1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
|
//go:build sam && atsamd21
// Peripheral abstraction layer for the atsamd21.
//
// Datasheet:
// http://ww1.microchip.com/downloads/en/DeviceDoc/SAMD21-Family-DataSheet-DS40001882D.pdf
package machine
import (
"bytes"
"device/arm"
"device/sam"
"encoding/binary"
"errors"
"runtime/interrupt"
"unsafe"
)
const deviceName = sam.Device
// DS40001882F, Section 10.3.3: Serial Number
var deviceIDAddr = []uintptr{0x0080A00C, 0x0080A040, 0x0080A044, 0x0080A048}
const (
PinAnalog PinMode = 1
PinSERCOM PinMode = 2
PinSERCOMAlt PinMode = 3
PinTimer PinMode = 4
PinTimerAlt PinMode = 5
PinCom PinMode = 6
//PinAC_CLK PinMode = 7
PinDigital PinMode = 8
PinInput PinMode = 9
PinInputPullup PinMode = 10
PinOutput PinMode = 11
PinTCC PinMode = PinTimer
PinTCCAlt PinMode = PinTimerAlt
PinInputPulldown PinMode = 12
)
type PinChange uint8
// Pin change interrupt constants for SetInterrupt.
const (
PinRising PinChange = sam.EIC_CONFIG_SENSE0_RISE
PinFalling PinChange = sam.EIC_CONFIG_SENSE0_FALL
PinToggle PinChange = sam.EIC_CONFIG_SENSE0_BOTH
)
// Callbacks to be called for pins configured with SetInterrupt. Unfortunately,
// we also need to keep track of which interrupt channel is used by which pin,
// as the only alternative would be iterating through all pins.
//
// We're using the magic constant 16 here because the SAM D21 has 16 interrupt
// channels configurable for pins.
var (
interruptPins [16]Pin // warning: the value is invalid when pinCallbacks[i] is not set!
pinCallbacks [16]func(Pin)
)
const (
pinPadMapSERCOM0Pad0 byte = (0x10 << 1) | 0x00
pinPadMapSERCOM1Pad0 byte = (0x20 << 1) | 0x00
pinPadMapSERCOM2Pad0 byte = (0x30 << 1) | 0x00
pinPadMapSERCOM3Pad0 byte = (0x40 << 1) | 0x00
pinPadMapSERCOM4Pad0 byte = (0x50 << 1) | 0x00
pinPadMapSERCOM5Pad0 byte = (0x60 << 1) | 0x00
pinPadMapSERCOM0Pad2 byte = (0x10 << 1) | 0x10
pinPadMapSERCOM1Pad2 byte = (0x20 << 1) | 0x10
pinPadMapSERCOM2Pad2 byte = (0x30 << 1) | 0x10
pinPadMapSERCOM3Pad2 byte = (0x40 << 1) | 0x10
pinPadMapSERCOM4Pad2 byte = (0x50 << 1) | 0x10
pinPadMapSERCOM5Pad2 byte = (0x60 << 1) | 0x10
pinPadMapSERCOM0AltPad0 byte = (0x01 << 1) | 0x00
pinPadMapSERCOM1AltPad0 byte = (0x02 << 1) | 0x00
pinPadMapSERCOM2AltPad0 byte = (0x03 << 1) | 0x00
pinPadMapSERCOM3AltPad0 byte = (0x04 << 1) | 0x00
pinPadMapSERCOM4AltPad0 byte = (0x05 << 1) | 0x00
pinPadMapSERCOM5AltPad0 byte = (0x06 << 1) | 0x00
pinPadMapSERCOM0AltPad2 byte = (0x01 << 1) | 0x01
pinPadMapSERCOM1AltPad2 byte = (0x02 << 1) | 0x01
pinPadMapSERCOM2AltPad2 byte = (0x03 << 1) | 0x01
pinPadMapSERCOM3AltPad2 byte = (0x04 << 1) | 0x01
pinPadMapSERCOM4AltPad2 byte = (0x05 << 1) | 0x01
pinPadMapSERCOM5AltPad2 byte = (0x06 << 1) | 0x01
)
// pinPadMapping lists which pins have which SERCOMs attached to them.
// The encoding is rather dense, with each byte encoding two pins and both
// SERCOM and SERCOM-ALT.
//
// Observations:
// - There are six SERCOMs. Those SERCOM numbers can be encoded in 3 bits.
// - Even pad numbers are always on even pins, and odd pad numbers are always on
// odd pins.
// - Pin pads come in pairs. If PA00 has pad 0, then PA01 has pad 1.
//
// With this information, we can encode SERCOM pin/pad numbers much more
// efficiently. First of all, due to pads coming in pairs, we can ignore half
// the pins: the information for an odd pin can be calculated easily from the
// preceding even pin. And second, if odd pads are always on odd pins and even
// pads on even pins, we can drop a single bit from the pad number.
//
// Each byte below is split in two nibbles. The 4 high bits are for SERCOM and
// the 4 low bits are for SERCOM-ALT. Of each nibble, the 3 high bits encode the
// SERCOM + 1 while the low bit encodes whether this is PAD0 or PAD2 (0 means
// PAD0, 1 means PAD2). It encodes SERCOM + 1 instead of just the SERCOM number,
// to make it easy to check whether a nibble is set at all.
var pinPadMapping = [32]byte{
// page 21
PA00 / 2: 0 | pinPadMapSERCOM1AltPad0,
PB08 / 2: 0 | pinPadMapSERCOM4AltPad0,
PA04 / 2: 0 | pinPadMapSERCOM0AltPad0,
PA06 / 2: 0 | pinPadMapSERCOM0AltPad2,
PA08 / 2: pinPadMapSERCOM0Pad0 | pinPadMapSERCOM2AltPad0,
PA10 / 2: pinPadMapSERCOM0Pad2 | pinPadMapSERCOM2AltPad2,
// page 22
PB10 / 2: 0 | pinPadMapSERCOM4AltPad2,
PB12 / 2: pinPadMapSERCOM4Pad0 | 0,
PB14 / 2: pinPadMapSERCOM4Pad2 | 0,
PA12 / 2: pinPadMapSERCOM2Pad0 | pinPadMapSERCOM4AltPad0,
PA14 / 2: pinPadMapSERCOM2Pad2 | pinPadMapSERCOM4AltPad2,
PA16 / 2: pinPadMapSERCOM1Pad0 | pinPadMapSERCOM3AltPad0,
PA18 / 2: pinPadMapSERCOM1Pad2 | pinPadMapSERCOM3AltPad2,
PB16 / 2: pinPadMapSERCOM5Pad0 | 0,
PA20 / 2: pinPadMapSERCOM5Pad2 | pinPadMapSERCOM3AltPad2,
PA22 / 2: pinPadMapSERCOM3Pad0 | pinPadMapSERCOM5AltPad0,
PA24 / 2: pinPadMapSERCOM3Pad2 | pinPadMapSERCOM5AltPad2,
// page 23
PB22 / 2: 0 | pinPadMapSERCOM5AltPad2,
PA30 / 2: 0 | pinPadMapSERCOM1AltPad2,
PB30 / 2: 0 | pinPadMapSERCOM5AltPad0,
PB00 / 2: 0 | pinPadMapSERCOM5AltPad2,
PB02 / 2: 0 | pinPadMapSERCOM5AltPad0,
}
// findPinPadMapping looks up the pad number and the pinmode for a given pin,
// given a SERCOM number. The result can either be SERCOM, SERCOM-ALT, or "not
// found" (indicated by returning ok=false). The pad number is returned to
// calculate the DOPO/DIPO bitfields of the various serial peripherals.
func findPinPadMapping(sercom uint8, pin Pin) (pinMode PinMode, pad uint32, ok bool) {
if int(pin)/2 >= len(pinPadMapping) {
// This is probably NoPin, for which no mapping is available.
return
}
nibbles := pinPadMapping[pin/2]
upper := nibbles >> 4
lower := nibbles & 0xf
if upper != 0 {
// SERCOM
if (upper>>1)-1 == sercom {
pinMode = PinSERCOM
pad |= uint32((upper & 1) << 1)
ok = true
}
}
if lower != 0 {
// SERCOM-ALT
if (lower>>1)-1 == sercom {
pinMode = PinSERCOMAlt
pad |= uint32((lower & 1) << 1)
ok = true
}
}
if ok {
// The lower bit of the pad is the same as the lower bit of the pin number.
pad |= uint32(pin & 1)
}
return
}
// SetInterrupt sets an interrupt to be executed when a particular pin changes
// state. The pin should already be configured as an input, including a pull up
// or down if no external pull is provided.
