typ.Underlying().(*types.Interface); !ok {
methodSet = c.getTypeMethodSet(typ)
}
if !references.IsNil() || length != 0 || !methodSet.IsNil() {
// Set the 'references' field of the runtime.typecodeID struct.
globalValue := llvm.ConstNull(global.Type().ElementType())
if !references.IsNil() {
globalValue = llvm.ConstInsertValue(globalValue, references, []uint32{0})
}
if length != 0 {
lengthValue := llvm.ConstInt(c.uintptrType, uint64(length), false)
globalValue = llvm.ConstInsertValue(globalValue, lengthValue, []uint32{1})
}
if !methodSet.IsNil() {
globalValue = llvm.ConstInsertValue(globalValue, methodSet, []uint32{2})
}
global.SetInitializer(globalValue)
global.SetLinkage(llvm.LinkOnceODRLinkage)
}
global.SetGlobalConstant(true)
}
return global
}
// makeStructTypeFields creates a new global that stores all type information
// related to this struct type, and returns the resulting global. This global is
// actually an array of all the fields in the structs.
func (c *compilerContext) makeStructTypeFields(typ *types.Struct) llvm.Value {
// The global is an array of runtime.structField structs.
runtimeStructField := c.getLLVMRuntimeType("structField")
structGlobalType := llvm.ArrayType(runtimeStructField, typ.NumFields())
structGlobal := llvm.AddGlobal(c.mod, structGlobalType, "reflect/types.structFields")
structGlobalValue := llvm.ConstNull(structGlobalType)
for i := 0; i < typ.NumFields(); i++ {
fieldGlobalValue := llvm.ConstNull(runtimeStructField)
fieldGlobalValue = llvm.ConstInsertValue(fieldGlobalValue, c.getTypeCode(typ.Field(i).Type()), []uint32{0})
fieldName := c.makeGlobalArray([]byte(typ.Field(i).Name()), "reflect/types.structFieldName", c.ctx.Int8Type())
fieldName.SetLinkage(llvm.PrivateLinkage)
fieldName.SetUnnamedAddr(true)
fieldName = llvm.ConstGEP(fieldName, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
})
fieldGlobalValue = llvm.ConstInsertValue(fieldGlobalValue, fieldName, []uint32{1})
if typ.Tag(i) != "" {
fieldTag := c.makeGlobalArray([]byte(typ.Tag(i)), "reflect/types.structFieldTag", c.ctx.Int8Type())
fieldTag.SetLinkage(llvm.PrivateLinkage)
fieldTag.SetUnnamedAddr(true)
fieldTag = llvm.ConstGEP(fieldTag, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
})
fieldGlobalValue = llvm.ConstInsertValue(fieldGlobalValue, fieldTag, []uint32{2})
}
if typ.Field(i).Embedded() {
fieldEmbedded := llvm.ConstInt(c.ctx.Int1Type(), 1, false)
fieldGlobalValue = llvm.ConstInsertValue(fieldGlobalValue, fieldEmbedded, []uint32{3})
}
structGlobalValue = llvm.ConstInsertValue(structGlobalValue, fieldGlobalValue, []uint32{uint32(i)})
}
structGlobal.SetInitializer(structGlobalValue)
structGlobal.SetUnnamedAddr(true)
structGlobal.SetLinkage(llvm.PrivateLinkage)
return structGlobal
}
// getTypeCodeName returns a name for this type that can be used in the
// interface lowering pass to assign type codes as expected by the reflect
// package. See getTypeCodeNum.
