1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
//go:build (sam && atsame51) || (sam && atsame54)
package machine
import (
"device/sam"
"errors"
"runtime/interrupt"
"unsafe"
)
const (
CANRxFifoSize = 16
CANTxFifoSize = 16
CANEvFifoSize = 16
)
// Message RAM can only be located in the first 64 KB area of the system RAM.
// TODO: when the go:section pragma is merged, add the section configuration
//go:align 4
var CANRxFifo [2][(8 + 64) * CANRxFifoSize]byte
//go:align 4
var CANTxFifo [2][(8 + 64) * CANTxFifoSize]byte
//go:align 4
var CANEvFifo [2][(8) * CANEvFifoSize]byte
type CAN struct {
Bus *sam.CAN_Type
}
type CANTransferRate uint32
// CAN transfer rates for CANConfig
const (
CANTransferRate125kbps CANTransferRate = 125000
CANTransferRate250kbps CANTransferRate = 250000
CANTransferRate500kbps CANTransferRate = 500000
CANTransferRate1000kbps CANTransferRate = 1000000
CANTransferRate2000kbps CANTransferRate = 2000000
CANTransferRate4000kbps CANTransferRate = 4000000
)
// CANConfig holds CAN configuration parameters. Tx and Rx need to be
// specified with some pins. When the Standby Pin is specified, configure it
// as an output pin and output Low in Configure(). If this operation is not
// necessary, specify NoPin.
type CANConfig struct {
TransferRate CANTransferRate
TransferRateFD CANTransferRate
Tx Pin
Rx Pin
Standby Pin
}
var (
errCANInvalidTransferRate = errors.New("CAN: invalid TransferRate")
errCANInvalidTransferRateFD = errors.New("CAN: invalid TransferRateFD")
)
// Configure this CAN peripheral with the given configuration.
func (can *CAN) Configure(config CANConfig) error {
if config.Standby != NoPin {
config.Standby.Configure(PinConfig{Mode: PinOutput})
config.Standby.Low()
}
mode := PinCAN0
if can.instance() == 1 {
mode = PinCAN1
}
config.Rx.Configure(PinConfig{Mode: mode})
config.Tx.Configure(PinConfig{Mode: mode})
can.Bus.CCCR.SetBits(sam.CAN_CCCR_INIT)
for !can.Bus.CCCR.HasBits(sam.CAN_CCCR_INIT) {
}
can.Bus.CCCR.SetBits(sam.CAN_CCCR_CCE)
can.Bus.CCCR.SetBits(sam.CAN_CCCR_BRSE | sam.CAN_CCCR_FDOE)
can.Bus.MRCFG.Set(sam.CAN_MRCFG_QOS_MEDIUM)
// base clock == 48 MHz
if config.TransferRate == 0 {
config.TransferRate = CANTransferRate500kbps
}
brp := uint32(6)
switch config.TransferRate {
case CANTransferRate125kbps:
brp = 32
case CANTransferRate250kbps:
brp = 16
case CANTransferRate500kbps:
brp = 8
case CANTransferRate1000kbps:
brp = 4
default:
return errCANInvalidTransferRate
}
can.Bus.NBTP.Set(8<<sam.CAN_NBTP_NTSEG1_Pos | (brp-1)<<sam.CAN_NBTP_NBRP_Pos |
1<<sam.CAN_NBTP_NTSEG2_Pos | 3<<sam.CAN_NBTP_NSJW_Pos)
if config.TransferRateFD == 0 {
config.TransferRateFD = CANTransferRate1000kbps
}
if config.TransferRateFD < config.TransferRate {
return errCANInvalidTransferRateFD
}
brp = uint32(2)
switch config.TransferRateFD {
case CANTransferRate125kbps:
brp = 32
