1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
/*
* power.cpp
*
* Created on: 28 Oct, 2018
* Authors: Ben V. Brown, David Hilton <- Mostly David
*/
#include <power.hpp>
#include <Settings.h>
#include <BSP.h>
static int32_t PWMToX10Watts(uint8_t pwm, uint8_t sample);
expMovingAverage<uint32_t, wattHistoryFilter> x10WattHistory = { 0 };
int32_t tempToX10Watts(int32_t rawTemp) {
// mass is in milliJ/*C, rawC is raw per degree C
// returns milliWatts needed to raise/lower a mass by rawTemp
// degrees in one cycle.
int32_t milliJoules = tipMass * rawTemp;
return milliJoules;
}
void setTipX10Watts(int32_t mw) {
int32_t output = X10WattsToPWM(mw, 1);
setTipPWM(output);
uint32_t actualMilliWatts = PWMToX10Watts(output, 0);
x10WattHistory.update(actualMilliWatts);
}
static uint32_t availableW10(uint8_t sample) {
//P = V^2 / R, v*v = v^2 * 100
// R = R*10
// P therefore is in V^2*100/R*10 = W*10.
uint32_t v = getInputVoltageX10(systemSettings.voltageDiv, sample); // 100 = 10v
uint32_t availableWattsX10 = (v * v) / tipResistance;
//However, 100% duty cycle is not possible as there is a dead time while the ADC takes a reading
//Therefore need to scale available milliwats by this
// avMw=(AvMw*powerPWM)/totalPWM.
availableWattsX10 = availableWattsX10 * powerPWM;
availableWattsX10 /= totalPWM;
//availableMilliWattsX10 is now an accurate representation
return availableWattsX10;
}
uint8_t X10WattsToPWM(int32_t milliWatts, uint8_t sample) {
// Scale input milliWatts to the pwm range available
if (milliWatts < 1) {
//keep the battery voltage updating the filter
getInputVoltageX10(systemSettings.voltageDiv, sample);
return 0;
}
//Calculate desired milliwatts as a percentage of availableW10
uint32_t pwm;
do {
pwm = (powerPWM * milliWatts) / availableW10(sample);
if (pwm > powerPWM) {
// constrain to max PWM counter, shouldn't be possible,
// but small cost for safety to avoid wraps
pwm = powerPWM;
}
} while (tryBetterPWM(pwm));
return pwm;
}
static int32_t PWMToX10Watts(uint8_t pwm, uint8_t sample) {
uint32_t maxMW = availableW10(sample); //Get the milliwatts for the max pwm period
//Then convert pwm into percentage of powerPWM to get the percentage of the max mw
return (((uint32_t) pwm) * maxMW) / powerPWM;
}
|