1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
|
package interp
// This file implements memory as used by interp in a reversible way.
// Each new function call creates a new layer which is merged in the parent on
// successful return and is thrown away when the function couldn't complete (in
// which case the function call is done at runtime).
// Memory is not typed, except that there is a difference between pointer and
// non-pointer data. A pointer always points to an object. This implies:
// * Nil pointers are zero, and are not considered a pointer.
// * Pointers for memory-mapped I/O point to numeric pointer values, and are
// thus not considered pointers but regular values. Dereferencing them cannot be
// done in interp and results in a revert.
//
// Right now the memory is assumed to be little endian. This will need an update
// for big endian architectures, if TinyGo ever adds support for one.
import (
"encoding/binary"
"errors"
"fmt"
"math"
"math/big"
"strconv"
"strings"
"tinygo.org/x/go-llvm"
)
// An object is a memory buffer that may be an already existing global or a
// global created with runtime.alloc or the alloca instruction. If llvmGlobal is
// set, that's the global for this object, otherwise it needs to be created (if
// it is still reachable when the package initializer returns). The
// llvmLayoutType is not necessarily a complete type: it may need to be
// repeated (for example, for a slice value).
//
// Objects are copied in a memory view when they are stored to, to provide the
// ability to roll back interpreting a function.
type object struct {
llvmGlobal llvm.Value
llvmType llvm.Type // must match llvmGlobal.GlobalValueType() if both are set, may be unset if llvmGlobal is set
llvmLayoutType llvm.Type // LLVM type based on runtime.alloc layout parameter, if available
globalName string // name, if not yet created (not guaranteed to be the final name)
buffer value // buffer with value as given by interp, nil if external
size uint32 // must match buffer.len(), if available
constant bool // true if this is a constant global
marked uint8 // 0 means unmarked, 1 means external read, 2 means external write
}
// clone() returns a cloned version of this object, for when an object needs to
// be written to for example.
func (obj object) clone() object {
if obj.buffer != nil {
obj.buffer = obj.buffer.clone()
}
return obj
}
// A memoryView is bound to a function activation. Loads are done from this view
// or a parent view (up to the *runner if it isn't included in a view). Stores
// copy the object to the current view.
//
// For details, see the README in the package.
type memoryView struct {
r *runner
parent *memoryView
objects map[uint32]object
// These instructions were added to runtime.initAll while interpreting a
// function. They are stored here in a list so they can be removed if the
// execution of the function needs to be rolled back.
instructions []llvm.Value
}
// extend integrates the changes done by the sub-memoryView into this memory
// view. This happens when a function is successfully interpreted and returns to
// the parent, in which case all changed objects should be included in this
// memory view.
func (mv *memoryView) extend(sub memoryView) {
if mv.objects == nil && len(sub.objects) != 0 {
mv.objects = make(map[uint32]object)
}
for key, value := range sub.objects {
mv.objects[key] = value
}
mv.instructions = append(mv.instructions, sub.instructions...)
}
// revert undoes changes done in this memory view: it removes all instructions
// created in this memoryView. Do not reuse this memoryView.
func (mv *memoryView) revert() {
// Erase instructions in reverse order.
for i := len(mv.instructions) - 1; i >= 0; i-- {
llvmInst := mv.instructions[i]
if llvmInst.IsAInstruction().IsNil() {
// The IR builder will try to create constant versions of
// instructions whenever possible. If it does this, it's not an
// instruction and thus shouldn't be removed.
continue
}
llvmInst.EraseFromParentAsInstruction()
}
}
// markExternalLoad marks the given LLVM value as having an external read. That
// means that the interpreter can still read from it, but cannot write to it as
// that would mean the external read (done at runtime) reads from a state that
// would not exist had the whole initialization been done at runtime.
func (mv *memoryView) markExternalLoad(llvmValue llvm.Value) error {
return mv.markExternal(llvmValue, 1)
}
// markExternalStore marks the given LLVM value as having an external write.
// This means that the interpreter can no longer read from it or write to it, as
// that would happen in a different order than if all initialization were
// happening at runtime.
func (mv *memoryView) markExternalStore(llvmValue llvm.Value) error {
return mv.markExternal(llvmValue, 2)
}
// markExternal is a helper for markExternalLoad and markExternalStore, and
// should not be called directly.
func (mv *memoryView) markExternal(llvmValue llvm.Value, mark uint8) error {
if llvmValue.IsUndef() || llvmValue.IsNull() {
// Null and undef definitely don't contain (valid) pointers.
return nil
}
if !llvmValue.IsAInstruction().IsNil() || !llvmValue.IsAArgument().IsNil() {
// These are considered external by default, there is nothing to mark.
return nil
}
if !llvmValue.IsAGlobalValue().IsNil() {
objectIndex := mv.r.getValue(llvmValue).(pointerValue).index()
obj := mv.get(objectIndex)
if obj.marked < mark {
obj = obj.clone()
obj.marked = mark
if mv.objects == nil {
mv.objects = make(map[uint32]object)
}
mv.objects[objectIndex] = obj
if !llvmValue.IsAGlobalVariable().IsNil() {
initializer := llvmValue.Initializer()
if !initializer.IsNil() {
// Using mark '2' (which means read/write access) because
// even from an object that is only read from, the resulting
// loaded pointer can be written to.
err := mv.markExternal(initializer, 2)
if err != nil {
return err
}
}
} else {
// This is a function. Go through all instructions and mark all
// objects in there.
