aboutsummaryrefslogtreecommitdiffhomepage
path: root/source/Core/Drivers/OLED.cpp
blob: d8f046d1745dabcc59dbbc904faebceff8e6acb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
/*
 * OLED.cpp
 *
 *  Created on: 29Aug.,2017
 *      Author: Ben V. Brown
 */

#include "Buttons.hpp"
#include "Translation.h"
#include "cmsis_os.h"
#include "configuration.h"
#include <OLED.hpp>
#include <stdlib.h>
#include <string.h>

// rendering to the buffer
uint8_t *OLED::stripPointers[4]; // Pointers to the strips to allow for buffer having extra content

bool OLED::inLeftHandedMode; // Whether the screen is in left or not (used for
// offsets in GRAM)
OLED::DisplayState OLED::displayState;
int16_t            OLED::cursor_x, OLED::cursor_y;
bool               OLED::initDone = false;
uint8_t            OLED::displayOffset;
uint8_t            OLED::screenBuffer[16 + (OLED_WIDTH * (OLED_HEIGHT / 8)) + 10]; // The data buffer
uint8_t            OLED::secondFrameBuffer[16 + (OLED_WIDTH * (OLED_HEIGHT / 8)) + 10];
uint32_t           OLED::displayChecksum;
/*
 * Setup params for the OLED screen
 * http://www.displayfuture.com/Display/datasheet/controller/SSD1307.pdf
 * All commands are prefixed with 0x80
 * Data packets are prefixed with 0x40
 */
I2C_CLASS::I2C_REG OLED_Setup_Array[] = {
  /**/
    {0x80,         OLED_OFF, 0}, /* Display off */
    {0x80,     OLED_DIVIDER, 0}, /* Set display clock divide ratio / osc freq */
    {0x80,             0x52, 0}, /* Divide ratios */
    {0x80,             0xA8, 0}, /* Set Multiplex Ratio */
    {0x80,  OLED_HEIGHT - 1, 0}, /* Multiplex ratio adjusts how far down the matrix it scans */
    {0x80,             0xC0, 0}, /* Set COM Scan direction */
    {0x80,             0xD3, 0}, /* Set vertical Display offset */
    {0x80,             0x00, 0}, /* 0 Offset */
    {0x80,             0x40, 0}, /* Set Display start line to 0 */
#ifdef OLED_SEGMENT_MAP_REVERSED
    {0x80,             0xA1, 0}, /* Set Segment remap to normal */
#else
    {0x80, 0xA0, 0}, /* Set Segment remap to normal */
#endif
    {0x80,             0x8D, 0}, /* Charge Pump */
    {0x80,             0x14, 0}, /* Charge Pump settings */
    {0x80,             0xDA, 0}, /* Set VCOM Pins hardware config */
    {0x80, OLED_VCOM_LAYOUT, 0}, /* Combination 0x2 or 0x12 depending on OLED model */
    {0x80,             0x81, 0}, /* Brightness */
    {0x80,             0x00, 0}, /* ^0 */
    {0x80,             0xD9, 0}, /* Set pre-charge period */
    {0x80,             0xF1, 0}, /* Pre charge period */
    {0x80,             0xDB, 0}, /* Adjust VCOMH regulator ouput */
    {0x80,             0x30, 0}, /* VCOM level */
    {0x80,             0xA4, 0}, /* Enable the display GDDR */
    {0x80,             0xA6, 0}, /* Normal display */
    {0x80,             0x20, 0}, /* Memory Mode */
    {0x80,             0x00, 0}, /* Wrap memory */
    {0x80,          OLED_ON, 0}, /* Display on */
};
// Setup based on the SSD1307 and modified for the SSD1306

const uint8_t REFRESH_COMMANDS[17] = {
    // Set display ON:
    0x80,
    0xAF, // cmd

    // Set column address:
    //  A[6:0] - Column start address = 0x20
    //  B[6:0] - Column end address = 0x7F
    0x80,
    0x21, // cmd
    0x80,
    OLED_GRAM_START, // A
    0x80,
    OLED_GRAM_END, // B

    // Set COM output scan direction (normal mode, COM0 to COM[N-1])
    0x80,
    0xC0,

    // Set page address:
    //  A[2:0] - Page start address = 0
    //  B[2:0] - Page end address = 1
    0x80,
    0x22, // cmd
    0x80,
    0x00, // A
    0x80,
    (OLED_HEIGHT / 8) - 1, // B

