1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
|
package runtime
// This is a hashmap implementation for the map[T]T type.
// It is very roughly based on the implementation of the Go hashmap:
//
// https://golang.org/src/runtime/map.go
import (
"reflect"
"unsafe"
)
// The underlying hashmap structure for Go.
type hashmap struct {
buckets unsafe.Pointer // pointer to array of buckets
seed uintptr
count uintptr
keySize uintptr // maybe this can store the key type as well? E.g. keysize == 5 means string?
valueSize uintptr
bucketBits uint8
keyEqual func(x, y unsafe.Pointer, n uintptr) bool
keyHash func(key unsafe.Pointer, size, seed uintptr) uint32
}
type hashmapAlgorithm uint8
const (
hashmapAlgorithmBinary hashmapAlgorithm = iota
hashmapAlgorithmString
hashmapAlgorithmInterface
)
// A hashmap bucket. A bucket is a container of 8 key/value pairs: first the
// following two entries, then the 8 keys, then the 8 values. This somewhat odd
// ordering is to make sure the keys and values are well aligned when one of
// them is smaller than the system word size.
type hashmapBucket struct {
tophash [8]uint8
next *hashmapBucket // next bucket (if there are more than 8 in a chain)
// Followed by the actual keys, and then the actual values. These are
// allocated but as they're of variable size they can't be shown here.
}
type hashmapIterator struct {
buckets unsafe.Pointer // pointer to array of hashapBuckets
numBuckets uintptr // length of buckets array
bucketNumber uintptr // current index into buckets array
bucket *hashmapBucket // current bucket in chain
bucketIndex uint8 // current index into bucket
}
func hashmapNewIterator() unsafe.Pointer {
return unsafe.Pointer(new(hashmapIterator))
}
// Get the topmost 8 bits of the hash, without using a special value (like 0).
func hashmapTopHash(hash uint32) uint8 {
tophash := uint8(hash >> 24)
if tophash < 1 {
// 0 means empty slot, so make it bigger.
tophash += 1
}
return tophash
}
// Create a new hashmap with the given keySize and valueSize.
func hashmapMake(keySize, valueSize uintptr, sizeHint uintptr, alg uint8) *hashmap {
bucketBits := uint8(0)
for hashmapHasSpaceToGrow(bucketBits) && hashmapOverLoadFactor(sizeHint, bucketBits) {
bucketBits++
}
bucketBufSize := unsafe.Sizeof(hashmapBucket{}) + keySize*8 + valueSize*8
buckets := alloc(bucketBufSize*(1<<bucketBits), nil)
keyHash := hashmapKeyHashAlg(hashmapAlgorithm(alg))
keyEqual := hashmapKeyEqualAlg(hashmapAlgorithm(alg))
return &hashmap{
buckets: buckets,
seed: uintptr(fastrand()),
keySize: keySize,
valueSize: valueSize,
bucketBits: bucketBits,
keyEqual: keyEqual,
keyHash: keyHash,
}
}
func hashmapMakeUnsafePointer(keySize, valueSize uintptr, sizeHint uintptr, alg uint8) unsafe.Pointer {
return (unsafe.Pointer)(hashmapMake(keySize, valueSize, sizeHint, alg))
}
func hashmapKeyEqualAlg(alg hashmapAlgorithm) func(x, y unsafe.Pointer, n uintptr) bool {
switch alg {
case hashmapAlgorithmBinary:
return memequal
case hashmapAlgorithmString:
return hashmapStringEqual
case hashmapAlgorithmInterface:
return hashmapInterfaceEqual
default:
// compiler bug :(
return nil
}
}
func hashmapKeyHashAlg(alg hashmapAlgorithm) func(key unsafe.Pointer, n, seed uintptr) uint32 {
switch alg {
case hashmapAlgorithmBinary:
return hash32
case hashmapAlgorithmString:
return hashmapStringPtrHash
case hashmapAlgorithmInterface:
return hashmapInterfacePtrHash
default:
// compiler bug :(
return nil
}
}
func hashmapHasSpaceToGrow(bucketBits uint8) bool {
// Over this limit, we're likely to overflow uintptrs during calculations
// or numbers of hash elements. Don't allow any more growth.
// With 29 bits, this is 2^32 elements anyway.
return bucketBits <= uint8((unsafe.Sizeof(uintptr(0))*8)-3)
}
func hashmapOverLoadFactor(n uintptr, bucketBits uint8) bool {
// "maximum" number of elements is 0.75 * buckets * elements per bucket
// to avoid overflow, this is calculated as
// max = 3 * (1/4 * buckets * elements per bucket)
// = 3 * (buckets * (elements per bucket)/4)
// = 3 * (buckets * (8/4)
// = 3 * (buckets * 2)
// = 6 * buckets
max := (uintptr(6) << bucketBits)
return n > max
}
// Return the number of entries in this hashmap, called from the len builtin.
