1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
|
//go:build avr && atmega1280
// +build avr,atmega1280
package machine
import (
"device/avr"
"runtime/interrupt"
"runtime/volatile"
)
const irq_USART0_RX = avr.IRQ_USART0_RX
const (
portA Pin = iota * 8
portB
portC
portD
portE
portF
portG
portH
portJ
portK
portL
)
const (
PA0 = portA + 0
PA1 = portA + 1
PA2 = portA + 2
PA3 = portA + 3
PA4 = portA + 4
PA5 = portA + 5
PA6 = portA + 6
PA7 = portA + 7
PB0 = portB + 0
PB1 = portB + 1
PB2 = portB + 2
PB3 = portB + 3
PB4 = portB + 4
PB5 = portB + 5
PB6 = portB + 6
PB7 = portB + 7
PC0 = portC + 0
PC1 = portC + 1
PC2 = portC + 2
PC3 = portC + 3
PC4 = portC + 4
PC5 = portC + 5
PC6 = portC + 6
PC7 = portC + 7
PD0 = portD + 0
PD1 = portD + 1
PD2 = portD + 2
PD3 = portD + 3
PD7 = portD + 7
PE0 = portE + 0
PE1 = portE + 1
PE3 = portE + 3
PE4 = portE + 4
PE5 = portE + 5
PE6 = portE + 6
PF0 = portF + 0
PF1 = portF + 1
PF2 = portF + 2
PF3 = portF + 3
PF4 = portF + 4
PF5 = portF + 5
PF6 = portF + 6
PF7 = portF + 7
PG0 = portG + 0
PG1 = portG + 1
PG2 = portG + 2
PG5 = portG + 5
PH0 = portH + 0
PH1 = portH + 1
PH3 = portH + 3
PH4 = portH + 4
PH5 = portH + 5
PH6 = portH + 6
PJ0 = portJ + 0
PJ1 = portJ + 1
PK0 = portK + 0
PK1 = portK + 1
PK2 = portK + 2
PK3 = portK + 3
PK4 = portK + 4
PK5 = portK + 5
PK6 = portK + 6
PK7 = portK + 7
PL0 = portL + 0
PL1 = portL + 1
PL2 = portL + 2
PL3 = portL + 3
PL4 = portL + 4
PL5 = portL + 5
PL6 = portL + 6
PL7 = portL + 7
)
// getPortMask returns the PORTx register and mask for the pin.
func (p Pin) getPortMask() (*volatile.Register8, uint8) {
switch {
case p >= PA0 && p <= PA7:
return avr.PORTA, 1 << uint8(p-portA)
case p >= PB0 && p <= PB7:
return avr.PORTB, 1 << uint8(p-portB)
case p >= PC0 && p <= PC7:
return avr.PORTC, 1 << uint8(p-portC)
case p >= PD0 && p <= PD7:
return avr.PORTD, 1 << uint8(p-portD)
case p >= PE0 && p <= PE6:
return avr.PORTE, 1 << uint8(p-portE)
case p >= PF0 && p <= PF7:
return avr.PORTF, 1 << uint8(p-portF)
case p >= PG0 && p <= PG5:
return avr.PORTG, 1 << uint8(p-portG)
case p >= PH0 && p <= PH6:
return avr.PORTH, 1 << uint8(p-portH)
case p >= PJ0 && p <= PJ1:
return avr.PORTJ, 1 << uint8(p-portJ)
case p >= PK0 && p <= PK7:
return avr.PORTK, 1 << uint8(p-portK)
case p >= PL0 && p <= PL7:
return avr.PORTL, 1 << uint8(p-portL)
default:
return avr.PORTA, 255
}
}
// PWM is one PWM peripheral, which consists of a counter and two output
// channels (that can be connected to two fixed pins). You can set the frequency
// using SetPeriod, but only for all the channels in this PWM peripheral at
// once.
type PWM struct {
num uint8
}
var (
Timer0 = PWM{0} // 8 bit timer for PB7 and PG5
Timer1 = PWM{1} // 16 bit timer for PB5 and PB6
Timer2 = PWM{2} // 8 bit timer for PB4 and PH6
Timer3 = PWM{3} // 16 bit timer for PE3, PE4 and PE5
Timer4 = PWM{4} // 16 bit timer for PH3, PH4 and PH5
Timer5 = PWM{5} // 16 bit timer for PL3, PL4 and PL5
)
// Configure enables and configures this PWM.
