aboutsummaryrefslogtreecommitdiffhomepage
path: root/transform/gc.go
blob: 7a4e99acaacba1b39579fef65e8c80ed8cc43a0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
package transform

import (
	"tinygo.org/x/go-llvm"
)

// MakeGCStackSlots converts all calls to runtime.trackPointer to explicit
// stores to stack slots that are scannable by the GC.
func MakeGCStackSlots(mod llvm.Module) bool {
	// Check whether there are allocations at all.
	alloc := mod.NamedFunction("runtime.alloc")
	if alloc.IsNil() {
		// Nothing to. Make sure all remaining bits and pieces for stack
		// chains are neutralized.
		for _, call := range getUses(mod.NamedFunction("runtime.trackPointer")) {
			call.EraseFromParentAsInstruction()
		}
		stackChainStart := mod.NamedGlobal("runtime.stackChainStart")
		if !stackChainStart.IsNil() {
			stackChainStart.SetLinkage(llvm.InternalLinkage)
			stackChainStart.SetInitializer(llvm.ConstNull(stackChainStart.Type().ElementType()))
			stackChainStart.SetGlobalConstant(true)
		}
		return false
	}

	trackPointer := mod.NamedFunction("runtime.trackPointer")
	if trackPointer.IsNil() || trackPointer.FirstUse().IsNil() {
		return false // nothing to do
	}

	ctx := mod.Context()
	builder := ctx.NewBuilder()
	defer builder.Dispose()
	targetData := llvm.NewTargetData(mod.DataLayout())
	defer targetData.Dispose()
	uintptrType := ctx.IntType(targetData.PointerSize() * 8)

	// Look at *all* functions to see whether they are free of function pointer
	// calls.
	// This takes less than 5ms for ~100kB of WebAssembly but would perhaps be
	// faster when written in C++ (to avoid the CGo overhead).
	funcsWithFPCall := map[llvm.Value]struct{}{}
	n := 0
	for fn := mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
		n++
		if _, ok := funcsWithFPCall[fn]; ok {
			continue // already found
		}
		done := false
		for bb := fn.FirstBasicBlock(); !bb.IsNil() && !done; bb = llvm.NextBasicBlock(bb) {
			for call := bb.FirstInstruction(); !call.IsNil() && !done; call = llvm.NextInstruction(call) {
				if call.IsACallInst().IsNil() {
					continue // only looking at calls
				}
				called := call.CalledValue()
				if !called.IsAFunction().IsNil() {
					continue // only looking for function pointers
				}
				funcsWithFPCall[fn] = struct{}{}
				markParentFunctions(funcsWithFPCall, fn)
				done = true
			}
		}
	}

	// Determine which functions need stack objects. Many leaf functions don't
	// need it: it only causes overhead for them.
	// Actually, in one test it was only able to eliminate stack object from 12%
	// of functions that had a call to runtime.trackPointer (8 out of 68
	// functions), so this optimization is not as big as it may seem.
	allocatingFunctions := map[llvm.Value]struct{}{} // set of allocating functions

	// Work from runtime.alloc and trace all parents to check which functions do
	// a heap allocation (and thus which functions do not).
	markParentFunctions(allocatingFunctions, alloc)

	// Also trace all functions that call a function pointer.
	for fn := range funcsWithFPCall {
		// Assume that functions that call a function pointer do a heap
		// allocation as a conservative guess because the called function might
		// do a heap allocation.
		allocatingFunctions[fn] = struct{}{}
		markParentFunctions(allocatingFunctions, fn)
	}

	// Collect some variables used below in the loop.
	stackChainStart := mod.NamedGlobal("runtime.stackChainStart")
	if stackChainStart.IsNil() {
		// This may be reached in a weird scenario where we call runtime.alloc but the garbage collector is unreachable.
		// This can be accomplished by allocating 0 bytes.
		// There is no point in tracking anything.
		for _, use := range getUses(trackPointer) {
			use.EraseFromParentAsInstruction()
		}
		return false
	}
	stackChainStart.SetLinkage(llvm.InternalLinkage)
	stackChainStartType := stackChainStart.Type().ElementType()
	stackChainStart.SetInitializer(llvm.ConstNull(stackChainStartType))