for bb := llvmValue.FirstBasicBlock(); !bb.IsNil(); bb = llvm.NextBasicBlock(bb) {
for inst := bb.FirstInstruction(); !inst.IsNil(); inst = llvm.NextInstruction(inst) {
opcode := inst.InstructionOpcode()
if opcode == llvm.Call {
calledValue := inst.CalledValue()
if !calledValue.IsAFunction().IsNil() {
functionName := calledValue.Name()
if functionName == "llvm.dbg.value" || strings.HasPrefix(functionName, "llvm.lifetime.") {
continue
}
}
}
if opcode == llvm.Br || opcode == llvm.Switch {
// These don't affect memory. Skipped here because
// they also have a label as operand.
continue
}
numOperands := inst.OperandsCount()
for i := 0; i < numOperands; i++ {
// Using mark '2' (which means read/write access)
// because this might be a store instruction.
err := mv.markExternal(inst.Operand(i), 2)
if err != nil {
return err
}
}
}
}
}
}
} else if !llvmValue.IsAConstantExpr().IsNil() {
switch llvmValue.Opcode() {
case llvm.IntToPtr, llvm.PtrToInt, llvm.BitCast, llvm.GetElementPtr:
err := mv.markExternal(llvmValue.Operand(0), mark)
if err != nil {
return err
}
case llvm.Add, llvm.Sub, llvm.Mul, llvm.UDiv, llvm.SDiv, llvm.URem, llvm.SRem, llvm.Shl, llvm.LShr, llvm.AShr, llvm.And, llvm.Or, llvm.Xor:
// Integer binary operators. Mark both operands.
err := mv.markExternal(llvmValue.Operand(0), mark)
if err != nil {
return err
}
err = mv.markExternal(llvmValue.Operand(1), mark)
if err != nil {
return err
}
default:
return fmt.Errorf("interp: unknown constant expression '%s'", instructionNameMap[llvmValue.Opcode()])
}
} else if !llvmValue.IsAInlineAsm().IsNil() {
// Inline assembly can modify globals but only exported globals. Let's
// hope the author knows what they're doing.
} else {
llvmType := llvmValue.Type()
switch llvmType.TypeKind() {
case llvm.IntegerTypeKind, llvm.FloatTypeKind, llvm.DoubleTypeKind:
// Nothing to do here. Integers and floats aren't pointers so don't
// need any marking.
case llvm.StructTypeKind:
numElements := llvmType.StructElementTypesCount()
for i := 0; i < numElements; i++ {
element := mv.r.builder.CreateExtractValue(llvmValue, i, "")
err := mv.markExternal(element, mark)
if err != nil {
return err
}
}
case llvm.ArrayTypeKind:
numElements := llvmType.ArrayLength()
for i := 0; i < numElements; i++ {
element := mv.r.builder.CreateExtractValue(llvmValue, i, "")
err := mv.markExternal(element, mark)
if err != nil {
return err
}
}
default:
return errors.New("interp: unknown type kind in markExternalValue")
}
}
return nil
}
// hasExternalLoadOrStore returns true if this object has an external load or
// store. If this has happened, it is not possible for the interpreter to load
// from the object or store to it without affecting the behavior of the program.
func (mv *memoryView) hasExternalLoadOrStore(v pointerValue) bool {
obj := mv.get(v.index())
return obj.marked >= 1
}
// hasExternalStore returns true if this object has an external store. If this
// is true, stores to this object are no longer allowed by the interpreter.
// It returns false if it only has an external load, in which case it is still
// possible for the interpreter to read from the object.
func (mv *memoryView) hasExternalStore(v pointerValue) bool {
obj := mv.get(v.index())
return obj.marked >= 2 && !obj.constant
}
// get returns an object that can only be read from, as it may return an object
// of a parent view.
func (mv *memoryView) get(index uint32) object {
if obj, ok := mv.objects[index]; ok {
return obj
}
if mv.parent != nil {
return mv.parent.get(index)
}
return mv.r.objects[index]
}
// getWritable returns an object that can be written to.
func (mv *memoryView) getWritable(index uint32) object {
if obj, ok := mv.objects[index]; ok {
// Object is already in the current memory view, so can be modified.
return obj
}
// Object is not currently in this view. Get it, and clone it for use.
obj := mv.get(index).clone()
mv.r.objects[index] = obj
return obj
}
// Replace the object (indicated with index) with the given object. This put is
// only done at the current memory view, so that if this memory view is reverted
// the object is not changed.
func (mv *memoryView) put(index uint32, obj object) {
if mv.objects == nil {
mv.objects = make(map[uint32]object)
}
if checks && mv.get(index).buffer == nil {
panic("writing to external object")
}
if checks && mv.get(index).buffer.len(mv.r) != obj.buffer.len(mv.r) {
panic("put() with a differently-sized object")
}
if checks && obj.constant {
panic("interp: store to a constant")
}
mv.objects[index] = obj
}
// Load the value behind the given pointer. Returns nil if the pointer points to
// an external global.
func (mv *memoryView) load(p pointerValue, size uint32) value {
if checks && mv.hasExternalStore(p) {
panic("interp: load from object with external store")
}
obj := mv.get(p.index())
if obj.buffer == nil {
// External global, return nil.
return nil
}
if p.offset() == 0 && size == obj.size {
return obj.buffer.clone()
}
if checks && p.offset()+size > obj.size {
panic("interp: load out of bounds")
}
v := obj.buffer.asRawValue(mv.r)
loadedValue := rawValue{
buf: v.buf[p.offset() : p.offset()+size],
}
return loadedValue
}
// Store to the value behind the given pointer. This overwrites the value in the
// memory view, so that the changed value is discarded when the memory view is
// reverted. Returns true on success, false if the object to store to is
// external.