//
// For the two 8 bit timers, there is only a limited number of periods
// available, namely the CPU frequency divided by 256 and again divided by 1, 8,
// 64, 256, or 1024. For a MCU running at 16MHz, this would be a period of 16µs,
// 128µs, 1024µs, 4096µs, or 16384µs.
func (pwm PWM) Configure(config PWMConfig) error {
switch pwm.num {
case 0, 2: // 8-bit timers (Timer/counter 0 and Timer/counter 2)
// Calculate the timer prescaler.
// While we could configure a flexible top, that would sacrifice one of
// the PWM output compare registers and thus a PWM channel. I've chosen
// to instead limit this timer to a fixed number of frequencies.
var prescaler uint8
switch config.Period {
case 0, (uint64(1e9) * 256 * 1) / uint64(CPUFrequency()):
prescaler = 1
case (uint64(1e9) * 256 * 8) / uint64(CPUFrequency()):
prescaler = 2
case (uint64(1e9) * 256 * 64) / uint64(CPUFrequency()):
prescaler = 3
case (uint64(1e9) * 256 * 256) / uint64(CPUFrequency()):
prescaler = 4
case (uint64(1e9) * 256 * 1024) / uint64(CPUFrequency()):
prescaler = 5
default:
return ErrPWMPeriodTooLong
}
if pwm.num == 0 {
avr.TCCR0B.Set(prescaler)
// Set the PWM mode to fast PWM (mode = 3).
avr.TCCR0A.Set(avr.TCCR0A_WGM00 | avr.TCCR0A_WGM01)
// monotonic timer is using the same time as PWM:0
// we must adust internal settings of monotonic timer when PWM:0 settings changed
adjustMonotonicTimer()
} else {
avr.TCCR2B.Set(prescaler)
// Set the PWM mode to fast PWM (mode = 3).
avr.TCCR2A.Set(avr.TCCR2A_WGM20 | avr.TCCR2A_WGM21)
}
case 1, 3, 4, 5:
// The top value is the number of PWM ticks a PWM period takes. It is
// initially picked assuming an unlimited counter top and no PWM
// prescaler.
var top uint64
if config.Period == 0 {
// Use a top appropriate for LEDs. Picking a relatively low period
// here (0xff) for consistency with the other timers.
top = 0xff
} else {
// The formula below calculates the following formula, optimized:
// top = period * (CPUFrequency() / 1e9)
// By dividing the CPU frequency first (an operation that is easily
// optimized away) the period has less chance of overflowing.
top = config.Period * (uint64(CPUFrequency()) / 1000000) / 1000
}
// The ideal PWM period may be larger than would fit in the PWM counter,
// which is 16 bits (see maxTop). Therefore, try to make the PWM clock
// speed lower with a prescaler to make the top value fit the maximum
// top value.
const maxTop = 0x10000
var prescalingTop uint8
switch {
case top <= maxTop:
prescalingTop = 3<<3 | 1 // no prescaling
case top/8 <= maxTop:
prescalingTop = 3<<3 | 2 // divide by 8
top /= 8
case top/64 <= maxTop:
prescalingTop = 3<<3 | 3 // divide by 64
top /= 64
case top/256 <= maxTop:
prescalingTop = 3<<3 | 4 // divide by 256
top /= 256
case top/1024 <= maxTop:
prescalingTop = 3<<3 | 5 // divide by 1024
top /= 1024
default:
return ErrPWMPeriodTooLong
}
// A top of 0x10000 is at 100% duty cycle. Subtract one because the
// counter counts from 0, not 1 (avoiding an off-by-one).
