use crate::ptx; use crate::translate; use rspirv::{ binary::{Assemble, Disassemble}, dr::{Block, Function, Instruction, Loader, Operand}, }; use spirv_headers::Word; use spirv_tools_sys::{ spv_binary, spv_endianness_t, spv_parsed_instruction_t, spv_result_t, spv_target_env, }; use std::error; use std::ffi::{c_void, CStr, CString}; use std::fmt; use std::fmt::{Debug, Display, Formatter}; use std::hash::Hash; use std::mem; use std::slice; use std::{borrow::Cow, collections::HashMap, env, fs, path::PathBuf, ptr, str}; use std::{cmp, collections::hash_map::Entry}; macro_rules! test_ptx { ($fn_name:ident, $input:expr, $output:expr) => { paste::item! { #[test] fn [<$fn_name _ptx>]() -> Result<(), Box> { let ptx = include_str!(concat!(stringify!($fn_name), ".ptx")); let input = $input; let mut output = $output; test_ptx_assert(stringify!($fn_name), ptx, &input, &mut output) } } paste::item! { #[test] fn [<$fn_name _spvtxt>]() -> Result<(), Box> { let ptx_txt = include_str!(concat!(stringify!($fn_name), ".ptx")); let spirv_file_name = concat!(stringify!($fn_name), ".spvtxt"); let spirv_txt = include_bytes!(concat!(stringify!($fn_name), ".spvtxt")); test_spvtxt_assert(ptx_txt, spirv_txt, spirv_file_name) } } }; } test_ptx!(ld_st, [1u64], [1u64]); test_ptx!(ld_st_implicit, [0.5f32], [0.5f32]); test_ptx!(mov, [1u64], [1u64]); test_ptx!(mul_lo, [1u64], [2u64]); test_ptx!(mul_hi, [u64::max_value()], [1u64]); test_ptx!(add, [1u64], [2u64]); test_ptx!(setp, [10u64, 11u64], [1u64, 0u64]); test_ptx!(bra, [10u64], [11u64]); test_ptx!(not, [0u64], [u64::max_value()]); test_ptx!(shl, [11u64], [44u64]); test_ptx!(shl_link_hack, [11u64], [44u64]); test_ptx!(cvt_sat_s_u, [-1i32], [0i32]); test_ptx!(cvta, [3.0f32], [3.0f32]); test_ptx!(block, [1u64], [2u64]); test_ptx!(local_align, [1u64], [1u64]); test_ptx!(call, [1u64], [2u64]); test_ptx!(vector, [1u32, 2u32], [3u32, 3u32]); test_ptx!(ld_st_offset, [1u32, 2u32], [2u32, 1u32]); test_ptx!(ntid, [3u32], [4u32]); test_ptx!(reg_local, [12u64], [13u64]); test_ptx!(mov_address, [0xDEADu64], [0u64]); test_ptx!(b64tof64, [111u64], [111u64]); test_ptx!(implicit_param, [34u32], [34u32]); test_ptx!(pred_not, [10u64, 11u64], [2u64, 0u64]); test_ptx!(mad_s32, [2i32, 3i32, 4i32], [10i32, 10i32, 10i32]); test_ptx!( mul_wide, [0x01_00_00_00__01_00_00_00i64], [0x1_00_00_00_00_00_00i64] ); test_ptx!(vector_extract, [1u8, 2u8, 3u8, 4u8], [3u8, 4u8, 1u8, 2u8]); test_ptx!(shr, [-2i32], [-1i32]); test_ptx!(or, [1u64, 2u64], [3u64]); test_ptx!(sub, [2u64], [1u64]); test_ptx!(min, [555i32, 444i32], [444i32]); test_ptx!(max, [555i32, 444i32], [555i32]); test_ptx!(global_array, [0xDEADu32], [1u32]); test_ptx!(extern_shared, [127u64], [127u64]); test_ptx!(extern_shared_call, [121u64], [123u64]); test_ptx!(rcp, [2f32], [0.5f32]); // 0b1_00000000_10000000000000000000000u32 is a large denormal // 0x3f000000 is 0.5 test_ptx!( mul_ftz, [0b1_00000000_10000000000000000000000u32, 0x3f000000u32], [0b1_00000000_00000000000000000000000u32] ); test_ptx!