// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include // for std::copy #include #include "common/alignment.h" #include "common/assert.h" #include "video_core/host1x/codecs/vp9.h" #include "video_core/host1x/host1x.h" #include "video_core/memory_manager.h" namespace Tegra::Decoders { namespace { constexpr u32 diff_update_probability = 252; constexpr u32 frame_sync_code = 0x498342; // Default compressed header probabilities once frame context resets constexpr Vp9EntropyProbs default_probs{ .y_mode_prob{ 65, 32, 18, 144, 162, 194, 41, 51, 98, 132, 68, 18, 165, 217, 196, 45, 40, 78, 173, 80, 19, 176, 240, 193, 64, 35, 46, 221, 135, 38, 194, 248, 121, 96, 85, 29, }, .partition_prob{ 199, 122, 141, 0, 147, 63, 159, 0, 148, 133, 118, 0, 121, 104, 114, 0, 174, 73, 87, 0, 92, 41, 83, 0, 82, 99, 50, 0, 53, 39, 39, 0, 177, 58, 59, 0, 68, 26, 63, 0, 52, 79, 25, 0, 17, 14, 12, 0, 222, 34, 30, 0, 72, 16, 44, 0, 58, 32, 12, 0, 10, 7, 6, 0, }, .coef_probs{ 195, 29, 183, 84, 49, 136, 8, 42, 71, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 107, 169, 35, 99, 159, 17, 82, 140, 8, 66, 114, 2, 44, 76, 1, 19, 32, 40, 132, 201, 29, 114, 187, 13, 91, 157, 7, 75, 127, 3, 58, 95, 1, 28, 47, 69, 142, 221, 42, 122, 201, 15, 91, 159, 6, 67, 121, 1, 42, 77, 1, 17, 31, 102, 148, 228, 67, 117, 204, 17, 82, 154, 6, 59, 114, 2, 39, 75, 1, 15, 29, 156, 57, 233, 119, 57, 212, 58, 48, 163, 29, 40, 124, 12, 30, 81, 3, 12, 31, 191, 107, 226, 124, 117, 204, 25, 99, 155, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 148, 210, 37, 126, 194, 8, 93, 157, 2, 68, 118, 1, 39, 69, 1, 17, 33, 41, 151, 213, 27, 123, 193, 3, 82, 144, 1, 58, 105, 1, 32, 60, 1, 13, 26, 59, 159, 220, 23, 126, 198, 4, 88, 151, 1, 66, 114, 1, 38, 71, 1, 18, 34, 114, 136, 232, 51, 114, 207, 11, 83, 155, 3, 56, 105, 1, 33, 65, 1, 17, 34, 149, 65, 234, 121, 57, 215, 61, 49, 166, 28, 36, 114, 12, 25, 76, 3, 16, 42, 214, 49, 220, 132, 63, 188, 42, 65, 137, 0, 0, 0, 0, 0, 0, 0, 0, 0, 85, 137, 221, 104, 131, 216, 49, 111, 192, 21, 87, 155, 2, 49, 87, 1, 16, 28, 89, 163, 230, 90, 137, 220, 29, 100, 183, 10, 70, 135, 2, 42, 81, 1, 17, 33, 108, 167, 237, 55, 133, 222, 15, 97, 179, 4, 72, 135, 1, 45, 85, 1, 19, 38, 124, 146, 240, 66, 124, 224, 17, 88, 175, 4, 58, 122, 1, 36, 75, 1, 18, 37, 141, 79, 241, 126, 70, 227, 66, 58, 182, 30, 44, 136, 12, 34, 96, 2, 20, 47, 229, 99, 249, 143, 111, 235, 46, 109, 192, 0, 0, 0, 0, 0, 0, 0, 0, 0, 82, 158, 236, 94, 146, 224, 25, 117, 191, 9, 87, 149, 3, 56, 99, 1, 33, 57, 83, 167, 237, 68, 145, 222, 10, 103, 177, 2, 72, 131, 1, 41, 79, 1, 20, 39, 99, 167, 239, 47, 141, 224, 10, 104, 178, 2, 73, 133, 1, 44, 85, 1, 22, 47, 127, 145, 243, 71, 129, 228, 17, 93, 177, 3, 61, 124, 1, 41, 84, 1, 21, 52, 157, 78, 244, 140, 72, 231, 69, 58, 184, 31, 44, 137, 14, 38, 105, 8, 23, 61, 125, 34, 187, 52, 41, 133, 6, 31, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37, 109, 153, 51, 102, 147, 23, 87, 128, 8, 67, 101, 1, 41, 63, 1, 19, 29, 31, 154, 185, 17, 127, 175, 6, 96, 145, 2, 73, 114, 1, 51, 82, 1, 28, 45, 23, 163, 200, 10, 131, 185, 2, 93, 148, 1, 67, 111, 1, 41, 69, 1, 14, 24, 29, 176, 217, 12, 145, 201, 3, 101, 156, 1, 69, 111, 1, 39, 63, 1, 14, 23, 57, 192, 233, 25, 154, 215, 6, 109, 167, 3, 78, 118, 1, 48, 69, 1, 21, 29, 202, 105, 245, 108, 106, 216, 18, 90, 144, 0, 0, 0, 0, 0, 0, 0, 0, 0, 33, 172, 219, 64, 149, 206, 14, 117, 177, 5, 90, 141, 2, 61, 95, 1, 37, 57, 33, 179, 220, 11, 140, 198, 1, 89, 148, 1, 60, 104, 1, 33, 57, 1, 12, 21, 30, 181, 221, 8, 141, 198, 1, 87, 145, 1, 58, 100, 1, 31, 55, 1, 12, 20, 32, 186, 224, 7, 142, 198, 1, 86, 143, 1, 58, 100, 1, 31, 55, 1, 12, 22, 57, 192, 227, 20, 143, 204, 3, 96, 154, 1, 68, 112, 1, 42, 69, 1, 19, 32, 212, 35, 215, 113, 47, 169, 29, 48, 105, 0, 0, 0, 0, 0, 0, 0, 0, 0, 74, 129, 203, 106, 120, 203, 49, 107, 178, 19, 84, 144, 4, 50, 84, 1, 15, 25, 71, 172, 217, 44, 141, 209, 15, 102, 173, 6, 76, 133, 2, 51, 89, 1, 24, 42, 64, 185, 231, 31, 148, 216, 8, 103, 175, 3, 74, 131, 1, 46, 81, 1, 18, 30, 65, 196, 235, 25, 157, 221, 5, 105, 174, 1, 67, 120, 1, 38, 69, 1, 15, 30, 65, 204, 238, 30, 156, 224, 7, 107, 177, 2, 70, 124, 1, 42, 73, 1, 18, 34, 225, 86, 251, 144, 104, 235, 42, 99, 181, 0, 0, 0, 0, 0, 0, 0, 0, 0, 85, 175, 239, 112, 165, 229, 29, 136, 200, 12, 103, 162, 6, 77, 123, 2, 53, 84, 75, 183, 239, 30, 155, 221, 3, 106, 171, 1, 74, 128, 1, 44, 76, 1, 17, 28, 73, 185, 240, 27, 159, 222, 2, 107, 172, 1, 75, 127, 1, 42, 73, 1, 17, 29, 62, 190, 238, 21, 159, 222, 2, 107, 172, 1, 72, 122, 1, 40, 71, 1, 18, 32, 61, 199, 240, 27, 161, 226, 4, 113, 180, 1, 76, 129, 1, 46, 80, 1, 