//
// This call will replace a previously set callback on this pin. You can pass a
// nil func to unset the pin change interrupt. If you do so, the change
// parameter is ignored and can be set to any value (such as 0).
func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error {
// Most pins follow a common pattern where the EXTINT value is the pin
// number modulo 16. However, there are a few exceptions, as you can see
// below.
extint := uint8(0)
switch p {
case PA08:
// Connected to NMI. This is not currently supported.
return ErrInvalidInputPin
case PA24:
extint = 12
case PA25:
extint = 13
case PA27:
extint = 15
case PA28:
extint = 8
case PA30:
extint = 10
case PA31:
extint = 11
default:
// All other pins follow a normal pattern.
extint = uint8(p) % 16
}
if callback == nil {
// Disable this pin interrupt (if it was enabled).
sam.EIC.INTENCLR.Set(1 << extint)
if pinCallbacks[extint] != nil {
pinCallbacks[extint] = nil
}
return nil
}
if pinCallbacks[extint] != nil {
// The pin was already configured.
// To properly re-configure a pin, unset it first and set a new
// configuration.
return ErrNoPinChangeChannel
}
pinCallbacks[extint] = callback
interruptPins[extint] = p
if sam.EIC.CTRL.Get() == 0 {
// EIC peripheral has not yet been initialized. Initialize it now.
// The EIC needs two clocks: CLK_EIC_APB and GCLK_EIC. CLK_EIC_APB is
// enabled by default, so doesn't have to be re-enabled. The other is
// required for detecting edges and must be enabled manually.
sam.GCLK.CLKCTRL.Set(sam.GCLK_CLKCTRL_ID_EIC<<sam.GCLK_CLKCTRL_ID_Pos |
sam.GCLK_CLKCTRL_GEN_GCLK0<<sam.GCLK_CLKCTRL_GEN_Pos |
sam.GCLK_CLKCTRL_CLKEN)
// should not be necessary (CLKCTRL is not synchronized)
for sam.GCLK.STATUS.HasBits(sam.GCLK_STATUS_SYNCBUSY) {
}
sam.EIC.CTRL.Set(sam.EIC_CTRL_ENABLE)
for sam.EIC.STATUS.HasBits(sam.EIC_STATUS_SYNCBUSY) {
}
}
// Configure this pin. Set the 4 bits of the EIC.CONFIGx register to the
// sense value (filter bit set to 0, sense bits set to the change value).
addr := &sam.EIC.CONFIG0
if extint >= 8 {
addr = &sam.EIC.CONFIG1
}
pos := (extint % 8) * 4 // bit position in register
addr.ReplaceBits(uint32(change), 0xf, pos)
// Enable external interrupt for this pin.
sam.EIC.INTENSET.Set(1 << extint)
// Set the PMUXEN flag, while keeping the INEN and PULLEN flags (if they
// were set before). This avoids clearing the pin pull mode while
// configuring the pin interrupt.
p.setPinCfg(sam.PORT_PINCFG0_PMUXEN | (p.getPinCfg() & (sam.PORT_PINCFG0_INEN | sam.PORT_PINCFG0_PULLEN)))
if p&1 > 0 {
// odd pin, so save the even pins
val := p.getPMux() & sam.PORT_PMUX0_PMUXE_Msk
p.setPMux(val | (sam.PORT_PMUX0_PMUXO_A << sam.PORT_PMUX0_PMUXO_Pos))
} else {
// even pin, so save the odd pins
val := p.getPMux() & sam.PORT_PMUX0_PMUXO_Msk
p.setPMux(val | (sam.PORT_PMUX0_PMUXE_A << sam.PORT_PMUX0_PMUXE_Pos))
}
interrupt.New(sam.IRQ_EIC, func(interrupt.Interrupt) {
flags := sam.EIC.INTFLAG.Get()
sam.EIC.INTFLAG.Set(flags) // clear interrupt
for i := uint(0); i < 16; i++ { // there are 16 channels
if flags&(1<<i) != 0 {
pinCallbacks[i](interruptPins[i])
}
}
}).Enable()
return nil
}
// InitADC initializes the ADC.
func InitADC() {
// ADC Bias Calibration
// #define ADC_FUSES_BIASCAL_ADDR (NVMCTRL_OTP4 + 4)
// #define ADC_FUSES_BIASCAL_Pos 3 /**< \brief (NVMCTRL_OTP4) ADC Bias Calibration */
// #define ADC_FUSES_BIASCAL_Msk (0x7u << ADC_FUSES_BIASCAL_Pos)
// #define ADC_FUSES_BIASCAL(value) ((ADC_FUSES_BIASCAL_Msk & ((value) << ADC_FUSES_BIASCAL_Pos)))
// #define ADC_FUSES_LINEARITY_0_ADDR NVMCTRL_OTP4
// #define ADC_FUSES_LINEARITY_0_Pos 27 /**< \brief (NVMCTRL_OTP4) ADC Linearity bits 4:0 */
// #define ADC_FUSES_LINEARITY_0_Msk (0x1Fu << ADC_FUSES_LINEARITY_0_Pos)
// #define ADC_FUSES_LINEARITY_0(value) ((ADC_FUSES_LINEARITY_0_Msk & ((value) << ADC_FUSES_LINEARITY_0_Pos)))
// #define ADC_FUSES_LINEARITY_1_ADDR (NVMCTRL_OTP4 + 4)
// #define ADC_FUSES_LINEARITY_1_Pos 0 /**< \brief (NVMCTRL_OTP4) ADC Linearity bits 7:5 */
// #define ADC_FUSES_LINEARITY_1_Msk (0x7u << ADC_FUSES_LINEARITY_1_Pos)
// #define ADC_FUSES_LINEARITY_1(value) ((ADC_FUSES_LINEARITY_1_Msk & ((value) << ADC_FUSES_LINEARITY_1_Pos)))
biasFuse := *(*uint32)(unsafe.Pointer(uintptr(0x00806020) + 4))
bias := uint16(biasFuse>>3) & uint16(0x7)
// ADC Linearity bits 4:0
linearity0Fuse := *(*uint32)(unsafe.Pointer(uintptr(0x00806020)))
linearity := uint16(linearity0Fuse>>27) & uint16(0x1f)
// ADC Linearity bits 7:5
linearity1Fuse := *(*uint32)(unsafe.Pointer(uintptr(0x00806020) + 4))
linearity |= uint16(linearity1Fuse) & uint16(0x7) << 5
// set calibration
sam.ADC.CALIB.Set((bias << 8) | linearity)
}
// Configure configures a ADC pin to be able to be used to read data.
func (a ADC) Configure(config ADCConfig) {
// Wait for synchronization
waitADCSync()
var resolution uint32
switch config.Resolution {
case 8:
resolution = sam.ADC_CTRLB_RESSEL_8BIT
case 10:
resolution = sam.ADC_CTRLB_RESSEL_10BIT
case 12:
resolution = sam.ADC_CTRLB_RESSEL_12BIT
case 16:
resolution = sam.ADC_CTRLB_RESSEL_16BIT
default:
resolution = sam.ADC_CTRLB_RESSEL_12BIT
}
// Divide Clock by 32 with 12 bits resolution as default
sam.ADC.CTRLB.Set((sam.ADC_CTRLB_PRESCALER_DIV32 << sam.ADC_CTRLB_PRESCALER_Pos) |
uint16(resolution<<sam.ADC_CTRLB_RESSEL_Pos))
// Sampling Time Length
sam.ADC.SAMPCTRL.Set(5)
// Wait for synchronization
waitADCSync()
// Use internal ground
sam.ADC.INPUTCTRL.Set(sam.ADC_INPUTCTRL_MUXNEG_GND << sam.ADC_INPUTCTRL_MUXNEG_Pos)
// Averaging (see datasheet table in AVGCTRL register description)
var samples uint32
switch config.Samples {
case 1:
samples = sam.ADC_AVGCTRL_SAMPLENUM_1
case 2:
samples = sam.ADC_AVGCTRL_SAMPLENUM_2
case 4:
samples = sam.ADC_AVGCTRL_SAMPLENUM_4
case 8:
samples = sam.ADC_AVGCTRL_SAMPLENUM_8
case 16:
samples = sam.ADC_AVGCTRL_SAMPLENUM_16
case 32:
samples = sam.ADC_AVGCTRL_SAMPLENUM_32
case 64:
samples = sam.ADC_AVGCTRL_SAMPLENUM_64
case 128:
samples = sam.ADC_AVGCTRL_SAMPLENUM_128
case 256:
samples = sam.ADC_AVGCTRL_SAMPLENUM_256
case 512:
samples = sam.ADC_AVGCTRL_SAMPLENUM_512
case 1024:
samples = sam.ADC_AVGCTRL_SAMPLENUM_1024
default:
samples = sam.ADC_AVGCTRL_SAMPLENUM_1
}
sam.ADC.AVGCTRL.Set(uint8(samples<<sam.ADC_AVGCTRL_SAMPLENUM_Pos) |
(0x0 << sam.ADC_AVGCTRL_ADJRES_Pos))
// TODO: use config.Reference to set AREF level
// Analog Reference is AREF pin (3.3v)
sam.ADC.INPUTCTRL.SetBits(sam.ADC_INPUTCTRL_GAIN_DIV2 << sam.ADC_INPUTCTRL_GAIN_Pos)
// 1/2 VDDANA = 0.5 * 3V3 = 1.65V
sam.ADC.REFCTRL.SetBits(sam.ADC_REFCTRL_REFSEL_INTVCC1 << sam.ADC_REFCTRL_REFSEL_Pos)
a.Pin.Configure(PinConfig{Mode: PinAnalog})
return
}
// Get returns the current value of a ADC pin, in the range 0..0xffff.