func getTypeCodeName(t types.Type) string {
switch t := t.(type) {
case *types.Named:
return "named:" + t.String()
case *types.Array:
return "array:" + strconv.FormatInt(t.Len(), 10) + ":" + getTypeCodeName(t.Elem())
case *types.Basic:
var kind string
switch t.Kind() {
case types.Bool:
kind = "bool"
case types.Int:
kind = "int"
case types.Int8:
kind = "int8"
case types.Int16:
kind = "int16"
case types.Int32:
kind = "int32"
case types.Int64:
kind = "int64"
case types.Uint:
kind = "uint"
case types.Uint8:
kind = "uint8"
case types.Uint16:
kind = "uint16"
case types.Uint32:
kind = "uint32"
case types.Uint64:
kind = "uint64"
case types.Uintptr:
kind = "uintptr"
case types.Float32:
kind = "float32"
case types.Float64:
kind = "float64"
case types.Complex64:
kind = "complex64"
case types.Complex128:
kind = "complex128"
case types.String:
kind = "string"
case types.UnsafePointer:
kind = "unsafeptr"
default:
panic("unknown basic type: " + t.Name())
}
return "basic:" + kind
case *types.Chan:
return "chan:" + getTypeCodeName(t.Elem())
case *types.Interface:
methods := make([]string, t.NumMethods())
for i := 0; i < t.NumMethods(); i++ {
methods[i] = t.Method(i).Name() + ":" + getTypeCodeName(t.Method(i).Type())
}
return "interface:" + "{" + strings.Join(methods, ",") + "}"
case *types.Map:
keyType := getTypeCodeName(t.Key())
elemType := getTypeCodeName(t.Elem())
return "map:" + "{" + keyType + "," + elemType + "}"
case *types.Pointer:
return "pointer:" + getTypeCodeName(t.Elem())
case *types.Signature:
params := make([]string, t.Params().Len())
for i := 0; i < t.Params().Len(); i++ {
params[i] = getTypeCodeName(t.Params().At(i).Type())
}
results := make([]string, t.Results().Len())
for i := 0; i < t.Results().Len(); i++ {
results[i] = getTypeCodeName(t.Results().At(i).Type())
}
return "func:" + "{" + strings.Join(params, ",") + "}{" + strings.Join(results, ",") + "}"
case *types.Slice:
return "slice:" + getTypeCodeName(t.Elem())
case *types.Struct:
elems := make([]string, t.NumFields())
for i := 0; i < t.NumFields(); i++ {
embedded := ""
if t.Field(i).Embedded() {
embedded = "#"
}
elems[i] = embedded + t.Field(i).Name() + ":" + getTypeCodeName(t.Field(i).Type())
if t.Tag(i) != "" {
elems[i] += "`" + t.Tag(i) + "`"
}
}
return "struct:" + "{" + strings.Join(elems, ",") + "}"
default:
panic("unknown type: " + t.String())
}
}
// getTypeMethodSet returns a reference (GEP) to a global method set. This
// method set should be unreferenced after the interface lowering pass.
func (c *compilerContext) getTypeMethodSet(typ types.Type) llvm.Value {
global := c.mod.NamedGlobal(typ.String() + "$methodset")
zero := llvm.ConstInt(c.ctx.Int32Type(), 0, false)
if !global.IsNil() {
// the method set already exists
return llvm.ConstGEP(global, []llvm.Value{zero, zero})
}
ms := c.program.MethodSets.MethodSet(typ)
if ms.Len() == 0 {
// no methods, so can leave that one out
return llvm.ConstPointerNull(llvm.PointerType(c.getLLVMRuntimeType("interfaceMethodInfo"), 0))
}
methods := make([]llvm.Value, ms.Len())
interfaceMethodInfoType := c.getLLVMRuntimeType("interfaceMethodInfo")
for i := 0; i < ms.Len(); i++ {
method := ms.At(i)
signatureGlobal := c.getMethodSignature(method.Obj().(*types.Func))
fn := c.program.MethodValue(method)
llvmFn := c.getFunction(fn)
if llvmFn.IsNil() {
// compiler error, so panic
panic("cannot find function: " + c.getFunctionInfo(fn).linkName)
}
wrapper := c.getInterfaceInvokeWrapper(fn, llvmFn)
methodInfo := llvm.ConstNamedStruct(interfaceMethodInfoType, []llvm.Value{
signatureGlobal,
llvm.ConstPtrToInt(wrapper, c.uintptrType),
})
methods[i] = methodInfo
}
arrayType := llvm.ArrayType(interfaceMethodInfoType, len(methods))
value := llvm.ConstArray(interfaceMethodInfoType, methods)
global = llvm.AddGlobal(c.mod, arrayType, typ.String()+"$methodset")
global.SetInitializer(value)
global.SetGlobalConstant(true)
global.SetLinkage(llvm.LinkOnceODRLinkage)
return llvm.ConstGEP(global, []llvm.Value{zero, zero})
}
// getInterfaceMethodSet returns a global variable with the method set of the
// given named interface type. This method set is used by the interface lowering
// pass.
