aboutsummaryrefslogtreecommitdiffhomepage
path: root/interp/interpreter.go
blob: 1ec4597e1f6301928ee1112924d6a35d3f570a67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
package interp

import (
	"errors"
	"fmt"
	"math"
	"os"
	"strconv"
	"strings"
	"time"

	"tinygo.org/x/go-llvm"
)

func (r *runner) run(fn *function, params []value, parentMem *memoryView, indent string) (value, memoryView, *Error) {
	mem := memoryView{r: r, parent: parentMem}
	locals := make([]value, len(fn.locals))
	r.callsExecuted++

	// Parameters are considered a kind of local values.
	for i, param := range params {
		locals[i] = param
	}

	// Track what blocks have run instructions at runtime.
	// This is used to prevent unrolling.
	var runtimeBlocks map[int]struct{}

	// Start with the first basic block and the first instruction.
	// Branch instructions may modify both bb and instIndex when branching.
	bb := fn.blocks[0]
	currentBB := 0
	lastBB := -1 // last basic block is undefined, only defined after a branch
	var operands []value
	startRTInsts := len(mem.instructions)
	for instIndex := 0; instIndex < len(bb.instructions); instIndex++ {
		if instIndex == 0 {
			// This is the start of a new basic block.
			if len(mem.instructions) != startRTInsts {
				if _, ok := runtimeBlocks[lastBB]; ok {
					// This loop has been unrolled.
					// Avoid doing this, as it can result in a large amount of extra machine code.
					// This currently uses the branch from the last block, as there is no available information to give a better location.
					lastBBInsts := fn.blocks[lastBB].instructions
					return nil, mem, r.errorAt(lastBBInsts[len(lastBBInsts)-1], errLoopUnrolled)
				}

				// Flag the last block as having run stuff at runtime.
				if runtimeBlocks == nil {
					runtimeBlocks = make(map[int]struct{})
				}
				runtimeBlocks[lastBB] = struct{}{}

				// Reset the block-start runtime instructions counter.
				startRTInsts = len(mem.instructions)
			}

			// There may be PHI nodes that need to be resolved. Resolve all PHI
			// nodes before continuing with regular instructions.
			// PHI nodes need to be treated specially because they can have a
			// mutual dependency:
			//   for.loop:
			//     %a = phi i8 [ 1, %entry ], [ %b, %for.loop ]
			//     %b = phi i8 [ 3, %entry ], [ %a, %for.loop ]
			// If these PHI nodes are processed like a regular instruction, %a
			// and %b are both 3 on the second iteration of the loop because %b
			// loads the value of %a from the second iteration, while it should
			// load the value from the previous iteration. The correct behavior
			// is that these two values swap each others place on each
			// iteration.
			var phiValues []value
			var phiIndices []int
			for _, inst := range bb.phiNodes {
				var result value
				for i := 0; i < len(inst.operands); i += 2 {
					if int(inst.operands[i].(literalValue).value.(uint32)) == lastBB {
						incoming := inst.operands[i+1]
						if local, ok := incoming.(localValue); ok {
							result = locals[fn.locals[local.value]]
						} else {
							result = incoming
						}
						break
					}
				}
				if r.debug {
					fmt.Fprintln(os.Stderr, indent+"phi", inst.operands, "->", result)
				}
				if result == nil {
					panic("could not find PHI input")
				}
				phiValues = append(phiValues, result)
				phiIndices = append(phiIndices, inst.localIndex)
			}
			for i, value := range phiValues {
				locals[phiIndices[i]] = value
			}
		}

		inst := bb.instructions[instIndex]
		operands = operands[:0]
		isRuntimeInst := false
		if inst.opcode != llvm.PHI {
			for _, v := range inst.operands {
				if v, ok := v.(localValue); ok {
					index, ok := fn.locals[v.value]
					if !ok {
						// This is a localValue that is not local to the
						// function. An example would be an inline assembly call
						// operand.
						isRuntimeInst = true
						break
					}
					localVal := locals[index]
					if localVal == nil {
						// Trying to read a function-local value before it is
						// set.
						return nil, mem, r.errorAt(inst, errors.New("interp: local not defined"))
					} else {
						operands = append(operands, localVal)
						if _, ok := localVal.(localValue); ok {
							// The function-local value is still just a
							// localValue (which can't be interpreted at compile
							// time). Not sure whether this ever happens in
							// practice.
							isRuntimeInst = true
							break
						}
						continue
					}
				}
				operands = append(operands, v)
			}
		}
		if isRuntimeInst {
			err := r.runAtRuntime(fn, inst, locals, &mem, indent)
			if err != nil {
				return nil, mem, err
			}
			continue
		}
		switch inst.opcode {
		case llvm.Ret:
			if time.Since(r.start) > r.timeout {
				// Running for more than the allowed timeout; This shouldn't happen, but it does.
				// See github.com/tinygo-org/tinygo/issues/2124
				return nil, mem, r.errorAt(fn.blocks[0].instructions[0], fmt.Errorf("interp: running for more than %s, timing out (executed calls: %d)", r.timeout, r.callsExecuted))
			}