func (a ADC) Get() uint16 {
ch := a.getADCChannel()
// Selection for the positive ADC input
sam.ADC.INPUTCTRL.ClearBits(sam.ADC_INPUTCTRL_MUXPOS_Msk)
waitADCSync()
sam.ADC.INPUTCTRL.SetBits(uint32(ch << sam.ADC_INPUTCTRL_MUXPOS_Pos))
waitADCSync()
// Select internal ground for ADC input
sam.ADC.INPUTCTRL.ClearBits(sam.ADC_INPUTCTRL_MUXNEG_Msk)
waitADCSync()
sam.ADC.INPUTCTRL.SetBits(sam.ADC_INPUTCTRL_MUXNEG_GND << sam.ADC_INPUTCTRL_MUXNEG_Pos)
waitADCSync()
// Enable ADC
sam.ADC.CTRLA.SetBits(sam.ADC_CTRLA_ENABLE)
waitADCSync()
// Start conversion
sam.ADC.SWTRIG.SetBits(sam.ADC_SWTRIG_START)
waitADCSync()
// wait for first conversion to finish to fix same issue as
// https://github.com/arduino/ArduinoCore-samd/issues/446
for !sam.ADC.INTFLAG.HasBits(sam.ADC_INTFLAG_RESRDY) {
}
// Clear the Data Ready flag
sam.ADC.INTFLAG.SetBits(sam.ADC_INTFLAG_RESRDY)
waitADCSync()
// Start conversion again, since first conversion after reference voltage changed is invalid.
sam.ADC.SWTRIG.SetBits(sam.ADC_SWTRIG_START)
waitADCSync()
// Waiting for conversion to complete
for !sam.ADC.INTFLAG.HasBits(sam.ADC_INTFLAG_RESRDY) {
}
val := sam.ADC.RESULT.Get()
// Disable ADC
sam.ADC.CTRLA.ClearBits(sam.ADC_CTRLA_ENABLE)
waitADCSync()
// scales to 16-bit result
switch (sam.ADC.CTRLB.Get() & sam.ADC_CTRLB_RESSEL_Msk) >> sam.ADC_CTRLB_RESSEL_Pos {
case sam.ADC_CTRLB_RESSEL_8BIT:
val = val << 8
case sam.ADC_CTRLB_RESSEL_10BIT:
val = val << 6
case sam.ADC_CTRLB_RESSEL_16BIT:
val = val << 4
case sam.ADC_CTRLB_RESSEL_12BIT:
val = val << 4
}
return val
}
func (a ADC) getADCChannel() uint8 {
switch a.Pin {
case PA02:
return 0
case PA03:
return 1
case PB04:
return 12
case PB05:
return 13
case PB06:
return 14
case PB07:
return 15
case PB08:
return 2
case PB09:
return 3
case PA04:
return 4
case PA05:
return 5
case PA06:
return 6
case PA07:
return 7
case PA08:
return 16
case PA09:
return 17
case PA10:
return 18
case PA11:
return 19
case PB00:
return 8
case PB01:
return 9
case PB02:
return 10
case PB03:
return 11
default:
return 0
}
}
func waitADCSync() {
for sam.ADC.STATUS.HasBits(sam.ADC_STATUS_SYNCBUSY) {
}
}
// UART on the SAMD21.
type UART struct {
Buffer *RingBuffer
Bus *sam.SERCOM_USART_Type
SERCOM uint8
Interrupt interrupt.Interrupt
}
const (
sampleRate16X = 16
lsbFirst = 1
)
// Configure the UART.
func (uart *UART) Configure(config UARTConfig) error {
// Default baud rate to 115200.
if config.BaudRate == 0 {
config.BaudRate = 115200
}
// Use default pins if pins are not set.
if config.TX == 0 && config.RX == 0 {
// use default pins
config.TX = UART_TX_PIN
config.RX = UART_RX_PIN
}
// Determine transmit pinout.
txPinMode, txPad, ok := findPinPadMapping(uart.SERCOM, config.TX)
if !ok {
return ErrInvalidOutputPin
}
var txPadOut uint32
// See table 25-9 of the datasheet (page 459) for how pads are mapped to
// pinout values.
switch txPad {
case 0:
txPadOut = 0
case 2:
txPadOut = 1
default:
// this should be a flow control (RTS/CTS) pin
return ErrInvalidOutputPin
}
// Determine receive pinout.
rxPinMode, rxPad, ok := findPinPadMapping(uart.SERCOM, config.RX)
if !ok {
return ErrInvalidInputPin
}
// As you can see in table 25-8 on page 459 of the datasheet, input pins
// are mapped directly.
rxPadOut := rxPad
// configure pins
config.TX.Configure(PinConfig{Mode: txPinMode})
config.RX.Configure(PinConfig{Mode: rxPinMode})
// configure RTS/CTS pins if provided
if config.RTS != 0 && config.CTS != 0 {
rtsPinMode, _, ok := findPinPadMapping(uart.SERCOM, config.RTS)
if !ok {
return ErrInvalidOutputPin
}
ctsPinMode, _, ok := findPinPadMapping(uart.SERCOM, config.CTS)
if !ok {
return ErrInvalidInputPin
}
// See table 25-9 of the datasheet (page 459) for how pads are mapped to
// pinout values.
if txPadOut == 1 {
return ErrInvalidOutputPin
}
txPadOut = 2
config.RTS.Configure(PinConfig{Mode: rtsPinMode})
config.CTS.Configure(PinConfig{Mode: ctsPinMode})
}
// reset SERCOM0
uart.Bus.CTRLA.SetBits(sam.SERCOM_USART_CTRLA_SWRST)
for uart.Bus.CTRLA.HasBits(sam.SERCOM_USART_CTRLA_SWRST) ||
uart.Bus.SYNCBUSY.HasBits(sam.SERCOM_USART_SYNCBUSY_SWRST) {
}
// set UART mode/sample rate
// SERCOM_USART_CTRLA_MODE(mode) |
// SERCOM_USART_CTRLA_SAMPR(sampleRate);
uart.Bus.CTRLA.Set((sam.SERCOM_USART_CTRLA_MODE_USART_INT_CLK << sam.SERCOM_USART_CTRLA_MODE_Pos) |
(1 << sam.SERCOM_USART_CTRLA_SAMPR_Pos)) // sample rate of 16x
// Set baud rate
uart.SetBaudRate(config.BaudRate)
// setup UART frame
// SERCOM_USART_CTRLA_FORM( (parityMode == SERCOM_NO_PARITY ? 0 : 1) ) |
// dataOrder << SERCOM_USART_CTRLA_DORD_Pos;
uart.Bus.CTRLA.SetBits((0 << sam.SERCOM_USART_CTRLA_FORM_Pos) | // no parity
(lsbFirst << sam.SERCOM_USART_CTRLA_DORD_Pos)) // data order
// set UART stop bits/parity
// SERCOM_USART_CTRLB_CHSIZE(charSize) |
// nbStopBits << SERCOM_USART_CTRLB_SBMODE_Pos |
// (parityMode == SERCOM_NO_PARITY ? 0 : parityMode) << SERCOM_USART_CTRLB_PMODE_Pos; //If no parity use default value
uart.Bus.CTRLB.SetBits((0 << sam.SERCOM_USART_CTRLB_CHSIZE_Pos) | // 8 bits is 0
(0 << sam.SERCOM_USART_CTRLB_SBMODE_Pos) | // 1 stop bit is zero
(0 << sam.SERCOM_USART_CTRLB_PMODE_Pos)) // no parity
// set UART pads. This is not same as pins...