23, 41, 7, 27, 153, 5, 30, 95, 1, 16, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 75, 127, 57, 75, 124, 27, 67, 108, 10, 54, 86, 1, 33, 52, 1, 12, 18, 43, 125, 151, 26, 108, 148, 7, 83, 122, 2, 59, 89, 1, 38, 60, 1, 17, 27, 23, 144, 163, 13, 112, 154, 2, 75, 117, 1, 50, 81, 1, 31, 51, 1, 14, 23, 18, 162, 185, 6, 123, 171, 1, 78, 125, 1, 51, 86, 1, 31, 54, 1, 14, 23, 15, 199, 227, 3, 150, 204, 1, 91, 146, 1, 55, 95, 1, 30, 53, 1, 11, 20, 19, 55, 240, 19, 59, 196, 3, 52, 105, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41, 166, 207, 104, 153, 199, 31, 123, 181, 14, 101, 152, 5, 72, 106, 1, 36, 52, 35, 176, 211, 12, 131, 190, 2, 88, 144, 1, 60, 101, 1, 36, 60, 1, 16, 28, 28, 183, 213, 8, 134, 191, 1, 86, 142, 1, 56, 96, 1, 30, 53, 1, 12, 20, 20, 190, 215, 4, 135, 192, 1, 84, 139, 1, 53, 91, 1, 28, 49, 1, 11, 20, 13, 196, 216, 2, 137, 192, 1, 86, 143, 1, 57, 99, 1, 32, 56, 1, 13, 24, 211, 29, 217, 96, 47, 156, 22, 43, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78, 120, 193, 111, 116, 186, 46, 102, 164, 15, 80, 128, 2, 49, 76, 1, 18, 28, 71, 161, 203, 42, 132, 192, 10, 98, 150, 3, 69, 109, 1, 44, 70, 1, 18, 29, 57, 186, 211, 30, 140, 196, 4, 93, 146, 1, 62, 102, 1, 38, 65, 1, 16, 27, 47, 199, 217, 14, 145, 196, 1, 88, 142, 1, 57, 98, 1, 36, 62, 1, 15, 26, 26, 219, 229, 5, 155, 207, 1, 94, 151, 1, 60, 104, 1, 36, 62, 1, 16, 28, 233, 29, 248, 146, 47, 220, 43, 52, 140, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 163, 232, 179, 161, 222, 63, 142, 204, 37, 113, 174, 26, 89, 137, 18, 68, 97, 85, 181, 230, 32, 146, 209, 7, 100, 164, 3, 71, 121, 1, 45, 77, 1, 18, 30, 65, 187, 230, 20, 148, 207, 2, 97, 159, 1, 68, 116, 1, 40, 70, 1, 14, 29, 40, 194, 227, 8, 147, 204, 1, 94, 155, 1, 65, 112, 1, 39, 66, 1, 14, 26, 16, 208, 228, 3, 151, 207, 1, 98, 160, 1, 67, 117, 1, 41, 74, 1, 17, 31, 17, 38, 140, 7, 34, 80, 1, 17, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37, 75, 128, 41, 76, 128, 26, 66, 116, 12, 52, 94, 2, 32, 55, 1, 10, 16, 50, 127, 154, 37, 109, 152, 16, 82, 121, 5, 59, 85, 1, 35, 54, 1, 13, 20, 40, 142, 167, 17, 110, 157, 2, 71, 112, 1, 44, 72, 1, 27, 45, 1, 11, 17, 30, 175, 188, 9, 124, 169, 1, 74, 116, 1, 48, 78, 1, 30, 49, 1, 11, 18, 10, 222, 223, 2, 150, 194, 1, 83, 128, 1, 48, 79, 1, 27, 45, 1, 11, 17, 36, 41, 235, 29, 36, 193, 10, 27, 111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 85, 165, 222, 177, 162, 215, 110, 135, 195, 57, 113, 168, 23, 83, 120, 10, 49, 61, 85, 190, 223, 36, 139, 200, 5, 90, 146, 1, 60, 103, 1, 38, 65, 1, 18, 30, 72, 202, 223, 23, 141, 199, 2, 86, 140, 1, 56, 97, 1, 36, 61, 1, 16, 27, 55, 218, 225, 13, 145, 200, 1, 86, 141, 1, 57, 99, 1, 35, 61, 1, 13, 22, 15, 235, 212, 1, 132, 184, 1, 84, 139, 1, 57, 97, 1, 34, 56, 1, 14, 23, 181, 21, 201, 61, 37, 123, 10, 38, 71, 0, 0, 0, 0, 0, 0, 0, 0, 0, 47, 106, 172, 95, 104, 173, 42, 93, 159, 18, 77, 131, 4, 50, 81, 1, 17, 23, 62, 147, 199, 44, 130, 189, 28, 102, 154, 18, 75, 115, 2, 44, 65, 1, 12, 19, 55, 153, 210, 24, 130, 194, 3, 93, 146, 1, 61, 97, 1, 31, 50, 1, 10, 16, 49, 186, 223, 17, 148, 204, 1, 96, 142, 1, 53, 83, 1, 26, 44, 1, 11, 17, 13, 217, 212, 2, 136, 180, 1, 78, 124, 1, 50, 83, 1, 29, 49, 1, 14, 23, 197, 13, 247, 82, 17, 222, 25, 17, 162, 0, 0, 0, 0, 0, 0, 0, 0, 0, 126, 186, 247, 234, 191, 243, 176, 177, 234, 104, 158, 220, 66, 128, 186, 55, 90, 137, 111, 197, 242, 46, 158, 219, 9, 104, 171, 2, 65, 125, 1, 44, 80, 1, 17, 91, 104, 208, 245, 39, 168, 224, 3, 109, 162, 1, 79, 124, 1, 50, 102, 1, 43, 102, 84, 220, 246, 31, 177, 231, 2, 115, 180, 1, 79, 134, 1, 55, 77, 1, 60, 79, 43, 243, 240, 8, 180, 217, 1, 115, 166, 1, 84, 121, 1, 51, 67, 1, 16, 6, }, .switchable_interp_prob{235, 162, 36, 255, 34, 3, 149, 144}, .inter_mode_prob{ 2, 173, 34, 0, 7, 145, 85, 0, 7, 166, 63, 0, 7, 94, 66, 0, 8, 64, 46, 0, 17, 81, 31, 0, 25, 29, 30, 0, }, .intra_inter_prob{9, 102, 187, 225}, .comp_inter_prob{9, 102, 187, 225, 0}, .single_ref_prob{33, 16, 77, 74, 142, 142, 172, 170, 238, 247}, .comp_ref_prob{50, 126, 123, 221, 226}, .tx_32x32_prob{3, 136, 37, 5, 52, 13}, .tx_16x16_prob{20, 152, 15, 101}, .tx_8x8_prob{100, 66}, .skip_probs{192, 128, 64}, .joints{32, 64, 96}, .sign{128, 128}, .classes{ 224, 144, 192, 168, 192, 176, 192, 198, 198, 245, 216, 128, 176, 160, 176, 176, 192, 198, 198, 208, }, .class_0{216, 208}, .prob_bits{ 136, 140, 148, 160, 176, 192, 224, 234, 234, 240, 136, 140, 148, 160, 176, 192, 224, 234, 234, 240, }, .class_0_fr{128, 128, 64, 96, 112, 64, 128, 128, 64, 96, 112, 64}, .fr{64, 96, 64, 64, 96, 64}, .class_0_hp{160, 160}, .high_precision{128, 128}, }; constexpr std::array