			if len(operands) != 0 {
				if r.debug {
					fmt.Fprintln(os.Stderr, indent+"ret", operands[0])
				}
				// Return instruction has a value to return.
				return operands[0], mem, nil
			}
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+"ret")
			}
			// Return instruction doesn't return anything, it's just 'ret void'.
			return nil, mem, nil
		case llvm.Br:
			switch len(operands) {
			case 1:
				// Unconditional branch: [nextBB]
				lastBB = currentBB
				currentBB = int(operands[0].(literalValue).value.(uint32))
				bb = fn.blocks[currentBB]
				instIndex = -1 // start at 0 the next cycle
				if r.debug {
					fmt.Fprintln(os.Stderr, indent+"br", operands, "->", currentBB)
				}
			case 3:
				// Conditional branch: [cond, thenBB, elseBB]
				lastBB = currentBB
				switch operands[0].Uint() {
				case 1: // true -> thenBB
					currentBB = int(operands[1].(literalValue).value.(uint32))
				case 0: // false -> elseBB
					currentBB = int(operands[2].(literalValue).value.(uint32))
				default:
					panic("bool should be 0 or 1")
				}
				if r.debug {
					fmt.Fprintln(os.Stderr, indent+"br", operands, "->", currentBB)
				}
				bb = fn.blocks[currentBB]
				instIndex = -1 // start at 0 the next cycle
			default:
				panic("unknown operands length")
			}
		case llvm.Switch:
			// Switch statement: [value, defaultLabel, case0, label0, case1, label1, ...]
			value := operands[0].Uint()
			targetLabel := operands[1].Uint() // default label
			// Do a lazy switch by iterating over all cases.
			for i := 2; i < len(operands); i += 2 {
				if value == operands[i].Uint() {
					targetLabel = operands[i+1].Uint()
					break
				}
			}
			lastBB = currentBB
			currentBB = int(targetLabel)
			bb = fn.blocks[currentBB]
			instIndex = -1 // start at 0 the next cycle
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+"switch", operands, "->", currentBB)
			}
		case llvm.Select:
			// Select is much like a ternary operator: it picks a result from
			// the second and third operand based on the boolean first operand.
			var result value
			switch operands[0].Uint() {
			case 1:
				result = operands[1]
			case 0:
				result = operands[2]
			default:
				panic("boolean must be 0 or 1")
			}
			locals[inst.localIndex] = result
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+"select", operands, "->", result)
			}
		case llvm.Call:
			// A call instruction can either be a regular call or a runtime intrinsic.
			fnPtr, err := operands[0].asPointer(r)
			if err != nil {
				return nil, mem, r.errorAt(inst, err)
			}
			callFn := r.getFunction(fnPtr.llvmValue(&mem))
			switch {
			case callFn.name == "runtime.trackPointer":
				// Allocas and such are created as globals, so don't need a
				// runtime.trackPointer.
				// Unless the object is allocated at runtime for example, in
				// which case this call won't even get to this point but will
				// already be emitted in initAll.
				continue
			case strings.HasPrefix(callFn.name, "runtime.print") || callFn.name == "runtime._panic" || callFn.name == "runtime.hashmapGet" || callFn.name == "runtime.hashmapInterfaceHash" ||
				callFn.name == "os.runtime_args" || callFn.name == "internal/task.start" || callFn.name == "internal/task.Current":
				// These functions should be run at runtime. Specifically:
				//   * Print and panic functions are best emitted directly without
				//     interpreting them, otherwise we get a ton of putchar (etc.)
				//     calls.
				//   * runtime.hashmapGet tries to access the map value directly.
				//     This is not possible as the map value is treated as a special
				//     kind of object in this package.
				//   * os.runtime_args reads globals that are initialized outside
				//     the view of the interp package so it always needs to be run
				//     at runtime.
				//   * internal/task.start, internal/task.Current: start and read shcheduler state,
				//     which is modified elsewhere.
				err := r.runAtRuntime(fn, inst, locals, &mem, indent)
				if err != nil {
					return nil, mem, err
				}
			case callFn.name == "internal/task.Pause":
				// Task scheduling isn't possible at compile time.
				return nil, mem, r.errorAt(inst, errUnsupportedRuntimeInst)
			case callFn.name == "runtime.nanotime" && r.pkgName == "time":
				// The time package contains a call to runtime.nanotime.
				// This appears to be to work around a limitation in Windows
				// Server 2008:
				//   > Monotonic times are reported as offsets from startNano.
				//   > We initialize startNano to runtimeNano() - 1 so that on systems where
				//   > monotonic time resolution is fairly low (e.g. Windows 2008
				//   > which appears to have a default resolution of 15ms),
				//   > we avoid ever reporting a monotonic time of 0.
				//   > (Callers may want to use 0 as "time not set".)
				// Simply let runtime.nanotime return 0 in this case, which
				// should be fine and avoids a call to runtime.nanotime. It
				// means that monotonic time in the time package is counted from
				// time.Time{}.Sub(1), which should be fine.
				locals[inst.localIndex] = literalValue{uint64(0)}
			case callFn.name == "runtime.alloc":
				// Allocate heap memory. At compile time, this is instead done
				// by creating a global variable.