// SERCOM_USART_CTRLA_TXPO(txPad) |
// SERCOM_USART_CTRLA_RXPO(rxPad);
uart.Bus.CTRLA.SetBits((txPadOut << sam.SERCOM_USART_CTRLA_TXPO_Pos) |
(rxPadOut << sam.SERCOM_USART_CTRLA_RXPO_Pos))
// Enable Transceiver and Receiver
//sercom->USART.CTRLB.reg |= SERCOM_USART_CTRLB_TXEN | SERCOM_USART_CTRLB_RXEN ;
uart.Bus.CTRLB.SetBits(sam.SERCOM_USART_CTRLB_TXEN | sam.SERCOM_USART_CTRLB_RXEN)
// Enable USART1 port.
// sercom->USART.CTRLA.bit.ENABLE = 0x1u;
uart.Bus.CTRLA.SetBits(sam.SERCOM_USART_CTRLA_ENABLE)
for uart.Bus.SYNCBUSY.HasBits(sam.SERCOM_USART_SYNCBUSY_ENABLE) {
}
// setup interrupt on receive
uart.Bus.INTENSET.Set(sam.SERCOM_USART_INTENSET_RXC)
// Enable RX IRQ.
uart.Interrupt.Enable()
return nil
}
// SetBaudRate sets the communication speed for the UART.
func (uart *UART) SetBaudRate(br uint32) {
// Asynchronous fractional mode (Table 24-2 in datasheet)
// BAUD = fref / (sampleRateValue * fbaud)
// (multiply by 8, to calculate fractional piece)
// uint32_t baudTimes8 = (SystemCoreClock * 8) / (16 * baudrate);
baud := (CPUFrequency() * 8) / (sampleRate16X * br)
// sercom->USART.BAUD.FRAC.FP = (baudTimes8 % 8);
// sercom->USART.BAUD.FRAC.BAUD = (baudTimes8 / 8);
uart.Bus.BAUD.Set(uint16(((baud % 8) << sam.SERCOM_USART_BAUD_FRAC_MODE_FP_Pos) |
((baud / 8) << sam.SERCOM_USART_BAUD_FRAC_MODE_BAUD_Pos)))
}
// WriteByte writes a byte of data to the UART.
func (uart *UART) writeByte(c byte) error {
// wait until ready to receive
for !uart.Bus.INTFLAG.HasBits(sam.SERCOM_USART_INTFLAG_DRE) {
}
uart.Bus.DATA.Set(uint16(c))
return nil
}
func (uart *UART) flush() {}
// handleInterrupt should be called from the appropriate interrupt handler for
// this UART instance.
func (uart *UART) handleInterrupt(interrupt.Interrupt) {
// should reset IRQ
uart.Receive(byte((uart.Bus.DATA.Get() & 0xFF)))
uart.Bus.INTFLAG.SetBits(sam.SERCOM_USART_INTFLAG_RXC)
}
// I2C on the SAMD21.
type I2C struct {
Bus *sam.SERCOM_I2CM_Type
SERCOM uint8
}
// I2CConfig is used to store config info for I2C.
type I2CConfig struct {
Frequency uint32
SCL Pin
SDA Pin
}
const (
// Default rise time in nanoseconds, based on 4.7K ohm pull up resistors
riseTimeNanoseconds = 125
// wire bus states
wireUnknownState = 0
wireIdleState = 1
wireOwnerState = 2
wireBusyState = 3
// wire commands
wireCmdNoAction = 0
wireCmdRepeatStart = 1
wireCmdRead = 2
wireCmdStop = 3
)
const i2cTimeout = 1000
// Configure is intended to setup the I2C interface.
func (i2c *I2C) Configure(config I2CConfig) error {
// Default I2C bus speed is 100 kHz.
if config.Frequency == 0 {
config.Frequency = 100 * KHz
}
if config.SDA == 0 && config.SCL == 0 {
config.SDA = SDA_PIN
config.SCL = SCL_PIN
}
sclPinMode, sclPad, ok := findPinPadMapping(i2c.SERCOM, config.SCL)
if !ok || sclPad != 1 {
// SCL must be on pad 1, according to section 27.5 of the datasheet.
// Note: this is not an exhaustive test for I2C support on the pin: not
// all pins support I2C.
return ErrInvalidClockPin
}
sdaPinMode, sdaPad, ok := findPinPadMapping(i2c.SERCOM, config.SDA)
if !ok || sdaPad != 0 {
// SDA must be on pad 0, according to section 27.5 of the datasheet.
// Note: this is not an exhaustive test for I2C support on the pin: not
// all pins support I2C.
return ErrInvalidDataPin
}
// reset SERCOM
i2c.Bus.CTRLA.SetBits(sam.SERCOM_I2CM_CTRLA_SWRST)
for i2c.Bus.CTRLA.HasBits(sam.SERCOM_I2CM_CTRLA_SWRST) ||
i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SWRST) {
}
// Set i2c controller mode
//SERCOM_I2CM_CTRLA_MODE( I2C_MASTER_OPERATION )
i2c.Bus.CTRLA.Set(sam.SERCOM_I2CM_CTRLA_MODE_I2C_MASTER << sam.SERCOM_I2CM_CTRLA_MODE_Pos) // |
i2c.SetBaudRate(config.Frequency)
// Enable I2CM port.
// sercom->USART.CTRLA.bit.ENABLE = 0x1u;
i2c.Bus.CTRLA.SetBits(sam.SERCOM_I2CM_CTRLA_ENABLE)
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_ENABLE) {
}
// set bus idle mode
i2c.Bus.STATUS.SetBits(wireIdleState << sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos)
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
}
// enable pins
config.SDA.Configure(PinConfig{Mode: sdaPinMode})
config.SCL.Configure(PinConfig{Mode: sclPinMode})
return nil
}
// SetBaudRate sets the communication speed for I2C.
func (i2c *I2C) SetBaudRate(br uint32) error {
// Synchronous arithmetic baudrate, via Arduino SAMD implementation:
// SystemCoreClock / ( 2 * baudrate) - 5 - (((SystemCoreClock / 1000000) * WIRE_RISE_TIME_NANOSECONDS) / (2 * 1000));
baud := CPUFrequency()/(2*br) - 5 - (((CPUFrequency() / 1000000) * riseTimeNanoseconds) / (2 * 1000))
i2c.Bus.BAUD.Set(baud)
return nil
}
// Tx does a single I2C transaction at the specified address.
// It clocks out the given address, writes the bytes in w, reads back len(r)
// bytes and stores them in r, and generates a stop condition on the bus.
func (i2c *I2C) Tx(addr uint16, w, r []byte) error {
var err error
if len(w) != 0 {
// send start/address for write
i2c.sendAddress(addr, true)
// wait until transmission complete
timeout := i2cTimeout
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
// ACK received (0: ACK, 1: NACK)
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
return errI2CAckExpected
}
// write data
for _, b := range w {
err = i2c.WriteByte(b)
if err != nil {
return err
}
}
err = i2c.signalStop()
if err != nil {
return err
}
}
if len(r) != 0 {
// send start/address for read
i2c.sendAddress(addr, false)
// wait transmission complete
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_SB) {
// If the peripheral NACKS the address, the MB bit will be set.
// In that case, send a stop condition and return error.
if i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
i2c.Bus.CTRLB.SetBits(wireCmdStop << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Stop condition
return errI2CAckExpected
}
}
// ACK received (0: ACK, 1: NACK)
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
return errI2CAckExpected
}
// read first byte
r[0] = i2c.readByte()
for i := 1; i < len(r); i++ {
// Send an ACK
i2c.Bus.CTRLB.ClearBits(sam.SERCOM_I2CM_CTRLB_ACKACT)
i2c.signalRead()
// Read data and send the ACK
r[i] = i2c.readByte()
}
// Send NACK to end transmission
i2c.Bus.CTRLB.SetBits(sam.SERCOM_I2CM_CTRLB_ACKACT)
err = i2c.signalStop()
if err != nil {
return err
}
}
return nil
}
// WriteByte writes a single byte to the I2C bus.
func (i2c *I2C) WriteByte(data byte) error {
// Send data byte
i2c.Bus.DATA.Set(data)
// wait until transmission successful
timeout := i2cTimeout
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
// check for bus error
if sam.SERCOM3_I2CM.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_BUSERR) {
return errI2CBusError
}
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
return errI2CAckExpected
}
return nil
}
// sendAddress sends the address and start signal
func (i2c *I2C) sendAddress(address uint16, write bool) error {
data := (address << 1)
if !write {
data |= 1 // set read flag
}
// wait until bus ready
timeout := i2cTimeout
for !i2c.Bus.STATUS.HasBits(wireIdleState<<sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos) &&
!i2c.Bus.STATUS.HasBits(wireOwnerState<<sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos) {
timeout--
if timeout == 0 {
return errI2CBusReadyTimeout
}
}
i2c.Bus.ADDR.Set(uint32(data))
return nil
}
func (i2c *I2C) signalStop() error {
i2c.Bus.CTRLB.SetBits(wireCmdStop << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Stop command
timeout := i2cTimeout
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
timeout--
if timeout == 0 {
return errI2CSignalStopTimeout
}
}
return nil
}
func (i2c *I2C) signalRead() error {
i2c.Bus.CTRLB.SetBits(wireCmdRead << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Read command
timeout := i2cTimeout
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
timeout--
if timeout == 0 {
return errI2CSignalReadTimeout
}
}
return nil
}
func (i2c *I2C) readByte() byte {
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_SB) {
}
return byte(i2c.Bus.DATA.Get())
}
// I2S on the SAMD21.