top -= 1
switch pwm.num {
case 1:
avr.TCCR1A.Set(avr.TCCR1A_WGM11)
avr.TCCR1B.Set(prescalingTop)
avr.ICR1H.Set(uint8(top >> 8))
avr.ICR1L.Set(uint8(top))
case 3:
avr.TCCR3A.Set(avr.TCCR3A_WGM31)
avr.TCCR3B.Set(prescalingTop)
avr.ICR3H.Set(uint8(top >> 8))
avr.ICR3L.Set(uint8(top))
case 4:
avr.TCCR4A.Set(avr.TCCR4A_WGM41)
avr.TCCR4B.Set(prescalingTop)
avr.ICR4H.Set(uint8(top >> 8))
avr.ICR4L.Set(uint8(top))
case 5:
avr.TCCR5A.Set(avr.TCCR5A_WGM51)
avr.TCCR5B.Set(prescalingTop)
avr.ICR5H.Set(uint8(top >> 8))
avr.ICR5L.Set(uint8(top))
}
}
return nil
}
// SetPeriod updates the period of this PWM peripheral.
// To set a particular frequency, use the following formula:
//
// period = 1e9 / frequency
//
// If you use a period of 0, a period that works well for LEDs will be picked.
//
// SetPeriod will not change the prescaler, but also won't change the current
// value in any of the channels. This means that you may need to update the
// value for the particular channel.
//
// Note that you cannot pick any arbitrary period after the PWM peripheral has
// been configured. If you want to switch between frequencies, pick the lowest
// frequency (longest period) once when calling Configure and adjust the
// frequency here as needed.
func (pwm PWM) SetPeriod(period uint64) error {
if pwm.num == 0 || pwm.num == 2 {
return ErrPWMPeriodTooLong // TODO better error message
}
// The top value is the number of PWM ticks a PWM period takes. It is
// initially picked assuming an unlimited counter top and no PWM
// prescaler.
var top uint64
if period == 0 {
// Use a top appropriate for LEDs. Picking a relatively low period
// here (0xff) for consistency with the other timers.
top = 0xff
} else {
// The formula below calculates the following formula, optimized:
// top = period * (CPUFrequency() / 1e9)
// By dividing the CPU frequency first (an operation that is easily
// optimized away) the period has less chance of overflowing.
top = period * (uint64(CPUFrequency()) / 1000000) / 1000
}
var prescaler uint8
switch pwm.num {
case 1:
prescaler = avr.TCCR1B.Get() & 0x7
case 3:
prescaler = avr.TCCR3B.Get() & 0x7
case 4:
prescaler = avr.TCCR4B.Get() & 0x7
case 5:
prescaler = avr.TCCR5B.Get() & 0x7
}
switch prescaler {
case 1:
top /= 1
case 2:
top /= 8
case 3:
top /= 64
case 4:
top /= 256
case 5:
top /= 1024
}
// A top of 0x10000 is at 100% duty cycle. Subtract one because the counter
// counts from 0, not 1 (avoiding an off-by-one).
top -= 1
if top > 0xffff {
return ErrPWMPeriodTooLong
}
switch pwm.num {
case 1:
// Warning: this change is not atomic!
avr.ICR1H.Set(uint8(top >> 8))
avr.ICR1L.Set(uint8(top))
// ... and because of that, set the counter back to zero to avoid most of
// the effects of this non-atomicity.
avr.TCNT1H.Set(0)
avr.TCNT1L.Set(0)
case 3:
// Warning: this change is not atomic!
avr.ICR3H.Set(uint8(top >> 8))
avr.ICR3L.Set(uint8(top))
// ... and because of that, set the counter back to zero to avoid most of
// the effects of this non-atomicity.
