aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/runtime/runtime_nrf52840.go
blob: 41c36fe5f023cefc854e6cf6820a268d34842129 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
//go:build nrf && nrf52840

package runtime

import (
	"device/arm"
	"device/nrf"
	"machine"
	"machine/usb/cdc"
	"runtime/interrupt"
	"runtime/volatile"
)

type timeUnit int64

//go:linkname systemInit SystemInit
func systemInit()

//export Reset_Handler
func main() {
	if nrf.FPUPresent {
		arm.SCB.CPACR.Set(0) // disable FPU if it is enabled
	}
	systemInit()
	preinit()
	run()
	exit(0)
}

func init() {
	cdc.EnableUSBCDC()
	machine.USBDev.Configure(machine.UARTConfig{})
	machine.InitSerial()
	initLFCLK()
	initRTC()
}

func initLFCLK() {
	if machine.HasLowFrequencyCrystal {
		nrf.CLOCK.LFCLKSRC.Set(nrf.CLOCK_LFCLKSTAT_SRC_Xtal)
	}
	nrf.CLOCK.TASKS_LFCLKSTART.Set(1)
	for nrf.CLOCK.EVENTS_LFCLKSTARTED.Get() == 0 {
	}
	nrf.CLOCK.EVENTS_LFCLKSTARTED.Set(0)
}

func initRTC() {
	nrf.RTC1.TASKS_START.Set(1)
	intr := interrupt.New(nrf.IRQ_RTC1, func(intr interrupt.Interrupt) {
		if nrf.RTC1.EVENTS_COMPARE[0].Get() != 0 {
			nrf.RTC1.EVENTS_COMPARE[0].Set(0)
			nrf.RTC1.INTENCLR.Set(nrf.RTC_INTENSET_COMPARE0)
			nrf.RTC1.EVENTS_COMPARE[0].Set(0)
			rtc_wakeup.Set(1)
		}
		if nrf.RTC1.EVENTS_OVRFLW.Get() != 0 {
			nrf.RTC1.EVENTS_OVRFLW.Set(0)
			rtcOverflows.Set(rtcOverflows.Get() + 1)
		}
	})
	nrf.RTC1.INTENSET.Set(nrf.RTC_INTENSET_OVRFLW)
	intr.SetPriority(0xc0) // low priority
	intr.Enable()
}

func putchar(c byte) {
	machine.Serial.WriteByte(c)
}

func getchar() byte {
	for machine.Serial.Buffered() == 0 {
		Gosched()
	}
	v, _ := machine.Serial.ReadByte()
	return v
}

func buffered() int {
	return machine.Serial.Buffered()
}

func sleepTicks(d timeUnit) {
	for d != 0 {
		ticks := uint32(d) & 0x7fffff // 23 bits (to be on the safe side)
		rtc_sleep(ticks)
		d -= timeUnit(ticks)
	}
}

var rtcOverflows volatile.Register32 // number of times the RTC wrapped around

// ticksToNanoseconds converts RTC ticks (at 32768Hz) to nanoseconds.
func ticksToNanoseconds(ticks timeUnit) int64 {
	// The following calculation is actually the following, but with both sides
	// reduced to reduce the risk of overflow:
	//     ticks * 1e9 / 32768
	return int64(ticks) * 1953125 / 64
}

// nanosecondsToTicks converts nanoseconds to RTC ticks (running at 32768Hz).
func nanosecondsToTicks(ns int64) timeUnit {
	// The following calculation is actually the following, but with both sides
	// reduced to reduce the risk of overflow:
	//     ns * 32768 / 1e9
	return timeUnit(ns * 64 / 1953125)
}

// Monotonically increasing number of ticks since start.
func ticks() timeUnit {
	// For some ways of capturing the time atomically, see this thread:
	// https://www.eevblog.com/forum/microcontrollers/correct-timing-by-timer-overflow-count/msg749617/#msg749617
	// Here, instead of re-reading the counter register if an overflow has been
	// detected, we simply try again because that results in (slightly) smaller
	// code and is perhaps easier to prove correct.
	for {
		mask := interrupt.Disable()
		counter := uint32(nrf.RTC1.COUNTER.Get())
		overflows := rtcOverflows.Get()
		hasOverflow := nrf.RTC1.EVENTS_OVRFLW.Get() != 0
		interrupt.Restore(mask)

		if hasOverflow {
			// There was an overflow. Try again.
			continue
		}

		// The counter is 24 bits in size, so the number of overflows form the
		// upper 32 bits (together 56 bits, which covers 71493 years at
		// 32768kHz: I'd argue good enough for most purposes).
		return timeUnit(overflows)<<24 + timeUnit(counter)
	}
}

var rtc_wakeup volatile.Register8

func rtc_sleep(ticks uint32) {
	nrf.RTC1.INTENSET.Set(nrf.RTC_INTENSET_COMPARE0)
	rtc_wakeup.Set(0)
	if ticks == 1 {
		// Race condition (even in hardware) at ticks == 1.
		// TODO: fix this in a better way by detecting it, like the manual
		// describes.
		ticks = 2
	}
	nrf.RTC1.CC[0].Set((nrf.RTC1.COUNTER.Get() + ticks) & 0x00ffffff)
	for rtc_wakeup.Get() == 0 {
		waitForEvents()
	}
}