    // Start of data
    0x40,
};

/*
 * Animation timing function that follows a bezier curve.
 * @param t A given percentage value [0..<100]
 * Returns a new percentage value with ease in and ease out.
 * Original floating point formula: t * t * (3.0f - 2.0f * t);
 */
static uint16_t easeInOutTiming(uint16_t t) { return t * t * (300 - 2 * t) / 10000; }

/*
 * Returns the value between a and b, using a percentage value t.
 * @param a The value associated with 0%
 * @param b The value associated with 100%
 * @param t The percentage [0..<100]
 */
static uint16_t lerp(uint16_t a, uint16_t b, uint16_t t) { return a + t * (b - a) / 100; }

void OLED::initialize() {
  cursor_x = cursor_y = 0;
  inLeftHandedMode    = false;

#ifdef OLED_128x32
  stripPointers[0] = &screenBuffer[FRAMEBUFFER_START];
  stripPointers[1] = &screenBuffer[FRAMEBUFFER_START + OLED_WIDTH];
  stripPointers[2] = &screenBuffer[FRAMEBUFFER_START + 2 * OLED_WIDTH];
  stripPointers[3] = &screenBuffer[FRAMEBUFFER_START + 3 * OLED_WIDTH];

#else
  stripPointers[0] = &screenBuffer[FRAMEBUFFER_START];
  stripPointers[1] = &screenBuffer[FRAMEBUFFER_START + OLED_WIDTH];

#endif /* OLED_128x32 */
  displayOffset = 0;
  memcpy(&screenBuffer[0], &REFRESH_COMMANDS[0], sizeof(REFRESH_COMMANDS));
  memcpy(&secondFrameBuffer[0], &REFRESH_COMMANDS[0], sizeof(REFRESH_COMMANDS));

  // Set the display to be ON once the settings block is sent and send the
  // initialisation data to the OLED.

  for (int tries = 0; tries < 10; tries++) {
    if (I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) {
      tries = 11;
    }
  }
  setDisplayState(DisplayState::ON);
  initDone = true;
}

void OLED::setFramebuffer(uint8_t *buffer) {
  stripPointers[0] = &buffer[FRAMEBUFFER_START];
  stripPointers[1] = &buffer[FRAMEBUFFER_START + OLED_WIDTH];

#ifdef OLED_128x32
  stripPointers[2] = &buffer[FRAMEBUFFER_START + (2 * OLED_WIDTH)];
  stripPointers[3] = &buffer[FRAMEBUFFER_START + (3 * OLED_WIDTH)];
#endif /* OLED_128x32 */
}

/*
 * Prints a char to the screen.
 * UTF font handling is done using the two input chars.
 * Precursor is the command char that is used to select the table.
 */
void OLED::drawChar(const uint16_t charCode, const FontStyle fontStyle) {
  const uint8_t *currentFont;
  static uint8_t fontWidth, fontHeight;
  uint16_t       index;
  switch (fontStyle) {
  case FontStyle::EXTRAS:
    currentFont = ExtraFontChars;
    index       = charCode;
    fontHeight  = 16;
    fontWidth   = 12;
    break;
  case FontStyle::SMALL:
  case FontStyle::LARGE:
  default:
    if (charCode == '\x01' && cursor_y == 0) { // 0x01 is used as new line char
      setCursor(0, 8);
      return;
    } else if (charCode <= 0x01) {
      return;
    }
    currentFont = nullptr;
    index       = 0;
    switch (fontStyle) {
    case FontStyle::SMALL:
      fontHeight = 8;
      fontWidth  = 6;
      break;
    case FontStyle::LARGE:
    default:
      fontHeight = 16;
      fontWidth  = 12;
      break;
    }

    currentFont = fontStyle == FontStyle::SMALL ? FontSectionInfo.font06_start_ptr : FontSectionInfo.font12_start_ptr;
    index       = charCode - 2;
    break;
  }
  const uint8_t *charPointer = currentFont + ((fontWidth * (fontHeight / 8)) * index);
  drawArea(cursor_x, cursor_y, fontWidth, fontHeight, charPointer);
  cursor_x += fontWidth;
}

/*
 * Draws a one pixel wide scrolling indicator. y is the upper vertical position
 * of the indicator in pixels (0..<16).
 */
void OLED::drawScrollIndicator(uint8_t y, uint8_t height) {
  union u_type {
    uint16_t whole;
    uint8_t  strips[2];
  } column;

  column.whole = (1 << height) - 1;
  column.whole <<= y;