				// Get the requested memory size to be allocated.
				size := operands[1].Uint()

				// Get the object layout, if it is available.
				llvmLayoutType := r.getLLVMTypeFromLayout(operands[2])

				// Create the object.
				alloc := object{
					globalName:     r.pkgName + "$alloc",
					llvmLayoutType: llvmLayoutType,
					buffer:         newRawValue(uint32(size)),
					size:           uint32(size),
				}
				index := len(r.objects)
				r.objects = append(r.objects, alloc)

				// And create a pointer to this object, for working with it (so
				// that stores to it copy it, etc).
				ptr := newPointerValue(r, index, 0)
				if r.debug {
					fmt.Fprintln(os.Stderr, indent+"runtime.alloc:", size, "->", ptr)
				}
				locals[inst.localIndex] = ptr
			case callFn.name == "runtime.sliceCopy":
				// sliceCopy implements the built-in copy function for slices.
				// It is implemented here so that it can be used even if the
				// runtime implementation is not available. Doing it this way
				// may also be faster.
				// Code:
				// func sliceCopy(dst, src unsafe.Pointer, dstLen, srcLen uintptr, elemSize uintptr) int {
				//     n := srcLen
				//     if n > dstLen {
				//         n = dstLen
				//     }
				//     memmove(dst, src, n*elemSize)
				//     return int(n)
				// }
				dstLen := operands[3].Uint()
				srcLen := operands[4].Uint()
				elemSize := operands[5].Uint()
				n := srcLen
				if n > dstLen {
					n = dstLen
				}
				if r.debug {
					fmt.Fprintln(os.Stderr, indent+"copy:", operands[1], operands[2], n)
				}
				if n != 0 {
					// Only try to copy bytes when there are any bytes to copy.
					// This is not just an optimization. If one of the slices
					// (or both) are nil, the asPointer method call will fail
					// even though copying a nil slice is allowed.
					dst, err := operands[1].asPointer(r)
					if err != nil {
						return nil, mem, r.errorAt(inst, err)
					}
					src, err := operands[2].asPointer(r)
					if err != nil {
						return nil, mem, r.errorAt(inst, err)
					}
					nBytes := uint32(n * elemSize)
					dstObj := mem.getWritable(dst.index())
					dstBuf := dstObj.buffer.asRawValue(r)
					srcBuf := mem.get(src.index()).buffer.asRawValue(r)
					copy(dstBuf.buf[dst.offset():dst.offset()+nBytes], srcBuf.buf[src.offset():])
					dstObj.buffer = dstBuf
					mem.put(dst.index(), dstObj)
				}
				locals[inst.localIndex] = makeLiteralInt(n, inst.llvmInst.Type().IntTypeWidth())
			case strings.HasPrefix(callFn.name, "llvm.memcpy.p0") || strings.HasPrefix(callFn.name, "llvm.memmove.p0"):
				// Copy a block of memory from one pointer to another.
				dst, err := operands[1].asPointer(r)
				if err != nil {
					return nil, mem, r.errorAt(inst, err)
				}
				src, err := operands[2].asPointer(r)
				if err != nil {
					return nil, mem, r.errorAt(inst, err)
				}
				nBytes := uint32(operands[3].Uint())
				dstObj := mem.getWritable(dst.index())
				dstBuf := dstObj.buffer.asRawValue(r)
				if mem.get(src.index()).buffer == nil {
					// Looks like the source buffer is not defined.
					// This can happen with //extern or //go:embed.
					return nil, mem, r.errorAt(inst, errUnsupportedRuntimeInst)
				}
				srcBuf := mem.get(src.index()).buffer.asRawValue(r)
				copy(dstBuf.buf[dst.offset():dst.offset()+nBytes], srcBuf.buf[src.offset():])
				dstObj.buffer = dstBuf
				mem.put(dst.index(), dstObj)
			case callFn.name == "runtime.typeAssert":
				// This function must be implemented manually as it is normally
				// implemented by the interface lowering pass.
				if r.debug {
					fmt.Fprintln(os.Stderr, indent+"typeassert:", operands[1:])
				}
				assertedType, err := operands[2].toLLVMValue(inst.llvmInst.Operand(1).Type(), &mem)
				if err != nil {
					return nil, mem, r.errorAt(inst, err)
				}
				actualType, err := operands[1].toLLVMValue(inst.llvmInst.Operand(0).Type(), &mem)
				if err != nil {
					return nil, mem, r.errorAt(inst, err)
				}
				if !actualType.IsAConstantInt().IsNil() && actualType.ZExtValue() == 0 {
					locals[inst.localIndex] = literalValue{uint8(0)}
					break
				}
				// Strip pointer casts (bitcast, getelementptr).
				for !actualType.IsAConstantExpr().IsNil() {
					opcode := actualType.Opcode()
					if opcode != llvm.GetElementPtr && opcode != llvm.BitCast {
						break
					}
					actualType = actualType.Operand(0)
				}
				if strings.TrimPrefix(actualType.Name(), "reflect/types.type:") == strings.TrimPrefix(assertedType.Name(), "reflect/types.typeid:") {
					locals[inst.localIndex] = literalValue{uint8(1)}
				} else {
					locals[inst.localIndex] = literalValue{uint8(0)}
				}
			case strings.HasSuffix(callFn.name, ".$typeassert"):
				if r.debug {
					fmt.Fprintln(os.Stderr, indent+"interface assert:", operands[1:])
				}

