1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
use super::*;
use ptx_parser as ast;
/*
How do we handle arguments:
- input .params in kernels
.param .b64 in_arg
get turned into this SPIR-V:
%1 = OpFunctionParameter %ulong
%2 = OpVariable %_ptr_Function_ulong Function
OpStore %2 %1
We do this for two reasons. One, common treatment for argument-declared
.param variables and .param variables inside function (we assume that
at SPIR-V level every .param is a pointer in Function storage class)
- input .params in functions
.param .b64 in_arg
get turned into this SPIR-V:
%1 = OpFunctionParameter %_ptr_Function_ulong
- input .regs
.reg .b64 in_arg
get turned into the same SPIR-V as kernel .params:
%1 = OpFunctionParameter %ulong
%2 = OpVariable %_ptr_Function_ulong Function
OpStore %2 %1
- output .regs
.reg .b64 out_arg
get just a variable declaration:
%2 = OpVariable %%_ptr_Function_ulong Function
- output .params don't exist, they have been moved to input positions
by an earlier pass
Distinguishing betweem kernel .params and function .params is not the
cleanest solution. Alternatively, we could "deparamize" all kernel .param
arguments by turning them into .reg arguments like this:
.param .b64 arg -> .reg ptr<.b64,.param> arg
This has the massive downside that this transformation would have to run
very early and would muddy up already difficult code. It's simpler to just
have an if here
*/
pub(super) fn run<'a, 'b>(
func: Vec<TypedStatement>,
id_def: &mut NumericIdResolver,
fn_decl: &'a mut ast::MethodDeclaration<'b, SpirvWord>,
) -> Result<Vec<TypedStatement>, TranslateError> {
let mut result = Vec::with_capacity(func.len());
for arg in fn_decl.input_arguments.iter_mut() {
insert_mem_ssa_argument(
id_def,
&mut result,
arg,
matches!(fn_decl.name, ast::MethodName::Kernel(_)),
);
}
for arg in fn_decl.return_arguments.iter() {
insert_mem_ssa_argument_reg_return(&mut result, arg);
}
for s in func {
match s {
Statement::Instruction(inst) => match inst {
ast::Instruction::Ret { data } => {
// TODO: handle multiple output args
match &fn_decl.return_arguments[..] {
[return_reg] => {
let new_id = id_def.register_intermediate(Some((
return_reg.v_type.clone(),
ast::StateSpace::Reg,
)));
result.push(Statement::LoadVar(LoadVarDetails {
arg: ast::LdArgs {
dst: new_id,
src: return_reg.name,
},
typ: return_reg.v_type.clone(),
member_index: None,
}));
result.push(Statement::RetValue(data, new_id));
}
[] => result.push(Statement::Instruction(ast::Instruction::Ret { data })),
_ => unimplemented!(),
}
}
inst => insert_mem_ssa_statement_default(
id_def,
&mut result,
Statement::Instruction(inst),
)?,
},
Statement::Conditional(bra) => {
insert_mem_ssa_statement_default(id_def, &mut result, Statement::Conditional(bra))?
}
Statement::Conversion(conv) => {
insert_mem_ssa_statement_default(id_def, &mut result, Statement::Conversion(conv))?