  // Draw a one pixel wide bar to the left with a single pixel as
  // the scroll indicator.
  fillArea(OLED_WIDTH - 1, 0, 1, 8, column.strips[0]);
  fillArea(OLED_WIDTH - 1, 8, 1, 8, column.strips[1]);
}

/**
 * Masks (removes) the scrolling indicator, i.e. clears the rightmost column
 * on the screen. This operates directly on the OLED graphics RAM, as this
 * is intended to be used before calling `OLED::transitionScrollDown()`.
 */
void OLED::maskScrollIndicatorOnOLED() {
  // The right-most column depends on the screen rotation, so just take
  // it from the screen buffer which is updated by `OLED::setRotation`.
  uint8_t rightmostColumn = screenBuffer[7];
  uint8_t maskCommands[]  = {
      // Set column address:
      //  A[6:0] - Column start address = rightmost column
      //  B[6:0] - Column end address = rightmost column
      0x80,
      0x21, // cmd
      0x80,
      rightmostColumn, // A
      0x80,
      rightmostColumn, // B

      // Start of data
      0x40,
#ifdef OLED_128x32
      0x00,
      0x00,
#endif /* OLED_128x32 */
      // Clears two 8px strips
      0x00,
      0x00,
  };
  I2C_CLASS::Transmit(DEVICEADDR_OLED, maskCommands, sizeof(maskCommands));
}

/**
 * Plays a transition animation between two framebuffers.
 * @param forwardNavigation Direction of the navigation animation.
 *
 * If forward is true, this displays a forward navigation to the second framebuffer contents.
 * Otherwise a rewinding navigation animation is shown to the second framebuffer contents.
 */
void OLED::transitionSecondaryFramebuffer(const bool forwardNavigation, const TickType_t viewEnterTime) {
  bool     buttonsReleased = getButtonState() == BUTTON_NONE;
  uint8_t *stripBackPointers[4];
  stripBackPointers[0] = &secondFrameBuffer[FRAMEBUFFER_START + 0];
  stripBackPointers[1] = &secondFrameBuffer[FRAMEBUFFER_START + OLED_WIDTH];

#ifdef OLED_128x32
  stripBackPointers[2] = &secondFrameBuffer[OLED_WIDTH * 2];
  stripBackPointers[3] = &secondFrameBuffer[OLED_WIDTH * 3];
#endif /* OLED_128x32 */

  TickType_t totalDuration = TICKS_100MS * 5; // 500ms
  TickType_t duration      = 0;
  TickType_t start         = xTaskGetTickCount();
  uint8_t    offset        = 0;
  TickType_t startDraw     = xTaskGetTickCount();
  while (duration <= totalDuration) {
    duration          = xTaskGetTickCount() - start;
    uint16_t progress = ((duration * 100) / totalDuration); // Percentage of the period we are through for animation
    progress          = easeInOutTiming(progress);
    progress          = lerp(0, OLED_WIDTH, progress);
    // Constrain
    if (progress > OLED_WIDTH) {
      progress = OLED_WIDTH;
    }

    // When forward, current contents move to the left out.
    // Otherwise the contents move to the right out.
    uint8_t oldStart    = forwardNavigation ? 0 : progress;
    uint8_t oldPrevious = forwardNavigation ? progress - offset : offset;

    // Content from the second framebuffer moves in from the right (forward)
    // or from the left (not forward).
    uint8_t newStart = forwardNavigation ? OLED_WIDTH - progress : 0;
    uint8_t newEnd   = forwardNavigation ? 0 : OLED_WIDTH - progress;

    offset = progress;

    memmove(&stripPointers[0][oldStart], &stripPointers[0][oldPrevious], OLED_WIDTH - progress);
    memmove(&stripPointers[1][oldStart], &stripPointers[1][oldPrevious], OLED_WIDTH - progress);

#ifdef OLED_128x32
    memmove(&stripPointers[2][oldStart], &stripPointers[2][oldPrevious], OLED_WIDTH - progress);
    memmove(&stripPointers[3][oldStart], &stripPointers[3][oldPrevious], OLED_WIDTH - progress);
#endif /* OLED_128x32 */

    memmove(&stripPointers[0][newStart], &stripBackPointers[0][newEnd], progress);
    memmove(&stripPointers[1][newStart], &stripBackPointers[1][newEnd], progress);

