1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
// Derivative work of Teensyduino Core Library
// http://www.pjrc.com/teensy/
// Copyright (c) 2017 PJRC.COM, LLC.
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// 1. The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// 2. If the Software is incorporated into a build system that allows
// selection among a list of target devices, then similar target
// devices manufactured by PJRC.COM must be included in the list of
// target devices and selectable in the same manner.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//go:build nxp && mk66f18
package runtime
import (
"device/arm"
"device/nxp"
"machine"
)
const (
watchdogUnlockSequence1 = 0xC520
watchdogUnlockSequence2 = 0xD928
_DEFAULT_FTM_MOD = 61440 - 1
_DEFAULT_FTM_PRESCALE = 1
)
const (
_SIM_SOPT2_IRC48SEL = 3 << nxp.SIM_SOPT2_PLLFLLSEL_Pos
_SMC_PMCTRL_HSRUN = 3 << nxp.SMC_PMCTRL_RUNM_Pos
_SMC_PMSTAT_HSRUN = 0x80 << nxp.SMC_PMSTAT_PMSTAT_Pos
)
//go:export Reset_Handler
func main() {
initSystem()
arm.Asm("CPSIE i")
initInternal()
run()
exit(0)
}
func initSystem() {
// from: ResetHandler
nxp.WDOG.UNLOCK.Set(watchdogUnlockSequence1)
nxp.WDOG.UNLOCK.Set(watchdogUnlockSequence2)
arm.Asm("nop")
arm.Asm("nop")
// TODO: hook for overriding? 'startupEarlyHook'
nxp.WDOG.STCTRLH.Set(nxp.WDOG_STCTRLH_ALLOWUPDATE)
// enable clocks to always-used peripherals
nxp.SIM.SCGC3.Set(nxp.SIM_SCGC3_ADC1 | nxp.SIM_SCGC3_FTM2 | nxp.SIM_SCGC3_FTM3)
nxp.SIM.SCGC5.Set(0x00043F82) // clocks active to all GPIO
nxp.SIM.SCGC6.Set(nxp.SIM_SCGC6_RTC | nxp.SIM_SCGC6_FTM0 | nxp.SIM_SCGC6_FTM1 | nxp.SIM_SCGC6_ADC0 | nxp.SIM_SCGC6_FTF)
nxp.LMEM.PCCCR.Set(0x85000003)
// release I/O pins hold, if we woke up from VLLS mode
if nxp.PMC.REGSC.HasBits(nxp.PMC_REGSC_ACKISO) {
nxp.PMC.REGSC.SetBits(nxp.PMC_REGSC_ACKISO)
}
// since this is a write once register, make it visible to all F_CPU's
// so we can into other sleep modes in the future at any speed
nxp.SMC.PMPROT.Set(nxp.SMC_PMPROT_AHSRUN | nxp.SMC_PMPROT_AVLP | nxp.SMC_PMPROT_ALLS | nxp.SMC_PMPROT_AVLLS)
preinit()
// copy the vector table to RAM default all interrupts to medium priority level
// for (i=0; i < NVIC_NUM_INTERRUPTS + 16; i++) _VectorsRam[i] = _VectorsFlash[i];
for i := uint32(0); i <= nxp.IRQ_max; i++ {
arm.SetPriority(i, 128)
}
// SCB_VTOR = (uint32_t)_VectorsRam; // use vector table in RAM
// hardware always starts in FEI mode
// C1[CLKS] bits are written to 00