func (c *compilerContext) getInterfaceMethodSet(typ types.Type) llvm.Value {
name := typ.String()
if _, ok := typ.(*types.Named); !ok {
// Anonymous interface.
name = "reflect/types.interface:" + name
}
global := c.mod.NamedGlobal(name + "$interface")
zero := llvm.ConstInt(c.ctx.Int32Type(), 0, false)
if !global.IsNil() {
// method set already exist, return it
return llvm.ConstGEP(global, []llvm.Value{zero, zero})
}
// Every method is a *i8 reference indicating the signature of this method.
methods := make([]llvm.Value, typ.Underlying().(*types.Interface).NumMethods())
for i := range methods {
method := typ.Underlying().(*types.Interface).Method(i)
methods[i] = c.getMethodSignature(method)
}
value := llvm.ConstArray(c.i8ptrType, methods)
global = llvm.AddGlobal(c.mod, value.Type(), name+"$interface")
global.SetInitializer(value)
global.SetGlobalConstant(true)
global.SetLinkage(llvm.LinkOnceODRLinkage)
return llvm.ConstGEP(global, []llvm.Value{zero, zero})
}
// getMethodSignature returns a global variable which is a reference to an
// external *i8 indicating the indicating the signature of this method. It is
// used during the interface lowering pass.
func (c *compilerContext) getMethodSignature(method *types.Func) llvm.Value {
signature := methodSignature(method)
signatureGlobal := c.mod.NamedGlobal("func " + signature)
if signatureGlobal.IsNil() {
signatureGlobal = llvm.AddGlobal(c.mod, c.ctx.Int8Type(), "func "+signature)
signatureGlobal.SetGlobalConstant(true)
}
return signatureGlobal
}
// createTypeAssert will emit the code for a typeassert, used in if statements
// and in type switches (Go SSA does not have type switches, only if/else
// chains). Note that even though the Go SSA does not contain type switches,
// LLVM will recognize the pattern and make it a real switch in many cases.
//
// Type asserts on concrete types are trivial: just compare type numbers. Type
// asserts on interfaces are more difficult, see the comments in the function.
func (b *builder) createTypeAssert(expr *ssa.TypeAssert) llvm.Value {
itf := b.getValue(expr.X)
assertedType := b.getLLVMType(expr.AssertedType)
actualTypeNum := b.CreateExtractValue(itf, 0, "interface.type")
commaOk := llvm.Value{}
if _, ok := expr.AssertedType.Underlying().(*types.Interface); ok {
// Type assert on interface type.
// This pseudo call will be lowered in the interface lowering pass to a
// real call which checks whether the provided typecode is any of the
// concrete types that implements this interface.
// This is very different from how interface asserts are implemented in
// the main Go compiler, where the runtime checks whether the type
// implements each method of the interface. See:
// https://research.swtch.com/interfaces
methodSet := b.getInterfaceMethodSet(expr.AssertedType)
commaOk = b.createRuntimeCall("interfaceImplements", []llvm.Value{actualTypeNum, methodSet}, "")
} else {
globalName := "reflect/types.typeid:" + getTypeCodeName(expr.AssertedType)
assertedTypeCodeGlobal := b.mod.NamedGlobal(globalName)
if assertedTypeCodeGlobal.IsNil() {
// Create a new typecode global.
assertedTypeCodeGlobal = llvm.AddGlobal(b.mod, b.ctx.Int8Type(), globalName)
assertedTypeCodeGlobal.SetGlobalConstant(true)
}
// Type assert on concrete type.
