1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
package stacksize
// This file implements parsing DWARF call frame information and interpreting
// the CFI bytecode, or enough of it for most practical code.
import (
"bytes"
"debug/elf"
"encoding/binary"
"fmt"
"io"
)
// dwarfCIE represents one DWARF Call Frame Information structure.
type dwarfCIE struct {
bytecode []byte
codeAlignmentFactor uint64
}
// parseFrames parses all call frame information from a .debug_frame section and
// provides the passed in symbols map with frame size information.
func parseFrames(f *elf.File, data []byte, symbols map[uint64]*CallNode) error {
if f.Class != elf.ELFCLASS32 {
// TODO: ELF64
return fmt.Errorf("expected ELF32")
}
cies := make(map[uint32]*dwarfCIE)
// Read each entity.
r := bytes.NewBuffer(data)
for {
start := len(data) - r.Len()
var length uint32
err := binary.Read(r, binary.LittleEndian, &length)
if err == io.EOF {
return nil
}
if err != nil {
return err
}
var cie uint32
err = binary.Read(r, binary.LittleEndian, &cie)
if err != nil {
return err
}
if cie == 0xffffffff {
// This is a CIE.
var fields struct {
Version uint8
Augmentation uint8
AddressSize uint8
SegmentSize uint8
}
err = binary.Read(r, binary.LittleEndian, &fields)
if err != nil {
return err
}
if fields.Version != 4 {
return fmt.Errorf("unimplemented: .debug_frame version %d", fields.Version)
}
if fields.Augmentation != 0 {
return fmt.Errorf("unimplemented: .debug_frame with augmentation")
}
if fields.SegmentSize != 0 {
return fmt.Errorf("unimplemented: .debug_frame with segment size")
}
codeAlignmentFactor, err := readULEB128(r)
if err != nil {
return err
}
_, err = readSLEB128(r) // data alignment factor
if err != nil {
return err
}
_, err = readULEB128(r) // return address register
if err != nil {
return err
}
rest := (start + int(length) + 4) - (len(data) - r.Len())
bytecode := r.Next(rest)
cies[uint32(start)] = &dwarfCIE{
codeAlignmentFactor: codeAlignmentFactor,
bytecode: bytecode,
}
} else {
// This is a FDE.
var fields struct {
InitialLocation uint32
AddressRange uint32
}
err = binary.Read(r, binary.LittleEndian, &fields)
if err != nil {
return err
}
if _, ok := cies[cie]; !ok {
return fmt.Errorf("could not find CIE 0x%x in .debug_frame section", cie)
}
frame := frameInfo{
cie: cies[cie],
start: uint64(fields.InitialLocation),
loc: uint64(fields.InitialLocation),
length: uint64(fields.AddressRange),
}
rest := (start + int(length) + 4) - (len(data) - r.Len())
bytecode := r.Next(rest)
if frame.start == 0 {
// Not sure where these come from but they don't seem to be
// important.
continue
}
_, err = frame.exec(frame.cie.bytecode)
if err != nil {
return err
}
entries, err := frame.exec(bytecode)
if err != nil {
return err
}
var maxFrameSize uint64
for _, entry := range entries {
switch f.Machine {
case elf.EM_ARM:
if entry.cfaRegister != 13 { // r13 or sp
// something other than a stack pointer (on ARM)
return fmt.Errorf("%08x..%08x: unknown CFA register number %d", frame.start, frame.start+frame.length, entry.cfaRegister)
}
default:
return fmt.Errorf("unknown architecture: %s", f.Machine)
}
if entry.cfaOffset > maxFrameSize {
maxFrameSize = entry.cfaOffset
}
}
node := symbols[frame.start]
if node.Size != frame.length {
return fmt.Errorf("%s: symtab gives symbol length %d while DWARF gives symbol length %d", node, node.Size, frame.length)
}
node.FrameSize = maxFrameSize
node.FrameSizeType = Bounded
if debugPrint {
fmt.Printf("%08x..%08x: frame size %4d %s\n", frame.start, frame.start+frame.length, maxFrameSize, node)
}
}
}
}
// frameInfo contains the state of executing call frame information bytecode.
type frameInfo struct {
cie *dwarfCIE
start uint64
loc uint64
length uint64
cfaRegister uint64
cfaOffset uint64
}
// frameInfoLine represents one line in the frame table (.debug_frame) at one
// point in the execution of the bytecode.
type frameInfoLine struct {
loc uint64
cfaRegister uint64
cfaOffset uint64
}
func (fi *frameInfo) newLine() frameInfoLine {
return frameInfoLine{
loc: fi.loc,
cfaRegister: fi.cfaRegister,
cfaOffset: fi.cfaOffset,
}
}
// exec executes the given bytecode in the CFI. Most CFI bytecode is actually
// very simple and provides a way to determine the maximum call frame size.
//
// The frame size often changes multiple times in a function, for example the
// frame size may be adjusted in the prologue and epilogue. Each frameInfoLine
// may contain such a change.
func (fi *frameInfo) exec(bytecode []byte) ([]frameInfoLine, error) {
var entries []frameInfoLine
r := bytes.NewBuffer(bytecode)
for {
op, err := r.ReadByte()
if err != nil {
if err == io.EOF {
entries = append(entries, fi.newLine())
return entries, nil
}
return nil, err
}
highBits := op >> 6 // high order 2 bits
lowBits := op & 0x1f
switch highBits {
case 1: // DW_CFA_advance_loc
fi.loc += uint64(lowBits) * fi.cie.codeAlignmentFactor
entries = append(entries, fi.newLine())
case 2: // DW_CFA_offset
// This indicates where a register is saved on the stack in the
// prologue. We can ignore that for our purposes.
_, err := readULEB128(r)
if err != nil {
return nil, err
}
case 0:
switch lowBits {
case 0: // DW_CFA_nop
// no operation
case 0x0c: // DW_CFA_def_cfa
register, err := readULEB128(r)
if err != nil {
return nil, err
}
offset, err := readULEB128(r)
if err != nil {
return nil, err
}
fi.cfaRegister = register
fi.cfaOffset = offset
case 0x0e: // DW_CFA_def_cfa_offset
offset, err := readULEB128(r)
if err != nil {
return nil, err
}
fi.cfaOffset = offset
default:
return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x", op)
}
default:
return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x", op)
}
}
}
// Source: https://en.wikipedia.org/wiki/LEB128#Decode_unsigned_integer
func readULEB128(r *bytes.Buffer) (result uint64, err error) {
// TODO: guard against overflowing 64-bit integers.
var shift uint8
for {
b, err := r.ReadByte()
if err != nil {
return 0, err
}
result |= uint64(b&0x7f) << shift
if b&0x80 == 0 {
break
}
shift += 7
}
return
}
// Source: https://en.wikipedia.org/wiki/LEB128#Decode_signed_integer
func readSLEB128(r *bytes.Buffer) (result int64, err error) {
var shift uint8
var b byte
var rawResult uint64
for {
b, err = r.ReadByte()
if err != nil {
return 0, err
}
rawResult |= uint64(b&0x7f) << shift
shift += 7
if b&0x80 == 0 {
break
}
}
// sign bit of byte is second high order bit (0x40)
if shift < 64 && b&0x40 != 0 {
// sign extend
rawResult |= ^uint64(0) << shift
}
result = int64(rawResult)
return
}
|