avr.TCNT3H.Set(0)
avr.TCNT3L.Set(0)
case 4:
// Warning: this change is not atomic!
avr.ICR4H.Set(uint8(top >> 8))
avr.ICR4L.Set(uint8(top))
// ... and because of that, set the counter back to zero to avoid most of
// the effects of this non-atomicity.
avr.TCNT4H.Set(0)
avr.TCNT4L.Set(0)
case 5:
// Warning: this change is not atomic!
avr.ICR5H.Set(uint8(top >> 8))
avr.ICR5L.Set(uint8(top))
// ... and because of that, set the counter back to zero to avoid most of
// the effects of this non-atomicity.
avr.TCNT5H.Set(0)
avr.TCNT5L.Set(0)
}
return nil
}
// Top returns the current counter top, for use in duty cycle calculation. It
// will only change with a call to Configure or SetPeriod, otherwise it is
// constant.
//
// The value returned here is hardware dependent. In general, it's best to treat
// it as an opaque value that can be divided by some number and passed to Set
// (see Set documentation for more information).
func (pwm PWM) Top() uint32 {
switch pwm.num {
case 1:
// Timer 1 has a configurable top value.
low := avr.ICR1L.Get()
high := avr.ICR1H.Get()
return uint32(high)<<8 | uint32(low) + 1
case 3:
// Timer 3 has a configurable top value.
low := avr.ICR3L.Get()
high := avr.ICR3H.Get()
return uint32(high)<<8 | uint32(low) + 1
case 4:
// Timer 4 has a configurable top value.
low := avr.ICR4L.Get()
high := avr.ICR4H.Get()
return uint32(high)<<8 | uint32(low) + 1
case 5:
// Timer 5 has a configurable top value.
low := avr.ICR5L.Get()
high := avr.ICR5H.Get()
return uint32(high)<<8 | uint32(low) + 1
}
// Other timers go from 0 to 0xff (0x100 or 256 in total).
return 256
}
// Counter returns the current counter value of the timer in this PWM
// peripheral. It may be useful for debugging.
func (pwm PWM) Counter() uint32 {
switch pwm.num {
case 0:
return uint32(avr.TCNT0.Get())
case 1:
mask := interrupt.Disable()
low := avr.TCNT1L.Get()
high := avr.TCNT1H.Get()
interrupt.Restore(mask)
return uint32(high)<<8 | uint32(low)
case 2:
return uint32(avr.TCNT2.Get())
case 3:
mask := interrupt.Disable()
low := avr.TCNT3L.Get()
high := avr.TCNT3H.Get()
interrupt.Restore(mask)
return uint32(high)<<8 | uint32(low)
case 4:
mask := interrupt.Disable()
low := avr.TCNT4L.Get()
high := avr.TCNT4H.Get()
interrupt.Restore(mask)
return uint32(high)<<8 | uint32(low)
case 5:
mask := interrupt.Disable()
low := avr.TCNT5L.Get()
high := avr.TCNT5H.Get()
interrupt.Restore(mask)
return uint32(high)<<8 | uint32(low)
}
// Unknown PWM.
return 0
}
// Period returns the used PWM period in nanoseconds. It might deviate slightly
// from the configured period due to rounding.
func (pwm PWM) Period() uint64 {
var prescaler uint8
switch pwm.num {
case 0:
prescaler = avr.TCCR0B.Get() & 0x7
case 1:
prescaler = avr.TCCR1B.Get() & 0x7
case 2:
prescaler = avr.TCCR2B.Get() & 0x7
case 3:
prescaler = avr.TCCR3B.Get() & 0x7
case 4:
prescaler = avr.TCCR4B.Get() & 0x7
case 5:
prescaler = avr.TCCR5B.Get() & 0x7
}
top := uint64(pwm.Top())
switch prescaler {
case 1: // prescaler 1
return 1 * top * 1000 / uint64(CPUFrequency()/1e6)
case 2: // prescaler 8
return 8 * top * 1000 / uint64(CPUFrequency()/1e6)
case 3: // prescaler 64
return 64 * top * 1000 / uint64(CPUFrequency()/1e6)
case 4: // prescaler 256
return 256 * top * 1000 / uint64(CPUFrequency()/1e6)
case 5: // prescaler 1024
return 1024 * top * 1000 / uint64(CPUFrequency()/1e6)
default: // unknown clock source
return 0
}
}
// Channel returns a PWM channel for the given pin.