				// Load various values for the interface implements check below.
				typecodePtr, err := operands[1].asPointer(r)
				if err != nil {
					return nil, mem, r.errorAt(inst, err)
				}
				methodSetPtr, err := mem.load(typecodePtr.addOffset(-int64(r.pointerSize)), r.pointerSize).asPointer(r)
				if err != nil {
					return nil, mem, r.errorAt(inst, err)
				}
				methodSet := mem.get(methodSetPtr.index()).llvmGlobal.Initializer()
				numMethods := int(r.builder.CreateExtractValue(methodSet, 0, "").ZExtValue())
				llvmFn := inst.llvmInst.CalledValue()
				methodSetAttr := llvmFn.GetStringAttributeAtIndex(-1, "tinygo-methods")
				methodSetString := methodSetAttr.GetStringValue()

				// Make a set of all the methods on the concrete type, for
				// easier checking in the next step.
				concreteTypeMethods := map[string]struct{}{}
				for i := 0; i < numMethods; i++ {
					methodInfo := r.builder.CreateExtractValue(methodSet, 1, "")
					name := r.builder.CreateExtractValue(methodInfo, i, "").Name()
					concreteTypeMethods[name] = struct{}{}
				}

				// Check whether all interface methods are also in the list
				// of defined methods calculated above. This is the interface
				// assert itself.
				assertOk := uint8(1) // i1 true
				for _, name := range strings.Split(methodSetString, "; ") {
					if _, ok := concreteTypeMethods[name]; !ok {
						// There is a method on the interface that is not
						// implemented by the type. The assertion will fail.
						assertOk = 0 // i1 false
						break
					}
				}
				// If assertOk is still 1, the assertion succeeded.
				locals[inst.localIndex] = literalValue{assertOk}
			case strings.HasSuffix(callFn.name, "$invoke"):
				// This thunk is the interface method dispatcher: it is called
				// with all regular parameters and a type code. It will then
				// call the concrete method for it.
				if r.debug {
					fmt.Fprintln(os.Stderr, indent+"invoke method:", operands[1:])
				}

				// Load the type code and method set of the interface value.
				typecodePtr, err := operands[len(operands)-2].asPointer(r)
				if err != nil {
					return nil, mem, r.errorAt(inst, err)
				}
				methodSetPtr, err := mem.load(typecodePtr.addOffset(-int64(r.pointerSize)), r.pointerSize).asPointer(r)
				if err != nil {
					return nil, mem, r.errorAt(inst, err)
				}
				methodSet := mem.get(methodSetPtr.index()).llvmGlobal.Initializer()

				// We don't need to load the interface method set.

				// Load the signature of the to-be-called function.
				llvmFn := inst.llvmInst.CalledValue()
				invokeAttr := llvmFn.GetStringAttributeAtIndex(-1, "tinygo-invoke")
				invokeName := invokeAttr.GetStringValue()
				signature := r.mod.NamedGlobal(invokeName)

				// Iterate through all methods, looking for the one method that
				// should be returned.
				numMethods := int(r.builder.CreateExtractValue(methodSet, 0, "").ZExtValue())
				var method llvm.Value
				for i := 0; i < numMethods; i++ {
					methodSignatureAgg := r.builder.CreateExtractValue(methodSet, 1, "")
					methodSignature := r.builder.CreateExtractValue(methodSignatureAgg, i, "")
					if methodSignature == signature {
						methodAgg := r.builder.CreateExtractValue(methodSet, 2, "")
						method = r.builder.CreateExtractValue(methodAgg, i, "")
					}
				}
				if method.IsNil() {
					return nil, mem, r.errorAt(inst, errors.New("could not find method: "+invokeName))
				}

