diff options
Diffstat (limited to 'Documentation/Temperature.md')
-rw-r--r-- | Documentation/Temperature.md | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/Documentation/Temperature.md b/Documentation/Temperature.md index ca039807..91fba63d 100644 --- a/Documentation/Temperature.md +++ b/Documentation/Temperature.md @@ -15,7 +15,7 @@ This has some fairly large limitations, but it also has the benefit of being ext Conventionally a thermocouple is created using two dissimilar metals that join, and then the other ends of these metals are terminated to copper contacts. These copper contacts are also part of the construction of the thermocouple and are referred to as the cold junction. As there are these extra two joins between the thermocouple wires and the copper; these also have properties of their own in their reactions with temperature. -If the cold junction is held at 0 degree's C, then their effect is considered to be null, and so they can be ignored. However, in the real world the joins to copper are often at room temperature, and as such the measured voltage from the thermocouple must be compensated to remove the influence of these joints. This process is often called cold junction compensation. +If the cold junction is held at 0 degrees Celsius, then their effect is considered to be null, and so they can be ignored. However, in the real world the joins to copper are often at room temperature, and as such the measured voltage from the thermocouple must be compensated to remove the influence of these joints. This process is often called cold junction compensation. Every time in the circuit there is a join between two different metals, there is a small thermocouple created, this means that _every_ soldered connection is also one. @@ -25,9 +25,9 @@ Every time in the circuit there is a join between two different metals, there is If you analyse one of the open circuit schematics (Pinecil, TS100, TS80) they all use the same approximate formula. This consists of an op-amp that is connected directly across the heating connections to the tip, and a separate handle temperature sensor. -When the iron is **not** heating the tip, the microcontroller uses the ADC to read the output from the op-amp. This produces a voltage that _should_ be linear to the temperature of (tip-handle). This value is then offset compensated (to remove ADC+op-amp offsets), and then converted into a temperature delta in C/K. This temperature delta can then be added to the handle temperature to derive the tip temperature in C. +When the iron is **not** heating the tip, the microcontroller uses the ADC to read the output from the op-amp. This produces a voltage that _should_ be linear to the temperature of (tip-handle). This value is then offset compensated (to remove ADC+op-amp offsets), and then converted into a temperature delta in °C/K. This temperature delta can then be added to the handle temperature to derive the tip temperature in degrees Celsius. -Depending on the construction of the tip, the lookup values used for converting the tip reading in uV into degrees C/K varies. It is worth noting, however, that TS100 and Pinecil tips are approximately the same as the Hakko T12 tips. (In @Ralim's testing, to within measurement error). This makes sense as these tips are cheap and would have made an excellent design for Miniware to have cloned in making the TS100 in the first place. +Depending on the construction of the tip, the lookup values used for converting the tip reading in µV into °C/K varies. It is worth noting, however, that TS100 and Pinecil tips are approximately the same as the Hakko T12 tips. (In @Ralim's testing, to within measurement error). This makes sense as these tips are cheap and would have made an excellent design for Miniware to have cloned in making the TS100 in the first place. ## Implications of this @@ -43,7 +43,7 @@ The PID controller in the firmware is tuned to be slightly underdamped and thus This is why sometimes the temperature may flick around a little during use but the tip temperature itself is quite stable. The thermal mass of the tip smooths these small amounts out nicely for the user. Though seeing larger jumps on some tips than others _may_ indicate that the tip does not have optimal internal thermal bonding between the heater coil and the tip itself. -The firmware uses the theory that these irons are more towards the power users territory than most, so it tries to not hide the actual temperature. What some soldering iron controllers do is that they hide the actual measurement once you are within a certain tolerance of this. For example, on a digital Weller unit Ralim has to hand, if set to 350C, it will regulate to within around +-3 C but not indicate you are outside of this bad until you exceed +-5C. This gives the illusion that it's holding the temperature perfectly when in actuality it's moving around as well. +The firmware uses the theory that these irons are more towards the power users territory than most, so it tries to not hide the actual temperature. What some soldering iron controllers do is that they hide the actual measurement once you are within a certain tolerance of this. For example, on a digital Weller unit Ralim has to hand, if set to 350 °C, it will regulate to within around +-3 °C but not indicate you are outside of this bad until you exceed +-5 °C. This gives the illusion that it's holding the temperature perfectly when in actuality it's moving around as well. Given enough time (3-5 seconds) with no external cooling, the inside and outside temperatures of the tip will be equal. When testing the tip temperature accuracy try to allow time for the system to stabilise. @@ -53,6 +53,6 @@ The firmware in these irons does a best-effort of calculating an accurate temper The firmware only accounts for cold junction compensation and then treats the remaining error as being a constant offset. While the error is small, it is actually composed of both a constant offset as well as an offset that is linear to the handle temperature. -This offset that is linear to handle temperature is as of current not modelled into the firmware and there is assumed to be constant. This is generally "close enough" as once the unit is in use, the handle temperature is usually within 10C as the components inside warm-up from use. This means that this error is "relatively" constant once the unit is being used. However, this can cause odd behaviour when the tip temperature ~= room temperature. And can cause some jumping and movement in the readings when attempting to control the tip to sub 100C. +This offset that is linear to handle temperature is as of current not modelled into the firmware and there is assumed to be constant. This is generally "close enough" as once the unit is in use, the handle temperature is usually within 10 °C as the components inside warm-up from use. This means that this error is "relatively" constant once the unit is being used. However, this can cause odd behaviour when the tip temperature ~= room temperature. And can cause some jumping and movement in the readings when attempting to control the tip to sub 100 °C. -This is a known tradeoff that is made as the irons intended use case means that it will spend most of its time above 150C, at which point these errors are no longer the dominant error sources in the system.
\ No newline at end of file +This is a known tradeoff that is made as the irons intended use case means that it will spend most of its time above 150 °C, at which point these errors are no longer the dominant error sources in the system. |