norm_lut{ 0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; constexpr std::array map_lut{ 20, 21, 22, 23, 24, 25, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 1, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 2, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 3, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 4, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 5, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 6, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 7, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 8, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 9, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 10, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 11, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 12, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 13, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 14, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 15, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 16, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 17, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 18, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 19, }; // 6.2.14 Tile size calculation [[nodiscard]] s32 CalcMinLog2TileCols(s32 frame_width) { const s32 sb64_cols = (frame_width + 63) / 64; s32 min_log2 = 0; while ((64 << min_log2) < sb64_cols) { min_log2++; } return min_log2; } [[nodiscard]] s32 CalcMaxLog2TileCols(s32 frame_width) { const s32 sb64_cols = (frame_width + 63) / 64; s32 max_log2 = 1; while ((sb64_cols >> max_log2) >= 4) { max_log2++; } return max_log2 - 1; } // Recenters probability. Based on section 6.3.6 of VP9 Specification [[nodiscard]] s32 RecenterNonNeg(s32 new_prob, s32 old_prob) { if (new_prob > old_prob * 2) { return new_prob; } if (new_prob >= old_prob) { return (new_prob - old_prob) * 2; } return (old_prob - new_prob) * 2 - 1; } // Adjusts old_prob depending on new_prob. Based on section 6.3.5 of VP9 Specification [[nodiscard]] s32 RemapProbability(s32 new_prob, s32 old_prob) { new_prob--; old_prob--; std::size_t index{}; if (old_prob * 2 <= 0xff) { index = static_cast(std::max(0, RecenterNonNeg(new_prob, old_prob) - 1)); } else { index = static_cast( std::max(0, RecenterNonNeg(0xff - 1 - new_prob, 0xff - 1 - old_prob) - 1)); } return static_cast(map_lut[index]); } } // Anonymous namespace VP9::VP9(Host1x::Host1x& host1x_, const Host1x::NvdecCommon::NvdecRegisters& regs_, s32 id_, Host1x::FrameQueue& frame_queue_) : Decoder{host1x_, id_, regs_, frame_queue_} { codec = Host1x::NvdecCommon::VideoCodec::VP9; initialized = decode_api.Initialize(codec); } VP9::~VP9() = default; void VP9::WriteProbabilityUpdate(VpxRangeEncoder& writer, u8 new_prob, u8 old_prob) { const bool update = new_prob != old_prob; writer.Write(update, diff_update_probability); if (update) { WriteProbabilityDelta(writer, new_prob, old_prob); } } template void VP9::WriteProbabilityUpdate(VpxRangeEncoder& writer, const std::array& new_prob, const std::array& old_prob) { for (std::size_t offset = 0; offset < new_prob.size(); ++offset) { WriteProbabilityUpdate(writer, new_prob[offset], old_prob[offset]); } } template void VP9::WriteProbabilityUpdateAligned4(VpxRangeEncoder& writer, const std::array& new_prob, const std::array& old_prob) { for (std::size_t offset = 0; offset < new_prob.size(); offset += 4) { WriteProbabilityUpdate(writer, new_prob[offset + 0], old_prob[offset + 0]); WriteProbabilityUpdate(writer, new_prob[offset + 1], old_prob[offset + 1]); WriteProbabilityUpdate(writer, new_prob[offset + 2], old_prob[offset + 2]); } } void VP9::WriteProbabilityDelta(VpxRangeEncoder& writer, u8 new_prob, u8 old_prob) { const int delta = RemapProbability(new_prob, old_prob); EncodeTermSubExp(writer, delta); } void VP9::EncodeTermSubExp(VpxRangeEncoder& writer, s32 value) { if (WriteLessThan(writer, value, 16)) { writer.Write(value, 4); } else if (WriteLessThan(writer, value, 32)) { writer.Write(value - 16, 4); } else if (WriteLessThan(writer, value, 64)) { writer.Write(value - 32, 5); } else { value -= 64; constexpr s32 size = 8; const s32 mask = (1 << size) - 191; const s32 delta = value - mask; if (delta < 0) { writer.Write(value, size - 1); } else { writer.Write(delta / 2 + mask, size - 1); writer.Write(delta & 1, 1); } } } bool VP9::WriteLessThan(VpxRangeEncoder& writer, s32 value, s32 test) { const bool is_lt = value < test; writer.Write(!is_lt); return is_lt; } void VP9::WriteCoefProbabilityUpdate(VpxRangeEncoder& writer, s32 tx_mode, const std::array& new_prob, const