// A nil hashmap is defined as having length 0.
//
//go:inline
func hashmapLen(m *hashmap) int {
if m == nil {
return 0
}
return int(m.count)
}
func hashmapLenUnsafePointer(m unsafe.Pointer) int {
return hashmapLen((*hashmap)(m))
}
//go:inline
func hashmapBucketSize(m *hashmap) uintptr {
return unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*8
}
//go:inline
func hashmapBucketAddr(m *hashmap, buckets unsafe.Pointer, n uintptr) *hashmapBucket {
bucketSize := hashmapBucketSize(m)
bucket := (*hashmapBucket)(unsafe.Add(buckets, bucketSize*n))
return bucket
}
//go:inline
func hashmapBucketAddrForHash(m *hashmap, hash uint32) *hashmapBucket {
numBuckets := uintptr(1) << m.bucketBits
bucketNumber := (uintptr(hash) & (numBuckets - 1))
return hashmapBucketAddr(m, m.buckets, bucketNumber)
}
//go:inline
func hashmapSlotKey(m *hashmap, bucket *hashmapBucket, slot uint8) unsafe.Pointer {
slotKeyOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*uintptr(slot)
slotKey := unsafe.Add(unsafe.Pointer(bucket), slotKeyOffset)
return slotKey
}
//go:inline
func hashmapSlotValue(m *hashmap, bucket *hashmapBucket, slot uint8) unsafe.Pointer {
slotValueOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*uintptr(slot)
slotValue := unsafe.Add(unsafe.Pointer(bucket), slotValueOffset)
return slotValue
}
// Set a specified key to a given value. Grow the map if necessary.
//
//go:nobounds
func hashmapSet(m *hashmap, key unsafe.Pointer, value unsafe.Pointer, hash uint32) {
if hashmapHasSpaceToGrow(m.bucketBits) && hashmapOverLoadFactor(m.count, m.bucketBits) {
hashmapGrow(m)
// seed changed when we grew; rehash key with new seed
hash = m.keyHash(key, m.keySize, m.seed)
}
tophash := hashmapTopHash(hash)
bucket := hashmapBucketAddrForHash(m, hash)
var lastBucket *hashmapBucket
// See whether the key already exists somewhere.
var emptySlotKey unsafe.Pointer
var emptySlotValue unsafe.Pointer
var emptySlotTophash *byte
for bucket != nil {
for i := uint8(0); i < 8; i++ {
slotKey := hashmapSlotKey(m, bucket, i)
slotValue := hashmapSlotValue(m, bucket, i)
if bucket.tophash[i] == 0 && emptySlotKey == nil {
// Found an empty slot, store it for if we couldn't find an
// existing slot.
emptySlotKey = slotKey
emptySlotValue = slotValue
emptySlotTophash = &bucket.tophash[i]
}
if bucket.tophash[i] == tophash {
// Could be an existing key that's the same.
if m.keyEqual(key, slotKey, m.keySize) {
// found same key, replace it
memcpy(slotValue, value, m.valueSize)
return
}
}
}
lastBucket = bucket
bucket = bucket.next
}
if emptySlotKey == nil {
// Add a new bucket to the bucket chain.
// TODO: rebalance if necessary to avoid O(n) insert and lookup time.
lastBucket.next = (*hashmapBucket)(hashmapInsertIntoNewBucket(m, key, value, tophash))
return
}
m.count++
memcpy(emptySlotKey, key, m.keySize)
memcpy(emptySlotValue, value, m.valueSize)
*emptySlotTophash = tophash
}
func hashmapSetUnsafePointer(m unsafe.Pointer, key unsafe.Pointer, value unsafe.Pointer, hash uint32) {
hashmapSet((*hashmap)(m), key, value, hash)
}
// hashmapInsertIntoNewBucket creates a new bucket, inserts the given key and
// value into the bucket, and returns a pointer to this bucket.
func hashmapInsertIntoNewBucket(m *hashmap, key, value unsafe.Pointer, tophash uint8) *hashmapBucket {
bucketBufSize := hashmapBucketSize(m)
bucketBuf := alloc(bucketBufSize, nil)
bucket := (*hashmapBucket)(bucketBuf)
// Insert into the first slot, which is empty as it has just been allocated.