func (mv *memoryView) store(v value, p pointerValue) bool {
if checks && mv.hasExternalLoadOrStore(p) {
panic("interp: store to object with external load/store")
}
obj := mv.get(p.index())
if obj.buffer == nil {
// External global, return false (for a failure).
return false
}
if checks && p.offset()+v.len(mv.r) > obj.size {
panic("interp: store out of bounds")
}
if p.offset() == 0 && v.len(mv.r) == obj.buffer.len(mv.r) {
obj.buffer = v
} else {
obj = obj.clone()
buffer := obj.buffer.asRawValue(mv.r)
obj.buffer = buffer
v := v.asRawValue(mv.r)
for i := uint32(0); i < v.len(mv.r); i++ {
buffer.buf[p.offset()+i] = v.buf[i]
}
}
mv.put(p.index(), obj)
return true // success
}
// value is some sort of value, comparable to a LLVM constant. It can be
// implemented in various ways for efficiency, but the fallback value (that all
// implementations can be converted to except for localValue) is rawValue.
type value interface {
// len returns the length in bytes.
len(r *runner) uint32
clone() value
asPointer(*runner) (pointerValue, error)
asRawValue(*runner) rawValue
Uint() uint64
Int() int64
toLLVMValue(llvm.Type, *memoryView) (llvm.Value, error)
String() string
}
// literalValue contains simple integer values that don't need to be stored in a
// buffer.
type literalValue struct {
value interface{}
}
// Make a literalValue given the number of bits.
func makeLiteralInt(value uint64, bits int) literalValue {
switch bits {
case 64:
return literalValue{value}
case 32:
return literalValue{uint32(value)}
case 16:
return literalValue{uint16(value)}
case 8:
return literalValue{uint8(value)}
default:
panic("unknown integer size")
}
}
func (v literalValue) len(r *runner) uint32 {
switch v.value.(type) {
case uint64:
return 8
case uint32:
return 4
case uint16:
return 2
case uint8:
return 1
default:
panic("unknown value type")
}
}
func (v literalValue) String() string {
return strconv.FormatInt(v.Int(), 10)
}
func (v literalValue) clone() value {
return v
}
func (v literalValue) asPointer(r *runner) (pointerValue, error) {
return pointerValue{}, errIntegerAsPointer
}
func (v literalValue) asRawValue(r *runner) rawValue {
var buf []byte
switch value := v.value.(type) {
case uint64:
buf = make([]byte, 8)
binary.LittleEndian.PutUint64(buf, value)
case uint32:
buf = make([]byte, 4)
binary.LittleEndian.PutUint32(buf, uint32(value))
case uint16:
buf = make([]byte, 2)
binary.LittleEndian.PutUint16(buf, uint16(value))
case uint8:
buf = []byte{uint8(value)}
default:
panic("unknown value type")
}
raw := newRawValue(uint32(len(buf)))
for i, b := range buf {
raw.buf[i] = uint64(b)
}
return raw
}
func (v literalValue) Uint() uint64 {
switch value := v.value.(type) {
case uint64:
return value
case uint32:
return uint64(value)
case uint16:
return uint64(value)
case uint8:
return uint64(value)
default:
panic("inpterp: unknown literal type")
}
}
func (v literalValue) Int() int64 {
switch value := v.value.(type) {
case uint64:
return int64(value)
case uint32:
return int64(int32(value))
case uint16:
return int64(int16(value))
case uint8:
return int64(int8(value))
default:
panic("inpterp: unknown literal type")
}
}
func (v literalValue) toLLVMValue(llvmType llvm.Type, mem *memoryView) (llvm.Value, error) {
switch llvmType.TypeKind() {
case llvm.IntegerTypeKind:
switch value := v.value.(type) {
case uint64:
return llvm.ConstInt(llvmType, value, false), nil
case uint32:
return llvm.ConstInt(llvmType, uint64(value), false), nil
case uint16:
return llvm.ConstInt(llvmType, uint64(value), false), nil
case uint8:
return llvm.ConstInt(llvmType, uint64(value), false), nil
default:
return llvm.Value{}, errors.New("interp: unknown literal type")
}
case llvm.DoubleTypeKind:
return llvm.ConstFloat(llvmType, math.Float64frombits(v.value.(uint64))), nil
case llvm.FloatTypeKind:
return llvm.ConstFloat(llvmType, float64(math.Float32frombits(v.value.(uint32)))), nil
default:
return v.asRawValue(mem.r).toLLVMValue(llvmType, mem)
}
}
// pointerValue contains a single pointer, with an offset into the underlying
// object.
type pointerValue struct {
pointer uint64 // low 32 bits are offset, high 32 bits are index
}
func newPointerValue(r *runner, index, offset int) pointerValue {
return pointerValue{
pointer: uint64(index)<<32 | uint64(offset),
}
}
func (v pointerValue) index() uint32 {
return uint32(v.pointer >> 32)
}
func (v pointerValue) offset() uint32 {
return uint32(v.pointer)
}
// addOffset essentially does a GEP operation (pointer arithmetic): it adds the
// offset to the pointer. It also checks that the offset doesn't overflow the
// maximum offset size (which is 4GB).