				// Change the to-be-called function to the underlying method to
				// be called and fall through to the default case.
				callFn = r.getFunction(method)
				fallthrough
			default:
				if len(callFn.blocks) == 0 {
					// Call to a function declaration without a definition
					// available.
					err := r.runAtRuntime(fn, inst, locals, &mem, indent)
					if err != nil {
						return nil, mem, err
					}
					continue
				}
				// Call a function with a definition available. Run it as usual,
				// possibly trying to recover from it if it failed to execute.
				if r.debug {
					argStrings := make([]string, len(operands)-1)
					for i, v := range operands[1:] {
						argStrings[i] = v.String()
					}
					fmt.Fprintln(os.Stderr, indent+"call:", callFn.name+"("+strings.Join(argStrings, ", ")+")")
				}
				retval, callMem, callErr := r.run(callFn, operands[1:], &mem, indent+"    ")
				if callErr != nil {
					if isRecoverableError(callErr.Err) {
						// This error can be recovered by doing the call at
						// runtime instead of at compile time. But we need to
						// revert any changes made by the call first.
						if r.debug {
							fmt.Fprintln(os.Stderr, indent+"!! revert because of error:", callErr.Err)
						}
						callMem.revert()
						err := r.runAtRuntime(fn, inst, locals, &mem, indent)
						if err != nil {
							return nil, mem, err
						}
						continue
					}
					// Add to the traceback, so that error handling code can see
					// how this function got called.
					callErr.Traceback = append(callErr.Traceback, ErrorLine{
						Pos:  getPosition(inst.llvmInst),
						Inst: inst.llvmInst,
					})
					return nil, mem, callErr
				}
				locals[inst.localIndex] = retval
				mem.extend(callMem)
			}
		case llvm.Load:
			// Load instruction, loading some data from the topmost memory view.
			ptr, err := operands[0].asPointer(r)
			if err != nil {
				return nil, mem, r.errorAt(inst, err)
			}
			size := operands[1].(literalValue).value.(uint64)
			if inst.llvmInst.IsVolatile() || inst.llvmInst.Ordering() != llvm.AtomicOrderingNotAtomic || mem.hasExternalStore(ptr) {
				// If there could be an external store (for example, because a
				// pointer to the object was passed to a function that could not
				// be interpreted at compile time) then the load must be done at
				// runtime.
				err := r.runAtRuntime(fn, inst, locals, &mem, indent)
				if err != nil {
					return nil, mem, err
				}
				continue
			}
			result := mem.load(ptr, uint32(size))
			if result == nil {
				err := r.runAtRuntime(fn, inst, locals, &mem, indent)
				if err != nil {
					return nil, mem, err
				}
				continue
			}
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+"load:", ptr, "->", result)
			}
			locals[inst.localIndex] = result
		case llvm.Store:
			// Store instruction. Create a new object in the memory view and
			// store to that, to make it possible to roll back this store.
			ptr, err := operands[1].asPointer(r)
			if err != nil {
				return nil, mem, r.errorAt(inst, err)
			}
			if inst.llvmInst.IsVolatile() || inst.llvmInst.Ordering() != llvm.AtomicOrderingNotAtomic || mem.hasExternalLoadOrStore(ptr) {
				err := r.runAtRuntime(fn, inst, locals, &mem, indent)
				if err != nil {
					return nil, mem, err
				}
				continue
			}
			val := operands[0]
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+"store:", val, ptr)
			}
			ok := mem.store(val, ptr)
			if !ok {
				// Could not store the value, do it at runtime.
				err := r.runAtRuntime(fn, inst, locals, &mem, indent)
				if err != nil {
					return nil, mem, err
				}
			}
		case llvm.Alloca:
			// Alloca normally allocates some stack memory. In the interpreter,
			// it allocates a global instead.
			// This can likely be optimized, as all it really needs is an alloca
			// in the initAll function and creating a global is wasteful for
			// this purpose.

			// Create the new object.
			size := operands[0].(literalValue).value.(uint64)
			alloca := object{
				llvmType:   inst.llvmInst.AllocatedType(),
				globalName: r.pkgName + "$alloca",
				buffer:     newRawValue(uint32(size)),
				size:       uint32(size),
			}
			index := len(r.objects)
			r.objects = append(r.objects, alloca)