// I2S
type I2S struct {
Bus *sam.I2S_Type
}
var I2S0 = I2S{Bus: sam.I2S}
// Configure is used to configure the I2S interface. You must call this
// before you can use the I2S bus.
func (i2s I2S) Configure(config I2SConfig) {
// handle defaults
if config.SCK == 0 {
config.SCK = I2S_SCK_PIN
config.WS = I2S_WS_PIN
config.SD = I2S_SD_PIN
}
if config.AudioFrequency == 0 {
config.AudioFrequency = 48000
}
if config.DataFormat == I2SDataFormatDefault {
if config.Stereo {
config.DataFormat = I2SDataFormat16bit
} else {
config.DataFormat = I2SDataFormat32bit
}
}
// Turn on clock for I2S
sam.PM.APBCMASK.SetBits(sam.PM_APBCMASK_I2S_)
// setting clock rate for sample.
division_factor := CPUFrequency() / (config.AudioFrequency * uint32(config.DataFormat))
// Switch Generic Clock Generator 3 to DFLL48M.
sam.GCLK.GENDIV.Set((sam.GCLK_CLKCTRL_GEN_GCLK3 << sam.GCLK_GENDIV_ID_Pos) |
(division_factor << sam.GCLK_GENDIV_DIV_Pos))
waitForSync()
sam.GCLK.GENCTRL.Set((sam.GCLK_CLKCTRL_GEN_GCLK3 << sam.GCLK_GENCTRL_ID_Pos) |
(sam.GCLK_GENCTRL_SRC_DFLL48M << sam.GCLK_GENCTRL_SRC_Pos) |
sam.GCLK_GENCTRL_IDC |
sam.GCLK_GENCTRL_GENEN)
waitForSync()
// Use Generic Clock Generator 3 as source for I2S.
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_I2S_0 << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK3 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
waitForSync()
// reset the device
i2s.Bus.CTRLA.SetBits(sam.I2S_CTRLA_SWRST)
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_SWRST) {
}
// disable device before continuing
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_ENABLE) {
}
i2s.Bus.CTRLA.ClearBits(sam.I2S_CTRLA_ENABLE)
// setup clock
if config.ClockSource == I2SClockSourceInternal {
// TODO: make sure correct for I2S output
// set serial clock select pin
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_SCKSEL)
// set frame select pin
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_FSSEL)
} else {
// Configure FS generation from SCK clock.
i2s.Bus.CLKCTRL0.ClearBits(sam.I2S_CLKCTRL_FSSEL)
}
if config.Standard == I2StandardPhilips {
// set 1-bit delay
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_BITDELAY)
} else {
// set 0-bit delay
i2s.Bus.CLKCTRL0.ClearBits(sam.I2S_CLKCTRL_BITDELAY)
}
// set number of slots.
if config.Stereo {
i2s.Bus.CLKCTRL0.SetBits(1 << sam.I2S_CLKCTRL_NBSLOTS_Pos)
} else {
i2s.Bus.CLKCTRL0.ClearBits(1 << sam.I2S_CLKCTRL_NBSLOTS_Pos)
}
// set slot size
switch config.DataFormat {
case I2SDataFormat8bit:
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_SLOTSIZE_8)
case I2SDataFormat16bit:
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_SLOTSIZE_16)
case I2SDataFormat24bit:
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_SLOTSIZE_24)
case I2SDataFormat32bit:
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_SLOTSIZE_32)
}
// configure pin for clock
config.SCK.Configure(PinConfig{Mode: PinCom})
// configure pin for WS, if needed
if config.WS != NoPin {
config.WS.Configure(PinConfig{Mode: PinCom})
}
// now set serializer data size.
switch config.DataFormat {
case I2SDataFormat8bit:
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_DATASIZE_8 << sam.I2S_SERCTRL_DATASIZE_Pos)
case I2SDataFormat16bit:
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_DATASIZE_16 << sam.I2S_SERCTRL_DATASIZE_Pos)
case I2SDataFormat24bit:
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_DATASIZE_24 << sam.I2S_SERCTRL_DATASIZE_Pos)
case I2SDataFormat32bit:
case I2SDataFormatDefault:
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_DATASIZE_32 << sam.I2S_SERCTRL_DATASIZE_Pos)
}
// set serializer slot adjustment
if config.Standard == I2SStandardLSB {
// adjust right
i2s.Bus.SERCTRL1.ClearBits(sam.I2S_SERCTRL_SLOTADJ)
// transfer LSB first
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_BITREV)
} else {
// adjust left
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_SLOTADJ)
}
// set serializer mode.
if config.Mode == I2SModePDM {
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_SERMODE_PDM2)
} else {
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_SERMODE_RX)
}
// configure data pin
config.SD.Configure(PinConfig{Mode: PinCom})
// re-enable
i2s.Bus.CTRLA.SetBits(sam.I2S_CTRLA_ENABLE)
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_ENABLE) {
}
// enable i2s clock
i2s.Bus.CTRLA.SetBits(sam.I2S_CTRLA_CKEN0)
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_CKEN0) {
}
// enable i2s serializer
i2s.Bus.CTRLA.SetBits(sam.I2S_CTRLA_SEREN1)
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_SEREN1) {
}
}
// Read data from the I2S bus into the provided slice.
// The I2S bus must already have been configured correctly.
func (i2s I2S) Read(p []uint32) (n int, err error) {
i := 0
for i = 0; i < len(p); i++ {
// Wait until ready
for !i2s.Bus.INTFLAG.HasBits(sam.I2S_INTFLAG_RXRDY1) {
}
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_DATA1) {
}
// read data
p[i] = i2s.Bus.DATA1.Get()
// indicate read complete
i2s.Bus.INTFLAG.Set(sam.I2S_INTFLAG_RXRDY1)
}
return i, nil
}
// Write data to the I2S bus from the provided slice.
// The I2S bus must already have been configured correctly.
func (i2s I2S) Write(p []uint32) (n int, err error) {
i := 0
for i = 0; i < len(p); i++ {
// Wait until ready
for !i2s.Bus.INTFLAG.HasBits(sam.I2S_INTFLAG_TXRDY1) {
}
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_DATA1) {
}
// write data
i2s.Bus.DATA1.Set(p[i])
// indicate write complete
i2s.Bus.INTFLAG.Set(sam.I2S_INTFLAG_TXRDY1)
}
return i, nil
}
// Close the I2S bus.
func (i2s I2S) Close() error {
// Sync wait
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_ENABLE) {
}
// disable I2S
i2s.Bus.CTRLA.ClearBits(sam.I2S_CTRLA_ENABLE)
return nil
}
func waitForSync() {
for sam.GCLK.STATUS.HasBits(sam.GCLK_STATUS_SYNCBUSY) {
}
}
// SPI
type SPI struct {
Bus *sam.SERCOM_SPI_Type
SERCOM uint8
}
// SPIConfig is used to store config info for SPI.
type SPIConfig struct {
Frequency uint32
SCK Pin
SDO Pin
SDI Pin
LSBFirst bool
Mode uint8
}
// Configure is intended to setup the SPI interface.
func (spi SPI) Configure(config SPIConfig) error {
// Use default pins if not set.
if config.SCK == 0 && config.SDO == 0 && config.SDI == 0 {
config.SCK = SPI0_SCK_PIN
config.SDO = SPI0_SDO_PIN
config.SDI = SPI0_SDI_PIN
}
// set default frequency
if config.Frequency == 0 {
config.Frequency = 4000000
}
// Determine the input pinout (for SDI).
SDIPinMode, SDIPad, ok := findPinPadMapping(spi.SERCOM, config.SDI)
if !ok {
return ErrInvalidInputPin
}
dataInPinout := SDIPad // mapped directly
// Determine the output pinout (for SDO/SCK).
