1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
package runtime
import "unsafe"
//export abort
func abort()
//export exit
func libc_exit(code int)
//export putchar
func libc_putchar(c int) int
//export VirtualAlloc
func _VirtualAlloc(lpAddress unsafe.Pointer, dwSize uintptr, flAllocationType, flProtect uint32) unsafe.Pointer
//export QueryUnbiasedInterruptTime
func _QueryUnbiasedInterruptTime(UnbiasedTime *uint64) bool
// The parameter is really a LPFILETIME, but *uint64 should be compatible.
//
//export GetSystemTimeAsFileTime
func _GetSystemTimeAsFileTime(lpSystemTimeAsFileTime *uint64)
//export LoadLibraryExW
func _LoadLibraryExW(lpLibFileName *uint16, hFile uintptr, dwFlags uint32) uintptr
//export Sleep
func _Sleep(milliseconds uint32)
const _LOAD_LIBRARY_SEARCH_SYSTEM32 = 0x00000800
//export GetProcAddress
func getProcAddress(handle uintptr, procname *byte) uintptr
//export _configure_narrow_argv
func _configure_narrow_argv(int32) int32
//export __p___argc
func __p___argc() *int32
//export __p___argv
func __p___argv() **unsafe.Pointer
//export mainCRTStartup
func mainCRTStartup() int {
preinit()
// Obtain the initial stack pointer right before calling the run() function.
// The run function has been moved to a separate (non-inlined) function so
// that the correct stack pointer is read.
stackTop = getCurrentStackPointer()
runMain()
// Exit via exit(0) instead of returning. This matches
// mingw-w64-crt/crt/crtexe.c, which exits using exit(0) instead of
// returning the return value.
// Exiting this way (instead of returning) also fixes an issue where not all
// output would be sent to stdout before exit.
// See: https://github.com/tinygo-org/tinygo/pull/4589
libc_exit(0)
// Unreachable, since we've already exited. But we need to return something
// here to make this valid Go code.
return 0
}
// Must be a separate function to get the correct stack pointer.
//
//go:noinline
func runMain() {
run()
}
var args []string
//go:linkname os_runtime_args os.runtime_args
func os_runtime_args() []string {
if args == nil {
// Obtain argc/argv from the environment.
_configure_narrow_argv(2)
argc := *__p___argc()
argv := *__p___argv()
// Make args slice big enough so that it can store all command line
// arguments.
args = make([]string, argc)
// Initialize command line parameters.
for i := 0; i < int(argc); i++ {
// Convert the C string to a Go string.
length := strlen(*argv)
arg := (*_string)(unsafe.Pointer(&args[i]))
arg.length = length
arg.ptr = (*byte)(*argv)
// This is the Go equivalent of "argv++" in C.
argv = (*unsafe.Pointer)(unsafe.Add(unsafe.Pointer(argv), unsafe.Sizeof(argv)))
}
}
return args
}
func putchar(c byte) {
libc_putchar(int(c))
}
var heapSize uintptr = 128 * 1024 // small amount to start
var heapMaxSize uintptr
var heapStart, heapEnd uintptr
func preinit() {
// Allocate a large chunk of virtual memory. Because it is virtual, it won't
// really be allocated in RAM. Memory will only be allocated when it is
// first touched.
heapMaxSize = 1 * 1024 * 1024 * 1024 // 1GB for the entire heap
const (
MEM_COMMIT = 0x00001000
MEM_RESERVE = 0x00002000
PAGE_READWRITE = 0x04
)
heapStart = uintptr(_VirtualAlloc(nil, heapMaxSize, MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE))
heapEnd = heapStart + heapSize
}
type timeUnit int64
var stackTop uintptr
func ticksToNanoseconds(ticks timeUnit) int64 {
// Interrupt time count works in units of 100 nanoseconds.
return int64(ticks) * 100
}
func nanosecondsToTicks(ns int64) timeUnit {
// Interrupt time count works in units of 100 nanoseconds.