( mul_non_ftz, [0b1_00000000_10000000000000000000000u32, 0x3f000000u32], [0b1_00000000_01000000000000000000000u32] ); test_ptx!(constant_f32, [10f32], [5f32]); test_ptx!(constant_negative, [-101i32], [101i32]); test_ptx!(and, [6u32, 3u32], [2u32]); test_ptx!(selp, [100u16, 200u16], [200u16]); test_ptx!(selp_true, [100u16, 200u16], [100u16]); test_ptx!(fma, [2f32, 3f32, 5f32], [11f32]); test_ptx!(shared_variable, [513u64], [513u64]); test_ptx!(shared_ptr_32, [513u64], [513u64]); test_ptx!(atom_cas, [91u32, 91u32], [91u32, 100u32]); test_ptx!(atom_inc, [100u32], [100u32, 101u32, 0u32]); test_ptx!(atom_add, [2u32, 4u32], [2u32, 6u32]); test_ptx!(div_approx, [1f32, 2f32], [0.5f32]); test_ptx!(sqrt, [0.25f32], [0.5f32]); test_ptx!(rsqrt, [0.25f64], [2f64]); test_ptx!(neg, [181i32], [-181i32]); test_ptx!(sin, [std::f32::consts::PI / 2f32], [1f32]); test_ptx!(cos, [std::f32::consts::PI], [-1f32]); test_ptx!(lg2, [512f32], [9f32]); test_ptx!(ex2, [10f32], [1024f32]); test_ptx!(cvt_rni, [9.5f32, 10.5f32], [10f32, 10f32]); test_ptx!(clz, [0b00000101_00101101_00010011_10101011u32], [5u32]); test_ptx!(popc, [0b10111100_10010010_01001001_10001010u32], [14u32]); test_ptx!( brev, [0b11000111_01011100_10101110_11111011u32], [0b11011111_01110101_00111010_11100011u32] ); test_ptx!( xor, [ 0b01010010_00011010_01000000_00001101u32, 0b11100110_10011011_00001100_00100011u32 ], [0b10110100100000010100110000101110u32] ); test_ptx!(rem, [21692i32, 13i32], [8i32]); test_ptx!( bfe, [0b11111000_11000001_00100010_10100000u32, 16u32, 8u32], [0b11000001u32] ); test_ptx!(stateful_ld_st_simple, [121u64], [121u64]); test_ptx!(stateful_ld_st_ntid, [123u64], [123u64]); test_ptx!(stateful_ld_st_ntid_chain, [12651u64], [12651u64]); test_ptx!(stateful_ld_st_ntid_sub, [96311u64], [96311u64]); test_ptx!(shared_ptr_take_address, [97815231u64], [97815231u64]); // For now, we just that it builds and links test_ptx!(assertfail, [716523871u64], [716523872u64]); struct DisplayError { err: T, } impl Display for DisplayError { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { Debug::fmt(&self.err, f) } } impl Debug for DisplayError { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { Debug::fmt(&self.err, f) } } impl error::Error for DisplayError {} fn test_ptx_assert<'a, T: From + ze::SafeRepr + Debug + Copy + PartialEq>( name: &str, ptx_text: &'a str, input: &[T], output: &mut [T], ) -> Result<(), Box> { let mut errors = Vec::new(); let ast = ptx::ModuleParser::new().parse(&mut errors, ptx_text)?; assert!(errors.len() == 0); let zluda_module = translate::to_spirv_module(ast)?; let name = CString::new(name)?; let result = run_spirv(name.as_c_str(), zluda_module, input, output) .map_err(|err| DisplayError { err })?; assert_eq!