1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
//go:build rp2040
// Implementation based on code located here:
// https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_rtc/rtc.c
package machine
import (
"device/rp"
"errors"
"runtime/interrupt"
"unsafe"
)
type rtcType rp.RTC_Type
type rtcTime struct {
Year int16
Month int8
Day int8
Dotw int8
Hour int8
Min int8
Sec int8
}
var RTC = (*rtcType)(unsafe.Pointer(rp.RTC))
const (
second = 1
minute = 60 * second
hour = 60 * minute
day = 24 * hour
)
var (
rtcAlarmRepeats bool
rtcCallback func()
rtcEpoch = rtcTime{
Year: 1970, Month: 1, Day: 1, Dotw: 4, Hour: 0, Min: 0, Sec: 0,
}
)
var (
ErrRtcDelayTooSmall = errors.New("RTC interrupt deplay is too small, shall be at least 1 second")
ErrRtcDelayTooLarge = errors.New("RTC interrupt deplay is too large, shall be no more than 1 day")
)
// SetInterrupt configures delayed and optionally recurring interrupt by real time clock.
//
// Delay is specified in whole seconds, allowed range depends on platform.
// Zero delay disables previously configured interrupt, if any.
//
// RP2040 implementation allows delay to be up to 1 day, otherwise a respective error is emitted.
func (rtc *rtcType) SetInterrupt(delay uint32, repeat bool, callback func()) error {
// Verify delay range
if delay > day {
return ErrRtcDelayTooLarge
}
// De-configure delayed interrupt if delay is zero
if delay == 0 {
rtc.disableInterruptMatch()
return nil
}
// Configure delayed interrupt
rtc.setDivider()
rtcAlarmRepeats = repeat
rtcCallback = callback
err := rtc.setTime(rtcEpoch)
if err != nil {
return err
}
rtc.setAlarm(toAlarmTime(delay), callback)
return nil
}
func toAlarmTime(delay uint32) rtcTime {
result := rtcEpoch
remainder := delay + 1 // needed "+1", otherwise alarm fires one second too early
if remainder >= hour {
result.Hour = int8(remainder / hour)
remainder %= hour
}
if remainder >= minute {
result.Min = int8(remainder / minute)
remainder %= minute
}
result.Sec = int8(remainder)
return result
}
func (rtc *rtcType) setDivider() {
// Get clk_rtc freq and make sure it is running
rtcFreq := configuredFreq[ClkRTC]
if rtcFreq == 0 {
panic("can not set RTC divider, clock is not running")
}
// Take rtc out of reset now that we know clk_rtc is running
resetBlock(rp.RESETS_RESET_RTC)
unresetBlockWait(rp.RESETS_RESET_RTC)
// Set up the 1 second divider.
// If rtc_freq is 400 then clkdiv_m1 should be 399
rtcFreq -= 1
// Check the freq is not too big to divide
if rtcFreq > rp.RTC_CLKDIV_M1_CLKDIV_M1_Msk {
panic("can not set RTC divider, clock frequency is too big to divide")
}
// Write divide value
rtc.CLKDIV_M1.Set(rtcFreq)
}
// setTime configures RTC with supplied time, initialises and activates it.
func (rtc *rtcType) setTime(t rtcTime) error {
// Disable RTC and wait while it is still running
rtc.CTRL.Set(0)
for rtc.isActive() {
}
rtc.SETUP_0.Set((uint32(t.Year) << rp.RTC_SETUP_0_YEAR_Pos) |
(uint32(t.Month) << rp.RTC_SETUP_0_MONTH_Pos) |
(uint32(t.Day) << rp.RTC_SETUP_0_DAY_Pos))
rtc.SETUP_1.Set((uint32(t.Dotw) << rp.RTC_SETUP_1_DOTW_Pos) |
(uint32(t.Hour) << rp.RTC_SETUP_1_HOUR_Pos) |
(uint32(t.Min) << rp.RTC_SETUP_1_MIN_Pos) |
(uint32(t.Sec) << rp.RTC_SETUP_1_SEC_Pos))
// Load setup values into RTC clock domain
rtc.CTRL.SetBits(rp.RTC_CTRL_LOAD)
// Enable RTC and wait for it to be running
rtc.CTRL.SetBits(rp.RTC_CTRL_RTC_ENABLE)
for !rtc.isActive() {
}
return nil
}
func (rtc *rtcType) isActive() bool {
return rtc.CTRL.HasBits(rp.RTC_CTRL_RTC_ACTIVE)
}
// setAlarm configures alarm in RTC and arms it.