std::array& old_prob) { constexpr u32 block_bytes = 2 * 2 * 6 * 6 * 3; const auto needs_update = [&](u32 base_index) { return !std::equal(new_prob.begin() + base_index, new_prob.begin() + base_index + block_bytes, old_prob.begin() + base_index); }; for (u32 block_index = 0; block_index < 4; block_index++) { const u32 base_index = block_index * block_bytes; const bool update = needs_update(base_index); writer.Write(update); if (update) { u32 index = base_index; for (s32 i = 0; i < 2; i++) { for (s32 j = 0; j < 2; j++) { for (s32 k = 0; k < 6; k++) { for (s32 l = 0; l < 6; l++) { if (k != 0 || l < 3) { WriteProbabilityUpdate(writer, new_prob[index + 0], old_prob[index + 0]); WriteProbabilityUpdate(writer, new_prob[index + 1], old_prob[index + 1]); WriteProbabilityUpdate(writer, new_prob[index + 2], old_prob[index + 2]); } index += 3; } } } } } if (block_index == static_cast(tx_mode)) { break; } } } void VP9::WriteMvProbabilityUpdate(VpxRangeEncoder& writer, u8 new_prob, u8 old_prob) { const bool update = new_prob != old_prob; writer.Write(update, diff_update_probability); if (update) { writer.Write(new_prob >> 1, 7); } } void VP9::WriteSegmentation(VpxBitStreamWriter& writer) { bool enabled = current_picture_info.segmentation.enabled != 0; writer.WriteBit(enabled); if (!enabled) { return; } auto update_map = current_picture_info.segmentation.update_map != 0; writer.WriteBit(update_map); if (update_map) { EntropyProbs entropy_probs{}; memory_manager.ReadBlock(regs.vp9_prob_tab_buffer_offset.Address(), &entropy_probs, sizeof(entropy_probs)); auto WriteProb = [&](u8 prob) { bool coded = prob != 255; writer.WriteBit(coded); if (coded) { writer.WriteU(prob, 8); } }; for (size_t i = 0; i < entropy_probs.mb_segment_tree_probs.size(); i++) { WriteProb(entropy_probs.mb_segment_tree_probs[i]); } auto temporal_update = current_picture_info.segmentation.temporal_update != 0; writer.WriteBit(temporal_update); if (temporal_update) { for (s32 i = 0; i < 3; i++) { WriteProb(entropy_probs.segment_pred_probs[i]); } } } if (last_segmentation == current_picture_info.segmentation) { writer.WriteBit(false); return; } last_segmentation = current_picture_info.segmentation; writer.WriteBit(true); writer.WriteBit(current_picture_info.segmentation.abs_delta != 0); constexpr s32 MAX_SEGMENTS = 8; constexpr std::array SegmentationFeatureBits = {8, 6, 2, 0}; for (s32 i = 0; i < MAX_SEGMENTS; i++) { auto q_enabled = current_picture_info.segmentation.feature_enabled[i][0] != 0; writer.WriteBit(q_enabled); if (q_enabled) { writer.WriteS(current_picture_info.segmentation.feature_data[i][0], SegmentationFeatureBits[0]); } auto lf_enabled = current_picture_info.segmentation.feature_enabled[i][1] != 0; writer.WriteBit(lf_enabled); if (lf_enabled) { writer.WriteS(current_picture_info.segmentation.feature_data[i][1], SegmentationFeatureBits[1]); } auto ref_enabled = current_picture_info.segmentation.feature_enabled[i][2] != 0; writer.WriteBit(ref_enabled); if (ref_enabled) { writer.WriteU(current_picture_info.segmentation.feature_data[i][2], SegmentationFeatureBits[2]); } auto skip_enabled = current_picture_info.segmentation.feature_enabled[i][3] != 0; writer.WriteBit(skip_enabled); } } Vp9PictureInfo VP9::GetVp9PictureInfo() { memory_manager.ReadBlock(regs.picture_info_offset.Address(), ¤t_picture_info, sizeof(PictureInfo)); Vp9PictureInfo vp9_info = current_picture_info.Convert(); InsertEntropy(regs.vp9_prob_tab_buffer_offset.Address(), vp9_info.entropy); // surface_luma_offset[0:3] contains the address of the reference frame offsets in the following // order: last, golden, altref, current. for (size_t i = 0; i < 4; i++) { vp9_info.frame_offsets[i] = regs.surface_luma_offsets[i].Address(); } return vp9_info; } void VP9::InsertEntropy(u64 offset, Vp9EntropyProbs& dst) { EntropyProbs entropy; memory_manager.ReadBlock(offset, &entropy, sizeof(EntropyProbs)); entropy.Convert(dst); } Vp9FrameContainer VP9::GetCurrentFrame() { Vp9FrameContainer current_frame{}; { // gpu.SyncGuestHost(); epic, why? current_frame.info = GetVp9PictureInfo(); current_frame.bit_stream.resize(current_frame.info.bitstream_size); memory_manager.ReadBlock(regs.frame_bitstream_offset.Address(), current_frame.bit_stream.data(), current_frame.info.bitstream_size); } if (!next_frame.bit_stream.empty()) { Vp9FrameContainer temp{ .info = current_frame.info, .bit_stream = std::move(current_frame.bit_stream), }; next_frame.info.show_frame = current_frame.info.last_frame_shown; current_frame.info = next_frame.info; current_frame.bit_stream = std::move(next_frame.bit_stream); next_frame = std::move(temp); } else { next_frame.info = current_frame.info; next_frame.bit_stream = current_frame.bit_stream; } return current_frame; } std::vector VP9::ComposeCompressedHeader() { VpxRangeEncoder writer{}; const bool update_probs = !current_frame_info.is_key_frame && current_frame_info.show_frame; if (!current_frame_info.lossless) { if (static_cast(current_frame_info.transform_mode) >= 3) { writer.Write(3, 2); writer.Write(current_frame_info.transform_mode == 4); } else { writer.Write(current_frame_info.transform_mode, 2); } } if (current_frame_info.transform_mode == 4) { // tx_mode_probs() in the spec WriteProbabilityUpdate(writer, current_frame_info.entropy.tx_8x8_prob, prev_frame_probs.tx_8x8_prob); WriteProbabilityUpdate(writer, current_frame_info.entropy.tx_16x16_prob, prev_frame_probs.tx_16x16_prob); WriteProbabilityUpdate(writer, current_frame_info.entropy.tx_32x32_prob, prev_frame_probs.tx_32x32_prob); if (update_probs) { prev_frame_probs.tx_8x8_prob = current_frame_info.entropy.tx_8x8_prob; prev_frame_probs.tx_16x16_prob = current_frame_info.entropy.tx_16x16_prob; prev_frame_probs.tx_32x32_prob = current_frame_info.entropy.tx_32x32_prob; } } // read_coef_probs() in the spec WriteCoefProbabilityUpdate(writer, current_frame_info.transform_mode, current_frame_info.entropy.coef_probs, prev_frame_probs.coef_probs); // read_skip_probs() in the spec WriteProbabilityUpdate(writer, current_frame_info.entropy.skip_probs, prev_frame_probs.skip_probs); if (update_probs) { prev_frame_probs.coef_probs = current_frame_info.entropy.coef_probs; prev_frame_probs.skip_probs = current_frame_info.entropy.skip_probs; } if (!current_frame_info.intra_only) { // read_inter_probs() in the spec WriteProbabilityUpdateAligned4(writer, current_frame_info.entropy.inter_mode_prob, prev_frame_probs.inter_mode_prob); if (current_frame_info.interp_filter == 4) { // read_interp_filter_probs() in the spec WriteProbabilityUpdate(writer, current_frame_info.entropy.switchable_interp_prob, prev_frame_probs.switchable_interp_prob); if (update_probs) { prev_frame_probs.switchable_interp_prob = current_frame_info.entropy.switchable_interp_prob; } } // read_is_inter_probs() in the spec WriteProbabilityUpdate(writer, current_frame_info.entropy.intra_inter_prob, prev_frame_probs.intra_inter_prob); // frame_reference_mode() in the spec if ((current_frame_info.ref_frame_sign_bias[1] & 1) != (current_frame_info.ref_frame_sign_bias[2] & 1) || (current_frame_info.ref_frame_sign_bias[1] & 1) != (current_frame_info.ref_frame_sign_bias[3] & 1)) { if (current_frame_info.reference_mode >= 1) { writer.Write(1, 1); writer.Write(current_frame_info.reference_mode == 2); } else { writer.Write(0, 1); } } // frame_reference_mode_probs() in the spec if (current_frame_info.reference_mode == 2) { WriteProbabilityUpdate(writer, current_frame_info.entropy.comp_inter_prob, prev_frame_probs.comp_inter_prob); if (update_probs) { prev_frame_probs.comp_inter_prob = current_frame_info.entropy.comp_inter_prob; } } if (current_frame_info.reference_mode != 1) { WriteProbabilityUpdate(writer, current_frame_info.entropy.single_ref_prob, prev_frame_probs.single_ref_prob); if (update_probs) { prev_frame_probs.single_ref_prob = current_frame_info.entropy.single_ref_prob; } } if (current_frame_info.reference_mode != 0) { WriteProbabilityUpdate(writer, current_frame_info.entropy.comp_ref_prob, prev_frame_probs.comp_ref_prob); if (update_probs) { prev_frame_probs.comp_ref_prob = current_frame_info.entropy.comp_ref_prob; } } // read_y_mode_probs for (std::size_t index = 0; index < current_frame_info.entropy.y_mode_prob.size(); ++index) { WriteProbabilityUpdate(writer, current_frame_info.entropy.y_mode_prob[index], prev_frame_probs.y_mode_prob[index]); } // read_partition_probs WriteProbabilityUpdateAligned4(writer, current_frame_info.entropy.partition_prob, prev_frame_probs.partition_prob); // mv_probs for (s32 i = 0; i < 3; i++) { WriteMvProbabilityUpdate(writer, current_frame_info.entropy.joints[i], prev_frame_probs.joints[i]); } if (update_probs) { prev_frame_probs.inter_mode_prob = current_frame_info.entropy.inter_mode_prob; prev_frame_probs.intra_inter_prob = current_frame_info.entropy.intra_inter_prob; prev_frame_probs.y_mode_prob = current_frame_info.entropy.y_mode_prob; prev_frame_probs.partition_prob = current_frame_info.entropy.partition_prob; prev_frame_probs.joints = current_frame_info.entropy.joints; } for (s32 i = 0; i < 2; i++) { WriteMvProbabilityUpdate(writer, current_frame_info.entropy.sign[i], prev_frame_probs.sign[i]); for (s32 j = 0; j < 10; j++) { const int