case CANTransferRate250kbps:
brp = 16
case CANTransferRate500kbps:
brp = 8
case CANTransferRate1000kbps:
brp = 4
case CANTransferRate2000kbps:
brp = 2
case CANTransferRate4000kbps:
brp = 1
default:
return errCANInvalidTransferRateFD
}
can.Bus.DBTP.Set((brp-1)<<sam.CAN_DBTP_DBRP_Pos | 8<<sam.CAN_DBTP_DTSEG1_Pos |
1<<sam.CAN_DBTP_DTSEG2_Pos | 3<<sam.CAN_DBTP_DSJW_Pos)
can.Bus.RXF0C.Set(sam.CAN_RXF0C_F0OM | CANRxFifoSize<<sam.CAN_RXF0C_F0S_Pos | uint32(uintptr(unsafe.Pointer(&CANRxFifo[can.instance()][0])))&0xFFFF)
can.Bus.RXESC.Set(sam.CAN_RXESC_F0DS_DATA64)
can.Bus.TXESC.Set(sam.CAN_TXESC_TBDS_DATA64)
can.Bus.TXBC.Set(CANTxFifoSize<<sam.CAN_TXBC_TFQS_Pos | 0<<sam.CAN_TXBC_NDTB_Pos | uint32(uintptr(unsafe.Pointer(&CANTxFifo[can.instance()][0])))&0xFFFF)
can.Bus.TXEFC.Set(CANEvFifoSize<<sam.CAN_TXEFC_EFS_Pos | uint32(uintptr(unsafe.Pointer(&CANEvFifo[can.instance()][0])))&0xFFFF)
can.Bus.TSCC.Set(sam.CAN_TSCC_TSS_INC)
can.Bus.GFC.Set(0<<sam.CAN_GFC_ANFS_Pos | 0<<sam.CAN_GFC_ANFE_Pos)
can.Bus.SIDFC.Set(0 << sam.CAN_SIDFC_LSS_Pos)
can.Bus.XIDFC.Set(0 << sam.CAN_SIDFC_LSS_Pos)
can.Bus.XIDAM.Set(0x1FFFFFFF << sam.CAN_XIDAM_EIDM_Pos)
can.Bus.ILE.SetBits(sam.CAN_ILE_EINT0)
can.Bus.CCCR.ClearBits(sam.CAN_CCCR_CCE)
can.Bus.CCCR.ClearBits(sam.CAN_CCCR_INIT)
for can.Bus.CCCR.HasBits(sam.CAN_CCCR_INIT) {
}
return nil
}
// Callbacks to be called for CAN.SetInterrupt(). Wre're using the magic
// constant 2 and 32 here because the SAM E51/E54 has 2 CAN and 32 interrupt
// sources.
var (
canInstances [2]*CAN
canCallbacks [2][32]func(*CAN)
)
// SetInterrupt sets an interrupt to be executed when a particular CAN state.
//
// This call will replace a previously set callback. You can pass a nil func
// to unset the CAN interrupt. If you do so, the change parameter is ignored
// and can be set to any value (such as 0).
func (can *CAN) SetInterrupt(ie uint32, callback func(*CAN)) error {
if callback == nil {
// Disable this CAN interrupt
can.Bus.IE.ClearBits(ie)
return nil
}
can.Bus.IE.SetBits(ie)
idx := 0
switch can.Bus {
case sam.CAN0:
canInstances[0] = can
case sam.CAN1:
canInstances[1] = can
idx = 1
}
for i := uint(0); i < 32; i++ {
if ie&(1<<i) != 0 {
canCallbacks[idx][i] = callback
}
}
switch can.Bus {
case sam.CAN0:
interrupt.New(sam.IRQ_CAN0, func(interrupt.Interrupt) {
ir := sam.CAN0.IR.Get()
sam.CAN0.IR.Set(ir) // clear interrupt
for i := uint(0); i < 32; i++ {
if ir&(1<<i) != 0 && canCallbacks[0][i] != nil {
canCallbacks[0][i](canInstances[0])
}
}
}).Enable()
case sam.CAN1:
interrupt.New(sam.IRQ_CAN1, func(interrupt.Interrupt) {
ir := sam.CAN1.IR.Get()
sam.CAN1.IR.Set(ir) // clear interrupt
for i := uint(0); i < 32; i++ {
if ir&(1<<i) != 0 && canCallbacks[1][i] != nil {
canCallbacks[1][i](canInstances[1])
}
}
}).Enable()
}
return nil
}
// TxFifoIsFull returns whether TxFifo is full or not.