return timeUnit(ns) / 100
}
func sleepTicks(d timeUnit) {
// Calculate milliseconds from ticks (which have a resolution of 100ns),
// rounding up.
milliseconds := int64(d+9_999) / 10_000
for milliseconds != 0 {
duration := uint32(milliseconds)
_Sleep(duration)
milliseconds -= int64(duration)
}
}
func ticks() timeUnit {
var unbiasedTime uint64
_QueryUnbiasedInterruptTime(&unbiasedTime)
return timeUnit(unbiasedTime)
}
//go:linkname now time.now
func now() (sec int64, nsec int32, mono int64) {
// Get the current time in Windows "file time" format.
var time uint64
_GetSystemTimeAsFileTime(&time)
// Convert file time to Unix time.
// According to the documentation:
// > Contains a 64-bit value representing the number of 100-nanosecond
// > intervals since January 1, 1601 (UTC).
// We'll convert it to 100 nanosecond intervals starting at 1970.
const (
// number of 100-nanosecond intervals in a second
intervalsPerSecond = 10_000_000
secondsPerDay = 60 * 60 * 24
// Number of days between the Windows epoch (1 january 1601) and the
// Unix epoch (1 january 1970). Source:
// https://www.wolframalpha.com/input/?i=days+between+1+january+1601+and+1+january+1970
days = 134774
)
time -= days * secondsPerDay * intervalsPerSecond
// Convert the time (in 100ns units) to sec/nsec/mono as expected by the
// time package.
sec = int64(time / intervalsPerSecond)
nsec = int32((time - (uint64(sec) * intervalsPerSecond)) * 100)
mono = ticksToNanoseconds(ticks())
return
}
//go:linkname syscall_Exit syscall.Exit
func syscall_Exit(code int) {
libc_exit(code)
}
func growHeap() bool {
if heapSize == heapMaxSize {
// Already at the max. If we run out of memory, we should consider
// increasing heapMaxSize..
return false
}
// Grow the heap size used by the program.
heapSize = (heapSize * 4 / 3) &^ 4095 // grow by around 33%
if heapSize > heapMaxSize {
heapSize = heapMaxSize
}
setHeapEnd(heapStart + heapSize)
return true
}
//go:linkname syscall_loadsystemlibrary syscall.loadsystemlibrary
func syscall_loadsystemlibrary(filename *uint16, absoluteFilepath *uint16) (handle, err uintptr) {
handle = _LoadLibraryExW(filename, 0, _LOAD_LIBRARY_SEARCH_SYSTEM32)
if handle == 0 {
panic("todo: get error")
}
return
}
//go:linkname syscall_loadlibrary syscall.loadlibrary
func syscall_loadlibrary(filename *uint16) (handle, err uintptr) {
panic("todo: syscall.loadlibrary")
}
//go:linkname syscall_getprocaddress syscall.getprocaddress
func syscall_getprocaddress(handle uintptr, procname *byte) (outhandle, err uintptr) {
outhandle = getProcAddress(handle, procname)
if outhandle == 0 {
panic("todo: get error")
}
return
}
// TinyGo does not yet support any form of parallelism on Windows, so these can
// be left empty.
//go:linkname procPin sync/atomic.runtime_procPin
func procPin() {
}
//go:linkname procUnpin sync/atomic.runtime_procUnpin
func procUnpin() {
}
func hardwareRand() (n uint64, ok bool) {
var n1, n2 uint32
errCode1 := libc_rand_s(&n1)
errCode2 := libc_rand_s(&n2)
n = uint64(n1)<<32 | uint64(n2)
ok = errCode1 == 0 && errCode2 == 0
return
}
// Cryptographically secure random number generator.
// https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/rand-s?view=msvc-170
// errno_t rand_s(unsigned int* randomValue);
//
//export rand_s
func libc_rand_s(randomValue *uint32) int32
|