// C1[IREFS] bit is written to 1
// C6[PLLS] bit is written to 0
// MCG_SC[FCDIV] defaults to divide by two for internal ref clock
// I tried changing MSG_SC to divide by 1, it didn't work for me
// enable capacitors for crystal
nxp.OSC.CR.Set(nxp.OSC_CR_SC8P | nxp.OSC_CR_SC2P | nxp.OSC_CR_ERCLKEN)
// enable osc, 8-32 MHz range, low power mode
nxp.MCG.C2.Set(uint8((2 << nxp.MCG_C2_RANGE_Pos) | nxp.MCG_C2_EREFS))
// switch to crystal as clock source, FLL input = 16 MHz / 512
nxp.MCG.C1.Set(uint8((2 << nxp.MCG_C1_CLKS_Pos) | (4 << nxp.MCG_C1_FRDIV_Pos)))
// wait for crystal oscillator to begin
for !nxp.MCG.S.HasBits(nxp.MCG_S_OSCINIT0) {
}
// wait for FLL to use oscillator
for nxp.MCG.S.HasBits(nxp.MCG_S_IREFST) {
}
// wait for MCGOUT to use oscillator
for (nxp.MCG.S.Get() & nxp.MCG_S_CLKST_Msk) != (2 << nxp.MCG_S_CLKST_Pos) {
}
// now in FBE mode
// C1[CLKS] bits are written to 10
// C1[IREFS] bit is written to 0
// C1[FRDIV] must be written to divide xtal to 31.25-39 kHz
// C6[PLLS] bit is written to 0
// C2[LP] is written to 0
// we need faster than the crystal, turn on the PLL (F_CPU > 120000000)
nxp.SMC.PMCTRL.Set(_SMC_PMCTRL_HSRUN) // enter HSRUN mode
for nxp.SMC.PMSTAT.Get() != _SMC_PMSTAT_HSRUN {
} // wait for HSRUN
nxp.MCG.C5.Set((1 << nxp.MCG_C5_PRDIV_Pos))
nxp.MCG.C6.Set(nxp.MCG_C6_PLLS | (29 << nxp.MCG_C6_VDIV_Pos))
// wait for PLL to start using xtal as its input
for !nxp.MCG.S.HasBits(nxp.MCG_S_PLLST) {
}
// wait for PLL to lock
for !nxp.MCG.S.HasBits(nxp.MCG_S_LOCK0) {
}
// now we're in PBE mode
// now program the clock dividers
// config divisors: 180 MHz core, 60 MHz bus, 25.7 MHz flash, USB = IRC48M
nxp.SIM.CLKDIV1.Set((0 << nxp.SIM_CLKDIV1_OUTDIV1_Pos) | (2 << nxp.SIM_CLKDIV1_OUTDIV2_Pos) | (0 << nxp.SIM_CLKDIV1_OUTDIV3_Pos) | (6 << nxp.SIM_CLKDIV1_OUTDIV4_Pos))
nxp.SIM.CLKDIV2.Set((0 << nxp.SIM_CLKDIV2_USBDIV_Pos))
// switch to PLL as clock source, FLL input = 16 MHz / 512
nxp.MCG.C1.Set((0 << nxp.MCG_C1_CLKS_Pos) | (4 << nxp.MCG_C1_FRDIV_Pos))
// wait for PLL clock to be used
for (nxp.MCG.S.Get() & nxp.MCG_S_CLKST_Msk) != (3 << nxp.MCG_S_CLKST_Pos) {
}
// now we're in PEE mode
// trace is CPU clock, CLKOUT=OSCERCLK0
// USB uses IRC48
nxp.SIM.SOPT2.Set(nxp.SIM_SOPT2_USBSRC | _SIM_SOPT2_IRC48SEL | nxp.SIM_SOPT2_TRACECLKSEL | (6 << nxp.SIM_SOPT2_CLKOUTSEL_Pos))
// If the RTC oscillator isn't enabled, get it started. For Teensy 3.6
// we don't do this early. See comment above about slow rising power.