func (v pointerValue) addOffset(offset int64) pointerValue {
result := pointerValue{v.pointer + uint64(offset)}
if checks && v.index() != result.index() {
panic("interp: offset out of range")
}
return result
}
func (v pointerValue) len(r *runner) uint32 {
return r.pointerSize
}
func (v pointerValue) String() string {
name := strconv.Itoa(int(v.index()))
if v.offset() == 0 {
return "<" + name + ">"
}
return "<" + name + "+" + strconv.Itoa(int(v.offset())) + ">"
}
func (v pointerValue) clone() value {
return v
}
func (v pointerValue) asPointer(r *runner) (pointerValue, error) {
return v, nil
}
func (v pointerValue) asRawValue(r *runner) rawValue {
rv := newRawValue(r.pointerSize)
for i := range rv.buf {
rv.buf[i] = v.pointer
}
return rv
}
func (v pointerValue) Uint() uint64 {
panic("cannot convert pointer to integer")
}
func (v pointerValue) Int() int64 {
panic("cannot convert pointer to integer")
}
func (v pointerValue) equal(rhs pointerValue) bool {
return v.pointer == rhs.pointer
}
func (v pointerValue) llvmValue(mem *memoryView) llvm.Value {
return mem.get(v.index()).llvmGlobal
}
// toLLVMValue returns the LLVM value for this pointer, which may be a GEP or
// bitcast. The llvm.Type parameter is optional, if omitted the pointer type may
// be different than expected.
func (v pointerValue) toLLVMValue(llvmType llvm.Type, mem *memoryView) (llvm.Value, error) {
// If a particular LLVM type is requested, cast to it.
if !llvmType.IsNil() && llvmType.TypeKind() != llvm.PointerTypeKind {
// The LLVM value has (or should have) the same bytes once compiled, but
// does not have the right LLVM type. This can happen for example when
// storing to a struct with a single pointer field: this pointer may
// then become the value even though the pointer should be wrapped in a
// struct.
// This can be worked around by simply converting to a raw value,
// rawValue knows how to create such structs.
return v.asRawValue(mem.r).toLLVMValue(llvmType, mem)
}
// Obtain the llvmValue, creating it if it doesn't exist yet.
llvmValue := v.llvmValue(mem)
if llvmValue.IsNil() {
// The global does not yet exist. Probably this is the result of a
// runtime.alloc.
// First allocate a new global for this object.
obj := mem.get(v.index())
if obj.llvmType.IsNil() && obj.llvmLayoutType.IsNil() {
// Create an initializer without knowing the global type.
// This is probably the result of a runtime.alloc call.
initializer, err := obj.buffer.asRawValue(mem.r).rawLLVMValue(mem)
if err != nil {
return llvm.Value{}, err
}
globalType := initializer.Type()
llvmValue = llvm.AddGlobal(mem.r.mod, globalType, obj.globalName)
llvmValue.SetInitializer(initializer)
llvmValue.SetAlignment(mem.r.maxAlign)
obj.llvmGlobal = llvmValue
mem.put(v.index(), obj)
} else {
// The global type is known, or at least its structure.
var globalType llvm.Type
if !obj.llvmType.IsNil() {
// The exact type is known.
globalType = obj.llvmType
} else { // !obj.llvmLayoutType.IsNil()
// The exact type isn't known, but the object layout is known.
globalType = obj.llvmLayoutType
// The layout may not span the full size of the global because
// of repetition. One example would be make([]string, 5) which
// would be 10 words in size but the layout would only be two
// words (for the string type).
typeSize := mem.r.targetData.TypeAllocSize(globalType)
if typeSize != uint64(obj.size) {
globalType = llvm.ArrayType(globalType, int(uint64(obj.size)/typeSize))
}
}
if checks && mem.r.targetData.TypeAllocSize(globalType) != uint64(obj.size) {
panic("size of the globalType isn't the same as the object size")
}
llvmValue = llvm.AddGlobal(mem.r.mod, globalType, obj.globalName)
obj.llvmGlobal = llvmValue
mem.put(v.index(), obj)
// Set the initializer for the global. Do this after creation to avoid
// infinite recursion between creating the global and creating the
// contents of the global (if the global contains itself).
initializer, err := obj.buffer.toLLVMValue(globalType, mem)
if err != nil {
return llvm.Value{}, err
}
if checks && initializer.Type() != globalType {
return llvm.Value{}, errors.New("interp: allocated value does not match allocated type")
}
llvmValue.SetInitializer(initializer)
if obj.llvmType.IsNil() {
// The exact type isn't known (only the layout), so use the
// alignment that would normally be expected from runtime.alloc.
llvmValue.SetAlignment(mem.r.maxAlign)
}
}
// It should be included in r.globals because otherwise markExternal
// would consider it a new global (and would fail to mark this global as
// having an externa load/store).
mem.r.globals[llvmValue] = int(v.index())
llvmValue.SetLinkage(llvm.InternalLinkage)
}
if v.offset() != 0 {
// If there is an offset, make sure to use a GEP to index into the
// pointer.
// Cast to an i8* first (if needed) for easy indexing.
if llvmValue.Type() != mem.r.i8ptrType {
llvmValue = llvm.ConstBitCast(llvmValue, mem.r.i8ptrType)
}
llvmValue = llvm.ConstInBoundsGEP(mem.r.mod.Context().Int8Type(), llvmValue, []llvm.Value{
llvm.ConstInt(mem.r.mod.Context().Int32Type(), uint64(v.offset()), false),
})
}
// If a particular LLVM pointer type is requested, cast to it.
if !llvmType.IsNil() && llvmType != llvmValue.Type() {
llvmValue = llvm.ConstBitCast(llvmValue, llvmType)
}
return llvmValue, nil
}
// rawValue is a raw memory buffer that can store either pointers or regular
// data. This is the fallback data for everything that isn't clearly a
// literalValue or pointerValue.
type rawValue struct {
// An integer in buf contains either pointers or bytes.