#ifdef OLED_128x32
    memmove(&stripPointers[2][newStart], &stripBackPointers[2][newEnd], progress);
    memmove(&stripPointers[3][newStart], &stripBackPointers[3][newEnd], progress);
#endif /* OLED_128x32 */

    refresh(); // Now refresh to write out the contents to the new page
    vTaskDelayUntil(&startDraw, TICKS_100MS / 7);
    buttonsReleased |= getButtonState() == BUTTON_NONE;
    if (getButtonState() != BUTTON_NONE && buttonsReleased) {
      memcpy(screenBuffer + FRAMEBUFFER_START, secondFrameBuffer + FRAMEBUFFER_START, sizeof(screenBuffer) - FRAMEBUFFER_START);
      refresh(); // Now refresh to write out the contents to the new page
      return;
    }
  }
  refresh(); //
}

void OLED::useSecondaryFramebuffer(bool useSecondary) {
  if (useSecondary) {
    setFramebuffer(secondFrameBuffer);
  } else {
    setFramebuffer(screenBuffer);
  }
}

/**
 * This assumes that the current display output buffer has the current on screen contents
 * Then the secondary buffer has the "new" contents to be slid up onto the screen
 * Sadly we cant use the hardware scroll as some devices with the 128x32 screens dont have the GRAM for holding both screens at once
 *
 * **This function blocks until the transition has completed or user presses button**
 */
void OLED::transitionScrollDown(const TickType_t viewEnterTime) {
  TickType_t startDraw       = xTaskGetTickCount();
  bool       buttonsReleased = getButtonState() == BUTTON_NONE;

  for (uint8_t heightPos = 0; heightPos < OLED_HEIGHT; heightPos++) {
    // For each line, we shuffle all bits up a row
    for (uint8_t xPos = 0; xPos < OLED_WIDTH; xPos++) {
      const uint16_t firstStripPos  = FRAMEBUFFER_START + xPos;
      const uint16_t secondStripPos = firstStripPos + OLED_WIDTH;
#ifdef OLED_128x32
      // For 32 pixel high OLED's we have four strips to tailchain
      const uint16_t thirdStripPos  = secondStripPos + OLED_WIDTH;
      const uint16_t fourthStripPos = thirdStripPos + OLED_WIDTH;
      // Move the MSB off the first strip, and pop MSB from second strip onto the first strip
      screenBuffer[firstStripPos] = (screenBuffer[firstStripPos] >> 1) | ((screenBuffer[secondStripPos] & 0x01) << 7);
      // Now shuffle off the second strip
      screenBuffer[secondStripPos] = (screenBuffer[secondStripPos] >> 1) | ((screenBuffer[thirdStripPos] & 0x01) << 7);
      // Now shuffle off the third strip
      screenBuffer[thirdStripPos] = (screenBuffer[thirdStripPos] >> 1) | ((screenBuffer[fourthStripPos] & 0x01) << 7);
      // Now forth strip gets the start of the new buffer
      screenBuffer[fourthStripPos] = (screenBuffer[fourthStripPos] >> 1) | ((secondFrameBuffer[firstStripPos] & 0x01) << 7);
      // Now cycle all the secondary buffers

