1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
//go:build !baremetal
package machine
import (
"crypto/rand"
)
// Dummy machine package that calls out to external functions.
const deviceName = "generic"
var (
USB = &UART{100}
)
// The Serial port always points to the default UART in a simulated environment.
//
// TODO: perhaps this should be a special serial object that outputs via WASI
// stdout calls.
var Serial = hardwareUART0
const (
PinInput PinMode = iota
PinOutput
PinInputPullup
PinInputPulldown
)
func (p Pin) Configure(config PinConfig) {
gpioConfigure(p, config)
}
func (p Pin) Set(value bool) {
gpioSet(p, value)
}
func (p Pin) Get() bool {
return gpioGet(p)
}
//export __tinygo_gpio_configure
func gpioConfigure(pin Pin, config PinConfig)
//export __tinygo_gpio_set
func gpioSet(pin Pin, value bool)
//export __tinygo_gpio_get
func gpioGet(pin Pin) bool
type SPI struct {
Bus uint8
}
type SPIConfig struct {
Frequency uint32
SCK Pin
SDO Pin
SDI Pin
Mode uint8
}
func (spi SPI) Configure(config SPIConfig) error {
spiConfigure(spi.Bus, config.SCK, config.SDO, config.SDI)
return nil
}
// Transfer writes/reads a single byte using the SPI interface.
func (spi SPI) Transfer(w byte) (byte, error) {
return spiTransfer(spi.Bus, w), nil
}
// Tx handles read/write operation for SPI interface. Since SPI is a synchronous write/read
// interface, there must always be the same number of bytes written as bytes read.
// The Tx method knows about this, and offers a few different ways of calling it.
//
// This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer.
// Note that the tx and rx buffers must be the same size:
//
// spi.Tx(tx, rx)
//
// This form sends the tx buffer, ignoring the result. Useful for sending "commands" that return zeros
// until all the bytes in the command packet have been received:
//
// spi.Tx(tx, nil)
//
// This form sends zeros, putting the result into the rx buffer. Good for reading a "result packet":
//
// spi.Tx(nil, rx)
func (spi SPI) Tx(w, r []byte) error {
var wptr, rptr *byte
var wlen, rlen int
if len(w) != 0 {
wptr = &w[0]
wlen = len(w)
}
if len(r) != 0 {
rptr = &r[0]
rlen = len(r)
}
spiTX(spi.Bus, wptr, wlen, rptr, rlen)
return nil
}
//export __tinygo_spi_configure
func spiConfigure(bus uint8, sck Pin, SDO Pin, SDI Pin)
//export __tinygo_spi_transfer
func spiTransfer(bus uint8, w uint8) uint8
//export __tinygo_spi_tx
func spiTX(bus uint8, wptr *byte, wlen int, rptr *byte, rlen int) uint8
// InitADC enables support for ADC peripherals.
func InitADC() {
// Nothing to do here.
}
// Configure configures an ADC pin to be able to be used to read data.
func (adc ADC) Configure(ADCConfig) {
}
// Get reads the current analog value from this ADC peripheral.
func (adc ADC) Get() uint16 {
return adcRead(adc.Pin)
}
//export __tinygo_adc_read
func adcRead(pin Pin) uint16
// I2C is a generic implementation of the Inter-IC communication protocol.
type I2C struct {
Bus uint8
}
// I2CConfig is used to store config info for I2C.
type I2CConfig struct {
Frequency uint32
SCL Pin
SDA Pin
}
// Configure is intended to setup the I2C interface.
func (i2c *I2C) Configure(config I2CConfig) error {
i2cConfigure(i2c.Bus, config.SCL, config.SDA)
return nil
}
// SetBaudRate sets the I2C frequency.
func (i2c *I2C) SetBaudRate(br uint32) error {
i2cSetBaudRate(i2c.Bus, br)
return nil
}
// Tx does a single I2C transaction at the specified address.
func (i2c *I2C) Tx(addr uint16, w, r []byte) error {
var wptr, rptr *byte
var wlen, rlen int
if len(w) != 0 {
wptr = &w[0]
wlen = len(w)
}
if len(r) != 0 {
rptr = &r[0]
rlen = len(r)
}
i2cTransfer(i2c.Bus, wptr, wlen, rptr, rlen)
// TODO: do something with the returned error code.
return nil
}
//export __tinygo_i2c_configure
func i2cConfigure(bus uint8, scl Pin, sda Pin)
//export __tinygo_i2c_set_baud_rate
func i2cSetBaudRate(bus uint8, br uint32)
//export __tinygo_i2c_transfer
func i2cTransfer(bus uint8, w *byte, wlen int, r *byte, rlen int) int
type UART struct {
Bus uint8
}
// Configure the UART.
func (uart *UART) Configure(config UARTConfig) {
uartConfigure(uart.Bus, config.TX, config.RX)
}
// Read from the UART.
func (uart *UART) Read(data []byte) (n int, err error) {
return uartRead(uart.Bus, &data[0], len(data)), nil
}
// Write to the UART.
func (uart *UART) Write(data []byte) (n int, err error) {
return uartWrite(uart.Bus, &data[0], len(data)), nil
}
// Buffered returns the number of bytes currently stored in the RX buffer.
func (uart *UART) Buffered() int {
return 0
}
// ReadByte reads a single byte from the UART.
func (uart *UART) ReadByte() (byte, error) {
var b byte
uartRead(uart.Bus, &b, 1)
return b, nil
}
// WriteByte writes a single byte to the UART.
func (uart *UART) WriteByte(b byte) error {
uartWrite(uart.Bus, &b, 1)
return nil
}
//export __tinygo_uart_configure
func uartConfigure(bus uint8, tx Pin, rx Pin)
//export __tinygo_uart_read
func uartRead(bus uint8, buf *byte, bufLen int) int
//export __tinygo_uart_write
func uartWrite(bus uint8, buf *byte, bufLen int) int
var (
hardwareUART0 = &UART{0}
hardwareUART1 = &UART{1}
)
// Some objects used by Atmel SAM D chips (samd21, samd51).
// Defined here (without build tag) for convenience.
var (
sercomUSART0 = UART{0}
sercomUSART1 = UART{1}
sercomUSART2 = UART{2}
sercomUSART3 = UART{3}
sercomUSART4 = UART{4}
sercomUSART5 = UART{5}
sercomI2CM0 = &I2C{0}
sercomI2CM1 = &I2C{1}
sercomI2CM2 = &I2C{2}
sercomI2CM3 = &I2C{3}
sercomI2CM4 = &I2C{4}
sercomI2CM5 = &I2C{5}
sercomI2CM6 = &I2C{6}
sercomI2CM7 = &I2C{7}
sercomSPIM0 = SPI{0}
sercomSPIM1 = SPI{1}
sercomSPIM2 = SPI{2}
sercomSPIM3 = SPI{3}
sercomSPIM4 = SPI{4}
sercomSPIM5 = SPI{5}
sercomSPIM6 = SPI{6}
sercomSPIM7 = SPI{7}
)
// GetRNG returns 32 bits of random data from the WASI random source.
func GetRNG() (uint32, error) {
var buf [4]byte
_, err := rand.Read(buf[:])
if err != nil {
return 0, err
}
return uint32(buf[0])<<0 | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24, nil
}
|