func (can *CAN) TxFifoIsFull() bool {
return (can.Bus.TXFQS.Get() & sam.CAN_TXFQS_TFQF_Msk) == sam.CAN_TXFQS_TFQF_Msk
}
// TxFifoFreeLevel returns how many messages can still be set in the TxFifo.
func (can *CAN) TxFifoFreeLevel() int {
return int(can.Bus.GetTXFQS_TFFL())
}
// TxRaw sends a CAN Frame according to CANTxBufferElement.
func (can *CAN) TxRaw(e *CANTxBufferElement) {
putIndex := (can.Bus.TXFQS.Get() & sam.CAN_TXFQS_TFQPI_Msk) >> sam.CAN_TXFQS_TFQPI_Pos
f := CANTxFifo[can.instance()][putIndex*(8+64) : (putIndex+1)*(8+64)]
id := e.ID
if !e.XTD {
// standard identifier is stored into ID[28:18]
id <<= 18
}
f[3] = byte(id>>24) & 0x1F
if e.ESI {
f[3] |= 0x80
}
if e.XTD {
f[3] |= 0x40
}
if e.RTR {
f[3] |= 0x20
}
f[2] = byte(id >> 16)
f[1] = byte(id >> 8)
f[0] = byte(id)
f[7] = e.MM
f[6] = e.DLC
if e.EFC {
f[6] |= 0x80
}
if e.FDF {
f[6] |= 0x20
}
if e.BRS {
f[6] |= 0x10
}
f[5] = 0x00 // reserved
f[4] = 0x00 // reserved
length := CANDlcToLength(e.DLC, e.FDF)
for i := byte(0); i < length; i++ {
f[8+i] = e.DB[i]
}
can.Bus.TXBAR.SetBits(1 << putIndex)
}
// The Tx transmits CAN frames. It is easier to use than TxRaw, but not as
// flexible.
func (can *CAN) Tx(id uint32, data []byte, isFD, isExtendedID bool) {
length := byte(len(data))
dlc := CANLengthToDlc(length, true)
e := CANTxBufferElement{
ESI: false,
XTD: isExtendedID,
RTR: false,
ID: id,
MM: 0x00,
EFC: true,
FDF: isFD,
BRS: isFD,
DLC: dlc,
}
if !isFD {
if length > 8 {
length = 8
}
}
for i := byte(0); i < length; i++ {
e.DB[i] = data[i]
}
can.TxRaw(&e)
}
// RxFifoSize returns the number of CAN Frames currently stored in the RXFifo.
func (can *CAN) RxFifoSize() int {
sz := (can.Bus.RXF0S.Get() & sam.CAN_RXF0S_F0FL_Msk) >> sam.CAN_RXF0S_F0FL_Pos
return int(sz)
}
// RxFifoIsFull returns whether RxFifo is full or not.
func (can *CAN) RxFifoIsFull() bool {
sz := (can.Bus.RXF0S.Get() & sam.CAN_RXF0S_F0FL_Msk) >> sam.CAN_RXF0S_F0FL_Pos
return sz == CANRxFifoSize
}
// RxFifoIsEmpty returns whether RxFifo is empty or not.
func (can *CAN) RxFifoIsEmpty() bool {
sz := (can.Bus.RXF0S.Get() & sam.CAN_RXF0S_F0FL_Msk) >> sam.CAN_RXF0S_F0FL_Pos
return sz == 0
}
// RxRaw copies the received CAN frame to CANRxBufferElement.