// See table 26-7 on page 494 of the datasheet.
var dataOutPinout uint32
sckPinMode, sckPad, ok := findPinPadMapping(spi.SERCOM, config.SCK)
if !ok {
return ErrInvalidOutputPin
}
SDOPinMode, SDOPad, ok := findPinPadMapping(spi.SERCOM, config.SDO)
if !ok {
return ErrInvalidOutputPin
}
switch sckPad {
case 1:
switch SDOPad {
case 0:
dataOutPinout = 0x0
case 3:
dataOutPinout = 0x2
default:
return ErrInvalidOutputPin
}
case 3:
switch SDOPad {
case 2:
dataOutPinout = 0x1
case 0:
dataOutPinout = 0x3
default:
return ErrInvalidOutputPin
}
default:
return ErrInvalidOutputPin
}
// Disable SPI port.
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_ENABLE)
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPI_SYNCBUSY_ENABLE) {
}
// enable pins
config.SCK.Configure(PinConfig{Mode: sckPinMode})
config.SDO.Configure(PinConfig{Mode: SDOPinMode})
config.SDI.Configure(PinConfig{Mode: SDIPinMode})
// reset SERCOM
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPI_CTRLA_SWRST)
for spi.Bus.CTRLA.HasBits(sam.SERCOM_SPI_CTRLA_SWRST) ||
spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPI_SYNCBUSY_SWRST) {
}
// set bit transfer order
dataOrder := uint32(0)
if config.LSBFirst {
dataOrder = 1
}
// Set SPI mode to controller
spi.Bus.CTRLA.Set((sam.SERCOM_SPI_CTRLA_MODE_SPI_MASTER << sam.SERCOM_SPI_CTRLA_MODE_Pos) |
(dataOutPinout << sam.SERCOM_SPI_CTRLA_DOPO_Pos) |
(dataInPinout << sam.SERCOM_SPI_CTRLA_DIPO_Pos) |
(dataOrder << sam.SERCOM_SPI_CTRLA_DORD_Pos))
spi.Bus.CTRLB.SetBits((0 << sam.SERCOM_SPI_CTRLB_CHSIZE_Pos) | // 8bit char size
sam.SERCOM_SPI_CTRLB_RXEN) // receive enable
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPI_SYNCBUSY_CTRLB) {
}
// set mode
switch config.Mode {
case 0:
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPHA)
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPOL)
case 1:
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPI_CTRLA_CPHA)
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPOL)
case 2:
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPHA)
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPI_CTRLA_CPOL)
case 3:
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPI_CTRLA_CPHA | sam.SERCOM_SPI_CTRLA_CPOL)
default: // to mode 0
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPHA)
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPOL)
}
// Set synch speed for SPI
baudRate := CPUFrequency() / (2 * config.Frequency)
if baudRate > 0 {
baudRate--
}
spi.Bus.BAUD.Set(uint8(baudRate))
// Enable SPI port.
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPI_CTRLA_ENABLE)
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPI_SYNCBUSY_ENABLE) {
}
return nil
}
// Transfer writes/reads a single byte using the SPI interface.
func (spi SPI) Transfer(w byte) (byte, error) {
// write data
spi.Bus.DATA.Set(uint32(w))
// wait for receive
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
}
// return data
return byte(spi.Bus.DATA.Get()), nil
}
// Tx handles read/write operation for SPI interface. Since SPI is a synchronous write/read
// interface, there must always be the same number of bytes written as bytes read.
// The Tx method knows about this, and offers a few different ways of calling it.
//
// This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer.
// Note that the tx and rx buffers must be the same size:
//
// spi.Tx(tx, rx)
//
// This form sends the tx buffer, ignoring the result. Useful for sending "commands" that return zeros
// until all the bytes in the command packet have been received:
//
// spi.Tx(tx, nil)
//
// This form sends zeros, putting the result into the rx buffer. Good for reading a "result packet":
//
// spi.Tx(nil, rx)
func (spi SPI) Tx(w, r []byte) error {
switch {
case w == nil:
// read only, so write zero and read a result.
spi.rx(r)
case r == nil:
// write only
spi.tx(w)
default:
// write/read
if len(w) != len(r) {
return ErrTxInvalidSliceSize
}
spi.txrx(w, r)
}
return nil
}
func (spi SPI) tx(tx []byte) {
for i := 0; i < len(tx); i++ {
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_DRE) {
}
spi.Bus.DATA.Set(uint32(tx[i]))
}
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_TXC) {
}
// read to clear RXC register
for spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
spi.Bus.DATA.Get()
}
}
func (spi SPI) rx(rx []byte) {
spi.Bus.DATA.Set(0)
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_DRE) {
}
for i := 1; i < len(rx); i++ {
spi.Bus.DATA.Set(0)
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
}
rx[i-1] = byte(spi.Bus.DATA.Get())
}
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
}
rx[len(rx)-1] = byte(spi.Bus.DATA.Get())
}
func (spi SPI) txrx(tx, rx []byte) {
spi.Bus.DATA.Set(uint32(tx[0]))
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_DRE) {
}
for i := 1; i < len(rx); i++ {
spi.Bus.DATA.Set(uint32(tx[i]))
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
}
rx[i-1] = byte(spi.Bus.DATA.Get())
}
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
}
rx[len(rx)-1] = byte(spi.Bus.DATA.Get())
}
// TCC is one timer/counter peripheral, which consists of a counter and multiple
// output channels (that can be connected to actual pins). You can set the
// frequency using SetPeriod, but only for all the channels in this TCC
// peripheral at once.
type TCC sam.TCC_Type
// The SAM D21 has three TCC peripherals, which have PWM as one feature.
var (
TCC0 = (*TCC)(sam.TCC0)
TCC1 = (*TCC)(sam.TCC1)
TCC2 = (*TCC)(sam.TCC2)
)
//go:inline
func (tcc *TCC) timer() *sam.TCC_Type {
return (*sam.TCC_Type)(tcc)
}
// Configure enables and configures this TCC.
func (tcc *TCC) Configure(config PWMConfig) error {
// Enable the clock source for this timer.
switch tcc.timer() {
case sam.TCC0:
sam.PM.APBCMASK.SetBits(sam.PM_APBCMASK_TCC0_)
// Use GCLK0 for TCC0/TCC1
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_TCC0_TCC1 << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK0 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
for sam.GCLK.STATUS.HasBits(sam.GCLK_STATUS_SYNCBUSY) {
}
case sam.TCC1:
sam.PM.APBCMASK.SetBits(sam.PM_APBCMASK_TCC1_)
// Use GCLK0 for TCC0/TCC1
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_TCC0_TCC1 << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK0 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
for sam.GCLK.STATUS.HasBits(sam.GCLK_STATUS_SYNCBUSY) {
}
case sam.TCC2:
sam.PM.APBCMASK.SetBits(sam.PM_APBCMASK_TCC2_)
// Use GCLK0 for TCC2/TC3
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_TCC2_TC3 << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK0 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
for sam.GCLK.STATUS.HasBits(sam.GCLK_STATUS_SYNCBUSY) {
}
}
// Disable timer (if it was enabled). This is necessary because
// tcc.setPeriod may want to change the prescaler bits in CTRLA, which is
// only allowed when the TCC is disabled.
tcc.timer().CTRLA.ClearBits(sam.TCC_CTRLA_ENABLE)
// Use "Normal PWM" (single-slope PWM)
tcc.timer().WAVE.Set(sam.TCC_WAVE_WAVEGEN_NPWM)
// Wait for synchronization of all changed registers.
for tcc.timer().SYNCBUSY.Get() != 0 {
}
// Set the period and prescaler.
err := tcc.setPeriod(config.Period, true)
// Enable the timer.
tcc.timer().CTRLA.SetBits(sam.TCC_CTRLA_ENABLE)
// Wait for synchronization of all changed registers.
for tcc.timer().SYNCBUSY.Get() != 0 {
}
// Return any error that might have occurred in the tcc.setPeriod call.
return err
}
// SetPeriod updates the period of this TCC peripheral.
// To set a particular frequency, use the following formula:
//
// period = 1e9 / frequency
//
// If you use a period of 0, a period that works well for LEDs will be picked.
//
// SetPeriod will not change the prescaler, but also won't change the current
// value in any of the channels. This means that you may need to update the
// value for the particular channel.
//
// Note that you cannot pick any arbitrary period after the TCC peripheral has
// been configured. If you want to switch between frequencies, pick the lowest
// frequency (longest period) once when calling Configure and adjust the
// frequency here as needed.
func (tcc *TCC) SetPeriod(period uint64) error {
err := tcc.setPeriod(period, false)
if err == nil {
if tcc.Counter() >= tcc.Top() {
// When setting the timer to a shorter period, there is a chance
// that it passes the counter value and thus goes all the way to MAX
// before wrapping back to zero.