}
Statement::PtrAccess(ptr_access) => insert_mem_ssa_statement_default(
id_def,
&mut result,
Statement::PtrAccess(ptr_access),
)?,
Statement::RepackVector(repack) => insert_mem_ssa_statement_default(
id_def,
&mut result,
Statement::RepackVector(repack),
)?,
Statement::FunctionPointer(func_ptr) => insert_mem_ssa_statement_default(
id_def,
&mut result,
Statement::FunctionPointer(func_ptr),
)?,
s @ Statement::Variable(_) | s @ Statement::Label(_) | s @ Statement::Constant(..) => {
result.push(s)
}
_ => return Err(error_unreachable()),
}
}
Ok(result)
}
fn insert_mem_ssa_argument(
id_def: &mut NumericIdResolver,
func: &mut Vec<TypedStatement>,
arg: &mut ast::Variable<SpirvWord>,
is_kernel: bool,
) {
if !is_kernel && arg.state_space == ast::StateSpace::Param {
return;
}
let new_id = id_def.register_intermediate(Some((arg.v_type.clone(), arg.state_space)));
func.push(Statement::Variable(ast::Variable {
align: arg.align,
v_type: arg.v_type.clone(),
state_space: ast::StateSpace::Reg,
name: arg.name,
array_init: Vec::new(),
}));
func.push(Statement::StoreVar(StoreVarDetails {
arg: ast::StArgs {
src1: arg.name,
src2: new_id,
},
typ: arg.v_type.clone(),
member_index: None,
}));
arg.name = new_id;
}
fn insert_mem_ssa_argument_reg_return(
func: &mut Vec<TypedStatement>,
arg: &ast::Variable<SpirvWord>,
) {
func.push(Statement::Variable(ast::Variable {
align: arg.align,
v_type: arg.v_type.clone(),
state_space: arg.state_space,
name: arg.name,
array_init: arg.array_init.clone(),
}));
}
fn insert_mem_ssa_statement_default<'a, 'input>(
id_def: &'a mut NumericIdResolver<'input>,
func: &'a mut Vec<TypedStatement>,
stmt: TypedStatement,
) -> Result<(), TranslateError> {
let mut visitor = InsertMemSSAVisitor {
id_def,
func,
post_statements: Vec::new(),
};
let new_stmt = stmt.visit_map(&mut visitor)?;
visitor.func.push(new_stmt);
visitor.func.extend(visitor.post_statements);
Ok(())
}
struct InsertMemSSAVisitor<'a, 'input> {
id_def: &'a mut NumericIdResolver<'input>,
func: &'a mut Vec<TypedStatement>,
post_statements: Vec<TypedStatement>,
}
impl<'a, 'input> InsertMemSSAVisitor<'a, 'input> {
fn symbol(
&mut self,
symbol: SpirvWord,
member_index: Option<u8>,
expected: Option<(&ast::Type, ast::StateSpace)>,
is_dst: bool,
) -> Result<SpirvWord, TranslateError> {
if expected.is_none() {
return Ok(symbol);
};
let (mut var_type, var_space, is_variable) = self.id_def.get_typed(symbol)?;
if !space_is_compatible(var_space, ast::StateSpace::Reg) || !is_variable {
return Ok(symbol);
};
let member_index = match member_index {
Some(idx) => {
let vector_width = match var_type {
ast::Type::Vector(width, scalar_t) => {
var_type = ast::Type::Scalar(scalar_t);
width
}
_ => return Err(error_mismatched_type()),
};
Some((
idx,
if self.id_def.special_registers.get(symbol).is_some() {
Some(vector_width)
} else {
None
},
))
}
None => None,
};
let generated_id = self
.id_def
.register_intermediate(Some((var_type.clone(), ast::StateSpace::Reg)));
if !is_dst {
self.func.push(Statement::LoadVar(LoadVarDetails {
arg: ast::LdArgs {
dst: generated_id,
src: symbol,
},
typ: var_type,
member_index,
}));
} else {
self.post_statements
.push(Statement::StoreVar(StoreVarDetails {
arg: ast::StArgs {
src1: symbol,
src2: generated_id,
},
typ: var_type,
member_index: member_index.map(|(idx, _)| idx),
}));
}
Ok(generated_id)
}
}
impl<'a, 'input> ast::VisitorMap<TypedOperand, TypedOperand, TranslateError>
for InsertMemSSAVisitor<'a, 'input>
{
fn visit(
&mut self,
operand: TypedOperand,
type_space: Option<(&ast::Type, ast::StateSpace)>,
is_dst: bool,
_relaxed_type_check: bool,
) -> Result<TypedOperand, TranslateError> {
Ok(match operand {
TypedOperand::Reg(reg) => {
TypedOperand::Reg(self.symbol(reg, None, type_space, is_dst)?)
}
TypedOperand::RegOffset(reg, offset) => {
TypedOperand::RegOffset(self.symbol(reg, None, type_space, is_dst)?, offset)
}
op @ TypedOperand::Imm(..) => op,
TypedOperand::VecMember(symbol, index) => {
TypedOperand::Reg(self.symbol(symbol, Some(index), type_space, is_dst)?)
}
})
}
fn visit_ident(
&mut self,
args: SpirvWord,
type_space: Option<(&ptx_parser::Type, ptx_parser::StateSpace)>,
is_dst: bool,
relaxed_type_check: bool,
) -> Result<SpirvWord, TranslateError> {
self.symbol(args, None, type_space, is_dst)
}
}
|