slotKey := hashmapSlotKey(m, bucket, 0)
slotValue := hashmapSlotValue(m, bucket, 0)
m.count++
memcpy(slotKey, key, m.keySize)
memcpy(slotValue, value, m.valueSize)
bucket.tophash[0] = tophash
return bucket
}
func hashmapGrow(m *hashmap) {
// clone map as empty
n := *m
n.count = 0
n.seed = uintptr(fastrand())
// allocate our new buckets twice as big
n.bucketBits = m.bucketBits + 1
numBuckets := uintptr(1) << n.bucketBits
bucketBufSize := hashmapBucketSize(m)
n.buckets = alloc(bucketBufSize*numBuckets, nil)
// use a hashmap iterator to go through the old map
var it hashmapIterator
var key = alloc(m.keySize, nil)
var value = alloc(m.valueSize, nil)
for hashmapNext(m, &it, key, value) {
h := n.keyHash(key, uintptr(n.keySize), n.seed)
hashmapSet(&n, key, value, h)
}
*m = n
}
// Get the value of a specified key, or zero the value if not found.
//
//go:nobounds
func hashmapGet(m *hashmap, key, value unsafe.Pointer, valueSize uintptr, hash uint32) bool {
if m == nil {
// Getting a value out of a nil map is valid. From the spec:
// > if the map is nil or does not contain such an entry, a[x] is the
// > zero value for the element type of M
memzero(value, uintptr(valueSize))
return false
}
tophash := hashmapTopHash(hash)
bucket := hashmapBucketAddrForHash(m, hash)
// Try to find the key.
for bucket != nil {
for i := uint8(0); i < 8; i++ {
slotKey := hashmapSlotKey(m, bucket, i)
slotValue := hashmapSlotValue(m, bucket, i)
if bucket.tophash[i] == tophash {
// This could be the key we're looking for.
if m.keyEqual(key, slotKey, m.keySize) {
// Found the key, copy it.
memcpy(value, slotValue, m.valueSize)
return true
}
}
}
bucket = bucket.next
}
// Did not find the key.
memzero(value, m.valueSize)
return false
}
func hashmapGetUnsafePointer(m unsafe.Pointer, key, value unsafe.Pointer, valueSize uintptr, hash uint32) bool {
return hashmapGet((*hashmap)(m), key, value, valueSize, hash)
}
// Delete a given key from the map. No-op when the key does not exist in the
// map.
//
//go:nobounds
func hashmapDelete(m *hashmap, key unsafe.Pointer, hash uint32) {
if m == nil {
// The delete builtin is defined even when the map is nil. From the spec:
// > If the map m is nil or the element m[k] does not exist, delete is a
// > no-op.
return
}
tophash := hashmapTopHash(hash)
bucket := hashmapBucketAddrForHash(m, hash)
// Try to find the key.
for bucket != nil {
for i := uint8(0); i < 8; i++ {
slotKey := hashmapSlotKey(m, bucket, i)
if bucket.tophash[i] == tophash {
// This could be the key we're looking for.
if m.keyEqual(key, slotKey, m.keySize) {
// Found the key, delete it.
bucket.tophash[i] = 0
// Zero out the key and value so garbage collector doesn't pin the allocations.
memzero(slotKey, m.keySize)
slotValue := hashmapSlotValue(m, bucket, i)
memzero(slotValue, m.valueSize)
m.count--
return
}
}
}
bucket = bucket.next
}
}
// Iterate over a hashmap.
//
//go:nobounds
func hashmapNext(m *hashmap, it *hashmapIterator, key, value unsafe.Pointer) bool {
if m == nil {
// From the spec: If the map is nil, the number of iterations is 0.
return false
}
if it.buckets == nil {
// initialize iterator
it.buckets = m.buckets
it.numBuckets = uintptr(1) << m.bucketBits
}
for {
if it.bucketIndex >= 8 {
// end of bucket, move to the next in the chain
it.bucketIndex = 0
it.bucket = it.bucket.next
}
if it.bucket == nil {
if it.bucketNumber >= it.numBuckets {
// went through all buckets
return false
}
it.bucket = hashmapBucketAddr(m, it.buckets, it.bucketNumber)
it.bucketNumber++ // next bucket
}
if it.bucket.tophash[it.bucketIndex] == 0 {
// slot is empty - move on
it.bucketIndex++
continue
}
slotKey := hashmapSlotKey(m, it.bucket, it.bucketIndex)
memcpy(key, slotKey, m.keySize)
if it.buckets == m.buckets {
// Our view of the buckets is the same as the parent map.