(result.as_slice(), output); Ok(()) } fn run_spirv + ze::SafeRepr + Copy + Debug>( name: &CStr, module: translate::Module, input: &[T], output: &mut [T], ) -> ze::Result> { ze::init()?; let spirv = module.spirv.assemble(); let byte_il = unsafe { slice::from_raw_parts::( spirv.as_ptr() as *const _, spirv.len() * mem::size_of::(), ) }; let use_shared_mem = module .kernel_info .get(name.to_str().unwrap()) .map(|info| info.uses_shared_mem) .unwrap_or(false); let mut result = vec![0u8.into(); output.len()]; { let mut drivers = ze::Driver::get()?; let drv = drivers.drain(0..1).next().unwrap(); let mut ctx = ze::Context::new(&drv)?; let mut devices = drv.devices()?; let dev = devices.drain(0..1).next().unwrap(); let queue = ze::CommandQueue::new(&mut ctx, &dev)?; let (module, maybe_log) = match module.should_link_ptx_impl { Some(ptx_impl) => ze::Module::build_link_spirv( &mut ctx, &dev, &[ptx_impl, byte_il], Some(module.build_options.as_c_str()), ), None => { let (module, log) = ze::Module::build_spirv( &mut ctx, &dev, byte_il, Some(module.build_options.as_c_str()), ); (module, Some(log)) } }; let module = match module { Ok(m) => m, Err(err) => { let raw_err_string = maybe_log .map(|log| log.get_cstring()) .transpose()? .unwrap_or(CString::default()); let err_string = raw_err_string.to_string_lossy(); panic!("{:?}\n{}", err, err_string); } }; let mut kernel = ze::Kernel::new_resident(&module, name)?; kernel.set_indirect_access( ze::sys::ze_kernel_indirect_access_flags_t::ZE_KERNEL_INDIRECT_ACCESS_FLAG_DEVICE, )?; let mut inp_b = ze::DeviceBuffer::::new(&mut ctx, &dev, cmp::max(input.len(), 1))?; let mut out_b = ze::DeviceBuffer::::new(&mut ctx, &dev, cmp::max(output.len(), 1))?; let inp_b_ptr_mut: ze::BufferPtrMut = (&mut inp_b).into(); let event_pool = ze::EventPool::new(&mut ctx, 3, Some(&[&dev]))?; let ev0 = ze::Event::new(&event_pool, 0)?; let ev1 = ze::Event::new(&event_pool, 1)?; let mut ev2 = ze::Event::new(&event_pool, 2)?; let mut cmd_list = ze::CommandList::new(&mut ctx, &dev)?; let out_b_ptr_mut: ze::BufferPtrMut = (&mut out_b).into(); let mut init_evs = [ev0, ev1]; cmd_list.append_memory_copy(inp_b_ptr_mut, input, Some(&mut init_evs[0]), &mut [])?; cmd_list.append_memory_fill(out_b_ptr_mut, 0, Some(&mut init_evs[1]), &mut [])?; kernel.set_group_size(1, 1, 1)?; kernel.set_arg_buffer(0, inp_b_ptr_mut)?; kernel.set_arg_buffer(1, out_b_ptr_mut)?; if use_shared_mem { unsafe { kernel.set_arg_raw(2, 128, ptr::null())? }; } cmd_list.append_launch_kernel(&kernel, &[1, 1, 1], Some(&mut ev2), &mut init_evs)?; cmd_list.append_memory_copy(result.as_mut_slice(), out_b_ptr_mut, None, &mut [ev2])?; queue.execute(cmd_list)?; } Ok(result) } fn test_spvtxt_assert<'a>( ptx_txt: &'a str, spirv_txt: &'a [u8], spirv_file_name: &'a str, ) -> Result<(), Box> { let mut errors = Vec::new(); let ast = ptx::ModuleParser::new().parse(&mut errors, ptx_txt)?; assert!(errors.len() == 0); let spirv_module = translate::to_spirv_module(ast)?; let spv_context = unsafe { spirv_tools::spvContextCreate(spv_target_env::SPV_ENV_UNIVERSAL_1_3) }; assert!