      secondFrameBuffer[firstStripPos]  = (secondFrameBuffer[firstStripPos] >> 1) | ((secondFrameBuffer[secondStripPos] & 0x01) << 7);
      secondFrameBuffer[secondStripPos] = (secondFrameBuffer[secondStripPos] >> 1) | ((secondFrameBuffer[thirdStripPos] & 0x01) << 7);
      secondFrameBuffer[thirdStripPos]  = (secondFrameBuffer[thirdStripPos] >> 1) | ((secondFrameBuffer[fourthStripPos] & 0x01) << 7);
      // Finally on the bottom row; we shuffle it up ready
      secondFrameBuffer[fourthStripPos] >>= 1;
#else
      // Move the LSB off the first strip, and pop MSB from second strip onto the first strip
      screenBuffer[firstStripPos] = (screenBuffer[firstStripPos] >> 1) | ((screenBuffer[secondStripPos] & 0x01) << 7);
      // Now shuffle off the second strip MSB, and replace it with the LSB of the secondary buffer
      screenBuffer[secondStripPos] = (screenBuffer[secondStripPos] >> 1) | ((secondFrameBuffer[firstStripPos] & 0x01) << 7);
      // Finally, do the shuffle on the second frame buffer
      secondFrameBuffer[firstStripPos] = (secondFrameBuffer[firstStripPos] >> 1) | ((secondFrameBuffer[secondStripPos] & 0x01) << 7);
      // Finally on the bottom row; we shuffle it up ready
      secondFrameBuffer[secondStripPos] >>= 1;
#endif /* OLED_128x32 */
    }
    buttonsReleased |= getButtonState() == BUTTON_NONE;
    if (getButtonState() != BUTTON_NONE && buttonsReleased) {
      // Exit early, but have to transition whole buffer
      memcpy(screenBuffer + FRAMEBUFFER_START, secondFrameBuffer + FRAMEBUFFER_START, sizeof(screenBuffer) - FRAMEBUFFER_START);
      refresh(); // Now refresh to write out the contents to the new page
      return;
    }
    refresh(); // Now refresh to write out the contents to the new page
    vTaskDelayUntil(&startDraw, TICKS_100MS / 7);
  }
}
/**
 * This assumes that the current display output buffer has the current on screen contents
 * Then the secondary buffer has the "new" contents to be slid down onto the screen
 * Sadly we cant use the hardware scroll as some devices with the 128x32 screens dont have the GRAM for holding both screens at once
 *
 * **This function blocks until the transition has completed or user presses button**
 */
void OLED::transitionScrollUp(const TickType_t viewEnterTime) {
  TickType_t startDraw       = xTaskGetTickCount();
  bool       buttonsReleased = getButtonState() == BUTTON_NONE;

  for (uint8_t heightPos = 0; heightPos < OLED_HEIGHT; heightPos++) {
    // For each line, we shuffle all bits down a row
    for (uint8_t xPos = 0; xPos < OLED_WIDTH; xPos++) {
      const uint16_t firstStripPos  = FRAMEBUFFER_START + xPos;
      const uint16_t secondStripPos = firstStripPos + OLED_WIDTH;
#ifdef OLED_128x32
      // For 32 pixel high OLED's we have four strips to tailchain
      const uint16_t thirdStripPos  = secondStripPos + OLED_WIDTH;
      const uint16_t fourthStripPos = thirdStripPos + OLED_WIDTH;
      // We are shffling LSB's off the end and pushing bits down
      screenBuffer[fourthStripPos] = (screenBuffer[fourthStripPos] << 1) | ((screenBuffer[thirdStripPos] & 0x80) >> 7);
      screenBuffer[thirdStripPos]  = (screenBuffer[thirdStripPos] << 1) | ((screenBuffer[secondStripPos] & 0x80) >> 7);
      screenBuffer[secondStripPos] = (screenBuffer[secondStripPos] << 1) | ((screenBuffer[firstStripPos] & 0x80) >> 7);
      screenBuffer[firstStripPos]  = (screenBuffer[firstStripPos] << 1) | ((secondFrameBuffer[fourthStripPos] & 0x80) >> 7);

      secondFrameBuffer[fourthStripPos] = (secondFrameBuffer[fourthStripPos] << 1) | ((secondFrameBuffer[thirdStripPos] & 0x80) >> 7);
      secondFrameBuffer[thirdStripPos]  = (secondFrameBuffer[thirdStripPos] << 1) | ((secondFrameBuffer[secondStripPos] & 0x80) >> 7);
      secondFrameBuffer[secondStripPos] = (secondFrameBuffer[secondStripPos] << 1) | ((secondFrameBuffer[firstStripPos] & 0x80) >> 7);
      // Finally on the bottom row; we shuffle it up ready
      secondFrameBuffer[firstStripPos] <<= 1;
#else
      // We pop the LSB off the bottom row, and replace the MSB in that byte with the LSB of the row above
      screenBuffer[secondStripPos] = (screenBuffer[secondStripPos] << 1) | ((screenBuffer[firstStripPos] & 0x80) >> 7);
      // Move the LSB off the first strip, and pop MSB from second strip onto the first strip
      screenBuffer[firstStripPos] = (screenBuffer[firstStripPos] << 1) | ((secondFrameBuffer[secondStripPos] & 0x80) >> 7);