			// Create a pointer to this object (an alloca produces a pointer).
			ptr := newPointerValue(r, index, 0)
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+"alloca:", operands, "->", ptr)
			}
			locals[inst.localIndex] = ptr
		case llvm.GetElementPtr:
			// GetElementPtr does pointer arithmetic, changing the offset of the
			// pointer into the underlying object.
			var offset uint64
			for i := 1; i < len(operands); i += 2 {
				index := operands[i].Uint()
				elementSize := operands[i+1].Uint()
				if int64(elementSize) < 0 {
					// This is a struct field.
					offset += index
				} else {
					// This is a normal GEP, probably an array index.
					offset += elementSize * index
				}
			}
			ptr, err := operands[0].asPointer(r)
			if err != nil {
				if err != errIntegerAsPointer {
					return nil, mem, r.errorAt(inst, err)
				}
				// GEP on fixed pointer value (for example, memory-mapped I/O).
				ptrValue := operands[0].Uint() + offset
				locals[inst.localIndex] = makeLiteralInt(ptrValue, int(operands[0].len(r)*8))
				continue
			}
			ptr = ptr.addOffset(int64(offset))
			locals[inst.localIndex] = ptr
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+"gep:", operands, "->", ptr)
			}
		case llvm.BitCast, llvm.IntToPtr, llvm.PtrToInt:
			// Various bitcast-like instructions that all keep the same bits
			// while changing the LLVM type.
			// Because interp doesn't preserve the type, these operations are
			// identity operations.
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+instructionNameMap[inst.opcode]+":", operands[0])
			}
			locals[inst.localIndex] = operands[0]
		case llvm.ExtractValue:
			agg := operands[0].asRawValue(r)
			offset := operands[1].(literalValue).value.(uint64)
			size := operands[2].(literalValue).value.(uint64)
			elt := rawValue{
				buf: agg.buf[offset : offset+size],
			}
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+"extractvalue:", operands, "->", elt)
			}
			locals[inst.localIndex] = elt
		case llvm.InsertValue:
			agg := operands[0].asRawValue(r)
			elt := operands[1].asRawValue(r)
			offset := int(operands[2].(literalValue).value.(uint64))
			newagg := newRawValue(uint32(len(agg.buf)))
			copy(newagg.buf, agg.buf)
			copy(newagg.buf[offset:], elt.buf)
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+"insertvalue:", operands, "->", newagg)
			}
			locals[inst.localIndex] = newagg
		case llvm.ICmp:
			predicate := llvm.IntPredicate(operands[2].(literalValue).value.(uint8))
			lhs := operands[0]
			rhs := operands[1]
			result := r.interpretICmp(lhs, rhs, predicate)
			if result {
				locals[inst.localIndex] = literalValue{uint8(1)}
			} else {
				locals[inst.localIndex] = literalValue{uint8(0)}
			}
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+"icmp:", operands[0], intPredicateString(predicate), operands[1], "->", result)
			}
		case llvm.FCmp:
			predicate := llvm.FloatPredicate(operands[2].(literalValue).value.(uint8))
			var result bool
			var lhs, rhs float64
			switch operands[0].len(r) {
			case 8:
				lhs = math.Float64frombits(operands[0].Uint())
				rhs = math.Float64frombits(operands[1].Uint())
			case 4:
				lhs = float64(math.Float32frombits(uint32(operands[0].Uint())))
				rhs = float64(math.Float32frombits(uint32(operands[1].Uint())))
			default:
				panic("unknown float type")
			}
			switch predicate {
			case llvm.FloatOEQ:
				result = lhs == rhs
			case llvm.FloatUNE:
				result = lhs != rhs
			case llvm.FloatOGT:
				result = lhs > rhs
			case llvm.FloatOGE:
				result = lhs >= rhs
			case llvm.FloatOLT:
				result = lhs < rhs
			case llvm.FloatOLE:
				result = lhs <= rhs
			default:
				return nil, mem, r.errorAt(inst, errors.New("interp: unsupported fcmp"))
			}
			if result {
				locals[inst.localIndex] = literalValue{uint8(1)}
			} else {
				locals[inst.localIndex] = literalValue{uint8(0)}
			}
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+"fcmp:", operands[0], predicate, operands[1], "->", result)
			}
		case llvm.Add, llvm.Sub, llvm.Mul, llvm.UDiv, llvm.SDiv, llvm.URem, llvm.SRem, llvm.Shl, llvm.LShr, llvm.AShr, llvm.And, llvm.Or, llvm.Xor:
			// Integer binary operations.
			lhs := operands[0]
			rhs := operands[1]
			lhsPtr, err := lhs.asPointer(r)
			if err == nil {
				// The lhs is a pointer. This sometimes happens for particular
				// pointer tricks.
				if inst.opcode == llvm.Add {
					// This likely means this is part of a
					// unsafe.Pointer(uintptr(ptr) + offset) pattern.
					lhsPtr = lhsPtr.addOffset(int64(rhs.Uint()))
					locals[inst.localIndex] = lhsPtr
				} else if inst.opcode == llvm.Xor && rhs.Uint() == 0 {
					// Special workaround for strings.noescape, see
					// src/strings/builder.go in the Go source tree. This is
					// the identity operator, so we can return the input.
					locals[inst.localIndex] = lhs
				} else {
					// Catch-all for weird operations that should just be done
					// at runtime.
					err := r.runAtRuntime(fn, inst, locals, &mem, indent)
					if err != nil {
						return nil, mem, err
					}
				}
				continue
			}
			var result uint64
			switch inst.opcode {
			case llvm.Add:
				result = lhs.Uint() + rhs.Uint()
			case llvm.Sub:
				result = lhs.Uint() - rhs.Uint()
			case llvm.Mul:
				result = lhs.Uint() * rhs.Uint()
			case llvm.UDiv:
				result = lhs.Uint() / rhs.Uint()
			case llvm.SDiv:
				result = uint64(lhs.Int() / rhs.Int())
			case llvm.URem:
				result = lhs.Uint() % rhs.Uint()
			case llvm.SRem:
				result = uint64(lhs.Int() % rhs.Int())
			case llvm.Shl:
				result = lhs.Uint() << rhs.Uint()
			case llvm.LShr:
				result = lhs.Uint() >> rhs.Uint()
			case llvm.AShr:
				result = uint64(lhs.Int() >> rhs.Uint())
			case llvm.And:
				result = lhs.Uint() & rhs.Uint()
			case llvm.Or:
				result = lhs.Uint() | rhs.Uint()
			case llvm.Xor:
				result = lhs.Uint() ^ rhs.Uint()
			default:
				panic("unreachable")
			}
			locals[inst.localIndex] = makeLiteralInt(result, int(lhs.len(r)*8))
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+instructionNameMap[inst.opcode]+":", lhs, rhs, "->", result)
			}
		case llvm.SExt, llvm.ZExt, llvm.Trunc:
			// Change the size of an integer to a larger or smaller bit width.
			// We make use of the fact that the Uint() function already
			// zero-extends the value and that Int() already sign-extends the
			// value, so we only need to truncate it to the appropriate bit
			// width. This means we can implement sext, zext and trunc in the
			// same way, by first {zero,sign}extending all the way up to uint64
			// and then truncating it as necessary.
			var value uint64
			if inst.opcode == llvm.SExt {
				value = uint64(operands[0].Int())
			} else {
				value = operands[0].Uint()
			}
			bitwidth := operands[1].Uint()
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+instructionNameMap[inst.opcode]+":", value, bitwidth)
			}
			locals[inst.localIndex] = makeLiteralInt(value, int(bitwidth))
		case llvm.SIToFP, llvm.UIToFP:
			var value float64
			switch inst.opcode {
			case llvm.SIToFP:
				value = float64(operands[0].Int())
			case llvm.UIToFP:
				value = float64(operands[0].Uint())
			}
			bitwidth := operands[1].Uint()
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+instructionNameMap[inst.opcode]+":", value, bitwidth)
			}
			switch bitwidth {
			case 64:
				locals[inst.localIndex] = literalValue{math.Float64bits(value)}
			case 32:
				locals[inst.localIndex] = literalValue{math.Float32bits(float32(value))}
			default:
				panic("unknown integer size in sitofp/uitofp")
			}
		default:
			if r.debug {
				fmt.Fprintln(os.Stderr, indent+inst.String())
			}
			return nil, mem, r.errorAt(inst, errUnsupportedInst)
		}
	}
	return nil, mem, r.errorAt(bb.instructions[len(bb.instructions)-1], errors.New("interp: reached end of basic block without terminator"))
}