// Call runtime.typeAssert, which will be lowered to a simple icmp or
// const false in the interface lowering pass.
commaOk = b.createRuntimeCall("typeAssert", []llvm.Value{actualTypeNum, assertedTypeCodeGlobal}, "typecode")
}
// Add 2 new basic blocks (that should get optimized away): one for the
// 'ok' case and one for all instructions following this type assert.
// This is necessary because we need to insert the casted value or the
// nil value based on whether the assert was successful. Casting before
// this check tells LLVM that it can use this value and may
// speculatively dereference pointers before the check. This can lead to
// a miscompilation resulting in a segfault at runtime.
// Additionally, this is even required by the Go spec: a failed
// typeassert should return a zero value, not an incorrectly casted
// value.
prevBlock := b.GetInsertBlock()
okBlock := b.ctx.AddBasicBlock(b.llvmFn, "typeassert.ok")
nextBlock := b.ctx.AddBasicBlock(b.llvmFn, "typeassert.next")
b.blockExits[b.currentBlock] = nextBlock // adjust outgoing block for phi nodes
b.CreateCondBr(commaOk, okBlock, nextBlock)
// Retrieve the value from the interface if the type assert was
// successful.
b.SetInsertPointAtEnd(okBlock)
var valueOk llvm.Value
if _, ok := expr.AssertedType.Underlying().(*types.Interface); ok {
// Type assert on interface type. Easy: just return the same
// interface value.
valueOk = itf
} else {
// Type assert on concrete type. Extract the underlying type from
// the interface (but only after checking it matches).
valuePtr := b.CreateExtractValue(itf, 1, "typeassert.value.ptr")
valueOk = b.emitPointerUnpack(valuePtr, []llvm.Type{assertedType})[0]
}
b.CreateBr(nextBlock)
// Continue after the if statement.
b.SetInsertPointAtEnd(nextBlock)
phi := b.CreatePHI(assertedType, "typeassert.value")
phi.AddIncoming([]llvm.Value{llvm.ConstNull(assertedType), valueOk}, []llvm.BasicBlock{prevBlock, okBlock})
if expr.CommaOk {
tuple := b.ctx.ConstStruct([]llvm.Value{llvm.Undef(assertedType), llvm.Undef(b.ctx.Int1Type())}, false) // create empty tuple
tuple = b.CreateInsertValue(tuple, phi, 0, "") // insert value
tuple = b.CreateInsertValue(tuple, commaOk, 1, "") // insert 'comma ok' boolean
return tuple
} else {
// This is kind of dirty as the branch above becomes mostly useless,
// but hopefully this gets optimized away.
b.createRuntimeCall("interfaceTypeAssert", []llvm.Value{commaOk}, "")
return phi
}
}
// getInvokePtr creates an interface function pointer lookup for the specified invoke instruction, using a specified typecode.
func (b *builder) getInvokePtr(instr *ssa.CallCommon, typecode llvm.Value) llvm.Value {
llvmFnType := b.getRawFuncType(instr.Method.Type().(*types.Signature))
values := []llvm.Value{
typecode,
b.getInterfaceMethodSet(instr.Value.Type()),
b.getMethodSignature(instr.Method),
}
fn := b.createRuntimeCall("interfaceMethod", values, "invoke.func")
return b.CreateIntToPtr(fn, llvmFnType, "invoke.func.cast")
}
// getInvokeCall creates and returns the function pointer and parameters of an
// interface call.
func (b *builder) getInvokeCall(instr *ssa.CallCommon) (llvm.Value, []llvm.Value) {
// Call an interface method with dynamic dispatch.
itf := b.getValue(instr.Value) // interface
typecode := b.CreateExtractValue(itf, 0, "invoke.typecode")
fnCast := b.getInvokePtr(instr, typecode)
receiverValue := b.CreateExtractValue(itf, 1, "invoke.func.receiver")
args := []llvm.Value{receiverValue}
for _, arg := range instr.Args {
args = append(args, b.getValue(arg))
}
// Add the context parameter. An interface call never takes a context but we
// have to supply the parameter anyway.
args = append(args, llvm.Undef(b.i8ptrType))
// Add the parent goroutine handle.
args = append(args, llvm.Undef(b.i8ptrType))
return fnCast, args
}
// getInterfaceInvokeWrapper returns a wrapper for the given method so it can be
// invoked from an interface. The wrapper takes in a pointer to the underlying
// value, dereferences or unpacks it if necessary, and calls the real method.