// To avoid this, reset the counter back to 0.
tcc.timer().COUNT.Set(0)
}
}
return err
}
// setPeriod sets the period of this TCC, possibly updating the prescaler as
// well. The prescaler can only modified when the TCC is disabled, that is, in
// the Configure function.
func (tcc *TCC) setPeriod(period uint64, updatePrescaler bool) error {
var top uint64
if period == 0 {
// Make sure the TOP value is at 0xffff (enough for a 16-bit timer).
top = 0xffff
} else {
// The formula below calculates the following formula, optimized:
// period * (48e6 / 1e9)
// This assumes that the chip is running at the (default) 48MHz speed.
top = period * 6 / 125
}
maxTop := uint64(0xffffff)
if tcc.timer() == sam.TCC2 {
// TCC2 is a 16-bit timer, not a 24-bit timer.
maxTop = 0xffff
}
if updatePrescaler {
// This function was called during Configure(), with the timer disabled.
// Note that updating the prescaler can only happen while the peripheral
// is disabled.
var prescaler uint32
switch {
case top <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV1
case top/2 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV2
top = top / 2
case top/4 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV4
top = top / 4
case top/8 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV8
top = top / 8
case top/16 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV16
top = top / 16
case top/64 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV64
top = top / 64
case top/256 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV256
top = top / 256
case top/1024 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV1024
top = top / 1024
default:
return ErrPWMPeriodTooLong
}
tcc.timer().CTRLA.Set((tcc.timer().CTRLA.Get() &^ sam.TCC_CTRLA_PRESCALER_Msk) | (prescaler << sam.TCC_CTRLA_PRESCALER_Pos))
} else {
// Do not update the prescaler, but use the already-configured
// prescaler. This is the normal SetPeriod case, where the prescaler
// must not be changed.
prescaler := (tcc.timer().CTRLA.Get() & sam.TCC_CTRLA_PRESCALER_Msk) >> sam.TCC_CTRLA_PRESCALER_Pos
switch prescaler {
case sam.TCC_CTRLA_PRESCALER_DIV1:
top /= 1 // no-op
case sam.TCC_CTRLA_PRESCALER_DIV2:
top /= 2
case sam.TCC_CTRLA_PRESCALER_DIV4:
top /= 4
case sam.TCC_CTRLA_PRESCALER_DIV8:
top /= 8
case sam.TCC_CTRLA_PRESCALER_DIV16:
top /= 16
case sam.TCC_CTRLA_PRESCALER_DIV64:
top /= 64
case sam.TCC_CTRLA_PRESCALER_DIV256:
top /= 256
case sam.TCC_CTRLA_PRESCALER_DIV1024:
top /= 1024
default:
// unreachable
}
if top > maxTop {
return ErrPWMPeriodTooLong
}
}
// Set the period (the counter top).
tcc.timer().PER.Set(uint32(top) - 1)
// Wait for synchronization of CTRLA.PRESCALER and PER registers.
for tcc.timer().SYNCBUSY.Get() != 0 {
}
return nil
}
// Top returns the current counter top, for use in duty cycle calculation. It
// will only change with a call to Configure or SetPeriod, otherwise it is
// constant.
//
// The value returned here is hardware dependent. In general, it's best to treat
// it as an opaque value that can be divided by some number and passed to Set
// (see Set documentation for more information).
func (tcc *TCC) Top() uint32 {
return tcc.timer().PER.Get() + 1
}
// Counter returns the current counter value of the timer in this TCC
// peripheral. It may be useful for debugging.
func (tcc *TCC) Counter() uint32 {
tcc.timer().CTRLBSET.Set(sam.TCC_CTRLBSET_CMD_READSYNC << sam.TCC_CTRLBSET_CMD_Pos)
for tcc.timer().SYNCBUSY.Get() != 0 {
}
return tcc.timer().COUNT.Get()
}
// Some constants to make pinTimerMapping below easier to read.
const (
pinTCC0 = 1
pinTCC1 = 2
pinTCC2 = 3
pinTimerCh0 = 0 << 3
pinTimerCh2 = 1 << 3
pinTCC0Ch0 = pinTCC0 | pinTimerCh0
pinTCC0Ch2 = pinTCC0 | pinTimerCh2
pinTCC1Ch0 = pinTCC1 | pinTimerCh0
pinTCC1Ch2 = pinTCC1 | pinTimerCh2
pinTCC2Ch0 = pinTCC2 | pinTimerCh0
)
// Mapping from pin number to TCC peripheral and channel using a special
// encoding. Note that only TCC0-TCC2 are included, not TC3 and up.
// Every byte is split in two nibbles where the low nibble describes PinTCC and
// the high nibble describes PinTCCAlt. Within a nibble, there is one bit that
// indicates Ch0/Ch1 or Ch2/Ch3, and three other bits that contain the TCC
// peripheral number plus one (to distinguish between TCC0Ch0 and 0).
//
// The encoding can be so compact because all pins are configured in pairs, so
// if you know PA00 you can infer the configuration of PA01. And only channel 0
// or 2 need to be included (taking up just one bit), because channel 0 and 2
// are only ever used on odd pins and channel 1 and 3 on even pins, again using
// the pin pair pattern to reduce the amount of information needed to be stored.
//
// Datasheet: https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
var pinTimerMapping = [...]uint8{
// page 21
PA00 / 2: pinTCC2Ch0 | 0,
PA04 / 2: pinTCC0Ch0 | 0,
PA06 / 2: pinTCC1Ch0 | 0,
PA08 / 2: pinTCC0Ch0 | pinTCC1Ch2<<4,
PA10 / 2: pinTCC1Ch0 | pinTCC0Ch2<<4,
// page 22
PB10 / 2: 0 | pinTCC0Ch0<<4,
PB12 / 2: 0 | pinTCC0Ch2<<4,
PA12 / 2: pinTCC2Ch0 | pinTCC0Ch2<<4,
PA14 / 2: 0 | pinTCC0Ch0<<4,
PA16 / 2: pinTCC2Ch0 | pinTCC0Ch2<<4,
PA18 / 2: 0 | pinTCC0Ch2<<4,
PB16 / 2: 0 | pinTCC0Ch0<<4,
PA20 / 2: 0 | pinTCC0Ch2<<4,
PA22 / 2: 0 | pinTCC0Ch0<<4,
PA24 / 2: 0 | pinTCC1Ch2<<4,
// page 23
PA30 / 2: 0 | pinTCC1Ch0<<4,
PB30 / 2: pinTCC0Ch0 | pinTCC1Ch2<<4,
}
// findPinTimerMapping returns the pin mode (PinTCC or PinTCCAlt) and the channel
// number for a given timer and pin. A zero PinMode is returned if no mapping
// could be found.
func findPinTimerMapping(timer uint8, pin Pin) (PinMode, uint8) {
mapping := pinTimerMapping[pin/2]
// evenChannel below indicates the channel 0 or 2, for the even part of the
// pin pair. The next pin will also have the next channel (1 or 3).
if mapping&0x07 == timer+1 {
// PWM output is on peripheral function E.
evenChannel := ((mapping >> 3) & 1) * 2
return PinTCC, evenChannel + uint8(pin&1)
}
if (mapping&0x70)>>4 == timer+1 {
// PWM output is on peripheral function F.
evenChannel := ((mapping >> 7) & 1) * 2
return PinTCCAlt, evenChannel + uint8(pin&1)
}
return 0, 0
}
// Channel returns a PWM channel for the given pin. Note that one channel may be
// shared between multiple pins, and so will have the same duty cycle. If this
// is not desirable, look for a different TCC peripheral or consider using a
// different pin.
func (tcc *TCC) Channel(pin Pin) (uint8, error) {
var pinMode PinMode
var channel uint8
switch tcc.timer() {
case sam.TCC0:
pinMode, channel = findPinTimerMapping(0, pin)
case sam.TCC1:
pinMode, channel = findPinTimerMapping(1, pin)
case sam.TCC2:
pinMode, channel = findPinTimerMapping(2, pin)
}
if pinMode == 0 {
// No pin could be found.
return 0, ErrInvalidOutputPin
}
// Enable the port multiplexer for pin
pin.setPinCfg(sam.PORT_PINCFG0_PMUXEN)
if pin&1 > 0 {
// odd pin, so save the even pins
val := pin.getPMux() & sam.PORT_PMUX0_PMUXE_Msk
pin.setPMux(val | uint8(pinMode<<sam.PORT_PMUX0_PMUXO_Pos))
} else {
// even pin, so save the odd pins
val := pin.getPMux() & sam.PORT_PMUX0_PMUXO_Msk
pin.setPMux(val | uint8(pinMode<<sam.PORT_PMUX0_PMUXE_Pos))
}
return channel, nil
}
// SetInverting sets whether to invert the output of this channel.