func (can *CAN) RxRaw(e *CANRxBufferElement) {
idx := (can.Bus.RXF0S.Get() & sam.CAN_RXF0S_F0GI_Msk) >> sam.CAN_RXF0S_F0GI_Pos
f := CANRxFifo[can.instance()][idx*(8+64):]
e.ESI = false
if (f[3] & 0x80) != 0x00 {
e.ESI = true
}
e.XTD = false
if (f[3] & 0x40) != 0x00 {
e.XTD = true
}
e.RTR = false
if (f[3] & 0x20) != 0x00 {
e.RTR = true
}
id := ((uint32(f[3]) << 24) + (uint32(f[2]) << 16) + (uint32(f[1]) << 8) + uint32(f[0])) & 0x1FFFFFFF
if !e.XTD {
id >>= 18
id &= 0x000007FF
}
e.ID = id
e.ANMF = false
if (f[7] & 0x80) != 0x00 {
e.ANMF = true
}
e.FIDX = f[7] & 0x7F
e.FDF = false
if (f[6] & 0x20) != 0x00 {
e.FDF = true
}
e.BRS = false
if (f[6] & 0x10) != 0x00 {
e.BRS = true
}
e.DLC = f[6] & 0x0F
e.RXTS = (uint16(f[5]) << 8) + uint16(f[4])
for i := byte(0); i < CANDlcToLength(e.DLC, e.FDF); i++ {
e.DB[i] = f[i+8]
}
can.Bus.RXF0A.ReplaceBits(idx, sam.CAN_RXF0A_F0AI_Msk, sam.CAN_RXF0A_F0AI_Pos)
}
// Rx receives a CAN frame. It is easier to use than RxRaw, but not as
// flexible.
func (can *CAN) Rx() (id uint32, dlc byte, data []byte, isFd, isExtendedID bool) {
e := CANRxBufferElement{}
can.RxRaw(&e)
length := CANDlcToLength(e.DLC, e.FDF)
return e.ID, length, e.DB[:length], e.FDF, e.XTD
}
func (can *CAN) instance() byte {
if can.Bus == sam.CAN0 {
return 0
} else {
return 1
}
}
// CANTxBufferElement is a struct that corresponds to the same5x' Tx Buffer
// Element.
type CANTxBufferElement struct {
ESI bool
XTD bool
RTR bool
ID uint32
MM uint8
EFC bool
FDF bool
BRS bool
DLC uint8
DB [64]uint8
}
// CANRxBufferElement is a struct that corresponds to the same5x Rx Buffer and
// FIFO Element.
type CANRxBufferElement struct {
ESI bool
XTD bool
RTR bool
ID uint32
ANMF bool
FIDX uint8
FDF bool
BRS bool
DLC uint8
RXTS uint16
DB [64]uint8
}
// Data returns the received data as a slice of the size according to dlc.
func (e CANRxBufferElement) Data() []byte {
return e.DB[:CANDlcToLength(e.DLC, e.FDF)]
}
// Length returns its actual length.
func (e CANRxBufferElement) Length() byte {
return CANDlcToLength(e.DLC, e.FDF)
}
// CANDlcToLength() converts a DLC value to its actual length.
func CANDlcToLength(dlc byte, isFD bool) byte {
length := dlc
if dlc == 0x09 {
length = 12
} else if dlc == 0x0A {
length = 16
} else if dlc == 0x0B {
length = 20
} else if dlc == 0x0C {
length = 24
} else if dlc == 0x0D {
length = 32
} else if dlc == 0x0E {
length = 48
} else if dlc == 0x0F {
length = 64
}
return length
}
// CANLengthToDlc() converts its actual length to a DLC value.
func CANLengthToDlc(length byte, isFD bool) byte {
dlc := length
if length <= 0x08 {
} else if length <= 12 {
dlc = 0x09
} else if length <= 16 {
dlc = 0x0A
} else if length <= 20 {
dlc = 0x0B
} else if length <= 24 {
dlc = 0x0C
} else if length <= 32 {
dlc = 0x0D
} else if length <= 48 {
dlc = 0x0E
} else if length <= 64 {
dlc = 0x0F
}
return dlc
}
|