1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
#include "OperatingModes.h"
#include "SolderingCommon.h"
#include "ui_drawing.hpp"
// State 1 = button locking (0:unlocked+released, 1:unlocked, 2:locked, 3:locked+released)
// State 2 = boost mode
// State 3 = buzzer timer
OperatingMode handleSolderingButtons(const ButtonState buttons, guiContext *cxt) {
if (cxt->scratch_state.state1 >= 2) {
// Buttons are currently locked
if (buttons == BUTTON_BOTH_LONG) {
if (cxt->scratch_state.state1 == 3) {
// Unlocking
if (warnUser(translatedString(Tr->UnlockingKeysString), buttons)) {
cxt->scratch_state.state1 = 1;
cxt->scratch_state.state7 = 0;
}
} else {
warnUser(translatedString(Tr->LockingKeysString), buttons);
}
return OperatingMode::Soldering;
}
if (cxt->scratch_state.state7 != 0) {
// show locked until timer is up
if (xTaskGetTickCount() >= cxt->scratch_state.state7) {
cxt->scratch_state.state7 = 0;
} else {
warnUser(translatedString(Tr->WarningKeysLockedString), buttons);
return OperatingMode::Soldering;
}
}
switch (buttons) {
case BUTTON_NONE:
cxt->scratch_state.state1 = 3;
break;
case BUTTON_F_LONG:
if (getSettingValue(SettingsOptions::BoostTemp) && (getSettingValue(SettingsOptions::LockingMode) == lockingMode_t::BOOST)) {
cxt->scratch_state.state2 = 1;
break;
}
/*Fall through*/
default: // Set timer for and display a lock warning
cxt->scratch_state.state7 = xTaskGetTickCount() + TICKS_SECOND;
warnUser(translatedString(Tr->WarningKeysLockedString), buttons);
break;
}
return OperatingMode::Soldering;
}
// otherwise we are unlocked
switch (buttons) {
case BUTTON_NONE:
cxt->scratch_state.state2 = 0;
cxt->scratch_state.state1 = 0;
break;
case BUTTON_BOTH:
/*Fall through*/
case BUTTON_B_LONG:
cxt->transitionMode = TransitionAnimation::Right;
return OperatingMode::HomeScreen;
case BUTTON_F_LONG:
// if boost mode is enabled turn it on
if (getSettingValue(SettingsOptions::BoostTemp)) {
cxt->scratch_state.state2 = 1;
}
break;
case BUTTON_F_SHORT:
case BUTTON_B_SHORT:
cxt->transitionMode = TransitionAnimation::Left;
return OperatingMode::TemperatureAdjust;
case BUTTON_BOTH_LONG:
if (getSettingValue(SettingsOptions::LockingMode)) {
// Lock buttons
if (cxt->scratch_state.state1 == 0) {
if (warnUser(translatedString(Tr->LockingKeysString), buttons)) {
cxt->scratch_state.state1 = 2;
}
} else {
// FIXME should be WarningKeysUnlockedString
warnUser(translatedString(Tr->UnlockingKeysString), buttons);
}
}
break;
default:
break;
}
return OperatingMode::Soldering;
}
OperatingMode gui_solderingMode(const ButtonState buttons, guiContext *cxt) {
/*
* * Soldering (gui_solderingMode)
* -> Main loop where we draw temp, and animations
* --> User presses buttons and they goto the temperature adjust screen
* ---> Display the current setpoint temperature
* ---> Use buttons to change forward and back on temperature
* ---> Both buttons or timeout for exiting
* --> Long hold front button to enter boost mode
* ---> Just temporarily sets the system into the alternate temperature for
* PID control
* --> Long hold back button to exit
* --> Double button to exit
* --> Long hold double button to toggle key lock
*/
// Update the setpoints for the temperature
if (cxt->scratch_state.state2) {
if (getSettingValue(SettingsOptions::TemperatureInF)) {
currentTempTargetDegC = TipThermoModel::convertFtoC(getSettingValue(SettingsOptions::BoostTemp));
} else {
currentTempTargetDegC = (getSettingValue(SettingsOptions::BoostTemp));
}
} else {
if (getSettingValue(SettingsOptions::TemperatureInF)) {
currentTempTargetDegC = TipThermoModel::convertFtoC(getSettingValue(SettingsOptions::SolderingTemp));
} else {
currentTempTargetDegC = (getSettingValue(SettingsOptions::SolderingTemp));
}
}
// Update status
int error = currentTempTargetDegC - TipThermoModel::getTipInC();
if (error >= -10 && error <= 10) {
// converged
if (!cxt->scratch_state.state5) {
setBuzzer(true);
cxt->scratch_state.state3 = xTaskGetTickCount() + TICKS_SECOND / 3;
cxt->scratch_state.state5 = true;
}
setStatusLED(LED_HOT);
} else {
setStatusLED(LED_HEATING);
cxt->scratch_state.state5 = false;
}
if (cxt->scratch_state.state3 != 0 && xTaskGetTickCount() >= cxt->scratch_state.state3) {
setBuzzer(false);
}
// Draw in the screen details
if (getSettingValue(SettingsOptions::DetailedSoldering)) {
ui_draw_soldering_power_status(cxt->scratch_state.state2);
} else {
ui_draw_soldering_basic_status(cxt->scratch_state.state2);
}
// Check if we should bail due to undervoltage for example
if (checkExitSoldering()) {
setBuzzer(false);
cxt->transitionMode = TransitionAnimation::Right;
return OperatingMode::HomeScreen;
}
#ifdef NO_SLEEP_MODE
if (shouldShutdown()) {
// shutdown
currentTempTargetDegC = 0;
cxt->transitionMode = TransitionAnimation::Right;
return OperatingMode::HomeScreen;
}
#endif
if (shouldBeSleeping()) {
return OperatingMode::Sleeping;
}
if (heaterThermalRunaway) {
currentTempTargetDegC = 0; // heater control off
heaterThermalRunaway = false;
cxt->transitionMode = TransitionAnimation::Right;
return OperatingMode::ThermalRunaway;
}
return handleSolderingButtons(buttons, cxt);
}
|