// If it is a byte, it is smaller than 256.
// If it is a pointer, the index is contained in the upper 32 bits and the
// offset is contained in the lower 32 bits.
buf []uint64
}
func newRawValue(size uint32) rawValue {
return rawValue{make([]uint64, size)}
}
func (v rawValue) len(r *runner) uint32 {
return uint32(len(v.buf))
}
func (v rawValue) String() string {
if len(v.buf) == 2 || len(v.buf) == 4 || len(v.buf) == 8 {
// Format as a pointer if the entire buf is this pointer.
if v.buf[0] > 255 {
isPointer := true
for _, p := range v.buf {
if p != v.buf[0] {
isPointer = false
break
}
}
if isPointer {
return pointerValue{v.buf[0]}.String()
}
}
// Format as number if none of the buf is a pointer.
if !v.hasPointer() {
return strconv.FormatInt(v.Int(), 10)
}
}
return "<[…" + strconv.Itoa(len(v.buf)) + "]>"
}
func (v rawValue) clone() value {
newValue := v
newValue.buf = make([]uint64, len(v.buf))
copy(newValue.buf, v.buf)
return newValue
}
func (v rawValue) asPointer(r *runner) (pointerValue, error) {
if v.buf[0] <= 255 {
// Probably a null pointer or memory-mapped I/O.
return pointerValue{}, errIntegerAsPointer
}
return pointerValue{v.buf[0]}, nil
}
func (v rawValue) asRawValue(r *runner) rawValue {
return v
}
func (v rawValue) bytes() []byte {
buf := make([]byte, len(v.buf))
for i, p := range v.buf {
if p > 255 {
panic("cannot convert pointer value to byte")
}
buf[i] = byte(p)
}
return buf
}
func (v rawValue) Uint() uint64 {
buf := v.bytes()
switch len(v.buf) {
case 1:
return uint64(buf[0])
case 2:
return uint64(binary.LittleEndian.Uint16(buf))
case 4:
return uint64(binary.LittleEndian.Uint32(buf))
case 8:
return binary.LittleEndian.Uint64(buf)
default:
panic("unknown integer size")
}
}
func (v rawValue) Int() int64 {
switch len(v.buf) {
case 1:
return int64(int8(v.Uint()))
case 2:
return int64(int16(v.Uint()))
case 4:
return int64(int32(v.Uint()))
case 8:
return int64(int64(v.Uint()))
default:
panic("unknown integer size")
}
}
// equal returns true if (and only if) the value matches rhs.
func (v rawValue) equal(rhs rawValue) bool {
if len(v.buf) != len(rhs.buf) {
panic("comparing values of different size")
}
for i, p := range v.buf {
if rhs.buf[i] != p {
return false
}
}
return true
}
// rawLLVMValue returns a llvm.Value for this rawValue, making up a type as it
// goes. The resulting value does not have a specified type, but it will be the
// same size and have the same bytes if it was created with a provided LLVM type
// (through toLLVMValue).
func (v rawValue) rawLLVMValue(mem *memoryView) (llvm.Value, error) {
var structFields []llvm.Value
ctx := mem.r.mod.Context()
int8Type := ctx.Int8Type()
var bytesBuf []llvm.Value
// addBytes can be called after adding to bytesBuf to flush remaining bytes
// to a new array in structFields.
addBytes := func() {
if len(bytesBuf) == 0 {
return
}
if len(bytesBuf) == 1 {
structFields = append(structFields, bytesBuf[0])
} else {
structFields = append(structFields, llvm.ConstArray(int8Type, bytesBuf))
}
bytesBuf = nil
}
// Create structFields, converting the rawValue to a LLVM value.
for i := uint32(0); i < uint32(len(v.buf)); {
if v.buf[i] > 255 {
addBytes()
field, err := pointerValue{v.buf[i]}.toLLVMValue(llvm.Type{}, mem)
if err != nil {
return llvm.Value{}, err
}
if !field.IsAGlobalVariable().IsNil() {
elementType := field.GlobalValueType()
if elementType.TypeKind() == llvm.StructTypeKind {
// There are some special pointer types that should be used
// as a ptrtoint, so that they can be used in certain
// optimizations.
name := elementType.StructName()
if name == "runtime.funcValueWithSignature" {
uintptrType := ctx.IntType(int(mem.r.pointerSize) * 8)
field = llvm.ConstPtrToInt(field, uintptrType)
}
}
}
structFields = append(structFields, field)
i += mem.r.pointerSize
continue
}
val := llvm.ConstInt(int8Type, uint64(v.buf[i]), false)
bytesBuf = append(bytesBuf, val)
i++
}
addBytes()
// Return the created data.
if len(structFields) == 1 {
return structFields[0], nil
}
return ctx.ConstStruct(structFields, false), nil
}
func (v rawValue) toLLVMValue(llvmType llvm.Type, mem *memoryView) (llvm.Value, error) {
isZero := true
for _, p := range v.buf {
if p != 0 {
isZero = false
break
}
}
if isZero {
return llvm.ConstNull(llvmType), nil
}
switch llvmType.TypeKind() {
case llvm.IntegerTypeKind:
if v.buf[0] > 255 {
ptr, err := v.asPointer(mem.r)
if err != nil {
panic(err)
}
if checks && mem.r.targetData.TypeAllocSize(llvmType) != mem.r.targetData.TypeAllocSize(mem.r.i8ptrType) {
// Probably trying to serialize a pointer to a byte array,
// perhaps as a result of rawLLVMValue() in a previous interp
// run.