	// Iterate until runtime.trackPointer has no uses left.
	for use := trackPointer.FirstUse(); !use.IsNil(); use = trackPointer.FirstUse() {
		// Pick the first use of runtime.trackPointer.
		call := use.User()
		if call.IsACallInst().IsNil() {
			panic("expected runtime.trackPointer use to be a call")
		}

		// Pick the parent function.
		fn := call.InstructionParent().Parent()

		if _, ok := allocatingFunctions[fn]; !ok {
			// This function nor any of the functions it calls (recursively)
			// allocate anything from the heap, so it will not trigger a garbage
			// collection cycle. Thus, it does not need to track local pointer
			// values.
			// This is a useful optimization but not as big as you might guess,
			// as described above (it avoids stack objects for ~12% of
			// functions).
			call.EraseFromParentAsInstruction()
			continue
		}

		// Find all calls to runtime.trackPointer in this function.
		var calls []llvm.Value
		var returns []llvm.Value
		for bb := fn.FirstBasicBlock(); !bb.IsNil(); bb = llvm.NextBasicBlock(bb) {
			for inst := bb.FirstInstruction(); !inst.IsNil(); inst = llvm.NextInstruction(inst) {
				switch inst.InstructionOpcode() {
				case llvm.Call:
					if inst.CalledValue() == trackPointer {
						calls = append(calls, inst)
					}
				case llvm.Ret:
					returns = append(returns, inst)
				}
			}
		}

		// Determine what to do with each call.
		var pointers []llvm.Value
		for _, call := range calls {
			ptr := call.Operand(0)
			call.EraseFromParentAsInstruction()
			if ptr.IsAInstruction().IsNil() {
				continue
			}

			// Some trivial optimizations.
			if ptr.IsAInstruction().IsNil() {
				continue
			}
			switch ptr.InstructionOpcode() {
			case llvm.GetElementPtr:
				// Check for all zero offsets.
				// Sometimes LLVM rewrites bitcasts to zero-index GEPs, and we still need to track the GEP.
				n := ptr.OperandsCount()
				var hasOffset bool
				for i := 1; i < n; i++ {
					offset := ptr.Operand(i)
					if offset.IsAConstantInt().IsNil() || offset.ZExtValue() != 0 {
						hasOffset = true
						break
					}
				}

				if hasOffset {
					// These values do not create new values: the values already
					// existed locally in this function so must have been tracked
					// already.
					continue
				}
			case llvm.PHI:
				// While the value may have already been tracked, it may be overwritten in a loop.
				// Therefore, a second copy must be created to ensure that it is tracked over the entirety of its lifetime.
			case llvm.ExtractValue, llvm.BitCast:
				// These instructions do not create new values, but their
				// original value may not be tracked. So keep tracking them for
				// now.
				// With more analysis, it should be possible to optimize a
				// significant chunk of these away.
			case llvm.Call, llvm.Load, llvm.IntToPtr:
				// These create new values so must be stored locally. But
				// perhaps some of these can be fused when they actually refer
				// to the same value.
			default:
				// Ambiguous. These instructions are uncommon, but perhaps could
				// be optimized if needed.
			}

			if ptr := stripPointerCasts(ptr); !ptr.IsAAllocaInst().IsNil() {
				// Allocas don't need to be tracked because they are allocated
				// on the C stack which is scanned separately.
				continue
			}
			pointers = append(pointers, ptr)
		}

		if len(pointers) == 0 {
			// This function does not need to keep track of stack pointers.
			continue
		}