// Just copy the value we have
slotValue := hashmapSlotValue(m, it.bucket, it.bucketIndex)
memcpy(value, slotValue, m.valueSize)
it.bucketIndex++
} else {
it.bucketIndex++
// Our view of the buckets doesn't match the parent map.
// Look up the key in the new buckets and return that value if it exists
hash := m.keyHash(key, m.keySize, m.seed)
ok := hashmapGet(m, key, value, m.valueSize, hash)
if !ok {
// doesn't exist in parent map; try next key
continue
}
// All good.
}
return true
}
}
func hashmapNextUnsafePointer(m unsafe.Pointer, it unsafe.Pointer, key, value unsafe.Pointer) bool {
return hashmapNext((*hashmap)(m), (*hashmapIterator)(it), key, value)
}
// Hashmap with plain binary data keys (not containing strings etc.).
func hashmapBinarySet(m *hashmap, key, value unsafe.Pointer) {
if m == nil {
nilMapPanic()
}
hash := hash32(key, m.keySize, m.seed)
hashmapSet(m, key, value, hash)
}
func hashmapBinarySetUnsafePointer(m unsafe.Pointer, key, value unsafe.Pointer) {
hashmapBinarySet((*hashmap)(m), key, value)
}
func hashmapBinaryGet(m *hashmap, key, value unsafe.Pointer, valueSize uintptr) bool {
if m == nil {
memzero(value, uintptr(valueSize))
return false
}
hash := hash32(key, m.keySize, m.seed)
return hashmapGet(m, key, value, valueSize, hash)
}
func hashmapBinaryGetUnsafePointer(m unsafe.Pointer, key, value unsafe.Pointer, valueSize uintptr) bool {
return hashmapBinaryGet((*hashmap)(m), key, value, valueSize)
}
func hashmapBinaryDelete(m *hashmap, key unsafe.Pointer) {
if m == nil {
return
}
hash := hash32(key, m.keySize, m.seed)
hashmapDelete(m, key, hash)
}
func hashmapBinaryDeleteUnsafePointer(m unsafe.Pointer, key unsafe.Pointer) {
hashmapBinaryDelete((*hashmap)(m), key)
}
// Hashmap with string keys (a common case).
func hashmapStringEqual(x, y unsafe.Pointer, n uintptr) bool {
return *(*string)(x) == *(*string)(y)
}
func hashmapStringHash(s string, seed uintptr) uint32 {
_s := (*_string)(unsafe.Pointer(&s))
return hash32(unsafe.Pointer(_s.ptr), uintptr(_s.length), seed)
}
func hashmapStringPtrHash(sptr unsafe.Pointer, size uintptr, seed uintptr) uint32 {
_s := *(*_string)(sptr)
return hash32(unsafe.Pointer(_s.ptr), uintptr(_s.length), seed)
}
func hashmapStringSet(m *hashmap, key string, value unsafe.Pointer) {
if m == nil {
nilMapPanic()
}
hash := hashmapStringHash(key, m.seed)
hashmapSet(m, unsafe.Pointer(&key), value, hash)
}
func hashmapStringSetUnsafePointer(m unsafe.Pointer, key string, value unsafe.Pointer) {
hashmapStringSet((*hashmap)(m), key, value)
}
func hashmapStringGet(m *hashmap, key string, value unsafe.Pointer, valueSize uintptr) bool {
if m == nil {
memzero(value, uintptr(valueSize))
return false
}
hash := hashmapStringHash(key, m.seed)
return hashmapGet(m, unsafe.Pointer(&key), value, valueSize, hash)
}
func hashmapStringGetUnsafePointer(m unsafe.Pointer, key string, value unsafe.Pointer, valueSize uintptr) bool {
return hashmapStringGet((*hashmap)(m), key, value, valueSize)
}
func hashmapStringDelete(m *hashmap, key string) {
if m == nil {
return
}
hash := hashmapStringHash(key, m.seed)
hashmapDelete(m, unsafe.Pointer(&key), hash)
}
func hashmapStringDeleteUnsafePointer(m unsafe.Pointer, key string) {
hashmapStringDelete((*hashmap)(m), key)
}
// Hashmap with interface keys (for everything else).
// This is a method that is intentionally unexported in the reflect package. It
// is identical to the Interface() method call, except it doesn't check whether
// a field is exported and thus allows circumventing the type system.
// The hash function needs it as it also needs to hash unexported struct fields.
