1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
//go:build rp2040
package machine
import (
"device/rp"
"runtime/volatile"
"unsafe"
)
const (
_NUMBANK0_GPIOS = 30
_NUMBANK0_IRQS = 4
_NUMIRQ = 32
rp2350ExtraReg = 0
RESETS_RESET_Msk = 0x01ffffff
initUnreset = rp.RESETS_RESET_ADC |
rp.RESETS_RESET_RTC |
rp.RESETS_RESET_SPI0 |
rp.RESETS_RESET_SPI1 |
rp.RESETS_RESET_UART0 |
rp.RESETS_RESET_UART1 |
rp.RESETS_RESET_USBCTRL
initDontReset = rp.RESETS_RESET_IO_QSPI |
rp.RESETS_RESET_PADS_QSPI |
rp.RESETS_RESET_PLL_USB |
rp.RESETS_RESET_USBCTRL |
rp.RESETS_RESET_SYSCFG |
rp.RESETS_RESET_PLL_SYS
padEnableMask = rp.PADS_BANK0_GPIO0_IE_Msk |
rp.PADS_BANK0_GPIO0_OD_Msk
)
const (
PinOutput PinMode = iota
PinInput
PinInputPulldown
PinInputPullup
PinAnalog
PinUART
PinPWM
PinI2C
PinSPI
PinPIO0
PinPIO1
)
const (
ClkGPOUT0 clockIndex = iota // GPIO Muxing 0
ClkGPOUT1 // GPIO Muxing 1
ClkGPOUT2 // GPIO Muxing 2
ClkGPOUT3 // GPIO Muxing 3
ClkRef // Watchdog and timers reference clock
ClkSys // Processors, bus fabric, memory, memory mapped registers
ClkPeri // Peripheral clock for UART and SPI
ClkUSB // USB clock
ClkADC // ADC clock
ClkRTC // Real time clock
NumClocks
)
func CalcClockDiv(srcFreq, freq uint32) uint32 {
// Div register is 24.8 int.frac divider so multiply by 2^8 (left shift by 8)
return uint32((uint64(srcFreq) << 8) / uint64(freq))
}
type clocksType struct {
clk [NumClocks]clockType
resus struct {
ctrl volatile.Register32
status volatile.Register32
}
fc0 fc
wakeEN0 volatile.Register32
wakeEN1 volatile.Register32
sleepEN0 volatile.Register32
sleepEN1 volatile.Register32
enabled0 volatile.Register32
enabled1 volatile.Register32
intR volatile.Register32
intE volatile.Register32
intF volatile.Register32
intS volatile.Register32
}
// GPIO function selectors
const (
fnJTAG pinFunc = 0
fnSPI pinFunc = 1 // Connect one of the internal PL022 SPI peripherals to GPIO
fnUART pinFunc = 2
fnI2C pinFunc = 3
// Connect a PWM slice to GPIO. There are eight PWM slices,
// each with two outputchannels (A/B). The B pin can also be used as an input,
// for frequency and duty cyclemeasurement
fnPWM pinFunc = 4
// Software control of GPIO, from the single-cycle IO (SIO) block.
// The SIO function (F5)must be selected for the processors to drive a GPIO,
// but the input is always connected,so software can check the state of GPIOs at any time.
fnSIO pinFunc = 5
// Connect one of the programmable IO blocks (PIO) to GPIO. PIO can implement a widevariety of interfaces,
// and has its own internal pin mapping hardware, allowing flexibleplacement of digital interfaces on bank 0 GPIOs.
// The PIO function (F6, F7) must beselected for PIO to drive a GPIO, but the input is always connected,
// so the PIOs canalways see the state of all pins.
fnPIO0, fnPIO1 pinFunc = 6, 7
// General purpose clock inputs/outputs. Can be routed to a number of internal clock domains onRP2040,
// e.g. Input: to provide a 1 Hz clock for the RTC, or can be connected to an internalfrequency counter.
// e.g. Output: optional integer divide
fnGPCK pinFunc = 8
// USB power control signals to/from the internal USB controller
fnUSB pinFunc = 9
fnNULL pinFunc = 0x1f
fnXIP pinFunc = 0
)
// Configure configures the gpio pin as per mode.
func (p Pin) Configure(config PinConfig) {
if p == NoPin {
return
}
p.init()
mask := uint32(1) << p
switch config.Mode {
case PinOutput:
p.setFunc(fnSIO)
rp.SIO.GPIO_OE_SET.Set(mask)
case PinInput:
p.setFunc(fnSIO)
p.pulloff()
case PinInputPulldown:
p.setFunc(fnSIO)
p.pulldown()
case PinInputPullup:
p.setFunc(fnSIO)
p.pullup()
case PinAnalog:
p.setFunc(fnNULL)
p.pulloff()
case PinUART:
p.setFunc(fnUART)
case PinPWM:
p.setFunc(fnPWM)
case PinI2C:
// IO config according to 4.3.1.3 of rp2040 datasheet.
p.setFunc(fnI2C)
p.pullup()
p.setSchmitt(true)
p.setSlew(false)
case PinSPI:
p.setFunc(fnSPI)
case PinPIO0:
p.setFunc(fnPIO0)
case PinPIO1:
p.setFunc(fnPIO1)
}
}
var (
timer = (*timerType)(unsafe.Pointer(rp.TIMER))
)
// Enable or disable a specific interrupt on the executing core.
// num is the interrupt number which must be in [0,31].
func irqSet(num uint32, enabled bool) {
if num >= _NUMIRQ {
return
}
irqSetMask(1<<num, enabled)
}
func irqSetMask(mask uint32, enabled bool) {
if enabled {
// Clear pending before enable
// (if IRQ is actually asserted, it will immediately re-pend)
rp.PPB.NVIC_ICPR.Set(mask)
rp.PPB.NVIC_ISER.Set(mask)
} else {
rp.PPB.NVIC_ICER.Set(mask)
}
}
func (clks *clocksType) initRTC() {
// ClkRTC = pllUSB (48MHz) / 1024 = 46875Hz
clkrtc := clks.clock(ClkRTC)
clkrtc.configure(0, // No GLMUX
rp.CLOCKS_CLK_RTC_CTRL_AUXSRC_CLKSRC_PLL_USB,
48*MHz,
46875)
}
func (clks *clocksType) initTicks() {} // No ticks on RP2040
// startTick starts the watchdog tick.
// cycles needs to be a divider that when applied to the xosc input,
// produces a 1MHz clock. So if the xosc frequency is 12MHz,
// this will need to be 12.
func (wd *watchdogImpl) startTick(cycles uint32) {
rp.WATCHDOG.TICK.Set(cycles | rp.WATCHDOG_TICK_ENABLE)
}
|