func (pwm PWM) Channel(pin Pin) (uint8, error) {
pin.Configure(PinConfig{Mode: PinOutput})
pin.Low()
switch pwm.num {
case 0:
switch pin {
case PB7: // channel A
avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1)
return 0, nil
case PG5: // channel B
avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1)
return 1, nil
}
case 1:
switch pin {
case PB5: // channel A
avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1)
return 0, nil
case PB6: // channel B
avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1)
return 1, nil
}
case 2:
switch pin {
case PB4: // channel A
avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1)
return 0, nil
case PH6: // channel B
avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1)
return 1, nil
}
case 3:
switch pin {
case PE3: // channel A
avr.TCCR3A.SetBits(avr.TCCR3A_COM3A1)
return 0, nil
case PE4: //channel B
avr.TCCR3A.SetBits(avr.TCCR3A_COM3B1)
return 1, nil
case PE5: //channel C
avr.TCCR3A.SetBits(avr.TCCR3A_COM3C1)
return 2, nil
}
case 4:
switch pin {
case PH3: // channel A
avr.TCCR4A.SetBits(avr.TCCR4A_COM4A1)
return 0, nil
case PH4: //channel B
avr.TCCR4A.SetBits(avr.TCCR4A_COM4B1)
return 1, nil
case PH5: //channel C
avr.TCCR4A.SetBits(avr.TCCR4A_COM4C1)
return 2, nil
}
case 5:
switch pin {
case PL3: // channel A
avr.TCCR5A.SetBits(avr.TCCR5A_COM5A1)
return 0, nil
case PL4: //channel B
avr.TCCR5A.SetBits(avr.TCCR5A_COM5B1)
return 1, nil
case PL5: //channel C
avr.TCCR5A.SetBits(avr.TCCR5A_COM5C1)
return 2, nil
}
}
return 0, ErrInvalidOutputPin
}
// SetInverting sets whether to invert the output of this channel.
// Without inverting, a 25% duty cycle would mean the output is high for 25% of
// the time and low for the rest. Inverting flips the output as if a NOT gate
// was placed at the output, meaning that the output would be 25% low and 75%
// high with a duty cycle of 25%.
//
// Note: the invert state may not be applied on the AVR until the next call to
// ch.Set().
func (pwm PWM) SetInverting(channel uint8, inverting bool) {
switch pwm.num {
case 0:
switch channel {
case 0: // channel A, PB7
if inverting {
avr.PORTB.SetBits(1 << 7) // PB7 high
avr.TCCR0A.SetBits(avr.TCCR0A_COM0A0)
} else {
avr.PORTB.ClearBits(1 << 7) // PB7 low
avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A0)
}
case 1: // channel B, PG5
if inverting {
avr.PORTG.SetBits(1 << 5) // PG5 high
avr.TCCR0A.SetBits(avr.TCCR0A_COM0B0)
} else {
avr.PORTG.ClearBits(1 << 5) // PG5 low
avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B0)
}
}
case 1:
// Note: the COM1A0/COM1B0 bit is not set with the configuration below.