//
//go:linkname valueInterfaceUnsafe reflect.valueInterfaceUnsafe
func valueInterfaceUnsafe(v reflect.Value) interface{}
func hashmapFloat32Hash(ptr unsafe.Pointer, seed uintptr) uint32 {
f := *(*uint32)(ptr)
if f == 0x80000000 {
// convert -0 to 0 for hashing
f = 0
}
return hash32(unsafe.Pointer(&f), 4, seed)
}
func hashmapFloat64Hash(ptr unsafe.Pointer, seed uintptr) uint32 {
f := *(*uint64)(ptr)
if f == 0x8000000000000000 {
// convert -0 to 0 for hashing
f = 0
}
return hash32(unsafe.Pointer(&f), 8, seed)
}
func hashmapInterfaceHash(itf interface{}, seed uintptr) uint32 {
x := reflect.ValueOf(itf)
if x.RawType() == nil {
return 0 // nil interface
}
value := (*_interface)(unsafe.Pointer(&itf)).value
ptr := value
if x.RawType().Size() <= unsafe.Sizeof(uintptr(0)) {
// Value fits in pointer, so it's directly stored in the pointer.
ptr = unsafe.Pointer(&value)
}
switch x.RawType().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return hash32(ptr, x.RawType().Size(), seed)
case reflect.Bool, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return hash32(ptr, x.RawType().Size(), seed)
case reflect.Float32:
// It should be possible to just has the contents. However, NaN != NaN
// so if you're using lots of NaNs as map keys (you shouldn't) then hash
// time may become exponential. To fix that, it would be better to
// return a random number instead:
// https://research.swtch.com/randhash
return hashmapFloat32Hash(ptr, seed)
case reflect.Float64:
return hashmapFloat64Hash(ptr, seed)
case reflect.Complex64:
rptr, iptr := ptr, unsafe.Add(ptr, 4)
return hashmapFloat32Hash(rptr, seed) ^ hashmapFloat32Hash(iptr, seed)
case reflect.Complex128:
rptr, iptr := ptr, unsafe.Add(ptr, 8)
return hashmapFloat64Hash(rptr, seed) ^ hashmapFloat64Hash(iptr, seed)
case reflect.String:
return hashmapStringHash(x.String(), seed)
case reflect.Chan, reflect.Ptr, reflect.UnsafePointer:
// It might seem better to just return the pointer, but that won't
// result in an evenly distributed hashmap. Instead, hash the pointer
// like most other types.
return hash32(ptr, x.RawType().Size(), seed)
case reflect.Array:
var hash uint32
for i := 0; i < x.Len(); i++ {
hash ^= hashmapInterfaceHash(valueInterfaceUnsafe(x.Index(i)), seed)
}
return hash
case reflect.Struct:
var hash uint32
for i := 0; i < x.NumField(); i++ {
hash ^= hashmapInterfaceHash(valueInterfaceUnsafe(x.Field(i)), seed)
}
return hash
default:
runtimePanic("comparing un-comparable type")
return 0 // unreachable
}
}
func hashmapInterfacePtrHash(iptr unsafe.Pointer, size uintptr, seed uintptr) uint32 {
_i := *(*interface{})(iptr)
return hashmapInterfaceHash(_i, seed)
}
func hashmapInterfaceEqual(x, y unsafe.Pointer, n uintptr) bool {
return *(*interface{})(x) == *(*interface{})(y)
}
func hashmapInterfaceSet(m *hashmap, key interface{}, value unsafe.Pointer) {
if m == nil {
nilMapPanic()
}
hash := hashmapInterfaceHash(key, m.seed)
hashmapSet(m, unsafe.Pointer(&key), value, hash)
}
func hashmapInterfaceSetUnsafePointer(m unsafe.Pointer, key interface{}, value unsafe.Pointer) {
hashmapInterfaceSet((*hashmap)(m), key, value)
}
func hashmapInterfaceGet(m *hashmap, key interface{}, value unsafe.Pointer, valueSize uintptr) bool {
if m == nil {
memzero(value, uintptr(valueSize))
return false
}
hash := hashmapInterfaceHash(key, m.seed)
return hashmapGet(m, unsafe.Pointer(&key), value, valueSize, hash)
}
func hashmapInterfaceGetUnsafePointer(m unsafe.Pointer, key interface{}, value unsafe.Pointer, valueSize uintptr) bool {
return hashmapInterfaceGet((*hashmap)(m), key, value, valueSize)
}
func hashmapInterfaceDelete(m *hashmap, key interface{}) {
if m == nil {
return
}
hash := hashmapInterfaceHash(key, m.seed)
hashmapDelete(m, unsafe.Pointer(&key), hash)
}
func hashmapInterfaceDeleteUnsafePointer(m unsafe.Pointer, key interface{}) {
hashmapInterfaceDelete((*hashmap)(m), key)
}
|