// Without inverting, a 25% duty cycle would mean the output is high for 25% of
// the time and low for the rest. Inverting flips the output as if a NOT gate
// was placed at the output, meaning that the output would be 25% low and 75%
// high with a duty cycle of 25%.
func (tcc *TCC) SetInverting(channel uint8, inverting bool) {
if inverting {
tcc.timer().WAVE.SetBits(1 << (sam.TCC_WAVE_POL0_Pos + channel))
} else {
tcc.timer().WAVE.ClearBits(1 << (sam.TCC_WAVE_POL0_Pos + channel))
}
// Wait for synchronization of the WAVE register.
for tcc.timer().SYNCBUSY.Get() != 0 {
}
}
// Set updates the channel value. This is used to control the channel duty
// cycle, in other words the fraction of time the channel output is high (or low
// when inverted). For example, to set it to a 25% duty cycle, use:
//
// tcc.Set(channel, tcc.Top() / 4)
//
// tcc.Set(channel, 0) will set the output to low and tcc.Set(channel,
// tcc.Top()) will set the output to high, assuming the output isn't inverted.
func (tcc *TCC) Set(channel uint8, value uint32) {
// Set PWM signal to output duty cycle
switch channel {
case 0:
tcc.timer().CC0.Set(value)
case 1:
tcc.timer().CC1.Set(value)
case 2:
tcc.timer().CC2.Set(value)
case 3:
tcc.timer().CC3.Set(value)
default:
// invalid PWM channel, ignore.
}
// Wait for synchronization on all channels (or anything in this peripheral,
// really).
for tcc.timer().SYNCBUSY.Get() != 0 {
}
}
// EnterBootloader should perform a system reset in preparation
// to switch to the bootloader to flash new firmware.
func EnterBootloader() {
arm.DisableInterrupts()
// Perform magic reset into bootloader, as mentioned in
// https://github.com/arduino/ArduinoCore-samd/issues/197
*(*uint32)(unsafe.Pointer(uintptr(0x20007FFC))) = resetMagicValue
arm.SystemReset()
}
// DAC on the SAMD21.
type DAC struct {
}
var (
DAC0 = DAC{}
)
// DACConfig placeholder for future expansion.
type DACConfig struct {
}
// Configure the DAC.
// output pin must already be configured.
func (dac DAC) Configure(config DACConfig) {
// Turn on clock for DAC
sam.PM.APBCMASK.SetBits(sam.PM_APBCMASK_DAC_)
// Use Generic Clock Generator 0 as source for DAC.
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_DAC << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK0 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
waitForSync()
// reset DAC
sam.DAC.CTRLA.Set(sam.DAC_CTRLA_SWRST)
syncDAC()
// wait for reset complete
for sam.DAC.CTRLA.HasBits(sam.DAC_CTRLA_SWRST) {
}
// enable
sam.DAC.CTRLB.Set(sam.DAC_CTRLB_EOEN | sam.DAC_CTRLB_REFSEL_AVCC)
sam.DAC.CTRLA.Set(sam.DAC_CTRLA_ENABLE)
}
// Set writes a single 16-bit value to the DAC.
// Since the ATSAMD21 only has a 10-bit DAC, the passed-in value will be scaled down.
func (dac DAC) Set(value uint16) error {
sam.DAC.DATA.Set(value >> 6)
syncDAC()
return nil
}
func syncDAC() {
for sam.DAC.STATUS.HasBits(sam.DAC_STATUS_SYNCBUSY) {
}
}
// Flash related code
const memoryStart = 0x0
// compile-time check for ensuring we fulfill BlockDevice interface
var _ BlockDevice = flashBlockDevice{}
var Flash flashBlockDevice
type flashBlockDevice struct {
initComplete bool
}
// ReadAt reads the given number of bytes from the block device.
func (f flashBlockDevice) ReadAt(p []byte, off int64) (n int, err error) {
if FlashDataStart()+uintptr(off)+uintptr(len(p)) > FlashDataEnd() {
return 0, errFlashCannotReadPastEOF
}
f.ensureInitComplete()
waitWhileFlashBusy()
data := unsafe.Slice((*byte)(unsafe.Add(unsafe.Pointer(FlashDataStart()), uintptr(off))), len(p))
copy(p, data)
return len(p), nil
}
// WriteAt writes the given number of bytes to the block device.
// Only word (32 bits) length data can be programmed.
// See Atmel-42181G–SAM-D21_Datasheet–09/2015 page 359.
// If the length of p is not long enough it will be padded with 0xFF bytes.
// This method assumes that the destination is already erased.
func (f flashBlockDevice) WriteAt(p []byte, off int64) (n int, err error) {
if FlashDataStart()+uintptr(off)+uintptr(len(p)) > FlashDataEnd() {
return 0, errFlashCannotWritePastEOF
}
f.ensureInitComplete()
address := FlashDataStart() + uintptr(off)
padded := f.pad(p)
waitWhileFlashBusy()
for j := 0; j < len(padded); j += int(f.WriteBlockSize()) {
// write word
*(*uint32)(unsafe.Pointer(address)) = binary.LittleEndian.Uint32(padded[j : j+int(f.WriteBlockSize())])
sam.NVMCTRL.SetADDR(uint32(address >> 1))
sam.NVMCTRL.CTRLA.Set(sam.NVMCTRL_CTRLA_CMD_WP | (sam.NVMCTRL_CTRLA_CMDEX_KEY << sam.NVMCTRL_CTRLA_CMDEX_Pos))
waitWhileFlashBusy()
if err := checkFlashError(); err != nil {
return j, err
}
address += uintptr(f.WriteBlockSize())
}
return len(padded), nil
}
// Size returns the number of bytes in this block device.
func (f flashBlockDevice) Size() int64 {
return int64(FlashDataEnd() - FlashDataStart())
}
const writeBlockSize = 4
// WriteBlockSize returns the block size in which data can be written to
// memory. It can be used by a client to optimize writes, non-aligned writes
// should always work correctly.
func (f flashBlockDevice) WriteBlockSize() int64 {
return writeBlockSize
}
const eraseBlockSizeValue = 256
func eraseBlockSize() int64 {
return eraseBlockSizeValue
}
// EraseBlockSize returns the smallest erasable area on this particular chip
// in bytes. This is used for the block size in EraseBlocks.
func (f flashBlockDevice) EraseBlockSize() int64 {
return eraseBlockSize()
}
// EraseBlocks erases the given number of blocks. An implementation may
// transparently coalesce ranges of blocks into larger bundles if the chip
// supports this. The start and len parameters are in block numbers, use
// EraseBlockSize to map addresses to blocks.
func (f flashBlockDevice) EraseBlocks(start, len int64) error {
f.ensureInitComplete()
address := FlashDataStart() + uintptr(start*f.EraseBlockSize())
waitWhileFlashBusy()
for i := start; i < start+len; i++ {
sam.NVMCTRL.SetADDR(uint32(address >> 1))
sam.NVMCTRL.CTRLA.Set(sam.NVMCTRL_CTRLA_CMD_ER | (sam.NVMCTRL_CTRLA_CMDEX_KEY << sam.NVMCTRL_CTRLA_CMDEX_Pos))
waitWhileFlashBusy()
if err := checkFlashError(); err != nil {
return err
}
address += uintptr(f.EraseBlockSize())
}
return nil
}
// pad data if needed so it is long enough for correct byte alignment on writes.
func (f flashBlockDevice) pad(p []byte) []byte {
overflow := int64(len(p)) % f.WriteBlockSize()
if overflow == 0 {
return p
}
padding := bytes.Repeat([]byte{0xff}, int(f.WriteBlockSize()-overflow))
return append(p, padding...)
}
func (f flashBlockDevice) ensureInitComplete() {
if f.initComplete {
return
}
sam.NVMCTRL.SetCTRLB_READMODE(sam.NVMCTRL_CTRLB_READMODE_NO_MISS_PENALTY)
sam.NVMCTRL.SetCTRLB_SLEEPPRM(sam.NVMCTRL_CTRLB_SLEEPPRM_WAKEONACCESS)
waitWhileFlashBusy()
f.initComplete = true
}
func waitWhileFlashBusy() {
for sam.NVMCTRL.GetINTFLAG_READY() != sam.NVMCTRL_INTFLAG_READY {
}
}
var (
errFlashPROGE = errors.New("errFlashPROGE")
errFlashLOCKE = errors.New("errFlashLOCKE")
errFlashNVME = errors.New("errFlashNVME")
)
func checkFlashError() error {
switch {
case sam.NVMCTRL.GetSTATUS_PROGE() != 0:
return errFlashPROGE
case sam.NVMCTRL.GetSTATUS_LOCKE() != 0:
return errFlashLOCKE
case sam.NVMCTRL.GetSTATUS_NVME() != 0:
return errFlashNVME
}
return nil
}
|