blob: a8d161288e4be52abbf7da3dad6d946308ad573b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
/* Linker script for the ESP32 */
MEMORY
{
/* Data RAM. Allows byte access.
* There are various data RAM regions:
* SRAM2: 0x3FFA_E000..0x3FFD_FFFF (72 + 128 = 200K)
* SRAM1: 0x3FFE_0000..0x3FFF_FFFF (128K)
* This gives us 328K of contiguous RAM, which is the largest span possible.
* SRAM1 has other addresses as well but the datasheet seems to indicate
* these are aliases.
*/
DRAM (rw) : ORIGIN = 0x3FFAE000, LENGTH = 200K + 128K /* Internal SRAM 1 + 2 */
/* Instruction RAM. */
IRAM (x) : ORIGIN = 0x40080000, LENGTH = 128K /* Internal SRAM 0 */
}
/* The entry point. It is set in the image flashed to the chip, so must be
* defined.
*/
ENTRY(call_start_cpu0)
SECTIONS
{
/* Constant literals and code. Loaded into IRAM for now. Eventually, most
* code should be executed directly from flash.
* Note that literals must be before code for the l32r instruction to work.
*/
.text : ALIGN(4)
{
*(.literal.text.call_start_cpu0)
*(.text.call_start_cpu0)
*(.literal .text)
*(.literal.* .text.*)
} >IRAM
/* Put the stack at the bottom of DRAM, so that the application will
* crash on stack overflow instead of silently corrupting memory.
* See: http://blog.japaric.io/stack-overflow-protection/ */
.stack (NOLOAD) :
{
. = ALIGN(16);
. += _stack_size;
_stack_top = .;
} >DRAM
/* Constant global variables.
* They are loaded in DRAM for ease of use. Eventually they should be stored
* in flash and loaded directly from there but they're kept in RAM to make
* sure they can always be accessed (even in interrupts).
*/
.rodata : ALIGN(4)
{
*(.rodata)
*(.rodata.*)
} >DRAM
/* Mutable global variables.
*/
.data : ALIGN(4)
{
_sdata = ABSOLUTE(.);
*(.data)
*(.data.*)
_edata = ABSOLUTE(.);
} >DRAM
/* Check that the boot ROM stack (for the APP CPU) does not overlap with the
* data that is loaded by the boot ROM. There may be ways to avoid this
* issue if it occurs in practice.
* The magic value here is _stack_sentry in the boot ROM ELF file.
*/
ASSERT(_edata < 0x3ffe1320, "the .data section overlaps with the stack used by the boot ROM, possibly causing corruption at startup")
/* Global variables that are mutable and zero-initialized.
* These must be zeroed at startup (unlike data, which is loaded by the
* bootloader).
*/
.bss (NOLOAD) : ALIGN(4)
{
. = ALIGN (4);
_sbss = ABSOLUTE(.);
*(.bss)
*(.bss.*)
. = ALIGN (4);
_ebss = ABSOLUTE(.);
} >DRAM
}
/* For the garbage collector.
*/
_globals_start = _sdata;
_globals_end = _ebss;
_heap_start = _ebss;
_heap_end = ORIGIN(DRAM) + LENGTH(DRAM);
_stack_size = 4K;
/* From ESP-IDF:
* components/esp_rom/esp32/ld/esp32.rom.newlib-funcs.ld
* This is the subset that is sometimes used by LLVM during codegen, and thus
* must always be present.
*/
memcpy = 0x4000c2c8;
memmove = 0x4000c3c0;
memset = 0x4000c44c;
/* From ESP-IDF:
* components/esp_rom/esp32/ld/esp32.rom.libgcc.ld
* These are called from LLVM during codegen. The original license is Apache
* 2.0, but I believe that a list of function names and addresses can't really
* be copyrighted.
*/
__absvdi2 = 0x4006387c;
__absvsi2 = 0x40063868;
__adddf3 = 0x40002590;
__addsf3 = 0x400020e8;
__addvdi3 = 0x40002cbc;
__addvsi3 = 0x40002c98;
__ashldi3 = 0x4000c818;
__ashrdi3 = 0x4000c830;
__bswapdi2 = 0x40064b08;
__bswapsi2 = 0x40064ae0;
__clrsbdi2 = 0x40064b7c;
__clrsbsi2 = 0x40064b64;
__clzdi2 = 0x4000ca50;
__clzsi2 = 0x4000c7e8;
__cmpdi2 = 0x40063820;
__ctzdi2 = 0x4000ca64;
__ctzsi2 = 0x4000c7f0;
__divdc3 = 0x400645a4;
__divdf3 = 0x40002954;
__divdi3 = 0x4000ca84;
__divsi3 = 0x4000c7b8;
__eqdf2 = 0x400636a8;
__eqsf2 = 0x40063374;
__extendsfdf2 = 0x40002c34;
__ffsdi2 = 0x4000ca2c;
__ffssi2 = 0x4000c804;
__fixdfdi = 0x40002ac4;
__fixdfsi = 0x40002a78;
__fixsfdi = 0x4000244c;
__fixsfsi = 0x4000240c;
__fixunsdfsi = 0x40002b30;
__fixunssfdi = 0x40002504;
__fixunssfsi = 0x400024ac;
__floatdidf = 0x4000c988;
__floatdisf = 0x4000c8c0;
__floatsidf = 0x4000c944;
__floatsisf = 0x4000c870;
__floatundidf = 0x4000c978;
__floatundisf = 0x4000c8b0;
__floatunsidf = 0x4000c938;
__floatunsisf = 0x4000c864;
__gcc_bcmp = 0x40064a70;
__gedf2 = 0x40063768;
__gesf2 = 0x4006340c;
__gtdf2 = 0x400636dc;
__gtsf2 = 0x400633a0;
__ledf2 = 0x40063704;
__lesf2 = 0x400633c0;
__lshrdi3 = 0x4000c84c;
__ltdf2 = 0x40063790;
__ltsf2 = 0x4006342c;
__moddi3 = 0x4000cd4c;
__modsi3 = 0x4000c7c0;
__muldc3 = 0x40063c90;
__muldf3 = 0x4006358c;
__muldi3 = 0x4000c9fc;
__mulsf3 = 0x400632c8;
__mulsi3 = 0x4000c7b0;
__mulvdi3 = 0x40002d78;
__mulvsi3 = 0x40002d60;
__nedf2 = 0x400636a8;
__negdf2 = 0x400634a0;
__negdi2 = 0x4000ca14;
__negsf2 = 0x400020c0;
__negvdi2 = 0x40002e98;
__negvsi2 = 0x40002e78;
__nesf2 = 0x40063374;
__nsau_data = 0x3ff96544;
__paritysi2 = 0x40002f3c;
__popcount_tab = 0x3ff96544;
__popcountdi2 = 0x40002ef8;
__popcountsi2 = 0x40002ed0;
__powidf2 = 0x400638e4;
__subdf3 = 0x400026e4;
__subsf3 = 0x400021d0;
__subvdi3 = 0x40002d20;
__subvsi3 = 0x40002cf8;
__truncdfsf2 = 0x40002b90;
__ucmpdi2 = 0x40063840;
__udiv_w_sdiv = 0x40064bec;
__udivdi3 = 0x4000cff8;
__udivmoddi4 = 0x40064bf4;
__udivsi3 = 0x4000c7c8;
__umoddi3 = 0x4000d280;
__umodsi3 = 0x4000c7d0;
__umulsidi3 = 0x4000c7d8;
__unorddf2 = 0x400637f4;
__unordsf2 = 0x40063478;
|