      // Finally, do the shuffle on the second frame buffer
      secondFrameBuffer[secondStripPos] = (secondFrameBuffer[secondStripPos] << 1) | ((secondFrameBuffer[firstStripPos] & 0x80) >> 7);
      // Finally on the bottom row; we shuffle it up ready
      secondFrameBuffer[firstStripPos] <<= 1;
#endif /* OLED_128x32 */
    }
    buttonsReleased |= getButtonState() == BUTTON_NONE;
    if (getButtonState() != BUTTON_NONE && buttonsReleased) {
      // Exit early, but have to transition whole buffer
      memcpy(screenBuffer + FRAMEBUFFER_START, secondFrameBuffer + FRAMEBUFFER_START, sizeof(screenBuffer) - FRAMEBUFFER_START);
      refresh(); // Now refresh to write out the contents to the new page
      return;
    }
    refresh(); // Now refresh to write out the contents to the new page
    vTaskDelayUntil(&startDraw, TICKS_100MS / 7);
  }
}

void OLED::setRotation(bool leftHanded) {
#ifdef OLED_FLIP
  leftHanded = !leftHanded;
#endif /* OLED_FLIP */
  if (inLeftHandedMode == leftHanded) {
    return;
  }
#ifdef OLED_SEGMENT_MAP_REVERSED
  if (!leftHanded) {
    OLED_Setup_Array[9].val = 0xA1;
  } else {
    OLED_Setup_Array[9].val = 0xA0;
  }
#else
  if (leftHanded) {
    OLED_Setup_Array[9].val = 0xA1;
  } else {
    OLED_Setup_Array[9].val = 0xA0;
  }
#endif /* OLED_SEGMENT_MAP_REVERSED */
  // send command struct again with changes
  if (leftHanded) {
    OLED_Setup_Array[5].val = 0xC8; // c1?
  } else {
    OLED_Setup_Array[5].val = 0xC0;
  }
  I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]));
  osDelay(TICKS_10MS);
  inLeftHandedMode = leftHanded;

  screenBuffer[5] = inLeftHandedMode ? OLED_GRAM_START_FLIP : OLED_GRAM_START; // display is shifted by 32 in left handed
                                                                               // mode as driver ram is 128 wide
  screenBuffer[7] = inLeftHandedMode ? OLED_GRAM_END_FLIP : OLED_GRAM_END;     // End address of the ram segment we are writing to (96 wide)
  screenBuffer[9] = inLeftHandedMode ? 0xC8 : 0xC0;
  // Force a screen refresh
  const int len = FRAMEBUFFER_START + (OLED_WIDTH * (OLED_HEIGHT / 8));
  I2C_CLASS::Transmit(DEVICEADDR_OLED, screenBuffer, len);
  osDelay(TICKS_10MS);
  checkDisplayBufferChecksum();
}

void OLED::setBrightness(uint8_t contrast) {
  if (OLED_Setup_Array[15].val != contrast) {
    OLED_Setup_Array[15].val = contrast;
    I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, &OLED_Setup_Array[14], 2);
  }
}

void OLED::setInverseDisplay(bool inverse) {
  uint8_t normalInverseCmd = inverse ? 0xA7 : 0xA6;
  if (OLED_Setup_Array[21].val != normalInverseCmd) {
    OLED_Setup_Array[21].val = normalInverseCmd;
    I2C_CLASS::I2C_RegisterWrite(DEVICEADDR_OLED, 0x80, normalInverseCmd);
  }
}

// print a string to the current cursor location, len chars MAX
void OLED::print(const char *const str, FontStyle fontStyle, uint8_t len) {
  const uint8_t *next = reinterpret_cast<const uint8_t *>(str);
  if (next[0] == 0x01) {
    fontStyle = FontStyle::LARGE;
    next++;
  }
  while (next[0] && len--) {
    uint16_t index;
    if (next[0] <= 0xF0) {
      index = next[0];
      next++;
    } else {
      if (!next[1]) {
        return;
      }
      index = (next[0] - 0xF0) * 0xFF - 15 + next[1];
      next += 2;
    }
    drawChar(index, fontStyle);
  }
}

/**
 * Prints a static string message designed to use the whole screen, starting
 * from the top-left corner.
 *
 * If the message starts with a newline (`\\x01`), the string starting from
 * after the newline is printed in the large font. Otherwise, the message
 * is printed in the small font.
 *
 * @param string The string message to be printed
 */
void OLED::printWholeScreen(const char *string) {
  setCursor(0, 0);
  if (string[0] == '\x01') {
    // Empty first line means that this uses large font (for CJK).
    OLED::print(string + 1, FontStyle::LARGE);
  } else {
    OLED::print(string, FontStyle::SMALL);
  }
}