index = i * 10 + j; WriteMvProbabilityUpdate(writer, current_frame_info.entropy.classes[index], prev_frame_probs.classes[index]); } WriteMvProbabilityUpdate(writer, current_frame_info.entropy.class_0[i], prev_frame_probs.class_0[i]); for (s32 j = 0; j < 10; j++) { const int index = i * 10 + j; WriteMvProbabilityUpdate(writer, current_frame_info.entropy.prob_bits[index], prev_frame_probs.prob_bits[index]); } } for (s32 i = 0; i < 2; i++) { for (s32 j = 0; j < 2; j++) { for (s32 k = 0; k < 3; k++) { const int index = i * 2 * 3 + j * 3 + k; WriteMvProbabilityUpdate(writer, current_frame_info.entropy.class_0_fr[index], prev_frame_probs.class_0_fr[index]); } } for (s32 j = 0; j < 3; j++) { const int index = i * 3 + j; WriteMvProbabilityUpdate(writer, current_frame_info.entropy.fr[index], prev_frame_probs.fr[index]); } } if (current_frame_info.allow_high_precision_mv) { for (s32 index = 0; index < 2; index++) { WriteMvProbabilityUpdate(writer, current_frame_info.entropy.class_0_hp[index], prev_frame_probs.class_0_hp[index]); WriteMvProbabilityUpdate(writer, current_frame_info.entropy.high_precision[index], prev_frame_probs.high_precision[index]); } } // save previous probs if (update_probs) { prev_frame_probs.sign = current_frame_info.entropy.sign; prev_frame_probs.classes = current_frame_info.entropy.classes; prev_frame_probs.class_0 = current_frame_info.entropy.class_0; prev_frame_probs.prob_bits = current_frame_info.entropy.prob_bits; prev_frame_probs.class_0_fr = current_frame_info.entropy.class_0_fr; prev_frame_probs.fr = current_frame_info.entropy.fr; prev_frame_probs.class_0_hp = current_frame_info.entropy.class_0_hp; prev_frame_probs.high_precision = current_frame_info.entropy.high_precision; } } writer.End(); return writer.GetBuffer(); } VpxBitStreamWriter VP9::ComposeUncompressedHeader() { VpxBitStreamWriter uncomp_writer{}; uncomp_writer.WriteU(2, 2); // Frame marker. uncomp_writer.WriteU(0, 2); // Profile. uncomp_writer.WriteBit(false); // Show existing frame. uncomp_writer.WriteBit(!current_frame_info.is_key_frame); // is key frame? uncomp_writer.WriteBit(current_frame_info.show_frame); // show frame? uncomp_writer.WriteBit(current_frame_info.error_resilient_mode); // error reslience if (current_frame_info.is_key_frame) { uncomp_writer.WriteU(frame_sync_code, 24); uncomp_writer.WriteU(0, 3); // Color space. uncomp_writer.WriteU(0, 1); // Color range. uncomp_writer.WriteU(current_frame_info.frame_size.width - 1, 16); uncomp_writer.WriteU(current_frame_info.frame_size.height - 1, 16); uncomp_writer.WriteBit(false); // Render and frame size different. // Reset context prev_frame_probs = default_probs; swap_ref_indices = false; loop_filter_ref_deltas.fill(0); loop_filter_mode_deltas.fill(0); frame_ctxs.fill(default_probs); // intra only, meaning the frame can be recreated with no other references current_frame_info.intra_only = true; } else { if (!current_frame_info.show_frame) { uncomp_writer.WriteBit(current_frame_info.intra_only); } else { current_frame_info.intra_only = false; } if (!current_frame_info.error_resilient_mode) { uncomp_writer.WriteU(0, 2); // Reset frame context. } const auto& curr_offsets = current_frame_info.frame_offsets; const auto& next_offsets = next_frame.info.frame_offsets; const bool ref_frames_different = curr_offsets[1] != curr_offsets[2]; const bool next_references_swap = (next_offsets[1] == curr_offsets[2]) || (next_offsets[2] == curr_offsets[1]); const bool needs_ref_swap = ref_frames_different && next_references_swap; if (needs_ref_swap) { swap_ref_indices = !swap_ref_indices; } union { u32 raw; BitField<0, 1, u32> refresh_last; BitField<1, 2, u32> refresh_golden; BitField<2, 1, u32> refresh_alt; } refresh_frame_flags; refresh_frame_flags.raw = 0; for (u32 index = 0; index < 3; ++index) { // Refresh indices that use the current frame as an index if (curr_offsets[3] == next_offsets[index]) { refresh_frame_flags.raw |= 1u << index; } } if (swap_ref_indices) { const u32 temp = refresh_frame_flags.refresh_golden; refresh_frame_flags.refresh_golden.Assign(refresh_frame_flags.refresh_alt.Value()); refresh_frame_flags.refresh_alt.Assign(temp); } if (current_frame_info.intra_only) { uncomp_writer.WriteU(frame_sync_code, 24); uncomp_writer.WriteU(refresh_frame_flags.raw, 8); uncomp_writer.WriteU(current_frame_info.frame_size.width - 1, 16); uncomp_writer.WriteU(current_frame_info.frame_size.height - 1, 16); uncomp_writer.WriteBit(false); // Render and frame size different. } else { const bool swap_indices = needs_ref_swap ^ swap_ref_indices; const auto ref_frame_index = swap_indices ? std::array{0, 2, 1} : std::array{0, 1, 2}; uncomp_writer.WriteU(refresh_frame_flags.raw, 8); for (size_t index = 1; index < 4; index++) { uncomp_writer.WriteU(ref_frame_index[index - 1], 3); uncomp_writer.WriteU(current_frame_info.ref_frame_sign_bias[index], 1); } uncomp_writer.WriteBit(true); // Frame size with refs. uncomp_writer.WriteBit(false); // Render and frame size different. uncomp_writer.WriteBit(current_frame_info.allow_high_precision_mv); uncomp_writer.WriteBit(current_frame_info.interp_filter == 4); if (current_frame_info.interp_filter != 4) { uncomp_writer.WriteU(current_frame_info.interp_filter, 2); } } } if (!current_frame_info.error_resilient_mode) { uncomp_writer.WriteBit(true); // Refresh frame context. where do i get this info from? uncomp_writer.WriteBit(true); // Frame parallel decoding mode. } int frame_ctx_idx = 0; if (!current_frame_info.show_frame) { frame_ctx_idx = 1; } uncomp_writer.WriteU(frame_ctx_idx, 2); // Frame context index. prev_frame_probs = frame_ctxs[frame_ctx_idx]; // reference probabilities for compressed header frame_ctxs[frame_ctx_idx] = current_frame_info.entropy; uncomp_writer.WriteU(current_frame_info.first_level, 6); uncomp_writer.WriteU(current_frame_info.sharpness_level, 3); uncomp_writer.WriteBit(current_frame_info.mode_ref_delta_enabled); if (current_frame_info.mode_ref_delta_enabled) { // check if ref deltas are different, update accordingly std::array update_loop_filter_ref_deltas; std::array update_loop_filter_mode_deltas; bool loop_filter_delta_update = false; for (std::size_t index = 0; index < current_frame_info.ref_deltas.size(); index++) { const s8 old_deltas = loop_filter_ref_deltas[index]; const s8 new_deltas = current_frame_info.ref_deltas[index]; const bool differing_delta = old_deltas != new_deltas; update_loop_filter_ref_deltas[index] = differing_delta; loop_filter_delta_update |= differing_delta; } for (std::size_t index = 0; index < current_frame_info.mode_deltas.size(); index++) { const s8 old_deltas = loop_filter_mode_deltas[index]; const s8 new_deltas = current_frame_info.mode_deltas[index]; const bool differing_delta = old_deltas != new_deltas; update_loop_filter_mode_deltas[index] = differing_delta; loop_filter_delta_update |= differing_delta; } uncomp_writer.WriteBit(loop_filter_delta_update); if (loop_filter_delta_update) { for (std::size_t index = 0; index < current_frame_info.ref_deltas.size(); index++) { uncomp_writer.WriteBit(update_loop_filter_ref_deltas[index]); if (update_loop_filter_ref_deltas[index]) { uncomp_writer.WriteS(current_frame_info.ref_deltas[index], 6); } } for (std::size_t index = 0; index < current_frame_info.mode_deltas.size(); index++) { uncomp_writer.WriteBit(update_loop_filter_mode_deltas[index]); if (update_loop_filter_mode_deltas[index]) { uncomp_writer.WriteS(current_frame_info.mode_deltas[index], 6); } } // save new deltas loop_filter_ref_deltas = current_frame_info.ref_deltas; loop_filter_mode_deltas = current_frame_info.mode_deltas; } } uncomp_writer.WriteU(current_frame_info.base_q_index, 8); uncomp_writer.WriteDeltaQ(current_frame_info.y_dc_delta_q); uncomp_writer.WriteDeltaQ(current_frame_info.uv_dc_delta_q); uncomp_writer.WriteDeltaQ(current_frame_info.uv_ac_delta_q); WriteSegmentation(uncomp_writer); const s32 min_tile_cols_log2 = CalcMinLog2TileCols(current_frame_info.frame_size.width); const s32 max_tile_cols_log2 = CalcMaxLog2TileCols(current_frame_info.frame_size.width); const s32 tile_cols_log2_diff = current_frame_info.log2_tile_cols - min_tile_cols_log2; const s32 tile_cols_log2_inc_mask = (1 << tile_cols_log2_diff) - 1; // If it's less than the maximum, we need to add an extra 0 on the bitstream // to indicate that it should stop reading. if (current_frame_info.log2_tile_cols < max_tile_cols_log2) { uncomp_writer.WriteU(tile_cols_log2_inc_mask << 1, tile_cols_log2_diff + 1); } else { uncomp_writer.WriteU(tile_cols_log2_inc_mask, tile_cols_log2_diff); } const bool tile_rows_log2_is_nonzero = current_frame_info.log2_tile_rows != 0; uncomp_writer.WriteBit(tile_rows_log2_is_nonzero); if (tile_rows_log2_is_nonzero) { uncomp_writer.WriteBit(current_frame_info.log2_tile_rows > 1); } return uncomp_writer; } std::tuple VP9::GetProgressiveOffsets() { auto luma{regs.surface_luma_offsets[static_cast(Vp9SurfaceIndex::Current)].Address()}; auto chroma{regs.surface_chroma_offsets[static_cast(Vp9SurfaceIndex::Current)].Address()}; return {luma, chroma}; } std::tuple VP9::GetInterlacedOffsets() { auto luma_top{regs.surface_luma_offsets[static_cast(Vp9SurfaceIndex::Current)].Address()}; auto