return llvm.Value{}, errInvalidPtrToIntSize
}
v, err := ptr.toLLVMValue(llvm.Type{}, mem)
if err != nil {
return llvm.Value{}, err
}
return llvm.ConstPtrToInt(v, llvmType), nil
}
var n uint64
switch llvmType.IntTypeWidth() {
case 64:
n = rawValue{v.buf[:8]}.Uint()
case 32:
n = rawValue{v.buf[:4]}.Uint()
case 16:
n = rawValue{v.buf[:2]}.Uint()
case 8:
n = uint64(v.buf[0])
case 1:
n = uint64(v.buf[0])
if n != 0 && n != 1 {
panic("bool must be 0 or 1")
}
default:
panic("unknown integer size")
}
return llvm.ConstInt(llvmType, n, false), nil
case llvm.StructTypeKind:
fieldTypes := llvmType.StructElementTypes()
fields := make([]llvm.Value, len(fieldTypes))
for i, fieldType := range fieldTypes {
offset := mem.r.targetData.ElementOffset(llvmType, i)
field := rawValue{
buf: v.buf[offset:],
}
var err error
fields[i], err = field.toLLVMValue(fieldType, mem)
if err != nil {
return llvm.Value{}, err
}
}
if llvmType.StructName() != "" {
return llvm.ConstNamedStruct(llvmType, fields), nil
}
return llvmType.Context().ConstStruct(fields, false), nil
case llvm.ArrayTypeKind:
numElements := llvmType.ArrayLength()
childType := llvmType.ElementType()
childTypeSize := mem.r.targetData.TypeAllocSize(childType)
fields := make([]llvm.Value, numElements)
for i := range fields {
offset := i * int(childTypeSize)
field := rawValue{
buf: v.buf[offset:],
}
var err error
fields[i], err = field.toLLVMValue(childType, mem)
if err != nil {
return llvm.Value{}, err
}
if checks && fields[i].Type() != childType {
panic("child type doesn't match")
}
}
return llvm.ConstArray(childType, fields), nil
case llvm.PointerTypeKind:
if v.buf[0] > 255 {
// This is a regular pointer.
llvmValue, err := pointerValue{v.buf[0]}.toLLVMValue(llvm.Type{}, mem)
if err != nil {
return llvm.Value{}, err
}
if llvmValue.Type() != llvmType {
if llvmValue.Type().PointerAddressSpace() != llvmType.PointerAddressSpace() {
// Special case for AVR function pointers.
// Because go-llvm doesn't have addrspacecast at the moment,
// do it indirectly with a ptrtoint/inttoptr pair.
llvmValue = llvm.ConstIntToPtr(llvm.ConstPtrToInt(llvmValue, mem.r.uintptrType), llvmType)
} else {
llvmValue = llvm.ConstBitCast(llvmValue, llvmType)
}
}
return llvmValue, nil
}
// This is either a null pointer or a raw pointer for memory-mapped I/O
// (such as 0xe000ed00).
ptr := rawValue{v.buf[:mem.r.pointerSize]}.Uint()
if ptr == 0 {
// Null pointer.
return llvm.ConstNull(llvmType), nil
}
var ptrValue llvm.Value // the underlying int
switch mem.r.pointerSize {
case 8:
ptrValue = llvm.ConstInt(llvmType.Context().Int64Type(), ptr, false)
case 4:
ptrValue = llvm.ConstInt(llvmType.Context().Int32Type(), ptr, false)
case 2:
ptrValue = llvm.ConstInt(llvmType.Context().Int16Type(), ptr, false)
default:
return llvm.Value{}, errors.New("interp: unknown pointer size")
}
return llvm.ConstIntToPtr(ptrValue, llvmType), nil
case llvm.DoubleTypeKind:
b := rawValue{v.buf[:8]}.Uint()
f := math.Float64frombits(b)
return llvm.ConstFloat(llvmType, f), nil
case llvm.FloatTypeKind:
b := uint32(rawValue{v.buf[:4]}.Uint())
f := math.Float32frombits(b)
return llvm.ConstFloat(llvmType, float64(f)), nil
default:
return llvm.Value{}, errors.New("interp: todo: raw value to LLVM value: " + llvmType.String())
}
}
func (v *rawValue) set(llvmValue llvm.Value, r *runner) {
if llvmValue.IsNull() {
// A zero value is common so check that first.
return
}
if !llvmValue.IsAGlobalValue().IsNil() {
ptrSize := r.pointerSize
ptr, err := r.getValue(llvmValue).asPointer(r)
if err != nil {
panic(err)
}
for i := uint32(0); i < ptrSize; i++ {
v.buf[i] = ptr.pointer
}
} else if !llvmValue.IsAConstantExpr().IsNil() {
switch llvmValue.Opcode() {
case llvm.IntToPtr, llvm.PtrToInt, llvm.BitCast:
// All these instructions effectively just reinterprets the bits
// (like a bitcast) while no bits change and keeping the same
// length, so just read its contents.