// The callback is executed in the context of an interrupt handler,
// so regular restructions for this sort of code apply: no blocking, no memory allocation, etc.
func (rtc *rtcType) setAlarm(t rtcTime, callback func()) {
rtc.disableInterruptMatch()
// Clear all match enable bits
rtc.IRQ_SETUP_0.ClearBits(rp.RTC_IRQ_SETUP_0_YEAR_ENA | rp.RTC_IRQ_SETUP_0_MONTH_ENA | rp.RTC_IRQ_SETUP_0_DAY_ENA)
rtc.IRQ_SETUP_1.ClearBits(rp.RTC_IRQ_SETUP_1_DOTW_ENA | rp.RTC_IRQ_SETUP_1_HOUR_ENA | rp.RTC_IRQ_SETUP_1_MIN_ENA | rp.RTC_IRQ_SETUP_1_SEC_ENA)
// Only add to setup if it isn't -1 and set the match enable bits for things we care about
if t.Year >= 0 {
rtc.IRQ_SETUP_0.SetBits(uint32(t.Year) << rp.RTC_SETUP_0_YEAR_Pos)
rtc.IRQ_SETUP_0.SetBits(rp.RTC_IRQ_SETUP_0_YEAR_ENA)
}
if t.Month >= 0 {
rtc.IRQ_SETUP_0.SetBits(uint32(t.Month) << rp.RTC_SETUP_0_MONTH_Pos)
rtc.IRQ_SETUP_0.SetBits(rp.RTC_IRQ_SETUP_0_MONTH_ENA)
}
if t.Day >= 0 {
rtc.IRQ_SETUP_0.SetBits(uint32(t.Day) << rp.RTC_SETUP_0_DAY_Pos)
rtc.IRQ_SETUP_0.SetBits(rp.RTC_IRQ_SETUP_0_DAY_ENA)
}
if t.Dotw >= 0 {
rtc.IRQ_SETUP_1.SetBits(uint32(t.Dotw) << rp.RTC_SETUP_1_DOTW_Pos)
rtc.IRQ_SETUP_1.SetBits(rp.RTC_IRQ_SETUP_1_DOTW_ENA)
}
if t.Hour >= 0 {
rtc.IRQ_SETUP_1.SetBits(uint32(t.Hour) << rp.RTC_SETUP_1_HOUR_Pos)
rtc.IRQ_SETUP_1.SetBits(rp.RTC_IRQ_SETUP_1_HOUR_ENA)
}
if t.Min >= 0 {
rtc.IRQ_SETUP_1.SetBits(uint32(t.Min) << rp.RTC_SETUP_1_MIN_Pos)
rtc.IRQ_SETUP_1.SetBits(rp.RTC_IRQ_SETUP_1_MIN_ENA)
}
if t.Sec >= 0 {
rtc.IRQ_SETUP_1.SetBits(uint32(t.Sec) << rp.RTC_SETUP_1_SEC_Pos)
rtc.IRQ_SETUP_1.SetBits(rp.RTC_IRQ_SETUP_1_SEC_ENA)
}
// Enable the IRQ at the proc
interrupt.New(rp.IRQ_RTC_IRQ, rtcHandleInterrupt).Enable()
// Enable the IRQ at the peri
rtc.INTE.Set(rp.RTC_INTE_RTC)
rtc.enableInterruptMatch()
}
func (rtc *rtcType) enableInterruptMatch() {
// Set matching and wait for it to be enabled
rtc.IRQ_SETUP_0.SetBits(rp.RTC_IRQ_SETUP_0_MATCH_ENA)
for !rtc.IRQ_SETUP_0.HasBits(rp.RTC_IRQ_SETUP_0_MATCH_ACTIVE) {
}
}
func (rtc *rtcType) disableInterruptMatch() {
// Disable matching and wait for it to stop being active
rtc.IRQ_SETUP_0.ClearBits(rp.RTC_IRQ_SETUP_0_MATCH_ENA)
for rtc.IRQ_SETUP_0.HasBits(rp.RTC_IRQ_SETUP_0_MATCH_ACTIVE) {
}
}
func rtcHandleInterrupt(itr interrupt.Interrupt) {
// Always disable the alarm to clear the current IRQ.
// Even if it is a repeatable alarm, we don't want it to keep firing.
// If it matches on a second it can keep firing for that second.
RTC.disableInterruptMatch()
// Call user callback function
if rtcCallback != nil {
rtcCallback()
}
if rtcAlarmRepeats {
// If it is a repeatable alarm, reset time and re-enable the alarm.
RTC.setTime(rtcEpoch)
RTC.enableInterruptMatch()
}
}
|