luma_bottom{ regs.surface_luma_offsets[static_cast(Vp9SurfaceIndex::Current)].Address()}; auto chroma_top{ regs.surface_chroma_offsets[static_cast(Vp9SurfaceIndex::Current)].Address()}; auto chroma_bottom{ regs.surface_chroma_offsets[static_cast(Vp9SurfaceIndex::Current)].Address()}; return {luma_top, luma_bottom, chroma_top, chroma_bottom}; } std::span VP9::ComposeFrame() { vp9_hidden_frame = false; std::vector bitstream; { Vp9FrameContainer curr_frame = GetCurrentFrame(); current_frame_info = curr_frame.info; bitstream = std::move(curr_frame.bit_stream); } // The uncompressed header routine sets PrevProb parameters needed for the compressed header auto uncomp_writer = ComposeUncompressedHeader(); std::vector compressed_header = ComposeCompressedHeader(); uncomp_writer.WriteU(static_cast(compressed_header.size()), 16); uncomp_writer.Flush(); std::vector uncompressed_header = uncomp_writer.GetByteArray(); // Write headers and frame to buffer frame_scratch.resize(uncompressed_header.size() + compressed_header.size() + bitstream.size()); std::copy(uncompressed_header.begin(), uncompressed_header.end(), frame_scratch.begin()); std::copy(compressed_header.begin(), compressed_header.end(), frame_scratch.begin() + uncompressed_header.size()); std::copy(bitstream.begin(), bitstream.end(), frame_scratch.begin() + uncompressed_header.size() + compressed_header.size()); vp9_hidden_frame = WasFrameHidden(); return GetFrameBytes(); } VpxRangeEncoder::VpxRangeEncoder() { Write(false); } VpxRangeEncoder::~VpxRangeEncoder() = default; void VpxRangeEncoder::Write(s32 value, s32 value_size) { for (s32 bit = value_size - 1; bit >= 0; bit--) { Write(((value >> bit) & 1) != 0); } } void VpxRangeEncoder::Write(bool bit) { Write(bit, half_probability); } void VpxRangeEncoder::Write(bool bit, s32 probability) { u32 local_range = range; const u32 split = 1 + (((local_range - 1) * static_cast(probability)) >> 8); local_range = split; if (bit) { low_value += split; local_range = range - split; } s32 shift = static_cast(norm_lut[local_range]); local_range <<= shift; count += shift; if (count >= 0) { const s32 offset = shift - count; if (((low_value << (offset - 1)) >> 31) != 0) { const s32 current_pos = static_cast(base_stream.GetPosition()); base_stream.Seek(-1, Common::SeekOrigin::FromCurrentPos); while (PeekByte() == 0xff) { base_stream.WriteByte(0); base_stream.Seek(-2, Common::SeekOrigin::FromCurrentPos); } base_stream.WriteByte(static_cast((PeekByte() + 1))); base_stream.Seek(current_pos, Common::SeekOrigin::SetOrigin); } base_stream.WriteByte(static_cast((low_value >> (24 - offset)))); low_value <<= offset; shift = count; low_value &= 0xffffff; count -= 8; } low_value <<= shift; range = local_range; } void VpxRangeEncoder::End() { for (std::size_t index = 0; index < 32; ++index) { Write(false); } } u8 VpxRangeEncoder::PeekByte() { const u8 value = base_stream.ReadByte(); base_stream.Seek(-1, Common::SeekOrigin::FromCurrentPos); return value; } VpxBitStreamWriter::VpxBitStreamWriter() = default; VpxBitStreamWriter::~VpxBitStreamWriter() = default; void VpxBitStreamWriter::WriteU(u32 value, u32 value_size) { WriteBits(value, value_size); } void VpxBitStreamWriter::WriteS(s32 value, u32 value_size) { const bool sign = value < 0; if (sign) { value = -value; } WriteBits(static_cast(value << 1) | (sign ? 1 : 0), value_size + 1); } void VpxBitStreamWriter::WriteDeltaQ(u32 value) { const bool delta_coded = value != 0; WriteBit(delta_coded); if (delta_coded) { WriteBits(value, 4); } } void VpxBitStreamWriter::WriteBits(u32 value, u32 bit_count) { s32 value_pos = 0; s32 remaining = bit_count; while (remaining > 0) { s32 copy_size = remaining; const s32 free = GetFreeBufferBits(); if (copy_size > free) { copy_size = free; } const s32 mask = (1 << copy_size) - 1; const s32 src_shift = (bit_count - value_pos) - copy_size; const s32 dst_shift = (buffer_size - buffer_pos) - copy_size; buffer |= ((value >> src_shift) & mask) << dst_shift; value_pos += copy_size; buffer_pos += copy_size; remaining -= copy_size; } } void VpxBitStreamWriter::WriteBit(bool state) { WriteBits(state ? 1 : 0, 1); } s32 VpxBitStreamWriter::GetFreeBufferBits() { if (buffer_pos == buffer_size) { Flush(); } return buffer_size - buffer_pos; } void VpxBitStreamWriter::Flush() { if (buffer_pos == 0) { return; } byte_array.push_back(static_cast(buffer)); buffer = 0; buffer_pos = 0; } std::vector& VpxBitStreamWriter::GetByteArray() { return byte_array; } const std::vector& VpxBitStreamWriter::GetByteArray() const { return byte_array; } } // namespace Tegra::Decoders