		// Determine the type of the required stack slot.
		fields := []llvm.Type{
			stackChainStartType, // Pointer to parent frame.
			uintptrType,         // Number of elements in this frame.
		}
		for _, ptr := range pointers {
			fields = append(fields, ptr.Type())
		}
		stackObjectType := ctx.StructType(fields, false)

		// Create the stack object at the function entry.
		builder.SetInsertPointBefore(fn.EntryBasicBlock().FirstInstruction())
		stackObject := builder.CreateAlloca(stackObjectType, "gc.stackobject")
		initialStackObject := llvm.ConstNull(stackObjectType)
		numSlots := (targetData.TypeAllocSize(stackObjectType) - uint64(targetData.PointerSize())*2) / uint64(targetData.ABITypeAlignment(uintptrType))
		numSlotsValue := llvm.ConstInt(uintptrType, numSlots, false)
		initialStackObject = llvm.ConstInsertValue(initialStackObject, numSlotsValue, []uint32{1})
		builder.CreateStore(initialStackObject, stackObject)

		// Update stack start.
		parent := builder.CreateLoad(stackChainStartType, stackChainStart, "")
		gep := builder.CreateGEP(stackObject, []llvm.Value{
			llvm.ConstInt(ctx.Int32Type(), 0, false),
			llvm.ConstInt(ctx.Int32Type(), 0, false),
		}, "")
		builder.CreateStore(parent, gep)
		stackObjectCast := builder.CreateBitCast(stackObject, stackChainStartType, "")
		builder.CreateStore(stackObjectCast, stackChainStart)

		// Do a store to the stack object after each new pointer that is created.
		pointerStores := make(map[llvm.Value]struct{})
		for i, ptr := range pointers {
			// Insert the store after the pointer value is created.
			insertionPoint := llvm.NextInstruction(ptr)
			for !insertionPoint.IsAPHINode().IsNil() {
				// PHI nodes are required to be at the start of the block.
				// Insert after the last PHI node.
				insertionPoint = llvm.NextInstruction(insertionPoint)
			}
			builder.SetInsertPointBefore(insertionPoint)

			// Extract a pointer to the appropriate section of the stack object.
			gep := builder.CreateGEP(stackObject, []llvm.Value{
				llvm.ConstInt(ctx.Int32Type(), 0, false),
				llvm.ConstInt(ctx.Int32Type(), uint64(2+i), false),
			}, "")

			// Store the pointer into the stack slot.
			store := builder.CreateStore(ptr, gep)
			pointerStores[store] = struct{}{}
		}

		// Make sure this stack object is popped from the linked list of stack
		// objects at return.
		for _, ret := range returns {
			// Check for any tail calls at this return.
			prev := llvm.PrevInstruction(ret)
			if !prev.IsNil() && !prev.IsABitCastInst().IsNil() {
				// A bitcast can appear before a tail call, so skip backwards more.
				prev = llvm.PrevInstruction(prev)
			}
			if !prev.IsNil() && !prev.IsACallInst().IsNil() {
				// This is no longer a tail call.
				prev.SetTailCall(false)
			}
			builder.SetInsertPointBefore(ret)
			builder.CreateStore(parent, stackChainStart)
		}
	}

	return true
}

// markParentFunctions traverses all parent function calls (recursively) and
// adds them to the set of marked functions. It only considers function calls:
// any other uses of such a function is ignored.
func markParentFunctions(marked map[llvm.Value]struct{}, fn llvm.Value) {
	worklist := []llvm.Value{fn}
	for len(worklist) != 0 {
		fn := worklist[len(worklist)-1]
		worklist = worklist[:len(worklist)-1]
		for _, use := range getUses(fn) {
			if use.IsACallInst().IsNil() || use.CalledValue() != fn {
				// Not the parent function.
				continue
			}
			parent := use.InstructionParent().Parent()
			if _, ok := marked[parent]; !ok {
				marked[parent] = struct{}{}
				worklist = append(worklist, parent)
			}
		}
	}
}