1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
//go:build (darwin || (linux && !baremetal && !wasi && !wasm_unknown)) && !nintendoswitch
package runtime
import (
"unsafe"
)
//export write
func libc_write(fd int32, buf unsafe.Pointer, count uint) int
//export usleep
func usleep(usec uint) int
// void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);
// Note: off_t is defined as int64 because:
// - musl (used on Linux) always defines it as int64
// - darwin is practically always 64-bit anyway
//
//export mmap
func mmap(addr unsafe.Pointer, length uintptr, prot, flags, fd int, offset int64) unsafe.Pointer
//export abort
func abort()
//export exit
func exit(code int)
//export clock_gettime
func libc_clock_gettime(clk_id int32, ts *timespec)
//export __clock_gettime64
func libc_clock_gettime64(clk_id int32, ts *timespec)
// Portable (64-bit) variant of clock_gettime.
func clock_gettime(clk_id int32, ts *timespec) {
if TargetBits == 32 {
// This is a 32-bit architecture (386, arm, etc).
// We would like to use the 64-bit version of this function so that
// binaries will continue to run after Y2038.
// For more information:
// - https://musl.libc.org/time64.html
// - https://sourceware.org/glibc/wiki/Y2038ProofnessDesign
libc_clock_gettime64(clk_id, ts)
} else {
// This is a 64-bit architecture (amd64, arm64, etc).
// Use the regular variant, because it already fixes the Y2038 problem
// by using 64-bit integer types.
libc_clock_gettime(clk_id, ts)
}
}
type timeUnit int64
// Note: tv_sec and tv_nsec normally vary in size by platform. However, we're
// using the time64 variant (see clock_gettime above), so the formats are the
// same between 32-bit and 64-bit architectures.
// There is one issue though: on big-endian systems, tv_nsec would be incorrect.
// But we don't support big-endian systems yet (as of 2021) so this is fine.
type timespec struct {
tv_sec int64 // time_t with time64 support (always 64-bit)
tv_nsec int64 // unsigned 64-bit integer on all time64 platforms
}
var stackTop uintptr
// Entry point for Go. Initialize all packages and call main.main().
//
//export main
func main(argc int32, argv *unsafe.Pointer) int {
preinit()
// Store argc and argv for later use.
main_argc = argc
main_argv = argv
// Obtain the initial stack pointer right before calling the run() function.
// The run function has been moved to a separate (non-inlined) function so
// that the correct stack pointer is read.
stackTop = getCurrentStackPointer()
runMain()
// For libc compatibility.
return 0
}
var (
main_argc int32
main_argv *unsafe.Pointer
args []string
)
//go:linkname os_runtime_args os.runtime_args
func os_runtime_args() []string {
if args == nil {
// Make args slice big enough so that it can store all command line
// arguments.
args = make([]string, main_argc)
// Initialize command line parameters.
argv := main_argv
for i := 0; i < int(main_argc); i++ {
// Convert the C string to a Go string.
length := strlen(*argv)
arg := (*_string)(unsafe.Pointer(&args[i]))
arg.length = length
arg.ptr = (*byte)(*argv)
// This is the Go equivalent of "argv++" in C.
argv = (*unsafe.Pointer)(unsafe.Add(unsafe.Pointer(argv), unsafe.Sizeof(argv)))
}
}
return args
}
// Must be a separate function to get the correct stack pointer.
//
//go:noinline
func runMain() {
run()
}
//go:extern environ
var environ *unsafe.Pointer
//go:linkname syscall_runtime_envs syscall.runtime_envs
func syscall_runtime_envs() []string {
// Count how many environment variables there are.
env := environ
numEnvs := 0
for *env != nil {
numEnvs++
env = (*unsafe.Pointer)(unsafe.Add(unsafe.Pointer(env), unsafe.Sizeof(environ)))
}
// Create a string slice of all environment variables.
// This requires just a single heap allocation.
env = environ
envs := make([]string, 0, numEnvs)
for *env != nil {
ptr := *env
length := strlen(ptr)
s := _string{
ptr: (*byte)(ptr),
length: length,
}
envs = append(envs, *(*string)(unsafe.Pointer(&s)))
env = (*unsafe.Pointer)(unsafe.Add(unsafe.Pointer(env), unsafe.Sizeof(environ)))
}
return envs
}
func putchar(c byte) {
buf := [1]byte{c}
libc_write(1, unsafe.Pointer(&buf[0]), 1)
}
func ticksToNanoseconds(ticks timeUnit) int64 {
// The OS API works in nanoseconds so no conversion necessary.
return int64(ticks)
}
func nanosecondsToTicks(ns int64) timeUnit {
// The OS API works in nanoseconds so no conversion necessary.
return timeUnit(ns)
}
func sleepTicks(d timeUnit) {
// timeUnit is in nanoseconds, so need to convert to microseconds here.
usleep(uint(d) / 1000)
}
func getTime(clock int32) uint64 {
ts := timespec{}
clock_gettime(clock, &ts)
return uint64(ts.tv_sec)*1000*1000*1000 + uint64(ts.tv_nsec)
}
// Return monotonic time in nanoseconds.
func monotime() uint64 {
return getTime(clock_MONOTONIC_RAW)
}
func ticks() timeUnit {
return timeUnit(monotime())
}
//go:linkname now time.now
func now() (sec int64, nsec int32, mono int64) {
ts := timespec{}
clock_gettime(clock_REALTIME, &ts)
sec = int64(ts.tv_sec)
nsec = int32(ts.tv_nsec)
mono = nanotime()
return
}
//go:linkname syscall_Exit syscall.Exit
func syscall_Exit(code int) {
exit(code)
}
// TinyGo does not yet support any form of parallelism on an OS, so these can be
// left empty.
//go:linkname procPin sync/atomic.runtime_procPin
func procPin() {
}
//go:linkname procUnpin sync/atomic.runtime_procUnpin
func procUnpin() {
}
var heapSize uintptr = 128 * 1024 // small amount to start
var heapMaxSize uintptr
var heapStart, heapEnd uintptr
func preinit() {
// Allocate a large chunk of virtual memory. Because it is virtual, it won't
// really be allocated in RAM. Memory will only be allocated when it is
// first touched.
heapMaxSize = 1 * 1024 * 1024 * 1024 // 1GB for the entire heap
for {
addr := mmap(nil, heapMaxSize, flag_PROT_READ|flag_PROT_WRITE, flag_MAP_PRIVATE|flag_MAP_ANONYMOUS, -1, 0)
if addr == unsafe.Pointer(^uintptr(0)) {
// Heap was too big to be mapped by mmap. Reduce the maximum size.
// We might want to make this a bit smarter than simply halving the
// heap size.
// This can happen on 32-bit systems.
heapMaxSize /= 2
continue
}
heapStart = uintptr(addr)
heapEnd = heapStart + heapSize
break
}
}
// growHeap tries to grow the heap size. It returns true if it succeeds, false
// otherwise.
func growHeap() bool {
if heapSize == heapMaxSize {
// Already at the max. If we run out of memory, we should consider
// increasing heapMaxSize on 64-bit systems.
return false
}
// Grow the heap size used by the program.
heapSize = (heapSize * 4 / 3) &^ 4095 // grow by around 33%
if heapSize > heapMaxSize {
heapSize = heapMaxSize
}
setHeapEnd(heapStart + heapSize)
return true
}
|