// Print *F or *C - in font style of Small, Large (by default) or Extra based on input arg
void OLED::printSymbolDeg(const FontStyle fontStyle) {
  switch (fontStyle) {
  case FontStyle::EXTRAS:
    // Picks *F or *C in ExtraFontChars[] from Font.h
    OLED::drawSymbol(getSettingValue(SettingsOptions::TemperatureInF) ? 0 : 1);
    break;
  case FontStyle::LARGE:
    OLED::print(getSettingValue(SettingsOptions::TemperatureInF) ? LargeSymbolDegF : LargeSymbolDegC, fontStyle);
    break;
  case FontStyle::SMALL:
  default:
    OLED::print(getSettingValue(SettingsOptions::TemperatureInF) ? SmallSymbolDegF : SmallSymbolDegC, fontStyle);
    break;
  }
}

inline void stripLeaderZeros(char *buffer, uint8_t places) {
  // Removing the leading zero's by swapping them to SymbolSpace
  // Stop 1 short so that we dont blank entire number if its zero
  for (int i = 0; i < (places - 1); i++) {
    if (buffer[i] == 2) {
      buffer[i] = LargeSymbolSpace[0];
    } else {
      return;
    }
  }
}

void OLED::drawHex(uint32_t x, FontStyle fontStyle, uint8_t digits) {
  // print number to hex
  for (uint_fast8_t i = 0; i < digits; i++) {
    uint16_t value = (x >> (4 * (7 - i))) & 0b1111;
    drawChar(value + 2, fontStyle);
  }
}

// maximum places is 5
void OLED::printNumber(uint16_t number, uint8_t places, FontStyle fontStyle, bool noLeaderZeros) {
  char buffer[7] = {0};

  if (places >= 5) {
    buffer[5] = 2 + number % 10;
    number /= 10;
  }
  if (places > 4) {
    buffer[4] = 2 + number % 10;
    number /= 10;
  }

  if (places > 3) {
    buffer[3] = 2 + number % 10;
    number /= 10;
  }

  if (places > 2) {
    buffer[2] = 2 + number % 10;
    number /= 10;
  }

  if (places > 1) {
    buffer[1] = 2 + number % 10;
    number /= 10;
  }

  buffer[0] = 2 + number % 10;
  if (noLeaderZeros) {
    stripLeaderZeros(buffer, places);
  }
  print(buffer, fontStyle);
}

void OLED::debugNumber(int32_t val, FontStyle fontStyle) {
  if (abs(val) > 99999) {
    OLED::print(LargeSymbolSpace, fontStyle); // out of bounds
    return;
  }
  if (val >= 0) {
    OLED::print(LargeSymbolSpace, fontStyle);
    OLED::printNumber(val, 5, fontStyle);
  } else {
    OLED::print(LargeSymbolMinus, fontStyle);
    OLED::printNumber(-val, 5, fontStyle);
  }
}

void OLED::drawSymbol(uint8_t symbolID) {
  // draw a symbol to the current cursor location
  drawChar(symbolID, FontStyle::EXTRAS);
}

// Draw an area, but y must be aligned on 0/8 offset
void OLED::drawArea(int16_t x, int8_t y, uint8_t wide, uint8_t height, const uint8_t *ptr) {
  // Splat this from x->x+wide in two strides
  if (x <= -wide) {
    return; // cutoffleft
  }
  if (x > 96) {
    return; // cutoff right
  }

  uint8_t visibleStart = 0;
  uint8_t visibleEnd   = wide;

  // trimming to draw partials
  if (x < 0) {
    visibleStart -= x; // subtract negative value == add absolute value
  }
  if (x + wide > 96) {
    visibleEnd = 96 - x;
  }

  if (y == 0) {
    // Splat first line of data
    for (uint8_t xx = visibleStart; xx < visibleEnd; xx++) {
      stripPointers[0][xx + x] = ptr[xx];
    }
  }
  if (y == 8 || height >= 16) {
    // Splat the second line
    for (uint8_t xx = visibleStart; xx < visibleEnd; xx++) {
      stripPointers[1][x + xx] = ptr[xx + (height == 16 ? wide : 0)];
    }
  }
  // TODO NEEDS HEIGHT HANDLERS for 24/32
}