// It will be set the following call to Set(), however.
switch channel {
case 0: // channel A, PB5
if inverting {
avr.PORTB.SetBits(1 << 5) // PB5 high
} else {
avr.PORTB.ClearBits(1 << 5) // PB5 low
}
case 1: // channel B, PB6
if inverting {
avr.PORTB.SetBits(1 << 6) // PB6 high
} else {
avr.PORTB.ClearBits(1 << 6) // PB6 low
}
}
case 2:
switch channel {
case 0: // channel A, PB4
if inverting {
avr.PORTB.SetBits(1 << 4) // PB4 high
avr.TCCR2A.SetBits(avr.TCCR2A_COM2A0)
} else {
avr.PORTB.ClearBits(1 << 4) // PB4 low
avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A0)
}
case 1: // channel B, PH6
if inverting {
avr.PORTH.SetBits(1 << 6) // PH6 high
avr.TCCR2A.SetBits(avr.TCCR2A_COM2B0)
} else {
avr.PORTH.ClearBits(1 << 6) // PH6 low
avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B0)
}
}
case 3:
// Note: the COM3A0/COM3B0 bit is not set with the configuration below.
// It will be set the following call to Set(), however.
switch channel {
case 0: // channel A, PE3
if inverting {
avr.PORTE.SetBits(1 << 3) // PE3 high
} else {
avr.PORTE.ClearBits(1 << 3) // PE3 low
}
case 1: // channel B, PE4
if inverting {
avr.PORTE.SetBits(1 << 4) // PE4 high
} else {
avr.PORTE.ClearBits(1 << 4) // PE4 low
}
case 2: // channel C, PE5
if inverting {
avr.PORTE.SetBits(1 << 5) // PE4 high
} else {
avr.PORTE.ClearBits(1 << 5) // PE4 low
}
}
case 4:
// Note: the COM3A0/COM3B0 bit is not set with the configuration below.
// It will be set the following call to Set(), however.
switch channel {
case 0: // channel A, PH3
if inverting {
avr.PORTH.SetBits(1 << 3) // PH3 high
} else {
avr.PORTH.ClearBits(1 << 3) // PH3 low
}
case 1: // channel B, PH4
if inverting {
avr.PORTH.SetBits(1 << 4) // PH4 high
} else {
avr.PORTH.ClearBits(1 << 4) // PH4 low
}
case 2: // channel C, PH5
if inverting {
avr.PORTH.SetBits(1 << 5) // PH4 high
} else {
avr.PORTH.ClearBits(1 << 5) // PH4 low
}
}
case 5:
// Note: the COM3A0/COM3B0 bit is not set with the configuration below.
// It will be set the following call to Set(), however.
switch channel {
case 0: // channel A, PL3
if inverting {
avr.PORTL.SetBits(1 << 3) // PL3 high
} else {
avr.PORTL.ClearBits(1 << 3) // PL3 low
}
case 1: // channel B, PL4
if inverting {
avr.PORTL.SetBits(1 << 4) // PL4 high
} else {
avr.PORTL.ClearBits(1 << 4) // PL4 low
}
case 2: // channel C, PH5
if inverting {
avr.PORTL.SetBits(1 << 5) // PL4 high
} else {
avr.PORTL.ClearBits(1 << 5) // PL4 low
}
}
}
}
// Set updates the channel value. This is used to control the channel duty
// cycle, in other words the fraction of time the channel output is high (or low
// when inverted). For example, to set it to a 25% duty cycle, use:
//
// pwm.Set(channel, pwm.Top() / 4)
//
// pwm.Set(channel, 0) will set the output to low and pwm.Set(channel,
// pwm.Top()) will set the output to high, assuming the output isn't inverted.
func (pwm PWM) Set(channel uint8, value uint32) {
switch pwm.num {
case 0:
value := uint16(value)
switch channel {
case 0: // channel A
if value == 0 {
avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A1)
} else {
avr.OCR0A.Set(uint8(value - 1))
avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1)
}
case 1: // channel B
if value == 0 {
avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B1)
} else {
avr.OCR0B.Set(uint8(value) - 1)
avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1)
}
}
// monotonic timer is using the same time as PWM:0
// we must adust internal settings of monotonic timer when PWM:0 settings changed
adjustMonotonicTimer()
case 1:
mask := interrupt.Disable()
switch channel {
case 0: // channel A, PB5
if value == 0 {
avr.TCCR1A.ClearBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0)
} else {
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
avr.OCR1AH.Set(uint8(value >> 8))
avr.OCR1AL.Set(uint8(value))
if avr.PORTB.HasBits(1 << 5) { // is PB1 high?