// Interpret an icmp instruction. Doesn't have side effects, only returns the
// output of the comparison.
func (r *runner) interpretICmp(lhs, rhs value, predicate llvm.IntPredicate) bool {
	switch predicate {
	case llvm.IntEQ, llvm.IntNE:
		var result bool
		lhsPointer, lhsErr := lhs.asPointer(r)
		rhsPointer, rhsErr := rhs.asPointer(r)
		if (lhsErr == nil) != (rhsErr == nil) {
			// Fast path: only one is a pointer, so they can't be equal.
			result = false
		} else if lhsErr == nil {
			// Both must be nil, so both are pointers.
			// Compare them directly.
			result = lhsPointer.equal(rhsPointer)
		} else {
			// Fall back to generic comparison.
			result = lhs.asRawValue(r).equal(rhs.asRawValue(r))
		}
		if predicate == llvm.IntNE {
			result = !result
		}
		return result
	case llvm.IntUGT:
		return lhs.Uint() > rhs.Uint()
	case llvm.IntUGE:
		return lhs.Uint() >= rhs.Uint()
	case llvm.IntULT:
		return lhs.Uint() < rhs.Uint()
	case llvm.IntULE:
		return lhs.Uint() <= rhs.Uint()
	case llvm.IntSGT:
		return lhs.Int() > rhs.Int()
	case llvm.IntSGE:
		return lhs.Int() >= rhs.Int()
	case llvm.IntSLT:
		return lhs.Int() < rhs.Int()
	case llvm.IntSLE:
		return lhs.Int() <= rhs.Int()
	default:
		// _should_ be unreachable, until LLVM adds new icmp operands (unlikely)
		panic("interp: unsupported icmp")
	}
}

