aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/runtime/runtime_unix.go
blob: 51807b8471053990db0ff186ca2bd3b9baa3e121 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
//go:build (darwin || (linux && !baremetal && !wasip1 && !wasm_unknown && !wasip2)) && !nintendoswitch

package runtime

import (
	"math/bits"
	"sync/atomic"
	"tinygo"
	"unsafe"
)

//export write
func libc_write(fd int32, buf unsafe.Pointer, count uint) int

//export usleep
func usleep(usec uint) int

//export pause
func pause() int32

// void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);
// Note: off_t is defined as int64 because:
//   - musl (used on Linux) always defines it as int64
//   - darwin is practically always 64-bit anyway
//
//export mmap
func mmap(addr unsafe.Pointer, length uintptr, prot, flags, fd int, offset int64) unsafe.Pointer

//export abort
func abort()

//export exit
func exit(code int)

//export raise
func raise(sig int32)

//export clock_gettime
func libc_clock_gettime(clk_id int32, ts *timespec)

//export __clock_gettime64
func libc_clock_gettime64(clk_id int32, ts *timespec)

// Portable (64-bit) variant of clock_gettime.
func clock_gettime(clk_id int32, ts *timespec) {
	if TargetBits == 32 {
		// This is a 32-bit architecture (386, arm, etc).
		// We would like to use the 64-bit version of this function so that
		// binaries will continue to run after Y2038.
		// For more information:
		//   - https://musl.libc.org/time64.html
		//   - https://sourceware.org/glibc/wiki/Y2038ProofnessDesign
		libc_clock_gettime64(clk_id, ts)
	} else {
		// This is a 64-bit architecture (amd64, arm64, etc).
		// Use the regular variant, because it already fixes the Y2038 problem
		// by using 64-bit integer types.
		libc_clock_gettime(clk_id, ts)
	}
}

type timeUnit int64

// Note: tv_sec and tv_nsec normally vary in size by platform. However, we're
// using the time64 variant (see clock_gettime above), so the formats are the
// same between 32-bit and 64-bit architectures.
// There is one issue though: on big-endian systems, tv_nsec would be incorrect.
// But we don't support big-endian systems yet (as of 2021) so this is fine.
type timespec struct {
	tv_sec  int64 // time_t with time64 support (always 64-bit)
	tv_nsec int64 // unsigned 64-bit integer on all time64 platforms
}

var stackTop uintptr

// Entry point for Go. Initialize all packages and call main.main().
//
//export main
func main(argc int32, argv *unsafe.Pointer) int {
	preinit()

	// Store argc and argv for later use.
	main_argc = argc
	main_argv = argv

	// Register some fatal signals, so that we can print slightly better error
	// messages.
	tinygo_register_fatal_signals()

	// Obtain the initial stack pointer right before calling the run() function.
	// The run function has been moved to a separate (non-inlined) function so
	// that the correct stack pointer is read.
	stackTop = getCurrentStackPointer()
	runMain()

	sleepTicks(nanosecondsToTicks(1e9))

	// For libc compatibility.
	return 0
}

var (
	main_argc int32
	main_argv *unsafe.Pointer
	args      []string
)

//go:linkname os_runtime_args os.runtime_args
func os_runtime_args() []string {
	if args == nil {
		// Make args slice big enough so that it can store all command line
		// arguments.
		args = make([]string, main_argc)

		// Initialize command line parameters.
		argv := main_argv
		for i := 0; i < int(main_argc); i++ {
			// Convert the C string to a Go string.
			length := strlen(*argv)
			arg := (*_string)(unsafe.Pointer(&args[i]))
			arg.length = length
			arg.ptr = (*byte)(*argv)
			// This is the Go equivalent of "argv++" in C.
			argv = (*unsafe.Pointer)(unsafe.Add(unsafe.Pointer(argv), unsafe.Sizeof(argv)))
		}
	}
	return args
}

// Must be a separate function to get the correct stack pointer.
//
//go:noinline
func runMain() {
	run()
}