// Yes, set the inverting bit.
avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0)
} else {
// No, output is non-inverting.
avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1)
}
}
case 1: // channel B, PB6
if value == 0 {
avr.TCCR1A.ClearBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0)
} else {
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
avr.OCR1BH.Set(uint8(value >> 8))
avr.OCR1BL.Set(uint8(value))
if avr.PORTB.HasBits(1 << 6) { // is PB6 high?
// Yes, set the inverting bit.
avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0)
} else {
// No, output is non-inverting.
avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1)
}
}
}
interrupt.Restore(mask)
case 2:
value := uint16(value)
switch channel {
case 0: // channel A
if value == 0 {
avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A1)
} else {
avr.OCR2A.Set(uint8(value - 1))
avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1)
}
case 1: // channel B
if value == 0 {
avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B1)
} else {
avr.OCR2B.Set(uint8(value - 1))
avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1)
}
}
case 3:
mask := interrupt.Disable()
switch channel {
case 0: // channel A, PE3
if value == 0 {
avr.TCCR3A.ClearBits(avr.TCCR3A_COM3A1 | avr.TCCR3A_COM3A0)
} else {
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
avr.OCR3AH.Set(uint8(value >> 8))
avr.OCR3AL.Set(uint8(value))
if avr.PORTE.HasBits(1 << 3) { // is PE3 high?
// Yes, set the inverting bit.
avr.TCCR3A.SetBits(avr.TCCR3A_COM3A1 | avr.TCCR3A_COM3A0)
} else {
// No, output is non-inverting.
avr.TCCR3A.SetBits(avr.TCCR3A_COM3A1)
}
}
case 1: // channel B, PE4
if value == 0 {
avr.TCCR3A.ClearBits(avr.TCCR3A_COM3B1 | avr.TCCR3A_COM3B0)
} else {
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
avr.OCR3BH.Set(uint8(value >> 8))
avr.OCR3BL.Set(uint8(value))
if avr.PORTE.HasBits(1 << 4) { // is PE4 high?
// Yes, set the inverting bit.
avr.TCCR3A.SetBits(avr.TCCR3A_COM3B1 | avr.TCCR3A_COM3B0)
} else {
// No, output is non-inverting.
avr.TCCR3A.SetBits(avr.TCCR3A_COM3B1)
}
}
case 2: // channel C, PE5
if value == 0 {
avr.TCCR3A.ClearBits(avr.TCCR3A_COM3C1 | avr.TCCR3A_COM3C0)
} else {
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
avr.OCR3CH.Set(uint8(value >> 8))
avr.OCR3CL.Set(uint8(value))
if avr.PORTE.HasBits(1 << 5) { // is PE5 high?
// Yes, set the inverting bit.
avr.TCCR3A.SetBits(avr.TCCR3A_COM3C1 | avr.TCCR3A_COM3C0)
} else {
// No, output is non-inverting.
avr.TCCR3A.SetBits(avr.TCCR3A_COM3C1)
}
}
}
interrupt.Restore(mask)
case 4:
mask := interrupt.Disable()
switch channel {
case 0: // channel A, PH3
if value == 0 {
avr.TCCR4A.ClearBits(avr.TCCR4A_COM4A1 | avr.TCCR4A_COM4A0)
} else {
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
avr.OCR4AH.Set(uint8(value >> 8))
avr.OCR4AL.Set(uint8(value))
if avr.PORTH.HasBits(1 << 3) { // is PH3 high?