v.set(llvmValue.Operand(0), r)
case llvm.GetElementPtr:
ptr := llvmValue.Operand(0)
index := llvmValue.Operand(1)
numOperands := llvmValue.OperandsCount()
elementType := llvmValue.GEPSourceElementType()
totalOffset := r.targetData.TypeAllocSize(elementType) * index.ZExtValue()
for i := 2; i < numOperands; i++ {
indexValue := llvmValue.Operand(i)
if checks && indexValue.IsAConstantInt().IsNil() {
panic("expected const gep index to be a constant integer")
}
index := indexValue.ZExtValue()
switch elementType.TypeKind() {
case llvm.StructTypeKind:
// Indexing into a struct field.
offsetInBytes := r.targetData.ElementOffset(elementType, int(index))
totalOffset += offsetInBytes
elementType = elementType.StructElementTypes()[index]
default:
// Indexing into an array.
elementType = elementType.ElementType()
elementSize := r.targetData.TypeAllocSize(elementType)
totalOffset += index * elementSize
}
}
ptrSize := r.pointerSize
ptrValue, err := r.getValue(ptr).asPointer(r)
if err != nil {
panic(err)
}
ptrValue.pointer += totalOffset
for i := uint32(0); i < ptrSize; i++ {
v.buf[i] = ptrValue.pointer
}
case llvm.ICmp:
size := r.targetData.TypeAllocSize(llvmValue.Operand(0).Type())
lhs := newRawValue(uint32(size))
rhs := newRawValue(uint32(size))
lhs.set(llvmValue.Operand(0), r)
rhs.set(llvmValue.Operand(1), r)
if r.interpretICmp(lhs, rhs, llvmValue.IntPredicate()) {
v.buf[0] = 1 // result is true
} else {
v.buf[0] = 0 // result is false
}
default:
llvmValue.Dump()
println()
panic("unknown constant expr")
}
} else if llvmValue.IsUndef() {
// Let undef be zero, by lack of an explicit 'undef' marker.
} else {
if checks && llvmValue.IsAConstant().IsNil() {
panic("expected a constant")
}
llvmType := llvmValue.Type()
switch llvmType.TypeKind() {
case llvm.IntegerTypeKind:
n := llvmValue.ZExtValue()
switch llvmValue.Type().IntTypeWidth() {
case 64:
var buf [8]byte
binary.LittleEndian.PutUint64(buf[:], n)
for i, b := range buf {
v.buf[i] = uint64(b)
}
case 32:
var buf [4]byte
binary.LittleEndian.PutUint32(buf[:], uint32(n))
for i, b := range buf {
v.buf[i] = uint64(b)
}
case 16:
var buf [2]byte
binary.LittleEndian.PutUint16(buf[:], uint16(n))
for i, b := range buf {
v.buf[i] = uint64(b)
}
case 8, 1:
v.buf[0] = n
default:
panic("unknown integer size")
}
case llvm.StructTypeKind:
numElements := llvmType.StructElementTypesCount()
for i := 0; i < numElements; i++ {
offset := r.targetData.ElementOffset(llvmType, i)
field := rawValue{
buf: v.buf[offset:],
}
field.set(r.builder.CreateExtractValue(llvmValue, i, ""), r)
}
case llvm.ArrayTypeKind:
numElements := llvmType.ArrayLength()
childType := llvmType.ElementType()
childTypeSize := r.targetData.TypeAllocSize(childType)
for i := 0; i < numElements; i++ {
offset := i * int(childTypeSize)
field := rawValue{
buf: v.buf[offset:],
}
field.set(r.builder.CreateExtractValue(llvmValue, i, ""), r)
}
case llvm.DoubleTypeKind:
f, _ := llvmValue.DoubleValue()
var buf [8]byte
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(f))
for i, b := range buf {
v.buf[i] = uint64(b)
}
case llvm.FloatTypeKind:
f, _ := llvmValue.DoubleValue()
var buf [4]byte
binary.LittleEndian.PutUint32(buf[:], math.Float32bits(float32(f)))
for i, b := range buf {
v.buf[i] = uint64(b)
}
default:
llvmValue.Dump()
println()
panic("unknown constant")
}
}
}
// hasPointer returns true if this raw value contains a pointer somewhere in the
// buffer.
func (v rawValue) hasPointer() bool {
for _, p := range v.buf {
if p > 255 {
return true
}
}
return false
}
// localValue is a special implementation of the value interface. It is a
// placeholder for other values in instruction operands, and is replaced with
// one of the others before executing.
type localValue struct {
value llvm.Value
}
func (v localValue) len(r *runner) uint32 {
panic("interp: localValue.len")
}
func (v localValue) String() string {
return "<!>"
}
func (v localValue) clone() value {
panic("interp: localValue.clone()")
}
func (v localValue) asPointer(r *runner) (pointerValue, error) {
return pointerValue{}, errors.New("interp: localValue.asPointer called")
}
func (v localValue) asRawValue(r *runner) rawValue {
panic("interp: localValue.asRawValue")
}
func (v localValue) Uint() uint64 {
panic("interp: localValue.Uint")
}
func (v localValue) Int() int64 {
panic("interp: localValue.Int")
}
func (v localValue) toLLVMValue(llvmType llvm.Type, mem *memoryView) (llvm.Value, error) {
return v.value, nil
}
func (r *runner) getValue(llvmValue llvm.Value) value {
if checks && llvmValue.IsNil() {
panic("nil llvmValue")
}
if !llvmValue.IsAGlobalValue().IsNil() {
index, ok := r.globals[llvmValue]
if !ok {
obj := object{
llvmGlobal: llvmValue,
}
index = len(r.objects)
r.globals[llvmValue] = index
r.objects = append(r.objects, obj)
if !llvmValue.IsAGlobalVariable().IsNil() {
obj.size = uint32(r.targetData.TypeAllocSize(llvmValue.GlobalValueType()))
if initializer := llvmValue.Initializer(); !initializer.IsNil() {
obj.buffer = r.getValue(initializer)
obj.constant = llvmValue.IsGlobalConstant()
}
} else if !llvmValue.IsAFunction().IsNil() {
// OK
} else {
panic("interp: unknown global value")
}
// Update the object after it has been created. This avoids an
// infinite recursion when using getValue on a global that contains
// a reference to itself.