func (r *runner) runAtRuntime(fn *function, inst instruction, locals []value, mem *memoryView, indent string) *Error {
	numOperands := inst.llvmInst.OperandsCount()
	operands := make([]llvm.Value, numOperands)
	for i := 0; i < numOperands; i++ {
		operand := inst.llvmInst.Operand(i)
		if !operand.IsAInstruction().IsNil() || !operand.IsAArgument().IsNil() {
			var err error
			operand, err = locals[fn.locals[operand]].toLLVMValue(operand.Type(), mem)
			if err != nil {
				return r.errorAt(inst, err)
			}
		}
		operands[i] = operand
	}
	if r.debug {
		fmt.Fprintln(os.Stderr, indent+inst.String())
	}
	var result llvm.Value
	switch inst.opcode {
	case llvm.Call:
		llvmFn := operands[len(operands)-1]
		args := operands[:len(operands)-1]
		for _, arg := range args {
			if arg.Type().TypeKind() == llvm.PointerTypeKind {
				err := mem.markExternalStore(arg)
				if err != nil {
					return r.errorAt(inst, err)
				}
			}
		}
		result = r.builder.CreateCall(inst.llvmInst.CalledFunctionType(), llvmFn, args, inst.name)
	case llvm.Load:
		err := mem.markExternalLoad(operands[0])
		if err != nil {
			return r.errorAt(inst, err)
		}
		result = r.builder.CreateLoad(inst.llvmInst.Type(), operands[0], inst.name)
		if inst.llvmInst.IsVolatile() {
			result.SetVolatile(true)
		}
		if ordering := inst.llvmInst.Ordering(); ordering != llvm.AtomicOrderingNotAtomic {
			result.SetOrdering(ordering)
		}
	case llvm.Store:
		err := mem.markExternalStore(operands[1])
		if err != nil {
			return r.errorAt(inst, err)
		}
		result = r.builder.CreateStore(operands[0], operands[1])
		if inst.llvmInst.IsVolatile() {
			result.SetVolatile(true)
		}
		if ordering := inst.llvmInst.Ordering(); ordering != llvm.AtomicOrderingNotAtomic {
			result.SetOrdering(ordering)
		}
	case llvm.BitCast:
		result = r.builder.CreateBitCast(operands[0], inst.llvmInst.Type(), inst.name)
	case llvm.ExtractValue:
		indices := inst.llvmInst.Indices()
		// Note: the Go LLVM API doesn't support multiple indices, so simulate
		// this operation with some extra extractvalue instructions. Hopefully
		// this is optimized to a single instruction.
		agg := operands[0]
		for i := 0; i < len(indices)-1; i++ {
			agg = r.builder.CreateExtractValue(agg, int(indices[i]), inst.name+".agg")
			mem.instructions = append(mem.instructions, agg)
		}
		result = r.builder.CreateExtractValue(agg, int(indices[len(indices)-1]), inst.name)
	case llvm.InsertValue:
		indices := inst.llvmInst.Indices()
		// Similar to extractvalue, we're working around a limitation in the Go
		// LLVM API here by splitting the insertvalue into multiple instructions
		// if there is more than one operand.
		agg := operands[0]
		aggregates := []llvm.Value{agg}
		for i := 0; i < len(indices)-1; i++ {
			agg = r.builder.CreateExtractValue(agg, int(indices[i]), inst.name+".agg"+strconv.Itoa(i))
			aggregates = append(aggregates, agg)
			mem.instructions = append(mem.instructions, agg)
		}
		result = operands[1]
		for i := len(indices) - 1; i >= 0; i-- {
			agg := aggregates[i]
			result = r.builder.CreateInsertValue(agg, result, int(indices[i]), inst.name+".insertvalue"+strconv.Itoa(i))
			if i != 0 { // don't add last result to mem.instructions as it will be done at the end already
				mem.instructions = append(mem.instructions, result)
			}
		}

	case llvm.Add:
		result = r.builder.CreateAdd(operands[0], operands[1], inst.name)
	case llvm.Sub:
		result = r.builder.CreateSub(operands[0], operands[1], inst.name)
	case llvm.Mul:
		result = r.builder.CreateMul(operands[0], operands[1], inst.name)
	case llvm.UDiv:
		result = r.builder.CreateUDiv(operands[0], operands[1], inst.name)
	case llvm.SDiv:
		result = r.builder.CreateSDiv(operands[0], operands[1], inst.name)
	case llvm.URem:
		result = r.builder.CreateURem(operands[0], operands[1], inst.name)
	case llvm.SRem:
		result = r.builder.CreateSRem(operands[0], operands[1], inst.name)
	case llvm.ZExt:
		result = r.builder.CreateZExt(operands[0], inst.llvmInst.Type(), inst.name)
	default:
		return r.errorAt(inst, errUnsupportedRuntimeInst)
	}
	locals[inst.localIndex] = localValue{result}
	mem.instructions = append(mem.instructions, result)
	return nil
}

func intPredicateString(predicate llvm.IntPredicate) string {
	switch predicate {
	case llvm.IntEQ:
		return "eq"
	case llvm.IntNE:
		return "ne"
	case llvm.IntUGT:
		return "ugt"
	case llvm.IntUGE:
		return "uge"
	case llvm.IntULT:
		return "ult"
	case llvm.IntULE:
		return "ule"
	case llvm.IntSGT:
		return "sgt"
	case llvm.IntSGE:
		return "sge"
	case llvm.IntSLT:
		return "slt"
	case llvm.IntSLE:
		return "sle"
	default:
		return "cmp?"
	}
}

// Strip some pointer casts. This is probably unnecessary once support for
// LLVM 14 (non-opaque pointers) is dropped.
func stripPointerCasts(value llvm.Value) llvm.Value {
	if !value.IsAConstantExpr().IsNil() {
		switch value.Opcode() {
		case llvm.GetElementPtr, llvm.BitCast:
			return stripPointerCasts(value.Operand(0))
		}
	}
	return value
}