// Yes, set the inverting bit.
avr.TCCR4A.SetBits(avr.TCCR4A_COM4A1 | avr.TCCR4A_COM4A0)
} else {
// No, output is non-inverting.
avr.TCCR4A.SetBits(avr.TCCR4A_COM4A1)
}
}
case 1: // channel B, PH4
if value == 0 {
avr.TCCR4A.ClearBits(avr.TCCR4A_COM4B1 | avr.TCCR4A_COM4B0)
} else {
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
avr.OCR4BH.Set(uint8(value >> 8))
avr.OCR4BL.Set(uint8(value))
if avr.PORTH.HasBits(1 << 4) { // is PH4 high?
// Yes, set the inverting bit.
avr.TCCR4A.SetBits(avr.TCCR4A_COM4B1 | avr.TCCR4A_COM4B0)
} else {
// No, output is non-inverting.
avr.TCCR4A.SetBits(avr.TCCR4A_COM4B1)
}
}
case 2: // channel C, PH5
if value == 0 {
avr.TCCR4A.ClearBits(avr.TCCR4A_COM4C1 | avr.TCCR4A_COM4C0)
} else {
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
avr.OCR4CH.Set(uint8(value >> 8))
avr.OCR4CL.Set(uint8(value))
if avr.PORTH.HasBits(1 << 5) { // is PH5 high?
// Yes, set the inverting bit.
avr.TCCR4A.SetBits(avr.TCCR4A_COM4C1 | avr.TCCR4A_COM4C0)
} else {
// No, output is non-inverting.
avr.TCCR4A.SetBits(avr.TCCR4A_COM4C1)
}
}
}
interrupt.Restore(mask)
case 5:
mask := interrupt.Disable()
switch channel {
case 0: // channel A, PL3
if value == 0 {
avr.TCCR5A.ClearBits(avr.TCCR5A_COM5A1 | avr.TCCR5A_COM5A0)
} else {
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
avr.OCR5AH.Set(uint8(value >> 8))
avr.OCR5AL.Set(uint8(value))
if avr.PORTL.HasBits(1 << 3) { // is PL3 high?
// Yes, set the inverting bit.
avr.TCCR5A.SetBits(avr.TCCR5A_COM5A1 | avr.TCCR5A_COM5A0)
} else {
// No, output is non-inverting.
avr.TCCR5A.SetBits(avr.TCCR5A_COM5A1)
}
}
case 1: // channel B, PL4
if value == 0 {
avr.TCCR5A.ClearBits(avr.TCCR5A_COM5B1 | avr.TCCR5A_COM5B0)
} else {
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
avr.OCR5BH.Set(uint8(value >> 8))
avr.OCR5BL.Set(uint8(value))
if avr.PORTL.HasBits(1 << 4) { // is PL4 high?
// Yes, set the inverting bit.
avr.TCCR5A.SetBits(avr.TCCR5A_COM5B1 | avr.TCCR5A_COM5B0)
} else {
// No, output is non-inverting.
avr.TCCR5A.SetBits(avr.TCCR5A_COM5B1)
}
}
case 2: // channel C, PL5
if value == 0 {
avr.TCCR5A.ClearBits(avr.TCCR5A_COM5C1 | avr.TCCR5A_COM5C0)
} else {
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
avr.OCR5CH.Set(uint8(value >> 8))
avr.OCR5CL.Set(uint8(value))
if avr.PORTL.HasBits(1 << 5) { // is PL5 high?
// Yes, set the inverting bit.
avr.TCCR5A.SetBits(avr.TCCR5A_COM5C1 | avr.TCCR5A_COM5C0)
} else {
// No, output is non-inverting.
avr.TCCR5A.SetBits(avr.TCCR5A_COM5C1)
}
}
}
interrupt.Restore(mask)
}
}
// SPI configuration
var SPI0 = SPI{
spcr: avr.SPCR,
spdr: avr.SPDR,
spsr: avr.SPSR,
sck: PB1,
sdo: PB2,
sdi: PB3,
cs: PB0}
|