r.objects[index] = obj
}
return newPointerValue(r, index, 0)
} else if !llvmValue.IsAConstant().IsNil() {
if !llvmValue.IsAConstantInt().IsNil() {
n := llvmValue.ZExtValue()
switch llvmValue.Type().IntTypeWidth() {
case 64:
return literalValue{n}
case 32:
return literalValue{uint32(n)}
case 16:
return literalValue{uint16(n)}
case 8, 1:
return literalValue{uint8(n)}
default:
panic("unknown integer size")
}
}
size := r.targetData.TypeAllocSize(llvmValue.Type())
v := newRawValue(uint32(size))
v.set(llvmValue, r)
return v
} else if !llvmValue.IsAInstruction().IsNil() || !llvmValue.IsAArgument().IsNil() {
return localValue{llvmValue}
} else if !llvmValue.IsAInlineAsm().IsNil() {
return localValue{llvmValue}
} else {
llvmValue.Dump()
println()
panic("unknown value")
}
}
// readObjectLayout reads the object layout as it is stored by the compiler. It
// returns the size in the number of words and the bitmap.
//
// For details on this format, see src/runtime/gc_precise.go.
func (r *runner) readObjectLayout(layoutValue value) (uint64, *big.Int) {
pointerSize := layoutValue.len(r)
if checks && uint64(pointerSize) != r.targetData.TypeAllocSize(r.i8ptrType) {
panic("inconsistent pointer size")
}
// The object layout can be stored in a global variable, directly as an
// integer value, or can be nil.
ptr, err := layoutValue.asPointer(r)
if err == errIntegerAsPointer {
// It's an integer, which means it's a small object or unknown.
layout := layoutValue.Uint()
if layout == 0 {
// Nil pointer, which means the layout is unknown.
return 0, nil
}
if layout%2 != 1 {
// Sanity check: the least significant bit must be set. This is how
// the runtime can separate pointers from integers.
panic("unexpected layout")
}
// Determine format of bitfields in the integer.
pointerBits := uint64(pointerSize * 8)
var sizeFieldBits uint64
switch pointerBits {
case 16:
sizeFieldBits = 4
case 32:
sizeFieldBits = 5
case 64:
sizeFieldBits = 6
default:
panic("unknown pointer size")
}
// Extract fields.
objectSizeWords := (layout >> 1) & (1<<sizeFieldBits - 1)
bitmap := new(big.Int).SetUint64(layout >> (1 + sizeFieldBits))
return objectSizeWords, bitmap
}
// Read the object size in words and the bitmap from the global.
buf := r.objects[ptr.index()].buffer.(rawValue)
objectSizeWords := rawValue{buf: buf.buf[:r.pointerSize]}.Uint()
rawByteValues := buf.buf[r.pointerSize:]
rawBytes := make([]byte, len(rawByteValues))
for i, v := range rawByteValues {
if uint64(byte(v)) != v {
panic("found pointer in data array?") // sanity check
}
rawBytes[i] = byte(v)
}
reverseBytes(rawBytes) // little-endian to big-endian
bitmap := new(big.Int).SetBytes(rawBytes)
return objectSizeWords, bitmap
}
// getLLVMTypeFromLayout returns the 'layout type', which is an approximation of
// the real type. Pointers are in the correct location but the actual object may
// have some additional repetition, for example in the buffer of a slice.
func (r *runner) getLLVMTypeFromLayout(layoutValue value) llvm.Type {
objectSizeWords, bitmap := r.readObjectLayout(layoutValue)
if bitmap == nil {
// No information available.
return llvm.Type{}
}
if bitmap.BitLen() == 0 {
// There are no pointers in this object, so treat this as a raw byte
// buffer. This is important because objects without pointers may have
// lower alignment.
return r.mod.Context().Int8Type()
}
// Create the LLVM type.
pointerSize := layoutValue.len(r)
pointerAlignment := r.targetData.PrefTypeAlignment(r.i8ptrType)
var fields []llvm.Type
for i := 0; i < int(objectSizeWords); {
if bitmap.Bit(i) != 0 {
// Pointer field.
fields = append(fields, r.i8ptrType)
i += int(pointerSize / uint32(pointerAlignment))
} else {
// Byte/word field.
fields = append(fields, r.mod.Context().IntType(pointerAlignment*8))
i += 1
}
}
var llvmLayoutType llvm.Type
if len(fields) == 1 {
llvmLayoutType = fields[0]
} else {
llvmLayoutType = r.mod.Context().StructType(fields, false)
}
objectSizeBytes := objectSizeWords * uint64(pointerAlignment)
if checks && r.targetData.TypeAllocSize(llvmLayoutType) != objectSizeBytes {
panic("unexpected size") // sanity check
}
return llvmLayoutType
}
// Reverse a slice of bytes. From the wiki:
// https://github.com/golang/go/wiki/SliceTricks#reversing
func reverseBytes(buf []byte) {
for i := len(buf)/2 - 1; i >= 0; i-- {
opp := len(buf) - 1 - i
buf[i], buf[opp] = buf[opp], buf[i]
}
}
|