(spv_context != ptr::null_mut()); let mut spv_binary: spv_binary = ptr::null_mut(); let result = unsafe { spirv_tools::spvTextToBinary( spv_context, spirv_txt.as_ptr() as *const _, spirv_txt.len(), &mut spv_binary, ptr::null_mut(), ) }; if result != spv_result_t::SPV_SUCCESS { panic!("{:?}\n{}", result, unsafe { str::from_utf8_unchecked(spirv_txt) }); } let mut parsed_spirv = Vec::::new(); let result = unsafe { spirv_tools::spvBinaryParse( spv_context, &mut parsed_spirv as *mut _ as *mut _, (*spv_binary).code, (*spv_binary).wordCount, Some(parse_header_cb), Some(parse_instruction_cb), ptr::null_mut(), ) }; assert!(result == spv_result_t::SPV_SUCCESS); let mut loader = Loader::new(); rspirv::binary::parse_words(&parsed_spirv, &mut loader)?; let spvtxt_mod = loader.module(); unsafe { spirv_tools::spvBinaryDestroy(spv_binary) }; if !is_spirv_fns_equal(&spirv_module.spirv.functions, &spvtxt_mod.functions) { // We could simply use ptx_mod.disassemble, but SPIRV-Tools text formattinmg is so much nicer let spv_from_ptx_binary = spirv_module.spirv.assemble(); let mut spv_text: spirv_tools::spv_text = ptr::null_mut(); let result = unsafe { spirv_tools::spvBinaryToText( spv_context, spv_from_ptx_binary.as_ptr(), spv_from_ptx_binary.len(), (spirv_tools::spv_binary_to_text_options_t::SPV_BINARY_TO_TEXT_OPTION_INDENT | spirv_tools::spv_binary_to_text_options_t::SPV_BINARY_TO_TEXT_OPTION_NO_HEADER | spirv_tools::spv_binary_to_text_options_t::SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES).0, &mut spv_text as *mut _, ptr::null_mut() ) }; unsafe { spirv_tools::spvContextDestroy(spv_context) }; let spirv_text = if result == spv_result_t::SPV_SUCCESS { let raw_text = unsafe { std::slice::from_raw_parts((*spv_text).str_ as *const u8, (*spv_text).length) }; let spv_from_ptx_text = unsafe { str::from_utf8_unchecked(raw_text) }; // TODO: stop leaking kernel text Cow::Borrowed(spv_from_ptx_text) } else { Cow::Owned(spirv_module.spirv.disassemble()) }; if let Ok(dump_path) = env::var("ZLUDA_TEST_SPIRV_DUMP_DIR") { let mut path = PathBuf::from(dump_path); if let Ok(()) = fs::create_dir_all(&path) { path.push(spirv_file_name); #[allow(unused_must_use)] { fs::write(path, spirv_text.as_bytes()); } } } panic!(spirv_text.to_string()); } unsafe { spirv_tools::spvContextDestroy(spv_context) }; Ok(()) } struct EqMap where T: Eq + Copy + Hash, { m1: HashMap, m2: HashMap, } impl EqMap { fn new() -> Self { EqMap { m1: HashMap::new(), m2: HashMap::new(), } } fn is_equal(&mut self, t1: T, t2: T) -> bool { match (self.m1.entry(t1), self.m2.entry(t2)) { (Entry::Occupied(entry1), Entry::Occupied(entry2)) => { *entry1.get() == t2 && *entry2.get() == t1 } (Entry::Vacant(entry1), Entry::Vacant(entry2)) => { entry1.insert(t2); entry2.insert(t1); true } _ => false, } } } fn is_spirv_fns_equal(fns1: &[Function], fns2: &[Function]) -> bool { if fns1.len() != fns2.len() { return false; } for (fn1, fn2) in fns1.iter().zip(fns2.iter()) { if !is_spirv_fn_equal(fn1, fn2) { return false; } } true } fn