//export tinygo_register_fatal_signals
func tinygo_register_fatal_signals()

// Print fatal errors when they happen, including the instruction location.
// With the particular formatting below, `tinygo run` can extract the location
// where the signal happened and try to show the source location based on DWARF
// information.
//
//export tinygo_handle_fatal_signal
func tinygo_handle_fatal_signal(sig int32, addr uintptr) {
	if panicStrategy() == tinygo.PanicStrategyTrap {
		trap()
	}

	// Print signal including the faulting instruction.
	if addr != 0 {
		printstring("panic: runtime error at ")
		printptr(addr)
	} else {
		printstring("panic: runtime error")
	}
	printstring(": caught signal ")
	switch sig {
	case sig_SIGBUS:
		println("SIGBUS")
	case sig_SIGILL:
		println("SIGILL")
	case sig_SIGSEGV:
		println("SIGSEGV")
	default:
		println(sig)
	}

	// TODO: it might be interesting to also print the invalid address for
	// SIGSEGV and SIGBUS.

	// Do *not* abort here, instead raise the same signal again. The signal is
	// registered with SA_RESETHAND which means it executes only once. So when
	// we raise the signal again below, the signal isn't handled specially but
	// is handled in the default way (probably exiting the process, maybe with a
	// core dump).
	raise(sig)
}

//go:extern environ
var environ *unsafe.Pointer

//go:linkname syscall_runtime_envs syscall.runtime_envs
func syscall_runtime_envs() []string {
	// Count how many environment variables there are.
	env := environ
	numEnvs := 0
	for *env != nil {
		numEnvs++
		env = (*unsafe.Pointer)(unsafe.Add(unsafe.Pointer(env), unsafe.Sizeof(environ)))
	}

	// Create a string slice of all environment variables.
	// This requires just a single heap allocation.
	env = environ
	envs := make([]string, 0, numEnvs)
	for *env != nil {
		ptr := *env
		length := strlen(ptr)
		s := _string{
			ptr:    (*byte)(ptr),
			length: length,
		}
		envs = append(envs, *(*string)(unsafe.Pointer(&s)))
		env = (*unsafe.Pointer)(unsafe.Add(unsafe.Pointer(env), unsafe.Sizeof(environ)))
	}

	return envs
}

func putchar(c byte) {
	buf := [1]byte{c}
	libc_write(1, unsafe.Pointer(&buf[0]), 1)
}

func ticksToNanoseconds(ticks timeUnit) int64 {
	// The OS API works in nanoseconds so no conversion necessary.
	return int64(ticks)
}

func nanosecondsToTicks(ns int64) timeUnit {
	// The OS API works in nanoseconds so no conversion necessary.
	return timeUnit(ns)
}

func sleepTicks(d timeUnit) {
	// When there are no signal handlers present, we can simply go to sleep.
	if !hasSignals {
		// timeUnit is in nanoseconds, so need to convert to microseconds here.
		usleep(uint(d) / 1000)
		return
	}

	if GOOS == "darwin" {
		// Check for incoming signals.
		if checkSignals() {
			// Received a signal, so there's probably at least one goroutine
			// that's runnable again.
			return
		}

		// WARNING: there is a race condition here. If a signal arrives between
		// checkSignals() and usleep(), the usleep() call will not exit early so
		// the signal is delayed until usleep finishes or another signal
		// arrives.
		// There doesn't appear to be a simple way to fix this on MacOS.

		// timeUnit is in nanoseconds, so need to convert to microseconds here.
		result := usleep(uint(d) / 1000)
		if result != 0 {
			checkSignals()
		}
	} else {
		// Linux (and various other POSIX systems) implement sigtimedwait so we
		// can do this in a non-racy way.
		tinygo_wfi_mask(activeSignals)
		if checkSignals() {
			tinygo_wfi_unmask()
			return
		}
		signal := tinygo_wfi_sleep(activeSignals, uint64(d))
		if signal >= 0 {
			tinygo_signal_handler(signal)
			checkSignals()
		}
		tinygo_wfi_unmask()
	}
}

func getTime(clock int32) uint64 {
	ts := timespec{}
	clock_gettime(clock, &ts)
	return uint64(ts.tv_sec)*1000*1000*1000 + uint64(ts.tv_nsec)
}