// Draw an area, but y must be aligned on 0/8 offset
// For data which has octets swapped in a 16-bit word.
void OLED::drawAreaSwapped(int16_t x, int8_t y, uint8_t wide, uint8_t height, const uint8_t *ptr) {
  // Splat this from x->x+wide in two strides
  if (x <= -wide) {
    return; // cutoffleft
  }
  if (x > 96) {
    return; // cutoff right
  }

  uint8_t visibleStart = 0;
  uint8_t visibleEnd   = wide;

  // trimming to draw partials
  if (x < 0) {
    visibleStart -= x; // subtract negative value == add absolute value
  }
  if (x + wide > 96) {
    visibleEnd = 96 - x;
  }

  if (y == 0) {
    // Splat first line of data
    for (uint8_t xx = visibleStart; xx < visibleEnd; xx += 2) {
      stripPointers[0][xx + x]     = ptr[xx + 1];
      stripPointers[0][xx + x + 1] = ptr[xx];
    }
  }
  if (y == 8 || height == 16) {
    // Splat the second line
    for (uint8_t xx = visibleStart; xx < visibleEnd; xx += 2) {
      stripPointers[1][x + xx]     = ptr[xx + 1 + (height == 16 ? wide : 0)];
      stripPointers[1][x + xx + 1] = ptr[xx + (height == 16 ? wide : 0)];
    }
  }
}

void OLED::fillArea(int16_t x, int8_t y, uint8_t wide, uint8_t height, const uint8_t value) {
  // Splat this from x->x+wide in two strides
  if (x <= -wide) {
    return; // cutoffleft
  }
  if (x > 96) {
    return; // cutoff right
  }

  uint8_t visibleStart = 0;
  uint8_t visibleEnd   = wide;

  // trimming to draw partials
  if (x < 0) {
    visibleStart -= x; // subtract negative value == add absolute value
  }
  if (x + wide > 96) {
    visibleEnd = 96 - x;
  }

  if (y == 0) {
    // Splat first line of data
    for (uint8_t xx = visibleStart; xx < visibleEnd; xx++) {
      stripPointers[0][xx + x] = value;
    }
  }
  if (y == 8 || height == 16) {
    // Splat the second line
    for (uint8_t xx = visibleStart; xx < visibleEnd; xx++) {
      stripPointers[1][x + xx] = value;
    }
  }
}

void OLED::drawFilledRect(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1, bool clear) {
  // Draw this in 3 sections
  // This is basically a N wide version of vertical line

  // Step 1 : Draw in the top few pixels that are not /8 aligned
  // LSB is at the top of the screen
  uint8_t mask = 0xFF;
  if (y0) {
    mask = mask << (y0 % 8);
    for (uint8_t col = x0; col < x1; col++) {
      if (clear) {
        stripPointers[0][(y0 / 8) * 96 + col] &= ~mask;
      } else {
        stripPointers[0][(y0 / 8) * 96 + col] |= mask;
      }
    }
  }
  // Next loop down the line the total number of solids
  if (y0 / 8 != y1 / 8) {
    for (uint8_t col = x0; col < x1; col++) {
      for (uint8_t r = (y0 / 8); r < (y1 / 8); r++) {
        // This gives us the row index r
        if (clear) {
          stripPointers[0][(r * 96) + col] = 0;
        } else {
          stripPointers[0][(r * 96) + col] = 0xFF;
        }
      }
    }
  }

  // Finally draw the tail
  mask = ~(mask << (y1 % 8));
  for (uint8_t col = x0; col < x1; col++) {
    if (clear) {
      stripPointers[0][(y1 / 8) * 96 + col] &= ~mask;
    } else {
      stripPointers[0][(y1 / 8) * 96 + col] |= mask;
    }
  }
}

void OLED::drawHeatSymbol(uint8_t state) {
  // Draw symbol 14
  // Then draw over it, the bottom 5 pixels always stay. 8 pixels above that are
  // the levels masks the symbol nicely
  state /= 31; // 0-> 8 range
  // Then we want to draw down (16-(5+state)
  uint8_t cursor_x_temp = cursor_x;
  drawSymbol(14);
  drawFilledRect(cursor_x_temp, 0, cursor_x_temp + 12, 2 + (8 - state), true);
}

bool OLED::isInitDone() { return initDone; }