is_spirv_fn_equal(fn1: &Function, fn2: &Function) -> bool { let mut map = EqMap::new(); if !is_option_equal(&fn1.def, &fn2.def, &mut map, is_instr_equal) { return false; } if !is_option_equal(&fn1.end, &fn2.end, &mut map, is_instr_equal) { return false; } if fn1.parameters.len() != fn2.parameters.len() { return false; } for (inst1, inst2) in fn1.parameters.iter().zip(fn2.parameters.iter()) { if !is_instr_equal(inst1, inst2, &mut map) { return false; } } if fn1.blocks.len() != fn2.blocks.len() { return false; } for (b1, b2) in fn1.blocks.iter().zip(fn2.blocks.iter()) { if !is_block_equal(b1, b2, &mut map) { return false; } } true } fn is_block_equal(b1: &Block, b2: &Block, map: &mut EqMap) -> bool { if !is_option_equal(&b1.label, &b2.label, map, is_instr_equal) { return false; } if b1.instructions.len() != b2.instructions.len() { return false; } for (inst1, inst2) in b1.instructions.iter().zip(b2.instructions.iter()) { if !is_instr_equal(inst1, inst2, map) { return false; } } true } fn is_instr_equal(instr1: &Instruction, instr2: &Instruction, map: &mut EqMap) -> bool { if instr1.class.opcode != instr2.class.opcode { return false; } if !is_option_equal(&instr1.result_type, &instr2.result_type, map, is_word_equal) { return false; } if !is_option_equal(&instr1.result_id, &instr2.result_id, map, is_word_equal) { return false; } if instr1.operands.len() != instr2.operands.len() { return false; } for (o1, o2) in instr1.operands.iter().zip(instr2.operands.iter()) { match (o1, o2) { (Operand::IdMemorySemantics(w1), Operand::IdMemorySemantics(w2)) => { if !is_word_equal(w1, w2, map) { return false; } } (Operand::IdScope(w1), Operand::IdScope(w2)) => { if !is_word_equal(w1, w2, map) { return false; } } (Operand::IdRef(w1), Operand::IdRef(w2)) => { if !is_word_equal(w1, w2, map) { return false; } } (o1, o2) => { if o1 != o2 { return false; } } } } true } fn is_word_equal(t1: &Word, t2: &Word, map: &mut EqMap) -> bool { map.is_equal(*t1, *t2) } fn is_option_equal) -> bool>( o1: &Option, o2: &Option, map: &mut EqMap, f: F, ) -> bool { match (o1, o2) { (Some(t1), Some(t2)) => f(t1, t2, map), (None, None) => true, _ => panic!(), } } unsafe extern "C" fn parse_header_cb( user_data: *mut c_void, endian: spv_endianness_t, magic: u32, version: u32, generator: u32, id_bound: u32, reserved: u32, ) -> spv_result_t { if endian == spv_endianness_t::SPV_ENDIANNESS_BIG { return spv_result_t::SPV_UNSUPPORTED; } let result_vec: &mut Vec = std::mem::transmute(user_data); result_vec.push(magic); result_vec.push(version); result_vec.push(generator); result_vec.push(id_bound); result_vec.push(reserved); spv_result_t::SPV_SUCCESS } unsafe extern "C" fn parse_instruction_cb( user_data: *mut c_void, inst: *const spv_parsed_instruction_t, ) -> spv_result_t { let inst = &*inst; let result_vec: &mut Vec = std::mem::transmute(user_data); for i in 0..inst.num_words { result_vec.push(*(inst.words.add(i as usize))); } spv_result_t::SPV_SUCCESS }