if !nxp.RTC.CR.HasBits(nxp.RTC_CR_OSCE) {
nxp.RTC.SR.Set(0)
nxp.RTC.CR.Set(nxp.RTC_CR_SC16P | nxp.RTC_CR_SC4P | nxp.RTC_CR_OSCE)
}
// initialize the SysTick counter
initSysTick()
}
func initInternal() {
// from: _init_Teensyduino_internal_
// arm.EnableIRQ(nxp.IRQ_PORTA)
// arm.EnableIRQ(nxp.IRQ_PORTB)
// arm.EnableIRQ(nxp.IRQ_PORTC)
// arm.EnableIRQ(nxp.IRQ_PORTD)
// arm.EnableIRQ(nxp.IRQ_PORTE)
nxp.FTM0.CNT.Set(0)
nxp.FTM0.MOD.Set(_DEFAULT_FTM_MOD)
nxp.FTM0.C0SC.Set(0x28) // MSnB:MSnA = 10, ELSnB:ELSnA = 10
nxp.FTM0.C1SC.Set(0x28)
nxp.FTM0.C2SC.Set(0x28)
nxp.FTM0.C3SC.Set(0x28)
nxp.FTM0.C4SC.Set(0x28)
nxp.FTM0.C5SC.Set(0x28)
nxp.FTM0.C6SC.Set(0x28)
nxp.FTM0.C7SC.Set(0x28)
nxp.FTM3.C0SC.Set(0x28)
nxp.FTM3.C1SC.Set(0x28)
nxp.FTM3.C2SC.Set(0x28)
nxp.FTM3.C3SC.Set(0x28)
nxp.FTM3.C4SC.Set(0x28)
nxp.FTM3.C5SC.Set(0x28)
nxp.FTM3.C6SC.Set(0x28)
nxp.FTM3.C7SC.Set(0x28)
nxp.FTM0.SC.Set((1 << nxp.FTM_SC_CLKS_Pos) | (_DEFAULT_FTM_PRESCALE << nxp.FTM_SC_PS_Pos))
nxp.FTM1.CNT.Set(0)
nxp.FTM1.MOD.Set(_DEFAULT_FTM_MOD)
nxp.FTM1.C0SC.Set(0x28)
nxp.FTM1.C1SC.Set(0x28)
nxp.FTM1.SC.Set((1 << nxp.FTM_SC_CLKS_Pos) | (_DEFAULT_FTM_PRESCALE << nxp.FTM_SC_PS_Pos))
// causes a data bus error for unknown reasons
// nxp.FTM2.CNT.Set(0)
// nxp.FTM2.MOD.Set(_DEFAULT_FTM_MOD)
// nxp.FTM2.C0SC.Set(0x28)
// nxp.FTM2.C1SC.Set(0x28)
// nxp.FTM2.SC.Set((1 << nxp.FTM_SC_CLKS_Pos) | (_DEFAULT_FTM_PRESCALE << nxp.FTM_SC_PS_Pos))
nxp.FTM3.CNT.Set(0)
nxp.FTM3.MOD.Set(_DEFAULT_FTM_MOD)
nxp.FTM3.C0SC.Set(0x28)
nxp.FTM3.C1SC.Set(0x28)
nxp.FTM3.SC.Set((1 << nxp.FTM_SC_CLKS_Pos) | (_DEFAULT_FTM_PRESCALE << nxp.FTM_SC_PS_Pos))
nxp.SIM.SCGC2.SetBits(nxp.SIM_SCGC2_TPM1)
nxp.SIM.SOPT2.SetBits((2 << nxp.SIM_SOPT2_TPMSRC_Pos))
nxp.TPM1.CNT.Set(0)
nxp.TPM1.MOD.Set(32767)
nxp.TPM1.C0SC.Set(0x28)
nxp.TPM1.C1SC.Set(0x28)
nxp.TPM1.SC.Set((1 << nxp.FTM_SC_CLKS_Pos) | (0 << nxp.FTM_SC_PS_Pos))
// configure the sleep timer
initSleepTimer()
// analog_init();
}
func putchar(c byte) {
machine.PutcharUART(machine.UART0, c)
}
func getchar() byte {
// dummy, TODO
return 0
}
func buffered() int {
// dummy, TODO
return 0
}
func exit(code int) {
abort()
}
func abort() {
println("!!! ABORT !!!")
m := arm.DisableInterrupts()
arm.Asm("mov r12, #1")
arm.Asm("msr basepri, r12") // only execute interrupts of priority 0
nxp.SystemControl.SHPR3.ClearBits(nxp.SystemControl_SHPR3_PRI_15_Msk) // set systick to priority 0
arm.EnableInterrupts(m)
machine.LED.Configure(machine.PinConfig{Mode: machine.PinOutput})
var v bool
for {
machine.LED.Set(v)
v = !v
t := millisSinceBoot()
for millisSinceBoot()-t < 60 {
arm.Asm("wfi")
}
// keep polling some communication while in fault
// mode, so we don't completely die.
// machine.PollUSB(&machine.USB0)
machine.PollUART(machine.UART0)
machine.PollUART(machine.UART1)
machine.PollUART(machine.UART2)
}
}
func waitForEvents() {
arm.Asm("wfe")
}
|