1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
use std::{ffi::c_void, mem, ptr};
use hip_runtime_sys::{hipError_t, hipMemoryType, hipPointerGetAttributes};
use crate::{
cuda::{CUdeviceptr, CUmemorytype, CUpointer_attribute},
hip_call,
};
pub(crate) unsafe fn get_attribute(
data: *mut c_void,
attribute: CUpointer_attribute,
ptr: CUdeviceptr,
) -> Result<(), hipError_t> {
if data == ptr::null_mut() {
return Err(hipError_t::hipErrorInvalidValue);
}
let mut attribs = mem::zeroed();
hip_call! { hipPointerGetAttributes(&mut attribs, ptr.0 as _) };
match attribute {
CUpointer_attribute::CU_POINTER_ATTRIBUTE_CONTEXT => {
*(data as *mut _) = attribs.device;
Ok(())
}
CUpointer_attribute::CU_POINTER_ATTRIBUTE_MEMORY_TYPE => {
*(data as *mut _) = memory_type(attribs.memoryType)?;
Ok(())
}
CUpointer_attribute::CU_POINTER_ATTRIBUTE_DEVICE_POINTER => {
*(data as *mut _) = attribs.devicePointer;
Ok(())
}
CUpointer_attribute::CU_POINTER_ATTRIBUTE_HOST_POINTER => {
*(data as *mut _) = attribs.hostPointer;
Ok(())
}
CUpointer_attribute::CU_POINTER_ATTRIBUTE_IS_MANAGED => {
*(data as *mut _) = attribs.isManaged;
Ok(())
}
_ => Err(hipError_t::hipErrorNotSupported),
}
}
pub(crate) fn memory_type(cu: hipMemoryType) -> Result<CUmemorytype, hipError_t> {
match cu {
hipMemoryType::hipMemoryTypeHost => Ok(CUmemorytype::CU_MEMORYTYPE_HOST),
hipMemoryType::hipMemoryTypeDevice => Ok(CUmemorytype::CU_MEMORYTYPE_DEVICE),
hipMemoryType::hipMemoryTypeArray => Ok(CUmemorytype::CU_MEMORYTYPE_ARRAY),
hipMemoryType::hipMemoryTypeUnified => Ok(CUmemorytype::CU_MEMORYTYPE_UNIFIED),
_ => Err(hipError_t::hipErrorInvalidValue),
}
}
|