// If the method to wrap has a pointer receiver, no wrapping is necessary and
// the function is returned directly.
func (c *compilerContext) getInterfaceInvokeWrapper(fn *ssa.Function, llvmFn llvm.Value) llvm.Value {
wrapperName := llvmFn.Name() + "$invoke"
wrapper := c.mod.NamedFunction(wrapperName)
if !wrapper.IsNil() {
// Wrapper already created. Return it directly.
return wrapper
}
// Get the expanded receiver type.
receiverType := c.getLLVMType(fn.Signature.Recv().Type())
var expandedReceiverType []llvm.Type
for _, info := range c.expandFormalParamType(receiverType, "", nil) {
expandedReceiverType = append(expandedReceiverType, info.llvmType)
}
// Does this method even need any wrapping?
if len(expandedReceiverType) == 1 && receiverType.TypeKind() == llvm.PointerTypeKind {
// Nothing to wrap.
// Casting a function signature to a different signature and calling it
// with a receiver pointer bitcasted to *i8 (as done in calls on an
// interface) is hopefully a safe (defined) operation.
return llvmFn
}
// create wrapper function
fnType := llvmFn.Type().ElementType()
paramTypes := append([]llvm.Type{c.i8ptrType}, fnType.ParamTypes()[len(expandedReceiverType):]...)
wrapFnType := llvm.FunctionType(fnType.ReturnType(), paramTypes, false)
wrapper = llvm.AddFunction(c.mod, wrapperName, wrapFnType)
wrapper.LastParam().SetName("parentHandle")
wrapper.SetLinkage(llvm.LinkOnceODRLinkage)
wrapper.SetUnnamedAddr(true)
// Create a new builder just to create this wrapper.
b := builder{
compilerContext: c,
Builder: c.ctx.NewBuilder(),
}
defer b.Builder.Dispose()
// add debug info if needed
if c.Debug {
pos := c.program.Fset.Position(fn.Pos())
difunc := c.attachDebugInfoRaw(fn, wrapper, "$invoke", pos.Filename, pos.Line)
b.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), difunc, llvm.Metadata{})
}
// set up IR builder
block := b.ctx.AddBasicBlock(wrapper, "entry")
b.SetInsertPointAtEnd(block)
receiverValue := b.emitPointerUnpack(wrapper.Param(0), []llvm.Type{receiverType})[0]
params := append(b.expandFormalParam(receiverValue), wrapper.Params()[1:]...)
if llvmFn.Type().ElementType().ReturnType().TypeKind() == llvm.VoidTypeKind {
b.CreateCall(llvmFn, params, "")
b.CreateRetVoid()
} else {
ret := b.CreateCall(llvmFn, params, "ret")
b.CreateRet(ret)
}
return wrapper
}
// methodSignature creates a readable version of a method signature (including
// the function name, excluding the receiver name). This string is used
// internally to match interfaces and to call the correct method on an
// interface. Examples:
//
// String() string
// Read([]byte) (int, error)
func methodSignature(method *types.Func) string {
return method.Name() + signature(method.Type().(*types.Signature))
}
// Make a readable version of a function (pointer) signature.
// Examples:
//
// () string
// (string, int) (int, error)
func signature(sig *types.Signature) string {
s := ""
if sig.Params().Len() == 0 {
s += "()"
} else {
s += "("
for i := 0; i < sig.Params().Len(); i++ {
if i > 0 {
s += ", "
}
s += sig.Params().At(i).Type().String()
}
s += ")"
}
if sig.Results().Len() == 0 {
// keep as-is
} else if sig.Results().Len() == 1 {
s += " " + sig.Results().At(0).Type().String()
} else {
s += " ("
for i := 0; i < sig.Results().Len(); i++ {
if i > 0 {
s += ", "
}
s += sig.Results().At(i).Type().String()
}
s += ")"
}
return s
}
|