// Return monotonic time in nanoseconds.
func monotime() uint64 {
	return getTime(clock_MONOTONIC_RAW)
}

func ticks() timeUnit {
	return timeUnit(monotime())
}

//go:linkname now time.now
func now() (sec int64, nsec int32, mono int64) {
	ts := timespec{}
	clock_gettime(clock_REALTIME, &ts)
	sec = int64(ts.tv_sec)
	nsec = int32(ts.tv_nsec)
	mono = nanotime()
	return
}

//go:linkname syscall_Exit syscall.Exit
func syscall_Exit(code int) {
	exit(code)
}

// TinyGo does not yet support any form of parallelism on an OS, so these can be
// left empty.

//go:linkname procPin sync/atomic.runtime_procPin
func procPin() {
}

//go:linkname procUnpin sync/atomic.runtime_procUnpin
func procUnpin() {
}

var heapSize uintptr = 128 * 1024 // small amount to start
var heapMaxSize uintptr

var heapStart, heapEnd uintptr

func preinit() {
	// Allocate a large chunk of virtual memory. Because it is virtual, it won't
	// really be allocated in RAM. Memory will only be allocated when it is
	// first touched.
	heapMaxSize = 1 * 1024 * 1024 * 1024 // 1GB for the entire heap
	for {
		addr := mmap(nil, heapMaxSize, flag_PROT_READ|flag_PROT_WRITE, flag_MAP_PRIVATE|flag_MAP_ANONYMOUS, -1, 0)
		if addr == unsafe.Pointer(^uintptr(0)) {
			// Heap was too big to be mapped by mmap. Reduce the maximum size.
			// We might want to make this a bit smarter than simply halving the
			// heap size.
			// This can happen on 32-bit systems.
			heapMaxSize /= 2
			if heapMaxSize < 4096 {
				runtimePanic("cannot allocate heap memory")
			}
			continue
		}
		heapStart = uintptr(addr)
		heapEnd = heapStart + heapSize
		break
	}
}

// growHeap tries to grow the heap size. It returns true if it succeeds, false
// otherwise.
func growHeap() bool {
	if heapSize == heapMaxSize {
		// Already at the max. If we run out of memory, we should consider
		// increasing heapMaxSize on 64-bit systems.
		return false
	}
	// Grow the heap size used by the program.
	heapSize = (heapSize * 4 / 3) &^ 4095 // grow by around 33%
	if heapSize > heapMaxSize {
		heapSize = heapMaxSize
	}
	setHeapEnd(heapStart + heapSize)
	return true
}

func init() {
	// Set up a channel to receive signals into.
	signalChan = make(chan uint32, 1)
}

var signalChan chan uint32

// Indicate whether signals have been registered.
var hasSignals bool

// Mask of signals that have been received. The signal handler atomically ORs
// signals into this value.
var receivedSignals uint32

var activeSignals uint32

//go:linkname signal_enable os/signal.signal_enable
func signal_enable(s uint32) {
	if s >= 32 {
		// TODO: to support higher signal numbers, we need to turn
		// receivedSignals into a uint32 array.
		runtimePanicAt(returnAddress(0), "unsupported signal number")
	}
	hasSignals = true
	activeSignals |= 1 << s
	// It's easier to implement this function in C.
	tinygo_signal_enable(s)
}

//go:linkname signal_ignore os/signal.signal_ignore
func signal_ignore(s uint32) {
	if s >= 32 {
		// TODO: to support higher signal numbers, we need to turn
		// receivedSignals into a uint32 array.
		runtimePanicAt(returnAddress(0), "unsupported signal number")
	}
	activeSignals &^= 1 << s
	tinygo_signal_ignore(s)
}

//go:linkname signal_disable os/signal.signal_disable
func signal_disable(s uint32) {
	if s >= 32 {
		// TODO: to support higher signal numbers, we need to turn
		// receivedSignals into a uint32 array.
		runtimePanicAt(returnAddress(0), "unsupported signal number")
	}
	activeSignals &^= 1 << s
	tinygo_signal_disable(s)
}

//go:linkname signal_waitUntilIdle os/signal.signalWaitUntilIdle
func signal_waitUntilIdle() {
	// Make sure all signals are sent on the channel.
	for atomic.LoadUint32(&receivedSignals) != 0 {
		checkSignals()
		Gosched()
	}

	// Make sure all signals are processed.
	for len(signalChan) != 0 {
		Gosched()
	}
}

//export tinygo_signal_enable
func tinygo_signal_enable(s uint32)

//export tinygo_signal_ignore
func tinygo_signal_ignore(s uint32)

//export tinygo_signal_disable
func tinygo_signal_disable(s uint32)

// void tinygo_signal_handler(int sig);
//
//export tinygo_signal_handler
func tinygo_signal_handler(s int32) {
	// This loop is essentially the atomic equivalent of the following:
	//
	//   receivedSignals |= 1 << s
	//
	// TODO: use atomic.Uint32.And once we drop support for Go 1.22 instead of
	// this loop.
	for {
		mask := uint32(1) << uint32(s)
		val := atomic.LoadUint32(&receivedSignals)
		swapped := atomic.CompareAndSwapUint32(&receivedSignals, val, val|mask)
		if swapped {
			break
		}
	}
}

//go:linkname signal_recv os/signal.signal_recv
func signal_recv() uint32 {
	// Function called from os/signal to get the next received signal.
	val := <-signalChan
	checkSignals()
	return val
}

// Atomically find a signal that previously occured and send it into the
// signalChan channel. Return true if at least one signal was delivered this
// way, false otherwise.
func checkSignals() bool {
	gotSignals := false
	for {
		// Extract the lowest numbered signal number from receivedSignals.
		val := atomic.LoadUint32(&receivedSignals)
		if val == 0 {
			// There is no signal ready to be received by the program (common
			// case).
			return gotSignals
		}
		num := uint32(bits.TrailingZeros32(val))

		// Do a non-blocking send on signalChan.
		select {
		case signalChan <- num:
			// There was room free in the channel, so remove the signal number
			// from the receivedSignals mask.
			gotSignals = true
		default:
			// Could not send the signal number on the channel. This means
			// there's still a signal pending. In that case, let it be received
			// at which point checkSignals is called again to put the next one
			// in the channel buffer.
			return gotSignals
		}

		// Atomically clear the signal number from receivedSignals.
		// TODO: use atomic.Uint32.Or once we drop support for Go 1.22 instead
		// of this loop.
		for {
			newVal := val &^ (1 << num)
			swapped := atomic.CompareAndSwapUint32(&receivedSignals, val, newVal)
			if swapped {
				break
			}
			val = atomic.LoadUint32(&receivedSignals)
		}
	}
}

//export tinygo_wfi_mask
func tinygo_wfi_mask(active uint32)

//export tinygo_wfi_sleep
func tinygo_wfi_sleep(active uint32, timeout uint64) int32

//export tinygo_wfi_wait
func tinygo_wfi_wait(active uint32) int32

//export tinygo_wfi_unmask
func tinygo_wfi_unmask()

func waitForEvents() {
	if hasSignals {
		// We could have used pause() here, but that function is impossible to
		// use in a race-free way:
		// https://www.cipht.net/2023/11/30/perils-of-pause.html
		// Therefore we need something better.
		// Note: this is unsafe with multithreading, because sigprocmask is only
		// defined for single-threaded applictions.
		tinygo_wfi_mask(activeSignals)
		if checkSignals() {
			tinygo_wfi_unmask()
			return
		}
		signal := tinygo_wfi_wait(activeSignals)
		tinygo_signal_handler(signal)
		checkSignals()
		tinygo_wfi_unmask()
	} else {
		// The program doesn't use signals, so this is a deadlock.
		runtimePanic("deadlocked: no event source")
	}
}